Sample records for point-defect migration energy

  1. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0217 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi-Gang Yu...2016 Interim 11 September 2013 – 5 November 2016 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first-principles calculations to study the formation

  2. Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)

    DTIC Science & Technology

    2017-06-05

    AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and

  3. Modeling of point defects and rare gas incorporation in uranium mono-carbide

    NASA Astrophysics Data System (ADS)

    Chartier, A.; Van Brutzel, L.

    2007-02-01

    An embedded atom method (EAM) potential has been established for uranium mono-carbide. This EAM potential was fitted on structural properties of metallic uranium and uranium mono-carbide. The formation energies of point defects, as well as activation energies for self migration, have been evaluated in order to cross-check the suitability of the potential. Assuming that the carbon vacancies are the main defects in uranium mono-carbide compounds, the migration paths and energies are consistent with experimental data selected by Catlow[C.R.A. Catlow, J. Nucl. Mater. 60 (1976) 151]. The insertion and migration energies for He, Kr and Xe have also been evaluated with available inter-atomic potentials [H.H. Andersen, P. Sigmund, Nucl. Instr. and Meth. B 38 (1965) 238]. Results show that the most stable defect configuration for rare gases is within uranium vacancies. The migration energy of an interstitial Xe is 0.5 eV, in agreement with the experimental value of 0.5 eV [Hj. Matzke, Science of advanced LMFBR fuels, Solid State Physics, Chemistry and Technology of Carbides, Nitrides and Carbonitrides of Uranium and Plutonium, North-Holland, 1986].

  4. Energetics of defects formation and oxygen migration in pyrochlore compounds from first principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Yan; Kowalski, Piotr M.

    2018-07-01

    In order to get better understanding of the selective order-disorder transition in pyrochlore compounds, using ab initio methods we calculated the formation energies of coupled cation anti-site and anion Frenkel pair defects and the energy barriers for the oxygen migration for number of families of A2B2 O7 pyrochlore-type compounds. While these parameters have been previously computed with force field-based methods, the ab initio results provide more reliable values that can be confidently used in subsequent analysis. We found a fairly good correlation between the formation energies of the coupled defects and the stability field of pyrochlores. In line with previous studies, the compounds that crystallize in defect fluorite structure are found to have smaller values of coupled defect formation energies than those crystallizing in the pyrochlore phase, although the correlation is not that sharp as in the case of isolated anion Frenkel pair defect. The investigation of the energy barriers for the oxygen migration shows that it is not a good, sole indicator of the tendency of the order-disorder phase transition in pyrochlores. However, we found that the oxygen migration barrier is reduced in the presence of the cation antisite defect. This points at disordering-induced enhancement of oxygen diffusion in pyrochlore compounds.

  5. Effective scheme to determine accurate defect formation energies and charge transition levels of point defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Yao, Cang Lang; Li, Jian Chen; Gao, Wang; Tkatchenko, Alexandre; Jiang, Qing

    2017-12-01

    We propose an effective method to accurately determine the defect formation energy Ef and charge transition level ɛ of the point defects using exclusively cohesive energy Ecoh and the fundamental band gap Eg of pristine host materials. We find that Ef of the point defects can be effectively separated into geometric and electronic contributions with a functional form: Ef=χ Ecoh+λ Eg , where χ and λ are dictated by the geometric and electronic factors of the point defects (χ and λ are defect dependent). Such a linear combination of Ecoh and Eg reproduces Ef with an accuracy better than 5% for electronic structure methods ranging from hybrid density-functional theory (DFT) to many-body random-phase approximation (RPA) and experiments. Accordingly, ɛ is also determined by Ecoh/Eg and the defect geometric/electronic factors. The identified correlation is rather general for monovacancies and interstitials, which holds in a wide variety of semiconductors covering Si, Ge, phosphorenes, ZnO, GaAs, and InP, and enables one to obtain reliable values of Ef and ɛ of the point defects for RPA and experiments based on semilocal DFT calculations.

  6. Migration of Point Defects in the Field of a Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Portnykh, I. A.; Pastukhov, V. I.

    2018-04-01

    The influence of the temperature gradient over the thickness of the cladding of a fuel element of a fast-neutron reactor on the migration of point defects formed in the cladding material due to neutron irradiation has been studied. It has been shown that, under the action of the temperature gradient, the flux of vacancies onto the inner surface of the cladding is higher than the flux of interstitial atoms, which leads to the formation of a specific concentration profile in the cladding with a vacancy-depleted zone near the inner surface. The experimental results on the spatial distribution of pores over the cladding thickness have been presented with which the data on the concentration profiles and vacancy fluxes have been compared.

  7. Migration of defect clusters and xenon-vacancy clusters in uranium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Gao, Fei; Deng, Huiqiu

    2014-07-01

    The possible transition states, minimum energy paths and migration mechanisms of defect clusters and xenon-vacancy defect clusters in uranium dioxide have been investigated using the dimer and the nudged elastic-band methods. The nearby O atom can easily hop into the oxygen vacancy position by overcoming a small energy barrier, which is much lower than that for the migration of a uranium vacancy. A simulation for a vacancy cluster consisting of two oxygen vacancies reveals that the energy barrier of the divacancy migration tends to decrease with increasing the separation distance of divacancy. For an oxygen interstitial, the migration barrier formore » the hopping mechanism is almost three times larger than that for the exchange mechanism. Xe moving between two interstitial sites is unlikely a dominant migration mechanism considering the higher energy barrier. A net migration process of a Xe-vacancy pair containing an oxygen vacancy and a xenon interstitial is identified by the NEB method. We expect the oxygen vacancy-assisted migration mechanism to possibly lead to a long distance migration of the Xe interstitials in UO2. The migration of defect clusters involving Xe substitution indicates that Xe atom migrating away from the uranium vacancy site is difficult.« less

  8. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms.

    PubMed

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-05

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  9. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    NASA Astrophysics Data System (ADS)

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  10. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    PubMed Central

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials. PMID:28053307

  11. Point defects in ZnO: an approach from first principles

    PubMed Central

    Oba, Fumiyasu; Choi, Minseok; Togo, Atsushi; Tanaka, Isao

    2011-01-01

    Recent first-principles studies of point defects in ZnO are reviewed with a focus on native defects. Key properties of defects, such as formation energies, donor and acceptor levels, optical transition energies, migration energies and atomic and electronic structure, have been evaluated using various approaches including the local density approximation (LDA) and generalized gradient approximation (GGA) to DFT, LDA+U/GGA+U, hybrid Hartree–Fock density functionals, sX and GW approximation. Results significantly depend on the approximation to exchange correlation, the simulation models for defects and the post-processes to correct shortcomings of the approximation and models. The choice of a proper approach is, therefore, crucial for reliable theoretical predictions. First-principles studies have provided an insight into the energetics and atomic and electronic structures of native point defects and impurities and defect-induced properties of ZnO. Native defects that are relevant to the n-type conductivity and the non-stoichiometry toward the O-deficient side in reduced ZnO have been debated. It is suggested that the O vacancy is responsible for the non-stoichiometry because of its low formation energy under O-poor chemical potential conditions. However, the O vacancy is a very deep donor and cannot be a major source of carrier electrons. The Zn interstitial and anti-site are shallow donors, but these defects are unlikely to form at a high concentration in n-type ZnO under thermal equilibrium. Therefore, the n-type conductivity is attributed to other sources such as residual impurities including H impurities with several atomic configurations, a metastable shallow donor state of the O vacancy, and defect complexes involving the Zn interstitial. Among the native acceptor-type defects, the Zn vacancy is dominant. It is a deep acceptor and cannot produce a high concentration of holes. The O interstitial and anti-site are high in formation energy and/or are electrically

  12. Point defects at the ice (0001) surface

    PubMed Central

    Watkins, Matthew; VandeVondele, Joost; Slater, Ben

    2010-01-01

    Using density functional theory we investigate whether intrinsic defects in ice surface segregate. We predict that hydronium, hydroxide, and the Bjerrum L- and D-defects are all more stable at the surface. However, the energetic cost to create a D-defect at the surface and migrate it into the bulk crystal is smaller than its bulk formation energy. Absolute and relative segregation energies are sensitive to the surface structure of ice, especially the spatial distribution of protons associated with dangling hydrogen bonds. It is found that the basal plane surface of hexagonal ice increases the bulk concentration of Bjerrum defects, strongly favoring D-defects over L-defects. Dangling protons associated with undercoordinated water molecules are preferentially injected into the crystal bulk as Bjerrum D-defects, leading to a surface dipole that attracts hydronium ions. Aside from the disparity in segregation energies for the Bjerrum defects, we find the interactions between defect species to be very finely balanced; surface segregation energies for hydronium and hydroxide species and trapping energies of these ionic species with Bjerrum defects are equal within the accuracy of our calculations. The mobility of the ionic hydronium and hydroxide species is greatly reduced at the surface in comparison to the bulk due to surface sites with high trapping affinities. We suggest that, in pure ice samples, the surface of ice will have an acidic character due to the presence of hydronium ions. This may be important in understanding the reactivity of ice particulates in the upper atmosphere and at the boundary layer. PMID:20615938

  13. Freely-migrating-defect production during irradiation at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Rehn, L. E.; Okamoto, P. R.

    1988-12-01

    Radiation-induced segregation in a Cu-1 at. % Au alloy was investigated using in situ Rutherford backscattering spectrometry. The amount of Au atom depletion in the near surface region was measured as a function of dose during irradiation at 350 °C with four ions of substantially different masses. Relative efficiencies for producing freely migrating defects were evaluated for 1.8-MeV 1H, 4He, 20Ne, and 84Kr ions by determining beam current densities that gave similar radiation-induced segregation rates. Irradiations with primary knock-on atom median energies of 1.7, 13, and 79 keV yielded relative efficiencies of 53, 7, and 6 %, respectively, compared to the irradiation with a 0.83-keV median energy. Despite quite different defect and host alloy properties, the relative efficiencies for producing freely migrating defects determined in Cu-Au are remarkably similar to those found previously in Ni-Si alloys. Hence, the reported efficiencies appear to offer a reliable basis for making quantitative correlations of microstructural changes induced in different alloy systems by a wide variety of irradiation particles.

  14. Investigation of point and extended defects in electron irradiated silicon—Dependence on the particle energy

    NASA Astrophysics Data System (ADS)

    Radu, R.; Pintilie, I.; Nistor, L. C.; Fretwurst, E.; Lindstroem, G.; Makarenko, L. F.

    2015-04-01

    This work is focusing on generation, time evolution, and impact on the electrical performance of silicon diodes impaired by radiation induced active defects. n-type silicon diodes had been irradiated with electrons ranging from 1.5 MeV to 27 MeV. It is shown that the formation of small clusters starts already after irradiation with high fluence of 1.5 MeV electrons. An increase of the introduction rates of both point defects and small clusters with increasing energy is seen, showing saturation for electron energies above ˜15 MeV. The changes in the leakage current at low irradiation fluence-values proved to be determined by the change in the configuration of the tri-vacancy (V3). Similar to V3, other cluster related defects are showing bistability indicating that they might be associated with larger vacancy clusters. The change of the space charge density with irradiation and with annealing time after irradiation is fully described by accounting for the radiation induced trapping centers. High resolution electron microscopy investigations correlated with the annealing experiments revealed changes in the spatial structure of the defects. Furthermore, it is shown that while the generation of point defects is well described by the classical Non Ionizing Energy Loss (NIEL), the formation of small defect clusters is better described by the "effective NIEL" using results from molecular dynamics simulations.

  15. Study of point- and cluster-defects in radiation-damaged silicon

    NASA Astrophysics Data System (ADS)

    Donegani, Elena M.; Fretwurst, Eckhart; Garutti, Erika; Klanner, Robert; Lindstroem, Gunnar; Pintilie, Ioana; Radu, Roxana; Schwandt, Joern

    2018-08-01

    Non-ionising energy loss of radiation produces point defects and defect clusters in silicon, which result in a significant degradation of sensor performance. In this contribution results from TSC (Thermally Stimulated Current) defect spectroscopy for silicon pad diodes irradiated by electrons to fluences of a few 1014 cm-2 and energies between 3.5 and 27 MeV for isochronal annealing between 80 and 280∘C, are presented. A method based on SRH (Shockley-Read-Hall) statistics is introduced, which assumes that the ionisation energy of the defects in a cluster depends on the fraction of occupied traps. The difference of ionisation energy of an isolated point defect and a fully occupied cluster, ΔEa, is extracted from the TSC data. For the VOi (vacancy-oxygen interstitial) defect ΔEa = 0 is found, which confirms that it is a point defect, and validates the method for point defects. For clusters made of deep acceptors the ΔEa values for different defects are determined after annealing at 80∘C as a function of electron energy, and for the irradiation with 15 MeV electrons as a function of annealing temperature. For the irradiation with 3.5 MeV electrons the value ΔEa = 0 is found, whereas for the electron energies of 6-27 MeV ΔEa > 0. This agrees with the expected threshold of about 5 MeV for cluster formation by electrons. The ΔEa values determined as a function of annealing temperature show that the annealing rate is different for different defects. A naive diffusion model is used to estimate the temperature dependencies of the diffusion of the defects in the clusters.

  16. Constructing the GW self-energy of a point defect from the perfect crystal and the near neighborhood of the defect

    NASA Astrophysics Data System (ADS)

    Skachkov, Dmitry; van Schilfgaarde, Mark; Lambrecht, Walter

    The full-potential linearized muffin-tin orbital method allows for a real space representation of the GW or quasi-particle self-consistent (QS)GW self-energy ΣR , L ; R' + T , L'. This can be used to construct the self-energy matrix for a point defect system in a large supercell from that of the perfect crystal in the primitive cell and the self-energy of the defect site and its near neighborhood, obtained self-consistently in a smaller supercell. At the interface between both regions we can average the two types of ΣR , L ; R' + T , L' matrix blocks. The result relies on the limited range of the self-energy matrix in real space. It means that we can calculate the quasiparticle energy levels of the defect system at essentially the cost of a DFT calculation and a few QSGW calculations for relatively small systems. The approach presently focuses on quasiparticle energy levels of band structures of the defect system rather than total energies. We will present test results for AsGa\\ in GaAs, ZnGe in ZnGeN2, NO, VO, VZn, and NO - VZn in ZnO. Supported by the US-DOE-BES under Grant No. DE-SC0008933.

  17. Polaronic and ionic conduction in NaMnO2: influence of native point defects

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.

    Layered NaMnO2 has promising applications as a cathode material for sodium ion batteries. We will discuss strategies to improve the electrical performance of NaMnO2, including how to optimize the conditions of synthesis and how impurity doping affects the performance. Using hybrid density functional theory, we explored the structural, electronic, and defect properties of bulk NaMnO2. It is antiferromagnetic in the ground state with a band gap of 3.75 eV. Small hole and electron polarons can form in the bulk either through self-trapping or adjacent to point defects. We find that both Na and Mn vacancies are shallow acceptors with the induced holes trapped as small polarons, while O vacancies are deep defect centers. Cation antisites, especially MnNa, are found to have low formation energies. As a result, we expect that MnNa exists in as-grown NaMnO2 in moderate concentrations, rather than forming only at a later stage of the charging process, at which point it causes undesirable structural phase transitions. Both electronic conduction, via polaron hopping, and ionic conduction, through VNa migration, are significantly affected by the presence of point defects. This work was supported by DOE.

  18. Imaging atomic-level random walk of a point defect in graphene

    NASA Astrophysics Data System (ADS)

    Kotakoski, Jani; Mangler, Clemens; Meyer, Jannik C.

    2014-05-01

    Deviations from the perfect atomic arrangements in crystals play an important role in affecting their properties. Similarly, diffusion of such deviations is behind many microstructural changes in solids. However, observation of point defect diffusion is hindered both by the difficulties related to direct imaging of non-periodic structures and by the timescales involved in the diffusion process. Here, instead of imaging thermal diffusion, we stimulate and follow the migration of a divacancy through graphene lattice using a scanning transmission electron microscope operated at 60 kV. The beam-activated process happens on a timescale that allows us to capture a significant part of the structural transformations and trajectory of the defect. The low voltage combined with ultra-high vacuum conditions ensure that the defect remains stable over long image sequences, which allows us for the first time to directly follow the diffusion of a point defect in a crystalline material.

  19. Characterization of point defects in monolayer arsenene

    NASA Astrophysics Data System (ADS)

    Liang, Xiongyi; Ng, Siu-Pang; Ding, Ning; Wu, Chi-Man Lawrence

    2018-06-01

    Topological defects that are inevitably found in 2D materials can dramatically affect their properties. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) method, the structural, thermodynamic, electronic and magnetic properties of six types of typical point defects in arsenene, i.e. the Stone-Wales defect, single and double vacancies and adatoms, were systemically studied. It was found that these defects were all more easily generated in arsenene with lower formation energies than those with graphene and silicene. Stone-Wales defects can be transformed from pristine arsenene by overcoming a barrier of 2.19 eV and single vacancy defects tend to coalesce into double vacancy defects by diffusion. However, a type of adatom defect does not exhibit kinetic stability at room temperature. In addition, SV defects and another type of adatom defect can remarkably affect the electronic and magnetic properties of arsenene, e.g. they can introduce localized states near the Fermi level, as well as a strongly local magnetic moment due to dangling bond and unpaired electron. Furthermore, the simulated scanning tunneling microscopy (STM) and Raman spectroscopy were computed and the types of point defects can be fully characterized by correlating the STM images and Raman spectra to the defective atomistic structures. The results provide significant insights to the effect of defects in arsenene for potential applications, as well as identifications of two helpful tools (STM and Raman spectroscopy) to distinguish the type of defects in arsenene for future experiments.

  20. Many-Body Theory of Proton-Generated Point Defects for Losses of Electron Energy and Photons in Quantum Wells

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gao, Fei; Gumbs, Godfrey; Cardimona, D. A.

    2018-02-01

    The effects of point defects on the loss of either energies of ballistic electron beams or incident photons are studied by using a many-body theory in a multi-quantum-well system. This theory includes the defect-induced vertex correction to a bare polarization function of electrons within the ladder approximation, and the intralayer and interlayer screening of defect-electron interactions is also taken into account in the random-phase approximation. The numerical results of defect effects on both energy-loss and optical-absorption spectra are presented and analyzed for various defect densities, numbers of quantum wells, and wave vectors. The diffusion-reaction equation is employed for calculating distributions of point defects in a layered structure. For completeness, the production rate for Frenkel-pair defects and their initial concentration are obtained based on atomic-level molecular-dynamics simulations. By combining the defect-effect, diffusion-reaction, and molecular-dynamics models with an available space-weather-forecast model, it will be possible in the future to enable specific designing for electronic and optoelectronic quantum devices that will be operated in space with radiation-hardening protection and, therefore, effectively extend the lifetime of these satellite onboard electronic and optoelectronic devices. Specifically, this theory can lead to a better characterization of quantum-well photodetectors not only for high quantum efficiency and low dark current density but also for radiation tolerance or mitigating the effects of the radiation.

  1. Point defects in Cd(Zn)Te and TlBr: Theory

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-09-01

    The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.

  2. A Computational Framework for Automation of Point Defect Calculations

    NASA Astrophysics Data System (ADS)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; Lany, Stephan; Stevanovic, Vladan; National Renewable Energy Laboratory, Golden, Colorado 80401 Collaboration

    A complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory has been developed. The framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. The package provides the capability to compute widely accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3as test examples, we demonstrate the package capabilities and validate the methodology. We believe that a robust automated tool like this will enable the materials by design community to assess the impact of point defects on materials performance. National Renewable Energy Laboratory, Golden, Colorado 80401.

  3. Ab initio modeling of point defects, self-diffusion, and incorporation of impurities in thorium

    NASA Astrophysics Data System (ADS)

    Daroca, D. Pérez

    2017-02-01

    Research on Generation-IV nuclear reactors has boosted the investigation of thorium as nuclear fuel. By means of first-principles calculations within the framework of density functional theory, structural properties and phonon dispersion curves of Th are obtained. These results agreed very well with previous ones. The stability and formation energies of vacancies, interstitial and divacancies are studied. It is found that vacancies are the energetically preferred defects. The incorporation energies of He, Xe, and Kr atoms in Th defects are analyzed. Self-diffusion, migration paths and activation energies are also calculated.

  4. Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er2O3.

    PubMed

    Huang, Bolong

    2016-05-11

    We investigated the mechanism of the intrinsic persistent luminescence of Er2O3 in the A-type lattice based on first-principles calculations. We found that the native point defects were engaged in mutual subtle interactions in the form of chemical reactions between different charge states. The release of energy related to lattice distortion facilitates the conversion of energy for electrons to be transported between the valence band and the trap levels or even between the deep trap levels so as to generate persistent luminescence. The defect transitions that take place along the zero-phonon line release energy to enable optical transitions, with the exact amount of negative effective correlation energy determined by the lattice distortions. Our calculations on the thermodynamic transition levels confirm that both the visible and NIR experimentally observed intrinsic persistent luminescence (phosphor or afterglow) are related to the thermodynamic transition levels of oxygen-related defects, and the thermodynamic transition levels within different charge states for these defects are independent of the chemical potentials of the given species. Lattice distortion defects such as anion Frenkel (a-Fr) pair defects play an important role in transporting O-related defects between different lattice sites. To obtain red persistent luminescence that matches the biological therapeutic window, it is suggested to increase the electron transition levels between high-coordinated O vacancies and related metastable a-Fr defects; a close-packed core-shell structure is required to quench low-coordinated O-related defects so as to reduce the green band luminescence. We further established a conversed chain reaction (CCR) model to interpret the energy conversion process of persistent luminescence in terms of the inter-reactions of native point defects between different charge states. It is advantageous to use the study of defect levels combined with formation energies to suggest limits

  5. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments

    DOE PAGES

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...

    2015-08-08

    Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less

  6. A tungsten-rhenium interatomic potential for point defect studies

    NASA Astrophysics Data System (ADS)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-01

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).

  7. Point defects in thorium nitride: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2016-11-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  8. Effect of solute concentration on grain boundary migration with segregation in stainless steel and model alloys

    NASA Astrophysics Data System (ADS)

    Kanda, H.; Hashimoto, N.; Takahashi, H.

    The phenomenon of grain boundary migration due to boundary diffusion via vacancies is a well-known process for recrystallization and grain growth during annealing. This phenomenon is known as diffusion-induced grain boundary migration (DIGM) and has been recognized in various binary systems. On the other hand, grain boundary migration often occurs under irradiation. Furthermore, such radiation-induced grain boundary migration (RIGM) gives rise to solute segregation. In order to investigate the RIGM mechanism and the interaction between solutes and point defects during the migration, stainless steel and Ni-Si model alloys were electron-irradiated using a HVEM. RIGM was often observed in stainless steels during irradiation. The migration rate of boundary varied, and three stages of the migration were recognized. At lower temperatures, incubation periods up to the occurrence of the boundary migration were observed prior to first stage. These behaviors were recognized particularly for lower solute containing alloys. From the relation between the migration rates at stage I and inverse temperatures, activation energies for the boundary migration were estimated. In comparison to the activation energy without irradiation, these values were very low. This suggests that the RIGM is caused by the flow of mixed-dumbbells toward the grain boundary. The interaction between solute and point defects and the effective defect concentration generating segregation will be discussed.

  9. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    DOE PAGES

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...

    2015-06-16

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less

  10. A tungsten-rhenium interatomic potential for point defect studies

    DOE PAGES

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    2018-05-28

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less

  11. A tungsten-rhenium interatomic potential for point defect studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Gao, Ning; Kurtz, Richard J.

    A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method (EAM) interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures inmore » the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancy and self-interstitial defects sufficiently accurately, and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).« less

  12. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    NASA Astrophysics Data System (ADS)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  13. System-size convergence of point defect properties: The case of the silicon vacancy

    NASA Astrophysics Data System (ADS)

    Corsetti, Fabiano; Mostofi, Arash A.

    2011-07-01

    We present a comprehensive study of the vacancy in bulk silicon in all its charge states from 2+ to 2-, using a supercell approach within plane-wave density-functional theory, and systematically quantify the various contributions to the well-known finite size errors associated with calculating formation energies and stable charge state transition levels of isolated defects with periodic boundary conditions. Furthermore, we find that transition levels converge faster with respect to supercell size when only the Γ-point is sampled in the Brillouin zone, as opposed to a dense k-point sampling. This arises from the fact that defect level at the Γ-point quickly converges to a fixed value which correctly describes the bonding at the defect center. Our calculated transition levels with 1000-atom supercells and Γ-point only sampling are in good agreement with available experimental results. We also demonstrate two simple and accurate approaches for calculating the valence band offsets that are required for computing formation energies of charged defects, one based on a potential averaging scheme and the other using maximally-localized Wannier functions (MLWFs). Finally, we show that MLWFs provide a clear description of the nature of the electronic bonding at the defect center that verifies the canonical Watkins model.

  14. Point Defects and p -Type Doping in ScN from First Principles

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Tsunoda, Naoki; Oba, Fumiyasu

    2018-03-01

    Scandium nitride (ScN) has been intensively researched as a prototype of rocksalt nitrides and a potential counterpart of the wurtzite group IIIa nitrides. It also holds great promise for applications in various fields, including optoelectronics, thermoelectrics, spintronics, and piezoelectrics. We theoretically investigate the bulk properties, band-edge positions, chemical stability, and point defects, i.e., native defects, unintentionally doped impurities, and p -type dopants of ScN using the Heyd-Scuseria-Ernzerhof hybrid functional. We find several fascinating behaviors: (i) a high level for the valence-band maximum, (ii) the lowest formation energy among binary nitrides, (iii) high formation energies of native point defects, (iv) low formation energies of donor-type impurities, and (v) a p -type conversion by Mg doping. Furthermore, we uncover the origins of the Burstein-Moss shift commonly observed in ScN. Our work sheds light on a fundamental understanding of ScN in regard to its technological applications.

  15. Point Defects in Two-Dimensional Layered Semiconductors: Physics and Its Applications

    NASA Astrophysics Data System (ADS)

    Suh, Joonki

    Recent advances in material science and semiconductor processing have been achieved largely based on in-depth understanding, efficient management and advanced application of point defects in host semiconductors, thus finding the relevant techniques such as doping and defect engineering as a traditional scientific and technological solution. Meanwhile, two- dimensional (2D) layered semiconductors currently draw tremendous attentions due to industrial needs and their rich physics at the nanoscale; as we approach the end of critical device dimensions in silicon-based technology, ultra-thin semiconductors have the potential as next- generation channel materials, and new physics also emerges at such reduced dimensions where confinement of electrons, phonons, and other quasi-particles is significant. It is therefore rewarding and interesting to understand and redefine the impact of lattice defects by investigating their interactions with energy/charge carriers of the host matter. Potentially, the established understanding will provide unprecedented opportunities for realizing new functionalities and enhancing the performance of energy harvesting and optoelectronic devices. In this thesis, multiple novel 2D layered semiconductors, such as bismuth and transition- metal chalcogenides, are explored. Following an introduction of conventional effects induced by point defects in semiconductors, the related physics of electronically active amphoteric defects is revisited in greater details. This can elucidate the complication of a two-dimensional electron gas coexisting with the topological states on the surface of bismuth chalcogenides, recently suggested as topological insulators. Therefore, native point defects are still one of the keys to understand and exploit topological insulators. In addition to from a fundamental science point of view, the effects of point defects on the integrated thermal-electrical transport, as well as the entropy-transporting process in

  16. Defect evolution and impurity migration in Na-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Neuvonen, Pekka T.; Vines, Lasse; Venkatachalapathy, Vishnukanthan; Zubiaga, Asier; Tuomisto, Filip; Hallén, Anders; Svensson, Bengt G.; Kuznetsov, Andrej Yu.

    2011-11-01

    Secondary ion mass spectrometry (SIMS) and positron annihilation spectroscopy (PAS) have been applied to study impurity migration and open volume defect evolution in Na+ implanted hydrothermally grown ZnO samples. In contrast to most other elements, the presence of Na tends to decrease the concentration of open volume defects upon annealing and for temperatures above 600∘C, Na exhibits trap-limited diffusion correlating with the concentration of Li. A dominating trap for the migrating Na atoms is most likely Li residing on Zn site, but a systematic analysis of the data suggests that zinc vacancies also play an important role in the trapping process.

  17. Insight into point defects and impurities in titanium from first principles

    NASA Astrophysics Data System (ADS)

    Nayak, Sanjeev K.; Hung, Cain J.; Sharma, Vinit; Alpay, S. Pamir; Dongare, Avinash M.; Brindley, William J.; Hebert, Rainer J.

    2018-03-01

    Titanium alloys find extensive use in the aerospace and biomedical industries due to a unique combination of strength, density, and corrosion resistance. Decades of mostly experimental research has led to a large body of knowledge of the processing-microstructure-properties linkages. But much of the existing understanding of point defects that play a significant role in the mechanical properties of titanium is based on semi-empirical rules. In this work, we present the results of a detailed self-consistent first-principles study that was developed to determine formation energies of intrinsic point defects including vacancies, self-interstitials, and extrinsic point defects, such as, interstitial and substitutional impurities/dopants. We find that most elements, regardless of size, prefer substitutional positions, but highly electronegative elements, such as C, N, O, F, S, and Cl, some of which are common impurities in Ti, occupy interstitial positions.

  18. Combining DFT, Cluster Expansions, and KMC to Model Point Defects in Alloys

    NASA Astrophysics Data System (ADS)

    Modine, N. A.; Wright, A. F.; Lee, S. R.; Foiles, S. M.; Battaile, C. C.; Thomas, J. C.; van der Ven, A.

    In an alloy, defect energies are sensitive to the occupations of nearby atomic sites, which leads to a distribution of defect properties. When radiation-induced defects diffuse from their initially non-equilibrium locations, this distribution becomes time-dependent. The defects can become trapped in energetically favorable regions of the alloy leading to a diffusion rate that slows dramatically with time. Density Functional Theory (DFT) allows the accurate determination of ground state and transition state energies for a defect in a particular alloy environment but requires thousands of processing hours for each such calculation. Kinetic Monte-Carlo (KMC) can be used to model defect diffusion and the changing distribution of defect properties but requires energy evaluations for millions of local environments. We have used the Cluster Expansion (CE) formalism to ``glue'' together these seemingly incompatible methods. The occupation of each alloy site is represented by an Ising-like variable, and products of these variables are used to expand quantities of interest. Once a CE is fit to a training set of DFT energies, it allows very rapid evaluation of the energy for an arbitrary configuration, while maintaining the accuracy of the underlying DFT calculations. These energy evaluations are then used to drive our KMC simulations. We will demonstrate the application of our DFT/MC/KMC approach to model thermal and carrier-induced diffusion of intrinsic point defects in III-V alloys. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE.

  19. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm; ...

    2018-01-01

    Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less

  20. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm

    Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less

  1. Elastic dipoles of point defects from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Clouet, Emmanuel

    2017-12-01

    The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

  2. Identifying and counting point defects in carbon nanotubes.

    PubMed

    Fan, Yuwei; Goldsmith, Brett R; Collins, Philip G

    2005-12-01

    The prevailing conception of carbon nanotubes and particularly single-walled carbon nanotubes (SWNTs) continues to be one of perfectly crystalline wires. Here, we demonstrate a selective electrochemical method that labels point defects and makes them easily visible for quantitative analysis. High-quality SWNTs are confirmed to contain one defect per 4 microm on average, with a distribution weighted towards areas of SWNT curvature. Although this defect density compares favourably to high-quality, silicon single-crystals, the presence of a single defect can have tremendous electronic effects in one-dimensional conductors such as SWNTs. We demonstrate a one-to-one correspondence between chemically active point defects and sites of local electronic sensitivity in SWNT circuits, confirming the expectation that individual defects may be critical to understanding and controlling variability, noise and chemical sensitivity in SWNT electronic devices. By varying the SWNT synthesis technique, we further show that the defect spacing can be varied over orders of magnitude. The ability to detect and analyse point defects, especially at very low concentrations, indicates the promise of this technique for quantitative process analysis, especially in nanoelectronics development.

  3. Theoretical study of native point defects in strained-layer superlattice systems

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, S.; Yu, Zhi Gang

    2018-04-01

    We developed a theoretical approach that employs first-principles Hamiltonians, tight-binding Hamiltonians, and Green's function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and InAs-InAs1-xSbx strained layer superlattice (SLS) systems. In InAs and GaSb regions, we considered four types of NPDs—anion vacancy, cation vacancy, anion anti-site, and cation anti-site—as well as isoelectronic substitution at anion sites (Sb at the As site and As at the Sb site). Additionally, we considered three types of defects—the cation at the second anion site, the second anion at the cation site, and second anion vacancy—in the InAs1-xSbx alloy region of the SLS. For a selected few designs, we studied NPDs both in the bulk region and near the interfaces of the SLS. We have considered 12 designs of InAs-GaSb systems and two designs of InAs-InAs0.7Sb0.3 systems lattice-matched to the GaSb substrate. The calculated defect levels not only agreed well with available measurements, but also revealed the connection between mid-gap levels and specific NPDs. We further calculated defect formation energies both in compounds and in all superlattices considered above. Since the absolute value of defect formation energy depends considerably on growth conditions, we evaluated the formation energies in SLS with respect to their value in the corresponding bulk or alloy. The calculated defect formation energies, together with defect energy level results, allow us to identify a few promising SLS designs for high-performing photodetectors.

  4. Oxygen Migration and Local Structural Changes with Schottky Defects in Pure Zirconium Oxide Crystals

    NASA Astrophysics Data System (ADS)

    Terada, Yayoi; Mohri, Tetsuo

    2018-05-01

    By employing the Buckingham potential, we performed classical molecular-dynamics computer simulations at constant pressure and temperature for a pure ZrO2 crystal without any vacancies and for a pure ZrO2 crystal containing zirconium vacancies and oxygen vacancies. We examined the positions of atoms and vacancies in the steady state, and we investigated the migration behavior of atoms and the local structure of vacancies of the pure ZrO2 crystal. We found that Schottky defects (aggregates consisting of one zirconium vacancy with an effective charge of -4 and two oxygen vacancies each with an effective charge of +2 to maintain charge neutrality) are the main defects formed in the steady state in cubic ZrO2, and that oxygen migration occurs through a mechanism involving vacancies on the oxygen sublattice near such defects. We also found that several oxygen atoms near each defect are displaced far from the sublattice site and induce oxygen migration.

  5. Quasibound states in short SNS junctions with point defects

    NASA Astrophysics Data System (ADS)

    Bespalov, A. A.

    2018-04-01

    Using the Green functions technique, we study the subgap spectrum of short three-dimensional superconductor-normal metal-superconductor junctions containing one or two point impurities in the normal layer. We find that a single nonmagnetic or magnetic defect induces two quasibound Shiba-like states. If the defect is located close to the junction edge, the energies of these states oscillate as functions of the distance between the impurity and the edge. In the case of two nonmagnetic impurities, there are generally four quasibound states (two per spin projection). Their energies oscillate as functions of the distance between the impurities, and reach their asymptotic values when this distance becomes much larger than the Fermi wavelength. The contributions of the impurities to the Josephson current, local density of states, and to the normal-state conductance of the junction are analyzed.

  6. First-principles investigation of point defect and atomic diffusion in Al2Ca

    NASA Astrophysics Data System (ADS)

    Tian, Xiao; Wang, Jia-Ning; Wang, Ya-Ping; Shi, Xue-Feng; Tang, Bi-Yu

    2017-04-01

    Point defects and atomic diffusion in Al2Ca have been studied from first-principles calculations within density functional framework. After formation energy and relative stability of point defects are investigated, several predominant diffusion processes in Al2Ca are studied, including sublattice one-step mechanism, 3-jump vacancy cycles and antistructure sublattice mechanism. The associated energy profiles are calculated with climbing image nudged elastic band (CI-NEB) method, then the saddle points and activation barriers during atomic diffusion are further determined. The resulted activation barriers show that both Al and Ca can diffuse mainly mediated by neighbor vacancy on their own sublattice. 3-jump cycle mechanism mediated by VCa may make some contribution to the overall Al diffusion. And antistructure (AS) sublattice mechanism can also play an important role in Ca atomic diffusion owing to the moderate activation barrier.

  7. Current-induced changes of migration energy barriers in graphene and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Obodo, J. T.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.

    2016-05-01

    An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00534A

  8. Strong spin-orbit splitting and magnetism of point defect states in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Li, Wun-Fan; Fang, Changming; van Huis, Marijn A.

    2016-11-01

    The spin-orbit coupling (SOC) effect has been known to be profound in monolayer pristine transition metal dichalcogenides (TMDs). Here we show that point defects, which are omnipresent in the TMD membranes, exhibit even stronger SOC effects and change the physics of the host materials drastically. In this article we chose the representative monolayer WS2 slabs from the TMD family together with seven typical types of point defects including monovacancies, interstitials, and antisites. We calculated the formation energies of these defects, and studied the effect of spin-orbit coupling (SOC) on the corresponding defect states. We found that the S monovacancy (VS) and S interstitial (adatom) have the lowest formation energies. In the case of VS and both of the WS and WS 2 antisites, the defect states exhibit strong splitting up to 296 meV when SOC is considered. Depending on the relative position of the defect state with respect to the conduction band minimum (CBM), the hybrid functional HSE will either increase the splitting by up to 60 meV (far from CBM), or decrease the splitting by up to 57 meV (close to CBM). Furthermore, we found that both the WS and WS 2 antisites possess a magnetic moment of 2 μB localized at the antisite W atom and the neighboring W atoms. The dependence of SOC on the orientation of the magnetic moment for the WS and WS 2 antisites is discussed. All these findings provide insights in the defect behavior under SOC and point to possibilities for spintronics applications for TMDs.

  9. Defect formation energy in pyrochlore: the effect of crystal size

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Ewing, Rodney C.; Becker, Udo

    2014-09-01

    Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.

  10. Point-defect energies in the nitrides of aluminum, gallium, and indium

    NASA Astrophysics Data System (ADS)

    Tansley, T. L.; Egan, R. J.

    1992-05-01

    Experimental data on the nature and energetic location of levels associated with native point defects in the group-III metal nitrides are critically reviewed and compared with theoretical estimates. All three show strong evidence of the existence of a triplet of donorlike states associated with the nitrogen vacancy. Ground states are at about 150, 400, and 900 meV from the conduction-band edge in InN, GaN, and AlN, respectively, with their charged derivatives lying closer to the band edge. These values agree with both modified-hydrogenic and deep-level calculations, surprisingly well in view of the inherent approximations in each in this depth range. The InN donor ground state is both optically active and usually occupied, showing a distinctive absorption band which is very well described by quantum-defect analysis. Variation of threshold with electron concentration shows a Moss-Burstein shift commensurate with that observed in band-to-band absorption. In both GaN and AlN, levels have been identified at about 1/4EG and about 3/4EG, which correlate well with predictions for the antisite defects NM and MN, respectively, while similar behavior in InN is at odds with theory. The metal-vacancy defect appears to generate a level somewhat below midgap in AlN and close to the valence-band edge in GaN, but has not been located experimentally in InN, where it is predicted to lie very close to the valence-band edge. A tentative scheme for the participation of two of the native defects in GaN, namely VN and NGa, in the four broad emission bands found in Zn-compensated and undoped GaN is offered.

  11. Estimates of point defect production in α-quartz using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cowen, Benjamin J.; El-Genk, Mohamed S.

    2017-07-01

    Molecular dynamics (MD) simulations are performed to investigate the production of point defects in α-quartz by oxygen and silicon primary knock-on atoms (PKAs) of 0.25-2 keV. The Wigner-Seitz (WS) defect analysis is used to identify the produced vacancies, interstitials, and antisites, and the coordination defect analysis is used to identify the under and over-coordinated oxygen and silicon atoms. The defects at the end of the ballistic phase and the residual defects, after annealing, increase with increased PKA energy, and are statistically the same for the oxygen and silicon PKAs. The WS defect analysis results show that the numbers of the oxygen vacancies and interstitials (VO, Oi) at the end of the ballistic phase is the highest, followed closely by those of the silicon vacancies and interstitials (VSi, Sii). The number of the residual oxygen and silicon vacancies and interstitials are statistically the same. In addition, the under-coordinated OI and SiIII, which are the primary defects during the ballistic phase, have high annealing efficiencies (>89%). The over-coordinated defects of OIII and SiV, which are not nearly as abundant in the ballistic phase, have much lower annealing efficiencies (<63%) that decrease with increased PKA energy.

  12. First principles study of intrinsic defects in hexagonal tungsten carbide

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Xia, J. H.; Liu, C. S.; Fang, Q. F.; Luo, G.-N.; Huang, Qun-Ying

    2010-11-01

    The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which are present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in tungsten carbide. Our results confirm that the defect formation energies of carbon are much lower than that of tungsten and reveal the carbon vacancy to be the dominant defect in tungsten carbide. The C sbnd C dimer configuration along the dense a direction is the most stable configuration of carbon interstitial defect. The results of carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerably lower activation energy. Both of them prefer to diffusion in carbon basal plane.

  13. Native point defects in GaSb

    NASA Astrophysics Data System (ADS)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.

    2014-10-01

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.

  14. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    DOE PAGES

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; ...

    2018-02-13

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) tomore » expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. As a result, we anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less

  15. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    NASA Astrophysics Data System (ADS)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; Yu, Guodong; Canning, Andrew; Haranczyk, Maciej; Asta, Mark; Hautier, Geoffroy

    2018-05-01

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.

  16. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory DFT), have found widespread use in the calculation of point defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT)more » to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less

  17. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) tomore » expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. As a result, we anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less

  18. Density functional theory study of dopant effect on formation energy of intrinsic point defects in germanium crystals

    NASA Astrophysics Data System (ADS)

    Yamaoka, S.; Kobayashi, K.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    During the last decade the use of single crystal germanium (Ge) layers and structures in combination with silicon (Si) substrates has led to a revival of defect research on Ge. Ge is used because of the much higher carrier mobility compared to Si, allowing to design devices operating at much higher frequencies. A major issue for the use of Ge single crystal wafers is the fact that all Czochralski-grown Ge (CZ-Ge) crystals are vacancy-rich and contain vacancy clusters that are much larger than the ones in Si. In contrast to Si, control of intrinsic point defect concentrations has not yet been realized at the same level in Ge crystals due to the lack of experimental data especially on dopant effects. In this study, we have evaluated with density functional theory (DFT) calculations the dopant effect on the formation energy (Ef) of the uncharged vacancy (V) and self-interstitial (I) in Ge and compared the results with those for Si. The dependence of the total thermal equilibrium concentrations of point defects (sum of free V or I and V or I paired with dopant atoms) at melting temperature on the type and concentration of various dopants is obtained. It was found that (1) Ge crystals will be more V-rich by Tl, In, Sb, Sn, As and P doping, (2) Ge crystals will be more I-rich by Ga, C and B doping, (3) Si doping has negligible impact. The dopant impact on Ef of V and I in Ge has a narrower range and is smaller than that in Si. The obtained results are useful to control grown-in V and I concentrations, and will perhaps also allow to develop defect-free ;perfect; Ge crystals.

  19. Point defect weakened thermal contraction in monolayer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, Xian-Hu; Department of Physics, University of Science and Technology of China, Hefei; USTC-CityU Joint Advanced Research Centre, Suzhou 215123

    We investigate the thermal expansion behaviors of monolayer graphene and three configurations of graphene with point defects, namely the replacement of one carbon atom with a boron or nitrogen atom, or of two neighboring carbon atoms by boron-nitrogen atoms, based on calculations using first-principles density functional theory. It is found that the thermal contraction of monolayer graphene is significantly decreased by point defects. Moreover, the corresponding temperature for negative linear thermal expansion coefficient with the maximum absolute value is reduced. The cause is determined to be point defects that enhance the mechanical strength of graphene and then reduce the amplitudemore » and phonon frequency of the out-of-plane acoustic vibration mode. Such defect weakening of graphene thermal contraction will be useful in nanotechnology to diminish the mismatching or strain between the graphene and its substrate.« less

  20. Native point defects in GaSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kujala, J.; Segercrantz, N.; Tuomisto, F.

    2014-10-14

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude.more » We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.« less

  1. First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4}-based thin-film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, J. B.; Lordi, V.; He, X.

    2016-01-14

    We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se{sub 2} (CIGSe) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ∼400 °C. Cu is predicted to stronglymore » favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ∼400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.« less

  2. Thermodynamic and Kinetic Properties of Intrinsic Defects and Mg Transmutants in 3C-SiC Determined by Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.

    2014-02-20

    Density functional theory (DFT) is used to calculate the thermodynamic and kinetic properties of transmutant Mg in 3C-SiC due to high-energy neutron irradiation associated with the fusion nuclear environment. The formation and binding energies of intrinsic defects, Mg-related defects, and clusters in 3C-SiC are systematically calculated. The minimum energy paths and activation energies during point defect migration and small cluster evolution are studied using a generalized solid-state elastic band (G-SSNEB) method with DFT energy calculations. Stable defect structures and possible defect migration mechanisms are identified. The evolution of binding energies during Mg2Si formation demonstrates that the formation of Mg2Si needsmore » to overcome a critical nucleus size and nucleation barrier. It is also found that a compressive stress field exists around the Mg2Si nucleus. These data are important inputs in meso- and macro-scale modeling and experiments to understand and predict the impact of Mg on phase stability, microstructure evolution, and performance of SiC and SiC-based materials during long-term neutron exposures.« less

  3. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects

    NASA Astrophysics Data System (ADS)

    Yuan, Zhipeng; Cui, Hongbao; Guo, Xuefeng

    2017-01-01

    Using the first-principles plane-wave pseudo-potential method based on density functional theory, the effect of vacancy and anti-position defect on the mechanical and thermal properties of B2-NiSc intermetallics were discussed in detail. Several parameters, such as the shear modulus, bulk modulus, modulus of elasticity, C 11-C 11, the Debye temperature and Poisson's ratio, have been calculated to evaluate the effect of vacancy and anti-position defect on the hardness, ductility and thermal properties of B2-NiSc intermetallics. The results show that VNi, ScNi, VSc and NiSc the four point defects all make the crystal hardness decrease and improve plasticity of B2-NiSc intermetallics. The entropy, enthalpy and free energy of VNi, ScNi, VSc and NiSc are monotonously changed as temperature changes. From the perspective of free energy, NiSc is the most stable, while ScNi is the most unstable. Debye temperature of NiSc intermetallics with four different point defects shows VNi, ScNi, VSc and NiSc the four point defects all reduce the stability of B2-NiSc intermetallics. Project supported by the National Natural Science Foundation of China (Nos. 51301063, 51571086) and the Talent Introduction Foundation of Henan Polytechnic University (No. Y-2009).

  4. Current-induced changes of migration energy barriers in graphene and carbon nanotubes.

    PubMed

    Obodo, J T; Rungger, I; Sanvito, S; Schwingenschlögl, U

    2016-05-21

    An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.

  5. Influence of point defects on the thermal conductivity in FeSi

    NASA Astrophysics Data System (ADS)

    Stern, Robin; Wang, Tao; Carrete, Jesús; Mingo, Natalio; Madsen, Georg K. H.

    2018-05-01

    The unique transport properties of B20 FeSi have been investigated for decades. The progress in theoretical calculations allows the explanation and prediction of more and more of such properties. In this paper we investigate the lattice thermal conductivity of FeSi. Calculation for pristine FeSi severely overestimates the lattice thermal conductivity compared to experiment. We point out that the defect concentration can be considerably larger than indicated by the Hall coefficient. The defect formation energies are calculated and it is found that a substantial amount of iron vacancies can form at thermal equilibrium. These will lead to an increased phonon scattering. To explain the thermal conductivity of FeSi, we consider phonon-phonon, isotope, and phonon-defect scattering to assess possible scattering mechanisms. The calculated thermal conductivities indicate that phonon-defect scattering is important in order to explain the reported experimental values.

  6. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    DOE PAGES

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  7. First-principles study of point defects in thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2014-11-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  8. Effect of point defects and disorder on structural phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toulouse, J.

    1997-06-01

    Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods tomore » study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.« less

  9. Role of pre-existing point defects on primary damage production and amorphization in silicon carbide (β-SiC)

    NASA Astrophysics Data System (ADS)

    Sahoo, Deepak Ranjan; Szlufarska, Izabela; Morgan, Dane; Swaminathan, Narasimhan

    2018-01-01

    Molecular dynamics simulations of displacement cascades were conducted to study the effect of point defects on the primary damage production in β-SiC. Although all types of point defects and Frenkel pairs were considered, Si interstitials and Si Frenkel pairs were unstable and hence excluded from the cascade studies. Si (C) vacancies had the maximum influence, enhancing C (Si) antisites and suppressing C interstitial production, when compared to the sample without any defects. The intracascade recombination mechanisms, in the presence of pre-existing defects, is explored by examining the evolution of point defects during the cascade. To ascertain the role of the unstable Si defects on amorphization, simulations involving explicit displacements of Si atoms were conducted. The dose to amorphization with only Si displacements was much lower than what was observed with only C displacements. The release of elastic energy accumulated due to Si defects, is found to be the amorphizing mechanism.

  10. Small polarons and point defects in LaFeO3

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.

    The proton-conductive perovskite-type LaFeO3 is a promising negative-electrode material for Ni/metal-hydride (Ni-MH) batteries. It has a discharge capacity up to 530 mAhg-1 at 333 K, which is significantly higher than commercialized AB5-type alloys. To elucidate the underlying mechanism of this performance, we have investigated the structural and electronic properties of bulk LaFeO3, as well as the effect of point defects, using hybrid density functional methods. LaFeO3 is antiferromagnetic in the ground state with a band gap of 3.54 eV. Small hole and electron polarons can form through self- or point-defect-assisted trapping. We find that La vacancies and Sr substitutional on La sites are shallow acceptors with the induced holes trapped as small polarons, while O and Fe vacancies are deep defect centers. Hydrogen interstitials behave like shallow donors, with the donor electrons localized on nearby iron sites as electron polarons. With a large trapping energy, these polarons can act as electron or hole traps and affect the electrical performance of LaFeO3 as the negative electrode for Ni-MH batteries. We acknowledge DOE for financial support.

  11. Point defects in CdTe xSe 1-x crystals grown from a Te-rich solution for applications in detecting radiation

    DOE PAGES

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; ...

    2015-04-15

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  12. Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa

    NASA Astrophysics Data System (ADS)

    Looney, E. E.; Laine, H. S.; Youssef, A.; Jensen, M. A.; LaSalvia, V.; Stradins, P.; Buonassisi, T.

    2017-09-01

    In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 ± 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.

  13. Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili

    2018-03-01

    The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.

  14. Native point defects in MoS2 and their influences on optical properties by first principles calculations

    NASA Astrophysics Data System (ADS)

    Saha, Ashim Kumar; Yoshiya, Masato

    2018-03-01

    Stability of native point defect species and optical properties are quantitatively examined through first principles calculations in order to identify possible native point defect species in MoS2 and its influences on electronic structures and resultant optical properties. Possible native point defect species are identified as functions of thermodynamic environment and location of Fermi-level in MoS2. It is found that sulphur vacancies can be introduced more easily than other point defect species which will create impurity levels both in bandgap and in valence band. Additionally, antisite Mo and/or Mo vacancies can be created depending on chemical potential of sulphur, both of which will create impurity levels in bandgap and in valence band. Those impurity levels result in pronounced photon absorption in visible light region, though each of these point defects alone has limited impact on the optical properties unless their concentration remained low. Thus, attention must be paid when intentional impurity doping is made to MoS2 to avoid unwanted modification of optical properties of MoS2. Those impurity may enable further exploitation of photovoltaic energy conversion at longer wavelength.

  15. Photophysics of conjugated polymers: interplay between Förster energy migration and defect concentration in shaping a photochemical funnel in PPV.

    PubMed

    Saini, Sangeeta; Bagchi, Biman

    2010-07-21

    Recent single molecule experiments have suggested the existence of a photochemical funnel in the photophysics of conjugated polymers, like poly[2-methoxy-5-(2'-ethylhexyl)oxy-1,4-phenylenevinylene] (MEH-PPV). The funnel is believed to be a consequence of the presence of conformational or chemical defects along the polymer chain and efficient non-radiative energy transfer among different chromophore segments. Here we address the effect of the excitation energy dynamics on the photophysics of PPV. The PPV chain is modeled as a polymer with the length distribution of chromophores given either by a Gaussian or by a Poisson distribution. We observe that the Poisson distribution of the segment lengths explains the photophysics of PPV better than the Gaussian distribution. A recently proposed version of an extended 'particle-in-a-box' model is used to calculate the exciton energies and the transition dipole moments of the chromophores, and a master equation to describe the excitation energy transfer among different chromophores. The rate of energy transfer is assumed to be given here, as a first approximation, by the well-known Förster expression. The observed excitation population dynamics confirms the photochemical funneling of excitation energy from shorter to longer chromophores of the polymer chain. The time scale of spectral shift and energy transfer for our model polymer, with realistic values of optical parameters, is in the range of 200-300 ps. We find that the excitation energy may not always migrate towards the longest chromophore segments in the polymer chain as the efficiency of energy transfer between chromophores depends on the separation distance between the two and their relative orientation.

  16. Line and point defects in nonlinear anisotropic solids

    NASA Astrophysics Data System (ADS)

    Golgoon, Ashkan; Yavari, Arash

    2018-06-01

    In this paper, we present some analytical solutions for the stress fields of nonlinear anisotropic solids with distributed line and point defects. In particular, we determine the stress fields of (i) a parallel cylindrically symmetric distribution of screw dislocations in infinite orthotropic and monoclinic media, (ii) a cylindrically symmetric distribution of parallel wedge disclinations in an infinite orthotropic medium, (iii) a distribution of edge dislocations in an orthotropic medium, and (iv) a spherically symmetric distribution of point defects in a transversely isotropic spherical ball.

  17. Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity

    NASA Astrophysics Data System (ADS)

    Pacchioni, Gianfranco

    2000-05-01

    Point defects play a fundamental role in determining the physical and chemical properties of inorganic materials. This holds not only for the bulk properties but also for the surface of oxides where several kinds of point defects exist and exhibit a rich and complex chemistry. A particularly important defect in oxides is the oxygen vacancy. Depending on the electronic structure of the material the nature of oxygen vacancies changes dramatically. In this article we provide a rationalization of the very different electronic structure of neutral and charged oxygen vacancies in SiO 2 and MgO, two oxide materials with completely different electronic structure (from very ionic, MgO, to largely covalent, SiO 2). We used methods of ab initio quantum chemistry, from density functional theory (DFT) to configuration interaction (CI), to determine the ground and excited state properties of these defects. The theoretical results are combined with recent spectroscopic measurements. A series of observable properties has been determined in this way: defect formation energies, hyperfine interactions in electron paramagnetic resonance (EPR) spectra of paramagnetic centers, optical spectra, surface chemical reactivity. The interplay between experimental and theoretical information allows one to unambiguously identify the structure of oxygen vacancies in these binary oxides and on their surfaces.

  18. A compensating point defect in carbon-doped GaN substrates studied with electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Willoughby, W. R.; Zvanut, M. E.; Paudel, Subash; Iwinska, M.; Sochacki, T.; Bockowski, M.

    2018-04-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to investigate a type of point defect present in 1019 cm-3 carbon-doped GaN substrates grown by hydride vapor phase epitaxy. A broad, isotropic resonance at g ˜ 1.987 was observed at 3.5 K, and the EPR intensity increased with illumination at energies greater than 2.75 eV and decreased with photon energies greater than 0.95 eV. The latter is consistent with a deep level of 0.95 eV above the valence band maximum and implies that the associated defect likely participates in donor compensation. The ionization energy for this defect is close to the predicted value for the (-/0) transition level of CN and transition levels associated with Ga vacancies such as VGa and VGa-ON-2H.

  19. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  20. Point Defects in Oxides: Tailoring Materials Through Defect Engineering

    NASA Astrophysics Data System (ADS)

    Tuller, Harry L.; Bishop, Sean R.

    2011-08-01

    Optimization of electrical, optical, mechanical, and other properties of many advanced, functional materials today relies on precise control of point defects. This article illustrates the progress that has been made in elucidating the often complex equilibria exhibited by many materials by examining two recently well-characterized model systems, TlBr for radiation detection and PrxCe1-xO2-δ, of potential interest in solid-oxide fuel cells. The interplay between material composition, electrical conductivity, and mechanical properties (electrochemomechanics) is discussed, and implications in these relations, for example, enhancing electrical properties through large mechanical strains, are described. The impact of space charge and strain fields at interfaces, particularly important in nanostructure materials, is also emphasized. Key experimental techniques useful in characterizing bulk and surface defects are summarized and reviewed.

  1. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  2. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.

    2017-01-01

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10-0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.

  3. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    DOE PAGES

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; ...

    2017-01-06

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV andmore » 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.« less

  4. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV andmore » 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.« less

  5. Thermal equilibrium concentration of intrinsic point defects in heavily doped silicon crystals - Theoretical study of formation energy and formation entropy in area of influence of dopant atoms-

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Yamaoka, S.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    It is well known that p-type, neutral and n-type dopants affect the intrinsic point defect (vacancy V and self-interstitial I) behavior in single crystal Si. By the interaction with V and/or I, (1) growing Si crystals become more V- or I-rich, (2) oxygen precipitation is enhanced or retarded, and (3) dopant diffusion is enhanced or retarded, depending on the type and concentration of dopant atoms. Since these interactions affect a wide range of Si properties ranging from as-grown crystal quality to LSI performance, numerical simulations are used to predict and to control the behavior of both dopant atoms and intrinsic point defects. In most cases, the thermal equilibrium concentrations of dopant-point defect pairs are evaluated using the mass action law by taking only the binding energy of closest pair to each other into account. The impacts of dopant atoms on the formation of V and I more distant than 1st neighbor and on the change of formation entropy are usually neglected. In this study, we have evaluated the thermal equilibrium concentrations of intrinsic point defects in heavily doped Si crystals. Density functional theory (DFT) calculations were performed to obtain the formation energy (Ef) of the uncharged V and I at all sites in a 64-atom supercell around a substitutional p-type (B, Ga, In, and Tl), neutral (C, Ge, and Sn) and n-type (P, As, and Sb) dopant atom. The formation (vibration) entropies (Sf) of free I, V and I, V at 1st neighboring site from B, C, Sn, P and As atoms were also calculated with the linear response method. The dependences of the thermal equilibrium concentrations of trapped and total intrinsic point defects (sum of free I or V and I or V trapped with dopant atoms) on the concentrations of B, C, Sn, P and As in Si were obtained. Furthermore, the present evaluations well explain the experimental results of the so-called ;Voronkov criterion; in B and C doped Si, and also the observed dopant dependent void sizes in P and As doped Si

  6. Ab initio simulations of the structure, energetics and mobility of radiation-induced point defects in bcc Nb

    NASA Astrophysics Data System (ADS)

    Cerdeira, M. A.; Palacios, S. L.; González, C.; Fernández-Pello, D.; Iglesias, R.

    2016-09-01

    The formation, binding and migration energetics of helium clusters inside a niobium crystal have been analysed via ab initio simulations. The effect of placing several He atoms within an n-vacancy previously formed or as interstitials inside the initial perfect bulk matrix has been studied. DFT-based results show that He atoms prefer to aggregate forming small clusters at n-vacancy sites rather than at interstitial positions in the perfect crystal. The minimum formation energy is found when NHe is equal to the number of vacancies, n. It follows that vacancies act as almost perfect traps for He atoms, as is well known for other metals. The migration barriers of He atoms inside vacancies increase considerably when compared to what happens for vacancies alone. A secondary consequence is that the full set of energies obtained will be highly relevant as an input for new approaches to KMC simulations of defects in Nb.

  7. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy

    PubMed Central

    Amino, T.; Arakawa, K.; Mori, H.

    2016-01-01

    The dynamic behaviour of atomic-size disarrangements of atoms—point defects (self-interstitial atoms (SIAs) and vacancies)—often governs the macroscopic properties of crystalline materials. However, the dynamics of SIAs have not been fully uncovered because of their rapid migration. Using a combination of high-voltage transmission electron microscopy and exhaustive kinetic Monte Carlo simulations, we determine the dynamics of the rapidly migrating SIAs from the formation process of the nanoscale SIA clusters in tungsten as a typical body-centred cubic (BCC) structure metal under the constant-rate production of both types of point defects with high-energy electron irradiation, which must reflect the dynamics of individual SIAs. We reveal that the migration dimension of SIAs is not three-dimensional (3D) but one-dimensional (1D). This result overturns the long-standing and well-accepted view of SIAs in BCC metals and supports recent results obtained by ab-initio simulations. The SIA dynamics clarified here will be one of the key factors to accurately predict the lifetimes of nuclear fission and fusion materials. PMID:27185352

  8. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only).

    PubMed

    Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F

    2008-02-13

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.

  9. Mechanism of Na accumulation at extended defects in Si from first-principles

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chan, Maria K. Y.

    2018-04-01

    Sodium (Na) impurities in silicon solar cells are considered to play an important role in potential-induced degradation (PID), a significant cause of solar cell degradation and failure. Shorting due to Na accumulation at extended defects has been suggested as a culprit for PID. However, it is not clear how the extended defects are decorated by Na impurities. Using first-principles density functional theory calculations, we find that Na impurities segregate from the bulk into extended defects such as intrinsic stacking faults and Σ3 (111) grain boundaries. The energy barrier required for Na to escape from the extended defects is substantial and similar to the sum of the barrier energy in bulk Si (1.1-1.2 eV) and the segregation energy to the stacking fault (˜0.7 eV). Surprisingly, the migration barrier for Na diffusion within the extended defects is even higher than the energy barrier for escaping. The results suggest that the extended defects likely accumulate Na as the impurities segregate to the defects from the bulk, rather than because of migration through the extended defects.

  10. Studies of Point Defects and Defect Interactions in Metals Using Perturbed Gamma Gamma Angular Correlations

    NASA Astrophysics Data System (ADS)

    Shropshire, Steven Leslie

    Point defects in plastically deformed Au, Pt, and Ni were studied with atomic-scale sensitivity using the perturbed gamma-gamma angular correlations (PAC) technique by monitoring formation and transformation of complexes of vacancy defects with very dilute ^{111}In/ ^{111}Cd solute probes. Three topics were investigated: (1) Production of vacancy defects during plastic deformation of Au was investigated to differentiate models of defect production. Concentrations of mono-, di-, and tri-vacancy species were measured in Au, and the ratio of mono- to di-vacancies was found to be independent of the amount of deformation. Results indicate that point defects are produced in correlated lattice locations, such as in "strings", as a consequence of dislocation interactions and not at random locations. (2) Hydrogen interactions with vacancy-solute complexes were studied in Pt. From thermal detrapping experiments, binding of hydrogen in complexes with mono-, di- and tri-vacancies was determined using a model for hydrogen diffusing in a medium with traps, with enthalpies all measured in the narrow range 0.23-0.28 eV, proving that the binding is insensitive to the precise structure of small vacancy clusters. Nuclear relaxation of the probe in a trivacancy complex in Pt was studied as a function of temperature, from which an activation energy of 0.34 eV was measured. This value is inconsistent with relaxation caused by diffusion or trapping of hydrogen, but explainable by dynamical hopping of the PAC probe atom in a cage of vacancies. (3) By observing transformations between vacancy-solute complexes induced by annihilation reactions, it was demonstrated that interstitials are produced during plastic deformation. The evolution of concentrations of the different vacancy complexes under an interstitial flux was measured and analyzed using a kinetic-rate model, from which interstitial capture cross-sections for the different vacancy complexes and the relative quantities of

  11. First-principles investigation of neutron-irradiation-induced point defects in B4C, a neutron absorber for sodium-cooled fast nuclear reactors

    NASA Astrophysics Data System (ADS)

    You, Yan; Yoshida, Katsumi; Yano, Toyohiko

    2018-05-01

    Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.

  12. First-principles investigation of thermodynamic and kinetic properties in titanium-hydrogen system and B2-nickel-alminum compound: Phase stability, point defect complexes and diffusion

    NASA Astrophysics Data System (ADS)

    Xu, Qingchuan

    The purpose of this thesis is to show the technique of predicting thermodynamic and kinetic properties from first-principles using density functional theory (DFT) calculations, cluster expansion methods and Monte Carlo simulations instead of experiments. Two material systems are selected as examples: one is an interstitial system (Ti-H system) and another is a substitutional compound (B2-NiAl alloy). For Ti-H system, this thesis investigated hydride stability, exploring the role of configurational degrees of freedom, zero-point vibrational energy and coherency strains. The tetragonal gamma-TiH phase was predicted to be unstable relative to hcp alpha-Ti and fcc based delta-TiH2. Zero point vibrational energy makes the gamma phase even less stable. The coherency strains between hydride precipitates and alpha-Ti matrix stabilize gamma-TiH relative to alpha-Ti and delta-TiH2. We also found that hydrogen prefers octahedral sites at low hydrogen concentration and tetrahedral sites at high concentration. For B2-NiAl, this thesis investigated the point defects and various diffusion mechanisms. A low barrier collective hop was discovered that could mediate Al diffusion through the anti-structural-bridge (ASB) mechanism. We also found an alternative hop sequence for the migration of a triple defect and a six-jump-cycle than that proposed previously. Going beyond the mean field approximation, we found that the inclusion of interactions among point defects is crucial to predict the concentration of defect complexes. Accounting for interactions among defects and incorporating all diffusion mechanisms proposed for B2-NiAl in Monte Carlo simulation, we calculated tracer diffusion coefficients. For the first time, the relative importance of various diffusion mechanisms is revealed. The ASB hop is the dominant mechanism for Ni in Ni-rich alloy and for Al diffusion in Al-rich alloys. Other mechanisms also play a role to various extents. We also calculated the self and interdiffusion

  13. Common reflection point migration and velocity analysis for anisotropic media

    NASA Astrophysics Data System (ADS)

    Oropeza, Ernesto V.

    An efficient Kirchhoff-style prestack depth migration, called 'parsimonious' migration was developed a decade ago for isotropic 2D and 3D media. The common-reflection point (CRP) migration velocity analysis (MVA) was developed later for isotropic media. The isotropic parsimonious migration produces incorrect images when the media is actually anisotropic. Similarly, isotropic CRP MVA produces incorrect inversions when the medium is anisotropic. In this study both parsimonious depth migration and common-reflection point migration velocity analysis are extended for application to 2D tilted transversely isotropic (TTI) media and illustrated with synthetic P-wave data. While the framework of isotropic parsimonious migration may be retained, the extension to TTI media requires redevelopment of each of the numerical components, including calculation of the phase and group velocity for TTI media, development of a new two-point anisotropic ray tracer, and substitution of an initial-angle and anisotropic shooting ray-trace algorithm to replace the isotropic one. The 2D model parameterization consists of Thomsen's parameters (Vpo, epsilon, delta) and the tilt angle of the symmetry axis of the TI medium. The parsimonious anisotropic migration algorithm is successfully applied to synthetic data from a TTI version of the Marmousi-2 model. The quality of the image improves by weighting the impulse response by the calculation of the anisotropic Fresnel radius. The accuracy and speed of this migration makes it useful for anisotropic velocity model building. The common-reflection point migration velocity analysis for TTI media for P-waves includes (and inverts for) Vpo, epsilon, and delta. The orientation of the anisotropic symmetry axis have to be constrained. If it constrained orthogonal to the layer bottom (as it conventionally is), it is estimated at each CRP and updated at each iteration without intermediate picking. The extension to TTI media requires development of a new

  14. Migration of luque rods through a laminectomy defect causing spinal cord compression.

    PubMed

    Quint, D J; Salton, G

    1993-01-01

    Internal fixation of traumatic spinal injuries has been associated with spinal canal stenosis, spinal cord compression, and nerve root impingement. We present a case of spinal cord/cauda equina compression due to migration of intact, anchored thoracolumbar Luque rods into the spinal canal through a laminectomy defect, leading to neurologic complications 10 years after the original operation.

  15. A computational framework for automation of point defect calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  16. A computational framework for automation of point defect calculations

    DOE PAGES

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; ...

    2017-01-13

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  17. CoFFEE: Corrections For Formation Energy and Eigenvalues for charged defect simulations

    NASA Astrophysics Data System (ADS)

    Naik, Mit H.; Jain, Manish

    2018-05-01

    Charged point defects in materials are widely studied using Density Functional Theory (DFT) packages with periodic boundary conditions. The formation energy and defect level computed from these simulations need to be corrected to remove the contributions from the spurious long-range interaction between the defect and its periodic images. To this effect, the CoFFEE code implements the Freysoldt-Neugebauer-Van de Walle (FNV) correction scheme. The corrections can be applied to charged defects in a complete range of material shapes and size: bulk, slab (or two-dimensional), wires and nanoribbons. The code is written in Python and features MPI parallelization and optimizations using the Cython package for slow steps.

  18. A DFT study on the failure mechanism of Al2O3 film by various point defects in solution

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Hui; Chen, Bao; Jin, Ying; Sun, Dong-Bai

    2018-03-01

    The defects on oxide film surface are very important, and they would occur when the film is peeled or scratched. The periodic DFT calculations have been performed on Al2O3 surface to model the influences of various point-defects. Three kinds of point defect surfaces (vacancy, inversion, substitution) are considered, and the molecular H2O dissociation and the transition state are calculated. The predicted formation energy of O vacancy is 8.30 eV, whereas that corresponding to the formation of Al vacancy is found to be at least a 55% larger. On the vacancy point defect surfaces, upward H2O molecule surfaces prefer to occur chemical reaction, leading the surfaces to be hydroxylated. And then the D-Cl-substitution-Al surface is corroded, which suggests a Cl adsorption induced failure mechanism of the oxide film. At last, the process of H2O dissociation on the OH-substitution-Al surfaces with four or five transition paths are discussed.

  19. Hydrogen molecule defect in proton-conductive SrTiO3 Perovskite

    NASA Astrophysics Data System (ADS)

    Onishi, Taku

    2017-11-01

    In proton-conductive SrTiO3 perovskite, no hydrogen molecule defect ideally exists. However, the unforeseen chemical reaction is often observed after the use of fuel cell. From the viewpoint of battery safety, we have investigated the effect of hydrogen molecule defect by molecular orbital analysis. When counter cation vacancy exists, the activation energy for hydrogen molecule migration was 1.39 - 1.50 eV, which is much smaller than the dissociation energy of hydrogen molecule. It implies that hydrogen molecule may migrate without its dissociation.

  20. Lithium-ion drifting: Application to the study of point defects in floating-zone silicon

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Wong, Y. K.; Zulehner, W.

    1997-01-01

    The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals.

  1. New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials.

    PubMed

    Zhu, Tiejun; Hu, Lipeng; Zhao, Xinbing; He, Jian

    2016-07-01

    Defects and defect engineering are at the core of many regimes of material research, including the field of thermoelectric study. The 60-year history of V 2 VI 3 thermoelectric materials is a prime example of how a class of semiconductor material, considered mature several times, can be rejuvenated by better understanding and manipulation of defects. This review aims to provide a systematic account of the underexplored intrinsic point defects in V 2 VI 3 compounds, with regard to (i) their formation and control, and (ii) their interplay with other types of defects towards higher thermoelectric performance. We herein present a convincing case that intrinsic point defects can be actively controlled by extrinsic doping and also via compositional, mechanical, and thermal control at various stages of material synthesis. An up-to-date understanding of intrinsic point defects in V 2 VI 3 compounds is summarized in a (χ, r)-model and applied to elucidating the donor-like effect. These new insights not only enable more innovative defect engineering in other thermoelectric materials but also, in a broad context, contribute to rational defect design in advanced functional materials at large.

  2. Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li 3 N structure

    DOE PAGES

    Nguyen, Manh Cuong; Hoang, Khang; Wang, Cai-Zhuang; ...

    2016-01-07

    A stable ground state structure with cubic symmetry of Li 3N (c-Li 3N) is found by ab initio initially symmetric random-generated crystal structure search method. Gibbs free energy, calculated within quasi-harmonic approximation, shows that c-Li 3N is the ground state structure for a wide range of temperature. The c-Li 3N structure has a negative thermal expansion coefficient at temperatures lower than room temperature, due mainly to two transverse acoustic phonon modes. This c-Li 3N phase is a semiconductor with an indirect band gap of 1.90 eV within hybrid density functional calculation. We also investigate the migration and energetics of nativemore » point defects in c-Li 3N, including lithium and nitrogen vacancies, interstitials, and anti-site defects. Lithium interstitials are found to have a very low migration barrier (~0.12 eV) and the lowest formation energy among all possible defects. Thus, the ionic conduction in c-Li 3N is expected to occur via an interstitial mechanism, in contrast to that in the well-known α-Li 3N phase which occurs via a vacancy mechanism.« less

  3. Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, E. E.; Laine, H. S.; Youssef, A.

    In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 +/- 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energymore » is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.« less

  4. Modeling a distribution of point defects as misfitting inclusions in stressed solids

    NASA Astrophysics Data System (ADS)

    Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D.

    2014-05-01

    The chemical equilibrium distribution of point defects modeled as non-overlapping, spherical inclusions with purely positive dilatational eigenstrain in an isotropically elastic solid is derived. The compressive self-stress inside existing inclusions must be excluded from the stress dependence of the equilibrium concentration of the point defects, because it does no work when a new inclusion is introduced. On the other hand, a tensile image stress field must be included to satisfy the boundary conditions in a finite solid. Through the image stress, existing inclusions promote the introduction of additional inclusions. This is contrary to the prevailing approach in the literature in which the equilibrium point defect concentration depends on a homogenized stress field that includes the compressive self-stress. The shear stress field generated by the equilibrium distribution of such inclusions is proved to be proportional to the pre-existing stress field in the solid, provided that the magnitude of the latter is small, so that a solid containing an equilibrium concentration of point defects can be described by a set of effective elastic constants in the small-stress limit.

  5. Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals.

    PubMed

    Guo, Hua; Song, Xiaohe; Zhuo, Zengqing; Hu, Jiangtao; Liu, Tongchao; Duan, Yandong; Zheng, Jiaxin; Chen, Zonghai; Yang, Wanli; Amine, Khalil; Pan, Feng

    2016-01-13

    Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

  6. On the validity of the amphoteric-defect model in gallium arsenide and a criterion for Fermi-level pinning by defects

    NASA Astrophysics Data System (ADS)

    Chen, C.-H.; Tan, T. Y.

    1995-10-01

    Using the theoretically calculated point-defect total-energy values of Baraff and Schlüter in GaAs, an amphoteric-defect model has been proposed by Walukiewicz to explain a large number of experimental results. The suggested amphoteric-defect system consists of two point-defect species capable of transforming into each other: the doubly negatively charged Ga vacancy V {Ga/2-} and the triply positively charged defect complex (ASGa+ V As)3+, with AsGa being the antisite defect of an As atom occupying a Ga site and V As being an As vacancy. When present in sufficiently high concentrations, the amphoteric defect system V {Ga/2-}/(AsGa+ V As)3+ is supposed to be able to pin the GaAs Fermi level at approximately the E v +0.6 eV level position, which requires that the net free energy of the V Ga/(AsGa+ V As) defect system to be minimum at the same Fermi-level position. We have carried out a quantitative study of the net energy of this defect system in accordance with the individual point-defect total-energy results of Baraff and Schlüter, and found that the minimum net defect-system-energy position is located at about the E v +1.2 eV level position instead of the needed E v +0.6 eV position. Therefore, the validity of the amphoteric-defect model is in doubt. We have proposed a simple criterion for determining the Fermi-level pinning position in the deeper part of the GaAs band gap due to two oppositely charged point-defect species, which should be useful in the future.

  7. Anticorrelation between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yeohoon; Du, Yingge; Garcia, Juan C.

    2015-02-02

    Using combination of STM, DFT and SIMS, we explored the interplay and relative impact of surface vs. subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (VO’s) are virtually absent in the vicinity of positively-charged subsurface point-defects. This observation is consistent with DFT calculations of impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 is employed, which is observed to be suppressed around them. DFT results attribute this to a perceived absencemore » of the intrinsic (Ti) (and likely extrinsic) interstitials in the nearest subsurface layer beneath “inhibited” areas. We also postulate that the entire nearest subsurface region could be voided of any charged point-defects, whereas prevalent VO’s are largely responsible for mediation of the redox chemistry at reduced TiO2(110) surface.« less

  8. Point Defects in Quenched and Mechanically-Milled Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Sinha, Praveen

    Investigations were made of structural and thermal point defects in the highly-ordered B2 compound PdIn and deformation-induced defects in PdIn and NiAl. The defects were detected through the quadrupole interactions they induce at nearby ^{111}In/Cd probe atoms using the technique of perturbed gamma-gamma angular correlations (PAC). Measurements on annealed PdIn on both sides of stoichiometry show structural defects that are the Pd vacancies on the Pd-poor side of the stoichiometry and Pd antisite atoms on the Pd-rich side. Signals were attributed to various defect configurations near the In/Cd probes. In addition to the first-shell Pd vacancy and second-shell Pd antisite atom configurations previously observed by Hahn and Muller, we observed two Pd-divacancy configurations in the first shell, a fourth-shell Pd vacancy, a second-shell In vacancy and the combination of a first -shell Pd vacancy and fourth-shell Pd vacancy. Vacancies on both the Pd and In sublattices were detected after quenching. Fractions of probe atoms having each type of neighboring vacancy defect were observed to increase monotonically with quenching temperature over the range 825-1500 K. For compositions very close to 50.15 at.% Pd, nearly equal site fractions were observed for Pd and In vacancies, indicating that the Schottky vacancy-pair defect is the thermal defect at high temperature. The formation enthalpy of the Schottky defect was determined from measurements of the Pd-vacancy site fraction to be 1.30(18) eV from analysis of quenching data in the range 825-1200 K, using the law of mass action and assuming a random distribution. Above 1200 K, the Pd-vacancy concentration was observed to be saturated at a value of 1.3(2) atomic percent. For more Pd-rich compositions, evidence was also obtained for a defect reaction in which a Pd antisite atom and Pd vacancy react to form an In vacancy, thereby increasing the In vacancy concentration and decreasing the Pd vacancy concentration. Analysis of

  9. Photoluminescence as a tool for characterizing point defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael

    2012-02-01

    Photoluminescence is one of the most powerful tools used to study optically-active point defects in semiconductors, especially in wide-bandgap materials. Gallium nitride (GaN) and zinc oxide (ZnO) have attracted considerable attention in the last two decades due to their prospects in optoelectronics applications, including blue and ultraviolet light-emitting devices. However, in spite of many years of extensive studies and a great number of publications on photoluminescence from GaN and ZnO, only a few defect-related luminescence bands are reliably identified. Among them are the Zn-related blue band in GaN, Cu-related green band and Li-related orange band in ZnO. Numerous suggestions for the identification of other luminescence bands, such as the yellow band in GaN, or green and yellow bands in ZnO, do not stand up under scrutiny. In these conditions, it is important to classify the defect-related luminescence bands and find their unique characteristics. In this presentation, we will review the origin of the major luminescence bands in GaN and ZnO. Through simulations of the temperature and excitation intensity dependences of photoluminescence and by employing phenomenological models we are able to obtain important characteristics of point defects such as carrier capture cross-sections for defects, concentrations of defects, and their charge states. These models are also used to find the absolute internal quantum efficiency of photoluminescence and obtain information about nonradiative defects. Results from photoluminescence measurements will be compared with results of the first-principle calculations, as well as with the experimental data obtained by other techniques such as positron annihilation spectroscopy, deep-level transient spectroscopy, and secondary ion mass spectrometry.

  10. Storage and Effective Migration of Li-Ion for Defected β-LiFePO 4 Phase Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hua; Song, Xiaohe; Zhuo, Zengqing

    2016-01-13

    Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstratemore » that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g–1 at a rate of 0.1 C (1C = 170 mA g–1) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.« less

  11. Stabilization of primary mobile radiation defects in MgF2 crystals

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Lisitsyna, L. A.; Popov, A. I.; Kotomin, E. A.; Abuova, F. U.; Akilbekov, A.; Maier, J.

    2016-05-01

    Non-radiative decay of the electronic excitations (excitons) into point defects (F-H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1-50 ps with the quantum yield up to 0.2-0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF2 and <0.001% in fluorides MeF2 (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF2 crystals with a focus on the H center stabilization in the form of the interstitial F2 molecules which is supported by presented experimental data.

  12. First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Geng, Hua Y.; Song, Hong X.; Jin, K.; Xiang, S. K.; Wu, Q.

    2011-11-01

    Formation Gibbs free energy of point defects and oxygen clusters in uranium dioxide at high-pressure high-temperature conditions are calculated from first principles, using the LSDA+U approach for the electronic structure and the Debye model for the lattice vibrations. The phonon contribution on Frenkel pairs is found to be notable, whereas it is negligible for the Schottky defect. Hydrostatic compression changes the formation energies drastically, making defect concentrations depend more sensitively on pressure. Calculations show that, if no oxygen clusters are considered, uranium vacancy becomes predominant in overstoichiometric UO2 with the aid of the contribution from lattice vibrations, while compression favors oxygen defects and suppresses uranium vacancy greatly. At ambient pressure, however, the experimental observation of predominant oxygen defects in this regime can be reproduced only in a form of cuboctahedral clusters, underlining the importance of defect clustering in UO2+x. Making use of the point defect model, an equation of state for nonstoichiometric oxides is established, which is then applied to describe the shock Hugoniot of UO2+x. Furthermore, the oxidization and compression behavior of uranium monoxide, triuranium octoxide, uranium trioxide, and a series of defective UO2 at 0 K are investigated. The evolution of mechanical properties and electronic structures with an increase of the oxidation degree are analyzed, revealing the transition of the ground state of uranium oxides from metallic to Mott insulator and then to charge-transfer insulator due to the interplay of strongly correlated effects of 5f orbitals and the shift of electrons from uranium to oxygen atoms.

  13. Effect of ion velocity on creation of point defects halos of latent tracks in LiF

    NASA Astrophysics Data System (ADS)

    Volkov, A. E.; Schwartz, K.; Medvedev, N. A.; Trautmann, C.

    2017-09-01

    Parameters of point defects halos (F-color centers) created due to decays of self-trapped valence holes generated in nanometric vicinities of trajectories of gold ions of 275 MeV and 2187 MeV in LiF are estimated in absorption spectroscopy experiments. Such ions have approximately the same electronic stopping: 24.6 keV/nm and 22.9 keV/nm, respectively. In contrast to the usual concept of the velocity effect that a slower ion produces larger structure changes due to a higher density of the deposited energy, the opposite effect occurs for the defect halo revealing a larger radius and a larger defect concentration for an ion of the higher velocity realizing the same energy loss. Spatial spreading of generated valence holes before their self-trapping (500 fs) forms the size of the defect halos around the trajectories of the applied ions. Simulations with Monte-Carlo code TREKIS show no significant difference in the initial spatial distributions of these valence holes by the times of finishing of ionization cascades (∼10 fs after the projectile passage) within the radii of the defect halos deduced from the experiments. Using these distributions as initial conditions for spatial spreading of generated valence holes and taking into account the difference between the defect halo radii, the diffusion coefficients of these holes near the trajectories of 275 and 2187 MeV Au ions in LiF are estimated showing about six times larger value in tracks of the faster ion for irradiations at room temperatures. Presence of H-color centers changes considerably the kinetics of the created defect ensemble in the defect halo resulting in differences between the defect halo parameters in LiF crystals irradiated at 8 K vs. 300 K.

  14. Point defect reduction in MOCVD (Al)GaN by chemical potential control and a comprehensive model of C incorporation in GaN

    NASA Astrophysics Data System (ADS)

    Reddy, Pramod; Washiyama, Shun; Kaess, Felix; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko

    2017-12-01

    A theoretical framework that provides a quantitative relationship between point defect formation energies and growth process parameters is presented. It enables systematic point defect reduction by chemical potential control in metalorganic chemical vapor deposition (MOCVD) of III-nitrides. Experimental corroboration is provided by a case study of C incorporation in GaN. The theoretical model is shown to be successful in providing quantitative predictions of CN defect incorporation in GaN as a function of growth parameters and provides valuable insights into boundary phases and other impurity chemical reactions. The metal supersaturation is found to be the primary factor in determining the chemical potential of III/N and consequently incorporation or formation of point defects which involves exchange of III or N atoms with the reservoir. The framework is general and may be extended to other defect systems in (Al)GaN. The utility of equilibrium formalism typically employed in density functional theory in predicting defect incorporation in non-equilibrium and high temperature MOCVD growth is confirmed. Furthermore, the proposed theoretical framework may be used to determine optimal growth conditions to achieve minimum compensation within any given constraints such as growth rate, crystal quality, and other practical system limitations.

  15. Effect of nickel on point defects diffusion in Fe – Ni alloys

    DOE PAGES

    Anento, Napoleon; Serra, Anna; Osetsky, Yury N.

    2017-05-05

    Iron-Nickel alloys are perspective alloys as nuclear energy structural materials because of their good radiation damage tolerance and mechanical properties. Understanding of experimentally observed features such as the effect of Ni content to radiation defects evolution is essential for developing predictive models of radiation. Recently an atomic-scale modelling study has revealed one particular mechanism of Ni effect related to the reduced mobility of clusters of interstitial atoms in Fe-Ni alloys. In this paper we present results of the microsecond-scale molecular dynamics study of point defects, i.e. vacancies and self-interstitial atoms, diffusion in Fe-Ni alloys. It is found that the additionmore » of Ni atoms affects diffusion processes: diffusion of vacancies is enhanced in the presence of Ni, whereas diffusion of interstitials is reduced and these effects increase at high Ni concentration and low temperature. As a result, the role of Ni solutes in radiation damage evolution in Fe-Ni alloys is discussed.« less

  16. Point-to-point migration functions and gravity model renormalization: approaches to aggregation in spatial interaction modeling.

    PubMed

    Slater, P B

    1985-08-01

    Two distinct approaches to assessing the effect of geographic scale on spatial interactions are modeled. In the first, the question of whether a distance deterrence function, which explains interactions for one system of zones, can also succeed on a more aggregate scale, is examined. Only the two-parameter function for which it is found that distances between macrozones are weighted averaged of distances between component zones is satisfactory in this regard. Estimation of continuous (point-to-point) functions--in the form of quadrivariate cubic polynomials--for US interstate migration streams, is then undertaken. Upon numerical integration, these higher order surfaces yield predictions of interzonal and intrazonal movements at any scale of interest. Test of spatial stationarity, isotropy, and symmetry of interstate migration are conducted in this framework.

  17. The evolution of interaction between grain boundary and irradiation-induced point defects: Symmetric tilt GB in tungsten

    NASA Astrophysics Data System (ADS)

    Li, Hong; Qin, Yuan; Yang, Yingying; Yao, Man; Wang, Xudong; Xu, Haixuan; Phillpot, Simon R.

    2018-03-01

    Molecular dynamics method is used and scheme of calculational tests is designed. The atomic evolution view of the interaction between grain boundary (GB) and irradiation-induced point defects is given in six symmetric tilt GB structures of bcc tungsten with the energy of the primary knock-on atom (PKA) EPKA of 3 and 5 keV and the simulated temperature of 300 K. During the collision cascade with GB structure there are synergistic mechanisms to reduce the number of point defects: one is vacancies recombine with interstitials, and another is interstitials diffuse towards the GB with vacancies almost not move. The larger the ratio of the peak defect zone of the cascades overlaps with the GB region, the statistically relative smaller the number of surviving point defects in the grain interior (GI); and when the two almost do not overlap, vacancy-intensive area generally exists nearby GBs, and has a tendency to move toward GB with the increase of EPKA. In contrast, the distribution of interstitials is relatively uniform nearby GBs and is affected by the EPKA far less than the vacancy. The GB has a bias-absorption effect on the interstitials compared with vacancies. It shows that the number of surviving vacancies statistically has increasing trend with the increase of the distance between PKA and GB. While the number of surviving interstitials does not change much, and is less than the number of interstitials in the single crystal at the same conditions. The number of surviving vacancies in the GI is always larger than that of interstitials. The GB local extension after irradiation is observed for which the interstitials absorbed by the GB may be responsible. The designed scheme of calculational tests in the paper is completely applicable to the investigation of the interaction between other types of GBs and irradiation-induced point defects.

  18. Self-evolving atomistic kinetic Monte Carlo simulations of defects in materials

    DOE PAGES

    Xu, Haixuan; Beland, Laurent K.; Stoller, Roger E.; ...

    2015-01-29

    The recent development of on-the-fly atomistic kinetic Monte Carlo methods has led to an increased amount attention on the methods and their corresponding capabilities and applications. In this review, the framework and current status of Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) are discussed. SEAKMC particularly focuses on defect interaction and evolution with atomistic details without assuming potential defect migration/interaction mechanisms and energies. The strength and limitation of using an active volume, the key concept introduced in SEAKMC, are discussed. Potential criteria for characterizing an active volume are discussed and the influence of active volume size on saddle point energies ismore » illustrated. A procedure starting with a small active volume followed by larger active volumes was found to possess higher efficiency. Applications of SEAKMC, ranging from point defect diffusion, to complex interstitial cluster evolution, to helium interaction with tungsten surfaces, are summarized. A comparison of SEAKMC with molecular dynamics and conventional object kinetic Monte Carlo is demonstrated. Overall, SEAKMC is found to be complimentary to conventional molecular dynamics, especially when the harmonic approximation of transition state theory is accurate. However it is capable of reaching longer time scales than molecular dynamics and it can be used to systematically increase the accuracy of other methods such as object kinetic Monte Carlo. Furthermore, the challenges and potential development directions are also outlined.« less

  19. Defect production in nonlinear quench across a quantum critical point.

    PubMed

    Sen, Diptiman; Sengupta, K; Mondal, Shreyoshi

    2008-07-04

    We show that the defect density n, for a slow nonlinear power-law quench with a rate tau(-1) and an exponent alpha>0, which takes the system through a critical point characterized by correlation length and dynamical critical exponents nu and z, scales as n approximately tau(-alphanud/(alphaznu+1)) [n approximately (alphag((alpha-1)/alpha)/tau)(nud/(znu+1))] if the quench takes the system across the critical point at time t=0 [t=t(0) not = 0], where g is a nonuniversal constant and d is the system dimension. These scaling laws constitute the first theoretical results for defect production in nonlinear quenches across quantum critical points and reproduce their well-known counterpart for a linear quench (alpha=1) as a special case. We supplement our results with numerical studies of well-known models and suggest experiments to test our theory.

  20. Turning points in international labor migration: a case study of Thailand.

    PubMed

    Vasuprasat, P

    1994-01-01

    "This article describes the dynamics of the structural transformation of the Thai economy, labor migration and direct foreign investment and proposes an econometric model to explain the migration phenomenon. Though migration shifts have been significantly influenced by political factors such as the Gulf crisis and tensions with Saudi Arabia, economic factors such as the Thai government's liberalization of markets and the expansion of trade and direct foreign investment have contributed to changes in labor market needs. The economic conditions of a shift from net exporter to net importer for labor are posited in the model. The empirical results reveal a turning point in labor migration from Thailand and also confirm the contribution of commodity export in place of labor export in creating employment and income." excerpt

  1. Interplay between atomic disorder, lattice swelling and defect energy in ion-irradiation-induced amorphization of SiC

    DOE PAGES

    Debelle, Aurelien; Boulle, Alexandre; Chartier, Alain; ...

    2014-11-25

    We present a combination of experimental and computational evaluations of disorder level and lattice swelling in ion-irradiated materials. Information obtained from X-ray diffraction experiments is compared to X-ray diffraction data generated using atomic-scale simulations. The proposed methodology, which can be applied to a wide range of crystalline materials, is used to study the amorphization process in irradiated SiC. Results show that this process can be divided into two steps. In the first step, point defects and small defect clusters are produced and generate both large lattice swelling and high elastic energy. In the second step, enhanced coalescence of defects andmore » defect clusters occurs to limit this increase in energy, which rapidly leads to complete amorphization.« less

  2. The effects of cation–anion clustering on defect migration in MgAl 2O 4

    DOE PAGES

    Zamora, Richard J.; Voter, Arthur F.; Perez, Danny; ...

    2016-06-28

    Magnesium aluminate spinel (MgAl 2O 4), like many other ceramic materials, offers a range of technological applications, from nuclear reactor materials to military body armor. For many of these applications, it is critical to understand both the formation and evolution of lattice defects throughout the lifetime of the material. We use the Speculatively Parallel Temperature Accelerated Dynamics (SpecTAD) method to investigate the effects of di-vacancy and di-interstitial formation on the mobility of the component defects. From long-time trajectories of the state-to-state dynamics, we characterize the migration pathways of defect clusters, and calculate their self-diffusion constants across a range of temperatures.more » We find that the clustering of Al and O vacancies drastically reduces the mobility of both defects, while the clustering of Mg and O vacancies completely immobilizes them. For interstitials, we find that the clustering of Mg and O defects greatly reduces O interstitial mobility, but has only a weak effect on Mg. Lastly, these findings illuminate important new details regarding defect kinetics relevant to the application of MgAl 2O 4 in extreme environments.« less

  3. Dynamics and Structure of Point Defects in Forsterite: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Churakov, S.; Khisina, N.; Urusov, V.; Wirth, R.

    2001-12-01

    OH-bearing fluid inclusions in Fo92 forsterite samples from peridotite nodule 9206 (Udachnaja kimberlite pipe)[1] were documented recently based on TEM and IR studies. The Fourier transform of diffraction pattern from the inclusions exhibited a pattern, which is interpreted as ordered planar (2H)xMg defects. In this study the structure and dynamics of protons associated with Mg(1), Mg(2) vacancies and interstitial polyhedrons ordered in a (100) plane corresponding to double unite cell periodicity of the forsterite lattice has been investigated by ab initio quantum mechanic calculations. Static structure optimizations and ab-initio molecular dynamics (MD) simulations have been performed using the CPMD density functional code[2]. The calculations were accomplished with the BLYP-functional utilizing the generalized gradient approximation. Non-local Goedecker-type pseudopotentials[3] have been applied to account for core electrons. Valence electron orbitals were approximated by plane wave expansion up to 70 Ry energy cutoff. The energy of static structures was sampled on 2x2x2 Monkhorst-Pack mesh[4]. During the structure relaxation parameters of an orthorhombic 2x1x2 supercell contaning 116 atoms corresponding to Mg28Si16O64H8 hydrous olivine was fixed at experimental values of a=9.524Å b=10.225Å and c=11.988Å relative to the Pbnm space group. Series of NVT-MD calculations were performed at 1000 K on 2x1x1 supercell with 58 atoms using four chain Nose thermostat. Randomly disturbed optimized structures were used as initial configuration for MD runs. The 1ps system equilibration is followed by trajectory production over 5 ps interval. A point energy sampling was applied in all MD calculations. A series of geometry optimizations, starting with various initial position of protons in Mg(1), Mg(2) and interstitial sites were carried out to obtain a structure with the lowest lattice energy. It was found that structures with protons completely located within the M1

  4. First-principles calculation of defect free energies: General aspects illustrated in the case of bcc Fe

    NASA Astrophysics Data System (ADS)

    Murali, D.; Posselt, M.; Schiwarth, M.

    2015-08-01

    Modeling of nanostructure evolution in solids requires comprehensive data on the properties of defects such as the vacancy and foreign atoms. Since most processes occur at elevated temperatures, not only the energetics of defects in the ground state, but also their temperature-dependent free energies must be known. The first-principles calculation of contributions of phonon and electron excitations to free formation, binding, and migration energies of defects is illustrated in the case of bcc Fe. First of all, the ground-state properties of the vacancy, the foreign atoms Cu, Y, Ti, Cr, Mn, Ni, V, Mo, Si, Al, Co, O, and the O-vacancy pair are determined under constant volume (CV) as well as zero-pressure (ZP) conditions, and relations between the results of both kinds of calculations are discussed. Second, the phonon contribution to defect free energies is calculated within the harmonic approximation using the equilibrium atomic positions determined in the ground state under CV and ZP conditions. In most cases, the ZP-based free formation energy decreases monotonously with temperature, whereas for CV-based data both an increase and a decrease were found. The application of a quasiharmonic correction to the ZP-based data does not modify this picture significantly. However, the corrected data are valid under zero-pressure conditions at higher temperatures than in the framework of the purely harmonic approach. The difference between CV- and ZP-based data is mainly due to the volume change of the supercell since the relative arrangement of atoms in the environment of the defects is nearly identical in the two cases. A simple transformation similar to the quasiharmonic approach is found between the CV- and ZP-based frequencies. Therefore, it is not necessary to calculate these quantities and the corresponding defect free energies separately. In contrast to ground-state energetics, the CV- and ZP-based defect free energies do not become equal with increasing supercell

  5. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Shigeyuki; Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582; Iwasaki, Ryotaro

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure.more » Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.« less

  6. Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-03-01

    The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.

  7. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  8. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  9. Defect Chemistry of Oxides for Energy Applications.

    PubMed

    Schweke, Danielle; Mordehovitz, Yuval; Halabi, Mahdi; Shelly, Lee; Hayun, Shmuel

    2018-05-31

    Oxides are widely used for energy applications, as solid electrolytes in various solid oxide fuel cell devices or as catalysts (often associated with noble metal particles) for numerous reactions involving oxidation or reduction. Defects are the major factors governing the efficiency of a given oxide for the above applications. In this paper, the common defects in oxide systems and external factors influencing the defect concentration and distribution are presented, with special emphasis on ceria (CeO 2 ) based materials. It is shown that the behavior of a variety of oxide systems with respect to properties relevant for energy applications (conductivity and catalytic activity) can be rationalized by general considerations about the type and concentration of defects in the specific system. A new method based on transmission electron microscopy (TEM), recently reported by the authors for mapping space charge defects and measuring space charge potentials, is shown to be of potential importance for understanding conductivity mechanisms in oxides. The influence of defects on gas-surface reactions is exemplified on the interaction of CO 2 and H 2 O with ceria, by correlating between the defect distribution in the material and its adsorption capacity or splitting efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrically active point defects in Mg implanted n-type GaN grown by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Alfieri, G.; Sundaramoorthy, V. K.; Micheletto, R.

    2018-05-01

    Magnesium (Mg) is the p-type doping of choice for GaN, and selective area doping by ion implantation is a routine technique employed during device processing. While electrically active defects have been thoroughly studied in as-grown GaN, not much is known about defects generated by ion implantation. This is especially true for the case of Mg. In this study, we carried out an electrical characterization investigation of point defects generated by Mg implantation in GaN. We have found at least nine electrically active levels in the 0.2-1.2 eV energy range, below the conduction band. The isochronal annealing behavior of these levels showed that most of them are thermally stable up to 1000 °C. The nature of the detected defects is then discussed in the light of the results found in the literature.

  11. Defect interactions in GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.

  12. Anomalous Dirac point transport due to extended defects in bilayer graphene.

    PubMed

    Shallcross, Sam; Sharma, Sangeeta; Weber, Heiko B

    2017-08-24

    Charge transport at the Dirac point in bilayer graphene exhibits two dramatically different transport states, insulating and metallic, that occur in apparently otherwise indistinguishable experimental samples. We demonstrate that the existence of these two transport states has its origin in an interplay between evanescent modes, that dominate charge transport near the Dirac point, and disordered configurations of extended defects in the form of partial dislocations. In a large ensemble of bilayer systems with randomly positioned partial dislocations, the distribution of conductivities is found to be strongly peaked at both the insulating and metallic limits. We argue that this distribution form, that occurs only at the Dirac point, lies at the heart of the observation of both metallic and insulating states in bilayer graphene.In seemingly indistinguishable bilayer graphene samples, two distinct transport regimes, insulating and metallic, have been identified experimentally. Here, the authors demonstrate that these two states originate from the interplay between extended defects and evanescent modes at the Dirac point.

  13. First-principles study of fission gas incorporation and migration in zirconium nitride

    DOE PAGES

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    2017-03-24

    To evaluate the effectiveness of ZrN as a diffusion barrier against fission gases, we investigate in this paper the incorporation and migration of fission gas atoms, with a focus on Xe, in ZrN by first-principles calculations. The formations of point defects in ZrN, including vacancies, interstitials, divacancies, Frenkel pairs, and Schottky defects, are first studied. Among all the defects, the Schottky defect with two vacancies as first nearest neighbor is predicted to be the most favorable incorporation site for fission gas Xe in ZrN. The migration of Xe gas atom in ZrN is investigated through two diffusion mechanisms, i.e., interstitialmore » and vacancy-assisted diffusions. The migration barrier of Xe gas atom through the intrinsic interstitials in ZrN is considerably lower than that through vacancies. Finally, therefore, at low temperatures fission gas Xe atoms diffuse mainly through interstitials in single crystal ZrN, whereas at high temperatures Xe may diffuse in ZrN assisted by vacancies.« less

  14. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni 0.5Co 0.5, Ni 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, George Malcolm; Zhang, Yanwen

    2016-08-03

    It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. In this study, using ab initio calculations based on density functional theory and special quasirandom structure, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni 0.5Co 0.5, Nimore » 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atomic size in the structure, which further determines the elemental diffusion properties. In conclusion, different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.« less

  15. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2.

    PubMed

    Zhao, Shijun; Stocks, G Malcolm; Zhang, Yanwen

    2016-09-14

    It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. Using ab initio calculations based on density functional theory and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atoms in the structure, which further determines the elemental diffusion properties. Different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.

  16. Displacement Threshold Energy and Recovery in an Al-Ti Nanolayered System with Intrinsic Point Defect Partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerboth, Matthew D.; Setyawan, Wahyu; Henager, Charles H.

    2014-01-07

    A method is established and validated using molecular dynamics (MD) to determine the displacement threshold energies as Ed in nanolayered, multilayered systems of dissimilar metals. The method is applied to specifically oriented nanolayered films of Al-Ti where the crystal structure and interface orientations are varied in atomic models and Ed is calculated. Methods for defect detection are developed and discussed based on prior research in the literature and based on specific crystallographic directions available in the nanolayered systems. These are compared and contrasted to similar calculations in corresponding bulk materials, including fcc Al, fcc Ti, hcp Al, and hcp Ti.more » In all cases, the calculated Ed in the multilayers are intermediate to the corresponding bulk values but exhibit some important directionality. In the nanolayer, defect detection demonstrated systematic differences in the behavior of Ed in each layer. Importantly, collision cascade damage exhibits significant defect partitioning within the Al and Ti layers that is hypothesized to be an intrinsic property of dissimilar nanolayered systems. This type of partitioning could be partly responsible for observed asymmetric radiation damage responses in many multilayered systems. In addition, a pseudo-random direction was introduced to approximate the average Ed without performing numerous simulations with random directions.« less

  17. Bats on a Budget: Torpor-Assisted Migration Saves Time and Energy

    PubMed Central

    McGuire, Liam P.; Jonasson, Kristin A.; Guglielmo, Christopher G.

    2014-01-01

    Bats and birds must balance time and energy budgets during migration. Migrating bats face similar physiological challenges to birds, but nocturnality creates special challenges for bats, such as a conflict between travelling and refueling, which many birds avoid by feeding in daylight and flying at night. As endothermic animals, bats and birds alike must expend substantial amounts of energy to maintain high body temperatures. For migratory birds refueling at stopovers, remaining euthermic during inactive periods reduces the net refuelling rate, thereby prolonging stopover duration and delaying subsequent movement. We hypothesized that bats could mitigate similar ambient-temperature dependent costs by using a torpor-assisted migration strategy. We studied silver-haired bats Lasionycteris noctivagans during autumn migration using a combination of respirometry and temperature-sensitive radiotelemetry to estimate energy costs incurred under ambient temperature conditions, and the energy that bats saved by using torpor during daytime roosting periods. All bats, regardless of sex, age, or body condition used torpor at stopover and saved up to 91% of the energy they would have expended to remain euthermic. Furthermore, bats modulated use of torpor depending on ambient temperature. By adjusting the time spent torpid, bats achieved a rate of energy expenditure independent of the ambient temperature encountered at stopover. By lowering body temperature during inactive periods, fuel stores are spared, reducing the need for refuelling. Optimal migration models consider trade-offs between time and energy. Heterothermy provides a physiological strategy that allows bats to conserve energy without paying a time penalty as they migrate. Although uncommon, some avian lineages are known to use heterothermy, and current theoretical models of migration may not be appropriate for these groups. We propose that thermoregulatory strategies should be an important consideration of future

  18. Self-regulation mechanism for charged point defects in hybrid halide perovskites

    DOE PAGES

    Walsh, Aron; Scanlon, David O.; Chen, Shiyou; ...

    2014-12-11

    Hybrid halide perovskites such as methylammonium lead iodide (CH 3NH 3PbI 3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.

  19. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    PubMed

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc.

  20. Production and aging of paramagnetic point defects in P-doped floating zone silicon irradiated with high fluence 27 MeV electrons

    NASA Astrophysics Data System (ADS)

    Joita, A. C.; Nistor, S. V.

    2018-04-01

    Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm-2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.

  1. One-point functions in defect CFT and integrability

    NASA Astrophysics Data System (ADS)

    de Leeuw, Marius; Kristjansen, Charlotte; Zarembo, Konstantin

    2015-08-01

    We calculate planar tree level one-point functions of non-protected operators in the defect conformal field theory dual to the D3-D5 brane system with k units of the world volume flux. Working in the operator basis of Bethe eigenstates of the Heisenberg XXX 1/2 spin chain we express the one-point functions as overlaps of these eigenstates with a matrix product state. For k = 2 we obtain a closed expression of determinant form for any number of excitations, and in the case of half-filling we find a relation with the Néel state. In addition, we present a number of results for the limiting case k → ∞.

  2. Study on the intrinsic defects in tin oxide with first-principles method

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin

    2018-04-01

    First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.

  3. Point defects in hexagonal germanium carbide monolayer: A first-principles calculation

    NASA Astrophysics Data System (ADS)

    Ersan, Fatih; Gökçe, Aytaç Gürhan; Aktürk, Ethem

    2016-12-01

    On the basis of first-principles plane-wave calculations, we investigated the electronic and magnetic properties of various point defects including single Ge and C vacancies, Ge + C divacancy, Ge↔C antisites and the Stone-Wales (SW) defects in a GeC monolayer. We found that various periodic vacancy defects in GeC single layer give rise to crucial effects on the electronic and magnetic properties. The band gaps of GeC monolayer vary significantly from 0.308 eV to 1.738 eV due to the presence of antisites and Stone-Wales defects. While nonmagnetic ground state of semiconducting GeC turns into metal by introducing a carbon vacancy, it becomes half-metal by a single Ge vacancy with high magnetization (4 μB) value per supercell. All the vacancy types have zero net magnetic moments, except single Ge vacancy.

  4. Physicochemical characterization of point defects in fluorine doped tin oxide films

    NASA Astrophysics Data System (ADS)

    Akkad, Fikry El; Joseph, Sudeep

    2012-07-01

    The physical and chemical properties of spray deposited FTO films are studied using FESEM, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electrical and optical measurements. The results of XRD measurements showed that the films are polycrystalline (grain size 20-50 nm) with Rutile structure and mixed preferred orientation along the (200) and (110) planes. An angular shift of the XRD peaks after F-doping is observed and interpreted as being due to the formation of substitutional fluorine defects (FO) in presence of high concentration of oxygen vacancies (VO) that are electrically neutral. The electrical neutrality of oxygen vacancies is supported by the observation that the electron concentration n is two orders of magnitude lower than the VO concentration calculated from chemical analyses using XPS measurements. It is shown that an agreement between XPS, XRD, and Hall effect results is possible provided that the degree of deviation from stoichiometry is calculated with the assumption that the major part of the bulk carbon content is involved in O-C bonds. High temperature thermal annealing is found to cause an increase in the FO concentration and a decrease in both n and VO concentrations with the increase of the annealing temperature. These results could be interpreted in terms of a high temperature chemical exchange reaction between the SnO2 matrix and a precipitated fluoride phase. In this reaction, fluorine is released to the matrix and Sn is trapped by the fluoride phase, thus creating substitutional fluorine FO and tin vacancy VSn defects. The enthalpy of this reaction is determined to be approximately 2.4 eV while the energy of formation of a VSn through the migration of SnSn host atom to the fluoride phase is approximately 0.45 eV.

  5. Identification of dopant-induced point defects and their effect on the performance of CZT detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gul, Rubi; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; Didic, Václav; Egarievwe, Stephen U.; Hossain, Anwar; Roy, Utpal N.; Yang, Ge; James, Ralph B.

    2016-09-01

    In our prior research we investigated room-temperature radiation detectors (CZT, CMT, CdMgTe, CTS, among other compound semiconductors) for point defects related to different dopants and impurities. In this talk we will report on our most recent research on newly grown CZT crystals doped with In, In+Al, In+Ni, and In+Sn. The main focus will be on the study of dopant-induced point defects using deep-level current transient spectroscopy (i-DLTS). In addition the performance, ? product, gamma-ray spectral response and internal electric field of the detectors were measured and correlated with the dopant-induced point defects and their concentrations. Characterization of the detectors was carried out using i-DLTS for the point defects, Pockels effect for the internal electric-field distribution, and γ-ray spectroscopy for the spectral properties.

  6. Transformation between divacancy defects induced by an energy pulse in graphene.

    PubMed

    Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn

    2016-07-08

    The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.

  7. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmore » of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH 3NH 3PbI 3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.« less

  8. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    PubMed Central

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2015-01-01

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators. PMID:26584670

  9. Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Aji, L. B. Bayu; Shao, L.; Kucheyev, S. O.

    2018-05-01

    The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ˜-30 ° C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ˜0.1 eV , independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ˜0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.

  10. Concentration of point defects in 4H-SiC characterized by a magnetic measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, B.; Jia, R. X., E-mail: rxjia@mail.xidian.edu.cn; Wang, Y. T.

    A magnetic method is presented to characterize the concentration of point defects in silicon carbide. In this method, the concentration of common charged point defects, which is related to the density of paramagnetic centers, is determined by fitting the paramagnetic component of the specimen to the Brillouin function. Several parameters in the Brillouin function can be measured such as: the g-factor can be obtained from electron spin resonance spectroscopy, and the magnetic moment of paramagnetic centers can be obtained from positron lifetime spectroscopy combined with a first-principles calculation. To evaluate the characterization method, silicon carbide specimens with different concentrations ofmore » point defects are prepared with aluminum ion implantation. The fitting results of the densities of paramagnetic centers for the implanted doses of 1 × 10{sup 14} cm{sup −2}, 1 × 10{sup 15} cm{sup −2} and 1 × 10{sup 16} cm{sup −2} are 6.52 × 10{sup 14}/g, 1.14 × 10{sup 15}/g and 9.45 × 10{sup 14}/g, respectively. The same trends are also observed for the S-parameters in the Doppler broadening spectra. It is shown that this method is an accurate and convenient way to obtain the concentration of point defects in 4H-SiC.« less

  11. Effect of point defects on the electronic density states of SnC nanosheets: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Majidi, Soleyman; Achour, Amine; Rai, D. P.; Nayebi, Payman; Solaymani, Shahram; Beryani Nezafat, Negin; Elahi, Seyed Mohammad

    In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone-Wales (SW) defects in SnC nanosheets by using density-functional theory (DFT). We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV.

  12. Fermi Level Control of Point Defects During Growth of Mg-Doped GaN

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary; Hoffmann, Marc; Tweedie, James; Kirste, Ronny; Callsen, Gordon; Bryan, Isaac; Rice, Anthony; Bobea, Milena; Mita, Seiji; Xie, Jinqiao; Sitar, Zlatko; Collazo, Ramón

    2013-05-01

    In this study, Fermi level control of point defects during metalorganic chemical vapor deposition (MOCVD) of Mg-doped GaN has been demonstrated by above-bandgap illumination. Resistivity and photoluminescence (PL) measurements are used to investigate the Mg dopant activation of samples with Mg concentration of 2 × 1019 cm-3 grown with and without exposure to ultraviolet (UV) illumination. Samples grown under UV illumination have five orders of magnitude lower resistivity values compared with typical unannealed GaN:Mg samples. The PL spectra of samples grown with UV exposure are similar to the spectra of those grown without UV exposure that were subsequently annealed, indicating a different incorporation of compensating defects during growth. Based on PL and resistivity measurements we show that Fermi level control of point defects during growth of III-nitrides is feasible.

  13. On the defect structure due to low energy ion bombardment of graphite

    NASA Astrophysics Data System (ADS)

    Marton, D.; Bu, H.; Boyd, K. J.; Todorov, S. S.; Al-Bayati, A. H.; Rabalais, J. W.

    1995-03-01

    Graphite surfaces cleaved perpendicular to the c axis have been irradiated with low doses of Ar + ions at 50 eV kinetic energy and perpendicular incidence. Scanning tunneling micrographs (STM) of these irradiated surfaces exhibited dome-like features as well as point defects. These dome-like features retain undisturbed graphite periodicity. This finding is attributed to the stopping of ions between the first and second graphite sheets. The possibility of doping semiconductors at extremely shallow depths is raised.

  14. Optical spectroscopy and microscopy of radiation-induced light-emitting point defects in lithium fluoride crystals and films

    NASA Astrophysics Data System (ADS)

    Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.

    2012-08-01

    Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.

  15. FIBER OPTICS: Role of point defects in the photosensitivity of hydrogen-loaded phosphosilicate glass

    NASA Astrophysics Data System (ADS)

    Larionov, Yu V.

    2010-08-01

    It is shown that point defect modifications in hydrogen-loaded phosphosilicate glass (PSG) do not play a central role in determining its photosensitivity. Photochemical reactions that involve a two-step point defect modification and pre-exposure effect are incapable of accounting for photoinduced refractive index changes. It seems likely that a key role in UV-induced refractive index modifications is played by structural changes in the PSG network. Experimental data are presented that demonstrate intricate network rearrangement dynamics during UV exposure of PSG.

  16. Energy Migration in Organic Thin Films--From Excitons to Polarons

    NASA Astrophysics Data System (ADS)

    Mullenbach, Tyler K.

    The rise of organic photovoltaic devices (OPVs) and organic light-emitting devices has generated interest in the physics governing exciton and polaron dynamics in thin films. Energy transfer has been well studied in dilute solutions, but there are emergent properties in thin films and greater complications due to complex morphologies which must be better understood. Despite the intense interest in energy transport in thin films, experimental limitations have slowed discoveries. Here, a new perspective of OPV operation is presented where photovoltage, instead of photocurrent, plays the fundamental role. By exploiting this new vantage point the first method of measuring the diffusion length (LD) of dark (non-luminescent) excitons is developed, a novel photodetector is invented, and the ability to watch exciton arrival, in real-time, at the donor-acceptor heterojunction is presented. Using an enhanced understanding of exciton migration in thin films, paradigms for enhancing LD by molecular modifications are discovered, and the first exciton gate is experimentally and theoretically demonstrated. Generation of polarons from exciton dissociation represents a second phase of energy migration in OPVs that remains understudied. Current approaches are capable of measuring the rate of charge carrier recombination only at open-circuit. To enable a better understanding of polaron dynamics in thin films, two new approaches are presented which are capable of measuring both the charge carrier recombination and transit rates at any OPV operating voltage. These techniques pave the way for a more complete understanding of charge carrier kinetics in molecular thin films.

  17. On the Enthalpy and Entropy of Point Defect Formation in Crystals

    NASA Astrophysics Data System (ADS)

    Kobelev, N. P.; Khonik, V. A.

    2018-03-01

    A standard way to determine the formation enthalpy H and entropy S of point defect formation in crystals consists in the application of the Arrhenius equation for the defect concentration. In this work, we show that a formal use of this method actually gives the effective (apparent) values of these quantities, which appear to be significantly overestimated. The underlying physical reason lies in temperature-dependent formation enthalpy of the defects, which is controlled by temperature dependence of the elastic moduli. We present an evaluation of the "true" H- and S-values for aluminum, which are derived on the basis of experimental data by taking into account temperature dependence of the formation enthalpy related to temperature dependence of the elastic moduli. The knowledge of the "true" activation parameters is needed for a correct calculation of the defect concentration constituting thus an issue of major importance for different fundamental and application issues of condensed matter physics and chemistry.

  18. Free energy landscape and localization of nanoparticles at block copolymer model defects.

    PubMed

    Kim, Yongjoo; Chen, Hsieh; Alexander-Katz, Alfredo

    2014-05-14

    Nanoparticle localization in block copolymer model defects is studied using self-consistent field theory simulations. In particular we study the nanoparticle free energy landscape for three different model defects: X, T, Y shape defects. Our results indicate that nanoparticles can be strongly bound to certain locations in these defects. The symmetry of the defects affects in a non-trivial fashion the "stiffness of the trap", with the X shape defect displaying the deepest energy well. The T and Y defects exhibit orientations along which the potential energy well is rather shallow. Furthermore, we find that the free energy well is tunable by the size of the nanoparticles. Our results help to explain recent experimental observations in block copolymer templated assembly of nanoparticles. Furthermore, they may open new avenues to assemble arbitrary heterogeneous patterns with precise nanoparticle positions by carefully controlling the morphology of a block copolymer system by using directed self-assembly techniques.

  19. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  20. Defect Genome of Cubic Perovskites for Fuel Cell Applications

    DOE PAGES

    Balachandran, Janakiraman; Lin, Lianshan; Anchell, Jonathan S.; ...

    2017-10-10

    Heterogeneities such as point defects, inherent to material systems, can profoundly influence material functionalities critical for numerous energy applications. This influence in principle can be identified and quantified through development of large defect data sets which we call the defect genome, employing high-throughput ab initio calculations. However, high-throughput screening of material models with point defects dramatically increases the computational complexity and chemical search space, creating major impediments toward developing a defect genome. In this paper, we overcome these impediments by employing computationally tractable ab initio models driven by highly scalable workflows, to study formation and interaction of various point defectsmore » (e.g., O vacancies, H interstitials, and Y substitutional dopant), in over 80 cubic perovskites, for potential proton-conducting ceramic fuel cell (PCFC) applications. The resulting defect data sets identify several promising perovskite compounds that can exhibit high proton conductivity. Furthermore, the data sets also enable us to identify and explain, insightful and novel correlations among defect energies, material identities, and defect-induced local structural distortions. Finally, such defect data sets and resultant correlations are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials.« less

  1. Using a biocultural approach to examine migration/globalization, diet quality, and energy balance.

    PubMed

    Himmelgreen, David A; Cantor, Allison; Arias, Sara; Romero Daza, Nancy

    2014-07-01

    The aim of this paper is to examine the role and impact that globalization and migration (e.g., intra-/intercontinental, urban/rural, and circular) have had on diet patterns, diet quality, and energy balance as reported on in the literature during the last 20 years. Published literature from the fields of anthropology, public health, nutrition, and other disciplines (e.g., economics) was collected and reviewed. In addition, case studies from the authors' own research are presented in order to elaborate on key points and dietary trends identified in the literature. While this review is not intended to be comprehensive, the findings suggest that the effects of migration and globalization on diet quality and energy balance are neither lineal nor direct, and that the role of social and physical environments, culture, social organization, and technology must be taken into account to better understand this relationship. Moreover, concepts such as acculturation and the nutrition transition do not necessarily explain or adequately describe all of the global processes that shape diet quality and energy balance. Theories from nutritional anthropology and critical bio-cultural medical anthropology are used to tease out some of these complex interrelationships. Copyright © 2014. Published by Elsevier Inc.

  2. Defect Tolerant Semiconductors for Solar Energy Conversion.

    PubMed

    Zakutayev, Andriy; Caskey, Christopher M; Fioretti, Angela N; Ginley, David S; Vidal, Julien; Stevanovic, Vladan; Tea, Eric; Lany, Stephan

    2014-04-03

    Defect tolerance is the tendency of a semiconductor to keep its properties despite the presence of crystallographic defects. Scientific understanding of the origin of defect tolerance is currently missing. Here we show that semiconductors with antibonding states at the top of the valence band are likely to be tolerant to defects. Theoretical calculations demonstrate that Cu3N with antibonding valence band maximum has shallow intrinsic defects and no surface states, in contrast to GaN with bonding valence band maximum. Experimental measurements indicate shallow native donors and acceptors in Cu3N thin films, leading to 10(16)-10(17) cm(-3) doping with either electrons or holes depending on the growth conditions. The experimentally measured bipolar doping and the solar-matched optical absorption onset (1.4 eV) make Cu3N a promising candidate absorber for photovoltaic and photoelectrochemical solar cells, despite the calculated indirect fundamental band gap (1.0 eV). These conclusions can be extended to other materials with antibonding character of the valence band, defining a class of defect-tolerant semiconductors for solar energy conversion applications.

  3. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polanco, Carlos A.; Lindsay, Lucas R.

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  4. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE PAGES

    Polanco, Carlos A.; Lindsay, Lucas R.

    2018-01-04

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  5. Ab initio phonon point defect scattering and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos A.; Lindsay, Lucas

    2018-01-01

    We study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitude smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (˜ω0 ) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. This work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.

  6. Understanding and Calibrating Density-Functional-Theory Calculations Describing the Energy and Spectroscopy of Defect Sites in Hexagonal Boron Nitride.

    PubMed

    Reimers, Jeffrey R; Sajid, A; Kobayashi, Rika; Ford, Michael J

    2018-03-13

    Defect states in 2-D materials present many possible uses but both experimental and computational characterization of their spectroscopic properties is difficult. We provide and compare results from 13 DFT and ab initio computational methods for up to 25 excited states of a paradigm system, the V N C B defect in hexagonal boron nitride (h-BN). Studied include: (i) potentially catastrophic effects for computational methods arising from the multireference nature of the closed-shell and open-shell states of the defect, which intrinsically involves broken chemical bonds, (ii) differing results from DFT and time-dependent DFT (TDDFT) calculations, (iii) comparison of cluster models to periodic-slab models of the defect, (iv) the starkly differing effects of nuclear relaxation on the various electronic states that control the widths of photoabsorption and photoemission spectra as broken bonds try to heal, (v) the effect of zero-point energy and entropy on free-energy differences, (vi) defect-localized and conduction/valence-band transition natures, and (vii) strategies needed to ensure that the lowest-energy state of a defect can be computationally identified. Averaged state-energy differences of 0.3 eV are found between CCSD(T) and MRCI energies, with thermal effects on free energies sometimes also being of this order. However, DFT-based methods can perform very poorly. Simple generalized-gradient functionals like PBE fail at the most basic level and should never be applied to defect states. Hybrid functionals like HSE06 work very well for excitations within the triplet manifold of the defect, with an accuracy equivalent to or perhaps exceeding the accuracy of the ab initio methods used. However, HSE06 underestimates triplet-state energies by on average of 0.7 eV compared to closed-shell singlet states, while open-shell singlet states are predicted to be too low in energy by 1.0 eV. This leads to misassignment of the ground state of the V N C B defect. Long

  7. Effects of artificially produced defects on film thickness distribution in sliding EHD point contacts

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Wedeven, L. D.

    1981-01-01

    The effects of artificially produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact were investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, were held stationary at various locations within and in the vicinity of the contact region while the disk was rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.

  8. Quantifying point defects in Cu 2 ZnSn(S,Se) 4 thin films using resonant x-ray diffraction

    DOE PAGES

    Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; ...

    2016-10-17

    Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level ofmore » Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.« less

  9. Tight-binding molecular-dynamics study of point defects in GaAs

    NASA Astrophysics Data System (ADS)

    Seong, Hyangsuk; Lewis, Laurent J.

    1995-08-01

    Tight-binding molecular-dynamics simulations at 0 K have been performed in order to study the effect of defects (vacancies and antisites) in different states of charge on the electronic and structural properties of GaAs. Relaxations are fully included in the model, and for each defect we calculate the local atomic structure, the volume change upon relaxing, the formation energy (including chemical potential contributions), and the ionization levels. We find Ga vacancies to relax by an amount which is independent of the state of charge, consistent with positron lifetime measurements. Our calculations also predict Ga vacancies to exhibit a negative-U effect, and to assume a triply negative charge state for most values of the electron chemical potential. The relaxation of As vacancies, on the contrary, depends sensitively on the state of charge. The model confirms the two experimentally observed ionization levels for this defect, just below the conduction-band minimum. Likewise, Ga antisites exhibit large relaxations. In fact, in the neutral state, relaxation is so large that it leads to a ``broken-bond'' configuration, in excellent accord with the first-principles calculations of Zhang and Chadi [Phys. Rev. Lett. 64, 1789 (1990)]. This system also exhibits a negative-U effect, for values of the electron chemical potential near midgap. For As antisites, we find only a weak relaxation, independent of the charge. The model predicts the neutral state of the defect to be the ground state for values of the electron chemical potential near and above midgap, which supports the view that the EL2 defect is a neutral As antisite. Upon comparing the formation energies of the various defects we finally find that, for all values of the atomic chemical potentials, antisites are most likely to occur than vacancies.

  10. The Lewisian turning point and international migration: the case of Japan.

    PubMed

    Watanabe, S

    1994-01-01

    "This article critically examines the Lewisian turning point [concerning the availability of unlimited manpower resources] in light of Japan's experience since the mid-1800s. Japan reached its Lewisian turning point around 1960. Contrary to the assumptions of the theory however, the findings for Japan indicate that political factors have been more determinative of the rate of migration than purely economic ones. Prior to its turning point in 1960, international relations, war and forced repatriation were the decisive factors. Recently, though the inflow of foreign workers to fill labor shortages has increased, so also has the outflow of Japanese to accompany direct foreign investment." excerpt

  11. Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Gurieva, Galina; Valle Rios, Laura Elisa; Franz, Alexandra; Whitfield, Pamela; Schorr, Susan

    2018-04-01

    This work is an experimental study of intrinsic point defects in off-stoichiometric kesterite type CZTSe by means of neutron powder diffraction. We revealed the existence of copper vacancies (VCu), various cation anti site defects (CuZn, ZnCu, ZnSn, SnZn, and CuZn), as well as interstitials (Cui, Zni) in a wide range of off-stoichiometric polycrystalline powder samples synthesized by the solid state reaction. The results show that the point defects present in off-stoichiometric CZTSe agree with the off-stoichiometry type model, assuming certain cation substitutions accounting for charge balance. In addition to the known off-stoichiometry types A-H, new types (I-L) have been introduced. For the very first time, a correlation between the chemical composition of the CZTSe kesterite type phase and the occurring intrinsic point defects is presented. In addition to the off-stoichiometry type specific defects, the Cu/Zn disorder is always present in the CZTSe phase. In Cu-poor/Zn-rich CZTSe, a composition considered as the one that delivers the best photovoltaic performance, mainly copper vacancies, ZnCu and ZnSn anti sites are present. Also, this compositional region shows the lowest degree of Cu/Zn disorder.

  12. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects.

    PubMed

    Willemsen, Marjolein H; Vissers, Lisenka E L; Willemsen, Michèl A A P; van Bon, Bregje W M; Kroes, Thessa; de Ligt, Joep; de Vries, Bert B; Schoots, Jeroen; Lugtenberg, Dorien; Hamel, Ben C J; van Bokhoven, Hans; Brunner, Han G; Veltman, Joris A; Kleefstra, Tjitske

    2012-03-01

    DYNC1H1 encodes the heavy chain protein of the cytoplasmic dynein 1 motor protein complex that plays a key role in retrograde axonal transport in neurons. Furthermore, it interacts with the LIS1 gene of which haploinsufficiency causes a severe neuronal migration disorder in humans, known as classical lissencephaly or Miller-Dieker syndrome. To describe the clinical spectrum and molecular characteristics of DYNC1H1 mutations. A family based exome sequencing approach was used to identify de novo mutations in patients with severe intellectual disability. In this report the identification of two de novo missense mutations in DYNC1H1 (p.Glu1518Lys and p.His3822Pro) in two patients with severe intellectual disability and variable neuronal migration defects is described. Since an autosomal dominant mutation in DYNC1H1 was previously identified in a family with the axonal (type 2) form of Charcot- Marie-Tooth (CMT2) disease and mutations in Dync1h1 in mice also cause impaired neuronal migration in addition to neuropathy, these data together suggest that mutations in DYNC1H1 can lead to a broad phenotypic spectrum and confirm the importance of DYNC1H1 in both central and peripheral neuronal functions.

  13. Interplay of point defects, biaxial strain, and thermal conductivity in homoepitaxial SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Wiedigen, S.; Kramer, T.; Feuchter, M.; Knorr, I.; Nee, N.; Hoffmann, J.; Kamlah, M.; Volkert, C. A.; Jooss, Ch.

    2012-02-01

    Separating out effects of point defects and lattice strain on thermal conductivity is essential for improvement of thermoelectric properties of SrTiO3. We study relations between defects generated during deposition, induced lattice strain, and their impact on thermal conductivity κ in homoepitaxial SrTiO3 films prepared by ion-beam sputtering. Lowering the deposition temperature gives rise to lattice expansion by enhancement of point defect density which increases the hardness of the films. Due to a fully coherent substrate-film interface, the lattice misfit induces a large biaxial strain. However, we can show that the temperature dependence of κ is mainly sensitive on the defect concentration.

  14. Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si.

    PubMed

    Wallace, J B; Aji, L B Bayu; Shao, L; Kucheyev, S O

    2018-05-25

    The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ∼-30 °C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ∼0.1  eV, independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ∼0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.

  15. Light-induced defects in hybrid lead halide perovskite

    NASA Astrophysics Data System (ADS)

    Sharia, Onise; Schneider, William

    One of the main challenges facing organohalide perovskites for solar application is stability. Solar cells must last decades to be economically viable alternatives to traditional energy sources. While some causes of instability can be avoided through engineering, light-induced defects can be fundamentally limiting factor for practical application of the material. Light creates large numbers of electron and hole pairs that can contribute to degradation processes. Using ab initio theoretical methods, we systematically explore first steps of light induced defect formation in methyl ammonium lead iodide, MAPbI3. In particular, we study charged and neutral Frenkel pair formation involving Pb and I atoms. We find that most of the defects, except negatively charged Pb Frenkel pairs, are reversible, and thus most do not lead to degradation. Negative Pb defects create a mid-gap state and localize the conduction band electron. A minimum energy path study shows that, once the first defect is created, Pb atoms migrate relatively fast. The defects have two detrimental effects on the material. First, they create charge traps below the conduction band. Second, they can lead to degradation of the material by forming Pb clusters.

  16. Identification of point defects in HVPE-grown GaN by steady-state and time-resolved photoluminescence

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.

    2015-03-01

    We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.

  17. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    NASA Astrophysics Data System (ADS)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  18. Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach

    NASA Astrophysics Data System (ADS)

    Jiang, Hao

    Because of various excellent properties, SiC has been proposed for many applications in nuclear reactors including cladding layers in fuel rod, fission products container in TRISO fuel, and first wall/blanket in magnetic controlled fusion reactors. Upon exposure to high energy radiation environments, point defects and defect clusters are generated in materials in amounts significantly exceeding their equilibrium concentrations. The accumulation of defects can lead to undesired consequences such as crystalline-to-amorphous transformation1, swelling, and embrittlement, and these phenomena can adversely affect the lifetime of SiC based components in nuclear reactors. It is of great importance to understand the accumulation process of these defects in order to estimate change in properties of this material and to design components with superior ability to withstand radiation damages. Defect clusters are widely in SiC irradiated at the operation temperatures of various reactors. These clusters are believed to cause more than half of the overall swelling of irradiated SiC and can potentially lead to lowered thermal conductivity and mechanical strength. It is critical to understand the formation and growth of these clusters. Diffusion of these clusters is one importance piece to determine the growth rate of clusters; however it is unclear so far due to the challenges in simulating rare events. Using a combination of kinetic Activation Relaxation Technique with empirical potential and ab initio based climbing image nudged elastic band method, I performed an extensive search of the migration paths of the most stable carbon tri-interstitial cluster in SiC. This research reveals paths with the lowest energy barriers to migration, rotation, and dissociation of the most stable cluster. Based on these energy barriers, I concluded defect clusters are thermally immobile at temperatures lower than 1500 K and can dissociate into smaller clusters and single interstitials at

  19. Defects and Transport in Lithium Niobium Trioxide

    NASA Astrophysics Data System (ADS)

    Mehta, Apurva

    1990-01-01

    This dissertation presents work done on characterizing the defects and transport properties of congruent LiNbO _3. The focus of the study is the high temperature (800^circC to 1000^circC) equilibrium defect structure. The majority defects are described in terms of the 'LiNbO_3-ilmenite' defect model previously presented (26). Here the emphasis is placed on quantifying the defect concentrations. Congruent LiNbO_3 is highly nonstoichiometric. The large concentration of ionic defects present are mobile and contribute to electrical conduction. The ionic conduction was separated from the total conduction using defect chemistry and the transference number thus obtained was checked against the transference number obtained in a galvanic cell measurement. LiNbO_3 is an insulator (band gap = 4 eV). Hence one assumes that almost all of the conduction electrons are created by reduction. The degree of oxygen nonstoichiometry, a measure of the extent of chemical reduction, and the electron concentrations, were quantified as a function of oxygen partial pressure and the temperature by coulometric titration. The nonstoichiometry thus obtained was compared with nonstoichiometry obtained by TGA measurements. By fixing the phase composition of the sample in a buffered system, a set of constant composition measurements could be undertaken. These constant composition measurements were used to obtain the enthalpy of formation of conduction electrons, 1.95 eV, and the hopping energy for their motion at elevated temperatures, 0.55 eV, independently. The sum of the two energies was obtained by measuring the temperature dependence of the electronic conduction. The sum of the energies was found to be in excellent agreement with the energy obtained from equilibrium conduction. In conclusion, a quantitative and self-consistent picture of defects and their migration in LiNbO _3 was obtained.

  20. Combining the 3D model generated from point clouds and thermography to identify the defects presented on the facades of a building

    NASA Astrophysics Data System (ADS)

    Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang

    2018-03-01

    Defects presented on the facades of a building do have profound impacts on extending the life cycle of the building. How to identify the defects is a crucial issue; destructive and non-destructive methods are usually employed to identify the defects presented on a building. Destructive methods always cause the permanent damages for the examined objects; on the other hand, non-destructive testing (NDT) methods have been widely applied to detect those defects presented on exterior layers of a building. However, NDT methods cannot provide efficient and reliable information for identifying the defects because of the huge examination areas. Infrared thermography is often applied to quantitative energy performance measurements for building envelopes. Defects on the exterior layer of buildings may be caused by several factors: ventilation losses, conduction losses, thermal bridging, defective services, moisture condensation, moisture ingress, and structure defects. Analyzing the collected thermal images can be quite difficult when the spatial variations of surface temperature are small. In this paper the authors employ image segmentation to cluster those pixels with similar surface temperatures such that the processed thermal images can be composed of limited groups. The surface temperature distribution in each segmented group is homogenous. In doing so, the regional boundaries of the segmented regions can be identified and extracted. A terrestrial laser scanner (TLS) is widely used to collect the point clouds of a building, and those point clouds are applied to reconstruct the 3D model of the building. A mapping model is constructed such that the segmented thermal images can be projected onto the 2D image of the specified 3D building. In this paper, the administrative building in Chaoyang University campus is used as an example. The experimental results not only provide the defect information but also offer their corresponding spatial locations in the 3D model.

  1. Characterization of Point Defects in Lithium Aluminate (LiAlO2) Single Crystals

    DTIC Science & Technology

    2015-09-17

    high-quality neutron detectors since 235U and 239Pu, the two isotopes used to fuel nuclear weapons , both emit neu- trons through spontaneous fission of...dissertation has iden- tified and characterized the major point defects created and induced through x ray and neutron radiation using electron paramagnetic... neutron irradiation is an F+ center; an oxygen vacancy with one trapped electron. This defect has two states, a stable state that survives up to 500 ◦C and

  2. Insights into stability, electronic properties, defect properties and Li ions migration of Na, Mg and Al-doped LiVPO4F for cathode materials of lithium ion batteries: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The effects of Na, Mg and Al doping on the structure, electronic property, defect property and Li ions migration of LiVPO4F were investigated by the first-principles method. Calculations show that the processes of forming Li0.875Na0.125VPO4F, α- and β-LiMg0.375V0.75PO4F, α- and β-LiAl0.125V0.875PO4F are all feasible. Na, Mg and Al doping significantly improve the electrical conductivity of LiVPO4F and simultaneously maintain their structural stability attributing to the reduction of band gaps through variations of V-3d spin up orbitals. Li vacancy defects of LiVPO4F are not ignorable, and vacancy defects with a lower activation energy for Li atom are far more likely to occur than Frenkel defects for Li and vacancy defects for other atoms. For pristine LiVPO4F, path D along [0.012 0 . 17 ̅ 0.572] direction is found to have the lowest activation energy of 0.418 eV, suggesting that anisotropic nature of Li ion conduction and LiVPO4F is a one-dimensional (1D)-ion conductor. The corresponding diffusion coefficient was estimated to be 2.82×10-9 cm2/s, which is in good agreement with those experimental values.

  3. Complex Interaction Mechanisms between Dislocations and Point Defects Studied in Pure Aluminium by a Two-Wave Acoustic Coupling Technique

    NASA Astrophysics Data System (ADS)

    Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.

    1997-04-01

    Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.

  4. Study of Te Inclusion and Related Point Defects in THM-Growth CdMnTe Crystal

    NASA Astrophysics Data System (ADS)

    Mao, Yifei; Zhang, Jijun; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Ling, Liwen; Li, Ming; Zhang, Ying; Wang, Linjun

    2018-02-01

    This study establishes a model for describing the interaction between Te inclusions, dislocations and point defects in CdMnTe crystals. The role of the complex environment surrounding the formation of Te inclusions was analyzed. Images of Te inclusions captured by scanning electron microscope and infrared microscope were used to observe the morphology of Te inclusions. The morphology of Te inclusions is discussed in light of crystallography, from the crystal growth temperature at 900°C to the melting temperature of Te inclusions using the traveling heater method. The dislocation nets around Te inclusions were calculated by counting lattice mismatches between the Te inclusions and the bulk CdMnTe at 470°C. The point defects of Te antisites were found to be gathered around Te inclusions, with dislocation climb during the cooling phase of crystal growth from 470°C to room temperature. The Te inclusions, dislocation nets and surrounding point defects are considered to be an entirety for evaluating the effect of Te inclusions on CdMnTe detector performance, and an effective mobility-lifetime product (μτ) was obtained.

  5. Point Defects and Grain Boundaries in Rotationally Commensurate MoS 2 on Epitaxial Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaolong; Balla, Itamar; Bergeron, Hadallia

    2016-03-28

    With reduced degrees of freedom, structural defects are expected to play a greater role in two-dimensional materials in comparison to their bulk counterparts. In particular, mechanical strength, electronic properties, and chemical reactivity are strongly affected by crystal imperfections in the atomically thin limit. Here, ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) and spectroscopy (STS) are employed to interrogate point and line defects in monolayer MoS2 grown on epitaxial graphene (EG) at the atomic scale. Five types of point defects are observed with the majority species showing apparent structures that are consistent with vacancy and interstitial models. The total defect densitymore » is observed to be lower than MoS2 grown on other substrates and is likely attributed to the van der Waals epitaxy of MoS2 on EG. Grain boundaries (GBs) with 30° and 60° tilt angles resulting from the rotational commensurability of MoS2 on EG are more easily resolved by STM than atomic force microscopy at similar scales due to the enhanced contrast from their distinct electronic states. For example, band gap reduction to ~0.8 and ~0.5 eV is observed with STS for 30° and 60° GBs, respectively. In addition, atomic resolution STM images of these GBs are found to agree well with proposed structure models. This work offers quantitative insight into the structure and properties of common defects in MoS2 and suggests pathways for tailoring the performance of MoS2/graphene heterostructures via defect engineering.« less

  6. Defect states of complexes involving a vacancy on the boron site in boronitrene

    NASA Astrophysics Data System (ADS)

    Ngwenya, T. B.; Ukpong, A. M.; Chetty, N.

    2011-12-01

    First principles calculations have been performed to investigate the ground state properties of freestanding monolayer hexagonal boronitrene (h-BN). We have considered monolayers that contain native point defects and their complexes, which form when the point defects bind with the boron vacancy on the nearest-neighbor position. The changes in the electronic structure are analyzed to show the extent of localization of the defect-induced midgap states. The variations in formation energies suggest that defective h-BN monolayers that contain carbon substitutional impurities are the most stable structures, irrespective of the changes in growth conditions. The high energies of formation of the boron vacancy complexes suggest that they are less stable, and their creation by ion bombardment would require high-energy ions compared to point defects. Using the relative positions of the derived midgap levels for the double vacancy complex, it is shown that the quasi-donor-acceptor pair interpretation of optical transitions is consistent with stimulated transitions between electron and hole states in boronitrene.

  7. Asymptotic One-Point Functions in Gauge-String Duality with Defects.

    PubMed

    Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias

    2017-12-29

    We take the first step in extending the integrability approach to one-point functions in AdS/dCFT to higher loop orders. More precisely, we argue that the formula encoding all tree-level one-point functions of SU(2) operators in the defect version of N=4 supersymmetric Yang-Mills theory, dual to the D5-D3 probe-brane system with flux, has a natural asymptotic generalization to higher loop orders. The asymptotic formula correctly encodes the information about the one-loop correction to the one-point functions of nonprotected operators once dressed by a simple flux-dependent factor, as we demonstrate by an explicit computation involving a novel object denoted as an amputated matrix product state. Furthermore, when applied to the Berenstein-Maldacena-Nastase vacuum state, the asymptotic formula gives a result for the one-point function which in a certain double-scaling limit agrees with that obtained in the dual string theory up to wrapping order.

  8. Effect of point defects on the amorphization of metallic alloys during ion implantation. [NiTi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedraza, D.F.; Mansur, L.K.

    1985-01-01

    A theoretical model of radiation-induced amorphization of ordered intermetallic compounds is developed. The mechanism is proposed to be the buildup of lattice defects to very high concentrations, which destabilizes the crystalline structure. Because simple point defects do not normally reach such levels during irradiation, a new defect complex containing a vacancy and an interstitial is hypothesized. Crucial properties of the complex are that the interstitial sees a local chemical environment similar to that of an atom in the ordered lattice, that the formation of the complex prevents mutual recombination and that the complex is immobile. The evolution of a disordermore » based on complexes is not accompanied by like point defect aggregation. The latter leads to the development of a sink microstructure in alloys that do not become amorphous. For electron irradiation, the complexes form by diffusional encounters. For ion irradiation, complexes are also formed directly in cascades. The possibility of direct amorphization in cascades is also included. Calculations for the compound NiTi show reasonable agreement with measured amorphization kinetics.« less

  9. Anomalous Kinetics of Diffusion-Controlled Defect Annealing in Irradiated Ionic Solids.

    PubMed

    Kotomin, Eugene; Kuzovkov, Vladimir; Popov, Anatoli I; Maier, Joachim; Vila, Rafael

    2018-01-11

    The annealing kinetics of the primary electronic F-type color centers (oxygen vacancies with trapped one or two electrons) is analyzed for three ionic materials (Al 2 O 3 , MgO, and MgF 2 ) exposed to intensive irradiation by electrons, neutrons, and heavy swift ions. Phenomenological theory of diffusion-controlled recombination of the F-type centers with much more mobile interstitial ions (complementary hole centers) allows us to extract from experimental data the migration energy of interstitials and pre-exponential factor of diffusion. The obtained migration energies are compared with available first-principles calculations. It is demonstrated that with the increase of radiation fluence both the migration energy and pre-exponent are decreasing in all three materials, irrespective of the type of irradiation. Their correlation satisfies the Meyer-Neldel rule observed earlier in glasses, liquids, and disordered materials.The origin of this effect is discussed. This study demonstrates that in the quantitative analysis of the radiation damage of real materials the dependence of the defect migration parameters on the radiation fluence plays an important role and cannot be neglected.

  10. Enhanced thermoelectric performance of In2O3-based ceramics via Nanostructuring and Point Defect Engineering

    PubMed Central

    Lan, Jin-Le; Liu, Yaochun; Lin, Yuan-Hua; Nan, Ce-Wen; Cai, Qing; Yang, Xiaoping

    2015-01-01

    The issue of how to improve the thermoelectric figure of merit (ZT) in oxide semiconductors has been challenging for more than 20 years. In this work, we report an effective path to substantial reduction in thermal conductivity and increment in carrier concentration, and thus a remarkable enhancement in the ZT value is achieved. The ZT value of In2O3 system was enhanced 4-fold by nanostructuing (nano-grains and nano-inclusions) and point defect engineering. The introduction of point defects in In2O3 results in a glass-like thermal conductivity. The lattice thermal conductivity could be reduced by 60%, and extraordinary low lattice thermal conductivity (1.2 W m−1 K−1 @ 973 K) below the amorphous limit was achieved. Our work paves a path for enhancing the ZT in oxides by both the nanosturcturing and the point defect engineering for better phonon-glasses and electron-crystal (PGEC) materials. PMID:25586762

  11. A molecular dynamics simulation study of irradiation induced defects in gold nanowire

    NASA Astrophysics Data System (ADS)

    Liu, Wenqiang; Chen, Piheng; Qiu, Ruizhi; Khan, Maaz; Liu, Jie; Hou, Mingdong; Duan, Jinglai

    2017-08-01

    Displacement cascade in gold nanowires was studied using molecular dynamics computer simulations. Primary knock-on atoms (PKAs) with different kinetic energies were initiated either at the surface or at the center of the nanowires. We found three kinds of defects that were induced by the cascade, including point defects, stacking faults and crater at the surface. The starting points of PKAs influence the number of residual point defects, and this consequently affect the boundary of anti-radiation window which was proposed by calculation of diffusion of point defects to the free surface of nanowires. Formation of stacking faults that expanded the whole cross-section of gold nanowires was observed when the PKA's kinetic energy was higher than 5 keV. Increasing the PKA's kinetic energy up to more than 10 keV may lead to the formation of crater at the surface of nanowires due to microexplosion of hot atoms. At this energy, PKAs started from the center of nanowires can also result in the creation of crater because length of cascade region is comparable to diameter of nanowires. Both the two factors, namely initial positions of PKAs as well as the craters induced by higher energy irradiation, would influence the ability of radiation resistance of metal nanowires.

  12. Experimental investigation on the microscopic structure of intrinsic paramagnetic point defects in amorphous silicon dioxide

    NASA Astrophysics Data System (ADS)

    Buscarino, G.

    2007-11-01

    In the present Ph.D. Thesis we report an experimental investigation on the effects of gamma- and beta-ray irradiation and of subsequent thermal treatment on many types of a-SiO2 materials, differing in the production methods, OH- and Al-content, and oxygen deficiencies. Our main objective is to gain further insight on the microscopic structures of the E'_gamma, E'_delta, E'_alpha and triplet paramagnetic centers, which are among the most important and studied class of radiation induced intrinsic point defects in a-SiO2. To pursue this objective, we use prevalently the EPR spectroscopy. In particular, our work is focused on the properties of the unpaired electrons wave functions involved in the defects, and this aspect is mainly investigated through the study of the EPR signals originating from the interaction of the unpaired electrons with 29Si magnetic nuclei (with nuclear spin I=1/2 and natural abundance 4.7 %). In addition, in some cases of interest, OA measurements are also performed with the aim to further characterize the electronic properties of the defects. Furthermore, due to its relevance for electronics application, the charge state of the defects is investigated by looking at the processes responsible for the generation of the defects of interest. Once these information were gained, the possible sites that can serve as precursors for defects formation are deduced, with the definitive purpose to obtain in the future more radiation resistant a-SiO2 materials in which the deleterious effects connected with the point defects are significantly reduced.

  13. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu; Groh, S.

    2014-08-14

    In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examinemore » the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in

  14. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy.

    PubMed

    Johnson, Jared M; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo

    2017-01-01

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga 2 O 3 and SrTiO 3 , we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra "ripples" at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20-40mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Suppression of radiation-induced point defects by rhenium and osmium interstitials in tungsten

    PubMed Central

    Suzudo, Tomoaki; Hasegawa, Akira

    2016-01-01

    Modeling the evolution of radiation-induced defects is important for finding radiation-resistant materials, which would be greatly appreciated in nuclear applications. We apply the density functional theory combined with comprehensive analyses of massive experimental database to indicate a mechanism to mitigate the effect of radiation on W crystals by adding particular solute elements that change the migration property of interstitials. The resultant mechanism is applicable to any body-centered-cubic (BCC) metals whose self-interstitial atoms become a stable crowdion and is expected to provide a general guideline for computational design of radiation-resistant alloys in the field of nuclear applications. PMID:27824134

  16. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys.

    PubMed

    Lu, Chenyang; Jin, Ke; Béland, Laurent K; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M; Stoller, Roger E; Wang, Lumin

    2016-02-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.

  17. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    PubMed Central

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; Wang, Lumin

    2016-01-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance. PMID:26829570

  18. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; Jin, Ke; Yang, Taini; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Shi, Shi; He, Mo-Rigen; Robertson, Ian M.; Weber, William J.; Wang, Lumin

    2016-12-01

    A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. The results suggest design criteria for next generation radiation tolerant structural alloys.

  19. Atomistic investigation on the detachment of oil molecules from defective alumina surface

    NASA Astrophysics Data System (ADS)

    Xie, W. K.; Sun, Y. Z.; Liu, H. T.

    2017-12-01

    The mechanism of oil detachment from defective alumina surface in aqueous solution was investigated via atomistic molecular dynamics (MD) simulations. Special attention was focused on the effect of surface defect on the oil detachment. Our simulation results suggest that compared with perfect Al2O3 surface, defective substrate surface provides much more sites for the adsorption of oil molecules, thus it has higher oil adsorption energy. However, higher oil-solid adsorption energy does not mean that oil contaminants are much more difficult to be detached. It is found that surface defect could induce the spontaneous imbibition of water molecules, effectively promoting the detachment of oil molecules. Thus, compared with perfect alumina surface, the detachment of oil molecules from defective alumina surface tends to be much easier. Moreover, surface defect could lead to the oil residues inside surface defect. In water solution, the entire detachment process of oil molecules on defective surface consists of following stages, including the early detachment of oil molecules inside surface defect induced by capillary-driven spontaneous imbibition of water molecules, the following conformational change of oil molecules on topmost surface and the final migration of detached oil molecules from solid surface. These findings may help to sufficiently enrich the removal mechanism of oil molecules adhered onto defective solid surface.

  20. Influence of point defects on the near edge structure of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  1. Holographic Chern-Simons defects

    DOE PAGES

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; ...

    2016-06-28

    Here, we study SU(N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of themore » defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.« less

  2. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  3. First-principles study of point defects at a semicoherent interface

    DOE PAGES

    Metsanurk, E.; Tamm, A.; Caro, A.; ...

    2014-12-19

    Most of the atomistic modeling of semicoherent metal-metal interfaces has so far been based on the use of semiempirical interatomic potentials. Here, we show that key conclusions drawn from previous studies are in contradiction with more precise ab-initio calculations. In particular we find that single point defects do not delocalize, but remain compact near the interfacial plane in Cu-Nb multilayers. Lastly, we give a simple qualitative explanation for this difference on the basis of the well known limited transferability of empirical potentials.

  4. New interatomic potentials of W, Re and W-Re alloy for radiation defects

    NASA Astrophysics Data System (ADS)

    Chen, Yangchun; Li, Yu-Hao; Gao, Ning; Zhou, Hong-Bo; Hu, Wangyu; Lu, Guang-Hong; Gao, Fei; Deng, Huiqiu

    2018-04-01

    Tungsten (W) and W-based alloys have been considered as promising candidates for plasma-facing materials (PFMs) in future fusion reactors. The formation of rhenium (Re)-rich clusters and intermetallic phases due to high energy neutron irradiation and transmutations significantly induces the hardening and embrittlement of W. In order to better understand these phenomena, in the present work, new interatomic potentials of W-W, Re-Re and W-Re, suitable for description of radiation defects in such alloys, have been developed. The fitted potentials not only reproduce the results of the formation energy, binding energy and migration energy of various radiation defects and the physical properties from the extended database obtained from DFT calculations, but also predict well the relative stability of different interstitial dislocation loops in W, as reported in experiments. These potentials are applicable for describing the evolution of defects in W and W-Re alloys, thus providing a possibility for the detailed understanding of the precipitation mechanism of Re in W under irradiation.

  5. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys

    DOE PAGES

    Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; ...

    2016-12-15

    A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhancedmore » swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. Finally, the results suggest design criteria for next generation radiation tolerant structural alloys.« less

  6. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.

    2018-01-01

    Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.

  7. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    DOE PAGES

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; ...

    2016-02-01

    We report that energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters farmore » exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.« less

  8. The influence of point defects on the thermal conductivity of AlN crystals

    NASA Astrophysics Data System (ADS)

    Rounds, Robert; Sarkar, Biplab; Alden, Dorian; Guo, Qiang; Klump, Andrew; Hartmann, Carsten; Nagashima, Toru; Kirste, Ronny; Franke, Alexander; Bickermann, Matthias; Kumagai, Yoshinao; Sitar, Zlatko; Collazo, Ramón

    2018-05-01

    The average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30-325 K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268 W/m K and 339 W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298 W/m K and 341 W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100 K. Phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.

  9. Nonequivalent lanthanide defects: Energy level modeling

    NASA Astrophysics Data System (ADS)

    Joos, Jonas J.; Poelman, Dirk; Smet, Philippe F.

    2016-11-01

    Empirical charge-state transition level schemes are popular tools to model the properties of lanthanide-doped materials and their construction has become standard practice. Typically, it is implicitly assumed that all lanthanide ions form isostructural defects. However, in practice, multiple nonequivalent defects related to the same lanthanide can occur or different lanthanides can even incorporate in different ways. The consequences of these complications on the impurity energy levels are discussed in this article. It seems that small structural differences around the lanthanide dopant can give rise to important spectral differences in its emission. These are not always clearly reproduced by the charge-state transition level schemes. Improvements to the existing procedure are suggested and applied to the lanthanide ions in the well-studied host crystals SrAl2O4, Sr2Si5N8 and SrGa2S4.

  10. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    NASA Astrophysics Data System (ADS)

    Crocombette, Jean-Paul; Van Brutzel, Laurent; Simeone, David; Luneville, Laurence

    2016-06-01

    Displacement cascades have been calculated in two ordered alloys (Ni3Al and UO2) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  11. Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration

    PubMed Central

    Sato, Ayako; Kajiya, Hiroshi; Mori, Nana; Sato, Hironobu; Fukushima, Tadao; Kido, Hirofumi

    2017-01-01

    The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration. PMID:28060874

  12. Three point-advancement closure for skin defects.

    PubMed

    Tamir, G; Birkby, C S; Berg, D

    1999-10-01

    Circular skin defects are common following Mohs' surgery. Traditional closure (primary, flap, or graft) may involve extensive surgery. Multidirectional advancement closures such as the purse-string closure have been advocated as another useful tool in such cases. To describe a variation on purse-string closure that, in certain cases, is an excellent alternative to other reconstructions, and will provide good cosmetic and functional outcome. A three-point anchoring suture is placed after undermining to advance the surrounding tissue toward the centre, creating a "Mercedes Benz" or tripod closure following removal of "dog-ears." Circular wounds in designated areas can be more easily closed, creating well-tolerated, favourable scars. Large wounds may be closed with the advantage of avoidance of larger flaps, of decreased wound healing compared to second intention, and of minimizing removal of healthy tissue. An initial trial of closure with this method does not limit subsequent use of other repairs should it be less than satisfactory.

  13. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    NASA Astrophysics Data System (ADS)

    Ivády, Viktor; Szász, Krisztián; Falk, Abram L.; Klimov, Paul V.; Christle, David J.; Janzén, Erik; Abrikosov, Igor A.; Awschalom, David D.; Gali, Adam

    2015-09-01

    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.

  14. A Heuristic Placement Selection of Live Virtual Machine Migration for Energy-Saving in Cloud Computing Environment

    PubMed Central

    Zhao, Jia; Hu, Liang; Ding, Yan; Xu, Gaochao; Hu, Ming

    2014-01-01

    The field of live VM (virtual machine) migration has been a hotspot problem in green cloud computing. Live VM migration problem is divided into two research aspects: live VM migration mechanism and live VM migration policy. In the meanwhile, with the development of energy-aware computing, we have focused on the VM placement selection of live migration, namely live VM migration policy for energy saving. In this paper, a novel heuristic approach PS-ES is presented. Its main idea includes two parts. One is that it combines the PSO (particle swarm optimization) idea with the SA (simulated annealing) idea to achieve an improved PSO-based approach with the better global search's ability. The other one is that it uses the Probability Theory and Mathematical Statistics and once again utilizes the SA idea to deal with the data obtained from the improved PSO-based process to get the final solution. And thus the whole approach achieves a long-term optimization for energy saving as it has considered not only the optimization of the current problem scenario but also that of the future problem. The experimental results demonstrate that PS-ES evidently reduces the total incremental energy consumption and better protects the performance of VM running and migrating compared with randomly migrating and optimally migrating. As a result, the proposed PS-ES approach has capabilities to make the result of live VM migration events more high-effective and valuable. PMID:25251339

  15. A heuristic placement selection of live virtual machine migration for energy-saving in cloud computing environment.

    PubMed

    Zhao, Jia; Hu, Liang; Ding, Yan; Xu, Gaochao; Hu, Ming

    2014-01-01

    The field of live VM (virtual machine) migration has been a hotspot problem in green cloud computing. Live VM migration problem is divided into two research aspects: live VM migration mechanism and live VM migration policy. In the meanwhile, with the development of energy-aware computing, we have focused on the VM placement selection of live migration, namely live VM migration policy for energy saving. In this paper, a novel heuristic approach PS-ES is presented. Its main idea includes two parts. One is that it combines the PSO (particle swarm optimization) idea with the SA (simulated annealing) idea to achieve an improved PSO-based approach with the better global search's ability. The other one is that it uses the Probability Theory and Mathematical Statistics and once again utilizes the SA idea to deal with the data obtained from the improved PSO-based process to get the final solution. And thus the whole approach achieves a long-term optimization for energy saving as it has considered not only the optimization of the current problem scenario but also that of the future problem. The experimental results demonstrate that PS-ES evidently reduces the total incremental energy consumption and better protects the performance of VM running and migrating compared with randomly migrating and optimally migrating. As a result, the proposed PS-ES approach has capabilities to make the result of live VM migration events more high-effective and valuable.

  16. Vacancy-type defects in TiO2/SiO2/SiC dielectric stacks

    NASA Astrophysics Data System (ADS)

    Coleman, P. G.; Burrows, C. P.; Mahapatra, R.; Wright, N. G.

    2007-07-01

    Open-volume (vacancy-type) point defects have been observed in ˜80-nm-thick titanium dioxide films grown on silicon dioxide/4H silicon carbide substrates as stacks with high dielectric constant for power device applications, using variable-energy positron annihilation spectroscopy. The concentration of vacancies decreases as the titanium dioxide growth temperature is increased in the range from 700to1000°C, whereas grain boundaries form in the polycrystalline material at the highest growth temperatures. It is proposed that the optimal electrical performance for films grown at 800°C reflects a balance between decreasing vacancy concentration and increasing grain boundary formation. The concentration of vacancies at the silicon dioxide/silicon carbide interface appears to saturate after 2.5h oxidation at 1150°C. A supplementary result suggests that the quality of the 10-μm-thick deposited silicon carbide epilayer is compromised at depths of about 2μm and beyond, possibly by the migration of impurities and/or other defects from the standard-grade highly doped 4H silicon carbide wafer beneath the epilayer during oxidation.

  17. Intrinsic point-defect balance in self-ion-implanted ZnO.

    PubMed

    Neuvonen, Pekka T; Vines, Lasse; Svensson, Bengt G; Kuznetsov, Andrej Yu

    2013-01-04

    The role of excess intrinsic atoms for residual point defect balance has been discriminated by implanting Zn or O ions into Li-containing ZnO and monitoring Li redistribution and electrical resistivity after postimplant anneals. Strongly Li-depleted regions were detected in the Zn-implanted samples at depths beyond the projected range (R(p)) upon annealing ≥ 600 °C, correlating with a resistivity decrease. In contrast, similar anneals of the O-implanted samples resulted in Li accumulation at R(p) and an increased resistivity. Control samples implanted with Ar or Ne ions, yielding similar defect production as for the Zn or O implants but with no surplus of intrinsic atoms, revealed no Li depletion. Thus, the depletion of Li shows evidence of excess Zn interstitials (Zn(I)) being released during annealing of the Zn-implanted samples. These Zn(I)'s convert substitutional Li atoms (Li(Zn)) into highly mobile interstitial ones leading to the strongly Li-depleted regions. In the O-implanted samples, the high resistivity provides evidence of stable O(I)-related acceptors.

  18. Defect kinetics and resistance to amorphization in zirconium carbide

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2015-02-01

    To better understand the radiation response of zirconium carbide (ZrC), and in particular its excellent resistance to amorphization, we have used density functional theory methods to study the kinetics of point defects in ZrC. The migration barriers and recombination barriers of the simple point defects are calculated using the ab initio molecular dynamics simulation and the nudged elastic band method. These barriers are used to estimate C and Zr interstitial and vacancy diffusion and Frenkel pair recombination rates. A significant barrier for C Frenkel pair recombination is found but it is shown that a large concentration of C vacancies reduces this barrier dramatically, allowing facile healing of radiation damage. The mechanisms underlying high resistance to amorphization of ZrC were analyzed from the perspectives of structural, thermodynamic, chemical and kinetic properties. This study provides insights into the amorphization resistance of ZrC as well as a foundation for understanding general radiation damage in this material.

  19. Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH 3 NH 3 PbI 3

    DOE PAGES

    Ming, Wenmei; Chen, Shiyou; East China Normal Univ.; ...

    2016-10-13

    Methylammonium (MA) lead triiodide (MAPbI 3) has recently emerged as a promising solar cell material. But, MAPbI3 is known to have chemical instability, i.e., MAPbI3 is prone to decomposition into MAI and PbI 2 even at moderate temperatures (e.g. 330 K). Here, we show that the chemical instability, as reflected by the calculated negligible enthalpy of formation of MAPbI 3 (with respect to MAI and PbI 2), has an unusual and important consequence for defect properties, i.e., defect formation energies in low-carrier-density MAPbI 3 are nearly independent of the chemical potentials of constituent elements and thus can be uniquely determined. This allows straightforward calculations of defect concentrations and the activation energy of ionic conductivity (the sum of the formation energy and the diffusion barrier of the charged mobile defect) in MAPbI 3. Furthermore, the calculated activation energy for ionic conductivity due to Vmore » $$+\\atop{1}$$ diffusion is in excellent agreement with the experimental values, which demonstrates unambiguously that V$$+\\atop{1}$$ is the dominant diffusing defect and is responsible for the observed ion migration and device polarization in MAPbI3 solar cells. The calculated low formation energy of a Frenkel pair (V$$+\\atop{1}$$ -I$$-\\atop{i}$$ and low diffusion barriers of V$$+\\atop{1}$$ and Image I$$-\\atop{i}$$ suggest that the iodine ion migration and the resulting device polarization may occur even in single-crystal devices and grain-boundary-passivated polycrystalline thin film devices (which were previously suggested to be free from ion-migration-induced device polarization), leading to device degradation. Moreover, the device polarization due to the Frenkel pair (which has a relatively low concentration) may take a long time to develop and thus may avoid the appearance of the current–voltage hysteresis at typical scan rates.« less

  20. Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (~780 × Ed, where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect atmore » a transition energy which occurs at approximately 250 × Ed. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (~0.5 Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <100> {110} SIA loops are observed to form directly in the highest energy cascades, while vacancy <100> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <100> type is relatively rare.« less

  1. Response to the DIAC Discussion Paper: "Review of the General Skilled Migration Points Test". Go8 Position Paper

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2010

    2010-01-01

    The Group of Eight (Go8) applauds the government's intention to comprehensively reform the skilled migration program, and it welcomes the opportunity to submit this response to the General Skilled Migration (GSM) Points Test Discussion Paper. The Go8 has argued for some time that it is inappropriate to link international education to the skilled…

  2. [Forensic medical evaluation of stab-incised wounds caused by knives with point defects].

    PubMed

    Krupin, K N; Leonov, S V

    2011-01-01

    The present experimental study allowed to characterize specific signs of stab-incised wounds caused by knives with operational point defects. Diagnostic coefficients calculated for these macro- and microscopic features facilitate differential diagnostics of the injuries and make it possible to identify a concrete stabbing/cutting weapon with which the wound was inflicted..

  3. FIRST-PRINCIPLES CALCULATIONS OF INTRINSIC DEFECTS AND Mg TRANSMUTANTS IN 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.

    2013-09-25

    Silicon carbide (SiC) possesses many desirable attributes for applications in high-temperature and neutron radiation environments. These attributes include excellent dimensional and thermodynamic stability, low activation, high strength, and high thermal conductivity. Therefore, SiC based materials draw broad attention as structural materials for the first wall (FW) and blanket in fusion power plants. Under the severe high-energy neutron environment of D-T fusion systems, SiC suffers significant transmutation resulting in both gaseous and metallic transmutants. Recent calculations by Sawan, et al. [2] predict that at a fast neutron dose of ~100 dpa, there will be about 0.5 at% Mg generated in SiCmore » through nuclear transmutation. Other transmutation products, including 0.15 at% Al, 0.2 at% Be and 2.2 at% He, also emerge. Formation and migration energies of point defects in 3C-SiC have been widely investigated using density functional theory (DFT). However, the properties of defects associated with transmutants are currently not well understood. Fundamental understanding of where the transmutation products go and how they affect microstructure evolution of SiC composites will help to predict property evolution and performance of SiC-based materials in fusion reactors.« less

  4. Kinetics of self-interstitial migration in bcc and fcc transition metals

    NASA Astrophysics Data System (ADS)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  5. CDYL Deficiency Disrupts Neuronal Migration and Increases Susceptibility to Epilepsy.

    PubMed

    Qin, Rui; Cao, Shuai; Lyu, Tianjie; Qi, Cai; Zhang, Weiguang; Wang, Yun

    2017-01-10

    During brain development, the correct migration of newborn neurons is one of the determinants of circuit formation, and neuronal migration defects may lead to neurological and psychiatric disorders. The molecular mechanisms underlying neuronal migration and related disorders are poorly understood. Here, we report that Chromodomain Y-like (CDYL) is critical for neuronal migration in mice. Knocking down CDYL caused neuronal migration defects and disrupted both mobility and multipolar-to-bipolar transition of migrating neurons. We find that CDYL regulates neuronal migration by transcriptionally repressing RhoA. In addition, CDYL deficiency increased the excitability of cortical pyramidal neurons and the susceptibility of mice to convulsant-induced seizures. These results demonstrate that CDYL is a regulator of neuronal migration and shed light on the pathogenesis of seizure-related neurodevelopmental disorders. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Equilibrium defects and solute site preferences in intermetallics: I. thermodynamics

    NASA Astrophysics Data System (ADS)

    Collins, Gary S.; Zacate, Matthew O.

    2001-03-01

    A model was developed to describe equilibrium defects and site preferences of dilute solute atoms in compounds having the CsCl and Ni_2Al3 structures. Equilibrium defects considered were combinations of elementary point defects that preserve the composition. Equilibria among possible defect combinations were combined with appropriate equations of constraint to obtain defect concentrations as a function of temperature and possible deviation from the stoichiometric composition. As an application, site-energies of defects and solutes in AB and A_2B_3) systems were estimated using Miedema's empirical model, with A=(Ni, Pd, Pt) and B= (Al, Ga, In). Dominant equilibrium defects in the respective systems were found to be the "triple defect" (2V_A+ A_B) and "octal defect" (5V_A+ 3A_B). Site preferences were found to depend on concentrations of intrinsic defects as well as on site-energy differences, and results reveal how preferences generally depend on temperature and composition. Consider solute S which, based on site energies, prefers to replace atom B. It is found that S always occupies B-sites in B-deficient alloys. In B-rich alloys, however, S may or may not occupy B-sites, depending on site-energy differences and the formation energies of equilibrium defects. For a solute that prefers to replace atom A, analogous results are obtained but with A replacing B in the three preceding sentences. This work was supported in part by the NSF under grant DMR 96-12306.

  7. Evaluation of energy expenditure in adult spring Chinook salmon migrating upstream in the Columbia River Basin: an assessment based on sequential proximate analysis

    USGS Publications Warehouse

    Mesa, M.G.; Magie, C.D.

    2006-01-01

    The upstream migration of adult anadromous salmonids in the Columbia River Basin (CRB) has been dramatically altered and fish may be experiencing energetically costly delays at dams. To explore this notion, we estimated the energetic costs of migration and reproduction of Yakima River-bound spring Chinook salmon Oncorhynchus tshawytscha using a sequential analysis of their proximate composition (i.e., percent water, fat, protein, and ash). Tissues (muscle, viscera, and gonad) were sampled from fish near the start of their migration (Bonneville Dam), at a mid point (Roza Dam, 510 km upstream from Bonneville Dam) and from fresh carcasses on the spawning grounds (about 100 km above Roza Dam). At Bonneville Dam, the energy reserves of these fish were remarkably high, primarily due to the high percentage of fat in the muscle (18-20%; energy content over 11 kJ g-1). The median travel time for fish from Bonneville to Roza Dam was 27 d and ranged from 18 to 42 d. Fish lost from 6 to 17% of their energy density in muscle, depending on travel time. On average, fish taking a relatively long time for migration between dams used from 5 to 8% more energy from the muscle than faster fish. From the time they passed Bonneville Dam to death, these fish, depending on gender, used 95-99% of their muscle and 73-86% of their viscera lipid stores. Also, both sexes used about 32% of their muscular and very little of their visceral protein stores. However, we were unable to relate energy use and reproductive success to migration history. Our results suggest a possible influence of the CRB hydroelectric system on adult salmonid energetics.

  8. Displacement cascades and defect annealing in tungsten, Part III: The sensitivity of cascade annealing in tungsten to the values of kinetic parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2015-07-01

    Object kinetic Monte Carlo (OKMC) simulations have been performed to investigate various aspects of cascade aging in bulk tungsten and to determine the sensitivity of the results to the kinetic parameters. The primary focus is on how the kinetic parameters affect the initial recombination of defects in the first few ns of a simulation. The simulations were carried out using the object kinetic Monte Carlo (OKMC) code KSOME (kinetic simulations of microstructure evolution), using a database of cascades obtained from results of molecular dynamics (MD) simulations at various primary knock-on atom (PKA) energies and directions at temperatures of 300, 1025more » and 2050 K. The OKMC model was parameterized using defect migration barriers and binding energies from ab initio calculations. Results indicate that, due to the disparate mobilities of SIA and vacancy clusters in tungsten, annealing is dominated by SIA migration even at temperatures as high as 2050 K. For 100 keV cascades initiated at 300 K recombination is dominated by annihilation of large defect clusters. But for all other PKA energies and temperatures most of the recombination is due to the migration and rotation of small SIA clusters, while all the large SIA clusters escape the cubic simulation cell. The inverse U-shape behavior exhibited by the annealing efficiency as a function of temperature curve, especially for cascades of large PKA energies, is due to asymmetry in SIA and vacancy clustering assisted by the large difference in mobilities of SIAs and vacancies. This annealing behavior is unaffected by the dimensionality of SIA migration persists over a broad range of relative mobilities of SIAs and vacancies.« less

  9. Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids

    NASA Astrophysics Data System (ADS)

    Cheng, Bingqing; Ceriotti, Michele

    2018-02-01

    The Gibbs free energy is the fundamental thermodynamic potential underlying the relative stability of different states of matter under constant-pressure conditions. However, computing this quantity from atomic-scale simulations is far from trivial, so the potential energy of a system is often used as a proxy. In this paper, we use a combination of thermodynamic integration methods to accurately evaluate the Gibbs free energies associated with defects in crystals, including the vacancy formation energy in bcc iron, and the stacking fault energy in fcc nickel, iron, and cobalt. We quantify the importance of entropic and anharmonic effects in determining the free energies of defects at high temperatures, and show that the potential energy approximation as well as the harmonic approximation may produce inaccurate or even qualitatively wrong results. Our calculations manifest the necessity to employ accurate free energy methods such as thermodynamic integration to estimate the stability of crystallographic defects at high temperatures.

  10. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Modine, Normand; Wright, Alan; Lee, Stephen

    2015-03-01

    Carrier recombination due to defects can have a major impact on device performance. The rate of defect-induced recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry worked out the fundamental theory of carrier-capture by multiphonon emission in the 1970s and showed that, above the Debye temperature, carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for the -3/-2 level of the Ga vacancy in wurtzite GaN. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Modine, N. A.; Wright, A. F.; Lee, S. R.

    The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Interface effects on calculated defect levels for oxide defects

    NASA Astrophysics Data System (ADS)

    Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew

    2014-03-01

    Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.

  13. Videofluoroscopy Instrument to Identify the Tibiofemoral Contact Point Migration for Anterior Cruciate Ligament Reconstruction Follow-up: CINARTRO

    NASA Astrophysics Data System (ADS)

    Simini, F.; Santos, D.; Francescoli, L.

    2016-04-01

    We measure the Tibiofemoral contact point migration to offer clinicians a tool to evaluate Anterior Cruciate Ligament reconstruction. The design of the tool includes a C arm with fluoroscopy, image acquisition and processing system, interactive software and report generation for the clinical record. The procedure samples 30 images from the videofluoroscopy describing 2 seconds movements of hanging-to-full-extension of the knee articulation. A geometrical routine implemented in the original equipment (CINARTRO) helps capture tibial plateau and femoral condile profile by interaction with the user. The tightness or looseness of the knee is expressed by the migration given in terms of movement of the femur along the tibial plateau, as a percentage. We automatically create clinical reports in standard Clinical Document Architecture or CDA format. A special phantom was developed to correct the “pin cushion effect” in Rx images. Five cases of broken ACL patients were measured giving meaningful results for clinical follow up. Tibiofemoral contact point migration was measured as 60% of the tibial plateau, with standard deviation of 6% for healthy knees, 4% when injured and 1% after reconstruction.

  14. Consistency of mist netting and point counts in assessing landbird species richness and relative abundance during migration

    Treesearch

    Yong Wang; Deborah M. Finch

    2002-01-01

    We compared consistency of species richness and relative abundance data collected concurrently using mist netting and point counts during migration in riparian habitats along the middle Rio Grande of central New Mexico. Mist netting detected 74% and point counts detected 82% of the 197 species encountered during the study. Species that mist netting failed to capture...

  15. Defect stability in thorium monocarbide: An ab initio study

    NASA Astrophysics Data System (ADS)

    Wang, Chang-Ying; Han, Han; Shao, Kuan; Cheng, Cheng; Huai, Ping

    2015-09-01

    The elastic properties and point defects of thorium monocarbide (ThC) have been studied by means of density functional theory based on the projector-augmented-wave method. The calculated electronic and elastic properties of ThC are in good agreement with experimental data and previous theoretical results. Five types of point defects have been considered in our study, including the vacancy defect, interstitial defect, antisite defect, schottky defect, and composition-conserving defect. Among these defects, the carbon vacancy defect has the lowest formation energy of 0.29 eV. The second most stable defect (0.49 eV) is one of composition-conserving defects in which one carbon is removed to another carbon site forming a C2 dimer. In addition, we also discuss several kinds of carbon interstitial defects, and predict that the carbon trimer configuration may be a transition state for a carbon dimer diffusion in ThC. Project supported by the International S&T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant No. 91326105), the National Basic Research Program of China (Grant No. 2010CB934504), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).

  16. Fast diffusion of native defects and impurities in perovskite solar cell material CH 3NH 3PbI 3

    DOE PAGES

    Yang, Dongwen; Ming, Wenmei; Shi, Hongliang; ...

    2016-06-01

    CH 3NH 3PbI 3-based solar cells have shown remarkable progress in recent years but have also suffered from structural, electrical, and chemical instabilities related to the soft lattices and the chemistry of these halides. One of the instabilities is ion migration, which may cause current–voltage hysteresis in CH 3NH 3PbI 3 solar cells. Significant ion diffusion and ionic conductivity in CH 3NH 3PbI 3 have been reported; their nature, however, remain controversial. In the literature, the use of different experimental techniques leads to the observation of different diffusing ions (either iodine or CH 3NH 3 ion); the calculated diffusion barriersmore » for native defects scatter in a wide range; the calculated defect formation energies also differ qualitatively. These controversies hinder the understanding and the control of the ion migration in CH 3NH 3PbI 3. In this paper, we show density functional theory calculations of both the diffusion barriers and the formation energies for native defects (V I +, MA i +, V MA –, and I i –) and the Au impurity in CH 3NH 3PbI 3. V I + is found to be the dominant diffusing defect due to its low formation energy and the low diffusion barrier. I i – and MA i + also have low diffusion barriers but their formation energies are relatively high. The hopping rate of V I + is further calculated taking into account the contribution of the vibrational entropy, confirming V I + as a fast diffuser. We discuss approaches for managing defect population and migration and suggest that chemically modifying surfaces, interfaces, and grain boundaries may be effective in controlling the population of the iodine vacancy and the device polarization. We further show that the formation energy and the diffusion barrier of Au interstitial in CH 3NH 3PbI 3 are both low. As a result, it is thus possible that Au can diffuse into CH3NH3PbI3 under bias in devices (e.g., solar cell, photodetector) with Au/CH 3NH 3PbI 3 interfaces and modify the

  17. Fast diffusion of native defects and impurities in perovskite solar cell material CH 3NH 3PbI 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dongwen; Ming, Wenmei; Shi, Hongliang

    CH 3NH 3PbI 3-based solar cells have shown remarkable progress in recent years but have also suffered from structural, electrical, and chemical instabilities related to the soft lattices and the chemistry of these halides. One of the instabilities is ion migration, which may cause current–voltage hysteresis in CH 3NH 3PbI 3 solar cells. Significant ion diffusion and ionic conductivity in CH 3NH 3PbI 3 have been reported; their nature, however, remain controversial. In the literature, the use of different experimental techniques leads to the observation of different diffusing ions (either iodine or CH 3NH 3 ion); the calculated diffusion barriersmore » for native defects scatter in a wide range; the calculated defect formation energies also differ qualitatively. These controversies hinder the understanding and the control of the ion migration in CH 3NH 3PbI 3. In this paper, we show density functional theory calculations of both the diffusion barriers and the formation energies for native defects (V I +, MA i +, V MA –, and I i –) and the Au impurity in CH 3NH 3PbI 3. V I + is found to be the dominant diffusing defect due to its low formation energy and the low diffusion barrier. I i – and MA i + also have low diffusion barriers but their formation energies are relatively high. The hopping rate of V I + is further calculated taking into account the contribution of the vibrational entropy, confirming V I + as a fast diffuser. We discuss approaches for managing defect population and migration and suggest that chemically modifying surfaces, interfaces, and grain boundaries may be effective in controlling the population of the iodine vacancy and the device polarization. We further show that the formation energy and the diffusion barrier of Au interstitial in CH 3NH 3PbI 3 are both low. As a result, it is thus possible that Au can diffuse into CH3NH3PbI3 under bias in devices (e.g., solar cell, photodetector) with Au/CH 3NH 3PbI 3 interfaces and modify the

  18. Generation and characterization of point defects in SrTiO3 and Y3Al5O12

    NASA Astrophysics Data System (ADS)

    Selim, F. A.; Winarski, D.; Varney, C. R.; Tarun, M. C.; Ji, Jianfeng; McCluskey, M. D.

    Positron annihilation lifetime spectroscopy (PALS) was applied to characterize point defects in single crystals of Y3Al5O12 and SrTiO3 after populating different types of defects by relevant thermal treatments. In SrTiO3, PALS measurements identified Sr vacancy, Ti vacancy, vacancy complexes of Ti-O (vacancy) and hydrogen complex defects. In Y3Al5O12 single crystals the measurements showed the presence of Al-vacancy, (Al-O) vacancy and Al-vacancy passivated by hydrogen. These defects are shown to play the major role in defining the electronic and optical properties of these complex oxides.

  19. Nanoscale charge distribution and energy band modification in defect-patterned graphene.

    PubMed

    Wang, Shengnan; Wang, Rui; Wang, Xiaowei; Zhang, Dongdong; Qiu, Xiaohui

    2012-04-21

    Defects were introduced precisely to exfoliated graphene (G) sheets on a SiO(2)/n(+) Si substrate to modulate the local energy band structure and the electron pathway using solution-phase oxidation followed by thermal reduction. The resulting nanoscale charge distribution and band gap modification were investigated by electrostatic force microscopy and spectroscopy. A transition phase with coexisting submicron-sized metallic and insulating regions in the moderately oxidized monolayer graphene were visualized and measured directly. It was determined that the delocalization of electrons/holes in a graphene "island" is confined by the surrounding defective C-O matrix, which acts as an energy barrier for mobile charge carriers. In contrast to the irreversible structural variations caused by the oxidation process, the electrical properties of graphene can be restored by annealing. The defect-patterned graphene and graphene oxide heterojunctions were further characterized by electrical transport measurement.

  20. Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling

    PubMed Central

    Norris, Megan L; Pauli, Andrea; Gagnon, James A; Lord, Nathan D; Rogers, Katherine W; Mosimann, Christian; Zon, Leonard I

    2017-01-01

    Toddler/Apela/Elabela is a conserved secreted peptide that regulates mesendoderm development during zebrafish gastrulation. Two non-exclusive models have been proposed to explain Toddler function. The ‘specification model’ postulates that Toddler signaling enhances Nodal signaling to properly specify endoderm, whereas the ‘migration model’ posits that Toddler signaling regulates mesendodermal cell migration downstream of Nodal signaling. Here, we test key predictions of both models. We find that in toddler mutants Nodal signaling is initially normal and increasing endoderm specification does not rescue mesendodermal cell migration. Mesodermal cell migration defects in toddler mutants result from a decrease in animal pole-directed migration and are independent of endoderm. Conversely, endodermal cell migration defects are dependent on a Cxcr4a-regulated tether of the endoderm to mesoderm. These results suggest that Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling and indirectly affects endodermal cell migration via Cxcr4a-signaling. PMID:29117894

  1. Point Defect Identification and Management for Sub-300 nm Light Emitting Diodes and Laser Diodes Grown on Bulk AlN Substrates

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary A.

    The identification and role of point defects in AlN thin films and bulk crystals are studied. High-resolution photoluminescence studies on doped and undoped c-plane and mplane homoepitaxial films reveal several sharp donor-bound exciton (DBX) peaks with a full width at half maximum (FWHM) as narrow as 500 microeV. Power dependent photoluminescence distinguish DBXs tied to the Gamma5 free exciton (FX) from those tied to the Gamma 1 FX. The DBX transitions at 6.012 and 6.006 eV are identified as originating from the neutral-donor-silicon (Si0X) and neutral-donor-oxygen (O0X) respectively. With multiple DBXs and their respective two electron satellite peaks identified, a Haynes Rule plot is developed for the first time for AlN. While high quality AlN homoepitaxy is achievable by metalorganic chemical vapor deposition (MOCVD) growth, current commercially available AlN wafers are typically hindered by the presence of a broad below bandgap optical absorption band centered at 4.7 eV ( 265 nm) with an absorption coefficient of well over 1000 cm-1. Through density functional theory calculations, it is determined that substitutional carbon on the nitrogen site causes this absorption. Further studies reveal a donor-acceptor pair (DAP) recombination between substitutional carbon on the nitrogen site and a nitrogen vacancy with an emission energy of 2.8 eV. Lastly, co-doping bulk AlN with Si or O is explored and found to suppress the unwanted 4.7 eV absorption band. A novel Fermi level control scheme for point defect management during MOCVD growth in III-nitride materials by above bandgap illumination is proposed and implemented for Mg-doped GaN and Si-doped AlGaN materials as a proof of concept. The point defect control scheme uses photo-generated minority charge carriers to control the electro-chemical potential of the system and increase the formation energies of electrically charged compensating point defects. The result is a lower incorporation of compensating point

  2. Phonon-defect scattering and thermal transport in semiconductors: developing guiding principles

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos; Lindsay, Lucas

    First principles calculations of thermal conductivity have shown remarkable agreement with measurements for high-quality crystals. Nevertheless, most materials contain defects that provide significant extrinsic resistance and lower the conductivity from that of a perfect sample. This effect is usually accounted for with simplified analytical models that neglect the atomistic details of the defect and the exact dynamical properties of the system, which limits prediction capabilities. Recently, a method based on Greens functions was developed to calculate the phonon-defect scattering rates from first principles. This method has shown the important role of point defects in determining thermal transport in diamond and boron arsenide, two competitors for the highest bulk thermal conductivity. Here, we study the role of point defects on other relatively high thermal conductivity semiconductors, e.g., BN, BeSe, SiC, GaN and Si. We compare their first principles defect-phonon scattering rates and effects on transport properties with those from simplified models and explore common principles that determine these. Efforts will focus on basic vibrational properties that vary from system to system, such as density of states, interatomic force constants and defect deformation. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  3. The influence of migration speed on cooperation in spatial games

    NASA Astrophysics Data System (ADS)

    Li, Wen-Jing; Jiang, Luo-Luo; Gu, Changgui; Yang, Huijie

    2017-12-01

    Migration is a common phenomenon in human society which provides a person an opportunity to search for a new life from one area to another. In the framework of game theory, people may migrate to escape from a current adverse environment (evading defection). Since people may migrate at different speeds, it is interesting to figure out the influence of migration speed on the evolution of cooperative behavior. In an attempt to discover the influence, we propose here a model based on an adaptive migration mechanism. In this model, an individual migrates or updates his/her strategy asynchronously, which is tuned by migration frequency. Firstly, it is found that an appropriate migration speed may evoke an effective mechanism, which enables cooperators dominate even in highly adverse conditions. Secondly, we check how migration speed alters the paradigm of cooperation quantitatively in the conditions of different migration frequency. When migration frequency is high, cooperation is promoted only at a small migration speed. However, when migration frequency is low, cooperation is always promoted at any migration speed. In addition, we also investigated the influence of temptation to defect on cooperation for the case of different migration speeds and migration frequencies. Our results may provide a fresh perspective on the understanding of how human behavior affects cooperation.

  4. Use of Isobestic and Isoemission Points in Absorption and Luminescence Spectra for Study of the Transformation of Radiation Defects in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Stupak, A. P.; Runets, L. P.

    2015-03-01

    Isobestic and isoemission points are recorded in the combined absorption and luminescence spectra of two types of radiation defects involved in complex processes consisting of several simultaneous parallel and sequential reactions. These points are observed if a constant sum of two terms, each formed by the product of the concentration of the corresponding defect and a characteristic integral coefficient associated with it, is conserved. The complicated processes involved in the transformation of radiation defects in lithium fluoride are studied using these points. It is found that the ratio of the changes in the concentrations of one of the components and the reaction product remains constant in the course of several simultaneous reactions.

  5. Influences of point defects on electrical and optical properties of InGaN light-emitting diodes at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Tu, Yi; Ruan, Yujiao; Zhu, Lihong; Tu, Qingzhen; Wang, Hongwei; Chen, Jie; Lu, Yijun; Gao, Yulin; Shih, Tien-Mo; Chen, Zhong; Lin, Yue

    2018-04-01

    We investigate the cryogenic external quantum efficiency (EQE) for some InGaN light-emitting diodes with different indium contents. We observe a monotonic decrease in EQE with the increasing forward current before the "U-turn" point, beyond which the thermal effect increases the EQE. We discover positive dependences among the droop rate (χ), differential electrical resistance (Rd), and indium content. Also, χ and Rd of individual green samples shift correspondingly during the aging test, when the Mg ions are activated at high injection density and diffuse into the active region. Considering the fact that both In and Mg ions would introduce point defects (PDs), we proposed a model that reveals the mechanism of interplay between PDs and carriers. PDs serve as both energy traps and non-radiative recombination centers. They attract and confine carriers, leading to an increase in Rd and a decrease in EQE.

  6. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects.

    PubMed

    Padilha, A C M; Raebiger, H; Rocha, A R; Dalpian, G M

    2016-07-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n-1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n-1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors.

  7. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    PubMed Central

    Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.

    2015-01-01

    A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943

  8. Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids.

    PubMed

    Azzaro, Michael S; Dodin, Amro; Zhang, Diana Y; Willard, Adam P; Roberts, Sean T

    2018-05-09

    Researchers have long sought to use surface ligands to enhance energy migration in nanocrystal solids by decreasing the physical separation between nanocrystals and strengthening their electronic coupling. Exciton-delocalizing ligands, which possess frontier molecular orbitals that strongly mix with nanocrystal band-edge states, are well-suited for this role because they can facilitate carrier-wave function extension beyond the nanocrystal core, reducing barriers for energy transfer. This report details the use of the exciton-delocalizing ligand phenyldithiocarbamate (PDTC) to tune the transport rate and diffusion length of excitons in CdSe nanocrystal solids. A film composed of oleate-terminated CdSe nanocrystals is subjected to a solid-state ligand exchange to replace oleate with PDTC. Exciton migration in the films is subsequently investigated by femtosecond transient absorption. Our experiments indicate that the treatment of nanocrystal films with PDTC leads to rapid (∼400 fs) downhill energy migration (∼80 meV), while no such migration occurs in oleate-capped films. Kinetic Monte Carlo simulations allow us to extract both rates and length scales for exciton diffusion in PDTC-treated films. These simulations reproduce dynamics observed in transient absorption measurements over a range of temperatures and confirm excitons hop via a Miller-Abrahams mechanism. Importantly, our experiments and simulations show PDTC treatment increases the exciton hopping rate to 200 fs, an improvement of 5 orders of magnitude relative to oleate-capped films. This exciton hopping rate stands as one of the fastest determined for CdSe solids. The facile, room-temperature processing and improved transport properties offered by the solid-state exchange of exciton-delocalizing ligands show they offer promise for the construction of strongly coupled nanocrystal arrays.

  9. Energy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levels.

    PubMed

    Huang, Bolong; Sun, Mingzi

    2017-04-05

    An energy conversion model has been established for the intrinsic persistent luminescence in solids related to the native point defect levels, formations, and transitions. In this study, we showed how the recombination of charge carriers between different defect levels along the zero phonon line (ZPL) can lead to energy conversions supporting the intrinsic persistent phosphorescence in solids. This suggests that the key driving force for this optical phenomenon is the pair of electrons hopping between different charged defects with negative-U eff . Such a negative correlation energy will provide a sustainable energy source for electron-holes to further recombine in a new cycle with a specific quantum yield. This will help us to understand the intrinsic persistent luminescence with respect to native point defect levels as well as the correlations of electronics and energetics.

  10. Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium

    NASA Astrophysics Data System (ADS)

    Zhu, G. H.; Lee, H.; Lan, Y. C.; Wang, X. W.; Joshi, G.; Wang, D. Z.; Yang, J.; Vashaee, D.; Guilbert, H.; Pillitteri, A.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F.

    2009-05-01

    The mechanism for phonon scattering by nanostructures and by point defects in nanostructured silicon (Si) and the silicon germanium (Ge) alloy and their thermoelectric properties are investigated. We found that the thermal conductivity is reduced by a factor of 10 in nanostructured Si in comparison with bulk crystalline Si. However, nanosize interfaces are not as effective as point defects in scattering phonons with wavelengths shorter than 1 nm. We further found that a 5at.% Ge replacing Si is very efficient in scattering phonons shorter than 1 nm, resulting in a further thermal conductivity reduction by a factor of 2, thereby leading to a thermoelectric figure of merit 0.95 for Si95Ge5, similar to that of large grained Si80Ge20 alloys.

  11. A Theoretical Simulation of the Radiation Responses of Si, Ge, and Si/Ge Superlattice to Low-Energy Irradiation.

    PubMed

    Jiang, Ming; Xiao, Haiyan; Peng, Shuming; Yang, Guixia; Liu, Zijiang; Qiao, Liang; Zu, Xiaotao

    2018-05-02

    In this study, the low-energy radiation responses of Si, Ge, and Si/Ge superlattice are investigated by an ab initio molecular dynamics method and the origins of their different radiation behaviors are explored. It is found that the radiation resistance of the Ge atoms that are around the interface of Si/Ge superlattice is comparable to bulk Ge, whereas the Si atoms around the interface are more difficult to be displaced than the bulk Si, showing enhanced radiation tolerance as compared with the bulk Si. The mechanisms for defect generation in the bulk and superlattice structures show somewhat different character, and the associated defects in the superlattice are more complex. Defect formation and migration calculations show that in the superlattice structure, the point defects are more difficult to form and the vacancies are less mobile. The enhanced radiation tolerance of the Si/Ge superlattice will benefit for its applications as electronic and optoelectronic devices under radiation environment.

  12. A Theoretical Simulation of the Radiation Responses of Si, Ge, and Si/Ge Superlattice to Low-Energy Irradiation

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Xiao, Haiyan; Peng, Shuming; Yang, Guixia; Liu, Zijiang; Qiao, Liang; Zu, Xiaotao

    2018-05-01

    In this study, the low-energy radiation responses of Si, Ge, and Si/Ge superlattice are investigated by an ab initio molecular dynamics method and the origins of their different radiation behaviors are explored. It is found that the radiation resistance of the Ge atoms that are around the interface of Si/Ge superlattice is comparable to bulk Ge, whereas the Si atoms around the interface are more difficult to be displaced than the bulk Si, showing enhanced radiation tolerance as compared with the bulk Si. The mechanisms for defect generation in the bulk and superlattice structures show somewhat different character, and the associated defects in the superlattice are more complex. Defect formation and migration calculations show that in the superlattice structure, the point defects are more difficult to form and the vacancies are less mobile. The enhanced radiation tolerance of the Si/Ge superlattice will benefit for its applications as electronic and optoelectronic devices under radiation environment.

  13. Slow relaxation of cascade-induced defects in Fe

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-02-17

    On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less

  14. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    DOE PAGES

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.; ...

    2017-11-06

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here in this paper, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we domore » not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. In conclusion, we have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.« less

  15. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here in this paper, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we domore » not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. In conclusion, we have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.« less

  16. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    NASA Astrophysics Data System (ADS)

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.; Baxamusa, Salmaan H.; Lepró, Xavier; Ehrmann, Paul

    2017-11-01

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we do not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. We have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.

  17. Point defects in the 1 T' and 2 H phases of single-layer MoS2: A comparative first-principles study

    NASA Astrophysics Data System (ADS)

    Pizzochero, Michele; Yazyev, Oleg V.

    2017-12-01

    The metastable 1 T' phase of layered transition metal dichalcogenides has recently attracted considerable interest due to electronic properties, possible topological phases, and catalytic activity. We report a comprehensive theoretical investigation of intrinsic point defects in the 1 T' crystalline phase of single-layer molybdenum disulfide (1 T'-MoS2 ) and provide comparison to the well-studied semiconducting 2 H phase. Based on density functional theory calculations, we explore a large number of configurations of vacancy, adatom, and antisite defects and analyze their atomic structure, thermodynamic stability, and electronic and magnetic properties. The emerging picture suggests that, under thermodynamic equilibrium, 1 T'-MoS2 is more prone to hosting lattice imperfections than the 2 H phase. More specifically, our findings reveal that the S atoms that are closer to the Mo atomic plane are the most reactive sites. Similarly to the 2 H phase, S vacancies and adatoms in 1 T'-MoS2 are very likely to occur while Mo adatoms and antisites induce local magnetic moments. Contrary to the 2 H phase, Mo vacancies in 1 T'-MoS2 are expected to be an abundant defect due to the structural relaxation that plays a major role in lowering the defect formation energy. Overall, our study predicts that the realization of high-quality flakes of 1 T'-MoS2 should be carried out under very careful laboratory conditions but at the same time the facile defects introduction can be exploited to tailor physical and chemical properties of this polymorph.

  18. Formation and Migration Energies of Interstitials in Silicon Under Strain Conditions

    NASA Technical Reports Server (NTRS)

    Halicioglu, Timur; Barnett, David M.

    1999-01-01

    Simulation calculations are conducted for Si substrates to analyze formation and diffusion energies of interstitials under strain condition using statics methods .based on a Stillinger-Weber type potential function. Defects in the vicinity of the surface region and in the bulk are examined, and the role played by compressive and tensile strains on the energetics of interstitials is investigated. Results indicate that strain alters defect energetics which, in turn, modifies their diffusion characteristics.

  19. First-principles study of uranium carbide: Accommodation of point defects and of helium, xenon, and oxygen impurities

    NASA Astrophysics Data System (ADS)

    Freyss, Michel

    2010-01-01

    Point defects and volatile impurities (helium, xenon, oxygen) in uranium monocarbide UC are studied by first-principles calculations. Preliminarily, bulk properties of UC and of two other uranium carbide phases, UC2 and U2C3 , are calculated in order to compare them to experimental data and to get confidence in the use of the generalized gradient approximation for this class of compounds. The subsequent study of different types of point defects shows that the carbon sublattice best accommodates the defects. The perturbation of the crystal structure induced by the defects is weak and the interaction between defects is found short range. Interstitial carbon dumbbells possibly play an important role in the diffusion of carbon atoms. The most favorable location of diluted helium, xenon, and oxygen impurities in the UC crystal lattice is then determined. The rare-gas atoms occupy preferably a uranium substitution site or a uranium site in a U-C bivacancy. But their incorporation in UC is, however, not energetically favorable, especially for xenon, suggesting their propensity to diffuse in the material and/or form bubbles. On the other hand, oxygen atoms are very favorably incorporated as diluted atoms in the UC lattice, confirming the easy oxidation of UC. The oxygen atoms preferably occupy a carbon substitution site or the carbon site of a U-C bivacancy. Our results are compared to available experimental data on UC and to similar studies by first-principles calculations for other carbides and nitrides with the rock-salt structure.

  20. Monocyte function in infectious mononucleosis: evidence for a reversible cellular defect.

    PubMed

    Britton, S

    1976-10-01

    Migration of blood monocytes from patients with acute infectious mononucleosis and from normal controls was measured against chemotactic factors in serum. Moncytes from patients with acute infectious mononucleosis showed decreased migration as compared with that of control monocytes. However, serum from patients with infectious mononucleosis contained normal or above normal amounts of chemotaxins for monocytes. The migratory defect of monocytes from patients with infectious mononucleosis was reversible within three months after the onset of diesease. The cause of this monocyte migration defect in infectious mononucleosis is though to be an in vivo blockade of receptors on monocytes for chemotaxins, and it is speculated that this defect can partially explain the explain the ablated delayed-hypersensitivity skin reactions in this disease.

  1. Periodic surface structure bifurcation induced by ultrafast laser generated point defect diffusion in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abere, Michael J.; Yalisove, Steven M.; Torralva, Ben

    2016-04-11

    The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350–400 nm tall and ∼90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.

  2. Time versus energy minimization migration strategy varies with body size and season in long-distance migratory shorebirds.

    PubMed

    Zhao, Meijuan; Christie, Maureen; Coleman, Jonathan; Hassell, Chris; Gosbell, Ken; Lisovski, Simeon; Minton, Clive; Klaassen, Marcel

    2017-01-01

    Migrants have been hypothesised to use different migration strategies between seasons: a time-minimization strategy during their pre-breeding migration towards the breeding grounds and an energy-minimization strategy during their post-breeding migration towards the wintering grounds. Besides season, we propose body size as a key factor in shaping migratory behaviour. Specifically, given that body size is expected to correlate negatively with maximum migration speed and that large birds tend to use more time to complete their annual life-history events (such as moult, breeding and migration), we hypothesise that large-sized species are time stressed all year round. Consequently, large birds are not only likely to adopt a time-minimization strategy during pre-breeding migration, but also during post-breeding migration, to guarantee a timely arrival at both the non-breeding (i.e. wintering) and breeding grounds. We tested this idea using individual tracks across six long-distance migratory shorebird species (family Scolopacidae) along the East Asian-Australasian Flyway varying in size from 50 g to 750 g lean body mass. Migration performance was compared between pre- and post-breeding migration using four quantifiable migratory behaviours that serve to distinguish between a time- and energy-minimization strategy, including migration speed, number of staging sites, total migration distance and step length from one site to the next. During pre- and post-breeding migration, the shorebirds generally covered similar distances, but they tended to migrate faster, used fewer staging sites, and tended to use longer step lengths during pre-breeding migration. These seasonal differences are consistent with the prediction that a time-minimization strategy is used during pre-breeding migration, whereas an energy-minimization strategy is used during post-breeding migration. However, there was also a tendency for the seasonal difference in migration speed to progressively disappear

  3. Iodine isothermal migration behaviour in titanium nitride

    NASA Astrophysics Data System (ADS)

    Gavarini, S.; Jaffrezic, H.; Martin, P.; Peaucelle, C.; Toulhoat, N.; Cardinal, S.; Moncoffre, N.; Pichon, C.; Tribet, M.

    2008-02-01

    Titanium nitride is one of the inert matrixes proposed to surround the fuel in gas cooled fast reactor (GFR) systems. These reactors will operate at high temperature and refractory materials with a high chemical stability and good mechanical properties are required. Furthermore, a total retention of the most volatile fission products, such as I, Xe or Cs, by the inert matrix is needed during the in-pile process. The isothermal migration of iodine in TiN was studied by implanting 800 keV I ++ ions in sintered samples at an ion fluence of 5 × 10 15 cm -2. Thermal treatments were performed under secondary vacuum at temperatures ranging from 1200 to 1700 °C. Iodine concentration profiles were determined by 2.5 MeV α-particle elastic backscattering. The migration of iodine seems to be correlated with point defects created by implanted ions near the surface. The Arrhenius plot corresponding to iodine detrapping is curved with possibly two straight-line regions which could indicate either the presence of two types of traps, or a strong dependence of trap's concentration on temperature above 1500 °C. The activation energies associated with each linear region of the Arrhenius plot were found to be: Ea = 2.4 ± 0.2 eV below 1500 °C and E=11.4±0.2 eV above 1500 °C. Nitrogen evaporation from TiN surface under secondary vacuum was proposed as a contributing factor to the enhanced mobility of iodine at high temperature.

  4. Effect of time-of-flight and point spread function modeling on detectability of myocardial defects in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefferkoetter, Joshua, E-mail: dnrjds@nus.edu.sg; Ouyang, Jinsong; Rakvongthai, Yothin

    2014-06-15

    Purpose: A study was designed to investigate the impact of time-of-flight (TOF) and point spread function (PSF) modeling on the detectability of myocardial defects. Methods: Clinical FDG-PET data were used to generate populations of defect-present and defect-absent images. Defects were incorporated at three contrast levels, and images were reconstructed by ordered subset expectation maximization (OSEM) iterative methods including ordinary Poisson, alone and with PSF, TOF, and PSF+TOF. Channelized Hotelling observer signal-to-noise ratio (SNR) was the surrogate for human observer performance. Results: For three iterations, 12 subsets, and no postreconstruction smoothing, TOF improved overall defect detection SNR by 8.6% as comparedmore » to its non-TOF counterpart for all the defect contrasts. Due to the slow convergence of PSF reconstruction, PSF yielded 4.4% less SNR than non-PSF. For reconstruction parameters (iteration number and postreconstruction smoothing kernel size) optimizing observer SNR, PSF showed larger improvement for faint defects. The combination of TOF and PSF improved mean detection SNR as compared to non-TOF and non-PSF counterparts by 3.0% and 3.2%, respectively. Conclusions: For typical reconstruction protocol used in clinical practice, i.e., less than five iterations, TOF improved defect detectability. In contrast, PSF generally yielded less detectability. For large number of iterations, TOF+PSF yields the best observer performance.« less

  5. Effect of symmetrical and asymmetrical tilt grain boundaries on radiation-induced defects in zirconium

    NASA Astrophysics Data System (ADS)

    Singh, Divya; Parashar, Avinash

    2018-07-01

    In this article, molecular-dynamics-based simulations were used to study the effect of grain boundaries (GBs) on the formation and spatial distribution of radiation-induced point defects. In order to perform this study, two sets of symmetrical and asymmetrical tilt grain boundaries were constructed along [0 0 0 1] and [0   ‑1 1 0] as the tilt axis, respectively. Vacancy, interstitial and Frenkel pair formation energies were estimated as a function of the distance from the GB core for both symmetrical as well as asymmetrical tilt GBs. The trend obtained between GB energies and point defect formation energies helps explain the biased absorption of interstitials over vacancies in most cases, as well as the equal absorption of both kinds of point defects in a few of them. It has already been reported from the experimental work that [0 0 0 1] GB structures closely resemble the polycrystalline texture of hcp materials, which motivates us to study the effect of irradiation on these GBs.

  6. Defect quasi Fermi level control-based CN reduction in GaN: Evidence for the role of minority carriers

    NASA Astrophysics Data System (ADS)

    Reddy, Pramod; Kaess, Felix; Tweedie, James; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko

    2017-10-01

    Compensating point defect reduction in wide bandgap semiconductors is possible by above bandgap illumination based defect quasi Fermi level (dQFL) control. The point defect control technique employs excess minority carriers that influence the dQFL of the compensator, increase the corresponding defect formation energy, and consequently are responsible for point defect reduction. Previous studies on various defects in GaN and AlGaN have shown good agreement with the theoretical model, but no direct evidence for the role of minority carriers was provided. In this work, we provide direct evidence for the role of minority carriers in reducing point defects by studying the predicted increase in work done against defect (CN-1) formation with the decrease in the Fermi level (free carrier concentration) in Si doped GaN at a constant illumination intensity. Comparative defect photoluminescence measurements on illuminated and dark regions of GaN show an excellent quantitative agreement with the theory by exhibiting a greater reduction in yellow luminescence attributed to CN-1 at lower doping, thereby providing conclusive evidence for the role of the minority carriers in Fermi level control-based point defect reduction.

  7. Atomically resolved structural determination of graphene and its point defects via extrapolation assisted phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latychevskaia, Tatiana; Fink, Hans-Werner

    Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission functionmore » of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction.« less

  8. Theoretical characterisation of point defects on a MoS2 monolayer by scanning tunnelling microscopy.

    PubMed

    González, C; Biel, B; Dappe, Y J

    2016-03-11

    Different S and Mo vacancies as well as their corresponding antisite defects in a free-standing MoS2 monolayer are analysed by means of scanning tunnelling microscopy (STM) simulations. Our theoretical methodology, based on the Keldysh nonequilibrium Green function formalism within the density functional theory (DFT) approach, is applied to simulate STM images for different voltages and tip heights. Combining the geometrical and electronic effects, all features of the different STM images can be explained, providing a valuable guide for future experiments. Our results confirm previous reports on S atom imaging, but also reveal a strong dependence on the applied bias for vacancies and antisite defects that include extra S atoms. By contrast, when additional Mo atoms cover the S vacancies, the MoS2 gap vanishes and a bias-independent bright protrusion is obtained in the STM image. Finally, we show that the inclusion of these point defects promotes the emergence of reactive dangling bonds that may act as efficient adsorption sites for external adsorbates.

  9. Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development.

    PubMed

    Manthey, Abby L; Lachke, Salil A; FitzGerald, Paul G; Mason, Robert W; Scheiblin, David A; McDonald, John H; Duncan, Melinda K

    2014-02-01

    SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFβ signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development

    PubMed Central

    Manthey, Abby L.; Lachke, Salil A.; FitzGerald, Paul G.; Mason, Robert W.; Scheiblin, David A.; McDonald, John H.; Duncan, Melinda K.

    2014-01-01

    SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson Syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFβ signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts. PMID:24161570

  11. Topological defects from the multiverse

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  12. Topological defects from the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to bemore » quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.« less

  13. Topological defects from the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; Blanco-Pillado, Jose J.; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao

    2015-05-28

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to bemore » quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.« less

  14. Adsorption and Photodesorption of CO from Charged Point Defects on TiO 2 (110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Rentao; Dahal, Arjun; Wang, Zhi-Tao

    Adsorption and photodesorption of weakly-bound carbon monoxide, CO, from reduced and hydroxylated rutile TiO2(110) (r- and h- TiO2(110)) at sub-monolayer coverages is studied with atomically-resolved scanning tunneling microscopy (STM) along with ensemble-averaged temperature-programmed desorption (TPD) and angle-resolved photon-stimulated desorption (PSD) at low temperatures ( 50 K). STM data weighted by the concentration of each kind of adsorption sites on r-TiO2(110) give an adsorption probability which is the highest for the bridging oxygen vacancies (VO) and very low for the Ti5c sites closest to VO. Occupancy of the remaining Ti5c sites with CO is significant, but smaller than for VO. Themore » probability distribution for the different adsorption sites corresponds to a very small difference in CO adsorption energies: < 0.02 eV. We also find that UV irradiation stimulates both diffusion and desorption of CO at low temperature. CO photodesorbs primarily from the vacancies with a bi-modal angular distribution. In addition to a major, normal to the surface component, there is a broader cosine component indicating scattering from the surface which likely also leads to photo-stimulated diffusion. Hydroxylation of VO’s does not significantly change the CO PSD yield and angular distribution, indicating that not atomic but rather electronic surface defects are involved in the site-specific PSD process. We suggest that photodesorption can be initiated by recombination of photo-generated holes with excess unpaired electrons localized near the surface point-defect (either VO or bridging hydroxyl), leading to the surface atoms rearrangement and ejection of the weakly-bound CO molecules.« less

  15. Defects responsible for abnormal n-type conductivity in Ag-excess doped PbTe thermoelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Byungki, E-mail: byungkiryu@keri.re.kr; Lee, Jae Ki; Lee, Ji Eun

    Density functional calculations have been performed to investigate the role of Ag defects in PbTe thermoelectric materials. Ag-defects can be either donor, acceptor, or isovalent neutral defect. When Ag is heavily doped in PbTe, the neutral (Ag-Ag) dimer defect at Pb-site is formed and the environment changes to the Pb-rich/Te-poor condition. Under Pb-rich condition, the ionized Ag-interstitial defect (Ag{sub I}{sup +}) becomes the major donor. The formation energy of Ag{sub I}{sup +} is smaller than other native and Ag-related defects. Also it is found that Ag{sub I}{sup +} is an effective dopant. There is no additional impurity state near themore » band gap and the conduction band minimum. The charge state of Ag{sub I}{sup +} defect is maintained even when the Fermi level is located above the conduction band minimum. The diffusion constant of Ag{sub I}{sup +} is calculated based on the temperature dependent Fermi level, formation energy, and migration energy. When T > 550 K, the diffusion length of Ag within a few minutes is comparable to the grain size of the polycrystalline PbTe, implying that Ag is dissolved into PbTe and this donor defect is distributed over the whole lattice in Ag-excess doped polycrystalline PbTe. The predicted solubility of Ag{sub I}{sup +} well explains the increased electron carrier concentration and electrical conductivity reported in Ag-excess doped polycrystalline PbTe at T = 450–750 K [Pei et al., Adv. Energy Mater. 1, 291 (2011)]. In addition, we suggest that this abnormal doping behavior is also found for Au-doped PbTe.« less

  16. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  17. Point defect formation in optical materials expos ed to the space environment

    NASA Astrophysics Data System (ADS)

    Allen, J. L.; Seifert, N.; Yao, Y.; Albridge, R. G.; Barnes, A. V.; Tolk, N. H.; Strauss, A. M.; Linton, Roger C.; Kamenetzky, R. R.; Vaughn, Jason A.

    1995-02-01

    Point defect formation associated with early stages of optical damage was observed unexpectedly in two, and possibly three, different optical materials subjected to short-duration space exposure. Three calcium fluoride, two lithium fluoride, and three magnesium fluoride samples were flown on Space Shuttle flight STS-46 as part of the Evaluation of Oxygen Interactions with Materials - Third Phase experiment. One each of the calcium and magnesium fluoride samples was held at a fixed temperature of 60 C during the space exposure, while the temperatures of the other samples were allowed to vary with the ambient temperature of the shuttle cargo bay. Pre-flight and post-flight optical absorption measurements were performed on all of the samples. With the possible exception of the magnesium fluoride samples, every sample clearly showed the formation of F-centers in that section of the sample that was exposed to the low earth orbit environment. Solar vacuum ultraviolet radiation is the most probable primary cause of the defect formation; however, the resulting surface metallization may be synergistically altered by the atomic oxygen environment.

  18. Optical signatures of deep level defects in Ga2O3

    NASA Astrophysics Data System (ADS)

    Gao, Hantian; Muralidharan, Shreyas; Pronin, Nicholas; Karim, Md Rezaul; White, Susan M.; Asel, Thaddeus; Foster, Geoffrey; Krishnamoorthy, Sriram; Rajan, Siddharth; Cao, Lei R.; Higashiwaki, Masataka; von Wenckstern, Holger; Grundmann, Marius; Zhao, Hongping; Look, David C.; Brillson, Leonard J.

    2018-06-01

    We used depth-resolved cathodoluminescence spectroscopy and surface photovoltage spectroscopy to measure the effects of near-surface plasma processing and neutron irradiation on native point defects in β-Ga2O3. The near-surface sensitivity and depth resolution of these optical techniques enabled us to identify spectral changes associated with removing or creating these defects, leading to identification of one oxygen vacancy-related and two gallium vacancy-related energy levels in the β-Ga2O3 bandgap. The combined near-surface detection and processing of Ga2O3 suggests an avenue for identifying the physical nature and reducing the density of native point defects in this and other semiconductors.

  19. Subacute reconstruction of lower leg and foot defects due to high velocity-high energy injuries caused by gunshots, missiles, and land mines.

    PubMed

    Celiköz, Bahattin; Sengezer, Mustafa; Işik, Selçuk; Türegün, Murat; Deveci, Mustafa; Duman, Haluk; Acikel, Cengiz; Nişanci, Mustafa; Oztürk, Serdar

    2005-01-01

    The present study reviews 215 male patients suffering high velocity-high energy injuries of the lower leg or foot caused by war weapons such as missiles, gunshots, and land mines. They were treated in the Department of Plastic and Reconstructive Surgery at Gulhane Military Medical Academy (Ankara, Turkey) between November 1993-January 2001. Severe soft-tissue defects requiring flap coverage and associated open bone fractures that were treated 7-21 days (mean, 9.6 days) after the injury were included in the study. Twenty-three of 226 extremities (10.2%) underwent primary below-knee amputation. The number of debridements prior to definitive treatment was between 1-3 (mean, 1.9). Gustilo type III open tibia fractures accompanied 104 of 126 soft-tissue defects of the lower leg. Sixty-four bone defects accompanied 83 soft-tissue defects of the feet. Eighteen local pedicled muscle flaps and 208 free muscle flaps (latissimus dorsi, rectus abdominis, and gracilis) were used in soft-tissue coverage of 209 defects. Overall, the free muscle flap success rate was 91.3%. Bone defects were restored with 106 bone grafts, 25 free fibula flaps, and 14 distraction osteogenesis procedures. Osseous and soft-tissue defects were reconstructed simultaneously at the first definitive treatment in 94% of cases. The mean follow-up after definitive treatment was 25 (range, 9-47) months. The average full weight-bearing times for lower leg and feet injuries were 8.4 months and 4 months, respectively. Early, aggressive, and serial debridement of osseous and soft tissue, early restoration of bone and soft-tissue defects at the same stage, intensive rehabilitation, and patient education were the key points in the management of high velocity-high energy injuries of the lower leg and foot. copyright 2005 Wiley-Liss, Inc.

  20. Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS2 Films.

    PubMed

    Precner, M; Polaković, T; Qiao, Qiao; Trainer, D J; Putilov, A V; Di Giorgio, C; Cone, I; Zhu, Y; Xi, X X; Iavarone, M; Karapetrov, G

    2018-04-30

    We report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the work function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2 . Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2 -based integrated electronics and indicate the importance of defect control and layer passivation.

  1. Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS 2 Films

    DOE PAGES

    Precner, Marian; Polakovic, T.; Qiao, Qiao; ...

    2018-04-30

    Here, we report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the workmore » function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2. Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2-based integrated electronics and indicate the importance of defect control and layer passivation.« less

  2. Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS 2 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Precner, Marian; Polakovic, T.; Qiao, Qiao

    Here, we report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the workmore » function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2. Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2-based integrated electronics and indicate the importance of defect control and layer passivation.« less

  3. Native defects in Tl 6SI 4: Density functional calculations

    DOE PAGES

    Shi, Hongliang; Du, Mao -Hua

    2015-05-05

    In this study, Tl 6SI 4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl 6SI 4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl 6SI 4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl 6SI 4more » gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.« less

  4. Energetics and Defect Interactions of Complex Oxides for Energy Applications

    NASA Astrophysics Data System (ADS)

    Solomon, Jonathan Michael

    The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher

  5. Gamma-rays and heat-treatment conversions of point defects in massive rose quartz from the Borborema Pegmatite Province, Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Guzzo, Pedro L.; Barreto, Sandra B.; Miranda, Milena R.; Gonzaga, Raysa S. G.; Casals, Sandra A.

    2017-11-01

    An extensive characterization of trace elements and point defects in rose quartz from the Borborema Pegmatite Province (BPP) in the northeast of Brazil was carried out by complementary spectroscopic methods. The aim here was to document the change in the configuration of point defects into the quartz lattice induced by heat-treatment and ionizing radiation. The samples were extracted from the core of two granitic rare element (REL) pegmatites, Taboa (Carnaúba dos Dantas, RN) and Alto do Feio (Pedra Lavrada, PB). The contents of Al, P, Ti, Ni, Fe, Ge, Li, Be, B and K were measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Polished plates were heat-treated at 500 and 1000 °C and then irradiated with 50 kGy of γ rays. Point defects were characterized by optical (UV-Vis), infrared (IR), and electron paramagnetic resonance (EPR) spectroscopies. In the as-received condition, [AlO4/H]0 centers, Li- and B-dependent OH defects were observed. Point defects related to Al and Li species were significantly affected by heat-treatment at 1000 °C and/or γ radiation. Paramagnetic centers such as [AlO4]0, [GeO4/Li]0, [TiO4/Li]0 and [O2 3-/Li]0 were created by the diffusion of Li+ ions from their original diamagnetic centers related to substitutional Al3+ and OH-species. The smoky color developed after irradiation and the signal intensities of the paramagnetic centers were independent from the original rose color grade. The samples from the Taboa (TB) pegmatite showed the highest concentration of Al, Ti, Fe and Li elements as well as the highest signal intensities for [AlO4]0, [AlO4/H]0, [GeO4/Li]0 and [TiO4/Li]0 centers. Although TB also showed the higher concentration of B element, the intensity of the 3597 cm-1 IR band related to [BO4/H]0 centers was higher for Alto do Feio (AF) samples. This result suggests that the uptake of B into the quartz core of each pegmatite took place through different mechanisms. It was concluded that the change in

  6. Dynamic behaviour of nanometre-sized defect clusters emitted from an atomic displacement cascade in Au at 50 K

    NASA Astrophysics Data System (ADS)

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.

    2017-09-01

    We demonstrate the emission of nanometre-sized defect clusters from an isolated displacement cascade formed by irradiation of high-energy self-ions and their subsequent 1-D motion in Au at 50 K, using in situ electron microscopy. The small defect clusters emitted from a displacement cascade exhibited correlated back-and-forth 1-D motion along the [-1 1 0] direction and coalescence which results in their growth and reduction of their mobility. From the analysis of the random 1-D motion, the diffusivity of the small cluster was evaluated. Correlated 1-D motion and coalescence of clusters were understood via elastic interaction between small clusters. These results provide direct experimental evidence of the migration of small defect clusters and defect cascade evolution at low temperature.

  7. Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy

    NASA Astrophysics Data System (ADS)

    Sugimoto, Kazuko; Akamatsu, Ryo; Sugimoto, Tsuneyoshi; Utagawa, Noriyuki; Kuroda, Chitose; Katakura, Kageyoshi

    2015-07-01

    In recent years, the detachment of concrete from bridges or tunnels and the degradation of concrete structures have become serious social problems. The importance of inspection, repair, and updating is recognized in measures against degradation. We have so far studied the noncontact acoustic inspection method using airborne sound and the laser Doppler vibrometer. In this method, depending on the surface state (reflectance, dirt, etc.), the quantity of the light of the returning laser decreases and optical noise resulting from the leakage of light reception arises. Some influencing factors are the stability of the output of the laser Doppler vibrometer, the low reflective characteristic of the measurement surface, the diffused reflection characteristic, measurement distance, and laser irradiation angle. If defect detection depends only on the vibration energy ratio since the frequency characteristic of the optical noise resembles white noise, the detection of optical noise resulting from the leakage of light reception may indicate a defective part. Therefore, in this work, the combination of the vibrational energy ratio and spectrum entropy is used to judge whether a measured point is healthy or defective or an abnormal measurement point. An algorithm that enables more vivid detection of a defective part is proposed. When our technique was applied in an experiment with real concrete structures, the defective part could be extracted more vividly and the validity of our proposed algorithm was confirmed.

  8. Effect of vacancy defects on generalized stacking fault energy of fcc metals.

    PubMed

    Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A

    2014-03-19

    Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.

  9. Human migration in solar homes for seasonal comfort and energy conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.

    1987-01-01

    Every new and existing dwelling can benefit from spaces and migratory pathways that are responsive to and aligned with the natural energies of the building environment. Conceptual planning and architectural design attuned to these natural energies can increase comfort, energy conservation, and indoor and outdoor use of space. Of special importance is responsiveness to daily and seasonal microclimatic changes. The aim of this article is to provide themes and examples especially related to human migration patterns as determined by activity and response to climate.

  10. Off-stoichiometric defect clustering in irradiated oxides

    NASA Astrophysics Data System (ADS)

    Khalil, Sarah; Allen, Todd; EL-Azab, Anter

    2017-04-01

    A cluster dynamics model describing the formation of vacancy and interstitial clusters in irradiated oxides has been developed. The model, which tracks the composition of the oxide matrix and the defect clusters, was applied to the early stage formation of voids and dislocation loops in UO2, and the effects of irradiation temperature and dose rate on the evolution of their densities and composition was investigated. The results show that Frenkel defects dominate the nucleation process in irradiated UO2. The results also show that oxygen vacancies drive vacancy clustering while the migration energy of uranium vacancies is a rate-limiting factor for the nucleation and growth of voids. In a stoichiometric UO2 under irradiation, off-stoichiometric vacancy clusters exist with a higher concentration of hyper-stoichiometric clusters. Similarly, off-stoichiometric interstitial clusters form with a higher concentration of hyper-stoichiometric clusters. The UO2 matrix was found to be hyper-stoichiometric due to the accumulation of uranium vacancies.

  11. Kinetics of cluster-related defects in silicon sensors irradiated with monoenergetic electrons

    NASA Astrophysics Data System (ADS)

    Radu, R.; Pintilie, I.; Makarenko, L. F.; Fretwurst, E.; Lindstroem, G.

    2018-04-01

    This work focuses on the kinetic mechanisms responsible for the annealing behavior of radiation cluster-related defects with impact on the electrical performance of silicon sensors. Such sensors were manufactured on high resistivity n-type standard float-zone (STFZ) and oxygen enriched float-zone (DOFZ) material and had been irradiated with mono-energetic electrons of 3.5 MeV energy and fluences of 3 × 1014 cm-2 and 6 × 1014 cm-2. After irradiation, the samples were subjected either to isochronal or isothermal heat treatments in the temperature range from 80 °C to 300 °C. The specific investigated defects are a group of three deep acceptors [H(116 K), H(140 K), and H(152 K)] with energy levels in the lower half of the band gap and a shallow donor E(30 K) with a level at 0.1 eV below the conduction band. The stability and kinetics of these defects at high temperatures are discussed on the basis of the extracted activation energies and frequency factors. The annealing of the H defects takes place similarly in both types of materials, suggesting a migration rather than a dissociation mechanism. On the contrary, the E(30 K) defect shows a very different annealing behavior, being stable in STFZ even at 300 °C, but annealing-out quickly in DOFZ material at temperatures higher than 200 °C , with a high frequency factor of the order of 1013 s-1. Such a behavior rules out a dissociation process, and the different annealing behavior is suggested to be related to a bistable behavior of the defect.

  12. Point Defect Structure of Cr203

    DTIC Science & Technology

    1987-10-01

    Calculation of Electron Hole Mobility ........................ 104 6.2.3 Construction of the Defect Concentration vs. Oxygen Pressure Diagram...1000’ to 16000C ............ 123 7.7 Calculated diffusion coefficient vs. oxygen partial pressure diagram for pure Cr203 at 1100 0 C...127 7.10 Calculated parabolic rate constant vs. oxygen partial pressure diagram for pure Cr203 at

  13. Defect processes in Be12X (X = Ti, Mo, V, W)

    NASA Astrophysics Data System (ADS)

    Jackson, M. L.; Burr, P. A.; Grimes, R. W.

    2017-08-01

    The stability of intrinsic point defects in Be12X intermetallics (where X  =  Ti, V, Mo or W) are predicted using density functional theory simulations and discussed with respect to fusion energy applications. Schottky disorder is found to be the lowest energy complete disorder process, closely matched by Be Frenkel disorder in the cases of Be12V and Be12Ti. Antitisite and X Frenkel disorder are of significantly higher energy. Small clusters of point defects including Be divacancies, Be di-interstitials and accommodation of the X species on two Be sites were considered. Some di-interstitial, divacancy and X2Be combinations exhibit negative binding enthalpy (i.e. clustering is favourable), although this is orientationally dependent. None of the Be12X intermetallics are predicted to exhibit significant non-stoichiometry, ruling out non-stoichiometry as a mechanism for accommodating Be depletion due to neutron transmutation.

  14. O₂migration rates in [NiFe] hydrogenases. A joint approach combining free-energy calculations and kinetic modeling.

    PubMed

    Topin, Jérémie; Diharce, Julien; Fiorucci, Sébastien; Antonczak, Serge; Golebiowski, Jérôme

    2014-01-23

    Hydrogenases are promising candidates for the catalytic production of green energy by means of biological ways. The major impediment to such a production is rooted in their inhibition under aerobic conditions. In this work, we model dioxygen migration rates in mutants of a hydrogenase of Desulfovibrio fructusovorans. The approach relies on the calculation of the whole potential of mean force for O2 migration within the wild-type as well as in V74M, V74F, and V74Q mutant channels. The three free-energy barriers along the entire migration pathway are converted into chemical rates through modeling based on Transition State Theory. The use of such a model recovers the trend of O2 migration rates among the series.

  15. Hybrid Defect Phase Transition: Renormalization Group and Monte Carlo Analysis

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Diep, H. T.

    2010-03-01

    For the q-state Potts model with 2 < q <= 4 on the square lattice with a defect line, the order parameter on the defect line jumps discontinuously from zero to a nonzero value while the defect energy varies continuously with the temperature at the critical temperature. Monte-Carlo simulations (H. T. Diep, M. Kaufman, Phys Rev E 2009) of the q-state Potts model on a square lattice with a line of defects verify the renormalization group prediction (M. Kaufman, R. B. Griffiths, Phys Rev B 1982) on the occurrence of the hybrid transition on the defect line. This is interesting since for those q values the bulk transition is continuous. This hybrid (continuous - discontinuous) defect transition is induced by the infinite range correlations at the bulk critical point.

  16. Amorphization due to electronic energy deposition in defective strontium titanate

    DOE PAGES

    Xue, Haizhou; Zarkadoula, Eva; Liu, Peng; ...

    2017-01-27

    The synergistic interaction of electronic energy loss by ions with ion-induced defects created by elastic nuclear scattering processes has been investigated for single crystal SrTiO 3. An initial pre-damaged defect state corresponding to a relative disorder level of 0.10–0.15 sensitizes the SrTiO 3 to amorphous track formation along the ion path of 12 and 20 MeV Ti, 21 MeV Cl and 21 MeV Ni ions, where Ti, Cl and Ni ions otherwise do not produce amorphous or damage tracks in pristine SrTiO 3. The electronic stopping power threshold for amorphous ion track formation is found to be 6.7 keV/nm formore » the pre-damaged defect state studied in this work. Lastly, these results suggest the possibility of selectively producing nanometer scale, amorphous ion tracks in thin films of epitaxial SrTiO 3.« less

  17. The critical role of point defects in improving the specific capacitance of δ-MnO 2 nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Peng; Metz, Peter; Hey, Trevyn

    3D porous nanostructures built from 2D δ-MnO 2 nanosheets are an environmentally friendly and industrially scalable class of supercapacitor electrode material. While both the electrochemistry and defects of this material have been studied, the role of defects in improving the energy storage density of these materials has not been addressed. In this work, δ-MnO 2 nanosheet assemblies with 150 m 2 g -1 specific surface area are prepared by exfoliation of crystalline K xMnO 2 and subsequent reassembly. Equilibration at different pH introduces intentional Mn vacancies into the nanosheets, increasing pseudocapacitance to over 300 F g -1, reducing charge transfermore » resistance as low as 3 Ω, and providing a 50% improvement in cycling stability. X-ray absorption spectroscopy and high-energy X-ray scattering demonstrate a correlation between the defect content and the improved electrochemical performance. The results show that Mn vacancies provide ion intercalation sites which concurrently improve specific capacitance, charge transfer resistance and cycling stability.« less

  18. Optical transitions in two-dimensional topological insulators with point defects

    NASA Astrophysics Data System (ADS)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  19. Research on subsurface defects of potassium dihydrogen phosphate crystals fabricated by single point diamond turning technique

    NASA Astrophysics Data System (ADS)

    Tie, Guipeng; Dai, Yifan; Guan, Chaoliang; Chen, Shaoshan; Song, Bing

    2013-03-01

    Potassium dihydrogen phosphate (KDP) crystals, which are widely used in high-power laser systems, are required to be free of defects on fabricated subsurfaces. The depth of subsurface defects (SSD) of KDP crystals is significantly influenced by the parameters used in the single point diamond turning technique. In this paper, based on the deliquescent magnetorheological finishing technique, the SSD of KDP crystals is observed and the depths under various cutting parameters are detected and discussed. The results indicate that no SSD is generated under small parameters and with the increase of cutting parameters, SSD appears and the depth rises almost linearly. Although the ascending trends of SSD depths caused by cutting depth and feed rate are much alike, the two parameters make different contributions. Taking the same material removal efficiency as a criterion, a large cutting depth generates shallower SSD depth than a large feed rate. Based on the experiment results, an optimized cutting procedure is obtained to generate defect-free surfaces.

  20. Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN [Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial n-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, K. C.; Armstrong, Andrew M.; Allerman, Andrew A.

    Here, inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 10 13 protons/cm 2. We also characterize themore » specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (V Ga-related), carbon impurities (C-related), and gallium interstitials (Ga i). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ~500 nm, which suggests mobile Ga i. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Ga i.« less

  1. Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN [Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial n-GaN

    DOE PAGES

    Collins, K. C.; Armstrong, Andrew M.; Allerman, Andrew A.; ...

    2017-12-21

    Here, inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 10 13 protons/cm 2. We also characterize themore » specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (V Ga-related), carbon impurities (C-related), and gallium interstitials (Ga i). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ~500 nm, which suggests mobile Ga i. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Ga i.« less

  2. 2014-2016 Avian Point Count and Migration Surveys at Site 300 for the Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fratanduono, M.

    The primary goals of the surveys were to: 1) collect minutes of bird activity within Site 300, 2) consider relative abundance of the different bird species occurring within the Site, 3) collect behavioral information, and 4) provide compelling evidence to determine the status of the Site as a migration corridor or migration stopover site. To this end, two survey types were conducted: avian point counts were conducted on a monthly basis from February 2014 through January 2016 and migration surveys were conducted over two three-month periods from September 2014 through November 2014, and September 2015 through November 2015. These twomore » surveys types provided the opportunity to observe avian species in a variety of conditions across a two year period. Whenever possible or relevant, the observations of either survey were used to inform and complement the observations of the other survey in pursuit of the above goals. Both survey types are described below.« less

  3. A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun

    2013-04-15

    In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residualmore » hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ► It is a new process for the forming of GH909 alloy via laser welding. ► The forming mechanism of laser welding defects in GH909 has been studied. ► It may be a means to improve the efficiency of aircraft engine production.« less

  4. Stress fields and energy of disclination-type defects in zones of localized elastic distortions

    NASA Astrophysics Data System (ADS)

    Sukhanov, Ivan I.; Tyumentsev, Alexander N.; Ditenberg, Ivan A.

    2016-11-01

    This paper studies theoretically the elastically deformed state and analyzes deformation mechanisms in nanocrystals in the zones of localized elastic distortions and related disclination-type defects, such as dipole, quadrupole and multipole of partial disclinations. Significant differences in the energies of quadrupole and multipole configurations in comparison with nanodipole are revealed. The mechanism of deformation localization in the field of elastic distortions is proposed, which is a quasi-periodic sequence of formation and relaxation of various disclination ensembles with a periodic change in the energy of the defect.

  5. Synthesis and study of electrolytic materials with a high-energy defect structure and a developed surface

    NASA Astrophysics Data System (ADS)

    Gryzunova, N. N.; Vikarchuk, A. A.; Tyur'kov, M. N.

    2016-10-01

    The defect structure of the electrolytic copper coatings formed upon mechanical activation of a cathode is described. These coatings are shown to have a fragmented structure containing disclination-type defects, namely, terminating dislocation, disclination and twin boundaries; partial disclinations, misorientation bands; and twin layers. They have both growth and deformation origins. The mechanisms of formation of the structural defects are discussed. It is experimentally proved that part of the elastic energy stored in the crystal volume during electrocrystallization can be converted into surface energy. As a result, catalytically active materials with a large developed surface can be synthesized.

  6. Model for transport and reaction of defects and carriers within displacement cascades in gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R., E-mail: wrwampl@sandia.gov; Myers, Samuel M.

    A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers,more » and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.« less

  7. Synergistic effect of temperature and point defect on the mechanical properties of single layer and bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Debroy, Sanghamitra; Pavan Kumar, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit

    2017-10-01

    The present study reports a comprehensive molecular dynamics simulation of the effect of a) temperature (300-1073 K at intervals of every 100 K) and b) point defect on the mechanical behaviour of single (armchair and zigzag direction) and bilayer layer graphene (AA and AB stacking). Adaptive intermolecular reactive bond order (AIREBO) potential function was used to describe the many-body short-range interatomic interactions for the single layer graphene sheet. Moreover, Lennard Jones model was considered for bilayer graphene to incorporate the van der Waals interactions among the interlayers of graphene. The effect of temperature on the strain energy of single layer and bilayer graphene was studied in order to understand the difference in mechanical behaviour of the two systems. The strength of the pristine single layer graphene was found to be higher as compared to bilayer AA stacked graphene at all temperatures. It was observed at 1073 K and in the presence of vacancy defect the strength for single layer armchair sheet falls by 30% and for bilayer armchair sheet by 33% as compared to the pristine sheets at 300 K. The AB stacked graphene sheet was found to have a two-step rupture process. The strength of pristine AB sheet was found to decrease by 22% on increase of temperature from 300 K to 1073 K.

  8. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers

    DOE PAGES

    Gul, R.; Roy, U. N.; James, R. B.

    2017-03-15

    In this paper, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτ e) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trappingmore » and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (V Cd -) were identified as a dominant trap. The V Cd - were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at E v + 0.36 eV and E v + 1.1 eV, E c + 76 meV and E v + 0.61 eV, E v + 36 meV and E v + 0.86 eV, E v + 0.52 eV and E c + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (N t), and capture cross-section (σ) and hence trapping (t t) and de-trapping (t dt) times. Finally, the dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.« less

  9. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gul, R.; Roy, U. N.; James, R. B.

    In this paper, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτ e) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trappingmore » and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (V Cd -) were identified as a dominant trap. The V Cd - were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at E v + 0.36 eV and E v + 1.1 eV, E c + 76 meV and E v + 0.61 eV, E v + 36 meV and E v + 0.86 eV, E v + 0.52 eV and E c + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (N t), and capture cross-section (σ) and hence trapping (t t) and de-trapping (t dt) times. Finally, the dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.« less

  10. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage.

    PubMed

    Xin, Guoqing; Sun, Hongtao; Scott, Spencer Michael; Yao, Tiankai; Lu, Fengyuan; Shao, Dali; Hu, Tao; Wang, Gongkai; Ran, Guang; Lian, Jie

    2014-09-10

    Organic phase change materials (PCMs) have been utilized as latent heat energy storage and release media for effective thermal management. A major challenge exists for organic PCMs in which their low thermal conductivity leads to a slow transient temperature response and reduced heat transfer efficiency. In this work, 2D thermally annealed defect-free graphene sheets (GSs) can be obtained upon high temperature annealing in removing defects and oxygen functional groups. As a result of greatly reduced phonon scattering centers for thermal transport, the incorporation of ultralight weight and defect free graphene applied as nanoscale additives into a phase change composite (PCC) drastically improve thermal conductivity and meanwhile minimize the reduction of heat of fusion. A high thermal conductivity of the defect-free graphene-PCC can be achieved up to 3.55 W/(m K) at a 10 wt % graphene loading. This represents an enhancement of over 600% as compared to pristine graphene-PCC without annealing at a comparable loading, and a 16-fold enhancement than the pure PCM (1-octadecanol). The defect-free graphene-PCC displays rapid temperature response and superior heat transfer capability as compared to the pristine graphene-PCC or pure PCM, enabling transformational thermal energy storage and management.

  11. Swinburne Astronomy Online: Migrating from "PowerPoint" on CD to a Web 2.0 Compliant Delivery Infrastructure

    ERIC Educational Resources Information Center

    Barnes, David G.; Fluke, Christopher J.; Jones, Nicholas T.; Maddison, Sarah T.; Kilborn, Virginia A.; Bailes, Matthew

    2008-01-01

    We adopt the Web 2.0 paradigm as a mechanism for preparing, editing, delivering and maintaining educational content, and for fostering ongoing innovation in the online education field. We report here on the migration of legacy course materials from "PowerPoint" slides on CD to a fully online delivery mode for use in the "Swinburne Astronomy…

  12. Cadherin-2 Is Required Cell Autonomously for Collective Migration of Facial Branchiomotor Neurons.

    PubMed

    Rebman, Jane K; Kirchoff, Kathryn E; Walsh, Gregory S

    2016-01-01

    Collective migration depends on cell-cell interactions between neighbors that contribute to their overall directionality, yet the mechanisms that control the coordinated migration of neurons remains to be elucidated. During hindbrain development, facial branchiomotor neurons (FBMNs) undergo a stereotypic tangential caudal migration from their place of birth in rhombomere (r)4 to their final location in r6/7. FBMNs engage in collective cell migration that depends on neuron-to-neuron interactions to facilitate caudal directionality. Here, we demonstrate that Cadherin-2-mediated neuron-to-neuron adhesion is necessary for directional and collective migration of FBMNs. We generated stable transgenic zebrafish expressing dominant-negative Cadherin-2 (Cdh2ΔEC) driven by the islet1 promoter. Cell-autonomous inactivation of Cadherin-2 function led to non-directional migration of FBMNs and a defect in caudal tangential migration. Additionally, mosaic analysis revealed that Cdh2ΔEC-expressing FBMNs are not influenced to migrate caudally by neighboring wild-type FBMNs due to a defect in collective cell migration. Taken together, our data suggest that Cadherin-2 plays an essential cell-autonomous role in mediating the collective migration of FBMNs.

  13. Sampling saddle points on a free energy surface

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Chen, Ming; Yu, Tang-Qing; Tuckerman, Mark; E, Weinan

    2014-04-01

    Many problems in biology, chemistry, and materials science require knowledge of saddle points on free energy surfaces. These saddle points act as transition states and are the bottlenecks for transitions of the system between different metastable states. For simple systems in which the free energy depends on a few variables, the free energy surface can be precomputed, and saddle points can then be found using existing techniques. For complex systems, where the free energy depends on many degrees of freedom, this is not feasible. In this paper, we develop an algorithm for finding the saddle points on a high-dimensional free energy surface "on-the-fly" without requiring a priori knowledge the free energy function itself. This is done by using the general strategy of the heterogeneous multi-scale method by applying a macro-scale solver, here the gentlest ascent dynamics algorithm, with the needed force and Hessian values computed on-the-fly using a micro-scale model such as molecular dynamics. The algorithm is capable of dealing with problems involving many coarse-grained variables. The utility of the algorithm is illustrated by studying the saddle points associated with (a) the isomerization transition of the alanine dipeptide using two coarse-grained variables, specifically the Ramachandran dihedral angles, and (b) the beta-hairpin structure of the alanine decamer using 20 coarse-grained variables, specifically the full set of Ramachandran angle pairs associated with each residue. For the alanine decamer, we obtain a detailed network showing the connectivity of the minima obtained and the saddle-point structures that connect them, which provides a way to visualize the gross features of the high-dimensional surface.

  14. Native and hydrogen-containing point defects in Mg3N2 : A density functional theory study

    NASA Astrophysics Data System (ADS)

    Lange, Björn; Freysoldt, Christoph; Neugebauer, Jörg

    2010-06-01

    The formation energy and solubility of hydrogen in magnesium nitride bulk (antibixbyite Mg3N2 ) have been studied employing density functional theory in the generalized gradient approximation. The effect of doping and the presence of native defects and complex formation have been taken into account. Our results show that magnesium nitride is a nearly defect-free insulator with insignificant hydrogen-storage capacity. Based on this insight we derive a model that highlights the role of the formation and presence of the parasitic Mg3N2 inclusions in the activation of p -doped GaN in optoelectronic devices.

  15. Atomic Structure of Intrinsic and Electron-Irradiation-Induced Defects in MoTe2

    PubMed Central

    2018-01-01

    Studying the atomic structure of intrinsic defects in two-dimensional transition-metal dichalcogenides is difficult since they damage quickly under the intense electron irradiation in transmission electron microscopy (TEM). However, this can also lead to insights into the creation of defects and their atom-scale dynamics. We first show that MoTe2 monolayers without protection indeed quickly degrade during scanning TEM (STEM) imaging, and discuss the observed atomic-level dynamics, including a transformation from the 1H phase into 1T′, 3-fold rotationally symmetric defects, and the migration of line defects between two 1H grains with a 60° misorientation. We then analyze the atomic structure of MoTe2 encapsulated between two graphene sheets to mitigate damage, finding the as-prepared material to contain an unexpectedly large concentration of defects. These include similar point defects (or quantum dots, QDs) as those created in the nonencapsulated material and two different types of line defects (or quantum wires, QWs) that can be transformed from one to the other under electron irradiation. Our density functional theory simulations indicate that the QDs and QWs embedded in MoTe2 introduce new midgap states into the semiconducting material and may thus be used to control its electronic and optical properties. Finally, the edge of the encapsulated material appears amorphous, possibly due to the pressure caused by the encapsulation. PMID:29503509

  16. Distribution of point defects in Si(100)/Si grown by low-temperature molecular-beam epitaxy and solid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Asoka-Kumar, P.; Gossmann, H.-J.; Unterwald, F. C.; Feldman, L. C.; Leung, T. C.; Au, H. L.; Talyanski, V.; Nielsen, B.; Lynn, K. G.

    1993-08-01

    Positron annihilation in Si is a quantitaive, depth-sensitive technique for the detection of vacancylike defects or voids. A sensitivity of 5×1015 cm-3 for voidlike defects is easily achieved. The technique has been applied to a study of point-defect distributions in thin films of Si grown by molecular-beam epitaxy. A special procedure was developed to remove the influence of the native oxide on the positron measurement. 200-nm-thick films grown at temperatures between 475 and 560 °C show no defects below the sensitivity limit and are indistinguishable from the bulk substrate. So are films grown at 220 °C, provided a 2-min high-temperature anneal to a peak temperature of >=500 °C is executed every ~=30 nm during growth. If TRTA=450 °C, part of the film contains vacancylike defects to a concentration of ~=1018 cm-3. These results correlate well with current-voltage characteristics of p-n junctions grown with different rapid thermal anneal (RTA) temperatures. Ion scattering, with a defect sensitivity of ~=1%, shows no difference between films grown with different TRTA. Recrystallization of amorphous films, deposited at room temperature and annealed in situ at 550 °C, always leaves a significant defect concentration of ~=2×1018 cm-3; those defects are reduced but still present even after a 2-h 800 °C furnace anneal.

  17. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-07-21

    The thermal conductivity of uranium dioxide (UO 2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO 2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO 2, as a function of defectmore » concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].« less

  18. Efficient Process Migration for Parallel Processing on Non-Dedicated Networks of Workstations

    NASA Technical Reports Server (NTRS)

    Chanchio, Kasidit; Sun, Xian-He

    1996-01-01

    This paper presents the design and preliminary implementation of MpPVM, a software system that supports process migration for PVM application programs in a non-dedicated heterogeneous computing environment. New concepts of migration point as well as migration point analysis and necessary data analysis are introduced. In MpPVM, process migrations occur only at previously inserted migration points. Migration point analysis determines appropriate locations to insert migration points; whereas, necessary data analysis provides a minimum set of variables to be transferred at each migration pint. A new methodology to perform reliable point-to-point data communications in a migration environment is also discussed. Finally, a preliminary implementation of MpPVM and its experimental results are presented, showing the correctness and promising performance of our process migration mechanism in a scalable non-dedicated heterogeneous computing environment. While MpPVM is developed on top of PVM, the process migration methodology introduced in this study is general and can be applied to any distributed software environment.

  19. Transforming graphene nanoribbons into nanotubes by use of point defects.

    PubMed

    Sgouros, A; Sigalas, M M; Papagelis, K; Kalosakas, G

    2014-03-26

    Using molecular dynamics simulations with semi-empirical potentials, we demonstrate a method to fabricate carbon nanotubes (CNTs) from graphene nanoribbons (GNRs), by periodically inserting appropriate structural defects into the GNR crystal structure. We have found that various defect types initiate the bending of GNRs and eventually lead to the formation of CNTs. All kinds of carbon nanotubes (armchair, zigzag, chiral) can be produced with this method. The structural characteristics of the resulting CNTs, and the dependence on the different type and distribution of the defects, were examined. The smallest (largest) CNT obtained had a diameter of ∼ 5 Å (∼ 39 Å). Proper manipulation of ribbon edges controls the chirality of the CNTs formed. Finally, the effect of randomly distributed defects on the ability of GNRs to transform into CNTs is considered.

  20. Electrical level of defects in single-layer two-dimensional TiO2

    NASA Astrophysics Data System (ADS)

    Song, X. F.; Hu, L. F.; Li, D. H.; Chen, L.; Sun, Q. Q.; Zhou, P.; Zhang, D. W.

    2015-11-01

    The remarkable properties of graphene and transition metal dichalcogenides (TMDCs) have attracted increasing attention on two-dimensional materials, but the gate oxide, one of the key components of two-dimensional electronic devices, has rarely reported. We found the single-layer oxide can be used as the two dimensional gate oxide in 2D electronic structure, such as TiO2. However, the electrical performance is seriously influenced by the defects existing in the single-layer oxide. In this paper, a nondestructive and noncontact solution based on spectroscopic ellipsometry has been used to detect the defect states and energy level of single-layer TiO2 films. By fitting the Lorentz oscillator model, the results indicate the exact position of defect energy levels depends on the estimated band gap and the charge state of the point defects of TiO2.

  1. Reproductive energy expenditure and changes in body morphology for a population of Chinook salmon Oncorhynchus tshawytscha with a long distance migration.

    PubMed

    Bowerman, T E; Pinson-Dumm, A; Peery, C A; Caudill, C C

    2017-05-01

    Energetic demands of a long freshwater migration, extended holding period, gamete development and spawning were evaluated for a population of stream-type Chinook salmon Oncorhynchus tshawytscha. Female and male somatic mass decreased by 24 and 21%, respectively, during migration and by an additional 18 and 12% during holding. Between freshwater entry and death after spawning, females allocated 14% of initial somatic energy towards gonad development and 78% for metabolism (46, 25 and 7% during migration, holding and spawning, respectively). Males used only 2% of initial somatic energy for gonad development and 80% on metabolic costs, as well as an increase in snout length (41, 28 and 11% during migration, holding and spawning, respectively). Individually marked O. tshawytscha took between 27 and 53 days to migrate 920 km. Those with slower travel times through the dammed section of the migration corridor arrived at spawning grounds with less muscle energy than faster migrants. Although energy depletion did not appear to be the proximate cause of death in most pre-spawn mortalities, average final post-spawning somatic energy densities were low at 3·6 kJ g -1 in females and 4·1 kJ g -1 in males, consistent with the concept of a minimum energy threshold required to sustain life in semelparous salmonids. © 2017 The Fisheries Society of the British Isles.

  2. Stress-dependence of kinetic transitions at atomistic defects

    NASA Astrophysics Data System (ADS)

    Ball, S. L.; Alexander, K. C.; Schuh, C. A.

    2018-01-01

    The full second-rank activation volume tensors associated with vacancy migration in FCC copper and HCP titanium as well as transition events in the Σ5 (2 1 0) grain boundary in copper are calculated and analyzed. The full tensorial results quantitatively illustrate how the conventional use of an activation volume scalar in atomistic studies of the kinetic processes of complex defects can miss important stress dependencies, in that neither hydrostatic pressure nor deviatoric stress dependencies can be considered alone as dominating the response. The results speak to the importance of anisotropies in the stress-dependence of atomistic kinetics, including crystal structure anisotropy, elastic anisotropy, and defect structure or migration-path anisotropies.

  3. Profilin1 activity in cerebellar granule neurons is required for radial migration in vivo

    PubMed Central

    Kullmann, Jan A; Wickertsheim, Ines; Minnerup, Lara; Costell, Mercedes; Friauf, Eckhard; Rust, Marco B

    2015-01-01

    Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration. PMID:25495756

  4. Dietary change, energy balance and body weight regulation among migrating students.

    PubMed

    Reeves, S L; Henry, C J

    2000-11-01

    This study was conducted to examine how subjects modulate their food intake and energy balance when they migrate from a low energy density food intake pattern to one of high energy density. It was hypothesised that an increase in the energy density of food consumed would result in increased body weight of the migrating subjects unless food intake and energy balance could be modulated. Food selection, food intake, basal metabolic rate (BMR) and anthropometric measurements were made on 53 female and 56 male newly arrived overseas students. All subjects were from Malaysia, but the data was collected at Oxford Brookes University where the subjects were studying. Food intake using 3-day food diaries and food frequency questionnaires (FFQs). BMR and anthropometric measurements including body weight were measured on arrival in the UK and after 3 and 6 months' stay. Student's t-tests and analysis of variance (ANOVA) were used to compare the data. A significant difference (P < 0.05) was found between the energy density of the foods consumed in Malaysia and after 3 and 6 months in the UK. There was also a significant decrease (P < 0.05) in protein consumed. However, there were no differences in total energy intake. From results of the FFQs, differences were found in food selection due mainly to the lack of availability of certain foods in UK supermarkets. No significant differences were found in the BMR and anthropometric measurements made at the start of the study and later assessments. It appears that Malaysian students are able to remain in energy balance and are weight stable at least during the first 6 months of residence in the UK, despite the wider choice of energy dense food available. This suggests that at least in the short term, subjects are able to modulate their food intake in response to changes in the energy densities and free choice of food.

  5. Electronic characterization of defects in narrow gap semiconductors

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1993-01-01

    The study of point defects in semiconductors has a long and honorable history. In particular, the detailed understanding of shallow defects in common semiconductors traces back to the classic work of Kohn and Luttinger. However, the study of defects in narrow gap semiconductors represents a much less clear story. Here, both shallow defects (caused by long range potentials) and deep defects (from short range potentials) are far from being completely understood. In this study, all results are calculational and our focus is on the chemical trend of deep levels in narrow gap semiconductors. We study substitutional (including antisite), interstitial and ideal vacancy defects. For substitutional and interstitial impurities, the efects of relaxation are included. For materials like Hg(1-x)Cd(x)Te, we study how the deep levels vary with x, of particular interest is what substitutional and interstitial atoms yield energy levels in the gap i.e. actually produce deep ionized levels. Also, since the main technique utilized is Green's functions, we include some summary of that method.

  6. A comparison of point defects in Cd1-xZnxTe1-ySey crystals grown by Bridgman and traveling heater methods

    NASA Astrophysics Data System (ADS)

    Gul, R.; Roy, U. N.; Camarda, G. S.; Hossain, A.; Yang, G.; Vanier, P.; Lordi, V.; Varley, J.; James, R. B.

    2017-03-01

    In this paper, the properties of point defects in Cd1-xZnxTe1-ySey (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the VCd- concentration. In Travelling Heater Method (THM) and Bridgman Method (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of VCd- and two additional traps (attributed to Tei- and TeCd++ appearing at around Ev + 0.26 eV and Ec - 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.

  7. Novel association of VACTERL, neural tube defect and crossed renal ectopia: sonic hedgehog signaling: a point of coherence?

    PubMed

    Vaze, Dhananjay; Mahalik, Santosh; Rao, Katragadda L N

    2012-12-01

    The present case report describes two patients with a novel combination of VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb), neural tube defect and crossed renal ectopia. Though cases of VACTERL associated with crossed renal ectopia have been described, the present case report is the first to describe its combination with neural tube defect. The cases reported here are significant because central nervous system manifestations are scarce in VACTERL syndrome. The role of sonic hedgehog pathway has been proposed in VACTERL association and neural tube defects. Axial Sonic hedgehog signaling has also been implicated in the mediolateral positioning of the renal parenchyma. With this knowledge, the etiopathogenesis of this novel combination is discussed to highlight the role of sonic hedgehog signaling as a point of coherence. © 2011 The Authors. Congenital Anomalies © 2011 Japanese Teratology Society.

  8. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  9. Compact Models for Defect Diffusivity in Semiconductor Alloys.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Alan F.; Modine, Normand A.; Lee, Stephen R.

    Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers tomore » optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE

  10. Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene.

    PubMed

    Zhang, Yajun; Sahoo, Mpk; Wang, Jie

    2016-09-23

    Single vacancy (SV)-induced magnetism in graphene has attracted much attention motivated by its potential in achieving new functionalities. However, a much higher vacancy formation energy limits its direct application in electronic devices and the dependency of spin interaction on the strain is unclear. Here, through first-principles density-functional theory calculations, we investigate the possibility of strain engineering towards lowering vacancy formation energy and inducing new magnetic states in defective graphene. It is found that the SV-graphene undergoes a phase transition from an initial ferromagnetic state to a ferrimagnetic state under a biaxial tensile strain. At the same time, the biaxial tensile strain significantly lowers the vacancy formation energy. The charge density, density of states and band theory successfully identify the origin and underlying physics of the transition. The predicted magnetic phase transition is attributed to the strain driven spin flipping at the C-atoms nearest to the SV-site. The magnetic semiconducting graphene induced by defect and strain engineering suggests an effective way to modulate both spin and electronic degrees of freedom in future spintronic devices.

  11. Comparison of line transects and point counts for monitoring spring migration in forested wetlands

    USGS Publications Warehouse

    Wilson, R.R.; Twedt, D.J.; Elliott, A.B.

    2000-01-01

    We compared the efficacy of 400-m line transects and sets of three point counts at detecting avian richness and abundance in bottomland hardwood forests and intensively managed cottonwood (Populus deltoides) plantations within the Mississippi Alluvial Valley. We detected more species and more individuals on line transects than on three point counts during 218 paired surveys conducted between 24 March and 3 June, 1996 and 1997. Line transects also yielded more birds per unit of time, even though point counts yielded higher estimates of relative bird density. In structurally more-complex bottomland hardwood forests, we detected more species and individuals on line transects, but in more-open cottonwood plantations, transects surpassed point counts only at detecting species within 50 m of the observer. Species richness and total abundance of Nearctic-Neotropical migrants and temperate migrants were greater on line transects within bottomland hardwood forests. Within cottonwood plantations, however, only species richness of Nearctic-Neotropical migrants and total abundance of temperate migrants were greater on line transects. Because we compared survey techniques using the same observer, within the same forest stand on a given day, we assumed that the technique yielding greater estimates of avian species richness and total abundance per unit of effort is superior. Thus, for monitoring migration within hardwood forests of the Mississippi Alluvial Valley, we recommend using line transects instead of point counts.

  12. Grand unified theories, topological defects, and ultrahigh-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani; Hill, Christopher T.; Schramm, David N.

    1992-01-01

    The ultrahigh-energy (UHE) proton and neutrino spectra resulting from collapse or annihilations of topological defects surviving from the GUT era are calculated. Irrespective of the specific process under consideration (which determines the overall normalization of the spectrum), the UHE proton spectrum always 'recovers' at approximately 1.8 x 10 exp 11 GeV after a partial Greisen-Zatsepin-Kuz'min 'cutoff' at approximately 5 x 10 exp 10 GeV and continues to a GUT-scale energy with a universal shape determined by the physics of hadronic jet fragmentation. Implications of the results are discussed.

  13. Grand unified theories, topological defects and ultrahigh-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani; Hill, Christopher T.; Schramm, David N.

    1991-01-01

    The ultrahigh-energy (UHE) proton and neutrino spectra resulting from collapse or annihilations of topological defects surviving from the GUT era are calculated. Irrespective of the specific process under consideration (which determines the overall normalization of the spectrum), the UHE proton spectrum always 'recovers' at approximately 1.8 x 10 exp 11 GeV after a partial Greisen-Zatsepin-Kuz'min 'cutoff' at approximately 5 x 10 exp 10 GeV and continues to a GUT-scale energy with a universal shape determined by the physics of hadronic jet fragmentation. Implications of our results are discussed.

  14. Japanese migration in contemporary Japan: economic segmentation and interprefectural migration.

    PubMed

    Fukurai, H

    1991-01-01

    This paper examines the economic segmentation model in explaining 1985-86 Japanese interregional migration. The analysis takes advantage of statistical graphic techniques to illustrate the following substantive issues of interregional migration: (1) to examine whether economic segmentation significantly influences Japanese regional migration and (2) to explain socioeconomic characteristics of prefectures for both in- and out-migration. Analytic techniques include a latent structural equation (LISREL) methodology and statistical residual mapping. The residual dispersion patterns, for instance, suggest the extent to which socioeconomic and geopolitical variables explain migration differences by showing unique clusters of unexplained residuals. The analysis further points out that extraneous factors such as high residential land values, significant commuting populations, and regional-specific cultures and traditions need to be incorporated in the economic segmentation model in order to assess the extent of the model's reliability in explaining the pattern of interprefectural migration.

  15. New Analysis of Solute Drag in AA5754 by Precise Determination of Point Defect Generation and the Orowan Relation

    NASA Astrophysics Data System (ADS)

    Diak, Brad J.; Penlington, Alex; Saimoto, Shig

    Serrated deformation in Al-Mg alloys creates problems that affect consumer product acceptability. This effect is usually attributed to the Portevin-LeChâtelier effect. In this study the inverse PLC effect due to solute drag on moving dislocations is examined in AA5754. The drag mechanism is dependent on the diffusivity of the solute which is in-turn dependent on the point defect evolution during deformation. Experimental determination of the parabolic James-Barnett drag profile by strain rate change experiments indicates the peak stress is centered at 1.5×10-9m/s, which requires a mechanical formation energy for vacancies of 0.4eV/at. A new slip-based constitutive relation was used to determine the evolution of vacancy volume fraction with deformation with strain, which is greater than the volume fraction of vacancies predicted by the solute drag profile.

  16. Continuous improvements of defectivity rates in immersion photolithography via functionalized membranes in point-of-use photochemical filtration

    NASA Astrophysics Data System (ADS)

    D'Urzo, Lucia; Bayana, Hareen; Vandereyken, Jelle; Foubert, Philippe; Wu, Aiwen; Jaber, Jad; Hamzik, James

    2017-03-01

    Specific "killer-defects", such as micro-line-bridges are one of the key challenges in photolithography's advanced applications, such as multi-pattern. These defects generate from several sources and are very difficult to eliminate. Pointof-use filtration (POU) plays a crucial role on the mitigation, or elimination, of such defects. Previous studies have demonstrated how the contribution of POU filtration could not be studied independently from photoresists design and track hardware settings. Specifically, we investigated how an effective combination of optimized photoresist, filtration rate, filtration pressure, membrane and device cleaning, and single and multilayer filter membranes at optimized pore size could modulate the occurrence of such defects [1, 2, 3 and 4]. However, the ultimate desired behavior for POU filtration is the selective retention of defect precursor molecules contained in commercially available photoresist. This optimal behavior can be achieved via customized membrane functionalization. Membrane functionalization provides additional non-sieving interactions which combined with efficient size exclusion can selectively capture certain defect precursors. The goal of this study is to provide a comprehensive assessment of membrane functionalization applied on an asymmetric ultra-high molecular weight polyethylene (UPE) membrane at different pore size. Defectivity transferred in a 45 nm line 55 nm space (45L/55S) pattern, created through 193 nm immersion (193i) lithography with a positive tone chemically amplified resist (PT-CAR), has been evaluated on organic under-layer coated wafers. Lithography performance, such as critical dimensions (CD), line width roughness (LWR) and focus energy matrix (FEM) is also assessed.

  17. Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Elder, Ken R.

    2017-08-01

    One of the major difficulties in employing phase-field crystal (PFC) modeling and the associated amplitude (APFC) formulation is the ability to tune model parameters to match experimental quantities. In this work, we address the problem of tuning the defect core and interface energies in the APFC formulation. We show that the addition of a single term to the free-energy functional can be used to increase the solid-liquid interface and defect energies in a well-controlled fashion, without any major change to other features. The influence of the newly added term is explored in two-dimensional triangular and honeycomb structures as well as bcc and fcc lattices in three dimensions. In addition, a finite-element method (FEM) is developed for the model that incorporates a mesh refinement scheme. The combination of the FEM and mesh refinement to simulate amplitude expansion with a new energy term provides a method of controlling microscopic features such as defect and interface energies while simultaneously delivering a coarse-grained examination of the system.

  18. Defect engineering of the electronic transport through cuprous oxide interlayers

    NASA Astrophysics Data System (ADS)

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlögl, Udo

    2016-06-01

    The electronic transport through Au-(Cu2O)n-Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  19. Box 6: Nanoscale Defects

    NASA Astrophysics Data System (ADS)

    Alves, Eduardo; Breese, Mark

    Defects affect virtually all properties of crystalline materials, and their role is magnified in nanoscale structures. In this box we describe the different type of defects with particular emphasis on point and linear defects. Above zero Kelvin all real materials have a defect population within their structure, which affects either their crystalline, electronic or optical properties. It is common to attribute a negative connotation to the presence of defects. However, a perfect silicon crystal or any other defect-free semiconductor would have a limited functionality and might even be useless.

  20. The thermal expansion of gold: point defect concentrations and pre-melting in a face-centred cubic metal.

    PubMed

    Pamato, Martha G; Wood, Ian G; Dobson, David P; Hunt, Simon A; Vočadlo, Lidunka

    2018-04-01

    On the basis of ab initio computer simulations, pre-melting phenomena have been suggested to occur in the elastic properties of hexagonal close-packed iron under the conditions of the Earth's inner core just before melting. The extent to which these pre-melting effects might also occur in the physical properties of face-centred cubic metals has been investigated here under more experimentally accessible conditions for gold, allowing for comparison with future computer simulations of this material. The thermal expansion of gold has been determined by X-ray powder diffraction from 40 K up to the melting point (1337 K). For the entire temperature range investigated, the unit-cell volume can be represented in the following way: a second-order Grüneisen approximation to the zero-pressure volumetric equation of state, with the internal energy calculated via a Debye model, is used to represent the thermal expansion of the 'perfect crystal'. Gold shows a nonlinear increase in thermal expansion that departs from this Grüneisen-Debye model prior to melting, which is probably a result of the generation of point defects over a large range of temperatures, beginning at T / T m > 0.75 (a similar homologous T to where softening has been observed in the elastic moduli of Au). Therefore, the thermodynamic theory of point defects was used to include the additional volume of the vacancies at high temperatures ('real crystal'), resulting in the following fitted parameters: Q = ( V 0 K 0 )/γ = 4.04 (1) × 10 -18  J, V 0 = 67.1671 (3) Å 3 , b = ( K 0 ' - 1)/2 = 3.84 (9), θ D = 182 (2) K, ( v f /Ω)exp( s f / k B ) = 1.8 (23) and h f = 0.9 (2) eV, where V 0 is the unit-cell volume at 0 K, K 0 and K 0 ' are the isothermal incompressibility and its first derivative with respect to pressure (evaluated at zero pressure), γ is a Grüneisen parameter, θ D is the Debye temperature, v f , h f and s f are the vacancy formation volume, enthalpy and entropy

  1. One-Loop One-Point Functions in Gauge-Gravity Dualities with Defects.

    PubMed

    Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias

    2016-12-02

    We initiate the calculation of loop corrections to correlation functions in 4D defect conformal field theories (dCFTs). More precisely, we consider N=4 SYM theory with a codimension-one defect separating two regions of space, x_{3}>0 and x_{3}<0, where the gauge group is SU(N) and SU(N-k), respectively. This setup is made possible by some of the real scalar fields acquiring a nonvanishing and x_{3}-dependent vacuum expectation value for x_{3}>0. The holographic dual is the D3-D5 probe brane system where the D5-brane geometry is AdS_{4}×S^{2} and a background gauge field has k units of flux through the S^{2}. We diagonalize the mass matrix of the dCFT making use of fuzzy-sphere coordinates and we handle the x_{3} dependence of the mass terms in the 4D Minkowski space propagators by reformulating these as standard massive AdS_{4} propagators. Furthermore, we show that only two Feynman diagrams contribute to the one-loop correction to the one-point function of any single-trace operator and we explicitly calculate this correction in the planar limit for the simplest chiral primary. The result of this calculation is compared to an earlier string-theory computation in a certain double scaling limit and perfect agreement is found. Finally, we discuss how to generalize our calculation to any single-trace operator, to finite N, and to other types of observables such as Wilson loops.

  2. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Myers, Samuel M.

    2014-02-01

    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defectsmore » within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.« less

  3. Point defect stability in a semicoherent metallic interface

    NASA Astrophysics Data System (ADS)

    González, C.; Iglesias, R.; Demkowicz, M. J.

    2015-02-01

    We present a comprehensive density functional theory (DFT) -based study of different aspects of one vacancy and He impurity atom behavior at semicoherent interfaces between the low-solubility transition metals Cu and Nb. Such interfaces have not been previously modeled using DFT. A thorough analysis of the stability and mobility of the two types of defects at the interfaces and neighboring internal layers has been performed and the results have been compared to the equivalent cases in the pure metallic matrices. The different behavior of fcc and bcc metals on both sides of the interface has been specifically assessed. The modeling effort undertaken is the first attempt to study the stability and defect energetics of noncoherent Cu/Nb interfaces from first principles, in order to assess their potential use in radiation-resistant materials.

  4. The Elite-Plus stem migrates more than the flanged Charnley stem

    PubMed Central

    Sanzén, Lennart; Besjakov, Jack; Carlsson, Åke

    2010-01-01

    Background and purpose The Charnley Elite-Plus stem was introduced in 1993 as a presumed improvement of the flanged Charnley stem. We started this study in 1996 to investigate the migratory pattern of the Elite-Plus stem. Patients and methods We followed 114 patients with osteoarthritis and a primary total hip replacement with the Elite-Plus stem. Mean age at the time of operation was 64 (50–76) years. The mean follow-up time was 6.5 (2–7) years. Radiographs were evaluated with respect to cementing technique, migration, and wear measured by radiostereometry (RSA). Results The stem survival was 98% (CI: 96–100) at 7 years and 92% (CI: 86–97) at 10 years. Mean migration of the femoral head was 0.35 mm (SD 0.3) medially, 0.51 mm (SD 0.6) distally, and 1.1 mm (SD 1.8) in the dorsal direction. Mean total point motion was 1.7 mm (SD 1.7). The migration of the stems stabilized after 5 years in the medial and dorsal directions, but continued to subside slightly. Migration along any of the axes was higher if the cementing technique was inferior. Interpretation Patients with a Charnley Elite-Plus stem and defects in the cement mantle or other signs of inferior implantation technique should be carefully monitored. PMID:20367422

  5. Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN

    NASA Astrophysics Data System (ADS)

    Collins, K. C.; Armstrong, A. M.; Allerman, A. A.; Vizkelethy, G.; Van Deusen, S. B.; Léonard, F.; Talin, A. A.

    2017-12-01

    Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4-6 × 1013 protons/cm2. We also characterize the specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%-55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (VGa-related), carbon impurities (C-related), and gallium interstitials (Gai). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ˜500 nm, which suggests mobile Gai. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Gai.

  6. Demonstrating Energy Migration in Coupled Oscillators: A Central Concept in the Theory of Unimolecular Reactions

    ERIC Educational Resources Information Center

    Marcotte, Ronald E.

    2005-01-01

    This physical chemistry lecture demonstration is designed to aid the understanding of intramolecular energy transfer processes as part of the presentation of the theory of unimolecular reaction rates. Coupled pendulums are used to show the rate of migration of energy between oscillators under resonant and nonresonant conditions with varying…

  7. A three-dimensional optical photonic crystal with designed point defects

    NASA Astrophysics Data System (ADS)

    Qi, Minghao; Lidorikis, Elefterios; Rakich, Peter T.; Johnson, Steven G.; Joannopoulos, J. D.; Ippen, Erich P.; Smith, Henry I.

    2004-06-01

    Photonic crystals offer unprecedented opportunities for miniaturization and integration of optical devices. They also exhibit a variety of new physical phenomena, including suppression or enhancement of spontaneous emission, low-threshold lasing, and quantum information processing. Various techniques for the fabrication of three-dimensional (3D) photonic crystals-such as silicon micromachining, wafer fusion bonding, holographic lithography, self-assembly, angled-etching, micromanipulation, glancing-angle deposition and auto-cloning-have been proposed and demonstrated with different levels of success. However, a critical step towards the fabrication of functional 3D devices, that is, the incorporation of microcavities or waveguides in a controllable way, has not been achieved at optical wavelengths. Here we present the fabrication of 3D photonic crystals that are particularly suited for optical device integration using a lithographic layer-by-layer approach. Point-defect microcavities are introduced during the fabrication process and optical measurements show they have resonant signatures around telecommunications wavelengths (1.3-1.5µm). Measurements of reflectance and transmittance at near-infrared are in good agreement with numerical simulations.

  8. Elastic interactions between two-dimensional geometric defects

    NASA Astrophysics Data System (ADS)

    Moshe, Michael; Sharon, Eran; Kupferman, Raz

    2015-12-01

    In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are viewed as singular defects—point charges of the curvature associated with a reference metric. The stress field in the presence of defects can be solved using a scalar stress function that generalizes the classical Airy stress function to the case of materials with nontrivial geometry. This approach allows the calculation of interaction energies between various types of defects. We apply our methodology to two physical systems: shear-induced failure of amorphous materials and the mechanical interaction between contracting cells.

  9. An approach to defect inspection for packing presswork with virtual orientation points and threshold template image

    NASA Astrophysics Data System (ADS)

    Hao, Xiangyang; Liu, Songlin; Zhao, Fulai; Jiang, Lixing

    2015-05-01

    The packing presswork is an important factor of industrial product, especially for the luxury commodities such as cigarettes. In order to ensure the packing presswork to be qualified, the products should be inspected and unqualified one be picked out piece by piece with the vision-based inspection method, which has such advantages as no-touch inspection, high efficiency and automation. Vision-based inspection of packing presswork mainly consists of steps as image acquisition, image registration and defect inspection. The registration between inspected image and reference image is the foundation and premise of visual inspection. In order to realize rapid, reliable and accurate image registration, a registration method based on virtual orientation points is put forward. The precision of registration between inspected image and reference image can reach to sub pixels. Since defect is without fixed position, shape, size and color, three measures are taken to improve the inspection effect. Firstly, the concept of threshold template image is put forward to resolve the problem of variable threshold of intensity difference. Secondly, the color difference is calculated by comparing each pixel with the adjacent pixels of its correspondence on reference image to avoid false defect resulted from color registration error. Thirdly, the strategy of image pyramid is applied in the inspection algorithm to enhance the inspection efficiency. Experiments show that the related algorithm is effective to defect inspection and it takes 27.4 ms on average to inspect a piece of cigarette packing presswork.

  10. Dissipation Rate of Turbulent Kinetic Energy in Diel Vertical Migrations: Comparison of ANSYS Fluent Model to Measurements

    NASA Astrophysics Data System (ADS)

    Dean, Cayla; Soloviev, Alexander; Hirons, Amy; Frank, Tamara; Wood, Jon

    2015-04-01

    Recent studies suggest that diel vertical migrations of zooplankton may have an impact on ocean mixing, though details are not completely clear. A strong sound scattering layer of zooplankton undergoing diel vertical migrations was observed in Saanich Inlet, British Colombia, Canada by Kunze et al. (2006). In this study, a shipboard 200-kHz echosounder was used to track vertical motion of the sound scattering layer, and microstructure profiles were collected to observe turbulence. An increase of dissipation rate of turbulent kinetic energy by four to five orders of magnitude was measured during diel vertical migrations of zooplankton in one case (but not observed during other cases). A strong sound scattering layer undergoing diel vertical migration was also observed in the Straits of Florida via a bottom mounted acoustic Doppler current profiler at 244 m isobath. A 3-D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating zooplankton) via a discrete phase model was used to simulate the effect of diel vertical migrations on the turbulence for both Saanich Inlet and the Straits of Florida. The model was initialized with idealized (but based on observation) density and velocity profiles. Particles, with buoyancy adjusted to serve as a proxy for vertically swimming zooplankton, were injected to simulate diel vertical migration cycles. Results of models run with extreme concentrations of particles showed an increase in dissipation rate of turbulent kinetic energy of approximately five orders of magnitude over background turbulence during migration of particles in both Saanich Inlet and the Straits of Florida cases (though direct relation of the turbulence produced by buoyant particles and swimming organisms isn't straightforward). This increase was quantitatively consistent, with turbulence measurements by Kunze et al. (2006). When 10 times fewer particles were injected into the model, the effect on dissipation

  11. Defect structures induced by high-energy displacement cascades in γ uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Beeler, Benjamin; Deo, Chaitanya

    Displacement cascade simulations were conducted for the c uranium system based on molecular dynamics. A recently developed modified embedded atom method (MEAM) potential was employed to replicate the atomic interactions while an embedded atom method (EAM) potential was adopted to help characterize the defect structures induced by the displacement cascades. The atomic displacement process was studied by providing primary knock-on atoms (PKAs) with kinetic energies from 1 keV to 50 keV. The influence of the PKA incident direction was examined. The defect structures were analyzed after the systems were fully relaxed. The states of the self-interstitial atoms (SIAs) were categorizedmore » into various types of dumbbells, the crowdion, and the octahedral interstitial. The voids were determined to have a polyhedral shape with {110} facets. The size distribution of the voids was also obtained. The results of this study not only expand the knowledge of the microstructural evolution in irradiated c uranium, but also provide valuable references for the radiation-induced defects in uranium alloy fuels.« less

  12. An optical and magnetic resonance study of point defects in silicon, diamond, and aluminum nitride

    NASA Astrophysics Data System (ADS)

    Mason, Philip Wayne

    1998-12-01

    Optical and magnetic resonance studies of point defects in silicon, diamond, and aluminum nitride semiconducting crystals are described in this dissertation. In silicon, an optically detected magnetic resonance (ODMR) study of a sulfur-related defect with two stable configurations, Ssb{A} and Ssb{B}, each with its own photoluminescence (PL) band and associated ODMR spectrum, is discussed. Through ODMR and related linear polarization studies, the Ssb{A} configuration is conclusively determined to have Csb1 (triclinic) symmetry (which is also the tentative finding for Ssb{B}), a controversial issue in the literature. A conversion study comparing the PL and PLODMR shows a one-to-one conversion between the two configurations for each type of signal. Related findings also tentatively suggest that the Ssb{B} configuration is metastable in both the neutral and single positive charge states of the defect. In addition, an independent analysis presented of uniaxial stress data obtained at King's College, London, shows evidence that an inverted energy-level ordering of the excited electronic effective mass states (Asb1 above E) explains the data better than the opposite ordering which is usually observed for effective mass systems. The mechanism responsible for inversion is currently not known. In diamond, a 1.4 eV Ni-related band with very sharp zero-phonon lines is studied using magnetic circular dichroism in absorption (MCDA). A tunable laser was used to directly measure circular polarization properties of transitions between individual Zeeman-split spin states. The Zeeman study also provided a determination of their associated g-values. A comparison with a theoretical model involving intra-d-shell transitions of Ni indicates that a transition from a ground state of Gammasb{5,6}(sp2E) symmetry to a Gammasb4(sp2Asb1) excited state explains the experimental MCDA findings and agrees with results from a previous uniaxial stress polarization study of luminescence associated

  13. On the ab initio calculation of vibrational formation entropy of point defect: the case of the silicon vacancy

    NASA Astrophysics Data System (ADS)

    Seeberger, Pia; Vidal, Julien

    2017-08-01

    Formation entropy of point defects is one of the last crucial elements required to fully describe the temperature dependence of point defect formation. However, while many attempts have been made to compute them for very complicated systems, very few works have been carried out such as to assess the different effects of finite size effects and precision on such quantity. Large discrepancies can be found in the literature for a system as primitive as the silicon vacancy. In this work, we have proposed a systematic study of formation entropy for silicon vacancy in its 3 stable charge states: neutral, +2 and -2 for supercells with size not below 432 atoms. Rationalization of the formation entropy is presented, highlighting importance of finite size error and the difficulty to compute such quantities due to high numerical requirement. It is proposed that the direct calculation of formation entropy of VSi using first principles methods will be plagued by very high computational workload (or large numerical errors) and finite size dependent results.

  14. Density Functional Theory Calculations of Activation Energies for Non-radiative Carrier Capture by Deep Defect Levels in Semiconductors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modine, Normand Arthur; Wright, Alan F.; Lee, Stephen R.

    Carrier recombination due to defects can have a major impact on device performance. The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Kohn-Sham density functional theory (DFT) has been widely and successfully used to predict defect levels in semiconductors and insulators, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry worked out the fundamental theory of carrier-capture cross-sections in the 1970s and showed that, in most cases, room temperature carrier-capture cross-sections differ between defects primarily due to differences in the carrier capture activationmore » energies. Here, we present an approach to using DFT to calculate carrier capture activation energies that does not depend on perturbation theory or an assumed configuration coordinate, and we demonstrate this approach for the -3/-2 level of the Ga vacancy in wurtzite GaN.« less

  15. Free energy landscape of dissociative adsorption of methane on ideal and defected graphene from ab initio simulations

    NASA Astrophysics Data System (ADS)

    Wlazło, M.; Majewski, J. A.

    2018-03-01

    We study the dissociative adsorption of methane at the surface of graphene. Free energy profiles, which include activation energies for different steps of the reaction, are computed from constrained ab initio molecular dynamics. At 300 K, the reaction barriers are much lower than experimental bond dissociation energies of gaseous methane, strongly indicating that the graphene surface acts as a catalyst of methane decomposition. On the other hand, the barriers are still much higher than on the nickel surface. Methane dissociation therefore occurs at a higher rate on nickel than on graphene. This reaction is a prerequisite for graphene growth from a precursor gas. Thus, the growth of the first monolayer should be a fast and efficient process while subsequent layers grow at a diminished rate and in a more controllable manner. Defects may also influence reaction energetics. This is evident from our results, in which simple defects (Stone-Wales defect and nitrogen substitution) lead to different free energy landscapes at both dissociation and adsorption steps of the process.

  16. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    PubMed Central

    Ding, Jiaxi; Jiang, DeChen; Kurczy, Michael; Nalepka, Jennifer; Dudley, Brian; Merkel, Erin I; Porter, Forbes D; Ewing, Andrew G; Winograd, Nicholas; Burgess, James; Molyneaux, Kathleen

    2008-01-01

    Background Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival. PMID:19117526

  17. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    DOE PAGES

    Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...

    2015-10-28

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less

  18. [Migration, climate and health].

    PubMed

    Tellier, Siri; Carballo, Manuel; Calballo, Manuel

    2009-10-26

    Many tentative connections have been postulated between migration and climate. This article points to rural-urban migration, particularly into low elevation urban slums prone to flooding as an issue needing urgent attention by health professionals. It also notes the no-man's land in which environmental refugees find themselves and the consequences this may have. Finally, it points to the urgent need to reform health systems in both developing and developed countries to adapt to rapidly changing disease patterns and to become more responsive to them.

  19. Ultrafast exciton migration in an HJ-aggregate: Potential surfaces and quantum dynamics

    NASA Astrophysics Data System (ADS)

    Binder, Robert; Polkehn, Matthias; Ma, Tianji; Burghardt, Irene

    2017-01-01

    Quantum dynamical and electronic structure calculations are combined to investigate the mechanism of exciton migration in an oligothiophene HJ aggregate, i.e., a combination of oligomer chains (J-type aggregates) and stacked aggregates of such chains (H-type aggregates). To this end, a Frenkel exciton model is parametrized by a recently introduced procedure [Binder et al., J. Chem. Phys. 141, 014101 (2014)] which uses oligomer excited-state calculations to perform an exact, point-wise mapping of coupled potential energy surfaces to an effective Frenkel model. Based upon this parametrization, the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method is employed to investigate ultrafast dynamics of exciton transfer in a small, asymmetric HJ aggregate model composed of 30 sites and 30 active modes. For a partially delocalized initial condition, it is shown that a torsional defect confines the trapped initial exciton, and planarization induces an ultrafast resonant transition between an HJ-aggregated segment and a covalently bound "dangling chain" end. This model is a minimal realization of experimentally investigated mixed systems exhibiting ultrafast exciton transfer between aggregated, highly planarized chains and neighboring disordered segments.

  20. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex.

    PubMed

    Ji, Liting; Bishayee, Kausik; Sadra, Ali; Choi, Seunghyuk; Choi, Wooyul; Moon, Sungho; Jho, Eek-Hoon; Huh, Sung-Oh

    2017-07-04

    Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Degradation of polyfluorene-type polymers: interface and bulk-related defects

    NASA Astrophysics Data System (ADS)

    Gamerith, Stefan; Gadermaier, Christoph; Nothofer, Heinz G.; Scherf, Ullrich; List, Emil J.

    2004-09-01

    The origin of a broad low-energy photo-luminescence (PL) and electro-luminescence (EL) band emerging upon oxidative degradation of hihgly emissive polyfluorenes (PFs) has recently been identified as the emission from on-chain keto defects acting as exciton and/or charge traps. In this work we compare several polyfluorenes with respect to their stability upon thermal degradation, and their stability upon fabrication and operation of PF-based polymer light emitting devices (PLEDs). We show that in addition to the keto emission a second type of defect emission, which is related to the deposition of the metal electrode, can also affect the color purity of PF-PLEDs. Investigated materials are a poly(9,9 dialkylfluorene) with hexahydrofarnesyl sidechains (PF111/12) a poly(9,9 dialkylfluorene) with ethyl-hexyl sidechains (PF 2/6) and two different slightly branched spiro-PFs with and without triphenylamine endcappers, respetively. We find significant differences in the spectral stability of the polymers which may on the one hand be explained by a difference of the chemical stability of the polymers but to some extent must be explained withiin the picture of excited energy migration. Regarding a comparison of the polymers, the end-capped spiro-type PF shows an overall improved performance compared to the other investigated polymers provided that the evaporation process of the metal cathode of an PLED is well controlled to avoid the formation of emissive defects at the interface.

  2. Summing the strokes: energy economy in northern elephant seals during large-scale foraging migrations.

    PubMed

    Maresh, J L; Adachi, T; Takahashi, A; Naito, Y; Crocker, D E; Horning, M; Williams, T M; Costa, D P

    2015-01-01

    The energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predators on ecosystems. Given their large body size and carnivorous lifestyle, we would predict that northern elephant seals (Mirounga angustirostris) have elevated field metabolic rates (FMRs) that require high prey intake rates, especially during pregnancy. Disturbance associated with climate change or human activity is predicted to further elevate energy requirements due to an increase in locomotor costs required to accommodate a reduction in prey or time available to forage. In this study, we determined the FMRs, total energy requirements, and energy budgets of adult, female northern elephant seals. We also examined the impact of increased locomotor costs on foraging success in this species. Body size, time spent at sea and reproductive status strongly influenced FMR. During the short foraging migration, FMR averaged 90.1 (SE = 1.7) kJ kg(-1)d(-1) - only 36 % greater than predicted basal metabolic rate. During the long migration, when seals were pregnant, FMRs averaged 69.4 (±3.0) kJ kg(-1)d(-1) - values approaching those predicted to be necessary to support basal metabolism in mammals of this size. Low FMRs in pregnant seals were driven by hypometabolism coupled with a positive feedback loop between improving body condition and reduced flipper stroking frequency. In contrast, three additional seals carrying large, non-streamlined instrumentation saw a four-fold increase in energy partitioned toward locomotion, resulting in elevated FMRs and only half the mass gain of normally-swimming study animals. These results highlight the importance of keeping locomotion costs low for successful foraging in this species. In preparation for lactation and two fasting periods with high demands on energy reserves, migrating elephant seals utilize an economical foraging

  3. Research on stratified evolution of composite materials under four-point bending loading

    NASA Astrophysics Data System (ADS)

    Hao, M. J.; You, Q. J.; Zheng, J. C.; Yue, Z.; Xie, Z. P.

    2017-12-01

    In order to explore the effect of stratified evolution and delamination on the load capacity and service life of the composite materials under the four-point bending loading, the artificial tectonic defects of the different positions were set up. The four-point bending test was carried out, and the whole process was recorded by acoustic emission, and the damage degree of the composite layer was judged by the impact accumulation of the specimen - time-amplitude history chart, load-time-relative energy history chart, acoustic emission impact signal positioning map. The results show that the stratified defects near the surface of the specimen accelerate the process of material failure and expansion. The location of the delamination defects changes the bending performance of the composites to a great extent. The closer the stratification defects are to the surface of the specimen, the greater the damage, the worse the service capacity of the specimen.

  4. Synthetic seismic monitoring using reverse-time migration and Kirchhoff migration for CO2 sequestration in Korea

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.

    2012-12-01

    vertical CO2 migration at injection point, the reverse time migration yields better images than Kirchhoff migration does. On the other hand, Kirchhoff migration images horizontal CO2 migration clearer than the reverse time migration does. From these results, we can conclude that the reverse-time migration and Kirchhoff migration can complement with each other to describe the behavior of CO2 in the subsurface. Acknowledgement This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).

  5. Persistence time of charge carriers in defect states of molecular semiconductors.

    PubMed

    McMahon, David P; Troisi, Alessandro

    2011-06-07

    Charge carriers in organic crystals are often trapped in point defects. The persistence time of the charge in these defect states is evaluated by computing the escape rate from this state using non-adiabatic rate theory. Two cases are considered (i) the hopping between separate identical defect states and (ii) the hopping between a defect state and the bulk (delocalized) states. We show that only the second process is likely to happen with realistic defect concentrations and highlight that the inclusion of an effective quantum mode of vibration is essential for accurate computation of the rate. The computed persistence time as a function of the trap energy indicates that trap states shallower than ∼0.3 eV cannot be effectively investigated with some slow spectroscopic techniques such as THz spectroscopy or EPR commonly used to study the nature of excess charge in semiconductors.

  6. Luminescence properties of defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael A.; Morkoç, Hadis

    2005-03-01

    Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The point defects include native isolated defects (vacancies, interstitial, and antisites), intentional or unintentional impurities, as well as complexes involving different combinations of the isolated defects. Further improvements in device performance and longevity hinge on an in-depth understanding of point defects and their reduction. In this review a comprehensive and critical analysis of point defects in GaN, particularly their manifestation in luminescence, is presented. In addition to a comprehensive analysis of native point defects, the signatures of intentionally and unintentionally introduced impurities are addressed. The review discusses in detail the characteristics and the origin of the major luminescence bands including the ultraviolet, blue, green, yellow, and red bands in undoped GaN. The effects of important group-II impurities, such as Zn and Mg on the photoluminescence of GaN, are treated in detail. Similarly, but to a lesser extent, the effects of

  7. Nuclear migration events throughout development

    PubMed Central

    Bone, Courtney R.

    2016-01-01

    ABSTRACT Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders. PMID:27182060

  8. The JNM1 gene in the yeast Saccharomyces cerevisiae is required for nuclear migration and spindle orientation during the mitotic cell cycle

    PubMed Central

    1994-01-01

    JNM1, a novel gene on chromosome XIII in the yeast Saccharomyces cerevisiae, is required for proper nuclear migration. jnm1 null mutants have a temperature-dependent defect in nuclear migration and an accompanying alteration in astral microtubules. At 30 degrees C, a significant proportion of the mitotic spindles is not properly located at the neck between the mother cell and the bud. This defect is more severe at low temperature. At 11 degrees C, 60% of the cells accumulate with large buds, most of which have two DAPI staining regions in the mother cell. Although mitosis is delayed and nuclear migration is defective in jnm1 mutant, we rarely observe more than two nuclei in a cell, nor do we frequently observe anuclear cells. No loss of viability is observed at 11 degrees C and cells continue to grow exponentially with increased doubling time. At low temperature the large budded cells of jnm1 mutants exhibit extremely long astral microtubules that often wind around the periphery of the cell. jnm1 mutants are not defective in chromosome segregation during mitosis, as assayed by the rate of chromosome loss, or nuclear migration during conjugation, as assayed by the rate of mating and cytoduction. The phenotype of a jnm1 mutant is strikingly similar to that for mutants in the dynein heavy chain gene (Eshel, D., L. A. Urrestarazu, S. Vissers, J.-C. Jauniaux, J. C. van Vliet-Reedijk, R. J. Plants, and I. R. Gibbons. 1993. Proc. Natl. Acad. Sci. USA. 90:11172-11176; Li, Y. Y., E. Yeh, T. Hays, and K. Bloom. 1993. Proc. Natl. Acad. Sci. USA. 90:10096-10100). The JNM1 gene product is predicted to encode a 44-kD protein containing three coiled coil domains. A JNM1:lacZ gene fusion is able to complement the cold sensitivity and microtubule phenotype of a jnm1 deletion strain. This hybrid protein localizes to a single spot in the cell, most often near the spindle pole body in unbudded cells and in the bud in large budded cells. Together these results point to a specific role

  9. Cobalt related defect levels in silicon analyzed by temperature- and injection-dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Diez, S.; Rein, S.; Roth, T.; Glunz, S. W.

    2007-02-01

    Temperature- and injection-dependent lifetime spectroscopy (TIDLS) as a method to characterize point defects in silicon with several energy levels is demonstrated. An intentionally cobalt-contaminated p-type wafer was investigated by means of lifetime measurements performed at different temperatures up to 151°C. Two defect energy levels were required to model the lifetime curves on basis of the Shockley-Read-Hall statistics. The detailed analysis is based on the determination of the recently introduced defect parameter solution surface (DPSS) in order to extract the underlying defect parameters. A unique solution has been found for a deep defect level located in the upper band gap half with an energy depth of EC-Et=0.38±0.01eV, with a corresponding ratio of capture cross sections k =σn/σp=0.16 within the interval of uncertainty of 0.06-0.69. Additionally, a deep donor level in the lower band gap half known from the literature could be assigned to a second energy level within the DPSS analysis at Et-EV=0.41±0.02eV with a corresponding ratio of capture cross sections k =σn/σp=16±3. An investigation of the temperature dependence of the capture cross section for electrons suggests that the underlying recombination process of the defect in the lower band gap half is driven by a two stage cascade capture with an activation energy of ΔE =52±2meV. These results show that TIDLS in combination with DPSS analysis is a powerful method to characterize even multiple defect levels that are affecting carrier recombination lifetime in parallel.

  10. Solute-defect interactions in Al-Mg alloys from diffusive variational Gaussian calculations

    NASA Astrophysics Data System (ADS)

    Dontsova, E.; Rottler, J.; Sinclair, C. W.

    2014-11-01

    Resolving atomic-scale defect topologies and energetics with accurate atomistic interaction models provides access to the nonlinear phenomena inherent at atomic length and time scales. Coarse graining the dynamics of such simulations to look at the migration of, e.g., solute atoms, while retaining the rich atomic-scale detail required to properly describe defects, is a particular challenge. In this paper, we present an adaptation of the recently developed "diffusive molecular dynamics" model to describe the energetics and kinetics of binary alloys on diffusive time scales. The potential of the technique is illustrated by applying it to the classic problems of solute segregation to a planar boundary (stacking fault) and edge dislocation in the Al-Mg system. Our approach provides fully dynamical solutions in situations with an evolving energy landscape in a computationally efficient way, where atomistic kinetic Monte Carlo simulations are difficult or impractical to perform.

  11. The CiCs(SiI)n Defect in Silicon from a Density Functional Theory Perspective.

    PubMed

    Christopoulos, Stavros-Richard G; Sgourou, Efstratia N; Vovk, Ruslan V; Chroneos, Alexander; Londos, Charalampos A

    2018-04-16

    Carbon constitutes a significant defect in silicon (Si) as it can interact with intrinsic point defects and affect the operation of devices. In heavily irradiated Si containing carbon the initially produced carbon interstitial-carbon substitutional (C i C s ) defect can associate with self-interstitials (Si I 's) to form, in the course of irradiation, the C i C s (Si I ) defect and further form larger complexes namely, C i C s (Si I ) n defects, by the sequential trapping of self-interstitials defects. In the present study, we use density functional theory to clarify the structure and energetics of the C i C s (Si I ) n defects. We report that the lowest energy C i C s (Si I ) and C i C s (Si I )₂ defects are strongly bound with -2.77 and -5.30 eV, respectively.

  12. Si amorphization by focused ion beam milling: Point defect model with dynamic BCA simulation and experimental validation.

    PubMed

    Huang, J; Loeffler, M; Muehle, U; Moeller, W; Mulders, J J L; Kwakman, L F Tz; Van Dorp, W F; Zschech, E

    2018-01-01

    A Ga focused ion beam (FIB) is often used in transmission electron microscopy (TEM) analysis sample preparation. In case of a crystalline Si sample, an amorphous near-surface layer is formed by the FIB process. In order to optimize the FIB recipe by minimizing the amorphization, it is important to predict the amorphous layer thickness from simulation. Molecular Dynamics (MD) simulation has been used to describe the amorphization, however, it is limited by computational power for a realistic FIB process simulation. On the other hand, Binary Collision Approximation (BCA) simulation is able and has been used to simulate ion-solid interaction process at a realistic scale. In this study, a Point Defect Density approach is introduced to a dynamic BCA simulation, considering dynamic ion-solid interactions. We used this method to predict the c-Si amorphization caused by FIB milling on Si. To validate the method, dedicated TEM studies are performed. It shows that the amorphous layer thickness predicted by the numerical simulation is consistent with the experimental data. In summary, the thickness of the near-surface Si amorphization layer caused by FIB milling can be well predicted using the Point Defect Density approach within the dynamic BCA model. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Thermal conductivity of graphene with defects induced by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.

    2016-07-01

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is

  14. Effect of ultrasonic cavitation on the diffusivity of a point defect in the passive film on formed Nb in 0.5 M HCl solution.

    PubMed

    Li, D G

    2015-11-01

    This work primarily focused on the influence of ultrasonic cavitation on the transport property of the point defect in the passive film on formed Nb in 0.5M HCl solution via electrochemical techniques based on the point defect model (PDM). The influence of ultrasonic cavitation on the composition and structure of the passive film was detected by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The transport property of a point defect in the passive film was characterized by the diffusivity of the point defect (D0). The influences of the ultrasonic cavitation power, passivated time and the distance between horn bottom and sample surface on D0 were analyzed. The results demonstrated that the passive film formed on Nb was an n-type semiconductor with a donor density (ND) ranging from 10(19) cm(-3) to 10(20) cm(-3) in the case of static state, while the order of ND increased one to two times by applying ultrasonic cavitation during film formation. The diffusivity of the point defect (D0) in the passive film formed on Nb at 0.5 V for 1 h in a 0.5 M HCl solution in the static state was calculated to be 9.704×10(-18) cm(2) s(-1), and it increased to 1.255×10(-16) cm(2) s(-1), 7.259×10(-16) cm(2) s(-1) and 7.296×10(-15) cm(2) s(-1) when applying the 180 W, 270 W and 450 W ultrasonic cavitation powers during film formation. D0 increased with the increment of the ultrasonic cavitation power, and decreased with the increased in formation time and distance between the horn bottom and sample surface. AES results showed the film structure and composition were changed by applying the ultrasonic cavitation. XPS results revealed that the passive film was mainly composed of Nb2O5 in the static state, and the low valence Nb-oxide (NbO) appeared in the passive film except Nb2O5 in the case of applying a 270 W ultrasonic cavitation power. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Direct quantification of energy intake in an apex marine predator suggests physiology is a key driver of migrations

    PubMed Central

    Whitlock, Rebecca E.; Hazen, Elliott L.; Walli, Andreas; Farwell, Charles; Bograd, Steven J.; Foley, David G.; Castleton, Michael; Block, Barbara A.

    2015-01-01

    Pacific bluefin tuna (Thunnus orientalis) are highly migratory apex marine predators that inhabit a broad thermal niche. The energy needed for migration must be garnered by foraging, but measuring energy intake in the marine environment is challenging. We quantified the energy intake of Pacific bluefin tuna in the California Current using a laboratory-validated model, the first such measurement in a wild marine predator. Mean daily energy intake was highest off the coast of Baja California, Mexico in summer (mean ± SD, 1034 ± 669 kcal), followed by autumn when Pacific bluefin achieve their northernmost range in waters off northern California (944 ± 579 kcal). Movements were not always consistent with maximizing energy intake: the Pacific bluefin move out of energy rich waters both in late summer and winter, coincident with rising and falling water temperatures, respectively. We hypothesize that temperature-related physiological constraints drive migration and that Pacific bluefin tuna optimize energy intake within a range of optimal aerobic performance. PMID:26601248

  16. Direct quantification of energy intake in an apex marine predator suggests physiology is a key driver of migrations.

    PubMed

    Whitlock, Rebecca E; Hazen, Elliott L; Walli, Andreas; Farwell, Charles; Bograd, Steven J; Foley, David G; Castleton, Michael; Block, Barbara A

    2015-09-01

    Pacific bluefin tuna (Thunnus orientalis) are highly migratory apex marine predators that inhabit a broad thermal niche. The energy needed for migration must be garnered by foraging, but measuring energy intake in the marine environment is challenging. We quantified the energy intake of Pacific bluefin tuna in the California Current using a laboratory-validated model, the first such measurement in a wild marine predator. Mean daily energy intake was highest off the coast of Baja California, Mexico in summer (mean ± SD, 1034 ± 669 kcal), followed by autumn when Pacific bluefin achieve their northernmost range in waters off northern California (944 ± 579 kcal). Movements were not always consistent with maximizing energy intake: the Pacific bluefin move out of energy rich waters both in late summer and winter, coincident with rising and falling water temperatures, respectively. We hypothesize that temperature-related physiological constraints drive migration and that Pacific bluefin tuna optimize energy intake within a range of optimal aerobic performance.

  17. Effect of single-strand break on branch migration and folding dynamics of Holliday junctions.

    PubMed

    Palets, Dmytro; Lushnikov, Alexander Y; Karymov, Mikhail A; Lyubchenko, Yuri L

    2010-09-22

    The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those

  18. Center for Defect Physics - Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Stocks, G. Malcolm (Director, Center for Defect Physics in Structural Materials); CDP Staff

    2017-12-09

    'Center for Defect Physics - Energy Frontier Research Center' was submitted by the Center for Defect Physics (CDP) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; Brown University; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Lawrence Livermore National Laboratory; Ohio State University; and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  19. Center for Defect Physics - Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stocks, G. Malcolm; Ice, Gene

    "Center for Defect Physics - Energy Frontier Research Center" was submitted by the Center for Defect Physics (CDP) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from eight institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Ohio State University;more » University of Georgia and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  20. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    NASA Astrophysics Data System (ADS)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  1. Imaging active topological defects in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Suenaga, Kazu; Wakabayashi, Hideaki; Koshino, Masanori; Sato, Yuta; Urita, Koki; Iijima, Sumio

    2007-06-01

    A single-walled carbon nanotube (SWNT) is a wrapped single graphene layer, and its plastic deformation should require active topological defects-non-hexagonal carbon rings that can migrate along the nanotube wall. Although in situ transmission electron microscopy (TEM) has been used to examine the deformation of SWNTs, these studies deal only with diameter changes and no atomistic mechanism has been elucidated experimentally. Theory predicts that some topological defects can form through the Stone-Wales transformation in SWNTs under tension at 2,000 K, and could act as a dislocation core. We demonstrate here, by means of high-resolution (HR)-TEM with atomic sensitivity, the first direct imaging of pentagon-heptagon pair defects found in an SWNT that was heated at 2,273 K. Moreover, our in situ HR-TEM observation reveals an accumulation of topological defects near the kink of a deformed nanotube. This result suggests that dislocation motions or active topological defects are indeed responsible for the plastic deformation of SWNTs.

  2. Wound Healing Is Defective in Mice Lacking Tetraspanin CD151

    PubMed Central

    Cowin, Allison J.; Adams, Damian; Geary, Sean M.; Wright, Mark D.; Jones, Jonathan C.R.; Ashman, Leonie K.

    2010-01-01

    The tetraspanin CD151 forms complexes in epithelial cell membranes with laminin-binding integrins α6 β4, α3 β1, and α6 β1, and modifies integrin-mediated cell migration in vitro. We demonstrate in this study that CD151 expression is upregulated in a distinct temporal and spatial pattern during wound healing, particularly in the migrating epidermal tongue at the wound edge, suggesting a role for CD151 in keratinocyte migration. We show that healing is significantly impaired in CD151-null mice, with wounds gaping wider at 7 days post-injury. The rate of re-epithelialization of the CD151-null wounds is adversely affected, with significantly less wound area being covered by migrating epidermal cells. Our studies reveal that although laminin levels are similar in wild-type and CD151-null wounds, the organization of the laminin in the basement membrane is impaired. Furthermore, upregulation of α6 and β4 integrin expression is adversely affected in CD151-null mice wounds. In contrast, we find no significant effect of CD151 gene knockout on α3 and β1 integrin expression in wound repair. We suggest that mice lacking the CD151 gene are defective in wound healing, primarily owing to impairment of the re-epithelialization process. This may be due to defective basement membrane formation and epithelial cell adhesion and migration. PMID:16410781

  3. Various Stone-Wales defects in phagraphene

    NASA Astrophysics Data System (ADS)

    Openov, L. A.; Podlivaev, A. I.

    2016-08-01

    Various Stone-Wales defects in phagraphene, which is a graphene allotrope, predicted recently are studied in terms of the nonorthogonal tight-binding model. The energies of the defect formation and the heights of energy barriers preventing the formation and annealing of the defects are found. Corresponding frequency factors in the Arrhenius formula are calculated. The evolution of the defect structure is studied in the real-time mode using the molecular dynamics method.

  4. Universal energy spectrum from point sources

    NASA Technical Reports Server (NTRS)

    Tomozawa, Yukio

    1992-01-01

    The suggestion is made that the energy spectrum from point sources such as galactic black hole candidates (GBHC) and active galactic nuclei (AGN) is universal on the average, irrespective of the species of the emitted particles, photons, nucleons, or others. The similarity between the observed energy spectra of cosmic rays, gamma-rays, and X-rays is discussed. In other words, the existing data for gamma-rays and X-rays seem to support the prediction. The expected data from the Gamma Ray Observatory are to provide a further test.

  5. Kibble Zurek mechanism of topological defect formation in quantum field theory with matrix product states

    NASA Astrophysics Data System (ADS)

    Gillman, Edward; Rajantie, Arttu

    2018-05-01

    The Kibble Zurek mechanism in a relativistic ϕ4 scalar field theory in D =(1 +1 ) is studied using uniform matrix product states. The equal time two point function in momentum space G2(k ) is approximated as the system is driven through a quantum phase transition at a variety of different quench rates τQ. We focus on looking for signatures of topological defect formation in the system and demonstrate the consistency of the picture that the two point function G2(k ) displays two characteristic scales, the defect density n and the kink width dK. Consequently, G2(k ) provides a clear signature for the formation of defects and a well defined measure of the defect density in the system. These results provide a benchmark for the use of tensor networks as powerful nonperturbative nonequilibrium methods for relativistic quantum field theory, providing a promising technique for the future study of high energy physics and cosmology.

  6. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.

    1986-01-01

    A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).

  7. Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires

    NASA Astrophysics Data System (ADS)

    Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.

    2007-12-01

    Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.

  8. Effects of point defect concentrations of the reactive element oxides on the oxidation kinetics of pure Ni and Ni-Cr alloys

    NASA Astrophysics Data System (ADS)

    Yan, Ruey-Fong

    The addition of some reactive element oxides, e.g. Ysb2Osb3 or ZrOsb2, has significant effects, e.g. improvement in scale adhesion and reduction in oxidation rate, on the oxidation behavior of chromia and alumina scale forming alloys at high temperatures. However, there is little agreement about how a small addition of an oxygen-active element can cause such profound effects. It was the goal of this project to study the growth kinetics of an oxide scale when different reactive-element oxides were added to pure Ni and Ni-Cr alloys and, consequently, to aid in clarifying the mechanism of reactive element effects. The oxidation kinetics were measured using a thermogravimetric analysis (TGA) method and the material characterization of oxide scale was conducted. The relationship between point defect structures and oxidation kinetics was discussed. The results in this research showed that Ysb2Osb3 and ZrOsb2 exhibited the reactive element effects on the oxidation behaviors of Ni and Ni-Cr alloys. In addition, the point defect concentrations of the reactive element oxide, Ysb2Osb3, were changed by doping of different valent oxides. The modification of point defect concentrations of the reactive element oxide dispersed phases did change the oxidation kinetics of the pure Ni and Ni-Cr alloys containing Ysb2Osb3. These results indicate that the transport properties of the reactive element oxide dispersed phases are one of the important factors in determining the growth rate of an oxide scale.

  9. A role for chemokine signaling in neural crest cell migration and craniofacial development

    PubMed Central

    Killian, Eugenia C. Olesnicky; Birkholz, Denise A.; Artinger, Kristin Bruk

    2009-01-01

    Neural crest cells (NCCs) are a unique population of multipotent cells that migrate along defined pathways throughout the embryo and give rise to many diverse cell types including pigment cells, craniofacial cartilage and the peripheral nervous system (PNS). Aberrant migration of NCCs results in a wide variety of congenital birth defects including craniofacial abnormalities. The chemokine Sdf1 and its receptors, Cxcr4 and Cxcr7, have been identified as key components in the regulation of cell migration in a variety of tissues. Here we describe a novel role for the zebrafish chemokine receptor Cxcr4a in the development and migration of cranial NCCs (CNCCs). We find that loss of Cxcr4a, but not Cxcr7b results in aberrant CNCC migration, defects in the neurocranium, as well as cranial ganglia dismorphogenesis. Moreover, overexpression of either Sdf1b or Cxcr4a causes aberrant CNCC migration and results in ectopic craniofacial cartilages. We propose a model in which Sdf1b signaling from the pharyngeal arch endoderm and optic stalk to Cxcr4a expressing CNCCs is important for both the proper condensation of the CNCCs into pharyngeal arches and the subsequent patterning and morphogenesis of the neural crest derived tissues. PMID:19576198

  10. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    PubMed

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  11. A Comparison of Point Defects in Cd 1-xZn xTe 1-ySe y Crystals Grown by Bridgman and Traveling Heater Methods

    DOE PAGES

    Gul, R.; Roy, U. N.; Camarda, G. S.; ...

    2017-03-28

    In this study, the properties of point defects in Cd 1–xZn xTe 1–ySe y (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the V Cd – concentration. In Travelling Heater Method (THM) and Bridgman Methodmore » (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of V Cd – and two additional traps (attributed to Te i – and Te Cd ++ appearing at around E v + 0.26 eV and E c – 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.« less

  12. A Comparison of Point Defects in Cd 1-xZn xTe 1-ySe y Crystals Grown by Bridgman and Traveling Heater Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gul, R.; Roy, U. N.; Camarda, G. S.

    In this study, the properties of point defects in Cd 1–xZn xTe 1–ySe y (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the V Cd – concentration. In Travelling Heater Method (THM) and Bridgman Methodmore » (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of V Cd – and two additional traps (attributed to Te i – and Te Cd ++ appearing at around E v + 0.26 eV and E c – 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.« less

  13. Optimal migration energetics of humpback whales and the implications of disturbance.

    PubMed

    Braithwaite, Janelle E; Meeuwig, Jessica J; Hipsey, Matthew R

    2015-01-01

    Whales migrate long distances and reproduce on a finite store of energy. Budgeting the use of this limited energy reserve is an important factor to ensure survival over the period of migration and to maximize reproductive investment. For some whales, migration routes are closely associated with coastal areas, exposing animals to high levels of human activity. It is currently unclear how various forms of human activity may disturb whales during migration, how this might impact their energy balance and how this could translate into long-term demographic changes. Here, we develop a theoretical bioenergetic model for migrating humpback whales to investigate the optimal migration strategy that minimizes energy use. The average migration velocity was an important driver of the total energy used by a whale, and an optimal velocity of 1.1 m s(-1) was determined. This optimal velocity is comparable to documented observed migration speeds, suggesting that whales migrate at a speed that conserves energy. Furthermore, the amount of resting time during migration was influenced by both transport costs and feeding rates. We simulated hypothetical disturbances to the optimal migration strategy in two ways, by altering average velocity to represent changes in behavioural activity and by increasing total travelled distance to represent displacement along the migration route. In both cases, disturbance increased overall energy use, with implications for the growth potential of calves.

  14. Optimal migration energetics of humpback whales and the implications of disturbance

    PubMed Central

    Braithwaite, Janelle E.; Meeuwig, Jessica J.; Hipsey, Matthew R.

    2015-01-01

    Whales migrate long distances and reproduce on a finite store of energy. Budgeting the use of this limited energy reserve is an important factor to ensure survival over the period of migration and to maximize reproductive investment. For some whales, migration routes are closely associated with coastal areas, exposing animals to high levels of human activity. It is currently unclear how various forms of human activity may disturb whales during migration, how this might impact their energy balance and how this could translate into long-term demographic changes. Here, we develop a theoretical bioenergetic model for migrating humpback whales to investigate the optimal migration strategy that minimizes energy use. The average migration velocity was an important driver of the total energy used by a whale, and an optimal velocity of 1.1 m s−1 was determined. This optimal velocity is comparable to documented observed migration speeds, suggesting that whales migrate at a speed that conserves energy. Furthermore, the amount of resting time during migration was influenced by both transport costs and feeding rates. We simulated hypothetical disturbances to the optimal migration strategy in two ways, by altering average velocity to represent changes in behavioural activity and by increasing total travelled distance to represent displacement along the migration route. In both cases, disturbance increased overall energy use, with implications for the growth potential of calves. PMID:27293686

  15. Two-stage synergy of electronic energy loss with defects in LiTaO 3 under ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellami, Neila; Crespillo, Miguel L.; Zhang, Yanwen

    Understanding energy dissipation in electronic and atomic subsystems and subsequent defect evolution is a scientific challenge. Separate and combined effects of electronic and nuclear energy deposition in z-cut LiTaO 3 have been investigated. Irradiation of pristine LiTaO 3 samples with 2 MeV Ta ions leads to amorphization due to atomic displacement damage, described by a disorder accumulation model. Here, while 21 MeV Si ions do not produce significant damage in pristine LiTaO 3, introduction of pre-existing defects sensitizes LiTaO 3 to the formation of ion tracks from the electronic energy loss by 21 MeV Si ions that induce a synergisticmore » two-stage phase transition process.« less

  16. Two-stage synergy of electronic energy loss with defects in LiTaO 3 under ion irradiation

    DOE PAGES

    Sellami, Neila; Crespillo, Miguel L.; Zhang, Yanwen; ...

    2018-03-27

    Understanding energy dissipation in electronic and atomic subsystems and subsequent defect evolution is a scientific challenge. Separate and combined effects of electronic and nuclear energy deposition in z-cut LiTaO 3 have been investigated. Irradiation of pristine LiTaO 3 samples with 2 MeV Ta ions leads to amorphization due to atomic displacement damage, described by a disorder accumulation model. Here, while 21 MeV Si ions do not produce significant damage in pristine LiTaO 3, introduction of pre-existing defects sensitizes LiTaO 3 to the formation of ion tracks from the electronic energy loss by 21 MeV Si ions that induce a synergisticmore » two-stage phase transition process.« less

  17. Role of point defects and HfO2/TiN interface stoichiometry on effective work function modulation in ultra-scaled complementary metal-oxide-semiconductor devices

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Sathiyanarayanan, Rajesh; Kwon, Unoh; Narayanan, Vijay; Murali, K. V. R. M.

    2013-07-01

    We investigate the physical properties of a portion of the gate stack of an ultra-scaled complementary metal-oxide-semiconductor (CMOS) device. The effects of point defects, such as oxygen vacancy, oxygen, and aluminum interstitials at the HfO2/TiN interface, on the effective work function of TiN are explored using density functional theory. We compute the diffusion barriers of such point defects in the bulk TiN and across the HfO2/TiN interface. Diffusion of these point defects across the HfO2/TiN interface occurs during the device integration process. This results in variation of the effective work function and hence in the threshold voltage variation in the devices. Further, we simulate the effects of varying the HfO2/TiN interface stoichiometry on the effective work function modulation in these extremely-scaled CMOS devices. Our results show that the interface rich in nitrogen gives higher effective work function, whereas the interface rich in titanium gives lower effective work function, compared to a stoichiometric HfO2/TiN interface. This theoretical prediction is confirmed by the experiment, demonstrating over 700 meV modulation in the effective work function.

  18. Role of the charge state of interface defects in electronic inhomogeneity evolution with gate voltage in graphene

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Gupta, Anjan K.

    2018-05-01

    Evolution of electronic inhomogeneities with back-gate voltage in graphene on SiO2 was studied using room temperature scanning tunneling microscopy and spectroscopy. Reversal of contrast in some places in the conductance maps and sharp changes in cross correlations between topographic and conductance maps, when graphene Fermi energy approaches its Dirac point, are attributed to the change in charge state of interface defects. The spatial correlations in the conductance maps, described by two length scales, and their growth during approach to Dirac point, show a qualitative agreement with the predictions of the screening theory of graphene. Thus a sharp change in the two length scales close to the Dirac point, seen in our experiments, is interpreted in terms of the change in charge state of some of the interface defects. A systematic understanding and control of the charge state of defects can help in memory applications of graphene.

  19. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae

    PubMed Central

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M. Q.; Bruna, Roberto E.; García-Véscovi, Eleonora

    2016-01-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well. S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. PMID:26896140

  20. Surface structure and structural point defects of liquid and amorphous aluminosilicate nanoparticles.

    PubMed

    Linh, Nguyen Ngoc; Hoang, Vo Van

    2008-07-02

    The surface structure of liquid and amorphous aluminosilicate nanoparticles of composition Al(2)O(3)·2SiO(2) has been investigated in a model of different sizes ranging from 2.0 to 5.0 nm with the Born-Mayer type pair potential under non-periodic boundary conditions. Models have been obtained by cooling from the melts at a constant density of 2.6 g cm(-3) via molecular dynamics (MD) simulation. The surface structure has been investigated via the coordination number, bond-angle distributions and structural point defects. Calculations show that surface effects on surface static and thermodynamic properties of models are significant according to the change in the number of Al atoms in the surface layers. Evolution of the local environment of oxygen in the surface shell of nanoparticles upon cooling from the melt toward the glassy state was also found and discussed. In addition, the nanosize dependence of the glass transition temperature was presented.

  1. Surface structure and structural point defects of liquid and amorphous aluminosilicate nanoparticles

    NASA Astrophysics Data System (ADS)

    Linh, Nguyen Ngoc; Van Hoang, Vo

    2008-07-01

    The surface structure of liquid and amorphous aluminosilicate nanoparticles of composition Al2O3·2SiO2 has been investigated in a model of different sizes ranging from 2.0 to 5.0 nm with the Born-Mayer type pair potential under non-periodic boundary conditions. Models have been obtained by cooling from the melts at a constant density of 2.6 g cm-3 via molecular dynamics (MD) simulation. The surface structure has been investigated via the coordination number, bond-angle distributions and structural point defects. Calculations show that surface effects on surface static and thermodynamic properties of models are significant according to the change in the number of Al atoms in the surface layers. Evolution of the local environment of oxygen in the surface shell of nanoparticles upon cooling from the melt toward the glassy state was also found and discussed. In addition, the nanosize dependence of the glass transition temperature was presented.

  2. From HADES to PARADISE—atomistic simulation of defects in minerals

    NASA Astrophysics Data System (ADS)

    Parker, Stephen C.; Cooke, David J.; Kerisit, Sebastien; Marmier, Arnaud S.; Taylor, Sarah L.; Taylor, Stuart N.

    2004-07-01

    The development of the HADES code by Michael Norgett in the 1970s enabled, for the first time, the routine simulation of point defects in inorganic solids at the atomic scale. Using examples from current research we illustrate how the scope and applications of atomistic simulations have widened with time and yet still follow an approach readily identifiable with this early work. Firstly we discuss the use of the Mott-Littleton methodology to study the segregation of various isovalent cations to the (00.1) and (01.2) surfaces of haematite (agr-Fe2O3). The results show that the size of the impurities has a considerable effect on the magnitude of the segregation energy. We then extend these simulations to investigate the effect of the concentration of the impurities at the surface on the segregation process using a supercell approach. We consider next the effect of segregation to stepped surfaces illustrating this with recent work on segregation of La3+ to CaF2 surfaces, which show enhanced segregation to step edges. We discuss next the application of lattice dynamics to modelling point defects in complex oxide materials by applying this to the study of hydrogen incorporation into bgr-Mg2SiO4. Finally our attention is turned to a method for considering the surface energy of physically defective surfaces and we illustrate its approach by considering the low index surfaces of agr-Al2O3.

  3. Silicon displacement threshold energy determined by electron paramagnetic resonance and positron annihilation spectroscopy in cubic and hexagonal polytypes of silicon carbide

    NASA Astrophysics Data System (ADS)

    Kerbiriou, X.; Barthe, M.-F.; Esnouf, S.; Desgardin, P.; Blondiaux, G.; Petite, G.

    2007-05-01

    Both for electronic and nuclear applications, it is of major interest to understand the properties of point defects into silicon carbide (SiC). Low energy electron irradiations are supposed to create primary defects into materials. SiC single crystals have been irradiated with electrons at two beam energies in order to investigate the silicon displacement threshold energy into SiC. This paper presents the characterization of the electron irradiation-induced point defects into both polytypes hexagonal (6H) and cubic (3C) SiC single crystals by using both positron annihilation spectroscopy (PAS) and electron paramagnetic resonance (EPR). The nature and the concentration of the generated point defects depend on the energy of the electron beam and the polytype. After an electron irradiation at an energy of 800 keV vSi mono-vacancies and vSi-vC di-vacancies are detected in both 3C and 6H-SiC polytypes. On the contrary, the nature of point defects detected after an electron irradiation at 190 keV strongly depends on the polytype. Into 6H-SiC crystals, silicon Frenkel pairs vSi-Si are detected whereas only carbon vacancy related defects are detected into 3C-SiC crystals. The difference observed in the distribution of defects detected into the two polytypes can be explained by the different values of the silicon displacement threshold energies for 3C and 6H-SiC. By comparing the calculated theoretical numbers of displaced atoms with the defects numbers measured using EPR, the silicon displacement threshold energy has been estimated to be slightly lower than 20 eV in the 6H polytype and close to 25 eV in the 3C polytype.

  4. Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: Prevention with folic acid

    PubMed Central

    Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    BACKGROUND Fetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbed multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS Our results indicate that ethanol exposure interrupted divergent cardiac morphogenesis events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects. PMID:23832875

  5. Leading Process Branch Instability in Lis1+/− Nonradially Migrating Interneurons

    PubMed Central

    Gopal, Pallavi P.; Simonet, Jacqueline C.; Shapiro, William

    2010-01-01

    Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1+/− and Lis1+/+ cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1+/− neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1+/+ neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic β regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1+/− neurons, and a PAF antagonist rescues leading process branching in Lis1+/− neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization. PMID:19861636

  6. Rac1 GTPase -deficient mouse lens exhibits defects in shape, suture formation, fiber cell migration and survival

    PubMed Central

    Maddala, Rupalatha; Chauhan, Bharesh K.; Walker, Christopher; Zheng, Yi; Robinson, Michael L.; Lang, Richard A.; Rao, Ponugoti V.

    2011-01-01

    Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/β-catenin/Rap1/Nectin-based cell-cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover. PMID:21945075

  7. Linking the Primary Cilium to Cell Migration in Tissue Repair and Brain Development

    PubMed Central

    Veland, Iben Rønn; Lindbæk, Louise; Christensen, Søren Tvorup

    2014-01-01

    Primary cilia are unique sensory organelles that coordinate cellular signaling networks in vertebrates. Inevitably, defects in the formation or function of primary cilia lead to imbalanced regulation of cellular processes that causes multisystemic disorders and diseases, commonly known as ciliopathies. Mounting evidence has demonstrated that primary cilia coordinate multiple activities that are required for cell migration, which, when they are aberrantly regulated, lead to defects in organogenesis and tissue repair, as well as metastasis of tumors. Here, we present an overview on how primary cilia may contribute to the regulation of the cellular signaling pathways that control cyclic processes in directional cell migration. PMID:26955067

  8. Water Electrolyzers and the Zero-Point Energy

    NASA Astrophysics Data System (ADS)

    King, M. B.

    The gas emitted from popular water electrolyzer projects manifests unusual energetic anomalies, which include vaporizing tungsten when used in a welding torch and running internal combustion engines on small quantities of the gas. Some claim to run generators in closed loop fashion solely on the gas from the electrolyzer, which is powered solely from the generator. Most investigators believe the energy is from burning hydrogen. A hypothesis is proposed that the dominant energy is not coming from hydrogen, but rather it is coming from charged water gas clusters, which activate and coherently trap zero-point energy.

  9. Eccentricity Evolution of Migrating Planets

    NASA Technical Reports Server (NTRS)

    Murray, N.; Paskowitz, M.; Holman, M.

    2002-01-01

    We examine the eccentricity evolution of a system of two planets locked in a mean motion resonance, in which either the outer or both planets lose energy and angular momentum. The sink of energy and angular momentum could be a gas or planetesimal disk. We analytically calculate the eccentricity damping rate in the case of a single planet migrating through a planetesimal disk. When the planetesimal disk is cold (the average eccentricity is much less than 1), the circularization time is comparable to the inward migration time, as previous calculations have found for the case of a gas disk. If the planetesimal disk is hot, the migration time can be an order of magnitude shorter. We show that the eccentricity of both planetary bodies can grow to large values, particularly if the inner body does not directly exchange energy or angular momentum with the disk. We present the results of numerical integrations of two migrating resonant planets showing rapid growth of eccentricity. We also present integrations in which a Jupiter-mass planet is forced to migrate inward through a system of 5-10 roughly Earth-mass planets. The migrating planets can eject or accrete the smaller bodies; roughly 5% of the mass (averaged over all the integrations) accretes onto the central star. The results are discussed in the context of the currently known extrasolar planetary systems.

  10. Electronic properties of doped and defective NiO: A quantum Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan

    NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less

  11. Electronic properties of doped and defective NiO: A quantum Monte Carlo study

    DOE PAGES

    Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan; ...

    2017-12-28

    NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less

  12. First-principles study of structural, electronic, and optical properties of surface defects in GaAs(001) - β2(2x4)

    NASA Astrophysics Data System (ADS)

    Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko

    2018-06-01

    We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.

  13. Gravity and Zero Point Energy

    NASA Astrophysics Data System (ADS)

    Massie, U. W.

    When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.

  14. Nanoscale interfacial defect shedding in a growing nematic droplet.

    PubMed

    Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro

    2017-08-01

    Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.

  15. Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data.

    PubMed

    Welle, F; Franz, R

    2011-01-01

    Plastics bottles made from polyethylene terephthalate (PET) are increasingly used for soft drinks, mineral water, juices and beer. In this study a literature review is presented concerning antimony levels found both in PET materials as well as in foods and food simulants. On the other hand, 67 PET samples from the European bottle market were investigated for their residual antimony concentrations. A mean value of 224 ± 32 mg kg(-1) was found, the median was 220 mg kg(-1). Diffusion coefficients for antimony in PET bottle materials were experimentally determined at different temperature between 105 and 150°C. From these data, the activation energy of diffusion for antimony species from the PET bottle wall into beverages and food simulants was calculated. The obtained value of 189 kJ mol(-1) was found to be in good agreement with published data on PET microwave trays (184 kJ mol(-1)). Based on these results, the migration of antimony into beverages was predicted by mathematical migration modelling for different surface/volume ratios and antimony bottle wall concentrations. The results were compared with literature data as well as international legal limits and guidelines values for drinking water and the migration limit set from food packaging legislation. It was concluded that antimony levels in beverages due to migration from PET bottles manufactured according to the state of the art can never reach or exceed the European-specific migration limit of 40 microg kg(-1). Maximum migration levels caused by room-temperature storage even after 3 years will never be essentially higher than 2.5 microg kg(-1) and in any case will be below the European limit of 5 microg kg(-1) for drinking water. The results of this study confirm that the exposure of the consumer by antimony migration from PET bottles into beverages and even into edible oils reaches approximately 1% of the current tolerable daily intake (TDI) established by World Health Organisation (WHO). Having

  16. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    PubMed

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3

  17. Resonant nature of intrinsic defect energy levels in PbTe revealed by infrared photoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Bingpo; Cai, Chunfeng; Jin, Shuqiang; Ye, Zhenyu; Wu, Huizhen; Qi, Zhen

    2014-07-01

    Step-scan Fourier-transform infrared photoreflectance and modulated photoluminescence spectroscopy were used to characterize the optical transitions of the epitaxial PbTe thin film grown by molecular beam epitaxy on BaF2 (111) substrate in the vicinity of energy gap of lead telluride at 77 K. It is found that the intrinsic defect energy levels in the electronic structure are of resonant nature. The Te-vacancy energy level is located above the conduction band minimum by 29.1 meV. Another defect (VX) energy level situated below valance band maximum by 18.1 meV is also revealed. Whether it is associated with the Pb vacancy is still not clear. It might also be related to the misfit dislocations stemming from the lattice mismatch between PbTe and BaF2 substrate. The experimental results support the theory prediction (N. J. Parada and G. W. Pratt, Jr., Phys. Rev. Lett. 22, 180 (1969), N. J. Parada, Phys. Rev. B 3, 2042 (1971)) and are consistent with the reported Hall experimental results (G. Bauer, H. Burkhard, H. Heinrich, and A. Lopez-Otero, J. Appl. Phys. 47, 1721 (1976)).

  18. Elementary defects in graphane

    NASA Astrophysics Data System (ADS)

    Podlivaev, A. I.; Openov, L. A.

    2017-07-01

    The main zero-dimensional defects in graphane, a completely hydrogenated single-layer graphene, having the chair-type conformation have been numerically simulated. The hydrogen and carbon-hydrogen vacancies, Stone-Wales defect, and "transmutation defect" resulting from the simultaneous hoppings of two hydrogen atoms between the neighboring carbon atoms have been considered. The energies of formations of these defects have been calculated and their effect on the electronic structure, phonon spectra, and Young modulus has been studied.

  19. Fractured Connections: Migration and Holistic Models of Counselling

    ERIC Educational Resources Information Center

    Wright, Jeannie; Lang, Steve K. W.; Cornforth, Sue

    2011-01-01

    In this article we aim to explore those points at which migrant identity and landscape intersect. We also consider implications for holistic models of counselling with migrant groups. The New Zealand migration literature was the starting point to consider how and why the experience of migration has been studied. We asked how collective biography…

  20. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Peaker, A. R.; Markevich, V. P.; Coutinho, J.

    2018-04-01

    The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.

  1. [Migration and diabetes].

    PubMed

    Aydinkoc-Tuzcu, Kadriye; Schindler, Karin; Kautzky-Willer, Alexandra; Ludvik, Bernhard; Fasching, Peter

    2016-04-01

    The article deals with the demographic data of migration in Austria and with therapeutic advice concerning drug therapy and diabetes education for patients with migration background. In this context socio-cultural specifics are discussed. These suggestions are seen complementary to the general treatment guidelines of the Austrian Diabetes Association.Especially for the fast months Ramadan there are a lot of informations. The most important point is that the patient care must be highly individualized and the management plan may differ for each patient.

  2. The multiple faces of leukocyte interstitial migration

    PubMed Central

    Lämmermann, Tim; Germain, Ronald N.

    2014-01-01

    Spatiotemporal control of leukocyte dynamics within tissues is critical for successful innate and adaptive immune responses. Homeostatic trafficking and coordinated infiltration into and within sites of inflammation and infection rely on signaling in response to extracellular cues that in turn controls a variety of intracellular protein networks regulating leukocyte motility, migration, chemotaxis, positioning, and cell–cell interaction. In contrast to mesenchymal cells, leukocytes migrate in an amoeboid fashion by rapid cycles of actin polymerization and actomyosin contraction, and their migration in tissues is generally referred to as low adhesive and nonproteolytic. The interplay of actin network expansion, contraction, and adhesion shapes the exact mode of amoeboid migration, and in this review, we explore how leukocyte subsets potentially harness the same basic biomechanical mechanisms in a cell-type-specific manner. Most of our detailed understanding of these processes derives from in vitro migration studies in three-dimensional gels and confined spaces that mimic geometrical aspects of physiological tissues. We summarize these in vitro results and then critically compare them to data from intravital imaging of leukocyte interstitial migration in mouse tissues. We outline the technical challenges of obtaining conclusive mechanistic results from intravital studies, discuss leukocyte migration strategies in vivo, and present examples of mode switching during physiological interstitial migration. These findings are also placed in the context of leukocyte migration defects in primary immunodeficiencies. This overview of both in vitro and in vivo studies highlights recent progress in understanding the molecular and biophysical mechanisms that shape robust leukocyte migration responses in physiologically complex and heterogeneous environments. PMID:24573488

  3. Magnesium Vacancy Segregation and Fast Pipe Diffusion for the ½<110>{110} Edge Dislocation in MgO

    NASA Astrophysics Data System (ADS)

    Walker, A. M.; Zhang, F.; Wright, K.; Gale, J. D.

    2009-12-01

    The movement of point defects in minerals plays a key role in determining their rheological properties, both by permitting diffusional creep and by allowing recovery by dislocation climb. Point defect diffusion can also control the kinetics of phase transitions and grain growth, and can determine the rate of chemical equilibration between phases. Because of this, and the difficulties associated with experimental studies of diffusion, the simulation of point defect formation and migration has been a subject of considerable interest in computational mineral physics. So far, studies have concentrated on point defects moving through otherwise perfect crystals. In this work we examine the behavior of magnesium vacancies close to the core of an edge dislocation in MgO and find that the dislocation dramatically changes the behavior of the point defect. An atomic scale model of the ½<110>{110} edge dislocation in MgO was constructed by applying the anisotropic linear elastic displacement field to the crystal structure and subsequently minimizing the energy of the crystal close to the dislocation core using a parameterized potential model. This process yielded the structure of an isolated edge dislocation in an otherwise perfect crystal. The energy cost associated with introducing magnesium vacancies around the dislocation was then mapped and compared to the formation energy of an isolated magnesium vacancy in bulk MgO. We find that the formation energy of magnesium vacancies around the dislocation mirrors the elastic strain field. Above the dislocation line σxx and σyy are negative and the strain field is compressional. Atoms are squeezed together to make room for the extra half plane effectively increasing the pressure in this region. Below the dislocation line σxx and σyy are positive and the strain field is dilatational. Planes of atoms are pulled apart to avoid a discontinuity across the glide plane and the effective pressure is decreased. In the region with a

  4. Defect related electrical and optical properties of AlN bulk crystals grown by physical vapor transport

    NASA Astrophysics Data System (ADS)

    Irmscher, Klaus

    AlN crystallizes thermodynamically stable in the wurtzite structure and possesses a direct band gap of about 6 eV. It is the ideal substrate for the epitaxial growth of Al-rich AlxGa1-xN films that enable deep ultraviolet (UV) emitters. Appropriate AlN bulk crystals can be grown by physical vapor transport (PVT). Besides high structural perfection, such substrate crystals should be highly UV transparent and ideally, electrically conductive. It is well known that point defects like impurities and intrinsic defects may introduce electronic energy levels within the bandgap, which lead to additional optical absorption or electrical compensation. Among the impurities, which may be incorporated into the AlN crystals during PVT growth at well above 2000 ° C, oxygen, carbon, and silicon play the major role. Based on our own experimental data as well as on experimental and theoretical results reported in literature, we discuss energy levels, charge states and possible negative-U behavior of these impurities and of vacancy-type defects. In particular, we develop a model that explains the absorption behavior of the crystals in dependence on the Fermi level that can be controlled by the growth conditions, including intentional doping. Further, we pay attention on spectroscopic investigations giving direct evidence for the chemical nature and atomic arrangement of the involved point defects. As examples local vibrational mode (LVM) spectroscopy of carbon related defects and recent reports of electron paramagnetic resonance (EPR) spectroscopy are discussed.

  5. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae.

    PubMed

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M Q; Bruna, Roberto E; García-Véscovi, Eleonora; Osherov, Nir

    2016-05-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well.S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Influence of defects on the thermal conductivity of compressed LiF

    NASA Astrophysics Data System (ADS)

    Jones, R. E.; Ward, D. K.

    2018-02-01

    Defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a large sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. In addition, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.

  7. Elementary Mechanisms of Shear-Coupled Grain Boundary Migration

    NASA Astrophysics Data System (ADS)

    Rajabzadeh, A.; Mompiou, F.; Legros, M.; Combe, N.

    2013-06-01

    A detailed theoretical study of the elementary mechanisms occurring during the shear-coupled grain boundary (GB) migration at low temperature is performed focusing on both the energetic and structural characteristics. The migration of a Σ13(320) GB in a copper bicrystal in response to external shear displacements is simulated using a semiempirical potential. The minimum energy path of the shear-coupled GB migration is computed using the nudge elastic band method. The GB migration occurs through the nucleation and motion of GB steps identified as disconnections. Energy barriers for the GB and disconnection migrations are evaluated.

  8. Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, S. N.; Alam, A.; Johnson, Duane D.

    2013-01-01

    In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity.We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22 210 m Jm 2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be consideredmore » when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower« less

  9. Domain structures and Prco antisite point defects in double-perovskite PrBaCo2O5+δ and PrBa0.8Ca0.2Co2O5+δ.

    PubMed

    Ding, Yong; Chen, Yu; Pradel, Ken C; Zhang, Weilin; Liu, Meilin; Wang, Zhong Lin

    2018-06-15

    Owing to the excellent mixed-ionic and electronic conductivity and fast oxygen kinetics at reduced temperature (<800 °C), double-perovskite oxides such as PrBaCo 2 O 5+δ exhibit excellent properties as an oxygen electrode for solid oxide fuel cells (SOFCs). Using transmission electron microscopy (TEM), we revealed high-density antiphase domain boundaries (APBs) and 90° domain walls in PrBaCo 2 O 5+δ grains. Besides the regular lamellar 90° domain walls in {021} planes, irregular fine 90° domains are attached to the curved APBs. Electron energy-loss spectroscopy (EELS) reveals the composition variation across some of the 90° domain walls. There are fewer Co and more Ba ions approaching the 90° domain walls, while the changes in Pr and O ions are not detectable. We assume that the extra Ba 2+ cations replace the Pr 3+ cations, while the Pr 3+ cations go to the Co site to form Pr Co antisite point defects and become Pr 4+ . In this case, the Pr 4+ cations will help to balance the local charges and have compatible ionic radius with that of Co 3+ . The local strain field around the 90° domain walls play a crucial role in the stabilization of such Pr Co antisite point defects. The antisite point defects have been observed in our high-resolution TEM images and aberration-corrected high-angle annular dark-field (HAADF) scanning TEM images. After Ca 2+ doped into PrBaCo 2 O 5+δ to improve the structure stability, we observed tweed structures in the PrBa 0.8 Ca 0.2 Co 2 O 5+δ grain. The tweed structure is composed of high-density intersected needle-shaped 90° domain walls, which is linked to a strong local strain field and composition variation. Even when the temperature is increased to 750 °C, the domain structures are still stable as revealed by our in situ TEM investigation. Therefore, the influence of the domain structures and the Pr Co antisite defects on the ionic and electric conductivities must be considered. Copyright © 2018. Published by Elsevier

  10. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  11. Method for reducing energy losses in laser crystals

    DOEpatents

    Atherton, L. Jeffrey; DeYoreo, James J.; Roberts, David H.

    1992-01-01

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light.

  12. Rectifiability of Line Defects in Liquid Crystals with Variable Degree of Orientation

    NASA Astrophysics Data System (ADS)

    Alper, Onur

    2018-04-01

    In [2], H ardt, L in and the author proved that the defect set of minimizers of the modified Ericksen energy for nematic liquid crystals consists locally of a finite union of isolated points and Hölder continuous curves with finitely many crossings. In this article, we show that each Hölder continuous curve in the defect set is of finite length. Hence, locally, the defect set is rectifiable. For the most part, the proof closely follows the work of D e L ellis et al. (Rectifiability and upper minkowski bounds for singularities of harmonic q-valued maps, arXiv:1612.01813, 2016) on harmonic Q-valued maps. The blow-up analysis in A lper et al. (Calc Var Partial Differ Equ 56(5):128, 2017) allows us to simplify the covering arguments in [11] and locally estimate the length of line defects in a geometric fashion.

  13. Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon

    2016-03-01

    The magnetic properties of the undoped CuAlO2 thin films with different compositions are examined. In order to understand this phenomenon and to determine the correlation between the magnetic and electrical properties and point defects, the X-ray photoelectron spectroscopy and Hall effect measurements are performed. Combining with Hall effect, X-ray photoelectron spectroscopy and alternating gradient magnetometer measurements, a direct link between the hole concentration, magnetism, copper vacancy (VCu), oxygen vacancy, and interstitial oxygen (Oi) is established. It is shown that an increase in the number of acceptors (VCu and Oi) leads to an increase in the hole concentration. Based on theoretical and experimental investigations, the authors confirmed that both acceptors (VCu and Oi) in CuAlO2 could induce the ferromagnetic behavior at room temperature.

  14. GPU-accelerated element-free reverse-time migration with Gauss points partition

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Jia, Xiaofeng; Qiang, Xiaodong

    2018-06-01

    An element-free method (EFM) has been demonstrated successfully in elasticity, heat conduction and fatigue crack growth problems. We present the theory of EFM and its numerical applications in seismic modelling and reverse time migration (RTM). Compared with the finite difference method and the finite element method, the EFM has unique advantages: (1) independence of grids in computation and (2) lower expense and more flexibility (because only the information of the nodes and the boundary of the concerned area is required). However, in EFM, due to improper computation and storage of some large sparse matrices, such as the mass matrix and the stiffness matrix, the method is difficult to apply to seismic modelling and RTM for a large velocity model. To solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition and utilise the graphics processing unit to improve the computational efficiency. We employ the compressed sparse row format to compress the intermediate large sparse matrices and attempt to simplify the operations by solving the linear equations with CULA solver. To improve the computation efficiency further, we introduce the concept of the lumped mass matrix. Numerical experiments indicate that the proposed method is accurate and more efficient than the regular EFM.

  15. SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration.

    PubMed

    Sundararajan, Lakshmi; Norris, Megan L; Lundquist, Erik A

    2015-05-28

    The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration. Copyright © 2015 Sundararajan et al.

  16. SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration

    PubMed Central

    Sundararajan, Lakshmi; Norris, Megan L.; Lundquist, Erik A.

    2015-01-01

    The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration. PMID:26022293

  17. Enhanced gas adsorption on graphitic substrates via defects and local curvature: A density functional theory study

    DOE PAGES

    Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; ...

    2014-03-24

    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces inmore » buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO 2 and CH 4 are similar, although CO 2 binding is generally stronger by ~4 to 5 kJ mol –1. Furthermore, the differential between the adsorption of CO 2 and CH 4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH 4/CO 2 flow separation and gas-selective sensors.« less

  18. Phonon Scattering in Silicon by Multiple Morphological Defects: A Multiscale Analysis

    NASA Astrophysics Data System (ADS)

    Lorenzi, Bruno; Dettori, Riccardo; Dunham, Marc T.; Melis, Claudio; Tonini, Rita; Colombo, Luciano; Sood, Aditya; Goodson, Kenneth E.; Narducci, Dario

    2018-05-01

    Ideal thermoelectric materials should possess low thermal conductivity κ along with high electrical conductivity σ . Thus, strategies are needed to impede the propagation of phonons mostly responsible for thermal conduction while only marginally affecting charge carrier diffusion. Defect engineering may provide tools to fulfill this aim, provided that one can achieve an adequate understanding of the role played by multiple morphological defects in scattering thermal energy carriers. In this paper, we study how various morphological defects such as grain boundaries and dispersed nanovoids reduce the thermal conductivity of silicon. A blended approach has been adopted, using data from both simulations and experiments in order to cover a wide range of defect densities. We show that the co-presence of morphological defects with different characteristic scattering length scales is effective in reducing the thermal conductivity. We also point out that non-gray models (i.e. models with spectral resolution) are required to improve the accuracy of predictive models explaining the dependence of κ on the density of morphological defects. Finally, the application of spectral models to Matthiessen's rule is critically addressed with the aim of arriving at a compact model of phonon scattering in highly defective materials showing that non-local descriptors would be needed to account for lattice distortion due to nanometric voids.

  19. Focal Adhesion-Independent Cell Migration.

    PubMed

    Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael

    2016-10-06

    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.

  20. Surviving utopia: Energy, social capital, and international migration in Ixcan, Guatemala

    NASA Astrophysics Data System (ADS)

    Taylor, Matthew John

    Mounting peasant impoverishment in Guatemala comes face to face with growing ecological impoverishment. Abysmal living standards for Guatemala's majority results from highly skewed land distribution, rapid population growth, and a brutal civil war, which lasted almost four decades and laid waste to many rural communities and fields. In the face of such adversity, Guatemalans migrate to remaining forested frontiers and make longer journeys to North America in search of work. In an attempt to understand and improve natural resource use, especially firewood, I uncover how networks of social relations (social capital) and international migration influence livelihoods in agricultural communities along a forested frontier. I used both qualitative and quantitative methods to gather information about the lives of residents in four agricultural villages in Ixcan, Guatemala. The results from extended fieldwork illustrate how high levels of social capital can benefit the lives of rural residents. I argue that development programs can take advantage of existing high levels of social capital and take measures to create social capital where it is lacking to ensure the successful implementation of development programs. I also discuss firewood management in each community and demonstrate the disjuncture between local firewood use and national energy plans. Finally, I show how migrants and the money they send home from North America radically alter land use and land distribution in this part of rural Guatemala. My study reveals the need to examine the linkages between large-scale international migration, social capital, and the environment in communities that rely on the land for survival.

  1. Utilization Probability Map for Migrating Bald Eagles in Northeastern North America: A Tool for Siting Wind Energy Facilities and Other Flight Hazards

    PubMed Central

    Mojica, Elizabeth K.; Watts, Bryan D.; Turrin, Courtney L.

    2016-01-01

    Collisions with anthropogenic structures are a significant and well documented source of mortality for avian species worldwide. The bald eagle (Haliaeetus leucocephalus) is known to be vulnerable to collision with wind turbines and federal wind energy guidelines include an eagle risk assessment for new projects. To address the need for risk assessment, in this study, we 1) identified areas of northeastern North America utilized by migrating bald eagles, and 2) compared these with high wind-potential areas to identify potential risk of bald eagle collision with wind turbines. We captured and marked 17 resident and migrant bald eagles in the northern Chesapeake Bay between August 2007 and May 2009. We produced utilization distribution (UD) surfaces for 132 individual migration tracks using a dynamic Brownian bridge movement model and combined these to create a population wide UD surface with a 1 km cell size. We found eagle migration movements were concentrated within two main corridors along the Appalachian Mountains and the Atlantic Coast. Of the 3,123 wind turbines ≥100 m in height in the study area, 38% were located in UD 20, and 31% in UD 40. In the United States portion of the study area, commercially viable wind power classes overlapped with only 2% of the UD category 20 (i.e., the areas of highest use by migrating eagles) and 4% of UD category 40. This is encouraging because it suggests that wind energy development can still occur in the study area at sites that are most viable from a wind power perspective and are unlikely to cause significant mortality of migrating eagles. In siting new turbines, wind energy developers should avoid the high-use migration corridors (UD categories 20 & 40) and focus new wind energy projects on lower-risk areas (UD categories 60–100). PMID:27336482

  2. Utilization Probability Map for Migrating Bald Eagles in Northeastern North America: A Tool for Siting Wind Energy Facilities and Other Flight Hazards.

    PubMed

    Mojica, Elizabeth K; Watts, Bryan D; Turrin, Courtney L

    2016-01-01

    Collisions with anthropogenic structures are a significant and well documented source of mortality for avian species worldwide. The bald eagle (Haliaeetus leucocephalus) is known to be vulnerable to collision with wind turbines and federal wind energy guidelines include an eagle risk assessment for new projects. To address the need for risk assessment, in this study, we 1) identified areas of northeastern North America utilized by migrating bald eagles, and 2) compared these with high wind-potential areas to identify potential risk of bald eagle collision with wind turbines. We captured and marked 17 resident and migrant bald eagles in the northern Chesapeake Bay between August 2007 and May 2009. We produced utilization distribution (UD) surfaces for 132 individual migration tracks using a dynamic Brownian bridge movement model and combined these to create a population wide UD surface with a 1 km cell size. We found eagle migration movements were concentrated within two main corridors along the Appalachian Mountains and the Atlantic Coast. Of the 3,123 wind turbines ≥100 m in height in the study area, 38% were located in UD 20, and 31% in UD 40. In the United States portion of the study area, commercially viable wind power classes overlapped with only 2% of the UD category 20 (i.e., the areas of highest use by migrating eagles) and 4% of UD category 40. This is encouraging because it suggests that wind energy development can still occur in the study area at sites that are most viable from a wind power perspective and are unlikely to cause significant mortality of migrating eagles. In siting new turbines, wind energy developers should avoid the high-use migration corridors (UD categories 20 & 40) and focus new wind energy projects on lower-risk areas (UD categories 60-100).

  3. Point defect disorder in high-temperature solution grown Sr6Tb0.94Fe1.06(BO3)6 single crystals

    NASA Astrophysics Data System (ADS)

    Velázquez, M.; Péchev, S.; Duttine, M.; Wattiaux, A.; Labrugère, C.; Veber, Ph.; Buffière, S.; Denux, D.

    2018-08-01

    New Sr6Tb0.94Fe1.06(BO3)6 single crystals were obtained from lithium borate high-temperature solution growth under controlled atmosphere. Their average crystal structure was found to adopt the trigonal R-3 space group with lattice parameters a = 12.2164 Å and c = 9.1934 Å. A combined multiscale characterization approach, involving diffuse reflectance, X-ray photoelectron (XPS) and Mössbauer spectroscopies, was undertaken to establish the exact nature of the point defect disorder in this crystal structure. The FeTb× antisite disorder in the Sr6Tb0.94Fe1.06(BO3)6 single crystals is different from the kind of point defect disorder known to exist in the powder phase material counterpart. The absence of Tb4+ cations in the crystal lattice was established by XPS, and that of any phase transition down to 4 K was checked by specific heat measurements. The magnetic susceptibility curve was found to follow a Curie-Weiss behaviour in the 4-354 K temperature range.

  4. Quantum transitions driven by one-bond defects in quantum Ising rings.

    PubMed

    Campostrini, Massimo; Pelissetto, Andrea; Vicari, Ettore

    2015-04-01

    We investigate quantum scaling phenomena driven by lower-dimensional defects in quantum Ising-like models. We consider quantum Ising rings in the presence of a bond defect. In the ordered phase, the system undergoes a quantum transition driven by the bond defect between a magnet phase, in which the gap decreases exponentially with increasing size, and a kink phase, in which the gap decreases instead with a power of the size. Close to the transition, the system shows a universal scaling behavior, which we characterize by computing, either analytically or numerically, scaling functions for the low-level energy differences and the two-point correlation function. We discuss the implications of these results for the nonequilibrium dynamics in the presence of a slowly varying parallel magnetic field h, when going across the first-order quantum transition at h=0.

  5. Resonant nature of intrinsic defect energy levels in PbTe revealed by infrared photoreflectance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bingpo; Cai, Chunfeng; Jin, Shuqiang

    2014-07-14

    Step-scan Fourier-transform infrared photoreflectance and modulated photoluminescence spectroscopy were used to characterize the optical transitions of the epitaxial PbTe thin film grown by molecular beam epitaxy on BaF{sub 2} (111) substrate in the vicinity of energy gap of lead telluride at 77 K. It is found that the intrinsic defect energy levels in the electronic structure are of resonant nature. The Te-vacancy energy level is located above the conduction band minimum by 29.1 meV. Another defect (V{sub X}) energy level situated below valance band maximum by 18.1 meV is also revealed. Whether it is associated with the Pb vacancy is still not clear.more » It might also be related to the misfit dislocations stemming from the lattice mismatch between PbTe and BaF{sub 2} substrate. The experimental results support the theory prediction (N. J. Parada and G. W. Pratt, Jr., Phys. Rev. Lett. 22, 180 (1969), N. J. Parada, Phys. Rev. B 3, 2042 (1971)) and are consistent with the reported Hall experimental results (G. Bauer, H. Burkhard, H. Heinrich, and A. Lopez-Otero, J. Appl. Phys. 47, 1721 (1976)).« less

  6. Analytical reverse time migration: An innovation in imaging of infrastructures using ultrasonic shear waves.

    PubMed

    Asadollahi, Aziz; Khazanovich, Lev

    2018-04-11

    The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Method for reducing energy losses in laser crystals

    DOEpatents

    Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.

    1992-03-24

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.

  8. Zero-point energy constraint in quasi-classical trajectory calculations.

    PubMed

    Xie, Zhen; Bowman, Joel M

    2006-04-27

    A method to constrain the zero-point energy in quasi-classical trajectory calculations is proposed and applied to the Henon-Heiles system. The main idea of this method is to smoothly eliminate the coupling terms in the Hamiltonian as the energy of any mode falls below a specified value.

  9. Thermodynamic stability of boron: the role of defects and zero point motion.

    PubMed

    van Setten, Michiel J; Uijttewaal, Matthé A; de Wijs, Gilles A; de Groot, Robert A

    2007-03-07

    Its low weight, high melting point, and large degree of hardness make elemental boron a technologically interesting material. The large number of allotropes, mostly containing over a hundred atoms in the unit cell, and their difficult characterization challenge both experimentalists and theoreticians. Even the ground state of this element is still under discussion. For over 30 years, scientists have attempted to determine the relative stability of alpha- and beta-rhombohedral boron. We use density functional calculations in the generalized gradient approximation to study a broad range of possible beta-rhombohedral structures containing interstitial atoms and partially occupied sites within a 105 atoms framework. The two most stable structures are practically degenerate in energy and semiconducting. One contains the experimental 320 atoms in the hexagonal unit cell, and the other contains 106 atoms in the triclinic unit cell. When populated with the experimental 320 electrons, the 106 atom structure exhibits a band gap of 1.4 eV and an in-gap hole trap at 0.35 eV above the valence band, consistent with known experiments. The total energy of these two structures is 23 meV/B lower than the original 105 atom framework, but it is still 1 meV/B above the alpha phase. Adding zero point energies finally makes the beta phase the ground state of elemental boron by 3 meV/B. At finite temperatures, the difference becomes even larger.

  10. The Application of Depth Migration for Processing GPR Data

    NASA Astrophysics Data System (ADS)

    Hoai Trung, Dang; Van Giang, Nguyen; Thanh Van, Nguyen

    2018-03-01

    Migration methods play a significant role in processing ground penetrating radar data. Beside recovering the true image of subsurface structures from the prior designed velocity model and the raw GPR data, the migration algorithm could be an effective tool in bulding real environmental velocity model. In this paper, we have proposed one technique using energy diagram extracted from migrated data as a criterion of looking for the correct velocity. Split Step Fourier migration, a depth migration, is chosen for facing the challenge where the velocity varies laterally and vertically. Some results verified on field data on Vietnam show that migrated sections with calculated velocity from energy diagram have the best quality.

  11. On the passive and semiconducting behavior of severely deformed pure titanium in Ringer's physiological solution at 37°C: A trial of the point defect model.

    PubMed

    Ansari, Ghazaleh; Fattah-Alhosseini, Arash

    2017-06-01

    The effects of sever plastic deformation through multi-pass accumulative roll bonding on the passive and semiconducting behavior of pure titanium is evaluated in Ringer's physiological solution at 37°C in the present paper. Produced results by polarization plots and electrochemical impedance spectroscopy measurements revealed a significant advance in the passive response of the nano-grained sample compared to that of the annealed pure titanium. Also, Mott-Schottky test results of the nano-grained pure titanium represented a lower donor density and reduced flat-band potential in the formed passive film in comparison with the annealed sample. Moreover, based on the Mott-Schottky analysis in conjunction with the point defect model, it was suggested that with increase in formation potential, the calculated donor density of both annealed and nano-grained samples decreases exponentially and the thickness of the passive film linearly increases. These observations were consistent with the point defect model predictions, considering that the point defects within the passive film are metal interstitials, oxygen vacancies, or both. From the viewpoint of passive and semiconducting behavior, nano-grained pure titanium appeared to be more suitable for implant applications in simulate human body environment compared to annealed pure titanium. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influence of point defects and impurities on the dynamical stability of δ-plutonium

    NASA Astrophysics Data System (ADS)

    Dorado, B.; Bieder, J.; Torrent, M.

    2017-06-01

    We use first-principles calculations to provide direct evidence of the effect of aluminum, gallium, iron and uranium on the dynamical stability of δ-plutonium. We first show that the δ phase is dynamically unstable at low temperature, as seen in experiments, and that this stability directly depends on the plutonium 5f orbital occupancies. Then, we demonstrate that both aluminum and gallium stabilize the δ phase, contrary to iron. As for uranium, which is created during self-irradiation and whose effect on plutonium has yet to be understood, we show that it leaves a few unstable vibrational modes and that higher concentrations lead to an almost complete stabilization. Finally, we provide an attempt at a consistent analysis of the experimental Pu-Ga phonon density of states. We show that the presence of gallium can reproduce only partially the experimental measurements, and we investigate how point defects, such as interstitials and vacancies, affect the calculated phonon density of states.

  13. Influence of point defects and impurities on the dynamical stability of δ-plutonium.

    PubMed

    Dorado, B; Bieder, J; Torrent, M

    2017-06-21

    We use first-principles calculations to provide direct evidence of the effect of aluminum, gallium, iron and uranium on the dynamical stability of δ-plutonium. We first show that the δ phase is dynamically unstable at low temperature, as seen in experiments, and that this stability directly depends on the plutonium 5f orbital occupancies. Then, we demonstrate that both aluminum and gallium stabilize the δ phase, contrary to iron. As for uranium, which is created during self-irradiation and whose effect on plutonium has yet to be understood, we show that it leaves a few unstable vibrational modes and that higher concentrations lead to an almost complete stabilization. Finally, we provide an attempt at a consistent analysis of the experimental Pu-Ga phonon density of states. We show that the presence of gallium can reproduce only partially the experimental measurements, and we investigate how point defects, such as interstitials and vacancies, affect the calculated phonon density of states.

  14. Effect of uniaxial stress on the electrochemical properties of graphene with point defects

    NASA Astrophysics Data System (ADS)

    Szroeder, Paweł; Sagalianov, Igor Yu.; Radchenko, Taras M.; Tatarenko, Valentyn A.; Prylutskyy, Yuriy I.; Strupiński, Włodzimierz

    2018-06-01

    We report a calculational study of electron states and the resulting electrochemical properties of uniaxially strained graphene with point defects. For this study the reduction of ferricyanide to ferrocyanide serves as a benchmark electrochemical reaction. We find that the heterogeneous electron transfer activity of the perfect graphene electrode rises under uniaxial strain. However, evolution of the cathodic reaction rate depends on the direction of strain. For moderate lattice deformations, the zigzag strain improves electrochemical performance better than the armchair strain. Standard rate constant increases by 50% at the zigzag strain of 10%. Vacancies, covalently bonded moieties, charged adatoms and substitutional impurities in the zigzag strained graphene induce changes in the shape of the curve of the cathodic reaction rate. However, this changes do not translate into the electrocatalytic activity. Vacancies and covalently bonded moieties at concentration of 0.1% do not affect the electrochemical performance. Charged adatoms and substitutional impurities give a slight increase in the standard rate constant by, respectively, 2.2% and 3.4%.

  15. The stationary points and structure of high-energy scattering amplitude

    NASA Astrophysics Data System (ADS)

    Samokhin, A. P.; Petrov, V. A.

    2018-06-01

    The ISR and the 7 TeV LHC data indicate that the differential cross-section of elastic proton-proton scattering remains almost energy-independent at the transferred momentum t ≈ - 0.21GeV2 at the level of ≈ 7.5 mb /GeV2. This property of dσ / dt (the "first" stationary point) appears due to the correlated growth of the total cross-section and the local slope parameter and can be expressed as a relation between the latter quantities. We anticipate that this property will be true up to 13 TeV. This enables us to normalize the preliminary TOTEM data for dσ / dt at 13 TeV and 0.05 < | t | < 3.4GeV2 and predict the values of dσ / dt at this energy. These data give an evidence of the second stationary point at t ≈ - 2.3GeV2 at the level of ≈ 33 nb /GeV2. The energy evolution of dσ / dt looks as if the high energy elastic scattering amplitude is a sum of two similar terms. We argue that the existence of the two stationary points and the two-component structure of the high energy elastic scattering amplitude are general properties for all elastic processes.

  16. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy.

    PubMed

    Wong, Dillon; Velasco, Jairo; Ju, Long; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F

    2015-11-01

    Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.

  17. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Wang, Ke-Fan; Zhang, Yang; Guo, Feng-Li; Weng, Hui-Min; Ye, Bang-Jiao

    2009-05-01

    This paper studies the evolution of native point defects with temperature in ZnO single crystals by positron lifetime and coincidence Doppler broadening (CDB) spectroscopy, combined with the calculated results of positron lifetime and electron momentum distribution. The calculated and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600 °C annealing treatment. CDB is an effective method to distinguish the elemental species, here we combine this technique with calculated electron momentum distribution to determine the oxygen vacancies, which do not trap positrons due to their positive charge. The CDB spectra show that oxygen vacancies do not appear until 600 °C annealing treatment, and increase with the increase of annealing temperature. This study supports the idea that green luminescence has a close relation with oxygen vacancies.

  18. Intrinsic Defect Ferromagnetism: The case of Hafnium Oxide

    NASA Astrophysics Data System (ADS)

    Das Pemmaraju, Chaitanya

    2005-03-01

    In view of the recent experimental reports of intrinsic ferromagnetism in Hafnium Oxide (HfO2) thin film systems ootnotetextM. Venkatesan, C. B. Fitzgerald, J. M. D. Coey Nature 430, 630 (2004) Brief Communications, we carried out first principles investigations to look for magnetic structure in HfO2 possibly brought about by the presence of small concentrations of intrinsic point defects. Ab initio electronic structure calculations using Density Functional Theory (DFT) show that isolated cation vacancy sites in HfO2 lead to the formation of high spin defect states which couple ferromagnetically to each other. Interestingly, these high spin states are observed in the low symmetry monoclinic and tetragonal phases while the highly symmetric cubic flourite phase exhibits a non-magnetic ground state. Detailed studies of the electronic structure of cation vacancies in the three crystalline phases of Hafnia show that symmetry leading to orbitally degenerate defect levels is not a pre-requsite for ferromagnetism and that the interplay between Kinetic, Coulomb and Exchange energy together with favourable coupling to the Crystalline environment can lead to high spin ferromagnetic ground states even in extreme low symmetry systems like monoclinic HfO2. These findings open up a much wider class of systems to the possibility of intrinsic defect ferromagnetism.

  19. Intrinsic point defects in β-In2S3 studied by means of hybrid density-functional theory

    NASA Astrophysics Data System (ADS)

    Ghorbani, Elaheh; Albe, Karsten

    2018-03-01

    We have employed first principles total energy calculations in the framework of density functional theory, with plane wave basis sets and screened exchange hybrid functionals to study the incorporation of intrinsic defects in bulk β-In2S3. The results are obtained for In-rich and S-rich experimental growth conditions. The charge transition level is discussed for all native defects, including VIn, VS, Ini, Si, SIn, and InS, and a comparison between the theoretically calculated charge transition levels and the available experimental findings is presented. The results imply that β-In2S3 shows n-type conductivity under both In-rich and S-rich growth conditions. The indium antiisite (InS), the indium interstitial (Ini), and the sulfur vacancy ( VS ' ) are found to be the leading sources of sample's n-type conductivity. When going from the In-rich to the S-rich condition, the conductivity of the material decreases; however, the type of conductivity remains unchanged.

  20. Bayesian Probabilistic Projection of International Migration.

    PubMed

    Azose, Jonathan J; Raftery, Adrian E

    2015-10-01

    We propose a method for obtaining joint probabilistic projections of migration for all countries, broken down by age and sex. Joint trajectories for all countries are constrained to satisfy the requirement of zero global net migration. We evaluate our model using out-of-sample validation and compare point projections to the projected migration rates from a persistence model similar to the method used in the United Nations' World Population Prospects, and also to a state-of-the-art gravity model.

  1. Low-energy planar magnetic defects in BaFe 2 As 2 : Nanotwins, twins, antiphase, and domain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, S. N.; Alam, Aftab; Johnson, Duane D.

    2013-11-27

    In BaFe 2As 2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity. We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22–210 m Jm -2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries—making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should bemore » considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower assessed “ordered” moments from longer spatial and/or time averaging and should be considered directly.« less

  2. Determination of defect content and defect profile in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Garcia, J. A.; Plazaola, F.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.

    2011-01-01

    In this article we present an overview of the technique to obtain the defects depth profile and width of a deposited layer and multilayer based on positron annihilation spectroscopy. In particular we apply the method to ZnO and ZnO/ZnCdO layers deposited on sapphire substrates. After introducing some terminology we first calculate the trend that the W/S parameters of the Doppler broadening measurements must follow, both in a qualitative and quantitative way. From this point we extend the results to calculate the width and defect profiles in deposited layer samples.

  3. Defect sink characteristics of specific grain boundary types in 304 stainless steels under high dose neutron environments

    DOE PAGES

    Field, Kevin G.; Yang, Ying; Busby, Jeremy T.; ...

    2015-03-09

    Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling to mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 °C. Investigations into the RIS response at specific grain boundary types were utilized to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed andmore » benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and includes expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibit unique defect sink characteristics depending on their local structure. Furthermore, such interactions were found to be consistent across all doses investigated and had larger global implications including precipitation of Ni-Si clusters near different grain boundary types.« less

  4. Quantitative Analysis of Cell Migration Using Optical Flow

    PubMed Central

    Boric, Katica; Orio, Patricio; Viéville, Thierry; Whitlock, Kathleen

    2013-01-01

    Neural crest cells exhibit dramatic migration behaviors as they populate their distant targets. Using a line of zebrafish expressing green fluorescent protein (sox10:EGFP) in neural crest cells we developed an assay to analyze and quantify cell migration as a population, and use it here to characterize in detail the subtle defects in cell migration caused by ethanol exposure during early development. The challenge was to quantify changes in the in vivo migration of all Sox10:EGFP expressing cells in the visual field of time-lapse movies. To perform this analysis we used an Optical Flow algorithm for motion detection and combined the analysis with a fit to an affine transformation. Through this analysis we detected and quantified significant differences in the cell migrations of Sox10:EGFP positive cranial neural crest populations in ethanol treated versus untreated embryos. Specifically, treatment affected migration by increasing the left-right asymmetry of the migrating cells and by altering the direction of cell movements. Thus, by applying this novel computational analysis, we were able to quantify the movements of populations of cells, allowing us to detect subtle changes in cell behaviors. Because cranial neural crest cells contribute to the formation of the frontal mass these subtle differences may underlie commonly observed facial asymmetries in normal human populations. PMID:23936049

  5. Electronic excitations and defects in fluoroperovskite LiBaF3

    NASA Astrophysics Data System (ADS)

    Springis, Maris; Brikmane, Liga; Tale, Ivar; Kulis, Peteris

    2003-08-01

    A survey of the present situation with respect to knowledge of lattice defects, electronic excitations, such as excitons and localized excitons, as well as energy storage and transfer phenomena in LiBaF3 crystals is given. Both phenomenological models and experimental interpretations of optical absorption bands, tentatively associated with F-type (electron) centers created by X-ray or electron irradiation, is reviewed. Interpretation of three radiative processes (super-fast core-valence transitions, slow trapped exciton luminescence and luminescence of structure defects) observed in undoped LiBaF3 crystals is analyzed with respect to practical application. Attention is paid to the behavior of ultraviolet emission so far ascribed to self-trapped exciton luminescence and also observed as a result of electron recombination with localized hole at various temperatures (even at room temperature), depending on crystal purity and growth conditions. Finally, some aspects of ionic processes in thermal relaxation of defects are pointed to.

  6. Large-size TlBr single crystal growth and defect study

    NASA Astrophysics Data System (ADS)

    Zhang, Mingzhi; Zheng, Zhiping; Chen, Zheng; Zhang, Sen; Luo, Wei; Fu, Qiuyun

    2018-04-01

    Thallium bromide (TlBr) is an attractive semiconductor material for fabrication of radiation detectors due to its high photon stopping power originating from its high atomic number, wide band gap and high resistivity. In this paper the vertical Bridgman method was used for crystal growth and TlBr single crystals with diameter of 15 mm were grown. X-ray diffraction (XRD) was used to identify phase and orientation. Electron backscatter diffraction (EBSD) was used to investigate crystal microstructure and crystallographic orientation. The optical and electric performance of the crystal was characterized by infrared (IR) transmittance spectra and I-V measurement. The types of point defects in the crystals were investigated by thermally stimulated current (TSC) spectra and positron annihilation spectroscopy (PAS). Four types of defects, with ionization energy of each defect fitting as follows: 0.1308, 0.1540, 0.3822 and 0.538 eV, were confirmed from the TSC result. The PAS result showed that there were Tl vacancies in the crystal.

  7. Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity

    PubMed Central

    Danson, Christopher M.; Pocha, Shirin M.; Bloomberg, Graham B.; Cory, Giles O.

    2009-01-01

    Summary The WAVE family of proteins has long been implicated in the stimulus-dependent generation of lamellipodia at the leading edge of migrating cells, with WAVE2 in particular implicated in the formation of peripheral ruffles and chemotactic migration. However, the lack of direct visualisation of cell migration in WAVE2 mutants or knockdowns has made defining the mechanisms of WAVE2 regulation during cell migration difficult. We have characterised three MAP kinase phosphorylation sites within WAVE2 and analysed fibroblast behaviour in a scratch-wound model following introduction of transgenes encoding phospho-defective WAVE2. The cells exhibited an increase in migration speed, a decrease in the persistence of migration, and disruption of polarisation of the Golgi apparatus. All these effects could be mimicked by acute knockdown of endogenous WAVE2 expression with RNAi, indicating that phosphorylation of WAVE2 by MAP kinases regulates cell polarity during migration. PMID:18032787

  8. Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity.

    PubMed

    Danson, Christopher M; Pocha, Shirin M; Bloomberg, Graham B; Cory, Giles O

    2007-12-01

    The WAVE family of proteins has long been implicated in the stimulus-dependent generation of lamellipodia at the leading edge of migrating cells, with WAVE2 in particular implicated in the formation of peripheral ruffles and chemotactic migration. However, the lack of direct visualisation of cell migration in WAVE2 mutants or knockdowns has made defining the mechanisms of WAVE2 regulation during cell migration difficult. We have characterised three MAP kinase phosphorylation sites within WAVE2 and analysed fibroblast behaviour in a scratch-wound model following introduction of transgenes encoding phospho-defective WAVE2. The cells exhibited an increase in migration speed, a decrease in the persistence of migration, and disruption of polarisation of the Golgi apparatus. All these effects could be mimicked by acute knockdown of endogenous WAVE2 expression with RNAi, indicating that phosphorylation of WAVE2 by MAP kinases regulates cell polarity during migration.

  9. Formation of VP-Zn complexes in bulk InP(Zn) by migration of P vacancies from the (110) surface

    NASA Astrophysics Data System (ADS)

    Slotte, J.; Saarinen, K.; Ebert, Ph.

    2006-05-01

    We apply a combination of positron annihilation spectroscopy and scanning tunneling microscopy to show that thermally generated P vacancies diffuse from the InP surface toward the bulk. The defect observed in the bulk can be identified as a complex consisting of a P vacancy and a Zn impurity. We infer that this pair is formed when the diffusing positive P vacancy is trapped at the Zn dopant. A rough estimate for the migration energy of the P vacancy results in a value of 1.3eV .

  10. A 3D Laser Profiling System for Rail Surface Defect Detection

    PubMed Central

    Li, Qingquan; Mao, Qingzhou; Zou, Qin

    2017-01-01

    Rail surface defects such as the abrasion, scratch and peeling often cause damages to the train wheels and rail bearings. An efficient and accurate detection of rail defects is of vital importance for the safety of railway transportation. In the past few decades, automatic rail defect detection has been studied; however, most developed methods use optic-imaging techniques to collect the rail surface data and are still suffering from a high false recognition rate. In this paper, a novel 3D laser profiling system (3D-LPS) is proposed, which integrates a laser scanner, odometer, inertial measurement unit (IMU) and global position system (GPS) to capture the rail surface profile data. For automatic defect detection, first, the deviation between the measured profile and a standard rail model profile is computed for each laser-imaging profile, and the points with large deviations are marked as candidate defect points. Specifically, an adaptive iterative closest point (AICP) algorithm is proposed to register the point sets of the measured profile with the standard rail model profile, and the registration precision is improved to the sub-millimeter level. Second, all of the measured profiles are combined together to form the rail surface through a high-precision positioning process with the IMU, odometer and GPS data. Third, the candidate defect points are merged into candidate defect regions using the K-means clustering. At last, the candidate defect regions are classified by a decision tree classifier. Experimental results demonstrate the effectiveness of the proposed laser-profiling system in rail surface defect detection and classification. PMID:28777323

  11. Influence of defects on the thermal conductivity of compressed LiF

    DOE PAGES

    Jones, R. E.; Ward, D. K.

    2018-02-08

    We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less

  12. Influence of defects on the thermal conductivity of compressed LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R. E.; Ward, D. K.

    We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less

  13. Branching points in the low-temperature dipolar hard sphere fluid

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Kantorovich, Sofia; Ivanov, Alexey O.; Tavares, José Maria; Sciortino, Francesco

    2013-10-01

    In this contribution, we investigate the low-temperature, low-density behaviour of dipolar hard-sphere (DHS) particles, i.e., hard spheres with dipoles embedded in their centre. We aim at describing the DHS fluid in terms of a network of chains and rings (the fundamental clusters) held together by branching points (defects) of different nature. We first introduce a systematic way of classifying inter-cluster connections according to their topology, and then employ this classification to analyse the geometric and thermodynamic properties of each class of defects, as extracted from state-of-the-art equilibrium Monte Carlo simulations. By computing the average density and energetic cost of each defect class, we find that the relevant contribution to inter-cluster interactions is indeed provided by (rare) three-way junctions and by four-way junctions arising from parallel or anti-parallel locally linear aggregates. All other (numerous) defects are either intra-cluster or associated to low cluster-cluster interaction energies, suggesting that these defects do not play a significant part in the thermodynamic description of the self-assembly processes of dipolar hard spheres.

  14. Primary damage formation in bcc iron

    NASA Astrophysics Data System (ADS)

    Stoller, R. E.; Odette, G. R.; Wirth, B. D.

    1997-11-01

    Primary defect formation in bee iron has been extensively investigated using the methods of molecular dynamics (MD) and Monte Carlo (MC) simulation. This research has employed a modified version of the Finnis-Sinclair interatomic potential. MD was used in the simulation of displacement cascades with energies up to 40 keV and to examine the migration of the interstitial clusters that were observed to form in the cascade simulations. Interstitial cluster binding energies and the stable cluster configurations were determined by structural relaxation and energy minimization using a MC method with simulated annealing. Clusters containing up to 19 interstitials were examined. Taken together with the previous work, these new simulations provide a reasonably complete description of primary defect formation in iron. The results of the displacement cascade simulations have been used to characterize the energy and temperature dependence of primary defect formation in terms of two parameters: (1) the number of surviving point defects and (2) the fraction of the surviving defects that are contained in clusters. The number of surviving point defects is expressed as a fraction of the atomic displacements calculated using the secondary displacement model of Norgett-Robinson-Torrens (NRT). Although the results of the high energy simulations are generally consistent with those obtained at lower energies, two notable exceptions were observed. The first is that extensive subcascade formation at 40 keV leads to a higher defect survival fraction than would be predicted from extrapolation of the results obtained for energies up to 20 keV. The stable defect fraction obtained from the MD simulations is a smoothly decreasing function up to 20 keV. Subcascade formation leads to a slight increase in this ratio at 40 keV, where the value is about the same as at 10 keV. Secondly, the potential for a significant level of in-cascade vacancy clustering was observed. Previous cascade studies

  15. Thermal conductivity of graphene with defects induced by electron beam irradiation.

    PubMed

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L; Mulchandani, Ashok; Lake, Roger K; Balandin, Alexander A

    2016-08-14

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ∼7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2) the thermal conductivity decreases from ∼(1.8 ± 0.2) × 10(3) W mK(-1) to ∼(4.0 ± 0.2) × 10(2) W mK(-1) near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ∼400 W mK(-1). The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.

  16. SDN-1/syndecan regulates growth factor signaling in distal tip cell migrations in C. elegans.

    PubMed

    Schwabiuk, Megan; Coudiere, Ludivine; Merz, David C

    2009-10-01

    Mutations in the sdn-1/syndecan gene act as genetic enhancers of the ventral-to-dorsal distal tip cell (DTC) migration defects caused by a weak allele of the netrin receptor gene unc-5. The sdn-1(ev697) allele was identified in a genetic screen for enhancers of unc-5 DTC migration defects, and carried a nonsense mutation predicted to truncate the SDN-1 protein prior to the transmembrane domain. The enhancement of unc-5 caused by an sdn-1 mutation was rescued by expression of wild-type sdn-1 in the hypodermis or nervous system rather than the DTCs, indicating a cell non-autonomous function of sdn-1. The enhancement was also partially reversed by mutations in the egl-17/FGF or egl-20/Wnt genes, suggesting that sdn-1 affects UNC-5 function through a mis-regulation of signaling in growth factor pathways. egl-20 reporter constructs exhibited increased and mis-localized EGL-20 distribution in sdn-1 mutants compared to wild-type animals. Finally, using loss of function mutations, we show that egl-17/Fgf and egl-20/Wnt are partially redundant in regulating the migration pattern of the posterior DTC, as double mutants exhibit significant frequencies of defects in migration phases along both the anteroposterior and dorsoventral axes. Together these results suggest that SDN-1 affects UNC-5 function by regulating the proper extracellular distribution of growth factors.

  17. Biometrics and international migration.

    PubMed

    Redpath, Jillyanne

    2007-01-01

    This paper will focus on the impact of the rapid expansion in the use of biometric systems in migration management on the rights of individuals; it seeks to highlight legal issues for consideration in implementing such systems, taking as the starting point that the security interests of the state and the rights of the individual are not, and should not be, mutually exclusive. The first part of this paper briefly describes the type of biometric applications available, how biometric systems function, and those used in migration management. The second part examines the potential offered by biometrics for greater security in migration management, and focuses on developments in the use of biometrics as a result of September 11. The third part discusses the impact of the use of biometrics in the management of migration on the individual's right to privacy and ability to move freely and lawfully. The paper highlights the increasing need for domestic and international frameworks to govern the use of biometric applications in the migration/security context, and proposes a number of issues that such frameworks could address.

  18. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    NASA Astrophysics Data System (ADS)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  19. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  20. 75 FR 68607 - CenterPoint Energy-Illinois Gas Transmission Company; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-80-001] CenterPoint Energy--Illinois Gas Transmission Company; Notice of Baseline Filing November 1, 2010. Take notice that on October 28, 2010, CenterPoint Energy--Illinois Gas Transmission Company submitted a revised...

  1. Changes in energy intake and cost of transport by skipjack tuna (Katsuwonus pelamis) during northward migration in the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Aoki, Yoshinori; Kitagawa, Takashi; Kiyofuji, Hidetada; Okamoto, Suguru; Kawamura, Tomohiko

    2017-06-01

    Energy intake during the northward migration of tagged juvenile skipjack tuna (Katsuwonus pelamis) was estimated using the heat increment of feeding (HIF) determined through peritoneal cavity temperature data acquired with an archival tag. The effectiveness of this method was confirmed by feeding experiments, even in a species without visceral heat exchangers. Applying these experimental results to the data from tagged fish in the wild revealed that the estimated energy intake of skipjack tuna was, on average, 2.2 times greater in temperate waters than in subtropical waters. This difference was likely due to the differences in the food supply between habitats. In contrast, the estimated energy cost of their daily travel distance decreased with northward migration. This result suggests that skipjack spend less energy in acquiring prey in temperate than in subtropical waters since prey are available in higher densities, thereby providing excess energy for growth or lipid reserves.

  2. Curvature-induced defect unbinding and dynamics in active nematic toroids

    NASA Astrophysics Data System (ADS)

    Ellis, Perry W.; Pearce, Daniel J. G.; Chang, Ya-Wen; Goldsztein, Guillermo; Giomi, Luca; Fernandez-Nieves, Alberto

    2018-01-01

    Nematic order on curved surfaces is often disrupted by the presence of topological defects, which are singular regions in which the orientational order is undefined. In the presence of force-generating active materials, these defects are able to migrate through space like swimming microorganisms. We use toroidal surfaces to show that despite their highly chaotic and non-equilibrium dynamics, pairs of defects unbind and segregate in regions of opposite Gaussian curvature. Using numerical simulations, we find that the degree of defect unbinding can be controlled by tuning the system activity, and even suppressed in strongly active systems. Furthermore, by using the defects as active microrheological tracers and quantitatively comparing our experimental and theoretical results, we are able to determine material properties of the active nematic. Our results illustrate how topology and geometry can be used to control the behaviour of active materials, and introduce a new avenue for the quantitative mechanical characterization of active fluids.

  3. Charged Defects-Induced Resistive Switching in Sb2Te3 Memristor

    NASA Astrophysics Data System (ADS)

    Zhang, J. J.; Liu, N.; Sun, H. J.; Yan, P.; Li, Y.; Zhong, S. J.; Xie, S.; Li, R. J.; Miao, X. S.

    2016-02-01

    Resistive switching (RS) characteristics of Ta/Sb2Te3/Ta and Ag/Sb2Te3/Ta memory devices have been investigated. The I- V curves show the bipolar RS at room temperature. We have demonstrated that the redistribution and migration of charged defects are responsible for the memristive switching. By using Ag electrode instead of Ta, more defects can be created near the Ag/Sb2Te3 interface, which is a feasible method to eliminate the electroforming process.

  4. Advanced repair solution of clear defects on HTPSM by using nanomachining tool

    NASA Astrophysics Data System (ADS)

    Lee, Hyemi; Kim, Munsik; Jung, Hoyong; Kim, Sangpyo; Yim, Donggyu

    2015-10-01

    As the mask specifications become tighter for low k1 lithography, more aggressive repair accuracy is required below sub 20nm tech. node. To meet tight defect specifications, many maskshops select effective repair tools according to defect types. Normally, pattern defects are repaired by the e-beam repair tool and soft defects such as particles are repaired by the nanomachining tool. It is difficult for an e-beam repair tool to remove particle defects because it uses chemical reaction between gas and electron, and a nanomachining tool, which uses physical reaction between a nano-tip and defects, cannot be applied for repairing clear defects. Generally, film deposition process is widely used for repairing clear defects. However, the deposited film has weak cleaning durability, so it is easily removed by accumulated cleaning process. Although the deposited film is strongly attached on MoSiN(or Qz) film, the adhesive strength between deposited Cr film and MoSiN(or Qz) film becomes weaker and weaker by the accumulated energy when masks are exposed in a scanner tool due to the different coefficient of thermal expansion of each materials. Therefore, whenever a re-pellicle process is needed to a mask, all deposited repair points have to be confirmed whether those deposition film are damaged or not. And if a deposition point is damaged, repair process is needed again. This process causes longer and more complex process. In this paper, the basic theory and the principle are introduced to recover clear defects by using nanomachining tool, and the evaluated results are reviewed at dense line (L/S) patterns and contact hole (C/H) patterns. Also, the results using a nanomachining were compared with those using an e-beam repair tool, including the cleaning durability evaluated by the accumulated cleaning process. Besides, we discuss the phase shift issue and the solution about the image placement error caused by phase error.

  5. Active infrared thermal imaging technology to detect the corrosion defects in aircraft cargo door

    NASA Astrophysics Data System (ADS)

    Chen, Dapeng; Zhang, Cunlin; Zeng, Zhi; Xing, Chunfei; Li, Yanhong

    2009-11-01

    Aircraft fuselage material corrosion problems have been major aviation security issues, which hinder the development of aviation industry. How can we use non-destructive testing methods to detect the internal corrosion defects from the outside of the fuselage, to find the hidden safety problems in advance and update the defective equipment and materials, has great significance for the prevention of accidents. Nowadays, the active infrared thermal imaging technology as a new nondestructive technology has been gradually used on a wide variety of materials, such as composite, metal and so on. This article makes use of this technology on an aircraft cargo door specimen to detect the corrosion defects. Firstly, use High-energy flash pulse to excite the specimen, and use the thermal image processing software to splice the thermal images, so the thermal images of the overall specimen can be showed. Then, heat the defects by ultrasonic excitation, this will cause vibration and friction or thermoelastic effects in the places of defects, so the ultrasonic energy will dissipate into heat and manifested in the uneven temperature of surface. An Infrared camera to capture the changes of temperature of material surface, send data to the computer and records the thermal information of the defects. Finally, extracting data and drawing infrared radiation-time curve of some selected points of interest to analyze the signal changes in heat of defects further more. The results of the experiments show that both of the two ways of heat excitation show a clear position and shape of defects, and the ultrasonic method has more obvious effect of excitation to the defects, and a higher signal to noise ratio than the flash pulse excitation, but flash pulse method do not contact the specimen in the process of excitation, and shows the location and shape of defects in the overall of the specimen has its advantages.

  6. A defect model for UO2+x based on electrical conductivity and deviation from stoichiometry measurements

    NASA Astrophysics Data System (ADS)

    Garcia, Philippe; Pizzi, Elisabetta; Dorado, Boris; Andersson, David; Crocombette, Jean-Paul; Martial, Chantal; Baldinozzi, Guido; Siméone, David; Maillard, Serge; Martin, Guillaume

    2017-10-01

    Electrical conductivity of UO2+x shows a strong dependence upon oxygen partial pressure and temperature which may be interpreted in terms of prevailing point defects. A simulation of this property along with deviation from stoichiometry is carried out based on a model that takes into account the presence of impurities, oxygen interstitials, oxygen vacancies, holes, electrons and clusters of oxygen atoms. The equilibrium constants for each defect reaction are determined to reproduce the experimental data. An estimate of defect concentrations and their dependence upon oxygen partial pressure can then be determined. The simulations carried out for 8 different temperatures (973-1673 K) over a wide range of oxygen partial pressures are discussed and resulting defect equilibrium constants are plotted in an Arrhenius diagram. This provides an estimate of defect formation energies which may further be compared to other experimental data or ab-initio and empirical potential calculations.

  7. Migration delays caused by anthropogenic barriers: modeling dams, temperature, and success on migrating salmon smolts

    USGS Publications Warehouse

    Marschall, Elizabeth A.; Mather, Martha E.; Parrish, Donna; Allison, Gary W.; McMenemy, James R.

    2011-01-01

    Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures; as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed

  8. [Helminth migration in the host].

    PubMed

    Horák, Petr

    2006-08-01

    Helminths belong to important human pathogens in tropical and subtropical countries. They have simple one-host life cycles or they use several hosts for their development. There are two main entry points for human helminths: the skin and the oral cavity. Skin penetration is followed by tissue migration of helminth stages towards target organs. Also some perorally acquired helminths migrate throughout the human body and then (a) they return to and mature in the intestine or (b) they search for specific final location in other (extraintestinal) tissues/organs. Particular developmental stages having different migration routes, and different roles of human beings as final, intermediate and paratenic hosts are briefly mentioned.

  9. Invisible defects in complex crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it; Della Valle, Giuseppe

    2013-07-15

    We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out tomore » be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.« less

  10. Kinetics of Schottky defect formation and annihilation in single crystal TlBr.

    PubMed

    Bishop, Sean R; Tuller, Harry L; Kuhn, Melanie; Ciampi, Guido; Higgins, William; Shah, Kanai S

    2013-07-28

    The kinetics for Schottky defect (Tl and Br vacancy pair) formation and annihilation in ionically conducting TlBr are characterized through a temperature induced conductivity relaxation technique. Near room temperature, defect generation-annihilation was found to take on the order of hours before equilibrium was reached after a step change in temperature, and that mechanical damage imparted on the sample rapidly increases this rate. The rate limiting step to Schottky defect formation-annihilation is identified as being the migration of lower mobility Tl (versus Br), with an estimate for source-sink density derived from calculated diffusion lengths. This study represents one of the first investigations of Schottky defect generation-annihilation kinetics and demonstrates its utility in quantifying detrimental mechanical damage in radiation detector materials.

  11. First-principles study of plutonium adsorption on perfect and defective graphene and hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Li, Shujing; Zhou, Mei; Li, Menglei; Wang, Xiaohui; Zheng, Fawei; Zhang, Ping

    2018-05-01

    The adsorption of the Pu atom on perfect and defective graphene and hexagonal boron nitride (h-BN) sheet has been systematically investigated by using first-principles calculations. Pu atom is most likely to trap at the hollow site in pure graphene, and the energy barrier is as high as 78.3 meV. For ideal h-BN, the top site of the boron atom is the most stable adsorption site for adatom Pu, and the maximal energy barrier is only 12 meV. Comparing Pu on pure graphene and h-BN sheet, Pu atom is easy to migrate on the surface of ideal h-BN at room temperature, while it is bound to perfect graphene. Besides, Pu atom adsorbed on defective graphene and h-BN sheet, with large adsorption energies in the range of 2.66 ∼ 14.95 eV, is more stable than that on pure graphene and h-BN sheet. We have also found that all the adsorption systems are spin-polarized with the largest magnetic moments of Pu to be 7.67 μ B on graphene and 6.71 μ B on h-BN with a single vacancy of N atom. These findings suggest that graphene and h-BN two-dimensional materials can be effectively applied in the growth of high-quality plutonium single crystal thin films, as well as in nuclear waste recovery.

  12. Mass Defect from Nuclear Physics to Mass Spectral Analysis.

    PubMed

    Pourshahian, Soheil

    2017-09-01

    Mass defect is associated with the binding energy of the nucleus. It is a fundamental property of the nucleus and the principle behind nuclear energy. Mass defect has also entered into the mass spectrometry terminology with the availability of high resolution mass spectrometry and has found application in mass spectral analysis. In this application, isobaric masses are differentiated and identified by their mass defect. What is the relationship between nuclear mass defect and mass defect used in mass spectral analysis, and are they the same? Graphical Abstract ᅟ.

  13. Luminescence from defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Morkoç, H.

    2006-04-01

    We briefly review the luminescence properties of defects in GaN and focus on the most interesting defects. In particular, the blue luminescence band peaking at about 3 eV is assigned to different defects and even different types of transitions in undoped, Zn-, C-, and Mg-doped GaN. Another omnipresent luminescence band, the yellow luminescence band may have different origin in nearly dislocation-free freestanding GaN templates, undoped thin layers, and carbon-doped GaN. The Y4 and Y7 lines are caused by recombination at unidentified point defects captured by threading edge dislocations.

  14. Migration as a turning point in food habits: the early phase of dietary acculturation among women from South Asian, African, and Middle Eastern Countries living in Norway.

    PubMed

    Terragni, Laura; Garnweidner, Lisa M; Pettersen, Kjell Sverre; Mosdøl, Annhild

    2014-01-01

    This article explores the early phase of dietary acculturation after migration. South Asian, African and Middle Eastern women (N = 21) living in Norway were interviewed about their early experiences with food in a new context. The findings pointed to abrupt changes in food habits in the first period after migration. To various degrees, women reported unfamiliarity with foods in shops, uncertainty about meal formats and food preparation and fear of eating food prohibited by their religion. Their food consumption tended to be restricted to food items perceived as familiar or safe. Our findings indicate that the first period after migration represents a specific phase in the process of dietary acculturation. Early initiatives aimed at enhancing confidence in food and familiarity with the new food culture are recommended.

  15. Direct correlation and strong reduction of native point defects and microwave dielectric loss in air-annealed (Ba,Sr)TiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Z. Q.; Podpirka, A.; Kirchoefer, S. W.

    2015-05-04

    We report on the native defect and microwave properties of 1 μm thick Ba{sub 0.50}Sr{sub 0.50}TiO{sub 3} (BST) films grown on MgO (100) substrates by molecular beam epitaxy (MBE). Depth-resolved cathodoluminescence spectroscopy (DRCLS) showed high densities of native point defects in as-deposited BST films, causing strong subgap emission between 2.0 eV and 3.0 eV due to mixed cation V{sub C} and oxygen Vo vacancies. Post growth air anneals reduce these defects with 2.2, 2.65, and 3.0 eV V{sub O} and 2.4 eV V{sub C} intensities decreasing with increasing anneal temperature and by nearly two orders of magnitude after 950 °C annealing. These low-defect annealed BSTmore » films exhibited high quality microwave properties, including room temperature interdigitated capacitor tunability of 13% under an electric bias of 40 V and tan δ of 0.002 at 10 GHz and 40 V bias. The results provide a feasible route to grow high quality BST films by MBE through post-air annealing guided by DRCLS.« less

  16. Migration mechanisms and diffusion barriers of vacancies in Ga2O3

    NASA Astrophysics Data System (ADS)

    Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico

    2017-06-01

    We employ the nudged elastic band and the dimer methods within the standard density functional theory (DFT) formalism to study the migration of the oxygen and gallium vacancies in the monoclinic structure of β -Ga2O3 . We identify all the first nearest neighbor paths and calculate the migration barriers for the diffusion of the oxygen and gallium vacancies. We also identify the metastable sites of the gallium vacancies which are critical for the diffusion of the gallium atoms. The migration barriers for the diffusion of the gallium vacancies are lower than the migration barriers for oxygen vacancies by 1 eV on average, suggesting that the gallium vacancies are mobile at lower temperatures. Using the calculated migration barriers we estimate the annealing temperature of these defects within the harmonic transition state theory formalism, finding excellent agreement with the observed experimental annealing temperatures. Finally, we suggest the existence of percolation paths which enable the migration of the species without utilizing all the migration paths of the crystal.

  17. Defect classification in sparsity-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Golato, Andrew; Ahmad, Fauzia; Santhanam, Sridhar; Amin, Moeness G.

    2017-05-01

    Guided waves have gained popularity in structural health monitoring (SHM) due to their ability to inspect large areas with little attenuation, while providing rich interactions with defects. For thin-walled structures, the propagating waves are Lamb waves, which are a complex but well understood type of guided waves. Recent works have cast the defect localization problem of Lamb wave based SHM within the sparse reconstruction framework. These methods make use of a linear model relating the measurements with the scene reflectivity under the assumption of point-like defects. However, most structural defects are not perfect points but tend to assume specific forms, such as surface cracks or internal cracks. Knowledge of the "type" of defects is useful in the assessment phase of SHM. In this paper, we present a dual purpose sparsity-based imaging scheme which, in addition to accurately localizing defects, properly classifies the defects present simultaneously. The proposed approach takes advantage of the bias exhibited by certain types of defects toward a specific Lamb wave mode. For example, some defects strongly interact with the anti-symmetric modes, while others strongly interact with the symmetric modes. We build model based dictionaries for the fundamental symmetric and anti-symmetric wave modes, which are then utilized in unison to properly localize and classify the defects present. Simulated data of surface and internal defects in a thin Aluminum plate are used to validate the proposed scheme.

  18. A review of defects and disorder in multinary tetrahedrally bonded semiconductors [Defects and disorder in multinary tetrahedrally bonded semiconductors studied by experiment and theory

    DOE PAGES

    Baranowski, Lauryn L.; Zawadzki, Pawel; Lany, Stephan; ...

    2016-11-10

    Defects are critical to understanding the electronic properties of semiconducting compounds, for applications such as light-emitting diodes, transistors, photovoltaics, and thermoelectrics. In this review, we describe our work investigating defects in tetrahedrally bonded, multinary semiconductors, and discuss the place of our research within the context of publications by other groups. We applied experimental and theory techniques to understand point defects, structural disorder, and extended antisite defects in one semiconductor of interest for photovoltaic applications, Cu 2SnS 3. We contrast our findings on Cu 2SnS 3 with other chemically related Cu-Sn-S compounds, as well as structurally related compounds such as Cumore » 2ZnSnS 4 and Cu(In,Ga)Se 2. We find that evaluation of point defects alone is not sufficient to understand defect behavior in multinary tetrahedrally bonded semiconductors. In the case of Cu 2SnS 3 and Cu 2ZnSnS 4, structural disorder and entropy-driven cation clustering can result in nanoscale compositional inhomogeneities which detrimentally impact the electronic transport. Therefore, it is not sufficient to assess only the point defect behavior of new multinary tetrahedrally bonded compounds; effects such as structural disorder and extended antisite defects must also be considered. Altogether, this review provides a framework for evaluating tetrahedrally bonded semiconducting compounds with respect to their defect behavior for photovoltaic and other applications, and suggests new materials that may not be as prone to such imperfections.« less

  19. A review of defects and disorder in multinary tetrahedrally bonded semiconductors [Defects and disorder in multinary tetrahedrally bonded semiconductors studied by experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranowski, Lauryn L.; Zawadzki, Pawel; Lany, Stephan

    Defects are critical to understanding the electronic properties of semiconducting compounds, for applications such as light-emitting diodes, transistors, photovoltaics, and thermoelectrics. In this review, we describe our work investigating defects in tetrahedrally bonded, multinary semiconductors, and discuss the place of our research within the context of publications by other groups. We applied experimental and theory techniques to understand point defects, structural disorder, and extended antisite defects in one semiconductor of interest for photovoltaic applications, Cu 2SnS 3. We contrast our findings on Cu 2SnS 3 with other chemically related Cu-Sn-S compounds, as well as structurally related compounds such as Cumore » 2ZnSnS 4 and Cu(In,Ga)Se 2. We find that evaluation of point defects alone is not sufficient to understand defect behavior in multinary tetrahedrally bonded semiconductors. In the case of Cu 2SnS 3 and Cu 2ZnSnS 4, structural disorder and entropy-driven cation clustering can result in nanoscale compositional inhomogeneities which detrimentally impact the electronic transport. Therefore, it is not sufficient to assess only the point defect behavior of new multinary tetrahedrally bonded compounds; effects such as structural disorder and extended antisite defects must also be considered. Altogether, this review provides a framework for evaluating tetrahedrally bonded semiconducting compounds with respect to their defect behavior for photovoltaic and other applications, and suggests new materials that may not be as prone to such imperfections.« less

  20. 77 FR 34380 - CenterPoint Energy Gas Transmission Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... injection and since CenterPoint can no longer purchase replacement parts for the existing compressor unit... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-467-000] CenterPoint... May 22, 2012, CenterPoint Energy Gas Transmission Company, LLC (CenterPoint), 1111 Louisiana Street...