Using a dynamic point-source percolation model to simulate bubble growth.
Zimmerman, Jonathan A.; Zeigler, David A.; Cowgill, Donald F.
2004-05-01
Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tritide alloys is of high scientific and technological importance. Of interest is the ability to predict both the distribution of these bubbles and the manner in which these bubbles interact at a critical concentration of helium-to-metal atoms to produce an accelerated release of helium gas. One technique that has been used in the past to model these materials, and again revisited in this research, is percolation theory. Previous efforts have used classical percolation theory to qualitatively and quantitatively model the behavior of interstitial helium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict the distribution of helium bubbles and include features that capture the underlying physical mechanisms present in these materials. In this work, we enhance classical percolation theory by developing the dynamic point-source percolation model. This model alters the traditionally binary character of site occupation probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e. nucleated bubbles. This revised model produces characteristics for one and two dimensional systems that are extremely comparable with measurements from three dimensional physical samples. Future directions for continued development of the dynamic model are also outlined.
Modeling the contribution of point sources and non-point sources to Thachin River water pollution.
Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth
2009-08-15
Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.
NASA Astrophysics Data System (ADS)
Kanai, Yasuhiro; Abe, Keiji; Seki, Yoichi
2015-06-01
We propose a price percolation model to reproduce the price distribution of components used in industrial finished goods. The intent is to show, using the price percolation model and a component category as an example, that percolation behaviors, which exist in the matter system, the ecosystem, and human society, also exist in abstract, random phenomena satisfying the power law. First, we discretize the total potential demand for a component category, considering it a random field. Second, we assume that the discretized potential demand corresponding to a function of a finished good turns into actual demand if the difficulty of function realization is less than the maximum difficulty of the realization. The simulations using this model suggest that changes in a component category's price distribution are due to changes in the total potential demand corresponding to the lattice size and the maximum difficulty of realization, which is an occupation probability. The results are verified using electronic components' sales data.
An optoacoustic point source for acoustic scale model measurements.
Bolaños, Javier Gómez; Pulkki, Ville; Karppinen, Pasi; Hæggström, Edward
2013-04-01
A massless acoustic source is proposed for scale model work. This source is generated by focusing a pulsed laser beam to rapidly heat the air at the focal point. This produces an expanding small plasma ball which generates a sonic impulse that may be used as an acoustic point source. Repeatability, frequency response, and directivity of the source were measured to show that it can serve as a massless point source. The impulse response of a rectangular space was determined using this type of source. A good match was found between the predicted and the measured impulse responses of the space.
[A review on non-point source pollution models].
Zhang, Qiu-Ling; Chen, Ying-Xu; Yu, Qiao-Gang; Deng, Hua; Tian, Ping
2007-08-01
With the effective control of point source pollution, the non-point source pollution (NPSP) of water environment has been paid more and more attention, and NPSP models are thriving with the development of 3S technology. This paper made a brief introduction about the classification and evolution of NPSP models. Ten NPSP models commonly used abroad were selected and compared, with their software developers and providers, data input and output, pollutant- and sediment types, time scale, simulation progress and characteristics, and model types illustrated. Based on the model applications and related literature reports, a qualitative evaluation was made from the viewpoint of the suitability of NPSP models to different watershed situation. Finally, the existing research insufficiency was analyzed, and the future development trend of non-point research was discussed, which would be helpful to the development of NPSP models and their applications in water management in China.
NASA Astrophysics Data System (ADS)
Solomon, Sorin; Weisbuch, Gerard; de Arcangelis, Lucilla; Jan, Naeem; Stauffer, Dietrich
2000-03-01
We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.
HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL
The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...
A Percolation Model for Fracking
NASA Astrophysics Data System (ADS)
Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.
2014-12-01
Developments in fracking technology have enabled the recovery of vast reserves of oil and gas; yet, there is very little publicly available scientific research on fracking. Traditional reservoir simulator models for fracking are computationally expensive, and require many hours on a supercomputer to simulate a single fracking treatment. We have developed a computationally inexpensive percolation model for fracking that can be used to understand the processes and risks associated with fracking. In our model, a fluid is injected from a single site and a network of fractures grows from the single site. The fracture network grows in bursts, the failure of a relatively strong bond followed by the failure of a series of relatively weak bonds. These bursts display similarities to micro seismic events observed during a fracking treatment. The bursts follow a power-law (Gutenburg-Richter) frequency-size distribution and have growth rates similar to observed earthquake moment rates. These are quantifiable features that can be compared to observed microseismicity to help understand the relationship between observed microseismicity and the underlying fracture network.
Extension of the distributed point source method for ultrasonic field modeling
Cheng, Jiqi; Lin, Wei; Qin, Yi-Xian
2011-01-01
The distributed point source method (DPSM) was recently proposed for ultrasonic field modeling and other applications. This method uses distributed point sources, placed slightly behind transducer surface, to model the ultrasound field. The acoustic strength of each point source is obtained through matrix inversion that requires the number of target points on the transducer surface to be equal to the number of point sources. In this work, DPSM was extended and further developed to overcome the limitations of the original method and provide a solid mathematical explanation of the physical principle behind the method. With the extension, the acoustic strength of the point sources was calculated as the solution to the least squares minimization problem instead of using direct matrix inversion. As numerical examples, the ultrasound fields of circular and rectangular transducers were calculated using the extended and original DPSMs which were then systematically compared with the results calculated using the theoretical solution and the exact spatial impulse response method. The numerical results showed the extended method can model ultrasonic fields accurately without the scaling step required by the original method. The extended method has potential applications in ultrasonic field modeling, tissue characterization, nondestructive testing, and ultrasound system optimization. PMID:21269654
NASA Astrophysics Data System (ADS)
Zhang, Tianhe C.; Grill, Warren M.
2010-12-01
Deep brain stimulation (DBS) has emerged as an effective treatment for movement disorders; however, the fundamental mechanisms by which DBS works are not well understood. Computational models of DBS can provide insights into these fundamental mechanisms and typically require two steps: calculation of the electrical potentials generated by DBS and, subsequently, determination of the effects of the extracellular potentials on neurons. The objective of this study was to assess the validity of using a point source electrode to approximate the DBS electrode when calculating the thresholds and spatial distribution of activation of a surrounding population of model neurons in response to monopolar DBS. Extracellular potentials in a homogenous isotropic volume conductor were calculated using either a point current source or a geometrically accurate finite element model of the Medtronic DBS 3389 lead. These extracellular potentials were coupled to populations of model axons, and thresholds and spatial distributions were determined for different electrode geometries and axon orientations. Median threshold differences between DBS and point source electrodes for individual axons varied between -20.5% and 9.5% across all orientations, monopolar polarities and electrode geometries utilizing the DBS 3389 electrode. Differences in the percentage of axons activated at a given amplitude by the point source electrode and the DBS electrode were between -9.0% and 12.6% across all monopolar configurations tested. The differences in activation between the DBS and point source electrodes occurred primarily in regions close to conductor-insulator interfaces and around the insulating tip of the DBS electrode. The robustness of the point source approximation in modeling several special cases—tissue anisotropy, a long active electrode and bipolar stimulation—was also examined. Under the conditions considered, the point source was shown to be a valid approximation for predicting excitation
PHOTOCHEMICAL SIMULATIONS OF POINT SOURCE EMISSIONS WITH THE MODELS-3 CMAQ PLUME-IN-GRID APPROACH
A plume-in-grid (PinG) approach has been designed to provide a realistic treatment for the simulation the dynamic and chemical processes impacting pollutant species in major point source plumes during a subgrid scale phase within an Eulerian grid modeling framework. The PinG sci...
Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models
Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander
2014-02-18
In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient.
Point source modeling of matched case-control data with multiple disease subtypes.
Li, Shi; Mukherjee, Bhramar; Batterman, Stuart
2012-12-10
In this paper, we propose nonlinear distance-odds models investigating elevated odds around point sources of exposure, under a matched case-control design where there are subtypes within cases. We consider models analogous to the polychotomous logit models and adjacent-category logit models for categorical outcomes and extend them to the nonlinear distance-odds context. We consider multiple point sources as well as covariate adjustments. We evaluate maximum likelihood, profile likelihood, iteratively reweighted least squares, and a hierarchical Bayesian approach using Markov chain Monte Carlo techniques under these distance-odds models. We compare these methods using an extensive simulation study and show that with multiple parameters and a nonlinear model, Bayesian methods have advantages in terms of estimation stability, precision, and interpretation. We illustrate the methods by analyzing Medicaid claims data corresponding to the pediatric asthma population in Detroit, Michigan, from 2004 to 2006.
Stochastic point-source modeling of ground motions in the Cascadia region
Atkinson, G.M.; Boore, D.M.
1997-01-01
A stochastic model is used to develop preliminary ground motion relations for the Cascadia region for rock sites. The model parameters are derived from empirical analyses of seismographic data from the Cascadia region. The model is based on a Brune point-source characterized by a stress parameter of 50 bars. The model predictions are compared to ground-motion data from the Cascadia region and to data from large earthquakes in other subduction zones. The point-source simulations match the observations from moderate events (M 100 km). The discrepancy at large magnitudes suggests further work on modeling finite-fault effects and regional attenuation is warranted. In the meantime, the preliminary equations are satisfactory for predicting motions from events of M < 7 and provide conservative estimates of motions from larger events at distances less than 100 km.
An infrared sky model based on the IRAS point source data
NASA Technical Reports Server (NTRS)
Cohen, Martin; Walker, Russell; Wainscoat, Richard; Volk, Kevin; Walker, Helen; Schwartz, Deborah
1990-01-01
A detailed model for the infrared point source sky is presented that comprises geometrically and physically realistic representations of the galactic disk, bulge, spheroid, spiral arms, molecular ring, and absolute magnitudes. The model was guided by a parallel Monte Carlo simulation of the Galaxy. The content of the galactic source table constitutes an excellent match to the 12 micrometer luminosity function in the simulation, as well as the luminosity functions at V and K. Models are given for predicting the density of asteroids to be observed, and the diffuse background radiance of the Zodiacal cloud. The model can be used to predict the character of the point source sky expected for observations from future infrared space experiments.
Atmospheric Modeling and Verification of Point Source Fossil Fuel CO2 Emissions
NASA Astrophysics Data System (ADS)
Keller, E. D.; Turnbull, J. C.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.; Norris, M. W.; Zondervan, A.
2014-12-01
Emissions from large point sources (electricity generation and large-scale industry) of fossil fuel CO2 (CO2ff) emissions are currently determined from self-reported "bottom-up" inventory data, with an uncertainty of about 20% for individual power plants. As the world moves towards a regulatory environment, there is a need for independent, objective measurements of these emissions both to improve the accuracy of and to verify the reported amounts. "Top-down" atmospheric methods have the potential to independently constrain point source emissions, combining observations with atmospheric transport modeling to derive emission estimates. We use the Kapuni Gas Treatment Plant to examine methodologies and model sensitivities for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes and vents CO2 from locally extracted natural gas at a rate of ~0.1 Tg carbon per year. We measured the CO2ff content in three different types of observations: air samples collected in flasks over a period of a few minutes, sodium hydroxide solution exposed the atmosphere, and grass samples from the surrounding farmland, the latter two representing ~1 week integrated averages. We use the WindTrax Lagrangian plume dispersion model to compare these atmospheric observations with "expected" values given the emissions reported by the Kapuni plant. The model has difficulty accurately capturing the short-term variability in the flask samples but does well in representing the longer-term averages from grass samples, suggesting that passive integrated-sampling methods have the potential to monitor long-term emissions. Our results indicate that using this method, point source emissions can be verified to within about 30%. Further improvements in atmospheric transport modelling are needed to reduce uncertainties. In view of this, we discuss model strengths and weaknesses and explore model sensitivity to meteorological conditions
Modified Invasion Percolation Models for Multiphase Processes
Karpyn, Zuleima
2015-01-31
This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.
Percolation properties in a traffic model
NASA Astrophysics Data System (ADS)
Wang, Feilong; Li, Daqing; Xu, Xiaoyun; Wu, Ruoqian; Havlin, Shlomo
2015-11-01
As a dynamical complex system, traffic is characterized by a transition from free flow to congestions, which is mostly studied in highways. However, despite its importance in developing congestion mitigation strategies, the understanding of this common traffic phenomenon in a city scale is still missing. An open question is how the traffic in the network collapses from a global efficient traffic to isolated local flows in small clusters, i.e. the question of traffic percolation. Here we study the traffic percolation properties on a lattice by simulation of an agent-based model for traffic. A critical traffic volume in this model distinguishes the free state from the congested state of traffic. Our results show that the threshold of traffic percolation decreases with increasing traffic volume and reaches a minimum value at the critical traffic volume. We show that this minimal threshold is the result of longest spatial correlation between traffic flows at the critical traffic volume. These findings may help to develop congestion mitigation strategies in a network view.
Double point source W-phase inversion: Real-time implementation and automated model selection
Nealy, Jennifer; Hayes, Gavin
2015-01-01
Rapid and accurate characterization of an earthquake source is an extremely important and ever evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa earthquake and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquake. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match published analyses of the same events.
Double Point Source W-phase Inversion: Real-time Implementation and Automated Model Selection
NASA Astrophysics Data System (ADS)
Nealy, J. L.; Hayes, G. P.
2015-12-01
Rapid and accurate characterization of an earthquake source is an extremely important and ever-evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquakes. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match previously published analyses of the same events.
Double point source W-phase inversion: Real-time implementation and automated model selection
NASA Astrophysics Data System (ADS)
Nealy, Jennifer L.; Hayes, Gavin P.
2015-12-01
Rapid and accurate characterization of an earthquake source is an extremely important and ever evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa earthquake and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquake. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match published analyses of the same events.
Powerful model for the point source sky: Far-ultraviolet and enhanced midinfrared performance
NASA Technical Reports Server (NTRS)
Cohen, Martin
1994-01-01
I report further developments of the Wainscoat et al. (1992) model originally created for the point source infrared sky. The already detailed and realistic representation of the Galaxy (disk, spiral arms and local spur, molecular ring, bulge, spheroid) has been improved, guided by CO surveys of local molecular clouds, and by the inclusion of a component to represent Gould's Belt. The newest version of the model is very well validated by Infrared Astronomy Satellite (IRAS) source counts. A major new aspect is the extension of the same model down to the far ultraviolet. I compare predicted and observed far-utraviolet source counts from the Apollo 16 'S201' experiment (1400 A) and the TD1 satellite (for the 1565 A band).
Analogue model for anti-de Sitter as a description of point sources in fluids
NASA Astrophysics Data System (ADS)
Mosna, Ricardo A.; Pitelli, João Paulo M.; Richartz, Maurício
2016-11-01
We introduce an analogue model for a nonglobally hyperbolic spacetime in terms of a two-dimensional fluid. This is done by considering the propagation of sound waves in a radial flow with constant velocity. We show that the equation of motion satisfied by sound waves is the wave equation on AdS2×S1. Since this spacetime is not globally hyperbolic, the dynamics of the Klein-Gordon field is not well defined until boundary conditions at the spatial boundary of AdS2 are prescribed. On the analogue model end, those extra boundary conditions provide an effective description of the point source at r =0 . For waves with circular symmetry, we relate the different physical evolutions to the phase difference between ingoing and outgoing scattered waves. We also show that the fluid configuration can be stable or unstable depending on the chosen boundary condition.
Modied invasion percolation model for fracking
NASA Astrophysics Data System (ADS)
Norris, J.; Turcotte, D. L.; Rundle, J. B.
2013-12-01
Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large reserves of natural gas and oil. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. We consider new models of Invasion Percolation, (IP) which are models that were originally introduced to represent the injection of an invading fluid into a fluid filled porous medium. A primary difference between our model and the original model is the elimination of any unbroken bonds whose end sites are both filled with fluid. While the original model was found to have statistics nearly identical to traditional percolation, we find significant statistical differences. In particular, the distribution of broken bond strengths displays a strong roll-over near the critical point. Another difference between traditional percolation clusters and clusters generated using our model is the absence of internal loops. The modified growth rule prevents the formation of internal loops making the growing cluster ramified. Other ramified networks include drainage basins and DLA clusters. The study of drainage basins led to the development of Horton-Strahler and Tokunaga network statistics. We used both Horton-Strahler and Tokunaga network statistics to characterize simulated clusters using and found that the clusters generated by our model are statistically self-similar fractals. In addition to fractal clusters, IP also displays burst dynamics, in which the cluster extends rapidly through a spontaneous extension of percolating bonds. We define a burst to be a consecutive series of broken bonds whose strengths are all below a specified value. Using this definition of bursts we found good agreement with a power-law frequency-area distribution. Our model displays many of the characteristics of an energy landscape, and shows many similarities to DLA, neural networks, ecological landscapes, and the world wide web. We anticipate that this
MODELING PHOTOCHEMISTRY AND AEROSOL FORMATION IN POINT SOURCE PLUMES WITH THE CMAQ PLUME-IN-GRID
Emissions of nitrogen oxides and sulfur oxides from the tall stacks of major point sources are important precursors of a variety of photochemical oxidants and secondary aerosol species. Plumes released from point sources exhibit rather limited dimensions and their growth is gradu...
Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin.
Zhang, Qiu-Ling; Chen, Ying-Xu; Jilani, Ghulam; Shamsi, Imran Haider; Yu, Qiao-Gang
2010-02-15
Accelerated eutrophication and nutrient loads in the lakes are of major concern for human health and environment. This study was undertaken for modeling the non-point source pollution of Taihu lake basin in eastern China. The SWAT model having an interface in ArcView GIS was employed. Model sensitive parameters related to hydrology and water quality were obtained by sensitivity analysis, and then calibrated and validated by comparing model predictions with field data. The GIS showed good potential for parameterization of hill-slopes, channels, and representative slope profiles for SWAT model simulations. In a monthly and daily time step, the model's Nash-Sutcliffe coefficient (E) and the coefficient of determination (R(2)) indicated that values of simulated runoff, NH(4)(+)-N and total phosphorus were acceptably closer to the measured data. Surface water parameters especially CN, Soil-AWC and ESCO were the most sensitive and had more recognition in the model. It is concluded that runoff carrying N and P nutrients from chemical fertilizer inputs in agricultural areas is the major contributor to NPSP in the lake basin. So, decrease in excessive use of N and P fertilizers and their synergism with organic manures is recommended that would significantly reduce nutrient pollution in the lake ecosystem.
Economic-environmental modeling of point source pollution in Jefferson County, Alabama, USA.
Kebede, Ellene; Schreiner, Dean F; Huluka, Gobena
2002-05-01
This paper uses an integrated economic-environmental model to assess the point source pollution from major industries in Jefferson County, Northern Alabama. Industrial expansion generates employment, income, and tax revenue for the public sector; however, it is also often associated with the discharge of chemical pollutants. Jefferson County is one of the largest industrial counties in Alabama that experienced smog warnings and ambient ozone concentration, 1996-1999. Past studies of chemical discharge from industries have used models to assess the pollution impact of individual plants. This study, however, uses an extended Input-Output (I-O) economic model with pollution emission coefficients to assess direct and indirect pollutant emission for several major industries in Jefferson County. The major findings of the study are: (a) the principal emission by the selected industries are volatile organic compounds (VOC) and these contribute to the ambient ozone concentration; (b) the direct and indirect emissions are significantly higher than the direct emission by some industries, indicating that an isolated analysis will underestimate the emission by an industry; (c) while low emission coefficient industries may suggest industry choice they may also emit the most hazardous chemicals. This study is limited by the assumptions made, and the data availability, however it provides a useful analytical tool for direct and cumulative emission estimation and generates insights on the complexity in choice of industries.
Modelling of phosphorus inputs to rivers from diffuse and point sources.
Bowes, Michael J; Smith, Jim T; Jarvie, Helen P; Neal, Colin
2008-06-01
The difference in timing of point and diffuse phosphorus (P) delivery to a river produces clear differences in the P concentration-flow relationship. Point inputs decrease in concentration with increasing river flow, due to dilution of a relatively constant input, whereas diffuse (non-point) load usually increases with river flow. This study developed a simple model, based on this fundamental difference, which allowed point and diffuse inputs to be quantified by modelling their contribution to river P concentration as a power-law function of flow. The relationships between total phosphorus (TP) concentration and river flow were investigated for three contrasting UK river catchments; the Swale (Yorkshire), the Frome (Dorset) and the Avon (Warwickshire). A load apportionment model was fitted to this empirical data to give estimates of point and diffuse load inputs at each monitoring site, at high temporal resolution. The model produced TP source apportionments that were similar to those derived from an export coefficient approach. For many diffuse-dominated sites within this study (with up to 75% of the annual TP load derived from diffuse sources), the model showed that reductions of point inputs would be most effective in order to reduce eutrophication risk, due to point source dominance during the plant and algae growing period. This modelling approach should provide simple, robust and rapid TP source apportionment from most concentration-flow datasets. It does not require GIS, information on land use, catchment size, population or livestock density, and could provide a valuable and versatile tool to catchment managers for determining suitable river mitigation options.
Resistance distribution in the hopping percolation model.
Strelniker, Yakov M; Havlin, Shlomo; Berkovits, Richard; Frydman, Aviad
2005-07-01
We study the distribution function P (rho) of the effective resistance rho in two- and three-dimensional random resistor networks of linear size L in the hopping percolation model. In this model each bond has a conductivity taken from an exponential form sigma proportional to exp (-kappar) , where kappa is a measure of disorder and r is a random number, 0< or = r < or =1 . We find that in both the usual strong-disorder regime L/ kappa(nu) >1 (not sensitive to removal of any single bond) and the extreme-disorder regime L/ kappa(nu) <1 (very sensitive to such a removal) the distribution depends only on L/kappa(nu) and can be well approximated by a log-normal function with dispersion b kappa(nu) /L , where b is a coefficient which depends on the type of lattice, and nu is the correlation critical exponent.
Ultrasonic field modeling in anisotropic materials by distributed point source method.
Fooladi, Samaneh; Kundu, Tribikram
2017-03-16
DPSM (distributed point source method) is a modeling technique which is based on the concept of Green's function. First, a collection of source and target points are distributed over the solution domain based on the problem description and solution requirements. Then, the effects from all source points are superimposed at the location of every individual target point. Therefore, a successful implementation of DPSM entails an effective evaluation of Green's function between many pairs of source and target points. For homogeneous and isotropic media, the Green's function is available as a closed-form analytical expression. But for anisotropic solids, the evaluation of Green's function is more complicated and needs to be done numerically. Nevertheless, important applications such as defect detection in composite materials require anisotropic analysis. In this paper, the DPSM is used for ultrasonic field modeling in anisotropic materials. Considering the prohibitive computational cost of evaluating Green's function numerically for a large number of points, a technique called "windowing" is suggested which employs the repetitive pattern of points in DPSM in order to considerably reduce the number of evaluations of Green's function. In addition, different resolutions of numerical integration are used for computing Green's function corresponding to different distances in order to achieve a good balance between time and accuracy. The developed anisotropic DPSM model equipped with windowing technique and multi-resolution numerical integration is then applied to the problem of ultrasonic wave modeling in a plate immersed in a fluid. The transducers are placed in the fluid on both sides of the plate. First an isotropic plate is considered for the sake of verification and rough calibration of numerical integration. Then a composite plate is considered to demonstrate applicability and effectiveness of the developed model for simulating ultrasonic wave propagation in anisotropic
A land use regression model incorporating data on industrial point source pollution.
Chen, Li; Wang, Yuming; Li, Peiwu; Ji, Yaqin; Kong, Shaofei; Li, Zhiyong; Bai, Zhipeng
2012-01-01
Advancing the understanding of the spatial aspects of air pollution in the city regional environment is an area where improved methods can be of great benefit to exposure assessment and policy support. We created land use regression (LUR) models for SO2, NO2 and PM10 for Tianjin, China. Traffic volumes, road networks, land use data, population density, meteorological conditions, physical conditions and satellite-derived greenness, brightness and wetness were used for predicting SO2, NO2 and PM10 concentrations. We incorporated data on industrial point sources to improve LUR model performance. In order to consider the impact of different sources, we calculated the PSIndex, LSIndex and area of different land use types (agricultural land, industrial land, commercial land, residential land, green space and water area) within different buffer radii (1 to 20 km). This method makes up for the lack of consideration of source impact based on the LUR model. Remote sensing-derived variables were significantly correlated with gaseous pollutant concentrations such as SO2 and NO2. R2 values of the multiple linear regression equations for SO2, NO2 and PM10 were 0.78, 0.89 and 0.84, respectively, and the RMSE values were 0.32, 0.18 and 0.21, respectively. Model predictions at validation monitoring sites went well with predictions generally within 15% of measured values. Compared to the relationship between dependent variables and simple variables (such as traffic variables or meteorological condition variables), the relationship between dependent variables and integrated variables was more consistent with a linear relationship. Such integration has a discernable influence on both the overall model prediction and health effects assessment on the spatial distribution of air pollution in the city region.
Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed
Polyakov, V.; Fares, A.; Kubo, D.; Jacobi, J.; Smith, C.
2007-01-01
Impaired water quality caused by human activity and the spread of invasive plant and animal species has been identified as a major factor of degradation of coastal ecosystems in the tropics. The main goal of this study was to evaluate the performance of AnnAGNPS (Annualized Non-Point Source Pollution Model), in simulating runoff and soil erosion in a 48 km2 watershed located on the Island of Kauai, Hawaii. The model was calibrated and validated using 2 years of observed stream flow and sediment load data. Alternative scenarios of spatial rainfall distribution and canopy interception were evaluated. Monthly runoff volumes predicted by AnnAGNPS compared well with the measured data (R2 = 0.90, P < 0.05); however, up to 60% difference between the actual and simulated runoff were observed during the driest months (May and July). Prediction of daily runoff was less accurate (R2 = 0.55, P < 0.05). Predicted and observed sediment yield on a daily basis was poorly correlated (R2 = 0.5, P < 0.05). For the events of small magnitude, the model generally overestimated sediment yield, while the opposite was true for larger events. Total monthly sediment yield varied within 50% of the observed values, except for May 2004. Among the input parameters the model was most sensitive to the values of ground residue cover and canopy cover. It was found that approximately one third of the watershed area had low sediment yield (0-1 t ha-1 y-1), and presented limited erosion threat. However, 5% of the area had sediment yields in excess of 5 t ha-1 y-1. Overall, the model performed reasonably well, and it can be used as a management tool on tropical watersheds to estimate and compare sediment loads, and identify "hot spots" on the landscape. ?? 2007 Elsevier Ltd. All rights reserved.
Modeling non-point source pollutants in the vadose zone: Back to the basics
NASA Astrophysics Data System (ADS)
Corwin, Dennis L.; Letey, John, Jr.; Carrillo, Marcia L. K.
More than ever before in the history of scientific investigation, modeling is viewed as a fundamental component of the scientific method because of the relatively recent development of the computer. No longer must the scientific investigator be confined to artificially isolated studies of individual processes that can lead to oversimplified and sometimes erroneous conceptions of larger phenomena. Computer models now enable scientists to attack problems related to open systems such as climatic change, and the assessment of environmental impacts, where the whole of the interactive processes are greater than the sum of their isolated components. Environmental assessment involves the determination of change of some constituent over time. This change can be measured in real time or predicted with a model. The advantage of prediction, like preventative medicine, is that it can be used to alter the occurrence of potentially detrimental conditions before they are manifest. The much greater efficiency of preventative, rather than remedial, efforts strongly justifies the need for an ability to accurately model environmental contaminants such as non-point source (NPS) pollutants. However, the environmental modeling advances that have accompanied computer technological development are a mixed blessing. Where once we had a plethora of discordant data without a holistic theory, now the pendulum has swung so that we suffer from a growing stockpile of models of which a significant number have never been confirmed or even attempts made to confirm them. Modeling has become an end in itself rather than a means because of limited research funding, the high cost of field studies, limitations in time and patience, difficulty in cooperative research and pressure to publish papers as quickly as possible. Modeling and experimentation should be ongoing processes that reciprocally enhance one another with sound, comprehensive experiments serving as the building blocks of models and models
Modelling plume dispersion pattern from a point source using spatial auto-correlational analysis
NASA Astrophysics Data System (ADS)
Ujoh, F.; Kwabe, D.
2014-02-01
The main objective of the study is to estimate the rate and model the pattern of plume rise from Dangote Cement Plc. A handheld Garmin GPS was employed for collection of coordinates at a single kilometre graduation from the centre of the factory to 10 kilometres. Plume rate was estimated using the Gaussian model while Kriging, using ArcGIS, was adopted for modelling the pattern of plume dispersion over a 10 kilometre radius around the factory. ANOVA test was applied for statistical analysis of the plume coefficients. The results indicate that plume dispersion is generally high with highest values recorded for the atmospheric stability classes A and B, while the least values are recorded for the atmospheric stability classes F and E. The variograms derived from the Kriging reveal that the pattern of plume dispersion is outwardly radial and omni-directional. With the exception of 3 stability sub-classes (DH, EH and FH) out of a total of 12, the 24-hour average of particulate matters (PM10 and PM2.5) within the study area is outrageously higher (highest value at 21392.3) than the average safety limit of 150 ug/m3 - 230 ug/m3 prescribed by the 2006 WHO guidelines. This indicates the presence of respirable and non-respirable pollutants that create poor ambient air quality. The study concludes that the use of geospatial technology can be adopted in modelling dispersion of pollutants from a point source. The study recommends ameliorative measures to reduce the rate of plume emission at the factory.
Central limit theorems for percolation models
NASA Astrophysics Data System (ADS)
Cox, J. Theodore; Grimmett, Geoffrey
1981-06-01
Let p ≠ 1/2 be the open-bond probability in Broadbent and Hammersley's percolation model on the square lattice. Let W x be the cluster of sites connected to x by open paths, and let γ(n) be any sequence of circuits with interiors|γ limits^ circ (n)| to infty . It is shown that for certain sequences of functions { f n },S_n = sum _{x in γ limits^ circ (n)} f_n (W_x ) converges in distribution to the standard normal law when properly normalized. This result answers a problem posed by Kunz and Souillard, proving that the number S n of sites inside γ(n) which are connected by open paths to γ(n) is approximately normal for large circuits γ(n).
Distributed point source method for the modeling of a three-dimensional eddy current NDE problem
NASA Astrophysics Data System (ADS)
Bore, T.; Joubert, P.-Y.; Placko, D.
2014-03-01
This paper deals with modeling in electromagnetism in the field of eddy current for Non Destructive Evaluation. Several techniques could be used to diagnose structural damages. In eddy current application, a magnetic field generates by an excitation coil (or primary coil), interacts with a conductive target and generates eddy current. Variations in the phase and the magnitude of these eddy currents can be monitored using a second "receiver" coil. Variations in the physical properties (electrical conductivity, magnetic permeability,..) or the presence of any flaw in the target will cause a change in eddy current and a corresponding change in the phase and amplitude of measured signal. The interpretation of the signals requires a good understanding of the interaction between eddy current and structure. Therefore, researchers need analytical or numerical techniques to obtain a clear understanding of wave propagation behaviors. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite elements requires very fine mesh and heavy computational power. To go further, an innovative implementation of a semi-analytical modeling method, called the Distributed Points Source Method (DPSM), has been developed and used. The DPSM has already shown great potentialities for the versatile and computationally efficient modeling of complex electrostatic, electromagnetic or ultrasounic problems. In this paper, we report on a new implementation of the DPSM, called differential DPSM, which shows interesting prospects for the modeling of complex eddy current problems. In parallel, an Eddy Current Imager (ECI) has been recently developed in our laboratory in the aim of imaging cracks in metallic structures. In this paper, a simplified modeling of the ECI is presented using DPSM technique, the basics of DPSM formalism being firstly developed. A comparison between experimental and computed data obtained for a millimetric surface defect is presented in
Crossover behavior of conductivity in a discontinuous percolation model.
Kim, Seongmin; Cho, Y S; Araújo, N A M; Kahng, B
2014-03-01
When conducting bonds are occupied randomly in a two-dimensional square lattice, the conductivity of the system increases continuously as the density of those conducting bonds exceeds the percolation threshold. Such a behavior is well known in percolation theory; however, the conductivity behavior has not been studied yet when the percolation transition is discontinuous. Here we investigate the conductivity behavior through a discontinuous percolation model evolving under a suppressive external bias. Using effective medium theory, we analytically calculate the conductivity behavior as a function of the density of conducting bonds. The conductivity function exhibits a crossover behavior from a drastically to a smoothly increasing function beyond the percolation threshold in the thermodynamic limit. The analytic expression fits well our simulation data.
A percolation model of ecological flows
Gardner, R.H.; Turner, M.G.; Dale, V.H.; O'Neill, R.V.
1988-01-01
The boundary zone between adjacent communities has long been recognized as a functionally important component of ecosystems. The diversity and abundance of species, the flow and accumulation of material and energy, and the propagation of disturbances may all be affected by landscape boundaries. However, the spatial arrangement of different habitats and their boundaries has received little direct study. The difficulty in studying landscape boundaries has been due, in part, to the variety of responses of organisms to ecotones. Therefore, definitive tests of relationships between ecological processes and the pattern of landscape boundaries will be greatly assisted by developing a standard against which comparisons can be made. Neutral models can define this standard by producing the expected'' Poisson distribution have been well established, but a general approach for relating ecological processes and landscape patterns must still be defined. The purpose of this chapter is to illustrate how neutral models that are developed from percolation theory can be used to address the problem How do ecological system boundaries influence biotic diversity and the flow of energy, information and materials '' 26 refs., 4 figs., 1 tab.
Modelling of point and non-point source pollution of nitrate with SWAT in the river Dill, Germany
NASA Astrophysics Data System (ADS)
Pohlert, T.; Huisman, J. A.; Breuer, L.; Frede, H.-G.
2005-12-01
We used the Soil and Water Assessment Tool (SWAT) to simulate point and non-point source pollution of nitrate in a mesoscale mountainous catchment. The results show that the model efficiency for daily discharge is 0.81 for the calibration period (November 1990 to December 1993) and 0.56 for the validation period (April 2000 to January 2003). The model efficiency for monthly nitrate load is 0.66 and 0.77 for the calibration period (April 2000 to March 2002) and validation period (April 2002 to January 2003), respectively. However, the model efficiency for daily loads is low (0.15), which cannot only be attributed to the quality of input data of point source effluents. An analysis of the internal fluxes and cycles of nitrogen pointed out considerable weaknesses in the models conceptualisation of the nitrogen modules which will be improved in future research.
Point source emission reference materials from the Emissions Inventory Improvement Program (EIIP). Provides point source guidance on planning, emissions estimation, data collection, inventory documentation and reporting, and quality assurance/quality contr
Li, Qiang-kun; Li, Huai-en; Hu, Ya-wei; Chen, Wei-wei; Sun, Juan
2009-12-01
The quantitative research on pollution loads is the basis of control, evaluation and management of non-point source pollution. The estimation of agricultural non-point source pollution loads includes two steps: evaluation of water discharge and prediction of pollutant concentration in agricultural drain. Water discharge was calculated by DRAINMOD model based on the principle of water balance on farmland. Meanwhile, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, the pollutant concentration changes in agricultural drain is looked as the response process corresponding to the impulse input, the complex migratory and transforming process of pollutant in soil are expressed implied by Inverse Gaussian Probability Density Function. Based on the above, the estimation model of agricultural non-point source pollution loads at field scale was constructed. Taking the typical experimentation area of Qingtongxia Irrigation District in Ningxia as an example, the loads of nitrate nitrogen and total phosphorus in paddy-field drain was simulated by this model. The results show that the simulated accorded with measured data approximately and Nash-Suttcliffe coefficient is 0.963 and 0.945 respectively.
Multifractal nature of the generalized percolation model
NASA Astrophysics Data System (ADS)
Djordjevic, Zorica V.
1988-12-01
Multifractal aspects of the perimeter-size distribution function gst specifying the number of s-size clusters with perimeter t have been examined and multifractal exponents determined numerically by the exact series method. In the percolation and compact-clusters region, multifractal exponents are also expressed analytically. In the lattice-animal region we show that the multifractal exponent describing the scaling behavior of the kth moment of the distribution function is directly connected to the growth parameter of the lattice.
Percolation model with an additional source of disorder
NASA Astrophysics Data System (ADS)
Kundu, Sumanta; Manna, S. S.
2016-06-01
The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p . Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R1 and R2 of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R1-R2 plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is pc(sq) , the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R ∈{0 ,R0} and a percolation transition is observed with R0 as the control variable, similar to the site occupation probability.
Gaussian model of explosive percolation in three and higher dimensions
NASA Astrophysics Data System (ADS)
Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.
2011-10-01
The Gaussian model of discontinuous percolation, recently introduced by Araújo and Herrmann [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.035701 105, 035701 (2010)], is numerically investigated in three dimensions, disclosing a discontinuous transition. For the simple cubic lattice, in the thermodynamic limit we report a finite jump of the order parameter J=0.415±0.005. The largest cluster at the threshold is compact, but its external perimeter is fractal with fractal dimension dA=2.5±0.2. The study is extended to hypercubic lattices up to six dimensions and to the mean-field limit (infinite dimension). We find that, in all considered dimensions, the percolation transition is discontinuous. The value of the jump in the order parameter, the maximum of the second moment, and the percolation threshold are analyzed, revealing interesting features of the transition and corroborating its discontinuous nature in all considered dimensions. We also show that the fractal dimension of the external perimeter, for any dimension, is consistent with the one from bridge percolation and establish a lower bound for the percolation threshold of discontinuous models with a finite number of clusters at the threshold.
A multiobjective model for non-point source pollution control for an off-stream reservoir catchment.
Kao, J J; Chen, W J
2003-01-01
Phosphorus loads from agricultural non-point source pollution (NPSP) significantly degrade reservoir water quality, making adequate control of agricultural NPSP necessary for improving the water quality. Controlling NPSP is generally accomplished using various Best Management Practices (BMPs). The present study applies the Agricultural Non-Point Source Pollution (AGNPS) model to simulate NPSP loading and BMP efficiencies and establishes an enhanced multiobjective mixed-integer programming model for NPSP control strategy analyses based on these results. Cost, phosphorus load, sediment load and equity are the four major objectives considered. A case study for the Posan reservoir is presented. Four commonly proposed and applicable BMPs are chosen. Non-inferior solutions obtained using the constraint method and trade-off relationships among different control objectives are described and discussed. Compared with a previously proposed fertilizer control model, results show that the model established herein is more cost-effective and achieves better phosphorus and sediment loading reduction and equity goals. Furthermore, the current model is expected to facilitate decision-making analysis for development of an appropriate cost-sharing program to encourage adoption of appropriate BMPs by farmers.
Percolation of binary disk systems: Modeling and theory
Meeks, Kelsey; Tencer, John; Pantoya, Michelle L.
2017-01-12
The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and comparedmore » to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.« less
Percolation of binary disk systems: Modeling and theory
NASA Astrophysics Data System (ADS)
Meeks, Kelsey; Tencer, John; Pantoya, Michelle L.
2017-01-01
The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This work utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and compared to previously published correlations. A set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.
Yao, Hong; Qian, Xin; Yin, Hong; Gao, Hailong; Wang, Yulei
2015-02-01
Point source pollution is one of the main threats to regional environmental health. Based on a water quality model, a methodology to assess the regional risk of point source pollution is proposed. The assessment procedure includes five parts: (1) identifying risk source units and estimating source emissions using Monte Carlo algorithms; (2) observing hydrological and water quality data of the assessed area, and evaluating the selected water quality model; (3) screening out the assessment endpoints and analyzing receptor vulnerability with the Choquet fuzzy integral algorithm; (4) using the water quality model introduced in the second step to predict pollutant concentrations for various source emission scenarios and analyzing hazards of risk sources; and finally, (5) using the source hazard values and receptor vulnerability scores to estimate overall regional risk. The proposed method, based on the Water Quality Analysis Simulation Program (WASP), was applied in the region of the Taipu River, which is in the Taihu Basin, China. Results of source hazard and receptor vulnerability analysis allowed us to describe aquatic ecological, human health, and socioeconomic risks individually, and also integrated risks in the Taipu region, from a series of risk curves. Risk contributions of sources to receptors were ranked, and the spatial distribution of risk levels was presented. By changing the input conditions, we were able to estimate risks for a range of scenarios. Thus, the proposed procedure may also be used by decisionmakers for long-term dynamic risk prediction.
Luo, Xiaolin; Zheng, Yi; Lin, Zhongrong; Wu, Bin; Han, Feng; Tian, Yong; Zhang, Wei; Wang, Xuejun
2015-01-01
Soils contaminated by Polycyclic Aromatic Hydrocarbons (PAHs) are subject to significant non-point source (NPS) pollution during rainfall events. Recent studies revealed that the classic enrichment ratio (ER) approach may not be applicable to PAHs. This study developed a model to estimate the ER of PAHs which innovatively applies the fugacity concept. The ER model has been validated with experimental data, which suggested that the transport of PAHs not only depends on their physicochemical properties, but on the sediment composition and how the composition evolves during the event. The modeling uncertainty was systematically examined, and found to be highly compound-dependent. Based on the ER model, a strategy was proposed to practically evaluate the potential NPS loading of PAHs in watersheds with heterogeneous soils. The study results have important implications to modeling and managing the NPS pollution of PAHs (or other chemicals alike) at a watershed scale.
Truncated Connectivities in a Highly Supercritical Anisotropic Percolation Model
NASA Astrophysics Data System (ADS)
Couto, Rodrigo G.; de Lima, Bernardo N. B.; Sanchis, Rémy
2013-12-01
We consider an anisotropic bond percolation model on , with p=( p h , p v )∈[0,1]2, p v > p h , and declare each horizontal (respectively vertical) edge of to be open with probability p h (respectively p v ), and otherwise closed, independently of all other edges. Let with 0< x 1< x 2, and . It is natural to ask how the two point connectivity function behaves, and whether anisotropy in percolation probabilities implies the strict inequality . In this note we give an affirmative answer in the highly supercritical regime.
User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator
Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.
2003-01-01
BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)
Concentrator optical characterization using computer mathematical modelling and point source testing
NASA Technical Reports Server (NTRS)
Dennison, E. W.; John, S. L.; Trentelman, G. F.
1984-01-01
The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.
NASA Astrophysics Data System (ADS)
Hansen, Scott K.; Vesselinov, Velimir V.
2016-10-01
We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulate well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. This greatly enhanced performance, but gains from additional data collection remained limited.
Hansen, Scott K.; Vesselinov, Velimir Valentinov
2016-10-01
We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulate well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. Furthermore, this greatly enhanced performance, but gains from additional data collection remained limited.
Hansen, Scott K.; Vesselinov, Velimir Valentinov
2016-10-01
We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulatemore » well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. Furthermore, this greatly enhanced performance, but gains from additional data collection remained limited.« less
NASA Astrophysics Data System (ADS)
Attanayake, Januka; Fonseca, João F. B. D.
2016-05-01
The February 22nd 2006 Mw = 7 Machaze earthquake is one of the largest, if not the largest, earthquakes reported since 1900 within Continental Africa. This large continental intraplate event has important implications to our understanding of tectonics and strong ground motion prediction locally and in the global context. Thus, accurate estimates of source parameters of this earthquake are important. In this study, we inverted the complete azimuthally distributed high frequency (0.05-2 Hz) P waveform dataset available for a best-fitting point source model and obtained stress drop estimates assuming different theoretical rupture models from spectral fitting. Our best-fitting point source model confirms steep normal faulting, has strike = 173° (309°), dip = 73° (23°), rake = -72° (-132°), and shows a 12%-4% improvement in waveform fit compared to previous models, which translates into an error minimization. We attribute this improvement to higher order reverberations near the source region that we took in to account and the excellent azimuthal coverage of the dataset. Preferred stress drop estimates assuming a rupture velocity = 0.9 x shear wave velocity (Vs) are between 11 and 15 MPa though, even higher stress drop estimates are possible for rupture velocities lower than 0.9Vs. The estimated stress drop is significantly higher than the global stress drop average of intraplate earthquakes, but is consistent with stress drop estimated for some intra-continental earthquakes elsewhere. The detection of a new active structure that appears to terminate in Machaze, its step-like geometry, and lithospheric strength all favors a hypothesis of stress concentration in the source region, which is likely the cause of this event and the higher than average stress drop.
Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model.
Kocman, David; Horvat, Milena
2011-08-01
A mercury emission model was developed to estimate non-point source mercury (Hg) emissions occurring over the year from the Idrijca River catchment, draining the area of the world's second largest Hg mine in Idrija, Slovenia. Site-specific empirical correlations between the measured Hg emission fluxes and the parameters controlling the emission (comprising substrate Hg content, soil temperature, solar radiation and soil moisture) were incorporated into the mercury emission model developed using Geographic Information System technology. In this way, the spatial distribution and significance of the most polluted sites that need to be properly managed was assessed. The modelling results revealed that annually approximately 51 kg of mercury are emitted from contaminated surfaces in the catchment (640 km(2)), highlighting that emission from contaminated surfaces contributes significantly to the elevated Hg concentrations in the ambient air of the region. Very variable meteorological conditions in the modelling domain throughout the year resulted in the high seasonal and spatial variations of mercury emission fluxes observed. Moreover, it was found that mercury emission fluxes from surfaces in the Idrija region are 3-4 fold higher than the values commonly used in models representing emissions from global mercuriferous belts. Sensitivity and model uncertainty analysis indicated the importance of knowing not only the amount but also the type of mercury species and their binding in soils in future model development.
Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.
2009-02-01
The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to
Transport in tight-binding bond percolation models.
Schmidtke, Daniel; Khodja, Abdellah; Gemmer, Jochen
2014-09-01
Most of the investigations to date on tight-binding, quantum percolation models focused on the quantum percolation threshold, i.e., the analog to the Anderson transition. It appears to occur if roughly 30% of the hopping terms are actually present. Thus, models in the delocalized regime may still be substantially disordered, hence analyzing their transport properties is a nontrivial task which we pursue in the paper at hand. Using a method based on quantum typicality to numerically perform linear response theory we find that conductivity and mean free paths are in good accord with results from very simple heuristic considerations. Furthermore we find that depending on the percentage of actually present hopping terms, the transport properties may or may not be described by a Drude model. An investigation of the Einstein relation is also presented.
Loopless nontrapping invasion-percolation model for fracking.
Norris, J Quinn; Turcotte, Donald L; Rundle, John B
2014-02-01
Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.
Loopless nontrapping invasion-percolation model for fracking
NASA Astrophysics Data System (ADS)
Norris, J. Quinn; Turcotte, Donald L.; Rundle, John B.
2014-02-01
Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.
Percolation modeling of self-damaging of composite materials
NASA Astrophysics Data System (ADS)
Domanskyi, Sergii; Privman, Vladimir
2014-07-01
We propose the concept of autonomous self-damaging in “smart” composite materials, controlled by activation of added nanosize “damaging” capsules. Percolation-type modeling approach earlier applied to the related concept of self-healing materials, is used to investigate the behavior of the initial material's fatigue. We aim at achieving a relatively sharp drop in the material's integrity after some initial limited fatigue develops in the course of the sample's usage. Our theoretical study considers a two-dimensional lattice model and involves Monte Carlo simulations of the connectivity and conductance in the high-connectivity regime of percolation. We give several examples of local capsule-lattice and capsule-capsule activation rules and show that the desired self-damaging property can only be obtained with rather sophisticated “smart” material's response involving not just damaging but also healing capsules.
Wada, Yuji; Kundu, Tribikram; Nakamura, Kentaro
2014-08-01
The distributed point source method (DPSM) is extended to model wave propagation in viscous fluids. Appropriate estimation on attenuation and boundary layer formation due to fluid viscosity is necessary for the ultrasonic devices used for acoustic streaming or ultrasonic levitation. The equations for DPSM modeling in viscous fluids are derived in this paper by decomposing the linearized viscous fluid equations into two components-dilatational and rotational components. By considering complex P- and S-wave numbers, the acoustic fields in viscous fluids can be calculated following similar calculation steps that are used for wave propagation modeling in solids. From the calculations reported the precision of DPSM is found comparable to that of the finite element method (FEM) for a fundamental ultrasonic field problem. The particle velocity parallel to the two bounding surfaces of the viscous fluid layer between two rigid plates (one in motion and one stationary) is calculated. The finite element results agree well with the DPSM results that were generated faster than the transient FEM results.
NASA Astrophysics Data System (ADS)
Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hayashi, K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Hou, X.; Jogler, T.; Jóhannesson, G.; Kamae, T.; Kuss, M.; Landriu, D.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Maldera, S.; Malyshev, D.; Manfreda, A.; Martin, P.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Remy, Q.; Renault, N.; Sánchez-Conde, M.; Schaal, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Werner, M.; Wood, K. S.; Wood, M.; Zaharijas, G.; Zimmer, S.
2016-04-01
Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ˜4° of the Galactic Center.
NASA Astrophysics Data System (ADS)
Chen, Lei; Zhong, Yucen; Wei, Guoyuan; Cai, Yanpeng; Shen, Zhenyao
2014-05-01
The identification of priority management areas (PMAs) at the large-basin scale is notably complex because of the random nature of watershed processes, which complicates the application of traditional deterministic PMAs. In this study, a multilevel PMA (ML-PMA) framework is designed as a new tool to pinpoint these sensitive areas, within a basin, that contribute the most to water quality deterioration. The main advantage of the ML-PMA framework is the wide availability of its supplementary tools and its complete framework, which integrates both watershed and river processes in addressing PMAs at the watershed scale. The watershed model, stream model, and a Markov chain approach are integrated to depict the dynamics of watershed processes and various water quality statutes. Based on the results of this study, the river migration process is vital for water quality degradation in the river network and significantly influenced the final PMA map. In addition, the proposed ML-PMA framework considers the impact of climatic conditions and hydrological properties and allows for a more cost-effective allocation of PMAs among different years. In the authors' view, the connectivity of PMAs in terms of flux distribution and propagation downstream on which the ML-PMA is based makes the ML-PMA framework particularly interesting for watershed non-point-source pollution control.
Porcolation: An Invasion Percolation Model for Mercury Porosimetry
NASA Astrophysics Data System (ADS)
Bak, Bendegúz Dezső; Kalmár-Nagy, Tamás
Mercury porosimetry is utilized primarily in the oil industry to determine the pore size distribution of rock samples. During the process, mercury is forced into the sample with gradually increasing pressure and the volume of the injected mercury is measured vs. the applied pressure (the saturation curve). In practice, the saturation curve is assumed to be directly related the cumulative pore size distribution. However, this distribution does not coincide with the real one because of the “nonaccessibility” of pores at a given pressure. This motivates our goal to determine a more accurate cumulative pore size distribution. To achieve this, we treat the propagation of mercury as a percolation process (dubbed “porcolation” after PORosimetry perCOLATION). Porcolation is an external pressure-driven access-limited invasion percolation model where resistance values are assigned to sites/vertices. As pressure increases, the invading mercury occupies sites with smaller resistance values along paths that are connected to the “boundaries” of the network. Simulations are carried out on regular lattices, as well as on random graphs with prescribed degree distributions (representing the pore network of rock samples). An assumed pore size distribution is considered as an input/parameter of the simulations resulting in an output saturation curve. We determine the input-output mapping (homeomorphism) and utilize its inverse to correct the discrepancies between the assumed and actual pore size distributions. The results show nice agreement between experimental saturation curves and those obtained from our homeomorphism method.
Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing
2017-04-02
Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.
NASA Astrophysics Data System (ADS)
Xu, Fei; Dong, Guangxia; Wang, Qingrui; Liu, Lumeng; Yu, Wenwen; Men, Cong; Liu, Ruimin
2016-09-01
The impacts of different digital elevation model (DEM) resolutions, sources and resampling techniques on nutrient simulations using the Soil and Water Assessment Tool (SWAT) model have not been well studied. The objective of this study was to evaluate the sensitivities of DEM resolutions (from 30 m to 1000 m), sources (ASTER GDEM2, SRTM and Topo-DEM) and resampling techniques (nearest neighbor, bilinear interpolation, cubic convolution and majority) to identification of non-point source (NPS) critical source area (CSA) based on nutrient loads using the SWAT model. The Xiangxi River, one of the main tributaries of Three Gorges Reservoir in China, was selected as the study area. The following findings were obtained: (1) Elevation and slope extracted from the DEMs were more sensitive to DEM resolution changes. Compared with the results of the 30 m DEM, 1000 m DEM underestimated the elevation and slope by 104 m and 41.57°, respectively; (2) The numbers of subwatersheds and hydrologic response units (HRUs) were considerably influenced by DEM resolutions, but the total nitrogen (TN) and total phosphorus (TP) loads of each subwatershed showed higher correlations with different DEM sources; (3) DEM resolutions and sources had larger effects on CSAs identifications, while TN and TP CSAs showed different response to DEM uncertainties. TN CSAs were more sensitive to resolution changes, exhibiting six distribution patterns at all DEM resolutions. TP CSAs were sensitive to source and resampling technique changes, exhibiting three distribution patterns for DEM sources and two distribution patterns for DEM resampling techniques. DEM resolutions and sources are the two most sensitive SWAT model DEM parameters that must be considered when nutrient CSAs are identified.
NASA Astrophysics Data System (ADS)
Goldenberg, J.; Libai, B.; Solomon, S.; Jan, N.; Stauffer, D.
2000-09-01
A percolation model is presented, with computer simulations for illustrations, to show how the sales of a new product may penetrate the consumer market. We review the traditional approach in the marketing literature, which is based on differential or difference equations similar to the logistic equation (Bass, Manage. Sci. 15 (1969) 215). This mean-field approach is contrasted with the discrete percolation on a lattice, with simulations of "social percolation" (Solomon et al., Physica A 277 (2000) 239) in two to five dimensions giving power laws instead of exponential growth, and strong fluctuations right at the percolation threshold.
Interacting damage models mapped onto ising and percolation models
Toussaint, Renaud; Pride, Steven R.
2004-03-23
The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in the system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model
Percolation Theory and Models of Unsaturated Porous Media
NASA Astrophysics Data System (ADS)
Golden, J. M.
1980-02-01
Concepts from percolation theory (Broadbent and Hammersley, 1957) are applied to a model of unsaturated flow through porous media. This approach in principle allows one to build into the model aspects of the topological structure of pore space. At a very general level the input of results from percolation theory gives a relationship between minimum and maximum saturation values for a medium which should be experimentally checkable, though probably not without sophisticated techniques. Also, it gives some qualitative insight into known properties of unsaturated flow. Furthermore, there emerges a way of looking at the phenomenon of hysteresis that is quite different from the standard approach. This aspect is explored in some detail, and two possible new models are presented. A subsidiary result obtained from the detailed model used is that in a simple pore model the inclusion of a pore length parameter, statistically correlated with pore radius, is equivalent, at least in a restricted sense, to incorporating into the model the concept of tortuosity.
Technology Transfer Automated Retrieval System (TEKTRAN)
Today, non-point source pollution (NPS) is one of the major sources of water quality impairments globally (UNEP, 2007). In the US, nutrient pollution is the leading cause of water quality issues in lakes and estuaries (USEPA, 2002). The maximum concentration of nutrients in streams is found to be in...
Ising percolation in a three-state majority vote model
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Martínez-Cruz, M. A.; Gayosso Martínez, Felipe; Mena, Baltasar; Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier
2017-02-01
In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the "magnetization" of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.
NASA Astrophysics Data System (ADS)
Valentine, A. P.; Kaeufl, P.; De Wit, R. W. L.; Trampert, J.
2014-12-01
Obtaining knowledge about source parameters in (near) real-time during or shortly after an earthquake is essential for mitigating damage and directing resources in the aftermath of the event. Therefore, a variety of real-time source-inversion algorithms have been developed over recent decades. This has been driven by the ever-growing availability of dense seismograph networks in many seismogenic areas of the world and the significant advances in real-time telemetry. By definition, these algorithms rely on short time-windows of sparse, local and regional observations, resulting in source estimates that are highly sensitive to observational errors, noise and missing data. In order to obtain estimates more rapidly, many algorithms are either entirely based on empirical scaling relations or make simplifying assumptions about the Earth's structure, which can in turn lead to biased results. It is therefore essential that realistic uncertainty bounds are estimated along with the parameters. A natural means of propagating probabilistic information on source parameters through the entire processing chain from first observations to potential end users and decision makers is provided by the Bayesian formalism.We present a novel method based on pattern recognition allowing us to incorporate highly accurate physical modelling into an uncertainty-aware real-time inversion algorithm. The algorithm is based on a pre-computed Green's functions database, containing a large set of source-receiver paths in a highly heterogeneous crustal model. Unlike similar methods, which often employ a grid search, we use a supervised learning algorithm to relate synthetic waveforms to point source parameters. This training procedure has to be performed only once and leads to a representation of the posterior probability density function p(m|d) --- the distribution of source parameters m given observations d --- which can be evaluated quickly for new data.Owing to the flexibility of the pattern
Electron percolation in realistic models of carbon nanotube networks
Simoneau, Louis-Philippe Villeneuve, Jérémie Rochefort, Alain
2015-09-28
The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.
Electron percolation in realistic models of carbon nanotube networks
NASA Astrophysics Data System (ADS)
Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain
2015-09-01
The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.
NASA Astrophysics Data System (ADS)
Toll, D.; Engman, T.; Edward, P.; Magness, A.; Townsend, P.; N-Meister, W.; Nigro, J.; Lee, S.
2007-12-01
The Environmental Protection Agency (EPA) estimates that over 20,000 bodies of water throughout the country do not meet water quality standards. Nonpoint sources -- pollution from urban, agricultural, and forest land that is transported by runoff -- typically cause 90 percent of impairments. EPA has developed the BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) modeling system for performing numerous water quality studies. The key to this suite of models is the Hydrological Simulation Program - Fortran (HSPF), which calculates daily stream flow rates and the corresponding pollutant concentrations at the watershed outlet. EPA has partnered with NASA to use high spatial and temporal hydrological variables (e.g., precipitation, evaporation, etc.) from the NASA Land Information System (LIS) and land cover/vegetative indices derived from primarily MODIS and Landsat satellite data non-point source water quality for the Chesapeake Bay Basin. For the precipitation and evaporation data, EPA-based BASINS-HSPF streamflow runs were conducted on seven study watersheds in the Chesapeake Bay Basin. Sets of runs using precipitation from default weather stations, the NASA LIS 1/8th degree precipitation, NOAA Stage IV precipitation, NASA LIS Noah land surface model evapotranspiration datasets were conducted for each watershed. The output statistics summarized reveal that for 74% of the runs, the NASA LIS 1/8th degree and Stage IV precipitation-based runs performed better than when using only the default EPA precipitation station data. In addition, an automatic calibration method ('PEST') and Noah land surface model evapotranspiration (ET) being further incorporated. The empirical ability of generalized spectral indices and land cover derived from Landsat and MODIS was tested for predicting stream water nitrogen export from predominately forested watersheds undergoing disturbance. The disturbance index, a summary index that is easily computed from Landsat
The chemical gelation viewed through a percolation model simulation
NASA Astrophysics Data System (ADS)
Lairez, D.; Durand, D.; Emery, J. R.
1991-08-01
Many papers or reviews present the percolation theory as pertinent to the chemical gelation problem. But most of these studies are related to the critical behaviour of standard bond or site percolation models. Such approaches ignore totally the specific chemical features which allow the large variety of structures and properties exhibited by chemical networks. The ideal would be to have a model able to mimic realistically the chemical gelation process by taking into account the specificities of each chemical system investigated. But then a basic question arises : do the singularities change the universal behaviour ? This study aims to contribute to answer this question in the particular case of the gelation made by stepwise polymerization. In such systems, gelation may be avoided by introducing monofunctional monomers which are killing the cluster growth. This case is examined in this paper and corresponds to a site-bond percolation problem. Phase diagram is established and the different ways to cross the critical line of this diagram are investigated. The results outline the fact that topological constraints applied to the monomer connection may prevent the system from having a universal critical behaviour. Deleting these topological constraints, by giving a fictive mobility to the monomers, allows us to find again a universal behaviour for the system. This work justifies a posteriori experimental studies on the critical behaviour of the chemical gelation run with quenched systems. It also confirms that chemical stepwise gelation and standard percolation belong to the same universality class and illustrates how this model may be modified to be more realistic. De nombreux articles ou revues présentent la théorie de la percolation comme pertinente pour le problème de la gélification chimique. Mais la plupart de ces études concernent le comportement critique du modèle de percolation normal de site ou de lien. De tels modèles ignorent totalement les aspects
Random Trajectory Modeling of Limited-Volume Percolation in a Microporous Structure.
Romm, Freddy
2001-08-01
The limited-volume analytical method for the evaluation of the probability of percolation (random trajectory approach) is developed. The model uses probabilistic analysis of possible percolation ways. The main equation for the probability of percolation contains parameters related to the conditions of formation of the microporous medium. Results of some computer estimations of the influence of various formation-related parameters (porosity, surface tension, coordination number, etc.) are presented. Copyright 2001 Academic Press.
Lattice percolation approach to 3D modeling of tissue aging
NASA Astrophysics Data System (ADS)
Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy
2016-11-01
We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.
Self-organized percolation model for stock market fluctuations
NASA Astrophysics Data System (ADS)
Stauffer, Dietrich; Sornette, Didier
1999-09-01
In the Cont-Bouchaud model [cond-mat /9712318] of stock markets, percolation clusters act as buying or selling investors and their statistics controls that of the price variations. Rather than fixing the concentration controlling each cluster connectivity artificially at or close to the critical value, we propose that clusters shatter and aggregate continuously as the concentration evolves randomly, reflecting the incessant time evolution of groups of opinions and market moods. By the mechanism of “sweeping of an instability” [Sornette, J. Phys. I 4, 209(1994)], this market model spontaneously exhibits reasonable power-law statistics for the distribution of price changes and accounts for the other important stylized facts of stock market price fluctuations.
NASA Astrophysics Data System (ADS)
Kumari, Pato; Sharma, Vikash Kumar; Modi, Chitra
2016-04-01
In the present study, propagation of magnetoelastic shear wave due to a momentary point source in a viscoelastic crustal layer over inhomogeneous viscoelastic half space has been discussed. Green's function technique and Fourier transform along with method of successive approximation are used to find the closed-form solutions for displacement and generalized shear wave period equation. Attenuation of the resultant shear wave is computed and effects of magnetic field, width of the layer, complex wave number, viscosity, and inhomogeneity parameters are distinctly marked on dissipation curves using two-dimensional and surface plots. It is found that effect of layer's magnetoelastic coupling parameter on attenuation pattern of shear wave is just the reverse of half space magnetoelastic coupling parameter. Similarly, internal friction of layer has somewhat different effect on shear wave angular frequency than lower half space viscosity. Certain published results are also derived as special cases to the present study.
The Community Multiscale Air Quality (CMAQ) / Plume-in-Grid (PinG) model was applied on a domain encompassing the greater Nashville, Tennessee region. Model simulations were performed for selected days in July 1995 during the Southern Oxidant Study (SOS) field study program wh...
First-order transition in a percolation model with nucleation and preferential growth
NASA Astrophysics Data System (ADS)
Roy, Bappaditya; Santra, S. B.
2017-01-01
The spanning cluster properties of a percolation model with nucleation and preferential growth exhibit first-order transitions depending on the values of the growth parameter g0 and the initial seed concentration ρ . Except for the preferential growth of smaller clusters with a size-dependent growth probability of amplitude g0, the model preserves all other criteria of the original percolation model. As ρ decreases starting from the percolation threshold pc of the original percolation, a line of continuous transition encounters a coexistence region of percolative and nonpercolative large clusters. At sufficiently small values of ρ (≤0.05 ), the value of g0 exceeds pc and generates compact spanning clusters leading to first-order discontinuous transitions.
Gao, X P; Li, G N; Li, G R; Zhang, C
2015-01-01
The Dragon lake diversion channel (DLDC) is the only river that recharges Dragon Lake, an artificial lake in China. This paper examines the main factors influencing water quality by investigating point source and non-point source pollutants along the main route. Based on the complicated system of rivers and desilting basins, a three-dimensional water quality model using environmental fluid dynamics code (EFDC) was developed. The model of DLDC was calibrated and verified using observed data. The error ranges of river water level, total phosphorus, total nitrogen and chemical oxygen demand were within 5%, 10%, 16% and 20%, respectively, all of which meet the precision requirement. The model was employed to predict the concentrations of pollutants in the main stream under current pollution loads within a year and a flood lasting for 24 hours. The results revealed that the main pollution sources that influence the water quality of waterways were the point sources followed by the non-point pollution sources. Water quality improved when large water quantities were delivered and this trend can be described as dilution. The water quality of the Dongfeng main channel meets the requirement; however, the water quality of the Dongfeng River is somewhat poor, and the water quality of the Wei River is seriously contaminated. To address these problems, we suggest that the Dongfeng River and Wei River adopt a culvert under its riverbeds.
Anisotropy in Fracking: A Percolation Model for Observed Microseismicity
NASA Astrophysics Data System (ADS)
Norris, J. Quinn; Turcotte, Donald L.; Rundle, John B.
2015-01-01
Hydraulic fracturing (fracking), using high pressures and a low viscosity fluid, allow the extraction of large quantiles of oil and gas from very low permeability shale formations. The initial production of oil and gas at depth leads to high pressures and an extensive distribution of natural fractures which reduce the pressures. With time these fractures heal, sealing the remaining oil and gas in place. High volume fracking opens the healed fractures allowing the oil and gas to flow to horizontal production wells. We model the injection process using invasion percolation. We use a 2D square lattice of bonds to model the sealed natural fractures. The bonds are assigned random strengths and the fluid, injected at a point, opens the weakest bond adjacent to the growing cluster of opened bonds. Our model exhibits burst dynamics in which the clusters extend rapidly into regions with weak bonds. We associate these bursts with the microseismic activity generated by fracking injections. A principal object of this paper is to study the role of anisotropic stress distributions. Bonds in the y-direction are assigned higher random strengths than bonds in the x-direction. We illustrate the spatial distribution of clusters and the spatial distribution of bursts (small earthquakes) for several degrees of anisotropy. The results are compared with observed distributions of microseismicity in a fracking injection. Both our bursts and the observed microseismicity satisfy Gutenberg-Richter frequency-size statistics.
Percolation-like phase transitions in network models of protein dynamics
NASA Astrophysics Data System (ADS)
Weber, Jeffrey K.; Pande, Vijay S.
2015-06-01
In broad terms, percolation theory describes the conditions under which clusters of nodes are fully connected in a random network. A percolation phase transition occurs when, as edges are added to a network, its largest connected cluster abruptly jumps from insignificance to complete dominance. In this article, we apply percolation theory to meticulously constructed networks of protein folding dynamics called Markov state models. As rare fluctuations are systematically repressed (or reintroduced), we observe percolation-like phase transitions in protein folding networks: whole sets of conformational states switch from nearly complete isolation to complete connectivity in a rapid fashion. We analyze the general and critical properties of these phase transitions in seven protein systems and discuss how closely dynamics on protein folding landscapes relate to percolation on random lattices.
Invasion percolation on a tree and queueing models.
Gabrielli, A; Caldarelli, G
2009-04-01
We study the properties of the Barabási model of queuing [A.-L. Barabási, Nature (London) 435, 207 (2005); J. G. Oliveira and A.-L. Barabási, Nature (London) 437, 1251 (2005)] in the hypothesis that the number of tasks grows with time steadily. Our analytical approach is based on two ingredients. First we map exactly this model into an invasion percolation dynamics on a Cayley tree. Second we use the theory of biased random walks. In this way we obtain the following results: the stationary-state dynamics is a sequence of causally and geometrically connected bursts of execution activities with scale-invariant size distribution. We recover the correct waiting-time distribution PW(tau) approximately tau(-3/2) at the stationary state (as observed in different realistic data). Finally we describe quantitatively the dynamics out of the stationary state quantifying the power-law slow approach to stability both in single dynamical realization and in average. These results can be generalized to the case of a stochastic increase in the queue length in time with limited fluctuations. As a limit case we recover the situation in which the queue length fluctuates around a constant average value.
Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...
Three-dimensional percolation modeling of self-healing composites.
Dementsov, Alexander; Privman, Vladimir
2008-08-01
We study the self-healing process of materials with embedded "glue"-carrying cells, in the regime of the onset of the initial fatigue. Three-dimensional numerical simulations within the percolation-model approach are reported. The main numerical challenge taken up in the present work has been to extend the calculation of the conductance to three-dimensional lattices. Our results confirm the general features of the process: The onset of material fatigue is delayed, by development of a plateaulike time dependence of the material quality. We demonstrate that, in this low-damage regime, the changes in the conductance and thus in similar transport and response properties of the material can be used as measures of the material quality degradation. A new feature found for three dimensions, where it is much more profound than in earlier-studied two-dimensional systems, is the competition between the healing cells. Even for low initial densities of the healing cells, they interfere with each other and reduce each other's effective healing efficiency.
Dynamical percolation transition in the Ising model studied using a pulsed magnetic field.
Biswas, Soumyajyoti; Kundu, Anasuya; Chandra, Anjan Kumar
2011-02-01
We study the dynamical percolation transition of the geometrical clusters in the two-dimensional Ising model when it is subjected to a pulsed field below the critical temperature. The critical exponents are independent of the temperature and pulse width and are different from the (static) percolation transition associated with the thermal transition. For a different model that belongs to the Ising universality class, the exponents are found to be same, confirming that the behavior is a common feature of the Ising class. These observations, along with a universal critical Binder cumulant value, characterize the dynamical percolation of the Ising universality class.
Usery, E.L.; Finn, M.P.; Scheidt, D.J.; Ruhl, S.; Beard, T.; Bearden, M.
2004-01-01
Researchers have been coupling geographic information systems (GIS) data handling and processing capability to watershed and waterquality models for many years. This capability is suited for the development of databases appropriate for water modeling. However, it is rare for GIS to provide direct inputs to the models. To demonstrate the logical procedure of coupling GIS for model parameter extraction, we selected the Agricultural Non-Point Source (AGNPS) pollution model. Investigators can generate data layers at various resolutions and resample to pixel sizes to support models at particular scales. We developed databases of elevation, land cover, and soils at various resolutions in four watersheds. The ability to use multiresolution databases for the generation of model parameters is problematic for grid-based models. We used database development procedures and observed the effects of resolution and resampling on GIS input datasets and parameters generated from those inputs for AGNPS. Results indicate that elevation values at specific points compare favorably between 3- and 30-m raster datasets. Categorical data analysis indicates that land cover classes vary significantly. Derived parameters parallel the results of the base GIS datasets. Analysis of data resampled from 30-m to 60-, 120-, 210-, 240-, 480-, 960-, and 1920-m pixels indicates a general degradation of both elevation and land cover correlations as resolution decreases. Initial evaluation of model output values for soluble nitrogen and phosphorous indicates similar degradation with resolution. ?? Springer-Verlag 2004.
Ma, Denglong; Zhang, Zaoxiao
2016-07-05
Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.
Leaders of neuronal cultures in a quorum percolation model.
Eckmann, Jean-Pierre; Moses, Elisha; Stetter, Olav; Tlusty, Tsvi; Zbinden, Cyrille
2010-01-01
We present a theoretical framework using quorum percolation for describing the initiation of activity in a neural culture. The cultures are modeled as random graphs, whose nodes are excitatory neurons with k(in) inputs and k(out) outputs, and whose input degrees k(in) = k obey given distribution functions p(k). We examine the firing activity of the population of neurons according to their input degree (k) classes and calculate for each class its firing probability Φ(k)(t) as a function of t. The probability of a node to fire is found to be determined by its in-degree k, and the first-to-fire neurons are those that have a high k. A small minority of high-k-classes may be called "Leaders," as they form an interconnected sub-network that consistently fires much before the rest of the culture. Once initiated, the activity spreads from the Leaders to the less connected majority of the culture. We then use the distribution of in-degree of the Leaders to study the growth rate of the number of neurons active in a burst, which was experimentally measured to be initially exponential. We find that this kind of growth rate is best described by a population that has an in-degree distribution that is a Gaussian centered around k = 75 with width σ = 31 for the majority of the neurons, but also has a power law tail with exponent -2 for 10% of the population. Neurons in the tail may have as many as k = 4,700 inputs. We explore and discuss the correspondence between the degree distribution and a dynamic neuronal threshold, showing that from the functional point of view, structure and elementary dynamics are interchangeable. We discuss possible geometric origins of this distribution, and comment on the importance of size, or of having a large number of neurons, in the culture.
NASA Astrophysics Data System (ADS)
Domínguez, C. G.; Pryet, A.; García Vera, M.; Gonzalez, A.; Chaumont, C.; Tournebize, J.; Villacis, M.; d'Ozouville, N.; Violette, S.
2016-01-01
A Rutter-type canopy interception model is combined with a 1-D physically-based soil water flow model to compare deep percolation rates below distinct land covers. The joint model allows the quantification of both evaporation and transpiration rates as well as deep percolation from vegetation and soil characteristics. Experimental observations are required to constitute the input and calibration datasets. An appropriate monitoring design is described which consists in meteorological monitoring together with throughfall and soil water tension measurements. The methodology is illustrated in Santa Cruz Island in the Galapagos Archipelago, which has been affected by significant land use changes. Two adjacent study plots are investigated: a secondary forest and a pasture. The results of the model reveal that evaporation of canopy interception is higher in the pasture due to the bigger canopy storage capacity, which promotes evaporation against canopy drainage. This is however compensated by higher transpiration in the secondary forest, due to the smaller surface resistance. As a consequence, total evapotranspiration is similar for the two plots and no marked difference in deep percolation can be observed. In both cases, deep percolation reaches ca. 2 m/year which corresponds to 80% of the incoming rainfall. This methodology not only allows the quantification of deep percolation, but can also be used to identify the controlling factors of deep percolation under contrasting land covers.
A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas
White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.
1992-01-01
More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.
Mesoscale modeling of intergranular bubble percolation in nuclear fuels
Millett, Paul C.; Tonks, Michael; Biner, S. B.
2012-04-15
Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density and little-to-no dependency on the grain boundary gas diffusivity.
MESOSCALE MODELING OF INTERGRANULAR BUBBLE PERCOLATION IN NUCLEAR FUELS
Paul C. Millett; Michael Tonks; S. B. Biner
2012-04-01
Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density, and little-to-no dependency on the grain boundary gas diffusivity.
NASA Astrophysics Data System (ADS)
Dong, C.; Tan, Q.; Huang, G.-H.; Cai, Y.-P.
2014-01-01
In this research, a dual-inexact fuzzy stochastic programming (DIFSP) method was developed for supporting the planning of water and farmland use management system considering the non-point source pollution mitigation under uncertainty. The random boundary interval (RBI) was incorporated into DIFSP through integrating fuzzy programming (FP) and chance-constrained programming (CCP) approaches within an interval linear programming (ILP) framework. The lower and upper bounds of RBI are continuous random variables, and the correlation exiting between the lower and upper bounds can be tackled in RBI through the joint probability distribution function. And thus the subjectivity of decision making is greatly reduced, enhancing the stability and robustness of obtained solutions. The proposed method was then applied to solve a water and farmland use planning model (WFUPM) with non-point source pollution. The generated results could provide decision makers with detailed water supply-demand schemes involving diversified water related activities under various system conditions. These useful solutions could allow more in-depth analyses of the trade-offs between human and environment, as well as those between system optimality and reliability. In addition, comparative analyses on the solutions obtained from ICCP (Interval chance-constraints programming) and DIFSP demonstrated the higher application of this developed approach for supporting the water and farmland use system planning.
NASA Astrophysics Data System (ADS)
Dong, C.; Tan, Q.; Huang, G.-H.; Cai, Y.-P.
2014-05-01
In this research, a dual-inexact fuzzy stochastic programming (DIFSP) method was developed for supporting the planning of water and farmland use management system considering the non-point source pollution mitigation under uncertainty. The random boundary interval (RBI) was incorporated into DIFSP through integrating fuzzy linear programming (FLP) and chance-constrained programming (CCP) approaches within an interval linear programming (ILP) framework. This developed method could effectively tackle the uncertainties expressed as intervals and fuzzy sets. Moreover, the lower and upper bounds of RBI are continuous random variables, and the correlation existing between the lower and upper bounds can be tackled in RBI through the joint probability distribution function. And thus the subjectivity of decision making is greatly reduced, enhancing the stability and robustness of obtained solutions. The proposed method was then applied to solve a water and farmland use planning model (WFUPM) with non-point source pollution mitigation. The generated results could provide decision makers with detailed water supply-demand schemes involving diversified water-related activities under preferred satisfaction degrees. These useful solutions could allow more in-depth analyses of the trade-offs between humans and environment, as well as those between system optimality and reliability. In addition, comparative analyses on the solutions obtained from ICCP (Interval chance-constraints programming) and DIFSP demonstrated the higher application of this developed approach for supporting the water and farmland use system planning.
Economopoulos, A P
1992-05-01
A pollutant dispersion model is developed, allowing rapid evaluation of the maximum credible one-hour-average concentration on any given ground-level receptor, along with the corresponding critical meteorological conditions (wind speed and stability class) for stacks with momentum-dominated plume rise in urban or rural areas under buoyancy or no buoyancy induced dispersion. Site-specific meteorological data are not required, as the computed concentrations are maximized against all credible combinations of wind speed, stability class, and mixing height.The analysis is based on the dispersion relations of Pasquill-Gifford and Briggs for rural and urban settings respectively, the buoyancy induced dispersion correlation of Pasquill, the wind profile exponent values suggested by Irwin, the momentum plume rise relations of Briggs, as well as the Benkley and Schulman's model for the minimum mixing heights.The model is particularly suited for air pollution management studies, as it allows fast screening of the maximum impact on any selected receptor and evaluation of the ways to have this impact reduced. Also, for regulatory purposes, as it allows accurate setting of minimum stack height requirements as function of the exit gas volume and velocity, the pollutant emission rates and their hourly concentration standards, as well as the source location relative to sensitive receptors.
Economopoulos, A P
1991-01-01
A pollutant dispersion model is developed, allowing fast evaluation of the maximum credible 1-h average concentration on any given ground-level receptor, along with the corresponding critical meteorological conditions (wind speed and stability class) for stacks with buoyant plumes in urban or rural areas. Site-specific meteorological data are not required, as the computed concentrations are maximized against all credible combinations of wind speed, stability class, and mixing height. The analysis is based on the dispersion relations of Pasquill-Gifford and Briggs for rural and urban settings, respectively, the buoyancy induced dispersion correlation of Pasquill, the wind profile exponent values suggested by Irwin, the buoyant plume rise relations of Briggs, as well as the Benkley and Schulman's model for the minimum mixing heights. The model is particularly suited for air pollution management studies, as it allows fast screening of the maximum impact on any selected receptor and evaluation of the ways to have this impact reduced. It is also suited for regulatory purposes, as it can be used to define the minimum stack size requirements for a given source as a function of the exit gas volume and temperature, the pollutant emission rates and their hourly concentration standards, as well as the source location relative to sensitive receptors.
Lee, MiSeon; Park, GeunAe; Park, MinJi; Park, JongYoon; Lee, JiWan; Kim, SeongJoon
2010-01-01
This study evaluated the reduction effect of non-point source pollution by applying best management practices (BMPs) to a 1.21 km2 small agricultural watershed using a SWAT (Soil and Water Assessment Tool) model. Two meter QuickBird land use data were prepared for the watershed. The SWAT was calibrated and validated using daily streamflow and monthly water quality (total phosphorus (TP), total nitrogen (TN), and suspended solids (SS)) records from 1999 to 2000 and from 2001 to 2002. The average Nash and Sutcliffe model efficiency was 0.63 for the streamflow and the coefficients of determination were 0.88, 0.72, and 0.68 for SS, TN, and TP, respectively. Four BMP scenarios viz. the application of vegetation filter strip and riparian buffer system, the regulation of Universal Soil Loss Equation P factor, and the fertilizing control amount for crops were applied and analyzed.
NASA Astrophysics Data System (ADS)
Coletti, Cristian F.; Miranda, Daniel; Mussini, Filipe
2016-02-01
In this work we study the Poisson Boolean model of percolation in locally compact Polish metric spaces and we prove the invariance of subcritical and supercritical phases under mm-quasi-isometries. More precisely, we prove that if a metric space M is mm-quasi-isometric to another metric space N and the Poisson Boolean model in M exhibits any of the following: (a) a subcritical phase; (b) a supercritical phase; or (c) a phase transition, then respectively so does the Poisson Boolean model of percolation in N. Then we use these results in order to understand the phase transition phenomenon in a large family of metric spaces. Indeed, we study the Poisson Boolean model of percolation in the context of Riemannian manifolds, in a large family of nilpotent Lie groups and in Cayley graphs. Also, we prove the existence of a subcritical phase in Gromov spaces with bounded growth at some scale.
Percolation model of excess electrical noise in transition-edge sensors
NASA Astrophysics Data System (ADS)
Lindeman, M. A.; Anderson, M. B.; Bandler, S. R.; Bilgri, N.; Chervenak, J.; Gwynne Crowder, S.; Fallows, S.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C. A.; Lai, T.; Man, J.; McCammon, D.; Nelms, K. L.; Porter, F. S.; Rocks, L. E.; Saab, T.; Sadleir, J.; Vidugiris, G.
2006-04-01
We present a geometrical model to describe excess electrical noise in transition-edge sensors (TESs). In this model, a network of fluctuating resistors represents the complex dynamics inside a TES. The fluctuations can cause several resistors in series to become superconducting. Such events short out part of the TES and generate noise because much of the current percolates through low resistance paths. The model predicts that excess white noise increases with decreasing TES bias resistance ( R/ RN) and that perpendicular zebra stripes reduce noise and alpha of the TES by reducing percolation.
Can percolation model describe the evolution of mechanical properties of compacts of binary systems?
NASA Astrophysics Data System (ADS)
Evesque, Pierre; Busignies, Virginie; Porion, Patrice; Leclerc, Bernard; Tchoreloff, Pierre
2009-06-01
In pharmaceutical field, the percolation theory is used to describe the change of tablet's properties with the relative density. It defines critical tablet densities from which the mechanical properties start to change. The exponent in the law is expected to be universal for a mechanical property and numerical values are proposed in the literature. In this work, the percolation model was applied to the tensile strength and the reduced modulus of elasticity of three compacted pharmaceutical excipients. This work showed that the exponent seems not universal and that the model must be used carefully.
Luo, B; Li, J B; Huang, G H; Li, H L
2006-05-15
This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural non-point source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and "off-site" water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties.
NASA Astrophysics Data System (ADS)
Tasdighi, A.; Arabi, M.
2015-12-01
reducing them was assessed and bands of uncertainty around BMP efficiencies were determined. Moreover, using the predicted cumulative distribution functions (CDFs) for nonpoint loads (Agriculture) and CDFs of observed loads for point sources (WWTPs), trading ratios for specific trades were determined under uncertainty.
Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Jun
2012-10-01
The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.
Liu, Ruimin; Dong, Guangxia; Xu, Fei; Wang, Xiujuan; He, Mengchang
2015-01-01
In this paper, the spatial changes and trends in non-point source (NPS) total phosphorus (TP) pollution were analyzed by land and non-land uses in the Songliao River Basin from 1986 to 2000 (14 years). A grid-based export coefficient model was used in the process of analysis based on to a geographic information system. The Songliao Basin is divided in four regions: Liaoning province, Jilin province (JL), Heilongjiang province and the eastern part of the Inner Mongolia (IM) Autonomous Region. Results indicated that the NPS phosphorus load caused by land use and non-land use increased steadily from 3.11×10(4) tons in 1986 to 3.49×10(4) tons in 2000. The southeastern region of the Songliao Plain was the most important NPS pollution contributor of all the districts. Although the TP load caused by land use decreased during the studied period in the Songliao River Basin, the contribution of land use to the TP load was dominant compared to non-land uses. The NPS pollution caused by non-land use steadily increased over the studied period. The IM Autonomous Region and JL province had the largest mean annual rate of change among all districts (more than 30%). In this area, livestock and poultry breeding had become one of the most important NPS pollution sources. These areas will need close attention in the future.
NASA Astrophysics Data System (ADS)
Donado-Garzon, L. D.; Pardo, Y.
2013-12-01
Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical
The Herschel Point Source Catalogue
NASA Astrophysics Data System (ADS)
Marton, Gabor; Schulz, Bernhard; Altieri, Bruno; Calzoletti, Luca; Kiss, Csaba; Lim, Tanya; Lu, Nanyao; Paladini, Roberta; Papageorgiou, Andreas; Pearson, Chris; Rector, John; Shupe, David; Valtchanov, Ivan; Verebélyi, Erika; Xu, Kevin
2015-08-01
The Herschel Space Observatory was the fourth cornerstone mission in the European Space Agency (ESA) science programme with excellent broad band imaging capabilities in the submillimetre and far-infrared part of the spectrum. Although the spacecraft finished its observations in 2013, it left a large legacy dataset that is far from having been fully scrutinized and still has potential for new scientific discoveries. This is specifically true for the photometric observations of the PACS and SPIRE instruments that scanned >10% of the sky at 70, 100, 160, 250, 350 and 500 microns. Some source catalogs have already been produced by individual observing programs, but there are many observations that would never be analyzed for their full source content. To maximize the science return of the SPIRE and PACS data sets, our international team of instrument experts is in the process of building the Herschel Point Source Catalog (HPSC) from all scan map observations. Our homogeneous source extraction enables a systematic and unbiased comparison of sensitivity across the different Herschel fields that single programs will generally not be able to provide. The extracted point sources will contain individual YSOs of our Galaxy, unresolved YSO clusters in resolved nearby galaxies and unresolved galaxies of the local and distant Universe that are related to star formation. Such a huge dataset will help scientists better understand the evolution from interstellar clouds to individual stars. Furthermore the analysis of stellar clusters and the star formation on galactic scales will add more details to the understanding of star formation laws through time.We present our findings on comparison of different source detection and photometric tools. First results of the extractions are shown along with the description of our pipelines and catalogue entries. We also provide an additional science product, the structure noise map, that is used for the quality assessment of the catalogue in
Ha, Dong -Gwang; Kim, Jang -Joo; Baldo, Marc A.
2016-04-29
Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl) amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl) benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. Furthermore, the analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.
Ductile damage modeling based on void coalescence and percolation theories
Tonks, D.L.; Zurek, A.K.; Thissell, W.R.
1995-09-01
A general model for ductile damage in metals is presented. It includes damage induced by shear stress as well as damage caused by volumetric tension. Spallation is included as a special case. Strain induced damage is also treated. Void nucleation and growth are included, and give rise to strain rate effects. Strain rate effects also arise in the model through elastic release wave propagation between damage centers. The underlying physics of the model is the nucleation, growth, and coalescence of voids in a plastically flowing solid. The model is intended for hydrocode based computer simulation. An experimental program is underway to validate the model.
A percolation-based model for the conductivity of nanofiber composites.
Chatterjee, Avik P
2013-12-14
A model is presented that integrates the critical path approximation with percolation theory to describe the dependence of electrical conductivity upon volume fraction in nanofiber-based composites. The theory accounts for clustering and correlation effects that reflect non-randomness in the spatial distribution of the particles. Results from this formalism are compared to experimental measurements performed upon carbon nanotube-based conductive nanocomposites.
Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels
NASA Astrophysics Data System (ADS)
Li, Ruru; Yang, Y. Sam; Pan, Jinxiao; Pereira, Gerald G.; Taylor, John A.; Clennell, Ben; Zou, Caineng
2014-09-01
A partial-bounce-back lattice Boltzmann model has been used to simulate flow on a lattice consisting of cubic voxels with a locally varying effective percolating fraction. The effective percolating fraction of a voxel is the total response to the partial-bounce-back techniques for porous media flow due to subvoxel fine structures. The model has been verified against known analytic solutions on two- and three-dimensional regular geometries, and has been applied to simulate flow and permeabilities of two real-world rock samples. This enables quantitative determination of permeability for problems where voxels cannot be adequately segmented as discrete compositions. The voxel compositions are represented as volume fractions of various material phases and void. The numerical results have shown that, for the tight-sandstone sample, the bulk permeability is sensitive to the effective percolating fraction of calcite. That is, the subvoxel flow paths in the calcite phase are important for bulk permeability. On the other hand, flow in the calcite phase in the sandstone sample makes an insignificant contribution to the bulk permeability. The calculated permeability value for the sandstone sample is up to two orders of magnitude greater than the tight sandstone. This model is generic and could be applied to other oil and gas reservoir media or to material samples.
Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels.
Li, Ruru; Yang, Y Sam; Pan, Jinxiao; Pereira, Gerald G; Taylor, John A; Clennell, Ben; Zou, Caineng
2014-09-01
A partial-bounce-back lattice Boltzmann model has been used to simulate flow on a lattice consisting of cubic voxels with a locally varying effective percolating fraction. The effective percolating fraction of a voxel is the total response to the partial-bounce-back techniques for porous media flow due to subvoxel fine structures. The model has been verified against known analytic solutions on two- and three-dimensional regular geometries, and has been applied to simulate flow and permeabilities of two real-world rock samples. This enables quantitative determination of permeability for problems where voxels cannot be adequately segmented as discrete compositions. The voxel compositions are represented as volume fractions of various material phases and void. The numerical results have shown that, for the tight-sandstone sample, the bulk permeability is sensitive to the effective percolating fraction of calcite. That is, the subvoxel flow paths in the calcite phase are important for bulk permeability. On the other hand, flow in the calcite phase in the sandstone sample makes an insignificant contribution to the bulk permeability. The calculated permeability value for the sandstone sample is up to two orders of magnitude greater than the tight sandstone. This model is generic and could be applied to other oil and gas reservoir media or to material samples.
NASA Astrophysics Data System (ADS)
Combessis, A.; Charvin, N.; Allais, A.; Fournier, J.; Flandin, L.
2014-07-01
Dynamic percolation refers to the impressive increase in conductivity in polymers filled with a constant filler content as a function of annealing time. We present a detailed study of the driving forces for this phenomenon. The organization of carbon nanotubes in a polymer melt is probed with a.c. conductivity. In contrast with the static percolation studied as a function of the filler content, two peaks are observed in the relative permittivity. We show that this new feature results from two distinct filler auto assembly mechanisms. The first one is ascribed to the relaxation of macromolecules and could be eliminated using the proper thermal treatment. The second mechanism is observed later in time. It is likely to correspond to a diffusion process of the carbonaceous filler similar to a phase separation. A phenomenological model is finally proposed to describe the changes in dispersion and distribution states with annealing time.
On chemical distances and shape theorems in percolation models with long-range correlations
Drewitz, Alexander; Ráth, Balázs; Sapozhnikov, Artëm
2014-08-01
In this paper, we provide general conditions on a one parameter family of random infinite subsets of Z{sup d} to contain a unique infinite connected component for which the chemical distances are comparable to the Euclidean distance. In addition, we show that these conditions also imply a shape theorem for the corresponding infinite connected component. By verifying these conditions for specific models, we obtain novel results about the structure of the infinite connected component of the vacant set of random interlacements and the level sets of the Gaussian free field. As a byproduct, we obtain alternative proofs to the corresponding results for random interlacements in the work of Cerný and Popov [“On the internal distance in the interlacement set,” Electron. J. Probab. 17(29), 1–25 (2012)], and while our main interest is in percolation models with long-range correlations, we also recover results in the spirit of the work of Antal and Pisztora [“On the chemical distance for supercritical Bernoulli percolation,” Ann Probab. 24(2), 1036–1048 (1996)] for Bernoulli percolation. Finally, as a corollary, we derive new results about the (chemical) diameter of the largest connected component in the complement of the trace of the random walk on the torus.
A percolation cluster model of the temperature dependent dielectric properties of hydrated proteins
NASA Astrophysics Data System (ADS)
Suherman, Phe Man; Smith, Geoff
2003-02-01
This study investigates the temperature dependence of the low frequency dielectric properties (0.1 Hz-1 MHz) of hydrated globular proteins (namely, ovalbumin, lysozyme and pepsin). The study aims to reveal the mechanisms of water-protein interaction from the dielectric response of these model proteins. Two principle dielectric responses were observed for each hydrated protein, namely, an anomalous low frequency dispersion and a dielectric loss peak at higher frequency (called the varepsilon3 dispersion). The low frequency response conformed to a fractional power low of frequency, while the higher frequency response conformed to a Davidson-Cole model. The strength of both processes reached a maximum at a certain temperature within the experimental temperature range. This temperature is referred to as the percolation threshold (PT) and is thought to be associated with the percolation of protons between hydrogen-bonded water molecules. The relaxation times of the varepsilon3 dispersion conformed to Arrhenius behaviour at temperatures below the PT, from which an activation energy (DeltaH) could be calculated. This activation energy is thought to be a measure of the concentration of available charged sites through which proton transport is facilitated. The structural fractal dimension in the hydrated protein system was also calculated, and enabled the approximation of the pathway for charge percolation in the protein matrix.
On chemical distances and shape theorems in percolation models with long-range correlations
NASA Astrophysics Data System (ADS)
Drewitz, Alexander; Ráth, Balázs; Sapozhnikov, Artëm
2014-08-01
In this paper, we provide general conditions on a one parameter family of random infinite subsets of {{Z}}^d to contain a unique infinite connected component for which the chemical distances are comparable to the Euclidean distance. In addition, we show that these conditions also imply a shape theorem for the corresponding infinite connected component. By verifying these conditions for specific models, we obtain novel results about the structure of the infinite connected component of the vacant set of random interlacements and the level sets of the Gaussian free field. As a byproduct, we obtain alternative proofs to the corresponding results for random interlacements in the work of Černý and Popov ["On the internal distance in the interlacement set," Electron. J. Probab. 17(29), 1-25 (2012)], and while our main interest is in percolation models with long-range correlations, we also recover results in the spirit of the work of Antal and Pisztora ["On the chemical distance for supercritical Bernoulli percolation," Ann Probab. 24(2), 1036-1048 (1996)] for Bernoulli percolation. Finally, as a corollary, we derive new results about the (chemical) diameter of the largest connected component in the complement of the trace of the random walk on the torus.
Xu, S; Rezvanian, O; Peters, K; Zikry, M A
2013-04-19
A new modeling method has been proposed to investigate how the electrical conductivity of carbon nanotube (CNT) reinforced polymer composites are affected by tunneling distance, volume fraction, and tube aspect ratios. A search algorithm and an electrical junction identification method was developed with a percolation approach to determine conductive paths for three-dimensional (3D) carbon nanotube arrangements and to account for electron tunneling effects. The predicted results are used to understand the limitations of percolation theory and experimental measurements and observations, and why percolation theory breaks down for specific CNT arrangements.
Modelling of percolation rate of stormwater from underground infiltration systems.
Burszta-Adamiak, Ewa; Lomotowski, Janusz
2013-01-01
Underground or surface stormwater storage tank systems that enable the infiltration of water into the ground are basic elements used in Sustainable Urban Drainage Systems (SUDS). So far, the design methods for such facilities have not taken into account the phenomenon of ground clogging during stormwater infiltration. Top layer sealing of the filter bed influences the infiltration rate of water into the ground. This study presents an original mathematical model describing changes in the infiltration rate variability in the phases of filling and emptying the storage and infiltration tank systems, which enables the determination of the degree of top ground layer clogging. The input data for modelling were obtained from studies conducted on experimental sites on objects constructed on a semi-technological scale. The experiment conducted has proven that the application of the model developed for the phase of water infiltration enables us to estimate the degree of module clogging. However, this method is more suitable for reservoirs embedded in more permeable soils than for those located in cohesive soils.
Cont-Bouchaud Percolation Model Including Tobin Tax
NASA Astrophysics Data System (ADS)
Ehrenstein, Gudrun
The Tobin tax is an often discussed method to tame speculation and get a source of income. The discussion is especially heated when the financial markets are in crisis. In this article we refer to the foreign exchange markets. The Tobin tax should be a small international tax affecting all currency transactions and thus consequently reducing destabilizing speculations. In this way this tax should take over a control function. By including the Tobin tax in the microscopic model of Cont and Bouchaud one finds that this tax could be the right method to control foreign exchange operations and to get a good source of income.
Diverse types of percolation transitions
NASA Astrophysics Data System (ADS)
Lee, Deokjae; Cho, Y. S.; Kahng, B.
2016-12-01
Percolation has long served as a model for diverse phenomena and systems. The percolation transition, that is, the formation of a giant cluster on a macroscopic scale, is known as one of the most robust continuous transitions. Recently, however, many abrupt percolation transitions have been observed in complex systems. To illustrate such phenomena, considerable effort has been made to introduce models and construct theoretical frameworks for explosive, discontinuous, and hybrid percolation transitions. Experimental results have also been reported. In this review article, we describe such percolation models, their critical behaviors and universal features, and real-world phenomena.
Patterns in the English language: phonological networks, percolation and assembly models
NASA Astrophysics Data System (ADS)
Stella, Massimo; Brede, Markus
2015-05-01
In this paper we provide a quantitative framework for the study of phonological networks (PNs) for the English language by carrying out principled comparisons to null models, either based on site percolation, randomization techniques, or network growth models. In contrast to previous work, we mainly focus on null models that reproduce lower order characteristics of the empirical data. We find that artificial networks matching connectivity properties of the English PN are exceedingly rare: this leads to the hypothesis that the word repertoire might have been assembled over time by preferentially introducing new words which are small modifications of old words. Our null models are able to explain the ‘power-law-like’ part of the degree distributions and generally retrieve qualitative features of the PN such as high clustering, high assortativity coefficient and small-world characteristics. However, the detailed comparison to expectations from null models also points out significant differences, suggesting the presence of additional constraints in word assembly. Key constraints we identify are the avoidance of large degrees, the avoidance of triadic closure and the avoidance of large non-percolating clusters.
Scaling and Continuum Percolation Model for Enzyme-Catalyzed Gel Degradation
NASA Astrophysics Data System (ADS)
Lairez, D.; Carton, J.-P.; Zalczer, G.; Pelta, J.
2007-06-01
Enzyme-catalyzed gel degradation is inherently controlled by diffusion of enzymes in the gel. We report kinetics measurements on the gelatin-thermolysin system, varying solvent viscosity as well as gel and enzyme concentrations. Scaling relations and reduced variables are proposed which are shown to account for the experimental results. Finally, we argue that the nontrivial experimental dependence on enzyme concentration for the degradation time demonstrates that enzyme random walk is self-attracting, leading to a continuum percolation model for gel degradation.
Ha, Dong -Gwang; Kim, Jang -Joo; Baldo, Marc A.
2016-04-29
Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl) amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl) benzene (BmPyPb)more » mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. Furthermore, the analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.« less
Modeling gravity-driven fingering in rough-walled fractures using modified percolation theory
Glass, R.J.
1992-12-31
Pore scale invasion percolation theory is modified for imbibition of.wetting fluids into fractures. The effects of gravity, local aperture field geometry, and local in-plane air/water interfacial curvatureare included in the calculation of aperture filling potential which controls wetted structure growth within the fracture. The inclusion of gravity yields fingers oriented in the direction of the gravitational gradient. These fingers widen and tend to meander and branch more as the gravitational gradient decreases. In-plane interfacial curvature also greatly affects the wetted structure in both horizontal and nonhorizontal fractures causing the formation of macroscopic wetting fronts. The modified percolation model is used to simulate imbibition into an analogue rough-walled fracture where both fingering and horizontal imbibition experiments were previously conducted. Comparison of numerical and experimental results showed reasonably good agreement. This process oriented physical and numerical modeling is-a necessary step toward including gravity-driven fingering in models of flow and transport through unsaturated, fractured rock.
Documentation of a deep percolation model for estimating ground-water recharge
Bauer, H.H.; Vaccaro, J.J.
1987-01-01
A deep percolation model, which operates on a daily basis, was developed to estimate long-term average groundwater recharge from precipitation. It has been designed primarily to simulate recharge in large areas with variable weather, soils, and land uses, but it can also be used at any scale. The physical and mathematical concepts of the deep percolation model, its subroutines and data requirements, and input data sequence and formats are documented. The physical processes simulated are soil moisture accumulation, evaporation from bare soil, plant transpiration, surface water runoff, snow accumulation and melt, and accumulation and evaporation of intercepted precipitation. The minimum data sets for the operation of the model are daily values of precipitation and maximum and minimum air temperature, soil thickness and available water capacity, soil texture, and land use. Long-term average annual precipitation, actual daily stream discharge, monthly estimates of base flow, Soil Conservation Service surface runoff curve numbers, land surface altitude-slope-aspect, and temperature lapse rates are optional. The program is written in the FORTRAN 77 language with no enhancements and should run on most computer systems without modifications. Documentation has been prepared so that program modifications may be made for inclusions of additional physical processes or deletion of ones not considered important. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Ghanbarian, Behzad; Sahimi, Muhammad; Daigle, Hugh
2016-07-01
Accurate prediction of the relative permeability to water under partially saturated condition has broad applications and has been studied intensively since the 1940s by petroleum, chemical, and civil engineers, as well as hydrologists and soil scientists. Many models have been developed for this purpose, ranging from those that represent the pore space as a bundle of capillary tubes, to those that utilize complex networks of interconnected pore bodies and pore throats with various cross-section shapes. In this paper, we propose an approach based on the effective-medium approximation (EMA) and percolation theory in order to predict the water relative permeability. The approach is general and applicable to any type of porous media. We use the method to compute the water relative permeability in porous media whose pore-size distribution follows a power law. The EMA is invoked to predict the relative permeability from the fully saturated pore space to some intermediate water saturation that represents a crossover from the EMA to what we refer to as the "critical region." In the critical region below the crossover water saturation Swx, but still above the critical water saturation Swc (the residual saturation or the percolation threshold of the water phase), the universal power law predicted by percolation theory is used to compute the relative permeability. To evaluate the accuracy of the approach, data for 21 sets of undisturbed laboratory samples were selected from the UNSODA database. For 14 cases, the predicted relative permeabilities are in good agreement with the data. For the remaining seven samples, however, the theory underestimates the relative permeabilities. Some plausible sources of the discrepancy are discussed.
Percolation on Sparse Networks
NASA Astrophysics Data System (ADS)
Karrer, Brian; Newman, M. E. J.; Zdeborová, Lenka
2014-11-01
We study percolation on networks, which is used as a model of the resilience of networked systems such as the Internet to attack or failure and as a simple model of the spread of disease over human contact networks. We reformulate percolation as a message passing process and demonstrate how the resulting equations can be used to calculate, among other things, the size of the percolating cluster and the average cluster size. The calculations are exact for sparse networks when the number of short loops in the network is small, but even on networks with many short loops we find them to be highly accurate when compared with direct numerical simulations. By considering the fixed points of the message passing process, we also show that the percolation threshold on a network with few loops is given by the inverse of the leading eigenvalue of the so-called nonbacktracking matrix.
NASA Astrophysics Data System (ADS)
Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan
2016-11-01
Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.
Research Trends in Non Point Source during 1975-2010
NASA Astrophysics Data System (ADS)
Yanhua, Zhuang; Thuminh, Nguyen; Beibei, Niu; ei, Shao; Song, Hong
According to the samples of 2924 articles about non point source of SCI and SSCI databases from 1975 to 2010, this study analysed the articles in the growth trend of article outputs, subject categories and journals, international collaborations, geographic distribution and scientific research issues by using bibliometric analysis. The results showed that non point source research steadily increased over the past 35 years and the annual number of articles published in 2010 was 79 times of that in 1975. Non point source was involved into 67 kinds of subjects and appeared in 451 journals. The main study area was concentrated in North America and Europe, following by East Asia. There were 79 countries/territories participated in non point source research, and USA was the largest contributor in non point source research and had a central position in collaboration networks. A keyword analysis indicated that water quality, non point pollutions, and watershed were the hottest issues of non point source research; "GIS, "watershed management", "modeling", "simulation", "monitoring", and "remote sensing" were the most popular research methods; and "agriculture", "land use", "runoff", and "pollution" were the leading causes of non point pollution.
Percolation Model of Sensory Transmission and Loss of Consciousness Under General Anesthesia.
Zhou, David W; Mowrey, David D; Tang, Pei; Xu, Yan
2015-09-04
Neurons communicate with each other dynamically; how such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter p representing the percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions, and we show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation for understanding the origin of cognition.
Percolation Model of Sensory Transmission and Loss of Consciousness under General Anesthesia
Zhou, David W.; Mowrey, David D.; Tang, Pei; Xu, Yan
2015-01-01
Neurons communicate with each other dynamically. How such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter, p, representing percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions and show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner, resembling the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation to understand the origin of cognition. PMID:26382705
Percolation Model of Sensory Transmission and Loss of Consciousness Under General Anesthesia
NASA Astrophysics Data System (ADS)
Zhou, David W.; Mowrey, David D.; Tang, Pei; Xu, Yan
2015-09-01
Neurons communicate with each other dynamically; how such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter p representing the percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions, and we show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation for understanding the origin of cognition.
Basu, Urna; Mohanty, P K
2009-04-01
We introduce and solve a model of hardcore particles on a one-dimensional periodic lattice which undergoes an active-absorbing-state phase transition at finite density. In this model, an occupied site is defined to be active if its left neighbor is occupied and the right neighbor is vacant. Particles from such active sites hop stochastically to their right. We show that both the density of active sites and the survival probability vanish as the particle density is decreased below half. The critical exponents and spatial correlations of the model are calculated exactly using the matrix product ansatz. Exact analytical study of several variations of the model reveals that these nonequilibrium phase transitions belong to a new universality class different from the generic active-absorbing-state phase transition, namely, directed percolation.
Self-organization with equilibration: A model for the intermediate phase in rigidity percolation
NASA Astrophysics Data System (ADS)
Chubynsky, M. V.; Brière, M.-A.; Mousseau, Normand
2006-07-01
Recent experimental results for covalent glasses suggest the existence of an intermediate phase attributed to the self-organization of the glass network resulting from the tendency to minimize its internal stress. However, the exact nature of this experimentally measured phase remains unclear. We modified a previously proposed model of self-organization by generating a uniform sampling of stress-free networks. In our model, studied on a diluted triangular lattice, an unusual intermediate phase appears, in which both rigid and floppy networks have a chance to occur, a result also observed in a related model on a Bethe lattice by Barré [Phys. Rev. Lett. 94, 208701 (2005)]. Our results for the bond-configurational entropy of self-organized networks, which turns out to be only about 2% lower than that of random networks, suggest that a self-organized intermediate phase could be common in systems near the rigidity percolation threshold.
Aging and percolation dynamics in a Non-Poissonian temporal network model
NASA Astrophysics Data System (ADS)
Moinet, Antoine; Starnini, Michele; Pastor-Satorras, Romualdo
2016-08-01
We present an exhaustive mathematical analysis of the recently proposed Non-Poissonian Activity Driven (NoPAD) model [Moinet et al., Phys. Rev. Lett. 114, 108701 (2015), 10.1103/PhysRevLett.114.108701], a temporal network model incorporating the empirically observed bursty nature of social interactions. We focus on the aging effects emerging from the non-Poissonian dynamics of link activation, and on their effects on the topological properties of time-integrated networks, such as the degree distribution. Analytic expressions for the degree distribution of integrated networks as a function of time are derived, exploring both limits of vanishing and strong aging. We also address the percolation process occurring on these temporal networks, by computing the threshold for the emergence of a giant connected component, highlighting the aging dependence. Our analytic predictions are checked by means of extensive numerical simulations of the NoPAD model.
NASA Astrophysics Data System (ADS)
Dong, Yanfang; Wang, Jun
2012-12-01
A financial time series model is developed by the percolation system on the Sierpinski carpet lattice fractal. We investigate the fluctuation behaviors of various shuffled return interval series (original, randomly shuffled and by Zipf method) by applying the multifractal detrended fluctuation analysis for the financial model and Shanghai composite index. Numerically we show the fluctuations of the generalized Hurst exponents for different order parameters, the nonlinear dependence of these scaling exponents and the singularity spectrum show that the return intervals possess the multifractality. By comparing the MF-DFA empirical results of the original series to those for the randomly shuffled series, the empirical research exhibits the multifractality is mainly due to the contributions of long-range correlations as well as the broad probability density function. Further we show that the shuffled series by Zipf method exhibits the similar properties for the positive orders.
In the EPA document Predicting Attenuation of Viruses During Percolation in Soils 1. Probabilistic Model the conceptual, theoretical, and mathematical foundations for a predictive screening model were presented. In this current volume we present a User's Guide for the computer mo...
NASA Astrophysics Data System (ADS)
Gao, Nan; Li, Ling; Lu, Nianduan; Xie, Changqing; Liu, Ming; Bässler, Heinz
2016-08-01
The fact that in organic semiconductors the Hubbard energy is usually positive appears to be at variance with a bipolaron model to explain magnetoresistance (MR) in those systems. Employing percolation theory, we demonstrate that a moderately positive U is indeed compatible with the bipolaron concept for MR in unipolar current flow, provided that the system is energetically disordered, and the density of states (DOS) distribution is partially filled, so that the Fermi level overlaps with tail states of the DOS. By exploring a broad parameter space, we show that MR becomes maximal around U =0 and even diminishes at large negative values of U because of spin independent bipolaron dissociation. Trapping effects and reduced dimension enhance MR.
Tunneling conductivity in anisotropic nanofiber composites: a percolation-based model.
Chatterjee, Avik P; Grimaldi, Claudio
2015-04-15
The critical path approximation ('CPA') is integrated with a lattice-based approach to percolation to provide a model for conductivity in nanofiber-based composites. Our treatment incorporates a recent estimate for the anisotropy in tunneling-based conductance as a function of the relative angle between the axes of elongated nanoparticles. The conductivity is examined as a function of the volume fraction, degree of clustering, and of the mean value and standard deviation of the orientational order parameter. Results from our calculations suggest that the conductivity can depend strongly upon the standard deviation in the orientational order parameter even when all the other variables (including the mean value of the order parameter 〈S〉) are held invariant.
High-precision percolation thresholds and Potts-model critical manifolds from graph polynomials
NASA Astrophysics Data System (ADS)
>Jesper Lykke Jacobsen,
2014-04-01
The critical curves of the q-state Potts model can be determined exactly for regular two-dimensional lattices G that are of the three-terminal type. This comprises the square, triangular, hexagonal and bow-tie lattices. Jacobsen and Scullard have defined a graph polynomial PB(q, v) that gives access to the critical manifold for general lattices. It depends on a finite repeating part of the lattice, called the basis B, and its real roots in the temperature variable v = eK - 1 provide increasingly accurate approximations to the critical manifolds upon increasing the size of B. Using transfer matrix techniques, these authors computed PB(q, v) for large bases (up to 243 edges), obtaining determinations of the ferromagnetic critical point vc > 0 for the (4, 82), kagome, and (3, 122) lattices to a precision (of the order 10-8) slightly superior to that of the best available Monte Carlo simulations. In this paper we describe a more efficient transfer matrix approach to the computation of PB(q, v) that relies on a formulation within the periodic Temperley-Lieb algebra. This makes possible computations for substantially larger bases (up to 882 edges), and the precision on vc is hence taken to the range 10-13. We further show that a large variety of regular lattices can be cast in a form suitable for this approach. This includes all Archimedean lattices, their duals and their medials. For all these lattices we tabulate high-precision estimates of the bond percolation thresholds pc and Potts critical points vc. We also trace and discuss the full Potts critical manifold in the (q, v) plane, paying special attention to the antiferromagnetic region v < 0. Finally, we adapt the technique to site percolation as well, and compute the polynomials PB(p) for certain Archimedean and dual lattices (those having only cubic and quartic vertices), using very large bases (up to 243 vertices). This produces the site percolation thresholds pc to a precision of the order of 10-9.
NASA Astrophysics Data System (ADS)
Pohlert, T.
2007-12-01
The aim of this paper is to present recent developments of an integrated water- and N-balance model for the assessment of land use changes on water and N-fluxes for meso-scale river catchments. The semi-distributed water-balance model SWAT was coupled with algorithms of the bio-geochemical model DNDC as well as the model CropSyst. The new model that is further denoted as SWAT-N was tested with leaching data from a long- term lysimeter experiment as well as results from a 5-years sampling campaign that was conducted at the outlet of the meso-scale catchment of the River Dill (Germany). The model efficiency for N-load as well as the spatial representation of N-load along the river channel that was tested with results taken from longitudinal profiles show that the accuracy of the model has improved due to the integration of the aforementioned process-oriented models. After model development and model testing, SWAT-N was then used for the assessment of the EU agricultural policy (CAP reform) on land use change and consequent changes on N-fluxes within the Dill Catchment. giessen.de/geb/volltexte/2007/4531/
Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan
2016-11-01
Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.
Pore Size Distributions Inferred from Modified Inversion Percolation Modeling of Drainage Curves
NASA Astrophysics Data System (ADS)
Dralus, D. E.; Wang, H. F.; Strand, T. E.; Glass, R. J.; Detwiler, R. L.
2005-12-01
Experiments have been conducted of drainage in sand packs. At equilibrium, the interface between the fluids forms a saturation transition fringe where the saturation decreases monotonically with height. This behavior was observed in a 1-inch thick pack of 20-30 sand contained front and back within two thin, 12-inch-by-24-inch glass plates. The translucent chamber was illuminated from behind by a bank of fluorescent bulbs. Acquired data were in the form of images captured by a CCD camera with resolution on the grain scale. The measured intensity of the transmitted light was used to calculate the average saturation at each point in the chamber. This study used a modified invasion percolation (MIP) model to simulate the drainage experiments to evaluate the relationship between the saturation-versus-height curve at equilibrium and the pore size distribution associated with the granular medium. The simplest interpretation of a drainage curve is in terms of a distribution of capillary tubes whose radii reproduce the the observed distribution of rise heights. However, this apparent radius distribution obtained from direct inversion of the saturation profile did not yield the assumed radius distribution. Further investigation demonstrated that the equilibrium height distribution is controlled primarily by the Bond number (ratio of gravity to capillary forces) with some influence from the width of the pore radius distribution. The width of the equilibrium fringe is quantified in terms of the ratio of Bond number to the standard deviation of the pore throat distribution. The normalized saturation-vs-height curves exhibit a power-law scaling behavior consistent with both Brooks-Corey and Van Genuchten type curves. Fundamental tenets of percolation theory were used to quantify the relationship between the apparent and actual radius distributions as a function of the mean coordination number and of the ratio of Bond number to standard deviation, which was supported by both MIP
NASA Astrophysics Data System (ADS)
Xu, Hao; Yang, Hong; Wang, Yan-Rong; Wang, Wen-Wu; Luo, Wei-Chun; Qi, Lu-Wei; Li, Jun-Feng; Zhao, Chao; Chen, Da-Peng; Ye, Tian-Chun
2016-08-01
High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes. The reliability of thin dielectric films becomes a limitation to device manufacturing, especially to the breakdown characteristic. In this work, a breakdown simulator based on a percolation model and the kinetic Monte Carlo method is set up, and the intrinsic relation between time to breakdown and trap generation rate R is studied by TDDB simulation. It is found that all degradation factors, such as trap generation rate time exponent m, Weibull slope β and percolation factor s, each could be expressed as a function of trap density time exponent α. Based on the percolation relation and power law lifetime projection, a temperature related trap generation model is proposed. The validity of this model is confirmed by comparing with experiment results. For other device and material conditions, the percolation relation provides a new way to study the relationship between trap generation and lifetime projection. Project supported by the National High Technology Research and Development Program of China (Grant No. SS2015AA010601), the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroElectronics of Chinese Academy of Sciences.
Percolation with Constant Freezing
NASA Astrophysics Data System (ADS)
Mottram, Edward
2014-06-01
We introduce and study a model of percolation with constant freezing ( PCF) where edges open at constant rate , and clusters freeze at rate independently of their size. Our main result is that the infinite volume process can be constructed on any amenable vertex transitive graph. This is in sharp contrast to models of percolation with freezing previously introduced, where the limit is known not to exist. Our interest is in the study of the percolative properties of the final configuration as a function of . We also obtain more precise results in the case of trees. Surprisingly the algebraic exponent for the cluster size depends on the degree, suggesting that there is no lower critical dimension for the model. Moreover, even for , it is shown that finite clusters have algebraic tail decay, which is a signature of self organised criticality. Partial results are obtained on , and many open questions are discussed.
Fraga, I; Charters, F J; O'Sullivan, A D; Cochrane, T A
2016-02-01
Stormwater runoff in urban catchments contains heavy metals (zinc, copper, lead) and suspended solids (TSS) which can substantially degrade urban waterways. To identify these pollutant sources and quantify their loads the MEDUSA (Modelled Estimates of Discharges for Urban Stormwater Assessments) modelling framework was developed. The model quantifies pollutant build-up and wash-off from individual impervious roof, road and car park surfaces for individual rain events, incorporating differences in pollutant dynamics between surface types and rainfall characteristics. This requires delineating all impervious surfaces and their material types, the drainage network, rainfall characteristics and coefficients for the pollutant dynamics equations. An example application of the model to a small urban catchment demonstrates how the model can be used to identify the magnitude of pollutant loads, their spatial origin and the response of the catchment to changes in specific rainfall characteristics. A sensitivity analysis then identifies the key parameters influencing each pollutant load within the stormwater given the catchment characteristics, which allows development of a targeted calibration process that will enhance the certainty of the model outputs, while minimizing the data collection required for effective calibration. A detailed explanation of the modelling framework and pre-calibration sensitivity analysis is presented.
NASA Astrophysics Data System (ADS)
Wiśniowski, R.; Olchawa, W.; Frączek, D.; Piasecki, R.
2016-02-01
Recently, the effective medium approach (EMA) using 2×2 basic cluster of model lattice sites to predict the conductivity of interacting microemulsion droplets has been presented by Hattori et al. To make a step aside from pure applications, we studied earlier a multi-scale percolation, employing any k× k basic cluster for non-interacting particles. Here, with interactions included, we examine in what way they alter the percolation threshold for any cluster case. We found that at a fixed length scale k, the interaction reduces the range of shifts of the percolation threshold. To determine the critical concentrations, the simplified EMA-model is used. It diminishes the number of local conductivities into two main ones. In the presence of a dominance of the repulsive interaction over the thermal energy, the exact percolation thresholds at two small scales can be revealed from analytical formulas. Furthermore, at large scales, the highest possible value of the estimated threshold can be obtained.
NASA Astrophysics Data System (ADS)
Singh, A.; Holt, R. M.; Ramarao, B.; Clemo, T.
2011-12-01
Three radioactive waste disposal landfills at the Waste Control Specialists (WCS) facility in Andrews County, Texas are constructed below grade, within the low-permeability Dockum Group mudrocks (Cooper Canyon Formation) of Triassic age. Recent site investigations at the WCS disposal facilities indicate the presence of a trapped and compressed gas phase in the mudrocks. The Dockum is a low-permeability medium with vertical and horizontal effective hydraulic conductivities of 1.2E-9 cm/s and 2.9E-7 cm/s. The upper 300+ feet of the Dockum is in the unsaturated zone, with an average saturation of 0.87 and average capillary pressure of 2.8 MPa determined from core samples. Air entry pressures on core samples range from from 0.016 to 9.8 MPa, with a mean of 1.0 MPa. Heat dissipation sensors, thermocouple psychrometers, and advanced tensiometers installed in Dockum borehole arrays generally show capillary pressures one order of magnitude less than those measured on core samples. These differences with core data are attributed to the presence of a trapped and compressed gas phase within Dockum materials. In the vicinity of an instrumented borehole, the gas phase pressure equilibrates with atmospheric pressure, lowering the capillary pressure. We have developed a new macroscopic invasion percolation (MIP) model to illustrate the origin of the trapped gas phase in the Dockum rocks. An MIP model differs from invasion percolation (IP) through the definition of macro-scale capillarity. Individual pore throats and necks are not considered. Instead, a near pore-scale block is defined and characterized by a local threshold spanning pressure (a local block-scale breakthrough pressure) that represents the behavior of the subscale network. The model domain is discretized into an array of grid blocks with assigned spanning pressures. An invasion pressure for each block is then determined by the sum of spanning pressure, buoyance forces, and viscous forces. An IP algorithm sorts the
NASA Astrophysics Data System (ADS)
Srivastava, Brijesh K.
2011-07-01
Possible phase transition of strongly interacting matter from hadron to a Quark-Gluon Plasma (QGP) state have in the past received considerable interest. It has been suggested that this problem might be treated by percolation theory. The Color String Percolation Model (CSPM) is used to determine the equation of state (EOS) of the QGP produced in central Au-Au collisions at RHIC energies. The bulk thermodynamic quantities - energy density, entropy density and the sound velocity - are obtained in the framework of CSPM. It is shown that the results are in excellent agreement with the recent lattice QCD calculations(LQCD).
Bohman-Frieze-Wormald model on the lattice, yielding a discontinuous percolation transition
NASA Astrophysics Data System (ADS)
Schrenk, K. J.; Felder, A.; Deflorin, S.; Araújo, N. A. M.; D'Souza, R. M.; Herrmann, H. J.
2012-03-01
The BFW model introduced by Bohman, Frieze, and Wormald [Random Struct. Algorithms1042-983210.1002/rsa.20038, 25, 432 (2004)], and recently investigated in the framework of discontinuous percolation by Chen and D'Souza [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.115701 106, 115701 (2011)], is studied on the square and simple-cubic lattices. In two and three dimensions, we find numerical evidence for a strongly discontinuous transition. In two dimensions, the clusters at the threshold are compact with a fractal surface of fractal dimension df=1.49±0.02. On the simple-cubic lattice, distinct jumps in the size of the largest cluster are observed. We proceed to analyze the tree-like version of the model, where only merging bonds are sampled, for dimension two to seven. The transition is again discontinuous in any considered dimension. Finally, the dependence of the cluster-size distribution at the threshold on the spatial dimension is also investigated.
Percolation-Continuum Model of Evaporative Drying: Homogeneous or Patchy Saturation?
Wang, H F; Strand, T E; Berryman, J G
2005-02-18
Porous rock on the earth's surface often contains more than one fluid phase, and an important case is partial saturation with air and water. We implemented a pore-scale, percolation model coupled with a continuum model for water vapor diffusion in order to create a simulated tomographic image of water distribution within a rock core during drying. As drying proceeds, the initial, continuous water cluster breaks up into smaller and smaller clusters with an increasing surface-area-to-volume ratio. Drying times are a function of the number and location of boundary surfaces, but the surface-area-to-volume ratio is approximately the same for a given saturation. By applying a Voigt volume average of the elastic properties of water-filled and air-filled cells, and by introducing the ad hoc rule that water-filled pores on the air-water interface of a cluster behave in a drained manner, we find elastic moduli as a function of saturation that mimic laboratory experimental data.
Subnetworks of percolation backbones to model karst systems around Tulum, Mexico
NASA Astrophysics Data System (ADS)
Hendrick, Martin; Renard, Philippe
2016-11-01
Karstic caves, which play a key role in groundwater transport, are often organized as complex connected networks resulting from the dissolution of carbonate rocks. In this work, we propose a new model to describe and study the structures of the two largest submersed karst networks in the world. Both of these networks are located in the area of Tulum (Quintana Roo, Mexico). In a previous work te{hendrick2016fractal} we showed that these networks behave as self-similar structures exhibiting well-defined scaling behaviours. In this paper, we suggest that these networks can be modeled using substructures of percolation clusters (θ-subnetworks) having similar structural behaviour (in terms of fractal dimension and conductivity exponent) to those observed in Tulum's karst networks. We show in addition that these θ-subnetworks correspond to structures that minimise a global function, where this global function includes energy dissipation by the viscous forces when water flows through the network, and the cost of network formation itself.
MOPEX: MOsaicker and Point source EXtractor
NASA Astrophysics Data System (ADS)
NASA/IPAC Infrared Science Archive; JPL; Caltech; NASA
2011-11-01
MOPEX (MOsaicker and Point source EXtractor) is a package for reducing and analyzing imaging data, as well as MIPS SED data. MOPEX includes the point source extraction package, APEX. MOPEX is designed to allow the user to: perform sophisticated background matching of individual data framesmosaic the individual frames downloaded from the Spitzer archiveperform both temporal and spatial outlier rejection during mosaickingapply offline pointing refinement for MIPS data (refinement is already applied to IRAC data)perform source detection on the mosaics using APEXcompute aperture photometry or PRF-fitting photometry for point sourcesperform interpolation, coaddition, and spectrum extraction of MIPS SED images.MOPEX comes in two different interfaces (GUI and command-line), both of which come packaged together. We recommend that all new users start with the GUI, which is more user-friendly than the command-line interface
A numerical retroaction model relates rocky coast erosion to percolation theory
NASA Astrophysics Data System (ADS)
Sapoval, B.; Baldassarri, A.
2011-12-01
Rocky coasts are estimated to represent 75% of the world's shorelines [1]. We discuss various situations where the formation of rocky coast morphology could be attributed to the retroaction of the coast morphology on the erosive power of the see. In the case of rocky coasts, erosion can spontaneously create irregular seashores. But, in turn, the geometrical irregularity participates to the damping of sea-waves, decreasing the average wave amplitude and erosive power. There may then exist a mutual self-stabilization of the waves amplitude together with the irregular morphology of the coast. A simple model of such stabilization is discussed. It leads, through a complex avalanche dynamics of the earth-sea interface, to the spontaneous appearance of an irregular sea-shore. The final coast morphology is found to depend on the morphology/damping coupling of the coast and on the possible existence of built-in correlations within the coast lithologic properties. In the limit case where the morphology/damping coupling is weak and when the earth lithology distribution exhibit only short range correlations, the process spontaneously build fractal morphologies with a dimension close to 4/3 [2]. This dimension refers to the dimension of the accessible perimeter in percolation theory. However, even rugged but non-fractal sea-coasts morphology may emerge for strong damping or during the erosion process. When the distributions of the lithologies exhibit long range correlations, a variety of complex morphologies are obtained which mimics observed coastline complexity, well beyond simple fractality. This approach, which links erosion of rocky coasts to percolation theory, provide a natural frame to explain the frequent field observation that the statistics of erosion events follow power law behavior. In a somewhat different perspective, the design of breakwaters is suggested to be improved by using global irregular geometry with features sizes of the order of the wave-length of the
Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R
2016-06-09
The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.
Searches for point sources in the Galactic Center region
NASA Astrophysics Data System (ADS)
di Mauro, Mattia; Fermi-LAT Collaboration
2017-01-01
Several groups have demonstrated the existence of an excess in the gamma-ray emission around the Galactic Center (GC) with respect to the predictions from a variety of Galactic Interstellar Emission Models (GIEMs) and point source catalogs. The origin of this excess, peaked at a few GeV, is still under debate. A possible interpretation is that it comes from a population of unresolved Millisecond Pulsars (MSPs) in the Galactic bulge. We investigate the detection of point sources in the GC region using new tools which the Fermi-LAT Collaboration is developing in the context of searches for Dark Matter (DM) signals. These new tools perform very fast scans iteratively testing for additional point sources at each of the pixels of the region of interest. We show also how to discriminate between point sources and structural residuals from the GIEM. We apply these methods to the GC region considering different GIEMs and testing the DM and MSPs intepretations for the GC excess. Additionally, we create a list of promising MSP candidates that could represent the brightest sources of a MSP bulge population.
Microtransition cascades to percolation.
Chen, Wei; Schröder, Malte; D'Souza, Raissa M; Sornette, Didier; Nagler, Jan
2014-04-18
We report the discovery of a discrete hierarchy of microtransitions occurring in models of continuous and discontinuous percolation. The precursory microtransitions allow us to target almost deterministically the location of the transition point to global connectivity. This extends to the class of intrinsically stochastic processes the possibility to use warning signals anticipating phase transitions in complex systems.
Ding, Chengxiang; Fu, Zhe; Guo, Wenan; Wu, F Y
2010-06-01
In the preceding paper, one of us (F. Y. Wu) considered the Potts model and bond and site percolation on two general classes of two-dimensional lattices, the triangular-type and kagome-type lattices, and obtained closed-form expressions for the critical frontier with applications to various lattice models. For the triangular-type lattices Wu's result is exact, and for the kagome-type lattices Wu's expression is under a homogeneity assumption. The purpose of the present paper is twofold: First, an essential step in Wu's analysis is the derivation of lattice-dependent constants A,B,C for various lattice models, a process which can be tedious. We present here a derivation of these constants for subnet networks using a computer algorithm. Second, by means of a finite-size scaling analysis based on numerical transfer matrix calculations, we deduce critical properties and critical thresholds of various models and assess the accuracy of the homogeneity assumption. Specifically, we analyze the q -state Potts model and the bond percolation on the 3-12 and kagome-type subnet lattices (n×n):(n×n) , n≤4 , for which the exact solution is not known. Our numerical determination of critical properties such as conformal anomaly and magnetic correlation length verifies that the universality principle holds. To calibrate the accuracy of the finite-size procedure, we apply the same numerical analysis to models for which the exact critical frontiers are known. The comparison of numerical and exact results shows that our numerical values are correct within errors of our finite-size analysis, which correspond to 7 or 8 significant digits. This in turn infers that the homogeneity assumption determines critical frontiers with an accuracy of 5 decimal places or higher. Finally, we also obtained the exact percolation thresholds for site percolation on kagome-type subnet lattices (1×1):(n×n) for 1≤n≤6 .
Weak percolation on multiplex networks
NASA Astrophysics Data System (ADS)
Baxter, Gareth J.; Dorogovtsev, Sergey N.; Mendes, José F. F.; Cellai, Davide
2014-04-01
Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.
Is a wind turbine a point source? (L).
Makarewicz, Rufin
2011-02-01
Measurements show that practically all noise of wind turbine noise is produced by turbine blades, sometimes a few tens of meters long, despite that the model of a point source located at the hub height is commonly used. The plane of rotating blades is the critical location of the receiver because the distances to the blades are the shortest. It is shown that such location requires certain condition to be met. The model is valid far away from the wind turbine as well.
Percolation testing and hydraulic conductivity of soils for percolation areas.
Mulqueen, J; Rodgers, M
2001-11-01
The results of specific percolation tests are expressed in terms of field saturated hydraulic conductivity (Kfs) of the soil. The specific tests comprise the Irish SR 6 and the UK BS 6297 standard tests and the inversed auger hole and square hole tests employed for the design of land drainage. Percolation times from these tests are converted to Kfs values using unit gradient theory and the Elrick and Reynolds (Soil Sci. 142(5) (1986) 308) model which takes into account gravitational, pressure head and matric potential gradients. Kfs is then expressed as the inverse of the percolation rate times a constant, in this way the percolation rate can be directly related to Kfs of the soil. A plot of Kfs against percolation rate for the Irish SR 6 and the UK BS 6297 standard tests is asymptotic at Kfs values less than 0.2 m/d and greater than 0.8 m/d. This behaviour creates difficulty in setting limits for percolation rates in standards. Curves are provided which enable Kfs values to be read off from percolation tests without the restrictions of head range currently enforced, for example in the Irish SR 6 and BS 6297 standards. Experimental measurements of percolation rates and Kfs were carried out on two sands in the laboratory and in the field on two soils. Kfs of these four materials was also measured using a tension infiltrometer and the Guelph permeameter. The saturated hydraulic conductivities (Ks) of the sands were also estimated in a falling head laboratory apparatus and by the Hazen formula. There was good agreement between the different tests for Kfs on each material. Because percolation time continued to increase significantly in consecutive tests in the same test hole while Kfs became constant, the latter is a better measure of the suitability of soils for percolation.
Low-frequency Raman scattering in model disordered solids: percolators above threshold
NASA Astrophysics Data System (ADS)
Pilla, O.; Viliani, G.; Dell'Anna, R.; Ruocco, G.
1997-02-01
The Raman coupling coefficients of site- and bond-percolators at concentration higher than percolation threshold are computed for two scattering mechanisms: bond polarizability (BPOL) and dipole-induced-dipole (DID). The results show that DID does not follow a scaling law at low frequency, while in the case of BPOL the situation is less clear. The numerically computed frequency dependence in the case of BPOL, which can be considered a good scattering mechanism for a wide class of real glasses, is in semiquantitative agreement with experimental results.
Surveillance of clustering near point sources.
Le, N D; Petkau, A J; Rosychuk, R
Health authorities are often alerted to suspected cancer clusters near the vicinity of potential point sources by members of the public. A surveillance system, where administrative regions around the potential point sources are regularly monitored for high disease rates, would allow for responses which are easier to obtain, timelier, and less expensive than individual thorough investigations. The monitoring could be done by using the so-called 'focused' tests for detecting disease clustering. However, these tests, generally designed to detect clusters of a fixed size around the foci, are not particularly effective when dealing with administrative regions with substantial differences in populations. In this work, an approach which overcomes the problem to a certain extent is described. Here the selected cluster sizes are based on the populations of the administrative regions under examination. The approach is used to investigate whether cancer clustering appears in the vicinity of the pulp and paper mills in British Columbia for the years 1983-1989. The results indicate that the approach performs reasonably well in identifying cancer sites for which elevated risks have also been suggested in the epidemiologic literature. Consequently, this methodology could be utilized to provide guidance for further investigation even in the absence of local reports. Similarly, it could be readily utilized to provide timely responses to local reports.
Hybrid percolation transition in complex networks
NASA Astrophysics Data System (ADS)
Kahng, Byungnam
Percolation has been one of the most applied statistical models. Percolation transition is one of the most robust continuous transitions known thus far. However, recent extensive researches reveal that it exhibits diverse types of phase transitions such as discontinuous and hybrid phase transitions. Here hybrid phase transition means the phase transition exhibiting natures of both continuous and discontinuous phase transitions simultaneously. Examples include k-core percolation, cascading failures in interdependent networks, synchronization, etc. Thus far, it is not manifest if the critical behavior of hybrid percolation transitions conforms to the conventional scaling laws of second-order phase transition. Here, we investigate the critical behaviors of hybrid percolation transitions in the cascading failure model in inter-dependent networks and the restricted Erdos-Renyi model. We find that the critical behaviors of the hybrid percolation transitions contain some features that cannot be described by the conventional theory of second-order percolation transitions.
A Point Source Reconstruction in an Urban like Environment
NASA Astrophysics Data System (ADS)
Kumar, Pramod; Feiz, Amir Ali; Ngae, Pierre; Singh, Sarvesh Kumar; Joseph, Damien; Barbosa, Emerson; Turbelin, Grégory; Issartel, Jean Pierre
2015-04-01
Retrieval of a point source of air pollutants in an urban environment is a challenging problem due to the complexity in interaction of plume and flow field perturbed by the obstacles in that area. The increasing threat of chemical, biological and radiological (CBR) attacks in urban areas has also resulted a significant interest in research on fast identification and detection of these toxic agents. In this study, a computational fluid dynamics (CFD) model is utilized to reconstruct a continuous point source in urban like environment of the Mock Urban Setting Test (MUST) field tracer experiment. The MUST experiments was conducted mostly in neutral and stable atmospheric conditions. The CFD model is coupled in adjoint mode with a recently proposed inversion technique, based on renormalization theory, for identifying a continuous point source release in an urban like environment of MUST field experiment. The estimated source strengths for selected trials from MUST field experiment were over-predicting from the true source release. However, in most of the trials, the source strength was estimated within a factor of two. With the real measurements from the selected trials in MUST field experiment, the source location were retrieved close to their true release locations. The study shows the effectiveness of the renormalization inversion technique to estimate the source parameters in an urban area and highlights the detection feasibility of unknown releases in an urban-like environment with use of a more sophisticated model.
Conductivity of continuum percolating systems
NASA Astrophysics Data System (ADS)
Stenull, Olaf; Janssen, Hans-Karl
2001-11-01
We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese model, where the conducting medium is the space between randomly placed spherical holes, near the percolation threshold. This model can be mapped onto a bond percolation model where the conductance σ of randomly occupied bonds is drawn from a probability distribution of the form σ-a. Employing the methods of renormalized field theory we show to arbitrary order in ɛ expansion that the critical conductivity exponent of the Swiss-cheese model is given by tSC(a)=(d-2)ν+max[φ,(1-a)-1], where d is the spatial dimension and ν and φ denote the critical exponents for the percolation correlation length and resistance, respectively. Our result confirms a conjecture that is based on the ``nodes, links, and blobs'' picture of percolation clusters.
Point source solutions and coupling parameters in cratering mechanics
NASA Technical Reports Server (NTRS)
Holsapple, K. A.; Schmidt, R. M.
1987-01-01
The use of a point source of an impactor energy and momentum to replace the effects of the impactor is examined. The general framework and notation of the impact cratering problems are described; it is determined that the cratering phenomena are governed by Froude, Cauchy, and Reynolds numbers. The coupling parameter concept is defined mathematically as the measure that governs limit point source solutions. Examples of cases where coupling parameters are used are presented. The relationships of the coupling parameter concept with steady flow and the Z-model of cratering of Maxwell (1973, 1977) are studied. Crater size, ejecta distributions, growth histories, time of formation, melt volume, and shock decay for various scale factors for impact cratering mechanics are calculated, and the applicability of the coupling parameter to the study of cratering mechanics is revealed.
NASA Astrophysics Data System (ADS)
Jha, Anjani K.
Particulate materials are routinely handled in large quantities by industries such as, agriculture, electronic, ceramic, chemical, cosmetic, fertilizer, food, nutraceutical, pharmaceutical, power, and powder metallurgy. These industries encounter segregation due to the difference in physical and mechanical properties of particulates. The general goal of this research was to study percolation segregation in multi-size and multi-component particulate mixtures, especially measurement, sampling, and modeling. A second generation primary segregation shear cell (PSSC-II), an industrial vibrator, a true cubical triaxial tester, and two samplers (triers) were used as primary test apparatuses for quantifying segregation and flowability; furthermore, to understand and propose strategies to mitigate segregation in particulates. Toward this end, percolation segregation in binary, ternary, and quaternary size mixtures for two particulate types: urea (spherical) and potash (angular) were studied. Three coarse size ranges 3,350-4,000 mum (mean size = 3,675 mum), 2,800-3,350 mum (3,075 mum), and 2,360-2,800 mum (2,580 mum) and three fines size ranges 2,000-2,360 mum (2,180 mum), 1,700-2,000 mum (1,850 mum), and 1,400-1,700 mum (1,550 mum) for angular-shaped and spherical-shaped were selected for tests. Since the fines size 1,550 mum of urea was not available in sufficient quantity; therefore, it was not included in tests. Percolation segregation in fertilizer bags was tested also at two vibration frequencies of 5 Hz and 7Hz. The segregation and flowability of binary mixtures of urea under three equilibrium relative humidities (40%, 50%, and 60%) were also tested. Furthermore, solid fertilizer sampling was performed to compare samples obtained from triers of opening widths 12.7 mm and 19.1 mm and to determine size segregation in blend fertilizers. Based on experimental results, the normalized segregation rate (NSR) of binary mixtures was dependent on size ratio, mixing ratio
Systematic identification of IRAS point sources
NASA Technical Reports Server (NTRS)
Savage, A.; Clowes, R. G.; Macgillivray, H. T.; Wolstencroft, R. D.; Leggett, S. K.; Puxley, P. J.
1987-01-01
A large scale program was initiated to identify IRAS point sources. At ROE the ideal facilities are at hand to undertake such a large program, viz. the rapid scanning capabilities of the COSMOS measuring machine to exploit the depth and resolution of the U.K. Schmidt Telescope J survey plates. Sources in 44 Schmidt plate areas were identified including 1300 sources and covering 1100 square degrees. The identification comprise 700 galaxy identifications and 600 stellar identifications. There are also about 40 sources with no obvious identification but which can be most easily explained by cirrus, confusion between two sources or sources just outside the 2 sigma error box. A major aim with the galaxy identification is to provide a data base from which sound statistical analyses can be made. Accurate blue magnitudes and morphological classifications for each identification were produced.
Percolation in sign-symmetric random fields: topological aspects and numerical modeling
Milovanov; Zimbardo
2000-07-01
The topology of percolation in random scalar fields psi(x) with sign symmetry [i.e., that the statistical properties of the functions psi(x) and -psi(x) are identical] is analyzed. Based on methods of general topology, we show that the zero set psi(x)=0 of the n-dimensional (n>/=2) sign-symmetric random field psi(x) contains a (connected) percolating subset under the condition |nablapsi(x)| not equal0 everywhere except in domains of negligible measure. The fractal geometry of percolation is analyzed in more detail in the particular case of the two-dimensional (n=2) fields psi(x). The improved Alexander-Orbach conjecture [Phys. Rev. E 56, 2437 (1997)] is applied analytically to obtain estimates of the main fractal characteristics of the percolating fractal sets generated by the horizontal "cuts," psi(x)=h, of the field psi(x). These characteristics are the Hausdorff fractal dimension of the set, D, and the index of connectivity, straight theta. We advocate an unconventional approach to studying the geometric properties of fractals, which involves methods of homotopic topology. It is shown that the index of connectivity, straight theta, of a fractal set is the topological invariant of this set, i.e., it remains unchanged under the homeomorphic deformations of the fractal. This issue is explicitly used in our study to find the Hausdorff fractal dimension of the single isolevels of the field psi(x), as well as the related geometric quantities. The results obtained are analyzed numerically in the particular case when the random field psi(x) is given by a fractional Brownian surface whose topological properties recover well the main assumptions of our consideration.
Wang, Yang; Weng, George J.; Meguid, Shaker A.; Hamouda, Abdel Magid
2014-05-21
A continuum model that possesses several desirable features of the electrical conduction process in carbon-nanotube (CNT) based nanocomposites is developed. Three basic elements are included: (i) percolation threshold, (ii) interface effects, and (iii) tunneling-assisted interfacial conductivity. We approach the first one through the selection of an effective medium theory. We approach the second one by the introduction of a diminishing layer of interface with an interfacial conductivity to build a 'thinly coated' CNT. The third one is introduced through the observation that interface conductivity can be enhanced by electron tunneling which in turn can be facilitated with the formation of CNT networks. We treat this last issue in a continuum fashion by taking the network formation as a statistical process that can be represented by Cauchy's probability density function. The outcome is a simple and yet widely useful model that can simultaneously capture all these fundamental characteristics. It is demonstrated that, without considering the interface effect, the predicted conductivity would be too high, and that, without accounting for the additional contribution from the tunneling-assisted interfacial conductivity, the predicted conductivity beyond the percolation threshold would be too low. It is with the consideration of all three elements that the theory can fully account for the experimentally measured data. We further use the developed model to demonstrate that, despite the anisotropy of the intrinsic CNT conductivity, it is its axial component along the CNT direction that dominates the overall conductivity. This theory is also proved that, even with a totally insulating matrix, it is still capable of delivering non-zero conductivity beyond the percolation threshold.
A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model
NASA Astrophysics Data System (ADS)
Duminil-Copin, Hugo; Tassion, Vincent
2016-04-01
We provide a new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. The proof applies to infinite-range models on arbitrary locally finite transitive infinite graphs. For Bernoulli percolation, we prove finiteness of the susceptibility in the subcritical regime {β < β_c}, and the mean-field lower bound {{P}_β[0longleftrightarrow infty ]ge (β-β_c)/β} for {β > β_c}. For finite-range models, we also prove that for any {β < β_c}, the probability of an open path from the origin to distance n decays exponentially fast in n. For the Ising model, we prove finiteness of the susceptibility for {β < β_c}, and the mean-field lower bound {< σ_0rangle_β^+ge sqrt{(β^2-β_c^2)/β^2}} for {β > β_c}. For finite-range models, we also prove that the two-point correlation functions decay exponentially fast in the distance for {β < β_c}.
NASA Astrophysics Data System (ADS)
Bautista, I.; Téllez, A. Fernandez; Ghosh, Premomoy
2015-10-01
We analyze high-multiplicity proton-proton (p p ) collision data in the framework of the string percolation model that has been successful in describing several phenomena of multiparticle production, including the signatures of recent discovery of strongly interacting partonic matter, the quark-gluon plasma, in relativistic heavy-ion collisions. Our study in terms of the ratio of shear viscosity and entropy density (η /s ) and the [Lattice Quantum Chromodinamics (LQCD)] predicted signature of QCD change of phase, in terms of the effective number of degrees of freedom (ɛ /T4), reiterates the possibility of a strongly interacting collective medium in these events.
NASA Astrophysics Data System (ADS)
Boadh, Rahul; Satyanarayana A. N., V.; Ramakrishna T. V. B. P., S.; Madala, Srikanth
2015-04-01
The deterioration of air quality may be attributed to the rapid industrialization, consequent urbanization and increased growth of vehicular traffic. In urban areas, the day to day increase in vehicular traffic has provided the impetus for comprehensive monitoring/modeling of air quality. In the present study, vehicular traffic as area sources and power plant as point source, the two major sources of oxides of nitrogen (NOX), was has considered. Gaussian plume air dispersion model, AERMOD is used for assessment of NOX dispersion over Nagpur city, Maharashtra. The processes within the planetary boundary layer (PBL) play an important role in the dispersion of air pollutants. AERMOD requires surface and upper air meteorological observations and various PBL parameters with good temporal resolution in the stand alone mode and mostly the data on PBL parameters is not available routinely over India. In the present study, an attempt has been made to simulate the necessary boundary layer parameters from WRF-ARW model and then offline coupled with AERMOD dispersion model. High resolution simulations with triple nested domain (horizontal resolution of 27, 9 and 3 km; 27 vertical levels) are carried out with WRF-ARW model. The surface and upper air meteorological data along with the computed PBL parameters of winter and pre-monsoon seasons representing January and April respectively in the year 2009 are considered for dispersion of the NOX over Nagpur. Experiments are conducted with two best PBL parameterization schemes over study region, non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) schemes. AERMOD with 1 km resolution has been used for predicting the concentrations of NOX over Nagpur city. NOX observations from six monitoring stations of Central Pollution Control Board are used for validation of model predicted concentrations. The NOX concentrations are found to have over-predicted in both seasons. Close examination of the computed statistical errors
NASA Astrophysics Data System (ADS)
Zhang, Renquan; Wei, Wei; Guo, Binghui; Zhang, Yang; Zheng, Zhiming
2013-03-01
Recently, the modified BFW model on random graphs [W. Chen, R.M. D’Souza, Phys. Rev. Lett. 106 (2011) 115701], which shows a discontinuous percolation transition with multiple giant components, has attracted much attention from physicists and statisticians. In this paper, by establishing the evolution equations on the modified BFW model, the evolution process and steady-states on both random graphs and finite-dimensional lattices are analyzed. On a random graph, by varying the edge accepted rate α, the system stabilizes in a steady-state with different numbers of giant components. Moreover, a close correspondence is built between the values of α and the number of giant components in steady-states, the efficiency of which is verified by the numerical simulations. Then, the sizes of giant components for different evolution strategies can be obtained by solving some constraints derived from the evolution equations. Meanwhile, a similar analysis is expanded to finite-dimensional lattices, and we find the BFW (α) model on a finite-dimensional lattice has different steady-states from those on a random graph, but they have the same evolution mechanism. The analysis of the evolution process and steady-state is of great help to explain the properties of discontinuous percolation and the role of nonlocality.
Dithering Strategies and Point-Source Photometry
Samsing, Johan; Kim, Alex G
2011-02-22
The accuracy in the photometry of a point source depends on the point-spread function (PSF), detector pixelization, and observing strategy. The PSF and pixel response describe the spatial blurring of the source, the pixel scale describes the spatial sampling of a single exposure, and the observing strategy determines the set of dithered exposures with pointing offsets from which the source flux is inferred. In a wide-field imaging survey, sources of interest are randomly distributed within the field of view and hence are centered randomly within a pixel. A given hardware configuration and observing strategy therefore have a distribution of photometric uncertainty for sources of fixed flux that fall in the field. In this article we explore the ensemble behavior of photometric and position accuracies for different PSFs, pixel scales, and dithering patterns. We find that the average uncertainty in the flux determination depends slightly on dither strategy, whereas the position determination can be strongly dependent on the dithering. For cases with pixels much larger than the PSF, the uncertainty distributions can be non-Gaussian, with rms values that are particularly sensitive to the dither strategy. We also find that for these configurations with large pixels, pointings dithered by a fractional pixel amount do not always give minimal average uncertainties; this is in contrast to image reconstruction for which fractional dithers are optimal. When fractional pixel dithering is favored, a pointing accuracy of better than {approx}0.15 {approx}0.15 pixel width is required to maintain half the advantage over random dithers.
NASA Astrophysics Data System (ADS)
Shida, Kazuhito; Sahara, Ryoji; Tripathi, Madhvendra; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki
2010-03-01
The percolation threshold shows a universality that may cause a strict limit on the mixture ratio of composite materials. When particles A and B are randomly filling a material and A must form an interconnected cluster (e.g. for electrical conduction), there is a strict limit on the fraction of A (for example, 0.598 in 2D). A solution to solve this problem is introducing size distribution on B particles (N.Lebovka J.Phys.D (2006) and WJ Kim J.Appl.Phys (1998)). However, theoretical understanding of this phenomenon is still in a quite immature stage despite of its importance in applications. We report the reduction of the percolation threshold observed in square lattices with a number of binary size distributions, as well as our approach toward semi-empirical theoretical method, that is based on an enumeration of local particle configurations generated in a totally random manner. This is a notable advance because most of previous theoretical methods were considering only limited combination of configurations, in which the positions of the B particles are not fully randomized.
Atmospheric Verification of Point Source Fossil Fuel CO2 Emissions
NASA Astrophysics Data System (ADS)
Turnbull, J. C.; Keller, E. D.; Norris, M. W.; Wiltshire, R.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.
2015-12-01
Large point sources (electricity generation and large-scale industry) make up roughly one third of all fossil fuel CO2 (CO2ff) emissions. Currently, these emissions are determined from self-reported inventory data, and sometimes from smokestack emissions monitoring, and the uncertainty in emissions from individual power plants is about 20%. We examine the utility of atmospheric 14C measurements combined with atmospheric transport modelling as a tool for independently quantifying point source CO2ff emissions, to both improve the accuracy of the reported emissions and for verification as we move towards a regulatory environment. We use the Kapuni Gas Treatment Facility as a test case. It is located in rural New Zealand with no other significant fossil fuel CO2 sources nearby, and emits CO2ff at ~0.1 Tg carbon per year. We use several different sampling methods to determine the 14C and hence the CO2ff content downwind of the emission source: grab flask samples of whole air; absorption of CO2 into sodium hydroxide integrated over many hours; and plant material which faithfully records the 14C content of assimilated CO2. We use a plume dispersion model to compare the reported emissions with our observed CO2ff mole fractions. We show that the short-term variability in plume dispersion makes it difficult to interpret the grab flask sample results, whereas the variability is averaged out in the integrated samples and we obtain excellent agreement between the reported and observed emissions, indicating that the 14C method can reliably be used to evaluated point source emissions.
Optimal percolation of disordered segregated composites.
Johner, Niklaus; Grimaldi, Claudio; Maeder, Thomas; Ryser, Peter
2009-02-01
We evaluate the percolation threshold values for a realistic model of continuum segregated systems, where random spherical inclusions forbid the percolating objects, modeled by hardcore spherical particles surrounded by penetrable shells, to occupy large regions inside the composite. We find that the percolation threshold is generally a nonmonotonous function of segregation, and that an optimal (i.e., minimum) critical concentration exists well before maximum segregation is reached. We interpret this feature as originating from a competition between reduced available volume effects and enhanced concentrations needed to ensure percolation in the highly segregated regime. The relevance with existing segregated materials is discussed.
Noise scaling in continuum percolating films
NASA Astrophysics Data System (ADS)
Garfunkel, G. A.; Weissman, M. B.
1985-07-01
Measurements of the scaling of 1/f noise magnitude versus resistance were made in metal films as the metal was removed by sandblasting. This procedure gives an approximate experimental realization of a Swiss-cheese continuum-percolation model, for which theory indicates some scaling properties very different from lattice percolation. The ratio of the resistance and noise exponents was in strong disagreement with lattice-percolation predictions and agreed approximately with simple continuum predictions.
Explosive Percolation Transition is Actually Continuous
NASA Astrophysics Data System (ADS)
da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.
2010-12-01
Recently a discontinuous percolation transition was reported in a new “explosive percolation” problem for irreversible systems [D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323, 1453 (2009)SCIEAS0036-807510.1126/science.1167782] in striking contrast to ordinary percolation. We consider a representative model which shows that the explosive percolation transition is actually a continuous, second order phase transition though with a uniquely small critical exponent of the percolation cluster size. We describe the unusual scaling properties of this transition and find its critical exponents and dimensions.
NASA Astrophysics Data System (ADS)
Pfeffer, Michael; Kumar, Praveen; Eibl, Oliver
2016-11-01
Resistive losses corresponding to the front-side metallization limit the efficiency of Si solar cells. At the front-side contact, the Si emitter is covered by a glass layer that is less than 1 μm thick embedded with Ag colloids to volume fraction >20%. Bulk Ag fingers are arranged on top of the glass layer. A similar microstructure is found for both n-type and p-type cells showing high efficiency. The Ag colloids constitute current filaments with reduced resistance in the glass layer, thereby introducing a percolative current which is the basis of the proposed model. This model is new and differs from the classical percolation model in its direct reliance on the macroscopic resistance of these filaments, and in considering the matrix as semiconducting rather than insulating. For periodically arranged Ag colloids of fixed diameter, the percolative limit of 13% in two dimensions (2D) and 15% in three dimensions (3D) depends only on the volume fraction of colloids but not their size. The resistance of randomly arranged and sized Ag colloids confirms the analytical results. The model explains quantitatively, consistent with microstructural analyses, why low contact resistances are found in solar cells with high colloid density. The introduced percolation model is also relevant for other systems in which metallic precipitates are found in a semiconducting matrix.
Tzevelekos; Kikkinides; Kainourgiakis; Stubos; Kanellopoulos; Kaselouri
2000-03-01
Flow of condensable vapors in mesoporous media is investigated theoretically and experimentally during adsorption and desorption processes. A typical permeability curve of a condensable vapor is strongly enhanced in the capillary condensation region. This is because additional capillary pressure gradients are imposed on the capillary-condensed pores, which act as "good" conductors compared to the noncondensed pores, which are considered "poor" conductors. The percolation scaling properties that hold for a system of "good" and "poor" conductors are confirmed for the cases examined. As the ratio of gas flow/capillary-enhanced flow decreases, the rise of permeability with pressure becomes sharper. The network connectivity has a strong impact on the maximum permeability value and on the width of the scaling law regions. The contribution of surface flow does not affect the permeability in the peak region, but results in a shrinkage of the scaling law regions. During desorption, a marked hysteresis in the permeability curves is found and it is attributed only to thermodynamic hysteresis. The maximum permeability values in this case are higher and shifted to lower relative pressures. Copyright 2000 Academic Press.
Distinguishing dark matter from unresolved point sources in the Inner Galaxy with photon statistics
Lee, Samuel K.; Lisanti, Mariangela; Safdi, Benjamin R. E-mail: mlisanti@princeton.edu
2015-05-01
Data from the Fermi Large Area Telescope suggests that there is an extended excess of GeV gamma-ray photons in the Inner Galaxy. Identifying potential astrophysical sources that contribute to this excess is an important step in verifying whether the signal originates from annihilating dark matter. In this paper, we focus on the potential contribution of unresolved point sources, such as millisecond pulsars (MSPs). We propose that the statistics of the photons—in particular, the flux probability density function (PDF) of the photon counts below the point-source detection threshold—can potentially distinguish between the dark-matter and point-source interpretations. We calculate the flux PDF via the method of generating functions for these two models of the excess. Working in the framework of Bayesian model comparison, we then demonstrate that the flux PDF can potentially provide evidence for an unresolved MSP-like point-source population.
Critical behavior of k -core percolation: Numerical studies
NASA Astrophysics Data System (ADS)
Lee, Deokjae; Jo, Minjae; Kahng, B.
2016-12-01
k -core percolation has served as a paradigmatic model of discontinuous percolation for a long time. Recently it was revealed that the order parameter of k -core percolation of random networks additionally exhibits critical behavior. Thus k -core percolation exhibits a hybrid phase transition. Unlike the critical behaviors of ordinary percolation that are well understood, those of hybrid percolation transitions have not been thoroughly understood yet. Here, we investigate the critical behavior of k -core percolation of Erdős-Rényi networks. We find numerically that the fluctuations of the order parameter and the mean avalanche size diverge in different ways. Thus, we classify the critical exponents into two types: those associated with the order parameter and those with finite avalanches. The conventional scaling relations hold within each set, however, these two critical exponents are coupled. Finally we discuss some universal features of the critical behaviors of k -core percolation and the cascade failure model on multiplex networks.
Inference of Unresolved Point Sources at High Galactic Latitudes Using Probabilistic Catalogs
NASA Astrophysics Data System (ADS)
Daylan, Tansu; Portillo, Stephen K. N.; Finkbeiner, Douglas P.
2017-04-01
The detection of point sources in images is a fundamental operation in astrophysics, and is crucial for constraining population models of the underlying point sources or characterizing the background emission. Standard techniques fall short in the crowded-field limit, losing sensitivity to faint sources and failing to track their covariance with close neighbors. We construct a Bayesian framework to perform inference of faint or overlapping point sources. The method involves probabilistic cataloging, where samples are taken from the posterior probability distribution of catalogs consistent with an observed photon count map. In order to validate our method, we sample random catalogs of the gamma-ray sky in the direction of the North Galactic Pole (NGP) by binning the data in energy and point-spread function classes. Using three energy bins spanning 0.3–1, 1–3, and 3–10 GeV, we identify {270}-10+30 point sources inside a 40^\\circ × 40^\\circ region around the NGP above our point-source inclusion limit of 3× {10}-11 cm‑2 s‑1 sr‑1 GeV‑1 at the 1–3 GeV energy bin. Modeling the flux distribution as a power law, we infer the slope to be -{1.92}-0.05+0.07 and estimate the contribution of point sources to the total emission as {18}-2+2%. These uncertainties in the flux distribution are fully marginalized over the number as well as the spatial and spectral properties of the unresolved point sources. This marginalization allows a robust test of whether the apparently isotropic emission in an image is due to unresolved point sources or of truly diffuse origin.
Invasion Percolation and Global Optimization
NASA Astrophysics Data System (ADS)
Barabási, Albert-László
1996-05-01
Invasion bond percolation (IBP) is mapped exactly into Prim's algorithm for finding the shortest spanning tree of a weighted random graph. Exploring this mapping, which is valid for arbitrary dimensions and lattices, we introduce a new IBP model that belongs to the same universality class as IBP and generates the minimal energy tree spanning the IBP cluster.
Inference of Dim Gamma-Ray Point Sources Using Probabilistic Catalogues
NASA Astrophysics Data System (ADS)
Daylan, Tansu; Portillo, Stephen K. N.; Finkbeiner, Douglas P.
2016-07-01
Poisson regression of the Fermi-LAT data in the inner Milky Way reveals an extended gamma-ray excess. The anomalous emission falls steeply away from the galactic center and has an energy spectrum that peaks at 1-2 GeV. An important question is whether the signal is coming from a collection of unresolved point sources, possibly recycled pulsars, or constitutes a truly diffuse emission component. Previous analyses have relied on non-Poissonian template fits or wavelet decomposition of the Fermi-LAT data, which find evidence for a population of dim point sources just below the 3FGL flux limit. In order to draw conclusions about a potentially dim population, we propose to sample from the catalog space of point sources, where the model dimensionality, i.e., the number of sources, is unknown. Although being a computationally expensive sampling problem, this approach allows us to infer the number, flux and radial distribution of the point sources consistent with the observed count data. Probabilistic cataloging is specifically useful in the crowded field limit, such as in the galactic disk, where the typical separation between point sources is comparable to the PSF. Using this approach, we recover the results of the deterministic Fermi-LAT 3FGL catalog, as well as sub-detection threshold information and fold the point source parameter degeneracies into the model-choice problem of whether an emission is coming from unresolved MSPs or dark matter annihilation.
Transport characteristics of aerosol from urban point sources
NASA Astrophysics Data System (ADS)
Kunkel, Daniel; Lawrence, Mark G.; Kerkweg, Astrid; Tost, Holger; Jöckel, Patrick; Borrmann, Stephan
2010-05-01
Urban aerosols are an important source of regional and global air pollution. The local buildup, long-range transport, and dry and wet deposition of aerosols depend strongly on the aerosol size distribution and on the regional meteorological characteristics. We examine the characteristics of urban aerosol dispersion based on simulations of monodisperse passive aerosol tracers with sizes of 0.1, 1.0, 2.5, and 10.0 μm, performed with the global chemistry circulation model EMAC (ECHAM5-MESSy-Atmospheric-Chemistry). 39 point sources were selected for the analysis, originating from major population centers (MPCs) around the world. All tracers, one for each source and size, have the same total, constant emission flux, and undergo dry and wet aerosol deposition. Sensitivity simulations are performed in which either there is no activation of the aerosol as cloud condensation nuclei (CCN), or all aerosol is activated as CCN. Using the same constant emission rate for each MPC allows us to compare how different large point sources pollute the atmosphere and the surface on different horizontal scales. The transport and deposition of the aerosol tracers from each MPC are quantitatively compared by the application of metrics. The analysis focuses on: the efficiency of short- and long-range horizontal transport; the fraction of tracer transported to the upper troposphere; and the fractions which are dry or wet deposited. Smaller particles with longer lifetimes (two to 14 days) are more effective at polluting remote locations (horizontal and vertical) and are deposited mostly by scavenging, while larger particles, with shorter lifetimes (several hours to a couple of days) more effectively pollute the environment nearby their source, and are most strongly removed by dry deposition from the atmosphere. By means of considering the same emission for each city, the presentation provides a detailed view of how aerosol tracers disperse and deposit on different spatial scales, depending
Emergence of coexisting percolating clusters in networks
NASA Astrophysics Data System (ADS)
Faqeeh, Ali; Melnik, Sergey; Colomer-de-Simón, Pol; Gleeson, James P.
2016-06-01
It is commonly assumed in percolation theories that at most one percolating cluster can exist in a network. We show that several coexisting percolating clusters (CPCs) can emerge in networks due to limited mixing, i.e., a finite and sufficiently small number of interlinks between network modules. We develop an approach called modular message passing (MMP) to describe and verify these observations. We demonstrate that the appearance of CPCs is an important source of inaccuracy in previously introduced percolation theories, such as the message passing (MP) approach, which is a state-of-the-art theory based on the belief propagation method. Moreover, we show that the MMP theory improves significantly over the predictions of MP for percolation on synthetic networks with limited mixing and also on several real-world networks. These findings have important implications for understanding the robustness of networks and in quantifying epidemic outbreaks in the susceptible-infected-recovered (SIR) model of disease spread.
NASA Astrophysics Data System (ADS)
Sasaki, Akira; Kato, Susumu; Takahashii, Eiichi; Kishimoto, Yasuaki; Fujii, Takashi; Kanazawa, Seiji
2016-02-01
We show a cell simulation of a discharge in an insulating gas from the initial partial discharge to leader inception until breakdown, based on the percolation model. In the model, we consider that the propagation of the leader occurs when connections between randomly produced ionized regions in the discharge medium are established. To determine the distribution of ionized regions, the state of each simulation cell is decided by evaluating the probability of ionization in SF6, which depends on the local electric field. The electric field as well as the discharge current are calculated by solving circuit equations for the network of simulation cells. Both calculations are coupled to each other and the temporal evolution of discharge is self-consistently calculated. The model dependence of the features of the discharge is investigated. It is found that taking the suppression of attachment in the presence of a discharge current into account, the calculation reproduces the behavior of experimental discharges. It is shown that for a strong electric field, the inception of a stepped leader causes immediate breakdown. For an electric field of 30-50% of the critical field, the initial partial discharge persists for a stochastic time lag and then the propagation of a leader takes place. As the strength of the electric field decreases, the time lag increases rapidly and eventually only a partial discharge with a short arrested leader occurs, as observed in experiments.
Alternative approach to percolation in microemulsions
Skaf, M.S.; Stell, G. )
1992-09-15
An approach to study correlated percolation in lattice models of microemulsions is presented. Mean-field-like equations for the percolation locus for each of the molecular species are obtained, whose only input are the structure functions of the microemulsion model. Using a spin-1 Hamiltonian considered by Gompper and Schick (Phys. Rev. B 41, 9148 (1990)) as a model for microemulsions, we find that the water-percolation threshold increases as the surfactant becomes more lipophilic. This is in qualitative agreement with the behavior found in real microemulsions as salt is added to the system.
Watersheds and Explosive percolation
NASA Astrophysics Data System (ADS)
Herrmann, Hans J.; Araujo, Nuno A. M.
The recent work by Achlioptas, D'Souza, and Spencer opened up the possibility of obtaining a discontinuous (explosive) percolation transition by changing the stochastic rule of bond occupation. Despite the active research on this subject, several questions still remain open about the leading mechanism and the properties of the system. We review the largest cluster and the Gaussian models recently introduced. We show that, to obtain a discontinuous transition it is solely necessary to control the size of the largest cluster, suppressing the growth of a cluster di_ering significantly, in size, from the average one. As expected for a discontinuous transition, a Gaussian cluster-size distribution and compact clusters are obtained. The surface of the clusters is fractal, with the same fractal dimension of the watershed line.
NASA Astrophysics Data System (ADS)
Scala, Antonio
2015-03-01
We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. Self-healing is a crucial in implementing the next generation of smart grids allowing to ensure a high quality of service to the users. We then map our self-healing procedure in a percolation problem and analyse the interplay between redundancies and topology in improving the resilience of networked infrastructures to multiple failures. We find exact results both for planar lattices and for random lattices, hinting the role of duality in the design of resilient networks. Finally, we introduce a cavity method approach to study the recovery of connectivity after damage in self-healing networks. CNR-PNR National Project ``Crisis-Lab,'' EU HOME/2013/CIPS/AG/4000005013 project CI2C and EU FET project MULTIPLEX nr.317532.
Scattering of point source illumination by an arbitrary configuration
NASA Technical Reports Server (NTRS)
Solakiewicz, Richard
1994-01-01
The problem of electromagnetic scattering of an incident plane wave by an arbitrary configuration of obstacles was solved by Twersky. In this report, the results are extended to point source incidence corresponding to a Hertz dipole. Knowledge of the response of a fixed configuration of scatterers excited by a point source may provide insight to improve the accuracy of the values of bulk parameters for clouds which have been found using plane wave excitation.
NASA Astrophysics Data System (ADS)
Tang, Y. B.; Li, M.; Bernabe, Y.
2014-12-01
We modeled the electrical transport behavior of dual-pore carbonate rocks in this paper. Based on experimental data of a carbonate reservoir in China, we simply considered the low porosity samples equivalent to the matrix (micro-pore system) of the high porosity samples. For modeling the bimodal porous media, we considered that the matrix is homogeneous and interconnected. The connectivity and the pore size distribution of macro-pore system are varied randomly. Both pore systems are supposed to act electrically in parallel, connected at the nodes, where the fluid exchange takes place, an approach previously used by Bauer et al. (2012). Then, the effect of the properties of matrix, the pore size distribution and connectivity of macro-pore system on petrophysical properties of carbonates can be investigated. We simulated electrical current through networks in three-dimensional simple cubic (SC) and body-center cubic (BCC) with different coordination numbers and different pipe radius distributions of macro-pore system. Based on the simulation results, we found that the formation factor obeys a "universal" scaling relationship (i.e. independent of lattice type), 1/F∝eγz, where γ is a function of the normalized standard deviation of the pore radius distribution of macro-pore system and z is the coordination number of macro-pore system. This relationship is different from the classic "universal power law" in percolation theory. A formation factor model was inferred on the basis of the scaling relationship mentioned above and several scale-invariant quantities (such as hydraulic radius rH and throat length l of macro-pore). Several methods were developed to estimate corresponding parameters of the new model with conventional core analyses. It was satisfactorily tested against experimental data, including some published experimental data. Furthermore, the relationship between water saturation and resistivity in dual-pore carbonates was discussed based on the new model.
Coalescence and percolation in thin metal films
NASA Astrophysics Data System (ADS)
Yu, X.; Duxbury, P. M.; Jeffers, G.; Dubson, M. A.
1991-12-01
Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates (pc) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-pc's arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius Rc, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.
Chandra Spectra of the Cassiopeia A Point Source
NASA Astrophysics Data System (ADS)
Stage, Michael D.; Joss, Paul C.
2001-09-01
We present the first Chandra High Energy Transmission Grating (HETG) spectra of the X-ray point source (XPS) at the center of the Cassiopeia A supernova remnant, using our recent HETGS observation of Cas A (Obsid 1046), as well as spectra extracted from the long duration archival 50 ksec ACIS-S3 observation (Obsid 114). Discovered in the Chandra first light image, the flux and spectrum of XPS strongly indicate that it is associated with the remnant, but it has been difficult to classify the point source unambiguously. The assertion that the XPS is a weakly magnetized neutron star (B <= 1010 G) radiating primarily via thermal emission is supported by the recent discovery of weak X-ray pulsations with a 13 ms period (H. Tananbaum, talk presented at 198th Mtg. AAS). Such a source is an ideal candidate to fit with our new theoretical atmosphere models (Joss, Madej, and Stage, these proceedings). Early data fit well to a variety of spectral forms, including power laws, model neutron star atmospheres, pure blackbody, and thermal bremsstrahlung (Chakrabarty et al., ApJ 548: 800; Pavlov et al., ApJ 531: L53). With our longer duration and higher resolution observations, we have greater ability to discriminate among the possible spectral models. We have previously carried out model atmosphere fits to a spectrum extracted from the archival 50 ksec observation. Our results yielded effective temperatures (kTeff ~= 0.2 keV) and radii (Reff ~= 2 km) that are comparable to those obtained in earlier fits to neutron-star model atmospheres (Chakrabarty et. al.). The lack of detection of radio pulsations or of a synchrotron nebula from the location of the XPS (McLaughlin et al., ApJ 547: L41) suggests that the XPS is not a classical young pulsar, a result with which we agree. The quality of our model atmosphere fits is superior to those we obtained using simple power law or blackbody models. Furthermore, recent upper limits on the emission from the XPS at near infrared and optical
Liu, Jie; Regenauer-Lieb, Klaus
2011-01-01
Percolation theory provides a tool for linking microstructure and macroscopic material properties. In this paper, percolation theory is applied to the analysis of microtomographic images for the purpose of deriving scaling laws for upscaling of properties. We have tested the acquisition of quantities such as percolation threshold, crossover length, fractal dimension, and critical exponent of correlation length from microtomography. By inflating or deflating the target phase and percolation analysis, we can get a critical model and an estimation of the percolation threshold. The crossover length is determined from the critical model by numerical simulation. The fractal dimension can be obtained either from the critical model or from the relative size distribution of clusters. Local probabilities of percolation are used to extract the critical exponent of the correlation length. For near-isotropic samples such as sandstone and bread, the approach works very well. For strongly anisotropic samples, such as highly deformed rock (mylonite) and a tree branch, the percolation threshold and fractal dimension can be assessed with accuracy. However, the uncertainty of the correlation length makes it difficult to accurately extract its critical exponents. Therefore, this aspect of percolation theory cannot be reliably used for upscaling properties of strongly anisotropic media. Other methods of upscaling have to be used for such media.
NASA Astrophysics Data System (ADS)
Nagasaka, Yosuke; Nozu, Atsushi
2017-02-01
The pseudo point-source model approximates the rupture process on faults with multiple point sources for simulating strong ground motions. A simulation with this point-source model is conducted by combining a simple source spectrum following the omega-square model with a path spectrum, an empirical site amplification factor, and phase characteristics. Realistic waveforms can be synthesized using the empirical site amplification factor and phase models even though the source model is simple. The Kumamoto earthquake occurred on April 16, 2016, with M JMA 7.3. Many strong motions were recorded at stations around the source region. Some records were considered to be affected by the rupture directivity effect. This earthquake was suitable for investigating the applicability of the pseudo point-source model, the current version of which does not consider the rupture directivity effect. Three subevents (point sources) were located on the fault plane, and the parameters of the simulation were determined. The simulated results were compared with the observed records at K-NET and KiK-net stations. It was found that the synthetic Fourier spectra and velocity waveforms generally explained the characteristics of the observed records, except for underestimation in the low frequency range. Troughs in the observed Fourier spectra were also well reproduced by placing multiple subevents near the hypocenter. The underestimation is presumably due to the following two reasons. The first is that the pseudo point-source model targets subevents that generate strong ground motions and does not consider the shallow large slip. The second reason is that the current version of the pseudo point-source model does not consider the rupture directivity effect. Consequently, strong pulses were not reproduced enough at stations northeast of Subevent 3 such as KMM004, where the effect of rupture directivity was significant, while the amplitude was well reproduced at most of the other stations. This
Reversible first-order transition in Pauli percolation
NASA Astrophysics Data System (ADS)
Maksymenko, Mykola; Moessner, Roderich; Shtengel, Kirill
2015-06-01
Percolation plays an important role in fields and phenomena as diverse as the study of social networks, the dynamics of epidemics, the robustness of electricity grids, conduction in disordered media, and geometric properties in statistical physics. We analyze a new percolation problem in which the first-order nature of an equilibrium percolation transition can be established analytically and verified numerically. The rules for this site percolation model are physical and very simple, requiring only the introduction of a weight W (n )=n +1 for a cluster of size n . This establishes that a discontinuous percolation transition can occur with qualitatively more local interactions than in all currently considered examples of explosive percolation; and that, unlike these, it can be reversible. This greatly extends both the applicability of such percolation models in principle and their reach in practice.
The power spectrum of the Point Source Catalogue redshift survey
NASA Astrophysics Data System (ADS)
Sutherland, W.; Tadros, H.; Efstathiou, G.; Frenk, C. S.; Keeble, O.; Maddox, S.; McMahon, R. G.; Oliver, S.; Rowan-Robinson, M.; Saunders, W.; White, S. D. M.
1999-09-01
We measure the redshift-space power spectrum P(k) for the recently completed IRAS Point Source Catalogue (PSC) redshift survey, which contains 14 500 galaxies over 84 per cent of the sky with 60-μm flux >=0.6 Jy. Comparison with simulations shows that our estimated errors on P(k) are realistic, and that systematic errors resulting from the finite survey volume are small for wavenumbers k >~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between those of the earlier QDOT and 1.2-Jy surveys, but with considerably smaller error bars; it falls slightly more steeply to smaller scales. We have fitted families of CDM-like models using the Peacock-Dodds formula for non-linear evolution; the results are somewhat sensitive to the assumed small-scale velocity dispersion σ_V. Assuming a realistic σ_V ~ 300 km s^-1 yields a shape parameter Γ ~ 0.25 and normalization bσ_8 ~ 0.75; if σ_V is as high as 600 km s^-1 then Γ = 0.5 is only marginally excluded. There is little evidence for any `preferred scale' in the power spectrum or non-Gaussian behaviour in the distribution of large-scale power.
NASA Astrophysics Data System (ADS)
Zadneprovski, B. I.; Klyuev, I. Yu.; Turkov, V. E.
2016-08-01
We have studied the electric conductivity of composites with various carbonaceous fillers (multiwalled carbon nanotubes, colloidal graphite, and amorphous carbon) as a function of the filler content. The widths of critical regions of the percolation transition to the conducting state are determined and the percolation critical exponents are estimated. It is established that there is a tendency to increase in the width of transition region and values of critical exponents when the filler is varied in the following order: carbon nanotubes-colloidal graphite-amorphous carbon.
NASA Astrophysics Data System (ADS)
Wehrer, Markus; Lissner, Heidi; Totsche, Kai
2013-04-01
A quantitative knowledge of the fate of deicing chemicals in the subsurface can be provided by analysis of laboratory and field experiments with numerical simulation models. In the present study, experimental data of microbial degradation of the deicing chemical propylene glycol (PG) under flow conditions in soil columns and field lysimeters were simulated to analyze the process conditions of degradation and to obtain the according parameters. Results from the column experiment were evaluated applying different scenarios of an advection-dispersion model using HYDRUS-1D. To reconstruct the data, different competing degradation models were included, i.e., zero order, first order and inclusion of a growing and decaying biomass. The general breakthrough behavior of propylene glycol in soil columns can be simulated well using a coupled model of solute transport and degradation with growth and decay of biomass. The susceptibility of the model to non-unique solutions was investigated using systematical forward and inverse simulations. We found that the model tends to equifinal solutions under certain conditions. Complex experimental boundary conditions can help to avoid this. Under field conditions, the situation is far more complex than in the laboratory. Studying the fate of PG with undisturbed lysimeters we found that aerobic and anaerobic degradation occurs simultaneously. We attribute this to the physical structure and the aggregated nature of the undisturbed soil material . This results in the presence of spatially disjoint oxidative and reductive regions of microbial activity and requires, but is not fully reflected by a dual porosity model. Currently, the numerical simulation of this system is in progress, considering several flow and transport models. A stochastic global search algorithm (DREAM-ZS) is used in conjuction with HYDRUS-1D to avoid local minima in the inverse simulations. The study shows the current limitations and potentials of modeling degradation
A guide to differences between stochastic point-source and stochastic finite-fault simulations
Atkinson, G.M.; Assatourians, K.; Boore, D.M.; Campbell, K.; Motazedian, D.
2009-01-01
Why do stochastic point-source and finite-fault simulation models not agree on the predicted ground motions for moderate earthquakes at large distances? This question was posed by Ken Campbell, who attempted to reproduce the Atkinson and Boore (2006) ground-motion prediction equations for eastern North America using the stochastic point-source program SMSIM (Boore, 2005) in place of the finite-source stochastic program EXSIM (Motazedian and Atkinson, 2005) that was used by Atkinson and Boore (2006) in their model. His comparisons suggested that a higher stress drop is needed in the context of SMSIM to produce an average match, at larger distances, with the model predictions of Atkinson and Boore (2006) based on EXSIM; this is so even for moderate magnitudes, which should be well-represented by a point-source model. Why? The answer to this question is rooted in significant differences between point-source and finite-source stochastic simulation methodologies, specifically as implemented in SMSIM (Boore, 2005) and EXSIM (Motazedian and Atkinson, 2005) to date. Point-source and finite-fault methodologies differ in general in several important ways: (1) the geometry of the source; (2) the definition and application of duration; and (3) the normalization of finite-source subsource summations. Furthermore, the specific implementation of the methods may differ in their details. The purpose of this article is to provide a brief overview of these differences, their origins, and implications. This sets the stage for a more detailed companion article, "Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM," in which Boore (2009) provides modifications and improvements in the implementations of both programs that narrow the gap and result in closer agreement. These issues are important because both SMSIM and EXSIM have been widely used in the development of ground-motion prediction equations and in modeling the parameters that control
[Mathematical simulation of point source average infiltration depth under film hole irrigation].
Sun, Xiu-Juan; Ma, Xiao-Yi; Liu, Ji-Long; Zhan, Guo-Long
2010-03-01
By using RETC and SWMS-3D software, the point source infiltration characteristics of several typical soils under film hole irrigation were simulated, with the infiltration characteristics and related affecting factors analyzed. One simplified point source infiltration model with the parameters opening film hole rate, film hole diameter, soil clay particle content, and soil bulk density was established, and tested by infiltration experiments with the typical soils from Loess Plateau. It was shown that the infiltration coefficient under film hole irrigation increased with increasing opening film hole rate and decreased with increasing film hole diameter and soil clay particle content, while the infiltration index decreased with increasing opening film hole rate and soil clay particle content. This model could simply and accurately reflect the point source infiltration characteristics under film hole irrigation, and credibly determine the infiltration coefficient and index.
The topology of the IRAS Point Source Catalogue Redshift Survey
NASA Astrophysics Data System (ADS)
Canavezes, A.; Springel, V.; Oliver, S. J.; Rowan-Robinson, M.; Keeble, O.; White, S. D. M.; Saunders, W.; Efstathiou, G.; Frenk, C. S.; McMahon, R. G.; Maddox, S.; Sutherland, W.; Tadros, H.
1998-07-01
We investigate the topology of the new Point Source Catalogue Redshift Survey (PSCz) of IRAS galaxies by means of the genus statistic. The survey maps the local Universe with approximately 15 000 galaxies over 84.1 per cent of the sky, and provides an unprecedented number of resolution elements for the topological analysis. For comparison with the PSCz data we also examine the genus of large N-body simulations of four variants of the cold dark matter (CDM) cosmogony. The simulations are part of the Virgo project to simulate the formation of structure in the Universe. We assume that the statistical properties of the galaxy distribution can be identified with those of the dark matter particles in the simulations. We extend the standard genus analysis by examining the influence of sampling noise on the genus curve and introducing a statistic able to quantify the amount of phase correlation present in the density field, the amplitude drop of the genus compared to a Gaussian field with identical power spectrum. The results for PSCz are consistent with the hypothesis of random-phase initial conditions. In particular, no strong phase correlation is detected on scales ranging from 10 to 32 h^-1 Mpc, whereas there is a positive detection of phase correlation at smaller scales. Among the simulations, phase correlations are detected in all models at small scales, albeit with different strengths. When scaled to a common normalization, the amplitude drop depends primarily on the shape of the power spectrum. We find that the constant-bias standard CDM model can be ruled out at high significance, because the shape of its power spectrum is not consistent with PSCz. The other CDM models with more large-scale power all fit the PSCz data almost equally well, with a slight preference for a high-density tauCDM model.
Bak-Tang-Wiesenfeld model on the square site-percolation lattice
NASA Astrophysics Data System (ADS)
Najafi, M. N.
2016-08-01
The Bak-Tang-Wiesenfeld (BTW) model is considered on the site-diluted square lattice, tuned by the occupancy probability p. Various statistical observables of the avalanches are analyzed in terms of p, e.g. the fractal dimension of their exterior frontiers, gyration radius, loop lengths and Green’s function. The model exhibits critical behavior for all amounts of p, and the exponents of the statistical observables are analyzed. We find a distinct universality class at p={p}c, which is unstable towards a p = 1 (BTW) fixed point. This universality class displays some common features such as a two-dimensional (2D) Ising universality class, e.g. the fractal dimension of loops in the thermodynamic limit is {D}Fp={pc}=1.38\\mp 0.01 which is compatible with the fractal dimension of geometrical spin clusters of the 2D critical Ising model (with {D}F{{Ising}}=\\tfrac{11}{8}).
NASA Astrophysics Data System (ADS)
Hair, Thomas W.; Hedman, Andrew D.
2013-01-01
A model of the spatial emergence of an interstellar civilization into a uniform distribution of habitable systems is presented. The process of emigration is modelled as a three-dimensional probabilistic cellular automaton. An algorithm is presented which defines both the daughter colonies of the original seed vertex and all subsequent connected vertices, and the probability of a connection between any two vertices. The automaton is analysed over a wide set of parameters for iterations that represent up to 250 000 years within the model's assumptions. Emigration patterns are characterized and used to evaluate two hypotheses that aim to explain the Fermi Paradox. The first hypothesis states that interstellar emigration takes too long for any civilization to have yet come within a detectable distance, and the second states that large volumes of habitable space may be left uninhabited by an interstellar civilization and Earth is located in one of these voids.
Quantum entanglement percolation
NASA Astrophysics Data System (ADS)
Siomau, Michael
2016-09-01
Quantum communication demands efficient distribution of quantum entanglement across a network of connected partners. The search for efficient strategies for the entanglement distribution may be based on percolation theory, which describes evolution of network connectivity with respect to some network parameters. In this framework, the probability to establish perfect entanglement between two remote partners decays exponentially with the distance between them before the percolation transition point, which unambiguously defines percolation properties of any classical network or lattice. Here we introduce quantum networks created with local operations and classical communication, which exhibit non-classical percolation transition points leading to striking communication advantages over those offered by the corresponding classical networks. We show, in particular, how to establish perfect entanglement between any two nodes in the simplest possible network—the 1D chain—using imperfectly entangled pairs of qubits.
Scaling percolation in thin porous layers
NASA Astrophysics Data System (ADS)
Médici, E. F.; Allen, J. S.
2011-12-01
Percolation in porous media is a complex process that depends on the flow rate, material, and fluids properties as well as the boundary conditions. Traditional methods of characterizing percolation rely upon visual observation of a flow pattern or a pressure-saturation relation valid only in the limit of no flow. In this paper, the dynamics of fluid percolation in thin porous media is approached through a new scaling. This new scaling in conjunction with the capillary number and the viscosity ratio has resulted in a linear non-dimensional correlation of the percolation pressure and wetted area in time unique to each porous media. The effect of different percolation flow patterns on the dynamic pressure-saturation relation can be condensed into a linear correlation using this scaling. The general trend and implications of the scaling have been analyzed using an analytical model of a fluid percolating between two parallel plates and by experimental testing on thin porous media. Cathode porous transport layers (PTLs), also known as gas diffusion layers, of a proton exchange membrane (PEM) fuel cell having different morphological and wetting properties were tested under drainage conditions. Images of the fluid percolation evolution and the percolation pressure in the PTLs were simultaneously recorded. A unique linear correlation is obtained for each type of PTL samples using the new scaling. The correlation derived from this new scaling can be used to quantitatively characterize porous media with respect to percolation. While the characterization method discussed herein was developed for the study of porous materials used in PEM fuel cells, the method and scaling are applicable to any porous media.
Atmospheric measurement of point source fossil CO2 emissions
NASA Astrophysics Data System (ADS)
Turnbull, J. C.; Keller, E. D.; Baisden, T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.
2014-05-01
We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m above ground level. We also determined the surface CO2ff content averaged over several weeks from the 14C content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~ one week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14C sampling strategies.
Atmospheric measurement of point source fossil fuel CO2 emissions
NASA Astrophysics Data System (ADS)
Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.
2013-11-01
We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.
First Passage Percolation on the Newman-Watts Small World Model
NASA Astrophysics Data System (ADS)
Komjáthy, Júlia; Vadon, Viktória
2016-02-01
The Newman-Watts model is given by taking a cycle graph of n vertices and then adding each possible edge (i,j), |i-j|≠ 1 mod n with probability ρ /n for some ρ >0 constant. In this paper we add i.i.d. exponential edge weights to this graph, and investigate typical distances in the corresponding random metric space given by the least weight paths between vertices. We show that typical distances grow as 1/λ log n for a λ >0 and determine the distribution of smaller order terms in terms of limits of branching process random variables. We prove that the number of edges along the shortest weight path follows a Central Limit Theorem, and show that in a corresponding epidemic spread model the fraction of infected vertices follows a deterministic curve with a random shift.
NASA Astrophysics Data System (ADS)
Seiffert, Franz; Bandow, Nicole; Kalbe, Ute; Milke, Ralf; Gorbushina, Anna
2016-04-01
Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i) the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.
The Working of Circuit Breakers Within Percolation Models for Financial Markets
NASA Astrophysics Data System (ADS)
Ehrenstein, Gudrun; Westerhoff, Frank
We use a modified Cont-Bouchaud model to explore the effectiveness of trading breaks. The modifications include that the trading activity of the market participants depends positively on historical volatility and that the orders of the agents are conditioned on the observed mispricing. Trading breaks, also called circuit breakers, interrupt the trading process when prices are about to exceed a pre-specified limit. We find that trading breaks are a useful instrument to stabilize financial markets. In particular, trading breaks may reduce price volatility and deviations from fundamentals.
Percolation transitions with nonlocal constraint.
Shim, Pyoung-Seop; Lee, Hyun Keun; Noh, Jae Dong
2012-09-01
We investigate percolation transitions in a nonlocal network model numerically. In this model, each node has an exclusive partner and a link is forbidden between two nodes whose r-neighbors share any exclusive pair. The r-neighbor of a node x is defined as a set of at most N(r) neighbors of x, where N is the total number of nodes. The parameter r controls the strength of a nonlocal effect. The system is found to undergo a percolation transition belonging to the mean-field universality class for r<1/2. On the other hand, for r>1/2, the system undergoes a peculiar phase transition from a nonpercolating phase to a quasicritical phase where the largest cluster size G scales as G~N(α) with α=0.74(1). In the marginal case with r=1/2, the model displays a percolation transition that does not belong to the mean-field universality class.
Connecting the vulcanization transition to percolation.
Peng, W; Goldbart, P M; McKane, A J
2001-09-01
The vulcanization transition is addressed via a minimal replica-field-theoretic model. The appropriate long-wavelength behavior of the two- and three-point vertex functions is considered diagrammatically, to all orders in perturbation theory, and identified with the corresponding quantities in the Houghton-Reeve-Wallace field-theoretic approach to the percolation critical phenomenon. Hence, it is shown that percolation theory correctly captures the critical phenomenology of the vulcanization transition associated with the liquid and critical states.
POWER-LAW TEMPLATE FOR INFRARED POINT-SOURCE CLUSTERING
Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Das, Sudeep; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T.; Viero, Marco; Bond, J. Richard; Devlin, Mark J.; Reese, Erik D.; Halpern, Mark; Scott, Douglas; Hlozek, Renee; Marriage, Tobias A.; Spergel, David N.; Moodley, Kavilan; Wollack, Edward
2012-06-20
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 {approx}< l {approx}< 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 {mu}m; 1000 {approx}< l {approx}< 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C{sup clust}{sub l}{proportional_to}l{sup -n} with n = 1.25 {+-} 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, {nu}{sup {beta}} B({nu}, T{sub eff}), with a single emissivity index {beta} = 2.20 {+-} 0.07 and effective temperature T{sub eff} = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be {alpha}{sub 150-220} = 3.68 {+-} 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
Power-Law Template for IR Point Source Clustering
NASA Technical Reports Server (NTRS)
Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; Marriage, Tobias A.; Moodley, Kavilan; Page, Lyman A.; Reese, Erik D.; Scott, Douglass; Spergel, David N.; Staggs,Suzanne T.; Wollack, Edward
2011-01-01
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 < I < 2200), the Balloonborne Large-Aperture Submillimeter Telescope (BLAST; 250, 350 and 500 microns; 1000 < I < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
Power-Law Template for Infrared Point-Source Clustering
NASA Technical Reports Server (NTRS)
Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee; Marriage, Tobias A.; Moodley, Kavilan; Page, Lyman A.; Reese, Erik D.; Scott, Douglas; Spergel, David N.; Staggs, Suzanne T.; Wollack, Edward
2012-01-01
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx < l approx < 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 micron; 1000 approx < l approx < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
Radio Point Sources Toward Galaxy Clusters at 30 GHz
NASA Technical Reports Server (NTRS)
Coble, K.; Carlstrom, J. E.; Bonamente, M.; Dawson, K.; Holzapfel, W.; Joy, M.; LaRoque, S.; Reese, E. D.
2006-01-01
Extra-galactic point sources are a significant contaminant in cosmic microwave background and Sunyaev-Zel'dovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio point sources toward galaxy clusters at 28.5 GHz. We compute counts of mJy point source fluxes from 90 fields centered on known massive galaxy clusters and 8 non-cluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We also compute counts towards clusters as a function of luminosity in three redshift bins out to z = 1.0 and see no clear evidence for evolution with redshift. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz. The distribution is skewed, with a median spectral index of 0.76 and 25th and 75th percentiles of 0.55 and 0.95, respectively. This is steeper than the spectral indices of brighter field point sources measured by other surveys.
TMDLS: AFTER POINT SOURCES, WHAT CAN WE DO NEXT?
Section 303(d) of the Clean Water Act required TMDLs (total maximum daily loads) for all waters for which effluent or point source limitations are insufficient to meet water quality standards. Concerns may arise regarding the manner by which TMDLs are established, the corrective ...
Estimation of viable airborne microbes downwind from a point source.
Lighthart, B; Frisch, A S
1976-01-01
Modification of the Pasquill atmospheric diffusion equations for estimating viable microbial airborne cell concentrations downwind form a continuous point source is presented. A graphical method is given to estimate the ground level cell concentration given (i) microbial death rate, (ii) mean wind speed, (iii) atmospheric stability class, (iv) downwind sample distance from the source, and (v) source height. PMID:1275491
Percolation under noise: Detecting explosive percolation using the second-largest component
NASA Astrophysics Data System (ADS)
Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.
2016-05-01
We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.
Roots at the percolation threshold.
Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea
2015-04-01
The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?
Roots at the percolation threshold
NASA Astrophysics Data System (ADS)
Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea
2015-04-01
The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?
Percolation and Physical Properties of Rock Salt
NASA Astrophysics Data System (ADS)
Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.
2015-12-01
Textural equilibrium controls the distribution of the liquid phase in many naturally occurring porous materials such as partially molten rocks and alloys, salt-brine and ice-water systems. In these materials, pore geometry evolves to minimize the solid-liquid interfacial energy while maintaining a constant dihedral angle, θ, at solid-liquid contact lines. A characteristic of texturally equilibrated porous media, in the absence of deformation, is that the pore network percolates at any porosity for θ<60° while a percolation threshold exists for θ>60°. However, in ductile polycrystalline materials including rock salt, the balance between surface tension and ductile deformation controls the percolation of fluid pockets along grain corners and edges. Here we show sufficiently rapid deformation can overcome this threshold by elongating and connecting isolated pores by examining a large number of accessible salt samples from deep water Gulf of Mexico. We first confirm the percolation threshold in static laboratory experiments on synthetic salt samples with X-ray microtomography. We then provide field evidence on existence of interconnected pore space in rock salt in extremely low porosities, significantly below the static percolation threshold. Scaling arguments suggest that strain rates in salt are sufficient to overcome surface tension and may allow percolation. We also present the first level-set computations of three-dimensional texturally equilibrated melt networks in realistic rock fabrics. The resulting pore space is used to obtain the effective physical properties of rock, effective electrical conductivity and mechanical properties, with a novel numerical model.
dos Santos, Rodrigo Weber; Bär, Markus
2016-01-01
Arrhythmias in cardiac tissue are generally associated with irregular electrical wave propagation in the heart. Cardiac tissue is formed by a discrete cell network, which is often heterogeneous. Recently, it was shown in simulations of two-dimensional (2D) discrete models of cardiac tissue that a wave crossing a fibrotic, heterogeneous region may produce reentry and transient or persistent ectopic activity provided the fraction of conducting connections is just above the percolation threshold. Here, we investigate the occurrence of these phenomena in three-dimensions by simulations of a discrete model representing a thin slab of cardiac tissue. This is motivated (i) by the necessity to study the relevance and properties of the percolation-related mechanism for the emergence of microreentries in three dimensions and (ii) by the fact that atrial tissue is quite thin in comparison with ventricular tissue. Here, we simplify the model by neglecting details of tissue anatomy, e. g. geometries of atria or ventricles and the anisotropy in the conductivity. Hence, our modeling study is confined to the investigation of the effect of the tissue thickness as well as to the comparison of the dynamics of electrical excitation in a 2D layer with the one in a 3D slab. Our results indicate a strong and non-trivial effect of the thickness even for thin tissue slabs on the probability of microreentries and ectopic beat generation. The strong correlation of the occurrence of microreentry with the percolation threshold reported earlier in 2D layers persists in 3D slabs. Finally, a qualitative agreement of 3D simulated electrograms in the fibrotic region with the experimentally observed complex fractional atrial electrograms (CFAE) as well as strong difference between simulated electrograms in 2D and 3D were found for the cases where reentry and ectopic activity were triggered by the micro-fibrotic region. PMID:27875591
Alonso, Sergio; Dos Santos, Rodrigo Weber; Bär, Markus
2016-01-01
Arrhythmias in cardiac tissue are generally associated with irregular electrical wave propagation in the heart. Cardiac tissue is formed by a discrete cell network, which is often heterogeneous. Recently, it was shown in simulations of two-dimensional (2D) discrete models of cardiac tissue that a wave crossing a fibrotic, heterogeneous region may produce reentry and transient or persistent ectopic activity provided the fraction of conducting connections is just above the percolation threshold. Here, we investigate the occurrence of these phenomena in three-dimensions by simulations of a discrete model representing a thin slab of cardiac tissue. This is motivated (i) by the necessity to study the relevance and properties of the percolation-related mechanism for the emergence of microreentries in three dimensions and (ii) by the fact that atrial tissue is quite thin in comparison with ventricular tissue. Here, we simplify the model by neglecting details of tissue anatomy, e. g. geometries of atria or ventricles and the anisotropy in the conductivity. Hence, our modeling study is confined to the investigation of the effect of the tissue thickness as well as to the comparison of the dynamics of electrical excitation in a 2D layer with the one in a 3D slab. Our results indicate a strong and non-trivial effect of the thickness even for thin tissue slabs on the probability of microreentries and ectopic beat generation. The strong correlation of the occurrence of microreentry with the percolation threshold reported earlier in 2D layers persists in 3D slabs. Finally, a qualitative agreement of 3D simulated electrograms in the fibrotic region with the experimentally observed complex fractional atrial electrograms (CFAE) as well as strong difference between simulated electrograms in 2D and 3D were found for the cases where reentry and ectopic activity were triggered by the micro-fibrotic region.
Anisotropy in finite continuum percolation: threshold estimation by Minkowski functionals
NASA Astrophysics Data System (ADS)
Klatt, Michael A.; Schröder-Turk, Gerd E.; Mecke, Klaus
2017-02-01
We examine the interplay between anisotropy and percolation, i.e. the spontaneous formation of a system spanning cluster in an anisotropic model. We simulate an extension of a benchmark model of continuum percolation, the Boolean model, which is formed by overlapping grains. Here we introduce an orientation bias of the grains that controls the degree of anisotropy of the generated patterns. We analyze in the Euclidean plane the percolation thresholds above which percolating clusters in x- and in y-direction emerge. Only in finite systems, distinct differences between effective percolation thresholds for different directions appear. If extrapolated to infinite system sizes, these differences vanish independent of the details of the model. In the infinite system, the uniqueness of the percolating cluster guarantees a unique percolation threshold. While percolation is isotropic even for anisotropic processes, the value of the percolation threshold depends on the model parameters, which we explore by simulating a score of models with varying degree of anisotropy. To which precision can we predict the percolation threshold without simulations? We discuss analytic formulas for approximations (based on the excluded area or the Euler characteristic) and compare them to our simulation results. Empirical parameters from similar systems allow for accurate predictions of the percolation thresholds (with deviations of <5% in our examples), but even without any empirical parameters, the explicit approximations from integral geometry provide, at least for the systems studied here, lower bounds that capture well the qualitative dependence of the percolation threshold on the system parameters (with deviations of 5 % –30 % ). As an outlook, we suggest further candidates for explicit and geometric approximations based on second moments of the so-called Minkowski functionals.
2011 Radioactive Materials Usage Survey for Unmonitored Point Sources
Sturgeon, Richard W.
2012-06-27
This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are
The Extraction of the NIRS Point Source Catalogs
NASA Technical Reports Server (NTRS)
Freund, Minoru M.
1999-01-01
The Near Infrared Spectrometer (NIRS) on the Infrared Telescope in Space, IRTS (a Japanese-US collaboration project), surveyed about 7% of the sky during its one month mission. In this work we extracted spectro-photometric point source (PS) data between 1.4 and 4 micron of high quality absolutely calibrated (2% flux uncertainties) and unbiased PS spectra in the near-IR. This database facilitates the study and understanding of a variety of science objectives, including stellar evolution of late type stars, determination of the Cosmic Infrared Background (CIB), and provides unprecedented faint stellar spectral calibrators. The objective of this work was to provide the community with a series of absolutely calibrated NIRS point source catalogs (PSC), with classification and association files. The catalogs will be archived at IRSA/IPAC.
Simulation of Urban Runoff Non-point Source Pollution Load and Analysis on Its Influencing Factors
NASA Astrophysics Data System (ADS)
Li, R.; Ruan, X.
2013-12-01
As the point source pollution control has advanced, the proportion of urban non-point pollution caused by rainfall in urban water pollution is increasing. For quantitative evaluation of non-point source pollution in urban rivers and to study their influencing factors, this study takes the inner Qinhuai River in Nanjing as the study area. The non-point source pollution load simulation model of the study area was built based on the Storm Water Management Model (SWMM), and was calibrated using the real-time monitoring data of rainfall and the outlet of the pipes during a short duration rainfall in 2011. TSS, CODMn, TN and TP were selected as the major pollution load indicators to quantitatively assess the rainfall runoff and non-point source pollution of 328.2ha confluence area of inner Qinhuai River, emphatically probe into the variation of the rainfall runoff and non-point source pollution in response to variability in underlying surface and drainage pipes. The results show that: (1) the pollution load concentration in the outlet of the popes increases initially and then decreases, the peak concentration appears at 5~15minutes after the effluent. The concentration of TN and TP appears apparent randomness and fluctuation due to the spatial-temporal uncertainty of the distribution of the non-point source pollution. The maximum flow into the river, the total runoff, the total output of TSS, CODMn, TN and TP during a typical year rainfall in two years return period are 19.67m3/s, 81.74×103m3, 2318.59kg, 1598.08kg, 476.09kg and 24.24kg, respectively. (2)The percentage of impervious underlying surface, the slope of the underlying surface, the percentage of no depression of the impervious underlying surface and the roughness of the pipes, which are the sensitive parameters of the model, have an significant impact on the runoff and pollution load in the outlet of the pipes. Urban rainfall runoff and non-point source pollution can be reduced by reducing the percentage of
Algorithm for astronomical, point source, signal to noise ratio calculations
NASA Technical Reports Server (NTRS)
Jayroe, R. R.; Schroeder, D. J.
1984-01-01
An algorithm was developed to simulate the expected signal to noise ratios as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for a signal star, and an optional secondary star, embedded in a uniform cosmic background. By choosing the appropriate input values, the expected point source signal to noise ratio can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.
High resolution digital holography based on the point source scanning
NASA Astrophysics Data System (ADS)
Wang, Minchao; Wang, Dayong; Rong, Lu; Wang, Yunxin; Wang, Fengpeng; Lin, Qiaowen
2016-10-01
Digital holographic microscopy has been widely used for the imaging of micro-objects and biological samples. Lensless in-line digital holographic microscopy is capable of wide field-of-view imaging. However the spatial resolution of the reconstructed images is limited by the pixel size of the detector. The relative position shift between the sample and the detector can effectively improve the resolution in the traditional sub-pixel shifting method, but it requires a high precision of translation stage. To overcome this problem, we propose a method based on the point source scanning to realize sub-pixel shifting. High precision sub-pixel shifting is achieved easily by using the geometric between point source and detector. Through moving the point source, multiple holograms with sub-pixel shifts are captured. These holograms are merged together to obtained a high resolution hologram by a synthesizing algorithm. Then, the high resolution reconstructed image of the object can be obtained by the angular spectrum algorithm. The feasibility of the proposed method is demonstrated by simulation and experiments. A USAF resolution test target was used as the object. Compared with the traditional digital holography, a higher resolution reconstructed image is obtained by our method. The proposed method has the advantages of simple recording setup and lower precision requirement of the translation stage. It can achieve the wide field-of-view and high resolution imaging.
Incremental theory of diffraction for complex point source illumination
NASA Astrophysics Data System (ADS)
Polemi, A.; Carluccio, G.; Albani, M.; Toccafondi, A.; Maci, S.
2007-12-01
The complex point source (CPS) is a solution of the Helmholtz equation obtained by analytical continuation of the free-space Green's function for complex position of the point source. The CPS representation of radiated fields can be used within a ray code to predict the interaction between an antenna and its actual environment, when standard diffraction formulations are extended to the CPS illumination. In the past, ray-based diffraction theories such as the geometrical theory of diffraction and its uniform version (UTD) were extended to complex point source fields, leaving, however, open some problematic issues concerning the "complex ray tracing". In this paper, the generalization of the incremental theory of diffraction (ITD) to CPS is formulated. The total field scattered by the object is given in terms of line integration along edge discontinuities of ITD diffraction coefficients plus the discontinuous geometrical optics (GO). An incremental form of the discontinuous GO is also proposed to overcome GO "complex ray tracing" difficulties. The final formulation is very simple and leads to accurate results that are successfully validated by comparison against a method of moment solution.
Probing dim point sources in the inner Milky Way using PCAT
NASA Astrophysics Data System (ADS)
Daylan, Tansu; Portillo, Stephen K. N.; Finkbeiner, Douglas P.
2017-01-01
Poisson regression of the Fermi-LAT data in the inner Milky Way reveals an extended gamma-ray excess. An important question is whether the signal is coming from a collection of unresolved point sources, possibly old recycled pulsars, or constitutes a truly diffuse emission component. Previous analyses have relied on non-Poissonian template fits or wavelet decomposition of the Fermi-LAT data, which find evidence for a population of dim point sources just below the 3FGL flux limit. In order to be able to draw conclusions about the flux distribution of point sources at the dim end, we employ a Bayesian trans-dimensional MCMC framework by taking samples from the space of catalogs consistent with the observed gamma-ray emission in the inner Milky Way. The software implementation, PCAT (Probabilistic Cataloger), is designed to efficiently explore that catalog space in the crowded field limit such as in the galactic plane, where the model PSF, point source positions and fluxes are highly degenerate. We thus generate fair realizations of the underlying MSP population in the inner galaxy and constrain the population characteristics such as the radial and flux distribution of such sources.
Recent advances in percolation theory and its applications
NASA Astrophysics Data System (ADS)
Saberi, Abbas Ali
2015-05-01
Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin-Kasteleyn and geometric spin clusters. As an application we will discuss how percolation
The XXL Survey. VI. The 1000 brightest X-ray point sources
NASA Astrophysics Data System (ADS)
Fotopoulou, S.; Pacaud, F.; Paltani, S.; Ranalli, P.; Ramos-Ceja, M. E.; Faccioli, L.; Plionis, M.; Adami, C.; Bongiorno, A.; Brusa, M.; Chiappetti, L.; Desai, S.; Elyiv, A.; Lidman, C.; Melnyk, O.; Pierre, M.; Piconcelli, E.; Vignali, C.; Alis, S.; Ardila, F.; Arnouts, S.; Baldry, I.; Bremer, M.; Eckert, D.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Liske, J.; Maurogordato, S.; Menanteau, F.; Mohr, J. J.; Owers, M.; Poggianti, B.; Pompei, E.; Sadibekova, T.; Stanford, A.; Tuffs, R.; Willis, J.
2016-06-01
Context. X-ray extragalactic surveys are ideal laboratories for the study of the evolution and clustering of active galactic nuclei (AGN). Usually, a combination of deep and wide surveys is necessary to create a complete picture of the population. Deep X-ray surveys provide the faint population at high redshift, while wide surveys provide the rare bright sources. Nevertheless, very wide area surveys often lack the ancillary information available for modern deep surveys. The XXL survey spans two fields of a combined 50 deg2 observed for more than 6Ms with XMM-Newton, occupying the parameter space that lies between deep surveys and very wide area surveys; at the same time it benefits from a wealth of ancillary data. Aims: This paper marks the first release of the XXL point source catalogue including four optical photometry bands and redshift estimates. Our sample is selected in the 2 - 10 keV energy band with the goal of providing a sizable sample useful for AGN studies. The limiting flux is F2 - 10 keV = 4.8 × 10-14 erg s-1 cm-2. Methods: We use both public and proprietary data sets to identify the counterparts of the X-ray point-like sources by means of a likelihood ratio test. We improve upon the photometric redshift determination for AGN by applying a Random Forest classification trained to identify for each object the optimal photometric redshift category (passive, star forming, starburst, AGN, quasi-stellar objects (QSO)). Additionally, we assign a probability to each source that indicates whether it might be a star or an outlier. We apply Bayesian analysis to model the X-ray spectra assuming a power-law model with the presence of an absorbing medium. Results: We find that the average unabsorbed photon index is ⟨Γ⟩ = 1.85 ± 0.40 while the average hydrogen column density is log ⟨NH⟩ = 21.07 ± 1.2 cm-2. We find no trend of Γ or NH with redshift and a fraction of 26% absorbed sources (log NH> 22) consistent with the literature on bright sources (log
Propagation problems connected with an infinitesimal point source
NASA Astrophysics Data System (ADS)
Bremmer, H.
1980-05-01
I have been asked to give two talks [Walker-Ames Lecture at the University of Washington, June 18, 1979] on recent developments in branches of my main interest. Unfortunately, I have not been able to follow the most recent literature, but I believe it is worthwhile to recognize the essential features of modern computation techniques by confronting them with older ones; this might be achieved by a historical survey, to be given in particular in my first talk, while the second one will emphasize the common aspects of procedures which in the literature have been worked out only for one special branch of physics or technology but are just as well applicable to other related fields. This division requires, moreover, that my first talk almost exclusively concern phenomena the essential properties of which already follow from the effects produced by a single infinitesimal source, while the second lecture considers the consequences of the detailed structure of the source in view of its finite dimensions. Thus let me begin with a discussion of the propagation of terrestrial radio waves, a problem the development of which I have followed with great interest during my scientific career. Represented in its simplest idealized form, we here want to know the electromagnetic field of a point source transmitter situated near the earth's surface and situated there in the presence of a homogeneous, spherical earth surrounded by an also homogeneous medium, the atmosphere. The interest in this diffraction problem arose when, in 1902, Marconi succeeded for the first time in transmitting damped radio waves across the Atlantic Ocean. Although this success was in the beginning mainly viewed from the economical side (possible future competition with telecommunication using sea cables), a bit later scientists wondered about its physical aspect, since here the curvature of the earth excluded rectilinear propagation; indeed the latter should take place along a chord through the earth, which
Guo, En-Yu; Chawla, Nikhilesh; Jing, Tao; Torquato, Salvatore; Jiao, Yang
2014-03-01
Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide range of important engineering applications. Accurate modeling and reconstructing three-dimensional (3D) microstructure of topologically complex materials from limited morphological information such as a two-dimensional (2D) micrograph is crucial to the assessment and prediction of effective material properties and performance under extreme conditions. Here, we extend a recently developed dilation–erosion method and employ the Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as well as the standard stochastic reconstructions incorporating topological connectedness information. The fact that the former can achieve the same level of accuracy as the latter suggests that the dilation–erosion procedure is tantamount to incorporating appreciably more topological and geometrical information into the reconstruction while being much more computationally efficient. - Highlights: • Spatial correlation functions used to characterize filamentary ferrite phase • Clustering information assessed from 3D experimental structure via serial sectioning • Stochastic reconstruction used to generate 3D virtual structure 2D micrograph • Dilation–erosion method to improve accuracy of 3D reconstruction.
Percolation conductivity in hafnium sub-oxides
Islamov, D. R. Gritsenko, V. A.; Cheng, C. H.; Chin, A.
2014-12-29
In this study, we demonstrated experimentally that formation of chains and islands of oxygen vacancies in hafnium sub-oxides (HfO{sub x}, x < 2) leads to percolation charge transport in such dielectrics. Basing on the model of Éfros-Shklovskii percolation theory, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. Based on the percolation theory suggested model shows that hafnium sub-oxides consist of mixtures of metallic Hf nanoscale clusters of 1–2 nm distributed onto non-stoichiometric HfO{sub x}. It was shown that reported approach might describe low resistance state current-voltage characteristics of resistive memory elements based on HfO{sub x}.
Correcting STIS CCD Point-Source Spectra for CTE Loss
NASA Technical Reports Server (NTRS)
Goudfrooij, Paul; Bohlin, Ralph C.; Maiz-Apellaniz, Jesus
2006-01-01
We review the on-orbit spectroscopic observations that are being used to characterize the Charge Transfer Efficiency (CTE) of the STIS CCD in spectroscopic mode. We parameterize the CTE-related loss for spectrophotometry of point sources in terms of dependencies on the brightness of the source, the background level, the signal in the PSF outside the standard extraction box, and the time of observation. Primary constraints on our correction algorithm are provided by measurements of the CTE loss rates for simulated spectra (images of a tungsten lamp taken through slits oriented along the dispersion axis) combined with estimates of CTE losses for actual spectra of spectrophotometric standard stars in the first order CCD modes. For point-source spectra at the standard reference position at the CCD center, CTE losses as large as 30% are corrected to within approx.1% RMS after application of the algorithm presented here, rendering the Poisson noise associated with the source detection itself to be the dominant contributor to the total flux calibration uncertainty.
A Search for Point Sources of EeV Photons
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Auger Collaboration102, The Pierre
2014-07-01
Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85° to +20°, in an energy range from 1017.3 eV to 1018.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm-2 s-1, and no celestial direction exceeds 0.25 eV cm-2 s-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.
Limitation of point source pesticide pollution: results of bioremediation system.
Spanoghe, P; Maes, A; Steurbaut, W
2004-01-01
Groundwater and surface water is at risk of contamination from the use of some agricultural pesticides. In many circumstances pesticide contamination of water resources is more likely to result from point sources than from diffuse sources following approved application to crops in the field. Such point sources include areas on farms where pesticides are handled, filled into sprayers or where sprayers are washed down. To overcome this way of contamination different kind of bio-remediation systems are nowadays in development. In Flanders, Belgium two pilot plants of bioremediation systems for the in situ retention and/or degradation of pesticides were installed. Both systems were based on the Phytobac concept, a watertight excavation filled with straw, peat, compost and soil. The channel was made in the bottom from plastic foil. All kinds of spray rests were captured by the phytobacs. This study focuses on what level pesticides leach, bio-degrade or are retained by the filling of the phytobac. The soil-properties of the filling were investigated. Pesticide tracers were added for monitoring to both phytobacs. Soil and water samples were taken during one year. Pesticides are retained at least for one month by the filling of the phytobac. Almost no pesticide leached out. In winter hardly any pesticide degradation was observed in the filling of the phytobac. In summer no detectable pesticides were still left in the phytobacs.
A search for point sources of EeV photons
Aab, A.; Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Arqueros, F.; Collaboration: Pierre Auger Collaboration102; and others
2014-07-10
Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from –85° to +20°, in an energy range from 10{sup 17.3} eV to 10{sup 18.5} eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of –2, is 0.06 eV cm{sup –2} s{sup –1}, and no celestial direction exceeds 0.25 eV cm{sup –2} s{sup –1}. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.
Electrical percolation based biosensors.
Bruck, Hugh Alan; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham
2013-10-01
A new approach to label free biosensing has been developed based on the principle of "electrical percolation". In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-staphylococcal enterotoxin B (SEB) IgG as a "gate" and SEB as an "actuator", it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create "biological central processing units (CPUs)" with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously.
Cluster analysis for percolation on a two-dimensional fully frustrated system
NASA Astrophysics Data System (ADS)
Franzese, Giancarlo
1996-12-01
The percolation of Kandel, Ben-Av and Domany clusters for a two-dimensional fully frustrated Ising model is extensively studied through numerical simulations. Critical exponents, cluster distribution and fractal dimension of a percolating cluster are given.
Invasion percolation with memory
Kharabaf, H.; Yortsos, Y.C.
1997-06-01
Motivated by the problem of finding the minimum threshold path (MTP) in a lattice of elements with random thresholds {tau}{sub i}, we propose a new class of invasion processes, in which the front advances by minimizing or maximizing the measure S{sub n}={summation}{sub i}{tau}{sub i}{sup n} for real n. This rule assigns long-time memory to the invasion process. If the rule minimizes S{sub n} (case of minimum penalty), the fronts are stable and connected to invasion percolation in a gradient [J. P. Hulin, E. Clement, C. Baudet, J. F. Gouyet, and M. Rosso, Phys. Rev. Lett. {bold 61}, 333 (1988)] but in a correlated lattice, with invasion percolation [D. Wilkinson and J. F. Willemsen, J. Phys. A {bold 16}, 3365 (1983)] recovered in the limit {vert_bar}n{vert_bar}={infinity}. For small n, the MTP is shown to be related to the optimal path of the directed polymer in random media (DPRM) problem [T. Halpin-Healy and Y.-C. Zhang, Phys. Rep. {bold 254}, 215 (1995)]. In the large n limit, however, it reduces to the backbone of a mixed site-bond percolation cluster. The algorithm allows for various properties of the MTP and the DPRM to be studied. In the unstable case (case of maximum gain), the front is a self-avoiding random walk. {copyright} {ital 1997} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Nakayama, Masanobu; Kimura, Mayumi; Jalem, Randy; Kasuga, Toshihiro
2016-01-01
Fast ion conductive solid oxide electrolytes are urgently needed because of the development of batteries, fuel cells, and sensors. Ab initio density functional theory can predict ionic conductivities with high accuracy, although it often requires large computational resources and time. In this paper, we use empirical bond valence relations [Adams et al., Phys. Status Solidi A 208, 1746 (2011)] and a percolation algorithm for fast, efficient, fully automated evaluation of migration energies for Li ion conduction in 14 olivine-type LiMXO4 compounds. The results showed a high correlation coefficient with the ab initio density functional theory (DFT) approach, indicating that our method could be attractive for identifying fast ion conductors in databases of numerous candidates.
NASA Astrophysics Data System (ADS)
Rao, Mala N.; Lamago, D.; Ivanov, A.; d'Astuto, M.; Postnikov, A. V.; Hussein, R. Hajj; Basak, Tista; Chaplot, S. L.; Firszt, F.; Paszkowicz, W.; Deb, S. K.; Pagès, O.
2014-04-01
The random Zn1-xBexSe zincblende alloy is known to exhibit a peculiar three-mode [1×(Zn-Se),2×(Be-Se)] vibration pattern near the Brillouin zone (BZ) center, of the so-called percolation type, apparent in its Raman spectra. This is due to an unusually large contrast between the physical properties (length, ionicity) of the constituting bonds. In the present work, the inelastic neutron scattering is applied to study the dispersion of modes away from the BZ center, with special attention to the q⃗ dependence of the BeSe-like transverse optic doublet. The discussion is supported by calculations of lattice dynamics done both ab initio (using the siesta code) and within the shell model. The BeSe-like doublet is found to survive nearly unchanged throughout the BZ up to the zone edge, indicating that its origin is at the ultimate bond scale. The microscopic mechanism of splitting is clarified by ab initio calculations. Namely, the local lattice relaxation needed to accommodate the contrast in physical properties of the Zn-Se and Be-Se bonds splits the stretching and bending modes of connected, i.e., percolativelike, (Be-Se) bonds.
Discretized energy minimization in a wave guide with point sources
NASA Technical Reports Server (NTRS)
Propst, G.
1994-01-01
An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.
Bond Percolation on Multiplex Networks
NASA Astrophysics Data System (ADS)
Hackett, A.; Cellai, D.; Gómez, S.; Arenas, A.; Gleeson, J. P.
2016-04-01
We present an analytical approach for bond percolation on multiplex networks and use it to determine the expected size of the giant connected component and the value of the critical bond occupation probability in these networks. We advocate the relevance of these tools to the modeling of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying a full multiplex structure as opposed to its monoplex projection, especially in the seemingly irrelevant case of a bond occupation probability that does not depend on the layer. Although we find that in many cases the predictions of our theory for multiplex networks coincide with previously derived results for monoplex networks, we also uncover the remarkable result that for a certain class of multiplex networks, well described by our theory, new critical phenomena occur as multiple percolation phase transitions are present. We provide an instance of this phenomenon in a multiplex network constructed from London rail and European air transportation data sets.
Meltwater percolation and refreezing in compacting snow
NASA Astrophysics Data System (ADS)
Meyer, Colin; Hewitt, Ian
2016-11-01
Meltwater is produced on the surface of glaciers and ice sheets when the seasonal surface energy forcing warms the ice above its melting temperature. This meltwater percolates through the porous snow matrix and potentially refreezes, thereby warming the surrounding ice by the release of latent heat. Here we model this process from first principles using a continuum model. We determine the internal ice temperature and glacier surface height based on the surface forcing and the accumulation of snow. When the surface temperature exceeds the melting temperature, we compute the amount of meltwater produced and lower the glacier surface accordingly. As the meltwater is produced, we solve for its percolation through the snow. Our model results in traveling regions of meltwater with sharp fronts where refreezing occurs. We also allow the snow to compact mechanically and we analyze the interplay of compaction with meltwater percolation. We compare these models to observations of the temperature and porosity structure of the surface of glaciers and ice sheets and find excellent agreement. Our models help constrain the role that meltwater percolation and refreezing will have on ice-sheet mass balance and hence sea level. Thanks to the 2016 WHOI GFD Program, which is supported by the National Science Foundation and the Office of Naval Research.
[Research on spatial characteristic of non-point source pollution in Liaohe River basin].
Wang, Xue-Lei; Cai, Ming-Yong; Zhong, Bu-Qing; Yao, Yan-Juan; Yin, Shou-Jing; Wu, Di
2013-10-01
The spatial characteristic of non-point source pollution in the Liaohe River was studied. Coupling the remote sensing data and non-point source (NPS) models, a method of assessing NPS pollution by pixel unit was developed, aiming to analyse the NPS pollution characteristic of Liaohe River basin in 2010, in turn to identify the main polluted areas and prevention measures. The work will provide technical supports for pollution prevention in Liaohe River basin. The results showed that in 2010, the total discharge of total nitrogen (TN) was 1.03 x 10(5) t, the total phosphorus (TP) was 6.8 x 10(3) t, the chemical oxygen demand (COD) was 1.31 x 10(5) t and the ammonia nitrogen (NH+4 -N) was 1. 8 x 10(4) t. The main pollution source of NPS was from agriculture. The contributions of NPS pollution to water quality were 67.4% , 76.4% , 39.4% and 21.9% for TN, TP, COD and NH+4 -N, respectively. The south of Liaohe River basin was the most serious polluted area, followed by the northeast areas. In this research, a method was build to estimate the NPS loads based on remote sensing pixel and the spatial characteristic of non-point source pollution in Liaohe River in 2010 was analysed, which will provide support for pollution prevention in Liaohe River.
[Characteristics of non-point source pollution in Tiaoxi watershed and related affecting factors].
Jin, Jing-liang; Wang, Fei-er; Dai, Lu-ying; Tian, Ping; Zhang, Zhi-jian
2011-08-01
By using soil and water assessment tool (SWAT) model, this paper simulated the surface runoff intensity and the export loadings of sediment particulates and nutrients via non-point source hydrological pathway in Tiaoxi watershed, and integrated with the simulation results, analyzed the temporal and spatial distribution characteristics of non-point source pollution in the watershed in 2008. In the study area, the per unit area non-point source pollution was stronger in northern region than in southern region and in eastern region than in western region, and the weakest in central region. Among the land utilization types, farmland had the biggest contribution to the sediment loading. There were significantly positive correlations between the loadings of surface runoff and associated sediment particulates and the rainfall intensity. The export loadings of nutrients through surface runoff were higher in rainy season (from June to September) than in dry season (from December to next March), and there existed significant correlations between the surface runoff loadings of sediment particulates, organic nitrogen, and nitrate and the average gradient of lands.
Crossover from isotropic to directed percolation
NASA Astrophysics Data System (ADS)
Zhou, Zongzheng; Yang, Ji; Ziff, Robert M.; Deng, Youjin
2012-08-01
We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as p↓=ppd and p↑=p(1-pd), with p representing the average occupation probability and pd controlling the anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP) and DP are the two limiting cases of the BDP model, corresponding to pd=1/2 and pd=0,1 respectively. In this work, besides IP and DP, we also consider the 1/2
NASA Astrophysics Data System (ADS)
Chakraborty, Abhijit; Manna, S. S.
2014-03-01
A region of two-dimensional space has been filled randomly with a large number of growing circular disks allowing only a "slight" overlapping among them just before their growth stops. More specifically, each disk grows from a nucleation center that is selected at a random location within the uncovered region. The growth rate δ is a continuously tunable parameter of the problem which assumes a specific value while a particular pattern of disks is generated. When a growing disk overlaps for the first time with at least one other disk, its growth is stopped and is said to be frozen. In this paper we study the percolation properties of the set of frozen disks. Using numerical simulations we present evidence for the following: (i) The order parameter appears to jump discontinuously at a certain critical value of the area coverage; (ii) the width of the window of the area coverage needed to observe a macroscopic jump in the order parameter tends to vanish as δ →0; and on the contrary (iii) the cluster size distribution has a power-law-decaying functional form. While the first two results are the signatures of a discontinuous transition, the third result is indicative of a continuous transition. Therefore we refer to this transition as a sharp but continuous transition similar to what has been observed in the recently introduced Achlioptas process of explosive percolation. It is also observed that in the limit of δ →0, the critical area coverage at the transition point tends to unity, implying that the limiting pattern is space filling. In this limit, the fractal dimension of the pore space at the percolation point has been estimated to be 1.42(10) and the contact network of the disk assembly is found to be a scale-free network.
Another critical exponent inequality for percolation:. beta. greater than or equal to 2/delta
Newman, C.M.
1987-06-01
The inequality in the title is derived for standard site percolation in any dimension, assuming only that the percolation density vanishes at the critical point. The proof, based on a lattice animal expansion, is fairly simple and is applicable to rather general (site or bond, short- or long-range) independent percolation models.
Explanatory supplement of the ISOGAL-DENIS Point Source Catalogue
NASA Astrophysics Data System (ADS)
Schuller, F.; Ganesh, S.; Messineo, M.; Moneti, A.; Blommaert, J. A. D. L.; Alard, C.; Aracil, B.; Miville-Deschênes, M.-A.; Omont, A.; Schultheis, M.; Simon, G.; Soive, A.; Testi, L.
2003-06-01
We present version 1.0 of the ISOGAL-DENIS Point Source Catalogue (PSC), containing more than 100 000 point sources detected at 7 and/or 15 mu m in the ISOGAL survey of the inner Galaxy with the ISOCAM instrument on board the Infrared Space Observatory (ISO). These sources are cross-identified, wherever possible, with near-infrared (0.8-2.2 mu m) data from the DENIS survey. The overall surface covered by the ISOGAL survey is about 16 square degrees, mostly (95%) distributed near the Galactic plane ( | b | <~ 1deg), where the source extraction can become confusion limited and perturbed by the high background emission. Therefore, special care has been taken aimed at limiting the photometric error to ~ 0.2 mag down to a sensitivity limit of typically 10 mJy. The present paper gives a complete description of the entries and the information which can be found in this catalogue, as well as a detailed discussion of the data processing and the quality checks which have been completed. The catalogue is available at the Centre de Données Astronomiques de Strasbourg (via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/955) and also via the server at the Institut d'Astrophysique de Paris (http://www-isogal.iap.fr/). A more complete version of this paper, including a detailed description of the data processing, is available in electronic form through the ADS service and at http://www.edpsciences.org. This is paper No. 18 in a refereed journal based on data from the ISOGAL project. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the UK) and with the participation of ISAS and NASA; and on DENIS observations collected at the European Southern Observatory, Chile.
Roots at the Percolation Threshold
NASA Astrophysics Data System (ADS)
Kroener, E.; Ahmed, M. A.; Kaestner, A.; Vontobel, P.; Zarebanadkouki, M.; Carminati, A.
2014-12-01
Much of the carbon assimilated by plants during photosynthesis is lost to the soil via rhizodepositions. One component of rhizopdeposition is mucilage, a hydrogel that dramatically alters the soil physical properties. Mucilage was assumed to explain unexpectedly low rhizosphere rewetting rates during irrigation (Carminati et al. 2010) and temporarily water repellency in the rhizosphere after severe drying (Moradi et al. 2012).Here, we present an experimental and theoretical study for the rewetting behaviour of a soil mixed with mucilage, which was used as an analogue of the rhizosphere. Our samples were made of two layers of untreated soils separated by a thin layer (ca. 1 mm) of soil treated with mucilage. We prepared soil columns of varying particle size, mucilage concentration and height of the middle layer above the water table. The dry soil columns were re-wetted by capillary rise from the bottom.The rewetting of the middle layer showed a distinct dual behavior. For mucilage concentrations lower than a certain threshold, water could cross the thin layer almost immediately after rewetting of bulk soil. At slightly higher mucilage concentrations, the thin layer was almost impermeable. The mucilage concentration at the threshold strongly depended on particle size: the smaller the particle size the larger the soil specific surface and the more mucilage was needed to cover the entire particle surface and to induce water repellency.We applied a classic pore network model to simulate the experimental observations. In the model a certain fraction of nodes were randomly disconnected to reproduce the effect of mucilage in temporarily blocking the flow. The percolation model could qualitatively reproduce well the threshold characteristics of the experiments. Our experiments, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively
The distribution of Infrared point sources in nearby elliptical galaxies
NASA Astrophysics Data System (ADS)
Gogoi, Rupjyoti; Misra, Ranjeev; Puthiyaveettil, Shalima
Infra-red point sources in nearby early-type galaxies are often counterparts of sources in other wavebands such as optical and X-rays. In particular, the IR counterpart of X-ray sources may be due to a globular cluster hosting the X-ray source or could be associated directly with the binary, providing crucial information regarding their environment. In general, the IR sources would be from globular clusters and their IR colors would provide insight into their stellar composition. However, many of the IR sources maybe background objects and it is important to identify them or at least quantify the level of background contamination. Archival Spitzer IRAC images provide a unique opportunity to study these sources in nearby Ellipticals and in particular to estimate the distributions of their IR luminosity, color and distance from the center. We will present the results of such an analysis for three nearby galaxies. We have also estimated the background contamination using several blank fields. Our preliminary results suggest that IR colors can be effectively used to differentiate between the background and sources in the galaxy, and that the distribution of sources are markedly different for different Elliptical galaxies.
Rounds, Stewart A.
2007-01-01
Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate
40 CFR 433.10 - Applicability; description of the metal finishing point source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... metal finishing point source category. 433.10 Section 433.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL FINISHING POINT SOURCE CATEGORY Metal Finishing Subcategory § 433.10 Applicability; description of the metal finishing point source category....
Coined quantum walks on percolation graphs
NASA Astrophysics Data System (ADS)
Leung, Godfrey; Knott, Paul; Bailey, Joe; Kendon, Viv
2010-12-01
Quantum walks, both discrete (coined) and continuous time, form the basis of several quantum algorithms and have been used to model processes such as transport in spin chains and quantum chemistry. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well studied on regular structures and also shown to be sensitive to defects and imperfections in the lattice. As a simple example of a disordered system, we consider percolation lattices, in which edges or sites are randomly missing, interrupting the progress of the quantum walk. We use numerical simulation to study the properties of coined quantum walks on these percolation lattices in one and two dimensions. In one dimension (the line), we introduce a simple notion of quantum tunnelling and determine how this affects the properties of the quantum walk as it spreads. On two-dimensional percolation lattices, we show how the spreading rate varies from linear in the number of steps down to zero as the percolation probability decreases towards the critical point. This provides an example of fractional scaling in quantum-walk dynamics.
NASA Astrophysics Data System (ADS)
Zhang, W. S.; Swaney, D. P.; Li, X. Y.; Hong, B.; Howarth, R. W.; Ding, S. H.
2015-07-01
This study provides a new approach to estimate both anthropogenic non-point-source and point-source nitrogen (N) inputs to the landscape, and determines their impacts on riverine ammonia-nitrogen (AN) flux, providing a foundation for further exploration of anthropogenic effects on N pollution. Our study site is Huai River basin of China, a water-shed with one of the highest levels of N input in the world. Multi-year average (2003-2010) inputs of N to the watershed are 27 200 ± 1100 kg N km-2 yr-1. Non-point sources comprised about 98 % of total N input, and only 2 % of inputs are directly added to the aquatic ecosystem as point sources. Fertilizer application was the largest non-point source of new N to the Huai River basin (69 % of net anthropogenic N inputs), followed by atmospheric deposition (20 %), N fixation in croplands (7 %), and N content of imported food and feed (2 %). High N inputs showed impacts on riverine AN flux: fertilizer application, point-source N input, and atmospheric N deposition were proved as more direct sources to riverine AN flux. Modes of N delivery and losses associated with biological denitrification in rivers, water consumption, interception by dams may influence the extent of export of riverine AN flux from N sources. Our findings highlight the importance of anthropogenic N inputs from both point sources and non-point sources in heavily polluted watersheds, and provide some implications for AN prediction and management.
NASA Astrophysics Data System (ADS)
Mogus, Mamaru; Schmitter, Petra; Tilahun, Seifu; Steenhuise, Tammo
2016-04-01
Intensification of agriculture will bring along non-point source pollution in the Ethiopian highlands resulting in eutrophication of lakes. The first signs of eutrophication have been observed already in Lake Tana. The lake it supports the lives of millions in the surrounding through fishing, tourism, transportation and hydropower.Presently, information on non-point source pollution is lacking in the Ethiopian highlands. There are few studies carried out in the highlands on the extent and the source areas of pollution, and models are not available for predicting sediment and phosphorus loading other than those developed for temperate climates. The objective of this chapter is to review existing non-point source studies, report on our findings of sediment and phosphorus sources that are related the non-point source pollution of Lake Tana and to present a non-point source model for the Ethiopian highland based on the Parameter Efficient Semi-distributed Watershed Hydrology Model (PED-WHM).In our research we have found that the saturation excess runoff from valley bottoms and from degraded lands are prevalent in the Ethiopia highlands. The periodically runoff source areas are also the sources for the non-point source pollution and by concentrating best management practices in these source areas we expect that we can reduce pollution without affecting the profitability of the existing farms. The water balance component of the non-point source model has been performing well in predicting both the discharge and the location of the runoff source areas. Sediment and phosphorus prediction models have been developed and are currently being tested for the 7km2Awramba watershed and the 1350 km2Gumara basin. Initial results indicate that 11.2 ton/ha/year sediment load and an accumulation rate of 17.3 mg/kg/year of dissolved phosphorus from Gumara watershed joining the lake. By developing best management practices at this time before non-point source pollution is rampant and
Radio-Quiet Pulsars and Point Sources in Supernova Remnants
NASA Astrophysics Data System (ADS)
Helfand, David
2002-04-01
Since Baade and Zwicky made their prescient remark identifying the central blue star in the Crab Nebula as a neutron star, this pulsar's period has increased by 0.9 msec, turning 10^48 ergs of rotational kinetic energy into a relativistic wind that has been deposited in its surroundings. This makes the compact remnant of the supernova of 1054 AD highly conspicuous. It also makes this remnant highly anomalous. Nowhere else in the Galaxy does such a luminous young pulsar exists, despite the fact that at least half a dozen core-collapse supernovae have occurred since the Crab's birth. Indeed, the newly discovered central object in Cas A is four orders of magnitude less luminous in the X-ray band. While the Chandra and XMM-Newton Observatories are discovering an increasing number of Crab-like synchrotron nebulae (albeit, far less luminous than the prototype), they are also revealing X-ray point sources inside supernova remnants that lack detectable radio pulses and show no evidence of a relativistic outflow to power a surrounding nebula. I will provide an inventory of these objects, discuss whether or not truly radio-silent young neutron stars exist, and speculate on the emission mechanisms and power sources which make such objects shine. I will conclude with a commentary on the implications of this population for the distributions of pulsar birth parameters such as spin period, magnetic field strength, and space velocity, as well as offer a glimpse of what future observations might reveal about the demographics of core-collapse remnants.
Reversible jump Markov chain Monte Carlo for Bayesian deconvolution of point sources
NASA Astrophysics Data System (ADS)
Stawinski, Guillaume; Doucet, Arnaud; Duvaut, Patrick
1998-09-01
In this article, we address the problem of Bayesian deconvolution of point sources in nuclear imaging under the assumption of Poissonian statistics. The observed image is the result of the convolution by a known point spread function of an unknown number of point sources with unknown parameters. To detect the number of sources and estimate their parameters we follow a Bayesian approach. However, instead of using a classical low level prior model based on Markov random fields, we prose a high-level model which describes the picture as a list of its constituent objects, rather than as a list of pixels on which the data are recorded. More precisely, each source is assumed to have a circular Gaussian shape and we set a prior distribution on the number of sources, on their locations and on the amplitude and width deviation of the Gaussian shape. This high-level model has far less parameters than a Markov random field model as only s small number of sources are usually present. The Bayesian model being defined, all inference is based on the resulting posterior distribution. This distribution does not admit any closed-form analytical expression. We present here a Reversible Jump MCMC algorithm for its estimation. This algorithm is tested on both synthetic and real data.
Search for Cosmic Neutrino Point Sources with Four Years of Data from the ANTARES Telescope
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Samarai, I. Al; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Leonora, E.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Samtleben, D. F. E.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.
2012-11-01
In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E -2 ν spectrum, these flux limits are at 1-10 ×10-8 GeV cm-2 s-1 for declinations ranging from -90° to 40°. Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.
THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG
Elvis, Martin; Civano, Francesca; Aldcroft, T. L.; Fruscione, Antonella; Vignali, Cristian; Puccetti, Simonetta; Fiore, Fabrizio; Cappelluti, Nico; Brusa, Marcella; Finoguenov, Alexis; Brunner, Hermann; Zamorani, G.; Comastri, Andrea; Gilli, Roberto; Miyaji, Takamitsu; Damiani, Francesco; Koekemoer, Anton M.; Urry, C.M.; Silverman, John; Mainieri, Vincenzo
2009-09-01
The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg{sup 2} of the COSMOS field (centered at 10 {sup h}, +02 deg.) with an effective exposure of {approx}160 ks, and an outer 0.4 deg{sup 2} area with an effective exposure of {approx}80 ks. The limiting source detection depths are 1.9 x 10{sup -16} erg cm{sup -2} s{sup -1} in the soft (0.5-2 keV) band, 7.3 x 10{sup -16} erg cm{sup -2} s{sup -1} in the hard (2-10 keV) band, and 5.7 x 10{sup -16} erg cm{sup -2} s{sup -1} in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 x 10{sup -5} (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily ({approx}50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform ({+-}12%) exposure across the inner 0.5 deg{sup 2} field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.
Conductivity exponents in stick percolation.
Li, Jiantong; Zhang, Shi-Li
2010-02-01
On the basis of Monte Carlo simulations, the present work systematically investigates how conductivity exponents depend on the ratio of stick-stick junction resistance to stick resistance for two-dimensional stick percolation. Simulation results suggest that the critical conductivity exponent extracted from size-dependent conductivities of systems exactly at the percolation threshold is independent of the resistance ratio and has a constant value of 1.280+/-0.014 . In contrast, the apparent conductivity exponent extracted from density-dependent conductivities of systems well above the percolation threshold monotonically varies with the resistance ratio, following an error function, and lies in the vicinity of the critical exponent.
Social percolation and the influence of mass media
NASA Astrophysics Data System (ADS)
Proykova, Ana; Stauffer, Dietrich
2002-09-01
In the marketing model of Solomon and Weisbuch, people buy a product only if their neighbours tell them of its quality, and if this quality is higher than their own quality expectations. Now we introduce additional information from the mass media, which is analogous to the ghost field in percolation theory. The mass media shift the percolative phase transition observed in the model, and decrease the time after which the stationary state is reached.
Anomalous discontinuity at the percolation critical point of active gels.
Sheinman, M; Sharma, A; Alvarado, J; Koenderink, G H; MacKintosh, F C
2015-03-06
We develop a percolation model motivated by recent experimental studies of gels with active network remodeling by molecular motors. This remodeling was found to lead to a critical state reminiscent of random percolation (RP), but with a cluster distribution inconsistent with RP. Our model not only can account for these experiments, but also exhibits an unusual type of mixed phase transition: We find that the transition is characterized by signatures of criticality, but with a discontinuity in the order parameter.
Estimating dispersed and point source emissions of methane in East Anglia: results and implications
NASA Astrophysics Data System (ADS)
Harris, Neil; Connors, Sarah; Hancock, Ben; Jones, Pip; Murphy, Jonathan; Riddick, Stuart; Robinson, Andrew; Skelton, Robert; Manning, Alistair; Forster, Grant; Oram, David; O'Doherty, Simon; Young, Dickon; Stavert, Ann; Fisher, Rebecca; Lowry, David; Nisbet, Euan; Zazzeri, Guilia; Allen, Grant; Pitt, Joseph
2016-04-01
We have been investigating ways to estimate dispersed and point source emissions of methane. To do so we have used continuous measurements from a small network of instruments at 4 sites across East Anglia since 2012. These long-term series have been supplemented by measurements taken in focussed studies at landfills, which are important point sources of methane, and by measurements of the 13C:12C ratio in methane to provide additional information about its sources. These measurements have been analysed using the NAME InTEM inversion model to provide county-level emissions (~30 km x ~30 km) in East Anglia. A case study near a landfill just north of Cambridge was also analysed using a Gaussian plume model and the Windtrax dispersion model. The resulting emission estimates from the three techniques are consistent within the uncertainties, despite the different spatial scales being considered. A seasonal cycle in emissions from the landfill (identified by the isotopic measurements) is observed with higher emissions in winter than summer. This would be expected from consideration of the likely activity of methanogenic bacteria in the landfill, but is not currently represented in emission inventories such as the UK National Atmospheric Emissions Inventory. The possibility of assessing North Sea gas field emissions using ground-based measurements will also be discussed.
Independent evaluation of point source fossil fuel CO2 emissions to better than 10%
Turnbull, Jocelyn Christine; Keller, Elizabeth D.; Norris, Margaret W.; Wiltshire, Rachael M.
2016-01-01
Independent estimates of fossil fuel CO2 (CO2ff) emissions are key to ensuring that emission reductions and regulations are effective and provide needed transparency and trust. Point source emissions are a key target because a small number of power plants represent a large portion of total global emissions. Currently, emission rates are known only from self-reported data. Atmospheric observations have the potential to meet the need for independent evaluation, but useful results from this method have been elusive, due to challenges in distinguishing CO2ff emissions from the large and varying CO2 background and in relating atmospheric observations to emission flux rates with high accuracy. Here we use time-integrated observations of the radiocarbon content of CO2 (14CO2) to quantify the recently added CO2ff mole fraction at surface sites surrounding a point source. We demonstrate that both fast-growing plant material (grass) and CO2 collected by absorption into sodium hydroxide solution provide excellent time-integrated records of atmospheric 14CO2. These time-integrated samples allow us to evaluate emissions over a period of days to weeks with only a modest number of measurements. Applying the same time integration in an atmospheric transport model eliminates the need to resolve highly variable short-term turbulence. Together these techniques allow us to independently evaluate point source CO2ff emission rates from atmospheric observations with uncertainties of better than 10%. This uncertainty represents an improvement by a factor of 2 over current bottom-up inventory estimates and previous atmospheric observation estimates and allows reliable independent evaluation of emissions. PMID:27573818
Independent evaluation of point source fossil fuel CO2 emissions to better than 10.
Turnbull, Jocelyn Christine; Keller, Elizabeth D; Norris, Margaret W; Wiltshire, Rachael M
2016-09-13
Independent estimates of fossil fuel CO2 (CO2ff) emissions are key to ensuring that emission reductions and regulations are effective and provide needed transparency and trust. Point source emissions are a key target because a small number of power plants represent a large portion of total global emissions. Currently, emission rates are known only from self-reported data. Atmospheric observations have the potential to meet the need for independent evaluation, but useful results from this method have been elusive, due to challenges in distinguishing CO2ff emissions from the large and varying CO2 background and in relating atmospheric observations to emission flux rates with high accuracy. Here we use time-integrated observations of the radiocarbon content of CO2 ((14)CO2) to quantify the recently added CO2ff mole fraction at surface sites surrounding a point source. We demonstrate that both fast-growing plant material (grass) and CO2 collected by absorption into sodium hydroxide solution provide excellent time-integrated records of atmospheric (14)CO2 These time-integrated samples allow us to evaluate emissions over a period of days to weeks with only a modest number of measurements. Applying the same time integration in an atmospheric transport model eliminates the need to resolve highly variable short-term turbulence. Together these techniques allow us to independently evaluate point source CO2ff emission rates from atmospheric observations with uncertainties of better than 10%. This uncertainty represents an improvement by a factor of 2 over current bottom-up inventory estimates and previous atmospheric observation estimates and allows reliable independent evaluation of emissions.
Color and Variability Characteristics of Point Sources in the Faint Sky Variability Survey
Huber, M E; Everett, M E; Howell, S B
2005-03-07
The authors present an analysis of the color and variability characteristics for point sources in the Faint Sky Variability Survey (FSVS). The FSVS cataloged {approx} 23 square degrees in BVI filters from {approx} 16-24 mag to investigate variability in faint sources at moderate to high Galactic latitudes. Point source completeness is found to be >83% for a selected representative sample (V - 17.5-22.0 mag, B-V = 0.0-1.5) containing both photometric B, V detections and 80% of the time-sampled V data available compared to a basic internal source completeness of 99%. Multi-epoch (10-30) observations in V spanning minutes to years modeled by light curve simulations reveal amplitude sensitivities to {approx} 0.015-0.075 mag over a representative V = 18-22 mag range. Periodicity determinations appear viable to time-scales of an order 1 day or less using the most sampled fields ({approx} 30 epochs). The fraction of point sources is found to be generally variable at 5-8% over V = 17.5-22.0 mag. For V brighter than 19 mag, the variable population is dominated by low amplitude (< 0.05 mag) and blue (B-V < 0.35) sources, possibly representing a population of {gamma} Doradus stars. Overall, the dominant population of variable sources are bluer than B-V = 0.65 and have Main Sequence colors, likely reflecting larger populations of RR Lyrae, SX Phe, {gamma} Doradus, and W UMa variables.
NASA Astrophysics Data System (ADS)
Steenhuisen, Frits; Wilson, Simon J.
2015-07-01
Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national
Percolation in real multiplex networks
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Radicchi, Filippo
2016-12-01
We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.
Universality and asymptotic scaling in drilling percolation
NASA Astrophysics Data System (ADS)
Grassberger, Peter
2017-01-01
We present simulations of a three-dimensional percolation model studied recently by K. J. Schrenk et al. [Phys. Rev. Lett. 116, 055701 (2016), 10.1103/PhysRevLett.116.055701], obtained with a new and more efficient algorithm. They confirm most of their results in spite of larger systems and higher statistics used in the present Rapid Communication, but we also find indications that the results do not yet represent the true asymptotic behavior. The model is obtained by replacing the isotropic holes in ordinary Bernoulli percolation by randomly placed and oriented cylinders, with the constraint that the cylinders are parallel to one of the three coordinate axes. We also speculate on possible generalizations.
Network robustness and fragility: percolation on random graphs.
Callaway, D S; Newman, M E; Strogatz, S H; Watts, D J
2000-12-18
Recent work on the Internet, social networks, and the power grid has addressed the resilience of these networks to either random or targeted deletion of network nodes or links. Such deletions include, for example, the failure of Internet routers or power transmission lines. Percolation models on random graphs provide a simple representation of this process but have typically been limited to graphs with Poisson degree distribution at their vertices. Such graphs are quite unlike real-world networks, which often possess power-law or other highly skewed degree distributions. In this paper we study percolation on graphs with completely general degree distribution, giving exact solutions for a variety of cases, including site percolation, bond percolation, and models in which occupation probabilities depend on vertex degree. We discuss the application of our theory to the understanding of network resilience.
Coarsening and percolation in a disordered ferromagnet
NASA Astrophysics Data System (ADS)
Corberi, Federico; Cugliandolo, Leticia F.; Insalata, Ferdinando; Picco, Marco
2017-02-01
By studying numerically the phase-ordering kinetics of a two-dimensional ferromagnetic Ising model with quenched disorder (either random bonds or random fields) we show that a critical percolation structure forms at an early stage. This structure is then rendered more and more compact by the ensuing coarsening process. Our results are compared to the nondisordered case, where a similar phenomenon is observed, and they are interpreted within a dynamical scaling framework.
Detection of trace gas emissions from point sources using shortwave infrared imaging spectrometry
NASA Astrophysics Data System (ADS)
Thorpe, A. K.; Roberts, D. A.; Dennison, P. E.; Bradley, E. S.; Funk, C. C.
2011-12-01
Existing spaceborne remote sensing provides an effective means of detecting continental-scale variation in trace gas concentrations, but does not permit mapping of local emissions from point sources. Point source emissions of methane (CH4), nitrous oxide (N2O) and particulates, often associated with combustion and carbon dioxide (CO2) emissions, have significant impacts on air quality. Using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data and a cluster-tuned matched filter technique, we have mapped local CH4, N2O and CO2 emissions from terrestrial sources in the Los Angeles basin. CH4 anomalies were in close proximity to known and probable emission sources, including hydrocarbon storage tanks and gas flares. Multiple N2O and CH4 anomalies were detected at a wastewater treatment facility, while CH4 and CO2 anomalies were also identified at a large oil refinery. We discuss ongoing efforts to estimate CH4 concentrations using radiative transfer modeling and potential application of this technique to additional trace gasses with distinct absorption features. This method could be applied to data from existing airborne sensors and planned satellite missions like HyspIRI, thereby improving high resolution mapping of trace gasses and better constraining local sources.
Evaluation of the Legibility for Characters Composed of Multiple Point Sources in Fog
NASA Astrophysics Data System (ADS)
Tsukada, Yuki; Toyofuku, Yoshinori; Aoki, Yoshiro
The luminance conditions were investigated, at that the characters composed of multiple point sources were as legible as a character having a uniformly luminous surface in fog, in order to make the use of variable-message signs practical at airports. As the results, it was found that the thicker the fog or the higher the illuminance, the better the legibility of the point source characters become compared with the uniformly luminous surface characters. It is supposed that the ease of extracting each individual point source makes the characters composed of multiple point sources more legible even if their luminance is low. So the results show that if the conventional luminance standard is applied to the average luminance of a character composed of multiple point sources, a character composed of multiple point sources could be recognized without any degradation in legibility.
Transition to turbulence: 2D directed percolation
NASA Astrophysics Data System (ADS)
Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight
2016-11-01
The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.
Point to point continuum percolation in two dimensions
NASA Astrophysics Data System (ADS)
Sadeghnejad, S.; Masihi, M.
2016-10-01
The outcome of the classic percolation approach is several power-law curves with some universal (critical) exponents. Here, the universality means that these power laws as well as their critical exponents, which control the global properties of a system, are independent of its details. Classic percolation considers the connectivity between two lines and two faces at opposite sides of a system in 2- and 3D problems, respectively; whereas, in practice (e.g. hydrocarbon formations), production and injection wells are represented by points (in 2D areal models) and lines (in 3D models). This study presents the results of Monte Carlo simulations of a 2D percolation model wherein the connection locations (i.e. wells) are represented by two points, called point-to-point (P2P) connectivity. The main contribution is to find the percolation threshold as well as the geometrical and dynamical critical exponents of a continuum percolation system with a P2P connection, which is closer to reality in some applications. The result shows that in comparison to classical percolation, some critical exponents definitely changes in the P2P connection.
40 CFR 414.110 - Applicability; description of the subcategory of indirect discharge point sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Indirect Discharge Point Sources § 414.110 Applicability; description of the subcategory...
40 CFR 414.110 - Applicability; description of the subcategory of indirect discharge point sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Indirect Discharge Point Sources § 414.110 Applicability; description of the subcategory...
40 CFR 414.110 - Applicability; description of the subcategory of indirect discharge point sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Indirect Discharge Point Sources § 414.110 Applicability; description of the subcategory...
40 CFR 414.110 - Applicability; description of the subcategory of indirect discharge point sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Indirect Discharge Point Sources § 414.110 Applicability; description of the subcategory...
40 CFR 414.110 - Applicability; description of the subcategory of indirect discharge point sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Indirect Discharge Point Sources § 414.110 Applicability; description of the subcategory...
[L-THIA-based management design for controlling urban non-point source pollution].
Guo, Qing-Hai; Yang, Liu; Ke-Ming, Ma
2007-11-01
L-THIA Model was used to simulate the amounts of NPS pollutants in 2 catchments of Sanjiao watershed (Sj1, Sj2) in Hanyang district, and the total simulated amount of NPS loads in Sj1 and Sj2 were 1.82 x 10(4) kg, 1.38 x 10(5) kg, respectively. Based on the theory of resource-sink" and interaction of pattern with process, a series of BMPs, including green roof, grassland, porous pavement, infiltration trench, vegetative filter strip and wet pond, were optimized, and effects of BMPs were simulated along the surface runoff pathway. The results show that total pollutants outputs entering Sj1 and Sj2 account for 14.65% and 6.57%, respectively. Combining L-THIA model and BMPs in series is a proper measure for non-point source pollution control and urban development planning at watershed or region scale.
Percolation Theory and Modern Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.
2015-12-01
During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.
Quantification and index of non-point source pollution in Taihu Lake region with GIS.
Guo, H Y; Wang, X R; Zhu, J G
2004-01-01
The contribution of phosphorus and nitrogen from non-point source pollution (NPS) in the Taihu Lake region was investigated through case study and surveying in the town of Xueyan, From experimental results coupled with survey and statistics in the studied area, the distribution of nitrogen and phosphorus input to the water body is achieved from four main sources: agricultural land, village, the town center and the poultry factory. The results showed that about 38% of total phosphorus (TP) and 48% of total nitrogen (TN) discharged is from agricultural land, 33% of TP and 40% TN from village residents, 25% of TP and 10% of TN from the town center and 4% of TP and 2% of TN from the poultry factory. The Agricultural Non-point Pollution Potential Index (APPI) system for identifying and ranking critical areas of NPS was established with a Geographic Information Systems (GIS)-based technology. Quantification of the key factors in non-point sources pollution was carried out utilizing the following: Sediment Production Index (SPI), Runoff Index (RI), People and Animal Loading Index (PALI) and Chemical Use Index (CUI). These are the core parts of the model, and the weighting factor of each index was evaluated according the results of quantification. The model was successfully applied for evaluating APPI in Xueyan. Results from the model showed that the critical area identified for NPS control in Xueyan. The model has several advantages including: requiring fewer parameters, easy acquirement of these parameters, friendly interface, and convenience of operation. In addition it is especially useful for identifying critical areas of NPS when the basic data are not fully accessible, which is the present situation in China.
NASA Astrophysics Data System (ADS)
Tang, Y. B.; Li, M.; Bernabé, Y.; Tang, H. M.; Li, X. F.; Bai, X. Y.; Tao, Z. W.
2015-06-01
In this paper, we modelled the electrical transport behaviour of bimodal carbonate rocks from a reservoir in China using dual-pore networks. One basic assumption, generally supported by experimental data and microstructure observations in the reservoir samples, was that the low porosity, monomodal rocks had the same properties and structure as the microporous matrix of the high porosity, bimodal samples. We assumed that the matrix was homogeneous and always interconnected but that the connectivity and the pore size distribution of macropore system was randomly variable. Both pore systems were supposed to act locally as `in parallel' electrical conductors, an approach previously used by Bauer et al. Hence, the effect of matrix properties, macropore size distribution and connectivity on electrical properties of bimodal rocks could be modelled and investigated. We simulated electrical current through 3-D, simple cubic and body-centred cubic networks with different coordination numbers, different pipe radius distributions of macropore system and different matrix properties. The main result was that the formation factor of dual-pore network obeyed a `universal' scaling relationship (i.e. independent of lattice type). Based on this result, we extended the power-law model derived by Bernabé et al. for monomodal porous media. We developed methods for evaluating the scale-invariant pore structure parameters in the model using conventional core analysis and satisfactorily tested the proposed model against experimental data from the Chinese reservoir as well as some other previously published data sets.
Clique percolation in random graphs
NASA Astrophysics Data System (ADS)
Li, Ming; Deng, Youjin; Wang, Bing-Hong
2015-10-01
As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least l
Clique percolation in random graphs.
Li, Ming; Deng, Youjin; Wang, Bing-Hong
2015-10-01
As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least l
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-08-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics.
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-08-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-01-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998
Clique percolation in random networks.
Derényi, Imre; Palla, Gergely; Vicsek, Tamás
2005-04-29
The notion of k-clique percolation in random graphs is introduced, where k is the size of the complete subgraphs whose large scale organizations are analytically and numerically investigated. For the Erdos-Rényi graph of N vertices we obtain that the percolation transition of k-cliques takes place when the probability of two vertices being connected by an edge reaches the threshold p(c) (k) = [(k - 1)N](-1/(k - 1)). At the transition point the scaling of the giant component with N is highly nontrivial and depends on k. We discuss why clique percolation is a novel and efficient approach to the identification of overlapping communities in large real networks.
A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D’Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D’Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.
2017-03-01
Simultaneous measurements of air showers with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for EeV photon point sources. Several Galactic and extragalactic candidate objects are grouped in classes to reduce the statistical penalty of many trials from that of a blind search and are analyzed for a significant excess above the background expectation. The presented search does not find any evidence for photon emission at candidate sources, and combined p-values for every class are reported. Particle and energy flux upper limits are given for selected candidate sources. These limits significantly constrain predictions of EeV proton emission models from non-transient Galactic and nearby extragalactic sources, as illustrated for the particular case of the Galactic center region.
SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE
Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M. C.; Baret, B.; Bouhou, B.; Basa, S.; Biagi, S.; and others
2012-11-20
In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E {sup -2} {sub {nu}} spectrum, these flux limits are at 1-10 Multiplication-Sign 10{sup -8} GeV cm{sup -2} s{sup -1} for declinations ranging from -90 Degree-Sign to 40 Degree-Sign . Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.
Mixing of a point-source indoor pollutant: Numerical predictions and comparison with experiments
Lobscheid, C.; Gadgil, A.J.
2002-01-01
In most practical estimates of indoor pollutant exposures, it is common to assume that the pollutant is uniformly and instantaneously mixed in the indoor space. It is also commonly known that this assumption is simplistic, particularly for point sources, and for short-term or localized indoor exposures. We report computational fluid dynamics (CFD) predictions of mixing time of a point-pulse release of a pollutant in an unventilated mechanically mixed isothermal room. We aimed to determine the adequacy of the standard RANS two-equation ({kappa}-{var_epsilon}) turbulence model to predict the mixing times under these conditions. The predictions were made for the twelve mixing time experiments performed by Drescher et al. (1995). We paid attention to adequate grid resolution, suppression of numerical diffusion, and careful simulation of the mechanical blowers used in the experiments. We found that the predictions are in good agreement with experimental measurements.
[Zoning planning in non-point source pollution control in Hanyang district].
Yang, Liu; Ma, Ke-Ming; Guo, Qing-Hai; Zhao, Jing-Zhu; Luo, Yong-Feng
2006-01-01
It is most important for managing urban non-point source (NPS) pollution, actualizing the urban sustainable development as well, that zoning planning of urban NPS pollution control is studied. A case study on principles and methods of zoning planning in urban NPS pollution is carried out. Principles of urban sustainable development, priority of urban NPS pollution sensitivity, similarity of urban NPS control direction and region conjugate are put forward. Besides, it is for the first time that a more quantitive method is presented, in the case of Hanyang district, Wuhan city, which is based on L-THIA model and spatial analysis technique in GIS. Assessment of NPS pollution status quo, as well as analysis of NPS sensitivity, is the kernel component of the quantitive method. Hanyang might be divided into four NPS pollution control zones. It is helpful for decision-making of regional NPS pollution control.
Current status of agricultural and rural non-point source Pollution assessment in China.
Ongley, Edwin D; Xiaolan, Zhang; Tao, Yu
2010-05-01
Estimates of non-point source (NPS) contribution to total water pollution in China range up to 81% for nitrogen and to 93% for phosphorus. We believe these values are too high, reflecting (a) misuse of estimation techniques that were developed in America under very different conditions and (b) lack of specificity on what is included as NPS. We compare primary methods used for NPS estimation in China with their use in America. Two observations are especially notable: empirical research is limited and does not provide an adequate basis for calibrating models nor for deriving export coefficients; the Chinese agricultural situation is so different than that of the United States that empirical data produced in America, as a basis for applying estimation techniques to rural NPS in China, often do not apply. We propose a set of national research and policy initiatives for future NPS research in China.
Estimates of Emissions and Chemical Lifetimes of NOx from Point Sources using OMI Retrievals
NASA Astrophysics Data System (ADS)
de Foy, B.
2014-12-01
We use three different methods to estimate emissions of NOx from large point sources based on OMI retrievals. The results are evaluated against data from the Continuous Emission Monitoring System (CEMS). The methods tested are: 1. Simple box model, 2. Two-dimensional Gaussian fit and 3. Exponentially-Modified Gaussian Fit. The sensitivity of the results to the plume speed and wind direction was explored by considering different ways of estimating these from wind measurements. The accuracy of the emissions estimates compared with the CEMS data was found to be variable from site to site. Furthermore, lifetimes obtained from some of the methods were found to be very short and are thought to be more representative of plume transport than of chemical transformation. We explore the strengths and weaknesses of the methods and consider avenues for improved estimates.
[A landscape ecological approach for urban non-point source pollution control].
Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing
2005-05-01
Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.
40 CFR 1066.930 - Equipment for point-source measurement of running losses.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Equipment for point-source measurement of running losses. 1066.930 Section 1066.930 Protection of Environment ENVIRONMENTAL PROTECTION...-source measurement of running losses. For point-source measurement of running loss emissions,...
40 CFR 433.10 - Applicability; description of the metal finishing point source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... metal finishing point source category. 433.10 Section 433.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) METAL FINISHING POINT SOURCE CATEGORY Metal Finishing Subcategory § 433.10 Applicability; description of the metal finishing...
40 CFR 433.10 - Applicability; description of the metal finishing point source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... metal finishing point source category. 433.10 Section 433.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) METAL FINISHING POINT SOURCE CATEGORY Metal Finishing Subcategory § 433.10 Applicability; description of the metal finishing...
Krings, Thomas; Mauerhofer, Eric
2011-06-01
This work improves the reliability and accuracy in the reconstruction of the total isotope activity content in heterogeneous nuclear waste drums containing point sources. The method is based on χ(2)-fits of the angular dependent count rate distribution measured during a drum rotation in segmented gamma scanning. A new description of the analytical calculation of the angular count rate distribution is introduced based on a more precise model of the collimated detector. The new description is validated and compared to the old description using MCNP5 simulations of angular dependent count rate distributions of Co-60 and Cs-137 point sources. It is shown that the new model describes the angular dependent count rate distribution significantly more accurate compared to the old model. Hence, the reconstruction of the activity is more accurate and the errors are considerably reduced that lead to more reliable results. Furthermore, the results are compared to the conventional reconstruction method assuming a homogeneous matrix and activity distribution.
CENTAURUS A AS A POINT SOURCE OF ULTRAHIGH ENERGY COSMIC RAYS
Kim, Hang Bae
2013-02-20
We probe the possibility that Centaurus A (Cen A) is a point source of ultrahigh energy cosmic rays (UHECRs) observed by Pierre Auger Observatory (PAO), through the statistical analysis of the arrival direction distribution. For this purpose, we set up the Cen A dominance model for the UHECR sources, in which Cen A contributes the fraction f {sub C} of the whole UHECR with energy above 5.5 Multiplication-Sign 10{sup 19} eV and the isotropic background contributes the remaining 1 - f {sub C} fraction. The effect of the intergalactic magnetic fields on the bending of the trajectory of Cen A originated UHECRs is parameterized by the Gaussian smearing angle {theta} {sub s}. For the statistical analysis, we adopted the correlational angular distance distribution (CADD) for the reduction of the arrival direction distribution and the Kuiper test to compare the observed and the expected CADDs. We identify the excess of UHECRs in the Cen A direction and fit the CADD of the observed PAO data by varying two parameters f {sub C} and {theta} {sub s} of the Cen A dominance model. The best-fit parameter values are f {sub C} Almost-Equal-To 0.1 (the corresponding Cen A fraction observed at PAO is f {sub C,PAO} Almost-Equal-To 0.15, that is, about 10 out of 69 UHECRs) and {theta} {sub s} = 5 Degree-Sign with the maximum likelihood L {sub max} = 0.29. This result supports the existence of a point source smeared by the intergalactic magnetic fields in the direction of Cen A. If Cen A is actually the source responsible for the observed excess of UHECRs, the rms deflection angle of the excess UHECRs implies the order of 10 nG intergalactic magnetic field in the vicinity of Cen A.
Critical percolation in bidimensional coarsening
NASA Astrophysics Data System (ADS)
Cugliandolo, Leticia F.
2016-11-01
I discuss a recently unveiled feature in the dynamics of two dimensional coarsening systems on the lattice with Ising symmetry: they first approach a critical percolating state via the growth of a new length scale, and only later enter the usual dynamic scaling regime. The time needed to reach the critical percolating state diverges with the system size. These observations are common to Glauber, Kawasaki, and voter dynamics in pure and weakly disordered systems. An extended version of this account appeared in 2016 C. R. Phys. . I refer to the relevant publications for details.
Radio Astronomical Polarimetry and Point-Source Calibration
NASA Astrophysics Data System (ADS)
van Straten, W.
2004-05-01
A mathematical framework is presented for use in the experimental determination of the polarimetric response of observatory instrumentation. Elementary principles of linear algebra are applied to model the full matrix description of the polarization measurement equation by least-squares estimation of nonlinear, scalar parameters. The formalism is applied to calibrate the center element of the Parkes Multibeam receiver using observations of the millisecond pulsar PSR J0437-4715 and the radio galaxy 3C 218 (Hydra A).
A CMB foreground study in WMAP data: Extragalactic point sources and zodiacal light emission
NASA Astrophysics Data System (ADS)
Chen, Xi
The Cosmic Microwave Background (CMB) radiation is the remnant heat from the Big Bang. It serves as a primary tool to understand the global properties, content and evolution of the universe. Since 2001, NASA's Wilkinson Microwave Anisotropy Probe (WMAP) satellite has been napping the full sky anisotropy with unprecedented accuracy, precision and reliability. The CMB angular power spectrum calculated from the WMAP full sky maps not only enables accurate testing of cosmological models, but also places significant constraints on model parameters. The CMB signal in the WMAP sky maps is contaminated by microwave emission from the Milky Way and from extragalactic sources. Therefore, in order to use the maps reliably for cosmological studies, the foreground signals must be well understood and removed from the maps. This thesis focuses on the separation of two foreground contaminants from the WMAP maps: extragalactic point sources and zodiacal light emission. Extragalactic point sources constitute the most important foreground on small angular scales. Various methods have been applied to the WMAP single frequency maps to extract sources. However, due to the limited angular resolution of WMAP, it is possible to confuse positive CMB excursions with point sources or miss sources that are embedded in negative CMB fluctuations. We present a novel CMB-free source finding technique that utilizes the spectrum difference of point sources and CMB to form internal linear combinations of multifrequency maps to suppress the CMB and better reveal sources. When applied to the WMAP 41, 64 and 94 GHz maps, this technique has not only enabled detection of sources that are previously cataloged by independent methods, but also allowed disclosure of new sources. Without the noise contribution from the CMB, this method responds rapidly with the integration time. The number of detections varies as 0( t 0.72 in the two-band search and 0( t 0.70 in the three-band search from one year to five years
Percolation transition in thermal conductivity of β-Si3N4 filledepoxy
NASA Astrophysics Data System (ADS)
Zhu, Yuan; Chen, Kexin; Kang, Feiyu
2013-03-01
Homemade β-Si3N4 particles of different aspect ratio and commercial epoxy resin were used to form heterogeneous composites and a percolation transition was observed. The pre-percolation phase, near percolation phase and post-percolation phase were discussed with different models. In the near percolation phase, multicrystal model was taken to modify the percolation scaling law and provide physical images to the dumb proportional coefficient. X-ray holograph was used to compare the 3D morphology of the composites, and surface modification was found capable of enhancing the particle dispersion. The aspect ratio dependence was also discussed and the competition between the bridging effect and the interface thermal resistance was considered as the cause of the turning point in the thermal conductivity.
Wierman, John C; Naor, Dora Passen; Smalletz, Jonathan
2007-01-01
Approximation formulas to predict values for bond percolation thresholds of periodic graphs make use of certain features of lattice graphs such as dimension and average degree. We show that a relationship exists between the average and second-moment of the degree of a graph and the average degree of its line graph. Using this relationship together with the well-known bond-to-site transformation between the bond percolation model on a graph and the site percolation model on its line graph, we create a new approximation formula that improves the accuracy of bond percolation threshold predictions.
Point source atom interferometry with a cloud of finite size
NASA Astrophysics Data System (ADS)
Hoth, Gregory W.; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A.
2016-08-01
We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1-5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.
Epidemic Percolation Networks, Epidemic Outcomes, and Interventions
Kenah, Eben; Miller, Joel C.
2011-01-01
Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic “Susceptible-Infectious-Removed” (SIR) and “Susceptible-Exposed-Infectious-Removed” (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies.
Uncertainty Analysis of non-point source pollution control facilities design techniques in Korea
NASA Astrophysics Data System (ADS)
Lee, J.; Okjeong, L.; Gyeong, C. B.; Park, M. W.; Kim, S.
2015-12-01
The design of non-point sources control facilities in Korea is divided largely by the stormwater capture ratio, the stormwater load capture ratio, and the pollutant reduction efficiency of the facility. The stormwater capture ratio is given by a design formula as a function of the water quality treatment capacity, the greater the capacity, the more the amount of stormwater intercepted by the facility. The stormwater load capture ratio is defined as the ratio of the load entering the facility of the total pollutant load generated in the target catchment, and is given as a design formula represented by a function of the stormwater capture ratio. In order to estimate the stormwater capture ratio and load capture ratio, a lot of quantitative analysis of hydrologic processes acted in pollutant emission is required, but these formulas have been applied without any verification. Since systematic monitoring programs were insufficient, verification of these formulas was fundamentally impossible. However, recently the Korean ministry of Environment has conducted an long-term systematic monitoring project, and thus the verification of the formulas became possible. In this presentation, the stormwater capture ratio and load capture ratio are re-estimated using actual TP data obtained from long-term monitoring program at Noksan industrial complex located in Busan, Korea. Through the re-estimated process, the uncertainty included in the design process that has been applied until now will be shown in a quantitative extent. In addition, each uncertainty included in the stormwater capture ratio estimation and in the stormwater load capture ratio estimation will be expressed to quantify the relative impact on the overall non-point pollutant control facilities design process. Finally, the SWMM-Matlab interlocking module for model parameters estimation will be introduced. Acknowledgement This subject is supported by Korea Ministry of Environment as "The Eco Innovation Project : Non-point
Study on gas diffusion emitted from different height of point source.
Yassin, Mohamed F
2009-01-01
The flow and dispersion of stack-gas emitted from different elevated point source around flow obstacles in an urban environment have been investigated, using computational fluid dynamics models (CFD). The results were compared with the experimental results obtained from the diffusion wind tunnel under different conditions of thermal stability (stable, neutral or unstable). The flow and dispersion fields in the boundary layer in an urban environment were examined with different flow obstacles. Gaseous pollutant was discharged in the simulated boundary layer over the flat area. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with kappa-epsilon turbulence models; standard kappa-epsilon and RNG kappa-epsilon models. The flow and dispersion data measured in the wind tunnel experiments were compared with the results of the CFD models in order to evaluate the prediction accuracy of the pollutant dispersion. The results of the CFD models showed good agreement with the results of the wind tunnel experiments. The results indicate that the turbulent velocity is reduced by the obstacles models. The maximum dispersion appears around the wake region of the obstacles.
Dynamic Fizeau interferometer based on the lateral displacements of the point sources
NASA Astrophysics Data System (ADS)
Zhu, Wenhua; Chen, Lei; Zheng, Donghui; Meng, Shi; Yang, Ying; Liu, Zhiyuan; Han, Zhigang; Li, Jinpeng
2017-04-01
A novel dynamic Fizeau interferometer (DFI) is proposed based on simultaneous phase shifting with different incident angles through the lateral displacements of the point sources. Four point sources with identical intensity are generated using a phase grating and the corresponding interferograms with equal phase step are introduced by properly adjusting each point source to the optical axis of the interferometer. The interferograms are separated and clearly imaged at the CCD target in a single shot by putting a lens array in the imaging system, thereby realizing dynamic interferometry. The experimental results show the feasibility and high precision of the DFI.
Guided wave radiation from a point source in the proximity of a pipe bend
Brath, A. J.; Nagy, P. B.; Simonetti, F.; Instanes, G.
2014-02-18
Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-D elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.
Guided wave radiation from a point source in the proximity of a pipe bend
NASA Astrophysics Data System (ADS)
Brath, A. J.; Simonetti, F.; Nagy, P. B.; Instanes, G.
2014-02-01
Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-D elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8" diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.
Memory decay and loss of criticality in quorum percolation
NASA Astrophysics Data System (ADS)
Renault, Renaud; Monceau, Pascal; Bottani, Samuel
2013-12-01
In this paper, we present the effects of memory decay on a bootstrap percolation model applied to random directed graphs (quorum percolation). The addition of decay was motivated by its natural occurrence in physical systems previously described by percolation theory, such as cultured neuronal networks, where decay originates from ionic leakage through the membrane of neurons and/or synaptic depression. Surprisingly, this feature alone appears to change the critical behavior of the percolation transition, where discontinuities are replaced by steep but finite slopes. Using different numerical approaches, we show evidence for this qualitative change even for very small decay values. In experiments where the steepest slopes can not be resolved and still appear as discontinuities, decay produces nonetheless a quantitative difference on the location of the apparent critical point. We discuss how this shift impacts network connectivity previously estimated without considering decay. In addition to this particular example, we believe that other percolation models are worth reinvestigating, taking into account similar sorts of memory decay.
Detection of point sources with spark chamber gamma-ray telescopes
NASA Technical Reports Server (NTRS)
Mattox, J. R.
1991-01-01
The sensitivity of cross correlation and maximum likelihood, two methods under consideration by the EGRET team for detecting point sources, is analyzed numerically. Cross correlation is found to be 9 +/- 2 percent more sensitive than maximum likelihood.
Optical Remote Sensing Method to Determine Strength of Non-point Sources
2008-09-01
1989. “Air Toxics Monitoring: A Comparison Between Remote Sensing and Point Monitoring Techniques,” In Proceedings of American Chemical Society ... Method to Determine Strength of Non-point Sources September 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...SUBTITLE Optical Remote Sensing Method to Determine Strength of Non-point Sources 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
Percolation of optical excitation mediated by near-field interactions
NASA Astrophysics Data System (ADS)
Naruse, Makoto; Kim, Song-Ju; Takahashi, Taiki; Aono, Masashi; Akahane, Kouichi; D'Acunto, Mario; Hori, Hirokazu; Thylén, Lars; Katori, Makoto; Ohtsu, Motoichi
2017-04-01
Optical excitation transfer in nanostructured matter has been intensively studied in various material systems for versatile applications. Herein, we theoretically and numerically discuss the percolation of optical excitations in randomly organized nanostructures caused by optical near-field interactions governed by Yukawa potential in a two-dimensional stochastic model. The model results demonstrate the appearance of two phases of percolation of optical excitation as a function of the localization degree of near-field interaction. Moreover, it indicates sublinear scaling with percolation distances when the light localization is strong. Furthermore, such a character is maximized at a particular size of environments. The results provide fundamental insights into optical excitation transfer and will facilitate the design and analysis of nanoscale signal-transfer characteristics.
Parameter uncertainty analysis of non-point source pollution from different land use types.
Shen, Zhen-yao; Hong, Qian; Yu, Hong; Niu, Jun-feng
2010-03-15
Land use type is one of the most important factors that affect the uncertainty in non-point source (NPS) pollution simulation. In this study, seventeen sensitive parameters were screened from the Soil and Water Assessment Tool (SWAT) model for parameter uncertainty analysis for different land use types in the Daning River Watershed of the Three Gorges Reservoir area, China. First-Order Error Analysis (FOEA) method was adopted to analyze the effect of parameter uncertainty on model outputs under three types of land use, namely, plantation, forest and grassland. The model outputs selected in this study consisted of runoff, sediment yield, organic nitrogen (N), and total phosphorus (TP). The results indicated that the uncertainty conferred by the parameters differed among the three land use types. In forest and grassland, the parameter uncertainty in NPS pollution was primarily associated with runoff processes, but in plantation, the main uncertain parameters were related to runoff process and soil properties. Taken together, the study suggested that adjusting the structure of land use and controlling fertilizer use are helpful methods to control the NPS pollution in the Daning River Watershed.
NASA Astrophysics Data System (ADS)
Ariskin, Alexey; Danyushevsky, Leonid
2013-04-01
An important feature of the Dovyren intrusive complex [1] is its fertility due to the presence of massive sulphide ores near the bottom of the Ioko-Dovyren massif (YDM, SW and NE margins), as well as PGE-reefs in anorthosites from the Ol-gabbronorite zone in the centre [2]. These observations argue for the importance of downward percolation of sulphides through the porous space of cumulates and probable link of this process with upward migration of intercumulus melts at a post-cumulus stage. Indirectly, this is supported by the basic conclusion on the open-system behavior of the magma chamber [1]. A key aspect of these speculations is the onset of sulphide immiscibility in YDM parental magmas and the original cumulates. To reconstruct the sulphide saturation history, we applied a newly developed sulphide version of COMAGMAT (ver. 5.2 [3]) to the rocks from the chilled zone of YDM and underlying ultramafic sills, by simulating the course of their crystallization coupled with the SCSS calculations. Modeled crystallization trajectories evidence for under-saturated nature of the most primitive parental magmas (1310oC, Fo88) from which the chilled rocks were crystallized, whereas more evolved rocks from the sills demonstrate sulphide saturation starting from their initial temperature (1190oC, Fo85), see [1]. This correlates with the absence of sulphide ores in the central parts of the pluton and their occurrence in underlying ultramafics and YDM border series containing olivine Fo~85. Another set of calculations was carried out to demonstrate the effect of bulk Ni contents in Ol cumulate piles on the evolution of SCSS during their post-cumulus crystallization [3]. To achieve the goal, two calculations by the COMAGMAT-5.2 model were carried out. The first one involved modelling equilibrium crystallization for an initial mixture of Ol (Fo88) and intercumulus melt (~1320oC), with the starting composition corresponding to that of a bottom Pl-dunite (2315 ppm NiO, 0.030 wt
Lowering IceCube's Energy Threshold for Point Source Searches in the Southern Sky
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration
2016-06-01
Observation of a point source of astrophysical neutrinos would be a “smoking gun” signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν μ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (˜100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.
Liu, Mei-bing; Chen, Xing-wei; Chen, Ying
2015-07-01
Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.
Gibson, Alexander
2015-08-23
In my research, I analyzed how two gamma-ray source models interact with one another when optimizing to fit data. This is important because it becomes hard to distinguish between the two point sources when they are close together or looking at low energy photons. The reason for the first is obvious, the reason why they become harder to distinguish at lower photon energies is the resolving power of the Fermi Gamma-Ray Space Telescope gets worse at lower energies. When the two point sources are highly correlated (hard to distinguish between), we need to change our method of statistical analysis. What I did was show that highly correlated sources have larger uncertainties associated with them, caused by an optimizer not knowing which point source’s parameters to optimize. I also mapped out where their is high correlation for 2 different theoretical mass dark matter point sources so that people analyzing them in the future knew where they had to use more sophisticated statistical analysis.
Percolation on networks with conditional dependence group.
Wang, Hui; Li, Ming; Deng, Lin; Wang, Bing-Hong
2015-01-01
Recently, the dependence group has been proposed to study the robustness of networks with interdependent nodes. A dependence group means that a failed node in the group can lead to the failures of the whole group. Considering the situation of real networks that one failed node may not always break the functionality of a dependence group, we study a cascading failure model that a dependence group fails only when more than a fraction β of nodes of the group fail. We find that the network becomes more robust with the increasing of the parameter β. However, the type of percolation transition is always first order unless the model reduces to the classical network percolation model, which is independent of the degree distribution of the network. Furthermore, we find that a larger dependence group size does not always make the networks more fragile. We also present exact solutions to the size of the giant component and the critical point, which are in agreement with the simulations well.
Percolation on Networks with Conditional Dependence Group
Wang, Hui; Li, Ming; Deng, Lin; Wang, Bing-Hong
2015-01-01
Recently, the dependence group has been proposed to study the robustness of networks with interdependent nodes. A dependence group means that a failed node in the group can lead to the failures of the whole group. Considering the situation of real networks that one failed node may not always break the functionality of a dependence group, we study a cascading failure model that a dependence group fails only when more than a fraction β of nodes of the group fail. We find that the network becomes more robust with the increasing of the parameter β. However, the type of percolation transition is always first order unless the model reduces to the classical network percolation model, which is independent of the degree distribution of the network. Furthermore, we find that a larger dependence group size does not always make the networks more fragile. We also present exact solutions to the size of the giant component and the critical point, which are in agreement with the simulations well. PMID:25978634
Percolation on bipartite scale-free networks
NASA Astrophysics Data System (ADS)
Hooyberghs, H.; Van Schaeybroeck, B.; Indekeu, J. O.
2010-08-01
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual-contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with a probability proportional to (, where α is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.
Kubrycht, J; Maxová, H; Nyč, O; Vajner, L; Novotná, J; Hezinová, A; Trnková, A; Vrablová, K; Vytášek, R; Valoušková, V
2011-01-01
Prolonged cultivation of separated rat lung mast cells (LMC) in vitro is necessary to better investigate a possible role of LMC in different stages of tissue remodeling induced by hypoxia. Rat lung mast cells (LMC) were separated using a protocol including an improved proteolytic extraction and two subsequent density gradient separations on Ficoll-Paque PLUS and a new generation of Percoll, i.e. Percoll PLUS. Instead of usual isotonic stock Percoll solution, an alternative "asymptotically isotonic" stock solution was more successful in our density separation of LMC on Percoll PLUS. Separated cells were cultivated for six days in media including stem cell factor, interleukins IL-3 and IL-6, and one of two alternative mixtures of antibiotics. These cultivations were performed without any contamination and with only rare changes in cell size and morphology. Model co-cultivation of two allogenic fractions of LMC often caused considerable rapid changes in cell morphology and size. In contrast to these observations no or rare morphological changes were found after cultivation under hypoxic conditions. In conclusions, we modified separation on Percoll PLUS to be widely used, altered LMC separation with respect to purposes of long-lasting cultivation and observed some model morphological changes of LMC.
No-Enclave Percolation Corresponds to Holes in the Cluster Backbone
NASA Astrophysics Data System (ADS)
Hu, Hao; Ziff, Robert M.; Deng, Youjin
2016-10-01
The no-enclave percolation (NEP) model introduced recently by Sheinman et al. can be mapped to a problem of holes within a standard percolation backbone, and numerical measurements of such holes give the same size-distribution exponent τ =1.82 (1 ) as found for the NEP model. An argument is given that τ =1 +dB/2 ≈1.822 for backbone holes, where dB is the backbone dimension. On the other hand, a model of simple holes within a percolation cluster yields τ =1 +df/2 =187 /96 ≈1.948 , where df is the fractal dimension of the cluster, and this value is consistent with the experimental results of gel collapse of Sheinman et al., which give τ =1.91 (6 ). This suggests that the gel clusters are of the universality class of percolation cluster holes. Both models give a discontinuous maximum hole size at pc, signifying explosive percolation behavior.
Bond percolation in higher dimensions
NASA Astrophysics Data System (ADS)
Corwin, Eric I.; Stinchcombe, Robin; Thorpe, M. F.
2013-07-01
We collect results for bond percolation on various lattices from two to fourteen dimensions that, in the limit of large dimension d or number of neighbors z, smoothly approach a randomly diluted Erdős-Rényi graph. We include results on bond-diluted hypersphere packs in up to nine dimensions, which show the mean coordination, excess kurtosis, and skewness evolving smoothly with dimension towards the Erdős-Rényi limit.
Bounds for percolation thresholds on directed and undirected graphs
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Pryadko, Leonid
2015-03-01
Percolation theory is an efficient approach to problems with strong disorder, e.g., in quantum or classical transport, composite materials, and diluted magnets. Recently, the growing role of big data in scientific and industrial applications has led to a renewed interest in graph theory as a tool for describing complex connections in various kinds of networks: social, biological, technological, etc. In particular, percolation on graphs has been used to describe internet stability, spread of contagious diseases and computer viruses; related models describe market crashes and viral spread in social networks. We consider site-dependent percolation on directed and undirected graphs, and present several exact bounds for location of the percolation transition in terms of the eigenvalues of matrices associated with graphs, including the adjacency matrix and the Hashimoto matrix used to enumerate non-backtracking walks. These bounds correspond t0 a mean field approximation and become asymptotically exact for graphs with no short cycles. We illustrate this convergence numerically by simulating percolation on several families of graphs with different cycle lengths. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.
Percolation on networks with weak and heterogeneous dependency
NASA Astrophysics Data System (ADS)
Kong, Ling-Wei; Li, Ming; Liu, Run-Ran; Wang, Bing-Hong
2017-03-01
In real networks, the dependency between nodes is ubiquitous; however, the dependency is not always complete and homogeneous. In this paper, we propose a percolation model with weak and heterogeneous dependency; i.e., dependency strengths could be different between different nodes. We find that the heterogeneous dependency strength will make the system more robust, and for various distributions of dependency strengths both continuous and discontinuous percolation transitions can be found. For Erdős-Rényi networks, we prove that the crossing point of the continuous and discontinuous percolation transitions is dependent on the first five moments of the dependency strength distribution. This indicates that the discontinuous percolation transition on networks with dependency is determined not only by the dependency strength but also by its distribution. Furthermore, in the area of the continuous percolation transition, we also find that the critical point depends on the first and second moments of the dependency strength distribution. To validate the theoretical analysis, cases with two different dependency strengths and Gaussian distribution of dependency strengths are presented as examples.
Outdoor air pollution in close proximity to a continuous point source
NASA Astrophysics Data System (ADS)
Klepeis, Neil E.; Gabel, Etienne B.; Ott, Wayne R.; Switzer, Paul
Data are lacking on human exposure to air pollutants occurring in ground-level outdoor environments within a few meters of point sources. To better understand outdoor exposure to tobacco smoke from cigarettes or cigars, and exposure to other types of outdoor point sources, we performed more than 100 controlled outdoor monitoring experiments on a backyard residential patio in which we released pure carbon monoxide (CO) as a tracer gas for continuous time periods lasting 0.5-2 h. The CO was emitted from a single outlet at a fixed per-experiment rate of 120-400 cc min -1 (˜140-450 mg min -1). We measured CO concentrations every 15 s at up to 36 points around the source along orthogonal axes. The CO sensors were positioned at standing or sitting breathing heights of 2-5 ft (up to 1.5 ft above and below the source) and at horizontal distances of 0.25-2 m. We simultaneously measured real-time air speed, wind direction, relative humidity, and temperature at single points on the patio. The ground-level air speeds on the patio were similar to those we measured during a survey of 26 outdoor patio locations in 5 nearby towns. The CO data exhibited a well-defined proximity effect similar to the indoor proximity effect reported in the literature. Average concentrations were approximately inversely proportional to distance. Average CO levels were approximately proportional to source strength, supporting generalization of our results to different source strengths. For example, we predict a cigarette smoker would cause average fine particle levels of approximately 70-110 μg m -3 at horizontal distances of 0.25-0.5 m. We also found that average CO concentrations rose significantly as average air speed decreased. We fit a multiplicative regression model to the empirical data that predicts outdoor concentrations as a function of source emission rate, source-receptor distance, air speed and wind direction. The model described the data reasonably well, accounting for ˜50% of the log
A shape theorem for Riemannian first-passage percolation
NASA Astrophysics Data System (ADS)
LaGatta, T.; Wehr, J.
2010-05-01
Riemannian first-passage percolation is a continuum model, with a distance function arising from a random Riemannian metric in Rd. Our main result is a shape theorem for this model, which says that large balls under this metric converge to a deterministic shape under rescaling. As a consequence, we show that smooth random Riemannian metrics are geodesically complete with probability of 1.
Percolative fragmentation and spontaneous agglomeration
Hurt, R.; Davis, K.
1999-03-01
Captive particle imaging experiments were performed on over 200 coal and char particles in the pulverized size range from four coals of various rank at oxygen concentration from 3--19 mol% and at gas temperatures of about 1250 K. Despite wide variations in single-particle behavior, the data set reveals two clear trends that provide new information on the nature of char combustion. First, the low-rank coal chars are observed to maintain their high reactivity through the late stages of combustion, thus avoiding the near-extinction events and long burnout tails observed for bituminous coal chars. Secondly, percolative fragmentation in the late stages of combustion is a rare event under these conditions. Some particles reach a percolation threshold rate in combustion, but typically undergo spontaneous agglomeration rather than liberation of the incipient fragments. It is concluded that percolative fragmentation behavior in the pulverized size range is determined not only by solid-phase connectivity, but also by a real competition between disruptive and cohesive forces present at the time of formation of the colloidal-sized incipient fragments.
[Impacts of the urbanization on waters non-point source pollution].
Yang, Liu; Ma, Ke-Ming; Guo, Qing-hai; Zhao, Jing-zhu
2004-11-01
Non-point source (NPS) pollution is the prominent source of water pollution in many countries, included America and China, of the world. Urban NPS pollution was attached little importance for long, compared with agriculture NPS pollution. While urbanization is the dominant form of land-use change in terms of impacts on water quality, the hydrology, other physical properties of watersheds as well as their NPS pollution potential at present. The formation of urban NPS pollution of water could be described by "source-process-sink". Urbanization has changed the source, process and sink of urban NPS pollution. A review was conducted on the international researches of urbanization impacts on NPS pollution in urban water environment from the point of view of "describe-predict and evaluation-application". The studies of urbanization impacts on urban NPS pollution were focused on modeling the process of urban NPS pollution by hydrologic model, predicting the pollutants load of NPS pollution. It is a fresh methodology that the relationship between urbanization and urban NPS pollution of water was analyzed by the method of landscape change and ecological process. The research on temporal-spatial comprehensive impacts of landscape pattern changes, led by urbanization, on the urban NPS pollution will be one of the hotspots.
NASA Astrophysics Data System (ADS)
Felber, R.; Münger, A.; Neftel, A.; Ammann, C.
2015-02-01
Methane (CH4) from ruminants contributes one third to global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analysers the instrumentation at many flux sites have been amended for these gases. However the application of EC over pastures is challenging due to the spatial and temporal uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to two orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best guess of this study) correspond well to animal respiration chamber measurements reported in the literature. However a systematic effect of the distance between source and EC tower on cow emissions was found which is attributed to the analytical footprint model used. We show that the EC method allows to determine CH4 emissions of grazing cows if the data evaluation is adjusted for this purpose and if some cow distribution information is available.
NASA Astrophysics Data System (ADS)
Felber, R.; Münger, A.; Neftel, A.; Ammann, C.
2015-06-01
Methane (CH4) from ruminants contributes one-third of global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analyzers, the instrumentation at many flux sites has been amended for these gases. However, the application of EC over pastures is challenging due to the spatially and temporally uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to 2 orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best estimate from this study) correspond well to animal respiration chamber measurements reported in the literature. However, a systematic effect of the distance between source and EC tower on cow emissions was found, which is attributed to the analytical footprint model used. We show that the EC method allows one to determine CH4 emissions of cows on a pasture if the data evaluation is adjusted for this purpose and if some cow distribution information is available.
Novel percolation transitions and coupled catastrophes
NASA Astrophysics Data System (ADS)
D'Souza, Raissa
Collections of interdependent networks are at the core of modern society, spanning physical, biological and social systems. Simple mathematical models of the structure and function of networks can provide important insights into real-world systems, enhancing our ability to steer and control them. Here our focus is on abrupt changes in networks, due both to phase transitions and to jumping between bi-stable equilibria. We begin with an overview of novel classes of percolation phase transitions that result from repeated, small interventions intended to delay the transition. These new phenomena allow us to extend percolation approaches to modular networks, Brownian motion, and cluster growth dynamics. We then focus on abrupt transitions due to a system jumping between bi-stable equilibria, modeled as a cusp catastrophe in nonlinear dynamics. We show that when systems that each undergo a cusp catastrophe interact, we can observe a new phenomena of catastrophe-hopping leading to non-local cascading failures. Here an intermediate system facilitates the propagation of a sudden change or collapse, and we show that catastrophe hopping is consistent with the outbreak of protests observed during the Arab Spring of 2011.
Percolation and hysteresis in macroscopic capillarity
NASA Astrophysics Data System (ADS)
Hilfer, Rudolf
2010-05-01
The concepts of relative permeability and capillary pressure are crucial for the accepted traditional theory of two phase flow in porous media. Recently a theoretical approach was introduced that does not require these concepts as input [1][2][3]. Instead it was based on the concept of hydraulic percolation of fluid phases. The presentation will describe this novel approach. It allows to simulate processes with simultaneous occurence of drainage and imbibition. Furthermore, it predicts residual saturations and their spatiotemporal changes during two phase immiscible displacement [1][2][3][4][5]. [1] R. Hilfer. Capillary Pressure, Hysteresis and Residual Saturation in Porous Media, Physica A, vol. 359, pp. 119, 2006. [2] R. Hilfer. Macroscopic Capillarity and Hysteresis for Flow in Porous Media, Physical Review E, vol. 73, pp. 016307, 2006. [3] R. Hilfer. Macroscopic capillarity without a constitutive capillary pressure function, Physica A, vol. 371, pp. 209, 2006. [4] R. Hilfer. Modeling and Simulation of Macrocapillarity, in: P. Garrido et al. (eds.) Modeling and Simulation of Materials vol. CP1091, pp. 141, American Institute of Physcis, New York, 2009. [5] R. Hilfer and F. Doster. Percolation as a basic concept for macroscopic capillarity, Transport in Porous Media, DOI 10.1007/s11242-009-9395-0, in print, 2009.
Variable percolation threshold of composites with fiber fillers under compression
NASA Astrophysics Data System (ADS)
Lin, Chuan; Wang, Hongtao; Yang, Wei
2010-07-01
The piezoresistant effect in conducting fiber-filled composites has been studied by a continuum percolation model. Simulation was performed by a Monte Carlo method that took into account both the deformation-induced fiber bending and rotation. The percolation threshold was found to rise with the compression strain, which explains the observed positive piezoresistive coefficients in such composites. The simulations unveiled the effect of the microstructure evolution during deformation. The fibers are found to align perpendicularly to the compression direction. As the fiber is bended, the effective length in making a conductive network is shortened. Both effects contribute to a larger percolation threshold and imply a positive piezoresistive coefficient according the universal power law.
Scaling behavior of explosive percolation on the square lattice
NASA Astrophysics Data System (ADS)
Ziff, Robert M.
2010-11-01
Clusters generated by the product-rule growth model of Achlioptas, D’Souza, and Spencer on a two-dimensional square lattice are shown to obey qualitatively different scaling behavior than standard (random growth) percolation. The threshold with unrestricted bond placement (allowing loops) is found precisely using several different criteria based on both moments and wrapping probabilities, yielding pc=0.526565±0.000005 , consistent with the recent result of Radicchi and Fortunato. The correlation-length exponent ν is found to be close to 1. The qualitative difference from regular percolation is shown dramatically in the behavior of the percolation probability P∞ (size of largest cluster), of the susceptibility, and of the second moment of finite clusters, where discontinuities appear at the threshold. The critical cluster-size distribution does not follow a consistent power law for the range of system sizes we study (L≤8192) but may approach a power law with τ>2 for larger L .
Percolation-based precursors of transitions in extended systems
Rodríguez-Méndez, Víctor; Eguíluz M, Víctor M.; Hernández-García, Emilio; Ramasco, José J.
2016-01-01
Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system’s time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system’s tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon. PMID:27412567
Percolation-based precursors of transitions in extended systems
NASA Astrophysics Data System (ADS)
Rodríguez-Méndez, Víctor; Eguíluz M, Víctor M.; Hernández-García, Emilio; Ramasco, José J.
2016-07-01
Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system’s time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system’s tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon.
Harmonic measure for percolation and ising clusters including rare events.
Adams, David A; Sander, Leonard M; Ziff, Robert M
2008-10-03
We obtain the harmonic measure of the hulls of critical percolation clusters and Ising-model Fortuin-Kastelyn clusters using a biased random-walk sampling technique which allows us to measure probabilities as small as 10{-300}. We find the multifractal D(q) spectrum including regions of small and negative q. Our results for external hulls agree with Duplantier's theoretical predictions for D(q) and his exponent -23/24 for the harmonic measure probability distribution for percolation. For the complete hull, we find the probability decays with an exponent of -1 for both systems.
Kinetic growth walk on critical percolation clusters and lattice animals
NASA Astrophysics Data System (ADS)
Lam, P. M.; Zhang, Z. Q.
1984-03-01
The statistics of recently proposed kinetic growth walk (KGW) model for linear polymers (or growing self avoiding walk (GSAW)) on two dimensional critical percolation clusters and lattice animals are studied using real-space renormalization group method. The correlation length exponents ν's are found to be ν{KGW/ Pc } = 0.68 and ν{KGW/LA} respectively for the critical percolation clusters and lattice animals. Close agreements are found between these results and a generalized Flory formula for linear polymers at theta point ν{KGW/F} = 2/bar d+1),, wherebar d is the fractal dimension of the fractal object F.
Anomalous Magnetotransport in Disordered Structures: Classical Edge-State Percolation.
Schirmacher, Walter; Fuchs, Benedikt; Höfling, Felix; Franosch, Thomas
2015-12-11
By event-driven molecular dynamics simulations we investigate magnetotransport in a two-dimensional model with randomly distributed scatterers close to the field-induced localization transition. This transition is generated by percolating skipping orbits along the edges of obstacle clusters. The dynamic exponents differ significantly from those of the conventional transport problem on percolating systems, thus establishing a new dynamic universality class. This difference is tentatively attributed to a weak-link scenario, which emerges naturally due to barely overlapping edge trajectories. We make predictions for the frequency-dependent conductivity and discuss implications for active colloidal circle swimmers in a hetegogeneous environment.
[Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].
Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun
2013-04-01
The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.
VizieR Online Data Catalog: submm point sources from the Archeops experiment (Desert+, 2008)
NASA Astrophysics Data System (ADS)
Desert, F.-X.; Macias-Perez, J. F.; Mayet, F.; Giardino, G.; Renault, C.; Aumont, J.; Benoit, A.; Bernard, J.-P.; Ponthieu, N.; Tristram, M.
2008-02-01
Table 3 gives coordinates and basic photometric properties. The name of the source gives the galactic coordinates in degrees. Fluxes and 1-sigma errors are in Jy, assuming a Rayleigh-Jeans color and for the 4 frequencies of 143, 217, 353 and 545GHz. No available measurements are quoted as (sigma=-1). Upper limits are quoted at the 2-sigma level. The bright sources with an asterisk have positional uncertainties larger than the nominal 4arcmin (1-sigma). Table 4 gives the model fit parameters and associations. For each point source, the emissivity exponent beta and temperature T are given along with the reduced chi^2 value. When the fit is unsatisfactory, beta11 (assuming a fixed temperature of 11K), or T2 (assuming a fixed exponent index of 2) are provided instead. The associated Iras source is given along with the far infrared fluxes. A star by the name of the Iras counterpart indicates that the Iras source has the Iras colors of an ultra-compact HII region. Then associations with a commonly used name are given with Lynds Dark Nebulae, Bright Nebulae, Sharpless and other common catalogs. Associations with HII regions (with angular size le 10arcmin) from the catalogue by Paladini et al. (2003, Cat. ) are also given. (2 data files).
Ding, Xiao-Wen; Shen, Zhen-Yao
2012-11-01
In order to provide regulatory support for management and control of non-point source (NPS) pollution in Fujiang watershed, agricultural NPS pollution is simulated, spatial distribution characteristics of NPS pollution are analyzed, and the primary pollution sources are also identified, by export coefficient model (ECM) and geographic information system (GIS). Agricultural NPS total nitrogen (TN) loading was of research area was 9.11 x 10(4) t in 2010, and the average loading was intensity was 3.10 t x km(-2). Agricultural NPS TN loading mainly distributed over dry lands, Mianyang city and gentle slope areas; high loading intensity areas were dry lands, Deyang city and gentle slope areas. Agricultural land use, of which contribution rate was 62. 12%, was the most important pollution source; fertilizer loss in dry lands, of which contribution rate was 50.49%, was the prominent. Improving methods of agricultural cultivation, implementing "farm land returning to woodland" policy, and enhancing treatment efficiency of domestic sewage and livestock waster wate are effective measures.
Mapping the scientific research on non-point source pollution: a bibliometric analysis.
Yang, Beibei; Huang, Kai; Sun, Dezhi; Zhang, Yue
2017-02-01
A bibliometric analysis was conducted to examine the progress and future research trends of non-point source (NPS) pollution during the years 1991-2015 based on the Science Citation Index Expanded (SCI-Expanded) of Web of Science (WoS). The publications referencing NPS pollution were analyzed including the following aspects: document type, publication language, publication output and characteristics, subject category, source journal, distribution of country and institution, author keywords, etc. The results indicate that the study of NPS pollution demonstrated a sharply increasing trend since 1991. Article and English were the most commonly used document type and language. Environmental sciences and ecology, water resources, and engineering were the top three subject categories. Water science and technology ranked first in distribution of journal, followed by Science of the total environment and Environmental Monitoring and Assessment. The USA took a leading position in both quantity and quality, playing an important role in the research field of NPS pollution, followed by the UK and China. The most productive institution was the Chinese Academy of Sciences (Chinese Acad Sci), followed by Beijing Normal University and US Department of Agriculture's Agricultural Research Service (USDA ARS). The analysis of author keywords indicates that the major hotspots of NPS pollution from 1991 to 2015 contained "water," "model," "agriculture," "nitrogen," "phosphorus," etc. The results provide a comprehensive understanding of NPS pollution research and help readers to establish the future research directions.
Percolation effect in thick film superconductors
Sali, R.; Harsanyi, G.
1994-12-31
A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.
Spectral Dimension of a Percolation Network
NASA Astrophysics Data System (ADS)
Rudra, Jayanta
2005-03-01
While the fractal dimension df describes the self-similar static nature of the lattice, the spectral dimension ds dictates the dynamic properties on it. Alexander and Orbach^1 conjectured that the spectral dimension might be exactly 4/3 for percolation networks with embedding euclidian dimension de >= 2. Recent numerical simulations^2, however, could not decisively prove or disprove this conjecture, although there are other indirect evidences that it is true. We believe that the failure of the simulations to decisively check the validity of the conjecture is due to the non-stochastic nature of the methods. Most of these simulations are Monte Carlo Methods based on a random-walk model and, in spite of very large number of walks on huge lattices, the results do not reach the satisfactory level. In this work we apply a stochastic approach^3 to determine the spectral dimension of percolation network for de >= 2 and check the validity of the Alexander-Orbach-conjecture. Due to its stochastic nature this method is numerically superior and more accurate than the conventional Monte Carlo simulations. References: 1. S. Alexander and R. Orbach, J. Phys. Lett. (Paris) 43 (1982) L625. 2. N. Pitsianis, G. Bleris and P. Argyrakis, Phys. Rev. B 39 (1989) 7097. 3. J. Rudra and J. Kozak, Phys. Lett A 151 (1990) 429.
[Study on water quality monitoring scheme based on non-point source pollution].
Wu, Xi-Jun; Li, Huai-En; Li, Jia-Ke; Li, Qiang-Kun; Dong, Wen
2013-06-01
In order to improve standardization and normalization of non-point source pollution monitoring, this paper summarized the non-point source pollution monitoring scheme that based on conventional technology condition. The scheme firstly emphasized the preparation work before monitoring, including situation investigation and index selection of the monitoring area and so on; In the process of establishing monitoring scheme, the monitoring area was divided into three types: city, agriculture and watershed. Take urban area monitoring scheme for Xi'an as an example, through dividing function zone setting sampling point, summarized sampling time interval, frequency and sampling methods during a rainfall process. An irrigation district was an example for agricultural monitoring scheme, through unit division, setting sampling point at the approach channel and drain channel, introduced sampling times, interval time and so on in the process of irrigation. Watershed monitoring scheme's example was the Weihe GuanZhong section, raised the setting principle of each sample section, and analyzed each section's sampling law in the process of rainfall. Finally the principal character of different non-point source pollution monitoring areas was discussed, and concluded that non-point source pollution monitoring scheme is the base of non-point source pollution study and control.
Estimation of the skull insertion loss using an optoacoustic point source
NASA Astrophysics Data System (ADS)
Estrada, Héctor; Rebling, Johannes; Turner, Jake; Kneipp, Moritz; Shoham, Shy; Razansky, Daniel
2016-03-01
The acoustically-mismatched skull bone poses significant challenges for the application of ultrasonic and optical techniques in neuroimaging, still typically requiring invasive approaches using craniotomy or skull thinning. Optoacoustic imaging partially circumvents the acoustic distortions due to the skull because the induced wave is transmitted only once as opposed to the round trip in pulse-echo ultrasonography. To this end, the mouse brain has been successfully imaged transcranially by optoacoustic scanning microscopy. Yet, the skull may adversely affect the lateral and axial resolution of transcranial brain images. In order to accurately characterize the complex behavior of the optoacoustic signal as it traverses through the skull, one needs to consider the ultrawideband nature of the optoacoustic signals. Here the insertion loss of murine skull has been measured by means of a hybrid optoacoustic-ultrasound scanning microscope having a spherically focused PVDF transducer and pulsed laser excitation at 532 nm of a 20 μm diameter absorbing microsphere acting as an optoacoustic point source. Accurate modeling of the acoustic transmission through the skull is further performed using a Fourier-domain expansion of a solid-plate model, based on the simultaneously acquired pulse-echo ultrasound image providing precise information about the skull's position and its orientation relative to the optoacoustic source. Good qualitative agreement has been found between the a solid-plate model and experimental measurements. The presented strategy might pave the way for modeling skull effects and deriving efficient correction schemes to account for acoustic distortions introduced by an adult murine skull, thus improving the spatial resolution, effective penetration depth and overall image quality of transcranial optoacoustic brain microscopy.
La percolation: un concept unificateur (Percolation a unifying concept)
NASA Astrophysics Data System (ADS)
de Gennes, Pierre-Gilles
It may look surprising (even provoking) at first sight to include an article in French written in "La Recherche" (a French equivalent of "Scientific American"). It is, however, easy to justify this choice in the case of a book dealing with de Gennes' scientific heritage. First, Pierre-Gilles liked to communicate with a large audience (ranging from groups of school children to lectures at the Collège de France) and to share his most recent findings; questions, even areas of ignorance with them. He always did so in simple terms and images for all ages and levels of education. And the use of French allowed more flexibility in this exercise. Secondly, this article is focused on percolation, a concept he invented, independently of Hammersley, in a pioneer article (also in French!) in 1957. Percolation theory led to many applications to disordered matter that de Gennes initiated or stimulated (in numerous articles rather than in a single one). They are described in this seminal paper which can be taken as the fundamental reference article for this chapter dealing with disordered matter…
Extending the search for neutrino point sources with IceCube above the horizon
IceCube Collaboration; Abbasi, R.
2009-11-20
Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This approach improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies.
Long Term Temporal and Spectral Evolution of Point Sources in Nearby Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Durmus, D.; Guver, T.; Hudaverdi, M.; Sert, H.; Balman, Solen
2016-06-01
We present the results of an archival study of all the point sources detected in the lines of sight of the elliptical galaxies NGC 4472, NGC 4552, NGC 4649, M32, Maffei 1, NGC 3379, IC 1101, M87, NGC 4477, NGC 4621, and NGC 5128, with both the Chandra and XMM-Newton observatories. Specifically, we studied the temporal and spectral evolution of these point sources over the course of the observations of the galaxies, mostly covering the 2000 - 2015 period. In this poster we present the first results of this study, which allows us to further constrain the X-ray source population in nearby elliptical galaxies and also better understand the nature of individual point sources.
Detecting long-term changes in point-source fossil CO2 emissions with tree ring archives
NASA Astrophysics Data System (ADS)
Keller, Elizabeth D.; Turnbull, Jocelyn C.; Norris, Margaret W.
2016-05-01
We examine the utility of tree ring 14C archives for detecting long-term changes in fossil CO2 emissions from a point source. Trees assimilate carbon from the atmosphere during photosynthesis, in the process faithfully recording the average atmospheric 14C content in each new annual tree ring. Using 14C as a proxy for fossil CO2, we examine interannual variability over six years of fossil CO2 observations between 2004-2005 and 2011-2012 from two trees growing near the Kapuni Gas Treatment Plant in rural Taranaki, New Zealand. We quantify the amount of variability that can be attributed to transport and meteorology by simulating constant point-source fossil CO2 emissions over the observation period with the atmospheric transport model WindTrax. We compare model simulation results to observations and calculate the amount of change in emissions that we can detect with new observations over annual or multi-year time periods, given both the measurement uncertainty of 1ppm and the modelled variation in transport. In particular, we ask, what is the minimum amount of change in emissions that we can detect using this method, given a reference period of six years? We find that changes of 42 % or more could be detected in a new sample from one year at the same observation location or 22 % in the case of four years of new samples. This threshold is reduced and the method becomes more practical the more the size of the signal increases. For point sources 10 times larger than the Kapuni plant (a more typical size for power plants worldwide), it would be possible to detect sustained emissions changes on the order of 10 %, given suitable meteorology and observations.
Percolation in finite matching lattices
NASA Astrophysics Data System (ADS)
Mertens, Stephan; Ziff, Robert M.
2016-12-01
We derive an exact, simple relation between the average number of clusters and the wrapping probabilities for two-dimensional percolation. The relation holds for periodic lattices of any size. It generalizes a classical result of Sykes and Essam, and it can be used to find exact or very accurate approximations of the critical density. The criterion that follows is related to the criterion used by Scullard and Jacobsen to find precise approximate thresholds, and our work provides a different perspective on their approach.
Critical points for point source pollution in the Yser catchment area (Flanders-France).
Mestdagh, Inge; Maillet-Mezeray, Julie; Calus, André; Franssens, Vanessa; Röttele, Manfred
2008-01-01
In the frame of the European TOPPS project (Train the Operator to prevent Pollution from Point Sources), 200 on farm audits and 300 tele interviews were performed in the Yser catchment area. The objective was to determine the critical points for point source pollution within the spraying process and to inform advisors, intermediaries and farmers on practical measures and achievable solutions to reduce the contamination of the surface water by Plant Protection Products (PPP) due to point source pollution. For the on farm auditing, the Aquasite tool (Arvalis-France) was used. This audit was performed on 100 farms in the Flemish Yser catchment and on 100 farms at the French side. This audit reveals the weak points in infrastructure and technology on the farm in relation to the spraying process. Next, 150 tele interviews were held in the respective catchment areas. These interviews assess the awareness and behaviour of the farmers on point source pollution. The strength of these studies is in giving a view on the real situation on the farms with respect to spraying. The critical points and risks for point source pollution were similar for both regions. Especially the filling and mixing of the sprayer, internal and external cleaning of the sprayer and the management of the waste fraction need specific training, demonstration and advice. However, there is a large difference in the risk perception of point source pollution between farmers on both sides of the border. The transgressing approach of the Yser catchment allows to make a comparison between both regions and allows to assess in which way the legislation had part in explaining the differences between the regions as the agriculture in both regions is similar. Also, the results stress the importance of trainings and sensibilisation at a regional scale.
The expectation maximization algorithm applied to the search of point sources of astroparticles
NASA Astrophysics Data System (ADS)
Aguilar, Juan Antonio; Hernández-Rey, Juan José
2008-03-01
The expectation-maximization algorithm, widely employed in cluster and pattern recognition analysis, is proposed in this article for the search of point sources of astroparticles. We show how to adapt the method for the particular case in which a faint source signal over a large background is expected. In particular, the method is applied to the point source search in neutrino telescopes. A generic neutrino telescope of an area of 1 km2 located in the Mediterranean Sea has been simulated. Results in terms of minimum detectable number of events are given and the method is compared advantageously with the results of a classical method with binning.
Nichols, J M; Waterman, J R
2017-03-01
This work documents the performance of a recently proposed generalized likelihood ratio test (GLRT) algorithm in detecting thermal point-source targets against a sky background. A calibrated source is placed above the horizon at various ranges and then imaged using a mid-wave infrared camera. The proposed algorithm combines a so-called "shrinkage" estimator of the background covariance matrix and an iterative maximum likelihood estimator of the point-source parameters to produce the GLRT statistic. It is clearly shown that the proposed approach results in better detection performance than either standard energy detection or previous implementations of the GLRT detector.
Unique determination of balls and polyhedral scatterers with a single point source wave
NASA Astrophysics Data System (ADS)
Hu, Guanghui; Liu, Xiaodong
2014-06-01
In this paper, we prove uniqueness in determining a sound-soft ball or polyhedral scatterer in the inverse acoustic scattering problem with a single incident point source wave in {{{R}}^{N}} (N = 2,3). Our proofs rely on the reflection principle for the Helmholtz equation with respect to a Dirichlet hyperplane or sphere, which is essentially a ‘point-to-point’ extension formula. The method has been adapted to proving uniqueness in inverse scattering from sound-soft cavities with interior measurement data deriving from a single point source. The corresponding uniqueness for sound-hard balls or polyhedral scatterers has also been discussed.
Lensless electron reflection microscopy using a coaxial point-source structure.
Hammadi, Zoubida; Morin, Roger
2006-04-01
A lensless image of the surface of a crystal is obtained by the reflection on this surface of a low-energy electron beam originated from a point source integrated in a coaxial structure. The point source is a sharp field emission tip and a free propagation of reflected electrons results from the shielding of the tip voltage provided by the coaxial structure. Images are obtained for an incidence angle between 3 and 45 degrees and for nA incident currents with a kinetic energy down to 40 V. On silicon surfaces a magnification up to a few thousands and a spatial resolution of 100 nm are demonstrated.
A Point-Source Classification Scheme Using Mid-Infrared Spectra
NASA Astrophysics Data System (ADS)
Woods, Paul; SAGE-SPEC Team
2010-01-01
We have produced a simple but robust classification scheme for point-source targets using mid-infrared spectra. This region of the spectrum is often dominated by dust features, and we utilise these and other spectral features, the overall shape of the spectrum and related information, such as bolometric luminosity and variability, to classify point sources. This scheme has been applied to Spitzer data from the SAGE-Spec project (Kemper et al. 2009) and here we present examples and extend its application to ISO SWS spectra. The classification scheme will also have an application to data from IRAS, Spitzer and the forthcoming MIRI instrument on the JWST.
Ning, Shu-Kuang; Chang, Ni-Bin; Jeng, Kai-Yu; Tseng, Yi-Hsing
2006-04-01
Soil erosion associated with non-point source pollution is viewed as a process of land degradation in many terrestrial environments. Careful monitoring and assessment of land use variations with different temporal and spatial scales would reveal a fluctuating interface, punctuated by changes in rainfall and runoff, movement of people, perturbation from environmental disasters, and shifts in agricultural activities and cropping patterns. The use of multi-temporal remote sensing images in support of environmental modeling analysis in a geographic information system (GIS) environment leading to identification of a variety of long-term interactions between land, resources, and the built environment has been a highly promising approach in recent years. This paper started with a series of supervised land use classifications, using SPOT satellite imagery as a means, in the Kao-Ping River Basin, South Taiwan. Then, it was designed to differentiate the variations of eight land use patterns in the past decade, including orchard, farmland, sugarcane field, forest, grassland, barren, community, and water body. Final accuracy was confirmed based on interpretation of available aerial photographs and global positioning system (GPS) measurements. Finally, a numerical simulation model (General Watershed Loading Function, GWLF) was used to relate soil erosion to non-point source pollution impacts in the coupled land and river water systems. Research findings indicate that while the decadal increase in orchards poses a significant threat to water quality, the continual decrease in forested land exhibits a potential impact on water quality management. Non-point source pollution, contributing to part of the downstream water quality deterioration of the Kao-Ping River system in the last decade, has resulted in an irreversible impact on land integrity from a long-term perspective.
Bootstrap percolation on spatial networks
NASA Astrophysics Data System (ADS)
Gao, Jian; Zhou, Tao; Hu, Yanqing
2015-10-01
Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.
Bootstrap percolation on spatial networks
Gao, Jian; Zhou, Tao; Hu, Yanqing
2015-01-01
Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around −1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value −1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading. PMID:26423347
The Herschel Virgo Cluster Survey. XVII. SPIRE point-source catalogs and number counts
NASA Astrophysics Data System (ADS)
Pappalardo, Ciro; Bendo, George J.; Bianchi, Simone; Hunt, Leslie; Zibetti, Stefano; Corbelli, Edvige; di Serego Alighieri, Sperello; Grossi, Marco; Davies, Jonathan; Baes, Maarten; De Looze, Ilse; Fritz, Jacopo; Pohlen, Michael; Smith, Matthew W. L.; Verstappen, Joris; Boquien, Médéric; Boselli, Alessandro; Cortese, Luca; Hughes, Thomas; Viaene, Sebastien; Bizzocchi, Luca; Clemens, Marcel
2015-01-01
Aims: We present three independent catalogs of point-sources extracted from SPIRE images at 250, 350, and 500 μm, acquired with the Herschel Space Observatory as a part of the Herschel Virgo Cluster Survey (HeViCS). The catalogs have been cross-correlated to consistently extract the photometry at SPIRE wavelengths for each object. Methods: Sources have been detected using an iterative loop. The source positions are determined by estimating the likelihood to be a real source for each peak on the maps, according to the criterion defined in the sourceExtractorSussextractor task. The flux densities are estimated using the sourceExtractorTimeline, a timeline-based point source fitter that also determines the fitting procedure with the width of the Gaussian that best reproduces the source considered. Afterwards, each source is subtracted from the maps, removing a Gaussian function in every position with the full width half maximum equal to that estimated in sourceExtractorTimeline. This procedure improves the robustness of our algorithm in terms of source identification. We calculate the completeness and the flux accuracy by injecting artificial sources in the timeline and estimate the reliability of the catalog using a permutation method. Results: The HeViCS catalogs contain about 52 000, 42 200, and 18 700 sources selected at 250, 350, and 500 μm above 3σ and are ~75%, 62%, and 50% complete at flux densities of 20 mJy at 250, 350, 500 μm, respectively. We then measured source number counts at 250, 350, and 500 μm and compare them with previous data and semi-analytical models. We also cross-correlated the catalogs with the Sloan Digital Sky Survey to investigate the redshift distribution of the nearby sources. From this cross-correlation, we select ~2000 sources with reliable fluxes and a high signal-to-noise ratio, finding an average redshift z ~ 0.3 ± 0.22 and 0.25 (16-84 percentile). Conclusions: The number counts at 250, 350, and 500 μm show an increase in
Percolation induced heat transfer in deep unsaturated zones
Lu, N.; LeCain, G.D.
2003-01-01
Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.
NASA Astrophysics Data System (ADS)
Lai, Xiaoming; Liao, Kaihua; Feng, Huihui; Zhu, Qing
2016-09-01
Knowledge of soil water percolation below the rooting zone and its responses to the dynamic interactions of different factors are important for the control of non-point source pollution. Based on 3600 scenarios in Hydrus-1D simulation, this study revealed the integrated effects of rainfall characteristics (rainfall amount, maximum rainfall intensity or MRI, time distribution characteristics of rainfall or TDC), antecedent moisture and the season on deep percolation (DP) at a forest site in Taihu Lake Basin, China. Results showed that Hydrus-1D model can well simulate the soil water dynamics at this site. Antecedent moisture had the greatest relative contribution to DP (85.7%), followed by rainfall amount (10.9%) and MRI (3.4%). As the antecedent moisture increased, the relative contribution of the season on DP increased from 0.0% to 16.4%. In comparison, that of MRI decreased from 58.7% to 38.5% and that of rainfall amount followed a bell shape pattern (greatest when the antecedent moisture was 0.26 m3 m-3). The relative contribution of antecedent moisture to DP in summer was the greatest (87.8%), while that of the rainfall was the least. The TDC influenced DP by affecting the responses of DP to other factors. When the rainfall amount was ⩾80 mm and the antecedent moisture content was ⩾0.34 m3 m-3, effect of TDC on DP could be observed. The DP of TDC_B (rainfall intensity linearly increased with time) was the lowest, while that of TDC_E (rainfall intensity kept constant with time) was the greatest. Findings of this study have practical significance for investigating the water and pollutant transport in vadose zone.
Status of the BATSE Enhanced Earth Occultation Analysis Package for Studying Point Sources
NASA Technical Reports Server (NTRS)
Skelton, R. T.; Ling, J. C.; Radocinski, R.; Wheaton, Wm. A.
1993-01-01
The compton Gama-Ray Observatory's Burst and Transient Source Experiment (BATSE) has a powerful capability to provide nearly uninterrupted monitoring in the 25keV--2MeV range of cosmic point sources using occultation by the Earth.
A New Method for Finding Point Sources in High-Energy Neutrino Data
NASA Astrophysics Data System (ADS)
Giovinazzi, Mark; IceCube Neutrino Observatory Collaboration
2017-01-01
The IceCube Neutrino Observatory has not yet been able to identify an astrophysical point source from which a high-energy neutrino has originated. In this analysis, we implement a new method for finding such point sources by choosing to examine pairs of detected events rather than individual ones, noting that clusters of events are more likely to come from a single source than those from widely different parts of the sky. We wish to measure the angular distances between all possible pairs of events, scaling each by the pair's angular resolution errors summed in quadrature. Furthermore, we compare this result to statistically generated distributions of both a diffuse and a clustered set of events. Our new method is thus designed to teach us exactly how point-source-like our sample of detected events really is. We propose that our analysis should be able to determine the origins of any given clustering of events within the IceCube data, allowing us to discover the first neutrino point source in history.
Mestdagh, Inge; Bonicelli, Bernard; Laplana, Ramon; Roettele, Manfred
2009-01-01
Based on the results and lessons learned from the TOPPS project (Training the Operators to prevent Pollution from Point Sources), a proposal on a sustainable strategy to avoid point source pollution from Plant Protection Products (PPPs) was made. Within this TOPPS project (2005-2008), stakeholders were interviewed and research and analysis were done in 6 pilot catchment areas (BE, FR, DE, DK, IT, PL). Next, there was a repeated survey on operators' perception and opinion to measure changes resulting from TOPPS activities and good and bad practices were defined based on the Best Management Practices (risk analysis). Aim of the proposal is to suggest a strategy considering the differences between countries which can be implemented on Member State level in order to avoid PPP pollution of water through point sources. The methodology used for the up-scaLing proposal consists of the analysis of the current situation, a gap analysis, a consistency analysis and organisational structures for implementation. The up-scaling proposal focuses on the behaviour of the operators, on the equipment and infrastructure available with the operators. The proposal defines implementation structures to support correct behaviour through the development and updating of Best Management Practices (BMPs) and through the transfer and the implementation of these BMPs. Next, the proposal also defines requirements for the improvement of equipment and infrastructure based on the defined key factors related to point source pollution. It also contains cost estimates for technical and infrastructure upgrades to comply with BMPs.
Discrimination between diffuse and point sources of arsenic at Zimapán, Hidalgo state, Mexico.
Sracek, Ondra; Armienta, María Aurora; Rodríguez, Ramiro; Villaseñor, Guadalupe
2010-01-01
There are two principal sources of arsenic in Zimapán. Point sources are linked to mining and smelting activities and especially to mine tailings. Diffuse sources are not well defined and are linked to regional flow systems in carbonate rocks. Both sources are caused by the oxidation of arsenic-rich sulfidic mineralization. Point sources are characterized by Ca-SO(4)-HCO(3) ground water type and relatively enriched values of deltaD, delta(18)O, and delta(34)S(SO(4)). Diffuse sources are characterized by Ca-Na-HCO(3) type of ground water and more depleted values of deltaD, delta(18)O, and delta(34)S(SO(4)). Values of deltaD and delta(18)O indicate similar altitude of recharge for both arsenic sources and stronger impact of evaporation for point sources in mine tailings. There are also different values of delta(34)S(SO(4)) for both sources, presumably due to different types of mineralization or isotopic zonality in deposits. In Principal Component Analysis (PCA), the principal component 1 (PC1), which describes the impact of sulfide oxidation and neutralization by the dissolution of carbonates, has higher values in samples from point sources. In spite of similar concentrations of As in ground water affected by diffuse sources and point sources (mean values 0.21 mg L(-1) and 0.31 mg L(-1), respectively, in the years from 2003 to 2008), the diffuse sources have more impact on the health of population in Zimapán. This is caused by the extraction of ground water from wells tapping regional flow system. In contrast, wells located in the proximity of mine tailings are not generally used for water supply.
Void percolation and conduction of overlapping ellipsoids.
Yi, Y B
2006-09-01
The void percolation and conduction problems for equisized overlapping ellipsoids of revolution are investigated using the discretization method. The method is validated by comparing the estimated percolation threshold of spheres with the precise result found in literature. The technique is then extended to determine the threshold of void percolation as a function of the geometric aspect ratio of ellipsoidal particles. The finite element method is also applied to evaluate the equivalent conductivity of the void phase in the system. The results confirm that there are no universalities for void percolation threshold and conductivity in particulate systems, and these properties are clearly dependent on the geometrical shape of particles. As a consequence, void percolation and conduction associated with ellipsoidal particles of large aspect ratio should be treated differently from spheres.
Thermal percolation in stable graphite suspensions.
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Feng, Shien-Ping; Ohtani, Hiroko; Wang, Jinbo; Chen, Gang
2012-01-11
Different from the electrical conductivity of conductive composites, the thermal conductivity usually does not have distinctive percolation characteristics. Here we report that graphite suspensions show distinct behavior in the thermal conductivity at the electrical percolation threshold, including a sharp kink at the percolation threshold, below which thermal conductivity increases rapidly while above which the rate of increase is smaller, contrary to the electrical percolation behavior. Based on microstructural and alternating current impedance spectroscopy studies, we interpret this behavior as a result of the change of interaction forces between graphite flakes when isolated clusters of graphite flakes form percolated structures. Our results shed light on the thermal conductivity enhancement mechanisms in nanofluids and have potential applications in energy systems.
Interplay between thermal percolation and jamming upon dimer adsorption on binary alloys.
Loscar, Ernesto S; Borzi, R A; Albano, Ezequiel V
2006-11-01
By means of Monte Carlo simulations we study jamming and percolation processes upon the random sequential adsorption of dimers on binary alloys with different degrees of structural order. The substrates are equimolar mixtures that we simulate using an Ising model with conserved order parameter. After an annealing at temperature T we quench the alloys to freeze the state of order of the surface at this temperature. The deposition is then performed neglecting thermal effects like surface desorption or diffusion. In this way, the annealing temperature is a continuous parameter that characterizes the adsorbing surfaces, shaping the deposition process. As the alloys undergo an order-disorder phase transition at the Onsager critical temperature (Tc), the jamming and percolating properties of the set of deposited dimers are subjected to nontrivial changes, which we summarize in a density-temperature phase diagram. We find that for T
Near-field transport of {sup 129}I from a point source in an in-room disposal vault
Kolar, M.; Leneveu, D.M.; Johnson, L.H.
1995-12-31
A very small number of disposal containers of heat generating nuclear waste may have initial manufacturing defects that would lead to pin-hole type failures at the time of or shortly after emplacement. For sufficiently long-lived containers, only the initial defects need to be considered in modeling of release rates from the disposal vault. Two approaches to modeling of near-field mass transport from a single point source within a disposal room have been compared: the finite-element code MOTIF (A Model Of Transport In Fractured/porous media) and a boundary integral method (BIM). These two approaches were found to give identical results for a simplified model of the disposal room without groundwater flow. MOTIF has then been used to study the effects of groundwater flow on the mass transport out of the emplacement room.
NASA Astrophysics Data System (ADS)
Coppola, A.; Comegna, V.; de Simone, L.
2009-04-01
Non-point source (NPS) pollution in the vadose zone is a global environmental problem. The knowledge and information required to address the problem of NPS pollutants in the vadose zone cross several technological and sub disciplinary lines: spatial statistics, geographic information systems (GIS), hydrology, soil science, and remote sensing. The main issues encountered by NPS groundwater vulnerability assessment, as discussed by Stewart [2001], are the large spatial scales, the complex processes that govern fluid flow and solute transport in the unsaturated zone, the absence of unsaturated zone measurements of diffuse pesticide concentrations in 3-D regional-scale space as these are difficult, time consuming, and prohibitively costly, and the computational effort required for solving the nonlinear equations for physically-based modeling of regional scale, heterogeneous applications. As an alternative solution, here is presented an approach that is based on coupling of transfer function and GIS modeling that: a) is capable of solute concentration estimation at a depth of interest within a known error confidence class; b) uses available soil survey, climatic, and irrigation information, and requires minimal computational cost for application; c) can dynamically support decision making through thematic mapping and 3D scenarios This result was pursued through 1) the design and building of a spatial database containing environmental and physical information regarding the study area, 2) the development of the transfer function procedure for layered soils, 3) the final representation of results through digital mapping and 3D visualization. One side GIS modeled environmental data in order to characterize, at regional scale, soil profile texture and depth, land use, climatic data, water table depth, potential evapotranspiration; on the other side such information was implemented in the up-scaling procedure of the Jury's TFM resulting in a set of texture based travel time
Biosolid stockpiles are a significant point source for greenhouse gas emissions.
Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K
2014-10-01
The wastewater treatment process generates large amounts of sewage sludge that are dried and then often stored in biosolid stockpiles in treatment plants. Because the biosolids are rich in decomposable organic matter they could be a significant source for greenhouse gas (GHG) emissions, yet there are no direct measurements of GHG from stockpiles. We therefore measured the direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) on a monthly basis from three different age classes of biosolid stockpiles at the Western Treatment Plant (WTP), Melbourne, Australia, from December 2009 to November 2011 using manual static chambers. All biosolid stockpiles were a significant point source for CH4 and N2O emissions. The youngest biosolids (<1 year old) had the greatest CH4 and N2O emissions of 60.2 kg of CO2-e per Mg of biosolid per year. Stockpiles that were between 1 and 3 years old emitted less overall GHG (∼29 kg CO2-e Mg(-1) yr(-1)) and the oldest stockpiles emitted the least GHG (∼10 kg CO2-e Mg(-1) yr(-1)). Methane emissions were negligible in all stockpiles but the relative contribution of N2O and CO2 changed with stockpile age. The youngest stockpile emitted two thirds of the GHG emission as N2O, while the 1-3 year old stockpile emitted an equal amount of N2O and CO2 and in the oldest stockpile CO2 emissions dominated. We did not detect any seasonal variability of GHG emissions and did not observe a correlation between GHG flux and environmental variables such as biosolid temperature, moisture content or nitrate and ammonium concentration. We also modeled CH4 emissions based on a first order decay model and the model based estimated annual CH4 emissions were higher as compared to the direct field based estimated annual CH4 emissions. Our results indicate that labile organic material in stockpiles is decomposed over time and that nitrogen decomposition processes lead to significant N2O emissions. Carbon decomposition favors CO2 over
NASA Astrophysics Data System (ADS)
Borrello, M. C.; Scribner, M.; Chessin, K.
2013-12-01
A growing body of research draws attention to the negative environmental impacts on surface water from large livestock facilities. These impacts are mostly in the form of excessive nutrient loading resulting in significantly decreased oxygen levels. Over-application of animal waste on fields as well as direct discharge into surface water from facilities themselves has been identified as the main contributor to the development of hypoxic zones in Lake Erie, Chesapeake Bay and the Gulf of Mexico. Some regulators claim enforcement of water quality laws is problematic because of the nature and pervasiveness of non-point source impacts. Any direct discharge by a facility is a violation of permits governed by the Clean Water Act, unless the facility has special dispensation for discharge. Previous research by the principal author and others has shown runoff and underdrain transport are the main mechanisms by which nutrients enter surface water. This study utilized previous work to determine if the effects of non-point source discharge can be distinguished from direct (point-source) discharge using simple nutrient analysis and dissolved oxygen (DO) parameters. Nutrient and DO parameters were measured from three sites: 1. A stream adjacent to a field receiving manure, upstream of a large livestock facility with a history of direct discharge, 2. The same stream downstream of the facility and 3. A stream in an area relatively unimpacted by large-scale agriculture (control site). Results show that calculating a simple Pearson correlation coefficient (r) of soluble reactive phosphorus (SRP) and ammonia over time as well as temperature and DO, distinguishes non-point source from point source discharge into surface water. The r value for SRP and ammonia for the upstream site was 0.01 while the r value for the downstream site was 0.92. The control site had an r value of 0.20. Likewise, r values were calculated on temperature and DO for each site. High negative correlations
Shen, Zhenyao; Hong, Qian; Yu, Hong; Liu, Ruimin
2008-11-01
The generation and formation of non-point source pollution involves great uncertainty, and this uncertainty makes monitoring and controlling pollution very difficult. Understanding the main parameters that affect non-point source pollution uncertainty is necessary to provide the basis for the planning and design of control measures. In this study, three methods were adopted to do the parameter uncertainty analysis with the Soil and Water Assessment Tool (SWAT). Based on the results of parameter sensitivity analysis by the Morris screening method, the ten parameters that most affect runoff, sediment, organic N, nitrate, and total phosphorous (TP) were chosen for further uncertainty analysis. First-order error analysis (FOEA) and the Monte Carlo method (MC) were used to analyze the effect of parameter uncertainty on model outputs. FOEA results showed that only a few parameters had significantly affected the uncertainty of the final simulation results, and many parameters had little or no effect. The SCS curve number was the parameter with significant uncertainty impact on runoff, sediment, organic N, nitrate and TP, and it showed that the runoff process was mainly responsible for the uncertainty of non-point source pollution load. The uncertainty of sediment was the biggest among the five model output results described above. MC results indicated that neglecting the parameter uncertainty of the model would underestimate the non-point source pollution load, and that the relationship between model input and output was non-linear. The uncertainty of non-point source pollution exhibited a temporal pattern: It was greater in summer than in winter. The uncertainty of runoff was smaller compared to that of sediment, organic N, nitrate, and TP, and the source of uncertainty was mainly affected by parameters associated with runoff.
Liao, Yi-Shan; Zhuo, Mu-Ning; Li, Ding-Qiang; Guo, Tai-Long
2013-08-01
In the Pearl Delta region, urban rivers have been seriously polluted, and the input of non-point source pollution materials, such as chemical oxygen demand (COD), into rivers cannot be neglected. During 2009-2010, the water qualities at eight different catchments in the Fenjiang River of Foshan city were monitored, and the COD loads for eight rivulet sewages were calculated in respect of different rainfall conditions. Interesting results were concluded in our paper. The rainfall and landuse type played important roles in the COD loading, with greater influence of rainfall than landuse type. Consequently, a COD loading formula was constructed that was defined as a function of runoff and landuse type that were derived SCS model and land use map. Loading of COD could be evaluated and predicted with the constructed formula. The mean simulation accuracy for single rainfall event was 75.51%. Long-term simulation accuracy was better than that of single rainfall. In 2009, the estimated COD loading and its loading intensity were 8 053 t and 339 kg x (hm2 x a)(-1), and the industrial land was regarded as the main source of COD pollution area. The severe non-point source pollution such as COD in Fenjiang River must be paid more attention in the future.
VizieR Online Data Catalog: LMC point source classification in SAGE-Spec (Woods+, 2011)
NASA Astrophysics Data System (ADS)
Woods, P. M.; Oliveira, J. M.; Kemper, F.; van Loon, J. T.; Sargent, B. A.; Matsuura, M.; Szczerba, R.; Volk, K.; Zijlstra, A. A.; Sloan, G. C.; Lagadec, E.; McDonald, I.; Jones, O.; Gorjian, V.; Kraemer, K. E.; Gielen, C.; Meixner, M.; Blum, R. D.; Sewilo, M.; Riebel, D.; Shiao, B.; Chen, C.-H. R.; Boyer, M. L.; Indebetouw, R.; Antoniou, V.; Bernard, J.-P.; Cohen, M.; Dijkstra, C.; Galametz, M.; Galliano, F.; Gordon, K. D.; Harris, J.; Hony, S.; Hora, J. L.; Kawamura, A.; Lawton, B.; Leisenring, J. M.; Madden, S.; Marengo, M.; McGuire, C.; Mulia, A. J.; O'Halloran, B.; Olsen, K.; Paladini, R.; Paradis, D.; Reach, W. T.; Rubin, D.; Sandstrom, K.; Soszynski, I.; Speck, A. K.; Srinivasan, S.; Tielens, A. G. G. M.; van Aarle, E.; van Dyk, S. D.; van Winckel, H.; Vijh, U. P.; Whitney, B.; Wilkins, A. N.
2011-09-01
We present the classification of 197 point sources observed with the Infrared Spectrograph in the SAGE-Spec Legacy programme on the Spitzer Space Telescope. We introduce a decision-tree method of object classification based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information, which is used to classify the SAGE-Spec sample of point sources. The decision tree has a broad application to mid-infrared spectroscopic surveys, where supporting photometry and variability information are available. We use these classifications to make deductions about the stellar populations of the Large Magellanic Cloud and the success of photometric classification methods. We find 90 asymptotic giant branch (AGB) stars, 29 young stellar objects, 23 post-AGB objects, 19 red supergiants, eight stellar photospheres, seven background galaxies, seven planetary nebulae, two HII regions and 12 other objects, seven of which remain unclassified. (1 data file).
Contribution of Point Sources to the Soft Gamma-Ray Galactic Emission
NASA Astrophysics Data System (ADS)
Terrier, R.; Lebrun, F.; Bélanger, G.; Goldwurm, A.; Strong, A. W.; Schoenfelder, V.; Bouchet, L.; Roques, J. P.; Parmar, A.
2004-10-01
The nature of the soft gamma-ray (20-200 keV) Galactic emission has been a matter of debate for a long time. Previous experiments have tried to sep- arate the point source contribution from the real in- terstellar emission, but with a rather poor spatial res- olution, they concluded that the interstellar emission could be a large fraction of the total Galactic emis- sion. INTEGRAL, having both high resolution and high sensitivity, is well suited to reassess more pre- cisely this problem. Using the INTEGRAL core pro- gram Galactic Center Deep Exposure (GCDE), we estimate the contribution of detected point sources to the total Galactic flux. Key words: Interstellar emission; INTEGRAL; IBIS/ISGRI.
The resolution of point sources of light as analyzed by quantum detection theory
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1972-01-01
The resolvability of point sources of incoherent light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.
Resolution of point sources of light as analyzed by quantum detection theory.
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1973-01-01
The resolvability of point sources of incoherent thermal light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.
Mapping Correlation of Two Point Sources in the Gamma-Ray Sky
Gibson, Alexander
2015-08-20
The Fermi Gamma-Ray Space Telescope has been taking data on high energy photons or γ rays since June 11th, 2008, and people have been cataloging and profiling point sources of these γ rays ever since. After roughly one year of being in operation over 1400 sources were cataloged. Now, in 2015 we have 3033 sources cataloged. With the increasing amount of sources it’s important to think about the limitations of likelihood analysis for highly correlated sources. In this paper I will present the problems of using likelihood analysis for sources that are highly correlated as well as show under what circumstances sources can be considered highly correlated. Dark matter over densities may show up as a point source, so it is a necessary step to learn how the two signals will interact to allow for a proper search for dark matter.
LUMINOSITY FUNCTIONS AND POINT-SOURCE PROPERTIES FROM MULTIPLE CHANDRA OBSERVATIONS OF M81
Sell, P. H.; Pooley, D.; Heinz, S.; Zezas, A.; Homan, J.; Lewin, W. H. G.
2011-07-01
We present an analysis of 15 Chandra observations of the nearby spiral galaxy M81 taken over the course of six weeks in 2005 May-July. Each observation reaches a sensitivity of {approx}10{sup 37} erg s{sup -1}. With these observations and one previous deeper Chandra observation, we compile a master source list of 265 point sources, extract and fit their spectra, and differentiate basic populations of sources through their colors. We also carry out variability analyses of individual point sources and of X-ray luminosity functions (XLFs) in multiple regions of M81 on timescales of days, months, and years. We find that, despite measuring significant variability in a considerable fraction of sources, snapshot observations provide a consistent determination of the XLF of M81. We also fit the XLFs for multiple regions of M81 and, using common parameterizations, compare these luminosity functions to those of two other spiral galaxies, M31 and the Milky Way.
NASA Astrophysics Data System (ADS)
Kates, Ronald E.; Rosenblum, Arnold
1982-05-01
This paper compares the mechanical energy losses due to electromagnetic radiation reaction on a two-particle, slow-motion system, as calculated from (1) the method of matched asymptotic expansions and (2) the Lorentz-Dirac equation, which assumes point sources. The matching derivation of the preceding paper avoided the assumption of a δ-function source by using Reissner-Nordström matching zones. Despite the differing mathematical assumptions of the two methods, their results are in agreement with each other and with the electromagnetic-field energy losses calculated by the evaluation of flux integrals. Our purpose is eventually to analyze Rosenblum's use of point sources as a possible cause of disagreement between the analogous calculations of gravitational radiation on a slow-motion system of two bodies. We begin with the simpler electromagnetic problem.
NASA Astrophysics Data System (ADS)
Snyder, David C.; Schauer, James J.; Gross, Deborah S.; Turner, Jay R.
Single-particle mass spectra were collected using an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) during December of 2003 and February of 2004 at an industrially impacted location in East St. Louis, IL. Hourly integrated peak areas for twenty ions were evaluated for their suitability in representing metals/metalloids, particularly those reported in the US EPA Toxic Release Inventory (TRI). Of the initial twenty ions examined, six (Al, As, Cu, Hg, Ti, and V) were found to be unsuitable due to strong isobaric interferences with commonly observed organic fragments, and one (Be) was found to have no significant signal. The usability of three ions (Co, Cr, and Mn) was limited due to suspected isobaric interferences based on temporal comparisons with commonly observed organic fragments. The identity of the remaining ions (Sb, Ba, Cd, Ca, Fe, Ni, Pb, K, Se, and Zn) was substantiated by comparing their signals with the integrated hourly signals of one or more isotope ions. When compared with one-in-six day integrated elemental data as determined by X-ray fluorescence spectroscopy (XRF), the daily integrated ATOFMS signal for several metal ions revealed a semi-quantitative relationship between ATOFMS peak area and XRF concentrations, although in some cases comparison of these measurements were poor at low elemental concentrations/ion signals due to isobaric interferences. A method of estimating the impact of local point sources was developed using hourly integrated ATOFMS peak areas, and this method attributed as much as 85% of the concentration of individual metals observed at the study site to local point sources. Hourly surface wind data were used in conjunction with TRI facility emissions data to reveal likely point sources impacting metal concentrations at the study site and to illustrate the utility of using single-particle mass spectral data to characterize atmospheric metals and identify point sources.
Zhou, Liang; Xu, Jian-Gang; Sun, Dong-Qi; Ni, Tian-Hua
2013-02-01
Agricultural non-point source pollution is of importance in river deterioration. Thus identifying and concentrated controlling the key source-areas are the most effective approaches for non-point source pollution control. This study adopts inventory method to analysis four kinds of pollution sources and their emissions intensity of the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in 173 counties (cities, districts) in Huaihe River Basin. The four pollution sources include livestock breeding, rural life, farmland cultivation, aquacultures. The paper mainly addresses identification of non-point polluted sensitivity areas, key pollution sources and its spatial distribution characteristics through cluster, sensitivity evaluation and spatial analysis. A geographic information system (GIS) and SPSS were used to carry out this study. The results show that: the COD, TN and TP emissions of agricultural non-point sources were 206.74 x 10(4) t, 66.49 x 10(4) t, 8.74 x 10(4) t separately in Huaihe River Basin in 2009; the emission intensity were 7.69, 2.47, 0.32 t.hm-2; the proportions of COD, TN, TP emissions were 73%, 24%, 3%. The paper achieves that: the major pollution source of COD, TN and TP was livestock breeding and rural life; the sensitivity areas and priority pollution control areas among the river basin of non-point source pollution are some sub-basins of the upper branches in Huaihe River, such as Shahe River, Yinghe River, Beiru River, Jialu River and Qingyi River; livestock breeding is the key pollution source in the priority pollution control areas. Finally, the paper concludes that pollution type of rural life has the highest pollution contribution rate, while comprehensive pollution is one type which is hard to control.
Test method for telescopes using a point source at a finite distance
NASA Technical Reports Server (NTRS)
Griner, D. B.; Zissa, D. E.; Korsch, D.
1985-01-01
A test method for telescopes that makes use of a focused ring formed by an annular aperture when using a point source at a finite distance is evaluated theoretically and experimentally. The results show that the concept can be applied to near-normal, as well as grazing incidence. It is particularly suited for X-ray telescopes because of their intrinsically narrow annular apertures, and because of the largely reduced diffraction effects.
FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22-STRING ICECUBE DETECTOR
IceCube Collaboration; Klein, Spencer
2009-05-14
We present new results of searches for neutrino point sources in the northern sky, using data recorded in 2007-08 with 22 strings of the IceCube detector (approximately one-fourth of the planned total) and 275.7 days of livetime. The final sample of 5114 neutrino candidate events agrees well with the expected background of atmospheric muon neutrinos and a small component of atmospheric muons. No evidence of a point source is found, with the most significant excess of events in the sky at 2.2 {sigma} after accounting for all trials. The average upper limit over the northern sky for point sources of muon-neutrinos with E{sup -2} spectrum is E{sup 2} {Phi}{sub {nu}{sub {mu}}} < 1.4 x 10{sup -1} TeV cm{sup -2}s{sup -1}, in the energy range from 3 TeV to 3 PeV, improving the previous best average upper limit by the AMANDA-II detector by a factor of two.
Point-source calibration of a segmented gamma-ray scanner
Sheppard, G.A.; Piquette, E.C.
1994-08-01
For a conventional segmented gamma-ray scanner (SGS) in which the sample is rotated continuously within a fixed detector field of view, the data will not support alternatives to the assumption that the gamma-emitting nuclides and the matrix in which they reside are uniformly distributed. This homogeneity assumption permits the geometry of samples and calibration standards to be approximated by that of a non attenuating line source on the axis of rotation. Other common SGS assumptions are that the detector is perfectly collimated, that its response is flat over its field of view, and that it can be approximated adequately by a line. All of these assumption have led to a preference for homogeneous calibration standards. Preparation and certification of such calibration standards are usually difficult and expensive. Storage and transportation of SGS standards can be inconvenient or even quite troublesome. The authors have proposed and tested an alternative method of SGS calibration that only requires a point-source standard. The proposed technique relies on the empirical determination of a normalized two-dimensional detector response and the measurement of the count rate from a point-source standard located at the response apex. With these data, the system`s response to a distributed, homogeneous samples can be predicted using numerical integration. Typical biases measured using a commercially available SGS calibrated with a point source have been less than 2%.
[Transformation of Non-point Source Soluble Nitrogen in Simulated Drainage Ditch].
Li, Qiang-kun; Song, Chang-ji; Hu, Ya-wei; Peng, Cong; Ma, Qiang; Jiang, Zheng-xi; Ju, Yi-rheng
2016-02-15
The drainage ditch has a compound ecosystem structure consisting of water, sediment and plants. Migration and transformation of the non-point source solute is important to study interception, control and management of agricultural non-point source pollution in the drainage ditch. Based on the experiment on static simulation of drainage ditches, the article used typical non-point source soluble nitrogen as an example to analyze the changing process of nitrogen content in water, sediment and reeds, and to study the effects of the sediment adsorption and desorption, reeds growth and death in different periods on nitrogen concentration in water. The article discussed nitrogen migration in water-sediment-reeds compound ecosystem and its influence on nitrogen concentration in water. The results showed that both adsorption and desorption in sediment and absorption and assimilation of reeds growth had effect on nitrogen concentration in water. The effect before October was reducing the nitrogen concentration in water, which was the process of nitrogen purification in water. After October, the nitrogen concentration in water increased and made it easy to form secondary nitrogen pollution. Meanwhile, the migration in the water-sediment-seeds ecosystem in simulated drainage ditch had close ties, any migration and transformation of nitrogen in a single medium or between different mediums would cause adjustment of nitrogen concentration in water.
Diffuse and point sources of silica in the Seine River watershed.
Sferratore, Agata; Garnier, Josette; Billen, Gilles; Conley, Daniel I; Pinault, Séverine
2006-11-01
Dissolved silica (DSi) is believed to enter aquatic ecosystems primarily through diffuse sources by weathering. Point sources have generally been considered negligible, although recent reports of DSi inputs from domestic and industrial sources suggest otherwise. In addition, particulate amorphous silica (ASi) inputs from terrestrial ecosystems during soil erosion and in vegetation can dissolve and also be a significant source of DSi. We quantify here both point and diffuse sources of DSi and particulate ASi to the Seine River watershed. The total per capita point source inputs of Si (DSi + ASi) were found to be 1.0 and 0.8 g Si inhabitant(-1) d(-1) in raw and treated waters of the Achères wastewater treatment plant, in agreement with calculations based on average food intake and silica-containing washing products consumption. A mass balance of Si inputs and outputs for the Seine drainage network was established for wet and dry hydrological conditions (2001 and 2003, respectively). Diffuse sources of Si are of 1775 kg Si km(-2) y(-1) in wet conditions and 762 kg Si km(-2) y(-1) in dry conditions, with the proportion of ASi around 6%. Point sources of Si from urban discharge can contribute to more than 8% of the total Si inputs at the basin scale in hydrologically dry years. An in-stream retention of 6% of total inputs in dry conditions and 12% in wet conditions is inferred from the budget.
Nonpoint and Point Sources of Nitrogen in Major Watersheds of the United States
Puckett, Larry J.
1994-01-01
Estimates of nonpoint and point sources of nitrogen were made for 107 watersheds located in the U.S. Geological Survey's National Water-Quality Assessment Program study units throughout the conterminous United States. The proportions of nitrogen originating from fertilizer, manure, atmospheric deposition, sewage, and industrial sources were found to vary with climate, hydrologic conditions, land use, population, and physiography. Fertilizer sources of nitrogen are proportionally greater in agricultural areas of the West and the Midwest than in other parts of the Nation. Animal manure contributes large proportions of nitrogen in the South and parts of the Northeast. Atmospheric deposition of nitrogen is generally greatest in areas of greatest precipitation, such as the Northeast. Point sources (sewage and industrial) generally are predominant in watersheds near cities, where they may account for large proportions of the nitrogen in streams. The transport of nitrogen in streams increases as amounts of precipitation and runoff increase and is greatest in the Northeastern United States. Because no single nonpoint nitrogen source is dominant everywhere, approaches to control nitrogen must vary throughout the Nation. Watershed-based approaches to understanding nonpoint and point sources of contamination, as used by the National Water-Quality Assessment Program, will aid water-quality and environmental managers to devise methods to reduce nitrogen pollution.
NASA Astrophysics Data System (ADS)
Arnold, Tim; Manning, Alistair J.; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Fraser, Paul J.; Mitrevski, Blagoj; Steele, L. Paul; Krummel, Paul B.; Mühle, Jens; Weiss, Ray F.
2016-04-01
The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacement compounds that are emitted from fugitive and mobile emission sources, these gases are largely emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane factories (HFC-23). In this work we show the potential for atmospheric measurements to understand regional sources of these gases and to highlight emission 'hotspots'. We target our analysis on measurements from two Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites that are particularly sensitive to regional emissions of these gases: Gosan on Jeju Island in the Republic of Korea and Cape Grim on Tasmania in Australia. These sites measure CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over a decade (2005-2015) at high spatial resolution. At present these gases make a small contribution to global radiative forcing, however, given that their impact could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.
Quantum percolation in cuprate high-temperature superconductors.
Phillips, J C
2008-07-22
Although it is now generally acknowledged that electron-phonon interactions cause cuprate superconductivity with T(c) values approximately 100 K, the complexities of atomic arrangements in these marginally stable multilayer materials have frustrated both experimental analysis and theoretical modeling of the remarkably rich data obtained both by angle-resolved photoemission (ARPES) and high-resolution, large-area scanning tunneling microscopy (STM). Here, we analyze the theoretical background in terms of our original (1989) model of dopant-assisted quantum percolation (DAQP), as developed further in some two dozen articles, and apply these ideas to recent STM data. We conclude that despite all of the many difficulties, with improved data analysis it may yet be possible to identify quantum percolative paths.
Percolation of secret correlations in a network
Leverrier, Anthony; Garcia-Patron, Raul
2011-09-15
In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.
NASA Astrophysics Data System (ADS)
Génois, Mathieu; Hersen, Pascal; Bertin, Eric; Courrech du Pont, Sylvain; Grégoire, Guillaume
2016-10-01
The exploration of the phase diagram of a minimal model for barchan fields leads to the description of three distinct phases for the system: stationary, percolable, and unstable. In the stationary phase the system always reaches an out-of-equilibrium, fluctuating, stationary state, independent of its initial conditions. This state has a large and continuous range of dynamics, from dilute—where dunes do not interact—to dense, where the system exhibits both spatial structuring and collective behavior leading to the selection of a particular size for the dunes. In the percolable phase, the system presents a percolation threshold when the initial density increases. This percolation is unusual, as it happens on a continuous space for moving, interacting, finite lifetime dunes. For extreme parameters, the system exhibits a subcritical instability, where some of the dunes in the field grow without bound. We discuss the nature of the asymptotic states and their relations to well-known models of statistical physics.
Génois, Mathieu; Hersen, Pascal; Bertin, Eric; Courrech du Pont, Sylvain; Grégoire, Guillaume
2016-10-01
The exploration of the phase diagram of a minimal model for barchan fields leads to the description of three distinct phases for the system: stationary, percolable, and unstable. In the stationary phase the system always reaches an out-of-equilibrium, fluctuating, stationary state, independent of its initial conditions. This state has a large and continuous range of dynamics, from dilute-where dunes do not interact-to dense, where the system exhibits both spatial structuring and collective behavior leading to the selection of a particular size for the dunes. In the percolable phase, the system presents a percolation threshold when the initial density increases. This percolation is unusual, as it happens on a continuous space for moving, interacting, finite lifetime dunes. For extreme parameters, the system exhibits a subcritical instability, where some of the dunes in the field grow without bound. We discuss the nature of the asymptotic states and their relations to well-known models of statistical physics.
General clique percolation in random networks
NASA Astrophysics Data System (ADS)
Fan, Jingfang; Chen, Xiaosong
2014-07-01
A general (k,l) clique community of a network, which consists of adjacent k-cliques sharing at least l vertices with k-1\\ge l\\ge1 , is introduced. With the emergence of a giant (k,l) clique community in the network, there is a (k,l) clique percolation. Using the largest size jump Δ of the largest clique community during network evolution and the corresponding evolution step Tc, we study the general (k,l) clique percolation of the Erdős-Rényi network. We investigate the averages of Δ and Tc and their fluctuations for different network size N. The clique percolation can be identified by the power-law finite-size effects of the averages and root mean squares of fluctuation. The finite-size scaling distribution functions of fluctuations are calculated. The universality class of the (k,l) clique percolation is characterized by the critical exponents of power-law finite-size effects. Using Monte Carlo simulations, we find that the Erdős-Rényi network experiences a series of (k,l) clique percolation with (k,l)=(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1) . We find that the critical exponents and therefore the universality class of the (k,l) clique percolation depend on clique connection index l, but are independent of clique size k.
General and exact approach to percolation on random graphs
NASA Astrophysics Data System (ADS)
Allard, Antoine; Hébert-Dufresne, Laurent; Young, Jean-Gabriel; Dubé, Louis J.
2015-12-01
We present a comprehensive and versatile theoretical framework to study site and bond percolation on clustered and correlated random graphs. Our contribution can be summarized in three main points. (i) We introduce a set of iterative equations that solve the exact distribution of the size and composition of components in finite-size quenched or random multitype graphs. (ii) We define a very general random graph ensemble that encompasses most of the models published to this day and also makes it possible to model structural properties not yet included in a theoretical framework. Site and bond percolation on this ensemble is solved exactly in the infinite-size limit using probability generating functions [i.e., the percolation threshold, the size, and the composition of the giant (extensive) and small components]. Several examples and applications are also provided. (iii) Our approach can be adapted to model interdependent graphs—whose most striking feature is the emergence of an extensive component via a discontinuous phase transition—in an equally general fashion. We show how a graph can successively undergo a continuous then a discontinuous phase transition, and preliminary results suggest that clustering increases the amplitude of the discontinuity at the transition.
Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan
2014-10-15
Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subcategory of direct discharge point sources that use end-of-pipe biological treatment. 414.90 Section 414.90... Biological Treatment § 414.90 Applicability; description of the subcategory of direct discharge point sources that use end-of-pipe biological treatment. The provisions of this subpart are applicable to the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... subcategory of direct discharge point sources that use end-of-pipe biological treatment. 414.90 Section 414.90... Biological Treatment § 414.90 Applicability; description of the subcategory of direct discharge point sources that use end-of-pipe biological treatment. The provisions of this subpart are applicable to the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... subcategory of direct discharge point sources that use end-of-pipe biological treatment. 414.90 Section 414.90... Biological Treatment § 414.90 Applicability; description of the subcategory of direct discharge point sources that use end-of-pipe biological treatment. The provisions of this subpart are applicable to the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. 414.100... Not Use End-of-Pipe Biological Treatment § 414.100 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. The provisions of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. 414.100... Not Use End-of-Pipe Biological Treatment § 414.100 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. The provisions of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. 414.100... Not Use End-of-Pipe Biological Treatment § 414.100 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. The provisions of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. 414.100... Not Use End-of-Pipe Biological Treatment § 414.100 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. The provisions of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. 414.100... Not Use End-of-Pipe Biological Treatment § 414.100 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. The provisions of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... subcategory of direct discharge point sources that use end-of-pipe biological treatment. 414.90 Section 414.90... Biological Treatment § 414.90 Applicability; description of the subcategory of direct discharge point sources that use end-of-pipe biological treatment. The provisions of this subpart are applicable to the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... subcategory of direct discharge point sources that use end-of-pipe biological treatment. 414.90 Section 414.90... Biological Treatment § 414.90 Applicability; description of the subcategory of direct discharge point sources that use end-of-pipe biological treatment. The provisions of this subpart are applicable to the...
Two-dimensional protonic percolation on lightly hydrated purple membrane.
Rupley, J A; Siemankowski, L; Careri, G; Bruni, F
1988-12-01
The capacitance and dielectric loss factor were measured for a sample of purple membrane of Halobacterium halobium as a function of hydration level (0.017 to >0.2 g of water/g of membrane) and frequency (10 kHz to 10 MHz). The capacitance and the derived conductivity show explosive growth above a threshold hydration level, h(c) approximately 0.0456. The conductivity shows a deuterium isotope effect, H/(2)H = 1.38, in close agreement with expectation for a protonic process. The level h(c) is frequency independent and shows no deuterium isotope effect. These properties are analogous to those found for lysozyme in a related study. Protonic conduction for the purple membrane can be considered, as for lysozyme, within the framework of a percolation model. The critical exponent, t, which describes the conductivity of a percolative system near the threshold, has the value 1.23. This number is in close agreement with expectation from theory for a two-dimensional percolative process. The dielectric properties of the purple membrane are more complex than those of lysozyme, seen in the value of h(c) and in the frequency and hydration dependence of the loss factor. There appear to be preferred regions of proton conduction. The percolation model is based upon stochastic behavior of a system partially populated with conducting elements. This model suggests that ion transport in membranes and its control can be based on pathways formed of randomly connected conducting elements and that a fixed geometry (a proton wire) is not the only possible basis for a mechanism of conduction.
Abdelzaher, Amir M; Wright, Mary E; Ortega, Cristina; Solo-Gabriele, Helena M; Miller, Gary; Elmir, Samir; Newman, Xihui; Shih, Peter; Bonilla, J Alfredo; Bonilla, Tonya D; Palmer, Carol J; Scott, Troy; Lukasik, Jerzy; Harwood, Valerie J; McQuaig, Shannon; Sinigalliano, Chris; Gidley, Maribeth; Plano, Lisa R W; Zhu, Xiaofang; Wang, John D; Fleming, Lora E
2010-02-01
Swimming in ocean water, including ocean water at beaches not impacted by known point sources of pollution, is an increasing health concern. This study was an initial evaluation of the presence of indicator microbes and pathogens and the association among the indicator microbes, pathogens, and environmental conditions at a subtropical, recreational marine beach in south Florida impacted by non-point sources of pollution. Twelve water and eight sand samples were collected during four sampling events at high or low tide under elevated or reduced solar insolation conditions. The analyses performed included analyses of fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli, enterococci, and Clostridium perfringens), human-associated microbial source tracking (MST) markers (human polyomaviruses [HPyVs] and Enterococcus faecium esp gene), and pathogens (Vibrio vulnificus, Staphylococcus aureus, enterovirus, norovirus, hepatitis A virus, Cryptosporidium spp., and Giardia spp.). The enterococcus concentrations in water and sand determined by quantitative PCR were greater than the concentrations determined by membrane filtration measurement. The FIB concentrations in water were below the recreational water quality standards for three of the four sampling events, when pathogens and MST markers were also generally undetectable. The FIB levels exceeded regulatory guidelines during one event, and this was accompanied by detection of HPyVs and pathogens, including detection of the autochthonous bacterium V. vulnificus in sand and water, detection of the allochthonous protozoans Giardia spp. in water, and detection of Cryptosporidium spp. in sand samples. The elevated microbial levels were detected at high tide and under low-solar-insolation conditions. Additional sampling should be conducted to further explore the relationships between tidal and solar insolation conditions and between indicator microbes and pathogens in subtropical recreational marine waters impacted
Point source pollution and variability of nitrate concentrations in water from shallow aquifers
NASA Astrophysics Data System (ADS)
Nemčić-Jurec, Jasna; Jazbec, Anamarija
2016-01-01
Agriculture is one of the several major sources of nitrate pollution, and therefore the EU Nitrate Directive, designed to decrease pollution, has been implemented. Point sources like septic systems and broken sewage systems also contribute to water pollution. Pollution of groundwater by nitrate from 19 shallow wells was studied in a typical agricultural region, middle Podravina, in northwest Croatia. The concentration of nitrate ranged from <0.1 to 367 mg/l in water from wells, and 29.8 % of 253 total samples were above maximum acceptable value of 50 mg/l (MAV). Among regions R1-R6, there was no statistically significant difference in nitrate concentrations (F = 1.98; p = 0.15) during the years 2002-2007. Average concentrations of nitrate in all 19 wells for all the analyzed years were between recommended limit value of 25 mg/l (RLV) and MAV except in 2002 (concentration was under RLV). The results of the repeated measures ANOVA showed statistically significant differences between the wells at the point source distance (proximity) of <10 m, compared to the wells at the point source distance of >20 m (F = 10.6; p < 0.001). Average annual concentrations of nitrate during the years studied are not statistically different, but interaction between proximity and years is statistically significant (F = 2.07; p = 0.04). Results of k-means clustering confirmed division into four clusters according to the pollution. Principal component analysis showed that there is only one significant factor, proximity, which explains 91.6 % of the total variability of nitrate. Differences in water quality were found as a result of different environmental factors. These results will contribute to the implementation of the Nitrate Directive in Croatia and the EU.
Point source moving above a finite impedance reflecting plane - Experiment and theory
NASA Technical Reports Server (NTRS)
Norum, T. D.; Liu, C. H.
1978-01-01
A widely used experimental version of the acoustic monopole consists of an acoustic driver of restricted opening forced by a discrete frequency oscillator. To investigate the effects of forward motion on this source, it was mounted above an automobile and driven over an asphalt surface at constant speed past a microphone array. The shapes of the received signal were compared to results computed from an analysis of a fluctuating-mass-type point source moving above a finite impedance reflecting plane. Good agreement was found between experiment and theory when a complex normal impedance representative of a fairly hard acoustic surface was used in the analysis.
Preparation of 57Co point sources for the performance evaluation of nuclear imaging instruments.
Saxena, Sanjay Kumar; Kumar, Manoj; Kumar, Yogendra; Udhayakumar, J; Pandey, Usha; Dash, Ashutosh
2013-09-01
This paper describes the utility of electrodeposition method to prepare (57)Co point sources. A description of the electrolytic cell, the process of (57)Co electrodeposition, encapsulation and quality control of the sealed (57)Co sources is presented. Sources containing ~3.7-4.81 MBq (0.10-0.13 mCi) of (57)Co were prepared, encapsulated in miniature titanium capsules and subjected to quality control tests to ensure compliance with regulatory requirements. The encapsulated (57)Co sources prepared by the reported procedure were found to be effective in routine performance evaluation of nuclear medicine instruments.
The Unicellular State as a Point Source in a Quantum Biological System.
Torday, John S; Miller, William B
2016-05-27
A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins.
Nealy, Jennifer L; Collis, Jon M; Frank, Scott D
2016-04-01
Normal mode solutions to range-independent seismo-acoustic problems are benchmarked against elastic parabolic equation solutions and then used to benchmark the shear elastic parabolic equation self-starter [Frank, Odom, and Collis, J. Acoust. Soc. Am. 133, 1358-1367 (2013)]. The Pekeris waveguide with an elastic seafloor is considered for a point source located in the ocean emitting compressional waves, or in the seafloor, emitting both compressional and shear waves. Accurate solutions are obtained when the source is in the seafloor, and when the source is at the interface between the fluid and elastic layers.
Infrared point sources aligned with the SgrA(asterisk) non-thermal radio source
NASA Technical Reports Server (NTRS)
Stein, W. A.; Forrest, W. J.
1986-01-01
Assembled 0.7-5.0 micron observational data for two point sources approximately aligned with the compact nonthermal radio source SgrA(asterisk) in the Galactic center, thus far interpreted as being from the same object on the basis of their position and spectral continuity, are presently given alternative interpretations. While the object must be a hot star surrounded by a circumstellar dust cloud if it is a foreground star, a Galactic center position calls for an unorthodox extinction curve which suggests that the IR emission may be the Rayleigh-Jeans tail of a hot star or star cluster, or perhaps a thermal accretion disk.
Gilbert, Kenneth E; Di, Xiao
2007-05-01
A method for exactly representing a point source starting field in a Fourier parabolic equation calculation is presented. The formulation is based on an exact, analytic expression for the field in vertical wave number space (k space). The field in vertical coordinate space (z space) is obtained via a Fourier transform of the k-space field. Thus, one can directly control the Fourier components of the starting field, so that nonpropagating components are excluded. The relation of the exact starting field to the standard Gaussian starting field is demonstrated analytically. Examples of the numerical implementation of the exact starting field are given.
A study on the evaporation process with multiple point-sources
NASA Astrophysics Data System (ADS)
Jun, Sunghoon; Kim, Minseok; Kim, Suk Han; Lee, Moon Yong; Lee, Eung Ki
2013-10-01
In Organic Light Emitting Display (OLED) manufacturing processes, there is a need to enlarge the mother glass substrate to raise its productivity and enable OLED TV. The larger the size of the glass substrate, the more difficult it is to establish a uniform thickness profile of the organic thin-film layer in the vacuum evaporation process. In this paper, a multiple point-source evaporation process is proposed to deposit a uniform organic layer uniformly. Using this method, a uniformity of 3.75% was achieved along a 1,300 mm length of Gen. 5.5 glass substrate (1300 × 1500 mm2).
An international point source outbreak of typhoid fever: a European collaborative investigation*
Stanwell-Smith, R. E.; Ward, L. R.
1986-01-01
A point source outbreak of Salmonella typhi, degraded Vi-strain 22, affecting 32 British visitors to Kos, Greece, in 1983 was attributed by a case—control study to the consumption of a salad at one hotel. This represents the first major outbreak of typhoid fever in which a salad has been identified as the vehicle. The source of the infection was probably a carrier in the hotel staff. The investigation demonstrates the importance of national surveillance, international cooperation, and epidemiological methods in the investigation and control of major outbreaks of infection. PMID:3488842
The Unicellular State as a Point Source in a Quantum Biological System
Torday, John S.; Miller, William B.
2016-01-01
A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins. PMID:27240413
A search for gamma-ray point sources with the Carpet shower array
NASA Technical Reports Server (NTRS)
Alexeenko, V. V.; Chudakov, A. E.; Khaerdinov, N. S.; Lidvansky, A. S.; Navarra, G.; Ozrokov, S. S.; Sklyarov, V. V.; Tizengauzen, V. A.
1985-01-01
A search for super-high energy gamma-ray point sources has been carried out. The well known source Cyg X-3 was observed first and preliminary results of data analysis are presented. There is not positive excess of showers from the source region, but phase analysis discovers a small pulse at phase 0.6 which corresponds to the integral flux (6 + or - 3) X 10 to the minus 14th power cm-2 sec-1 at E sub gamma 3x10 to the 14th power eV.
Quantum walk coherences on a dynamical percolation graph.
Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine
2015-08-27
Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.
Finite-size effects and percolation properties of Poisson geometries
NASA Astrophysics Data System (ADS)
Larmier, C.; Dumonteil, E.; Malvagi, F.; Mazzolo, A.; Zoia, A.
2016-07-01
Random tessellations of the space represent a class of prototype models of heterogeneous media, which are central in several applications in physics, engineering, and life sciences. In this work, we investigate the statistical properties of d -dimensional isotropic Poisson geometries by resorting to Monte Carlo simulation, with special emphasis on the case d =3 . We first analyze the behavior of the key features of these stochastic geometries as a function of the dimension d and the linear size L of the domain. Then, we consider the case of Poisson binary mixtures, where the polyhedra are assigned two labels with complementary probabilities. For this latter class of random geometries, we numerically characterize the percolation threshold, the strength of the percolating cluster, and the average cluster size.
Percolation mechanism drives actin gels to the critically connected state
NASA Astrophysics Data System (ADS)
Lee, Chiu Fan; Pruessner, Gunnar
2016-05-01
Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013), 10.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions.
Properties of elastic percolating networks in isotropic media with arbitrary elastic constants
NASA Astrophysics Data System (ADS)
Pla, O.; Garcia-Molina, R.; Guinea, F.; Louis, E.
1990-06-01
The properties of diluted elastic media in two dimensions are investigated in an isotropic system in which the ratio between the two Lamé coefficients can be varied. Changes in the ratio between the continuum elastic constants induce significant variations in the behavior of the system away from the threshold for percolation, but not in the properties near the percolation transition. We discuss the results in both cases and their relevance to the definition of the universal properties of diluted elastic networks. It is shown that many features of interest, like the bulk modulus at intermediate concentrations of voids and the backbone, are very dependent on the microscopic details of the model, and not only on its macroscopic behavior. Thus, elastic percolation does not seem to have the same degree of universality as scalar percolation.
Scaling of clusters near discontinuous percolation transitions in hyperbolic networks.
Singh, Vijay; Boettcher, Stefan
2014-07-01
We investigate the onset of the discontinuous percolation transition in small-world hyperbolic networks by studying the systems-size scaling of the typical largest cluster approaching the transition, p ↗ p(c). To this end, we determine the average size of the largest cluster 〈s(max)〉 ∼ N(Ψ(p)) in the thermodynamic limit using real-space renormalization of cluster-generating functions for bond and site percolation in several models of hyperbolic networks that provide exact results. We determine that all our models conform to the recently predicted behavior regarding the growth of the largest cluster, which found diverging, albeit subextensive, clusters spanning the system with finite probability well below p(c) and at most quadratic corrections to unity in Ψ(p) for p ↗ p(c). Our study suggests a large universality in the cluster formation on small-world hyperbolic networks and the potential for an alternative mechanism in the cluster formation dynamics at the onset of discontinuous percolation transitions.
Fractional scaling of quantum walks on percolation lattices
NASA Astrophysics Data System (ADS)
Kendon, Viv; Leung, Godfrey; Bailey, Joe; Knott, Paul
2011-03-01
Quantum walks can be used to model processes such as transport in spin chains and bio-molecules. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections. Using numerical simulation, we study the spreading properties of quantum walks on percolation lattices for both bond and site percolation. The randomly missing edges or sites provide a controlled amount of disorder in the regular Cartesian lattice. In one dimension (the line) we introduce a simple model of quantum tunneling to allow the walk to proceed past the missing edges or sites. This allows the quantum walk to spread faster than a classical random walk for short times, but at longer times the disorder localises the quantum walk. In two dimensions, we observe fractional scaling of the spreading with the number of steps of the walk. For percolation above the 85% level, we obtain faster spreading than classical random walks on the full lattice.
Yanhua, Zhuang; Song, Hong; Wenting, Zhang; Hongyan, Lin; Qinghui, Zeng; Thuminh, Nguyen; Beibei, Niu; Wanyi, Li
2013-01-01
In this study, a coupling model of agricultural and urban non-point source (AUNPS) is established in order to estimate complex non-point source (NPS) pollutant loads in the urban-rural fringe. Furthermore, a spatial-temporal change model of non-point source (CA-AUNPS) is established by the coupling of AUNPS and cellular automata (CA) models. The total nitrogen (TN) and total phosphorus (TP) loads in Tangxun watershed were simulated during 1991-2020, and the results show that: (1) the CA-AUNPS model is an effective tool to simulate the spatial-temporal changes of NPS pollutant loads in urban-rural fringe; (2) in terms of the spatial changes, the TN and TP loads generally showed as rural/urban construction land > farmland > forest/green land, and the high-value areas of NPS pollutant loads expanded from north to south with the increase of construction land; with regard to temporal changes, the TN and TP loads generally displayed an increasing tendency during 1991-2020, and by 2020 the TN and TP loads will increase to 370.06 and 33.89 t yr(-1), respectively; (3) the spatial-temporal changes of TN and TP loads in Tangxun watershed correlate strongly with the land-use, slope, and rainfall.
Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks.
Piraveenan, Mahendra; Prokopenko, Mikhail; Hossain, Liaquat
2013-01-01
A number of centrality measures are available to determine the relative importance of a node in a complex network, and betweenness is prominent among them. However, the existing centrality measures are not adequate in network percolation scenarios (such as during infection transmission in a social network of individuals, spreading of computer viruses on computer networks, or transmission of disease over a network of towns) because they do not account for the changing percolation states of individual nodes. We propose a new measure, percolation centrality, that quantifies relative impact of nodes based on their topological connectivity, as well as their percolation states. The measure can be extended to include random walk based definitions, and its computational complexity is shown to be of the same order as that of betweenness centrality. We demonstrate the usage of percolation centrality by applying it to a canonical network as well as simulated and real world scale-free and random networks.
Search for neutrino point sources with the IceCube Neutrino Observatory
NASA Astrophysics Data System (ADS)
Aguilar, Juan A.
2013-06-01
The IceCube Neutrino Observatory is a kilometer-scale detector located at the South Pole. The full detector comprises 5,160 photomultipliers (PMTs) deployed among 86 strings from 1.5-2.5 km deep within the ice. The constructing phase started in the austral summer of 2004 and ended in December 2010 with the deployment of the last 7 strings that make up the full detector. In this proceeding we present the results of the time integrated and time dependent point source searches corresponding to the years from April 2008 to May 2010 with two different configurations of the IceCube detector (40 and 59 strings). In the northern sky the IceCube neutrino telescope is sensitive to point sources of neutrinos with E spectra mainly in the TeV-PeV energy range. In the opposite hemisphere, due to the higher contamination of high-energy atmospheric muons, the detector is most sensitive to sources with harder spectra, which produce high fluxes of PeV to EeV energies. The combined sensitivity is about a factor ˜2.5 better than the previous 1-year limit. An overview of the sensitivity and discovery potential for the time integrated searches over three years of IceCube, from April 2008 to May 2011, is also shown.
Search for Point Sources of High Energy Neutrinos with Final Data from AMANDA-II
IceCube Collaboration; Klein, Spencer
2009-03-06
We present a search for point sources of high energy neutrinos using 3.8 years of data recorded by AMANDA-II during 2000-2006. After reconstructing muon tracks and applying selection criteria designed to optimally retain neutrino-induced events originating in the Northern Sky, we arrive at a sample of 6595 candidate events, predominantly from atmospheric neutrinos with primary energy 100 GeV to 8 TeV. Our search of this sample reveals no indications of a neutrino point source. We place the most stringent limits to date on E{sup -2} neutrino fluxes from points in the Northern Sky, with an average upper limit of E{sup 2}{Phi}{sub {nu}{sub {mu}}+{nu}{sub {tau}}} {le} 5.2 x 10{sup -11} TeV cm{sup -2} s{sup -1} on the sum of {nu}{sub {mu}} and {nu}{sub {tau}} fluxes, assumed equal, over the energy range from 1.9 TeV to 2.5 PeV.
Spitzer infrared spectrograph point source classification in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Ruffle, Paul M. E.; Kemper, F.; Jones, O. C.; Sloan, G. C.; Kraemer, K. E.; Woods, Paul M.; Boyer, M. L.; Srinivasan, S.; Antoniou, V.; Lagadec, E.; Matsuura, M.; McDonald, I.; Oliveira, J. M.; Sargent, B. A.; Sewiło, M.; Szczerba, R.; van Loon, J. Th.; Volk, K.; Zijlstra, A. A.
2015-08-01
The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf-Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.
Farfield tracing of a point source discharge plume in the coastal ocean using sulfur hexafluoride.
Wanninkhof, Rik; Sullivan, Kevin F; Dammann, W Paul; Proni, John R; Bloetscher, Frederick; Soloviev, Alexander V; Carsey, Thomas P
2005-11-15
Pathways and dilution of a point source ocean discharge in the farfield (approximately to 10-66 km) were measured using the deliberate tracer sulfur hexafluoride (SF6). The injection of SF6 was performed by bubbling the gas over a period of 6 days into an ocean outfall pipe discharging into the southeast Florida coastal ocean. The surface SF6 concentrations show that the discharged water flowed northward parallel to the coast with a broadening of the width of the plume to about 3 km at the farthest point sampled, 66 km from the outfall. The discharge was fully mixed throughout the water column within 13 km of the outfall terminus. In the first 20 km from the outfall, SF6 surface concentrations were highly variable, while beyond this the SF6 concentrations decreased monotonically going northward. The currents were measured during the study with a bottom-mounted acoustic Doppler current profiler (ADCP) located 5.5 km from the outfall. Velocities were variable in magnitude and direction but showed a net northward flow during the 6-day study. Maximum concentrations decreased by about 200-fold per kilometer from the outfall to the northern end of the study area. The study shows that SF6 is an effective method to trace point source releases far from their origin.
Eckley, Chris S; Parsons, Matthew T; Mintz, Rachel; Lapalme, Monique; Mazur, Maxwell; Tordon, Robert; Elleman, Robert; Graydon, Jennifer A; Blanchard, Pierrette; St Louis, Vincent
2013-09-17
The Flin Flon, Manitoba copper smelter was Canada's largest point source of mercury emissions until its closure in 2010 after ~80 years of operation. The objective of this study was to understand the variables controlling the local ground-level air mercury concentrations before and after this major point source reduction. Total gaseous mercury (TGM) in air, mercury in precipitation, and other ancillary meteorological and air quality parameters were measured pre- and postsmelter closure, and mercury speciation measurements in air were collected postclosure. The results showed that TGM was significantly elevated during the time period when the smelter operated (4.1 ± 3.7 ng m(-3)), decreased only 20% during the year following its closure, and remained ~2-fold above background levels. Similar trends were observed for mercury concentrations in precipitation. Several lines of evidence indicated that while smelter stack emissions would occasionally mix down to the surface resulting in large spikes in TGM concentrations (up to 61 ng m(-3)), the largest contributor to elevated TGM concentrations before and after smelter closure was from surface-air fluxes from mercury-enriched soils and/or tailings. These findings highlight the ability of legacy mercury, deposited to local landscapes over decades from industrial activities, to significantly affect local air concentrations via emissions/re-emissions.
Hard X-ray Point Sources Detected in the NuSTAR Galactic Plane Survey
NASA Astrophysics Data System (ADS)
Hailey, Chuck
The Nuclear Spectroscopic Telescope Array (NuSTAR) has surveyed the Galactic Center and Norma region with total exposure of approximately 2 Msec and 50 pointings. Hard X-ray spectroscopy with NuSTAR is a powerful tool to identify sources previously discovered by Chandra, and thus perform comparative population studies in the Galactic Center and Norma region. The NuSTAR survey, with a depth ranging from 20 to 40 ksec, detected dozens of point source above 10 keV including three known X-ray transients (GRS 1741-2853, AXJ1745.6-2901 and CXOGC J174540.0-29005) during their outbursts in 2013. Some of the NuSTAR point sources exhibit remarkably hard X-ray spectra extending beyond 40 keV, indicating that they are either hot intermediate polars with temperatures greater than 50 keV or X-ray binaries with either a neutron star or black hole. We will present our spectral and timing analysis of the NuSTAR sources as well as results of IR counterpart searches.
[Urban non-point source pollution control by runoff retention and filtration pilot system].
Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia
2011-09-01
A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.
Detection of New Point Sources in WMAP 7 Year Data Using Internal Templates and Needlets
NASA Astrophysics Data System (ADS)
Scodeller, Sandro; Hansen, Frode K.; Marinucci, Domenico
2012-07-01
We have developed a new needlet-based method to detect point sources in cosmic microwave background (CMB) maps and have applied it to the Wilkinson Microwave Anisotropy Probe (WMAP) 7 year data. We use both the individual frequency channels as well as internal templates, the latter being the difference between pairs of frequency channels and hence having the advantage that the CMB component is eliminated. Using the area of the sky outside the Kq85 galactic mask, we detect a total of 2102 point sources at the 5σ level in either the frequency maps or the internal templates. Of these, 1116 are detected either at 5σ directly in the frequency channels or at 5σ in the internal templates and >=3σ at the corresponding position in the frequency channels. Of the 1116 sources, 603 are detections that have not been reported so far in WMAP data. We have made a catalog of these sources available with position and flux estimated in the WMAP channels where they are seen. In total, we identified 1029 of the 1116 sources with counterparts at 5 GHz and 69 at other frequencies.
A fast algorithm for finding point sources in the Fermi data stream: FermiFAST
NASA Astrophysics Data System (ADS)
Asvathaman, Asha; Omand, Conor; Barton, Alistair; Heyl, Jeremy S.
2017-04-01
We present a new and efficient algorithm for finding point sources in the photon event data stream from the Fermi Gamma-Ray Space Telescope, FermiFAST. The key advantage of FermiFAST is that it constructs a catalogue of potential sources very fast by arranging the photon data in a hierarchical data structure. Using this structure, FermiFAST rapidly finds the photons that could have originated from a potential gamma-ray source. It calculates a likelihood ratio for the contribution of the potential source using the angular distribution of the photons within the region of interest. It can find within a few minutes the most significant half of the Fermi Third Point Source catalogue (3FGL) with nearly 80 per cent purity from the 4 yr of data used to construct the catalogue. If a higher purity sample is desirable, one can achieve a sample that includes the most significant third of the Fermi 3FGL with only 5 per cent of the sources unassociated with Fermi sources. Outside the Galactic plane, all but eight of the 580 FermiFAST detections are associated with 3FGL sources. And of these eight, six yield significant detections of greater than 5σ when a further binned likelihood analysis is performed. This software allows for rapid exploration of the Fermi data, simulation of the source detection to calculate the selection function of various sources and the errors in the obtained parameters of the sources detected.
Managed aquifer recharge in South India: What to expect from small percolation tanks in hard rock?
NASA Astrophysics Data System (ADS)
Massuel, S.; Perrin, J.; Mascre, C.; Mohamed, W.; Boisson, A.; Ahmed, S.
2014-05-01
Many states in India are currently facing general overuse of their groundwater resources mainly due to growing demand for irrigated agriculture. Groundwater levels are declining despite water harvesting measures to enhance aquifer recharge which are supported on a massive scale by watershed development programmes. New programmes are being implemented to improve artificial percolation (i.e., managed aquifer recharge, MAR) although the impact of former measures on aquifer recharge has not yet been assessed. It is therefore crucial to increase our understanding of MAR to successfully overcome the threat of groundwater scarcity in the near future. This paper scrutinizes the ability of a typical percolation tank to recharge the aquifer using a comprehensive approach combining water accounting, geochemistry and hydrodynamic modelling. Over 2 years of observation, the percolation efficiency (percolated fraction of stored water) of the tank ranged from 57% to 63%, the rest being evaporated. Modelling showed that the percolated water was mostly (80%) pumped straight back by the neighbouring boreholes, limiting the area of MAR influence but increasing percolation efficiency.
Wu, Lei; Long, Tian-Yu; Li, Chong-Ming
2010-01-01
Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the
Last Passage Percolation and Traveling Fronts
NASA Astrophysics Data System (ADS)
Comets, Francis; Quastel, Jeremy; Ramírez, Alejandro F.
2013-08-01
We consider a system of N particles with a stochastic dynamics introduced by Brunet and Derrida (Phys. Rev. E 70:016106, 2004). The particles can be interpreted as last passage times in directed percolation on {1,…, N} of mean-field type. The particles remain grouped and move like a traveling front, subject to discretization and driven by a random noise. As N increases, we obtain estimates for the speed of the front and its profile, for different laws of the driving noise. As shown in Brunet and Derrida (Phys. Rev. E 70:016106, 2004), the model with Gumbel distributed jumps has a simple structure. We establish that the scaling limit is a Lévy process in this case. We study other jump distributions. We prove a result showing that the limit for large N is stable under small perturbations of the Gumbel. In the opposite case of bounded jumps, a completely different behavior is found, where finite-size corrections are extremely small.
Growth dominates choice in network percolation
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.
2013-09-01
The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.
Percolation on hypergraphs with four-edges
NASA Astrophysics Data System (ADS)
Khatib Damavandi, Ojan; Ziff, Robert M.
2015-10-01
We study percolation on self-dual hypergraphs that contain hyperedges with four bounding vertices, or ‘four-edges’, using three different generators, each containing bonds or sites with three distinct probabilities p, r, and t connecting the four vertices. We find explicit values of these probabilities that satisfy the self-duality conditions discussed by Bollobás and Riordan. This demonstrates that explicit solutions of the self-duality conditions can be found using generators containing bonds and sites with independent probabilities. These solutions also provide new examples of lattices where exact percolation critical points are known. One of the generators exhibits three distinct criticality solutions (p, r, t). We carry out Monte-Carlo simulations of two of the generators on two different hypergraphs to confirm the critical values. For the case of the hypergraph and uniform generator studied by Wierman et al, we also determine the threshold p = 0.441 374 ± 0.000 001, which falls within the tight bounds that they derived. Furthermore, we consider a generator in which all or none of the vertices can connect, and find a soluble inhomogeneous percolation system that interpolates between site percolation on the union-jack lattice and bond percolation on the square lattice.
Proton percolation on hydrated lysozyme powders.
Careri, G; Giansanti, A; Rupley, J A
1986-09-01
The framework of percolation theory is used to analyze the hydration dependence of the capacitance measured for protein samples of pH 3-10, at frequencies from 10 kHz to 4 MHz. For all samples there is a critical value of the hydration at which the capacitance sharply increases with increase in hydration level. The threshold h(c) = 0.15 g of water per g of protein is independent of pH below pH 9 and shows no solvent deuterium isotope effect. The fractional coverage of the surface at h(c) is in close agreement with the prediction of theory for surface percolation. We view the protonic conduction process described here for low hydration and previously for high hydration as percolative proton transfer along threads of hydrogen-bonded water molecules. A principal element of the percolation picture, which explains the invariance of h(c) to change in pH and solvent, is the sudden appearance of long-range connectivity and infinite clusters at the threshold h(c). The relationship of the protonic conduction threshold to other features of protein hydration is described. The importance of percolative processes for enzyme catalysis and membrane transport is discussed.
Continuum percolation of congruent overlapping spherocylinders
NASA Astrophysics Data System (ADS)
Xu, Wenxiang; Su, Xianglong; Jiao, Yang
2016-09-01
Continuum percolation of randomly orientated congruent overlapping spherocylinders (composed of cylinder of height H with semispheres of diameter D at the ends) with aspect ratio α =H /D in [0 ,∞ ) is studied. The percolation threshold ϕc, percolation transition width Δ, and correlation-length critical exponent ν for spherocylinders with α in [0, 200] are determined with a high degree of accuracy via extensive finite-size scaling analysis. A generalized excluded-volume approximation for percolation threshold with an exponent explicitly depending on both aspect ratio and excluded volume for arbitrary α values in [0 ,∞ ) is proposed and shown to yield accurate predictions of ϕc for an extremely wide range of α in [0, 2000] based on available numerical and experimental data. We find ϕc is a universal monotonic decreasing function of α and is independent of the effective particle size. Our study has implications in percolation theory for nonspherical particles and composite material design.
Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT
NASA Astrophysics Data System (ADS)
Liu, Ruimin; Xu, Fei; Zhang, Peipei; Yu, Wenwen; Men, Cong
2016-02-01
The identification of critical source areas (CSAs) is a precondition for non-point source (NPS) pollution control at a basin scale, especially in areas with limited resources. Based on the Soil and Water Assessment Tool (SWAT), nutrient loads coupled with population density and water quality requirements are regarded as multi-factors for CSAs identification in Xiangxi river watershed, the first tributary of the Yangtze River. The results based on the calibrated model found that the subbasins heavily and seriously polluted by nutrient loads were different from the subbasins identified as CSAs, demonstrating integrating socio-economic factors like population density and water quality requirements to identify CSAs is of much necessity. The CSAs occupied 19.7% of the total subbasins, and accounted for 53% total nitrogen loads, 54% total phosphorus loads and 36% of the total population. Considering the model calibration and validation will take a long time as well as data deficiency in some subbasins, the influence of uncalibrated SWAT on CSAs identifications was discussed. The comparative results between CSAs identification with calibrated and uncalibrated SWAT model revealed that model calibration had little effect on nutrients distribution and CSAs locations in the study area. Uncalibrated SWAT model may be applied when the research objective is less related to model calibration. The results will be greatly effective for CSAs identification and NPS pollution control at a basin scale.
Two-dimensional quantum percolation with binary nonzero hopping integrals
NASA Astrophysics Data System (ADS)
Thomas, Brianna S. Dillon; Nakanishi, Hisao
2016-10-01
In a previous work [Dillon and Nakanishi, Eur. Phys. J. B 87, 286 (2014), 10.1140/epjb/e2014-50397-4], we numerically calculated the transmission coefficient of the two-dimensional quantum percolation problem and mapped out in detail the three regimes of localization, i.e., exponentially localized, power-law localized, and delocalized, which had been proposed earlier [Islam and Nakanishi, Phys. Rev. E 77, 061109 (2008), 10.1103/PhysRevE.77.061109]. We now consider a variation on quantum percolation in which the hopping integral (w ) associated with bonds that connect to at least one diluted site is not zero, but rather a fraction of the hopping integral (V =1 ) between nondiluted sites. We study the latter model by calculating quantities such as the transmission coefficient and the inverse participation ratio and find the original quantum percolation results to be stable for w >0 over a wide range of energy. In particular, except in the immediate neighborhood of the band center (where increasing w to just 0.02 V appears to eliminate localization effects), increasing w only shifts the boundaries between the three regimes but does not eliminate them until w reaches 10%-40% of V .
The Fermi paradox: An approach based on percolation theory
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1993-01-01
If even a very small fraction of the hundred billion stars in the galaxy are home to technological civilizations which colonize over interstellar distances, the entire galaxy could be completely colonized in a few million years. The absence of such extraterrestrial civilizations visiting Earth is the Fermi paradox. A model for interstellar colonization is proposed using the assumption that there is a maximum distance over which direct interstellar colonization is feasible. Due to the time lag involved in interstellar communications, it is assumed that an interstellar colony will rapidly develop a culture independent of the civilization that originally settled it. Any given colony will have a probability P of developing a colonizing civilization, and a probability (1-P) that it will develop a non-colonizing civilization. These assumptions lead to the colonization of the galaxy occuring as a percolation problem. In a percolation problem, there will be a critical value of percolation probability, P(sub c). For P less than P(sub c), colonization will always terminate after a finite number of colonies. Growth will occur in 'clusters', with the outside of each cluster consisting of non-colonizing civilizations. For P greater than P(sub c), small uncolonized voids will exist, bounded by non-colonizing civilizations. For P approximately = to P(sub c), arbitrarily large filled regions exist, and also arbitrarily large empty regions.
Percolation of heteronuclear dimers irreversibly deposited on square lattices
NASA Astrophysics Data System (ADS)
Gimenez, M. C.; Ramirez-Pastor, A. J.
2016-09-01
The percolation problem of irreversibly deposited heteronuclear dimers on square lattices is studied. A dimer is composed of two segments, and it occupies two adjacent adsorption sites. Each segment can be either a conductive segment (segment type A ) or a nonconductive segment (segment type B ). Three types of dimers are considered: A A , B B , and A B . The connectivity analysis is carried out by accounting only for the conductive segments (segments type A ). The model offers a simplified representation of the problem of percolation of defective (nonideal) particles, where the presence of defects in the system is simulated by introducing a mixture of conductive and nonconductive segments. Different cases were investigated, according to the sequence of deposition of the particles, the types of dimers involved in the process, and the degree of alignment of the deposited objects. By means of numerical simulations and finite-size scaling analysis, the complete phase diagram separating a percolating from a nonpercolating region was determined for each case. Finally, the consistency of our results was examined by comparing with previous data in the literature for linear k -mers (particles occupying k adjacent sites) with defects.
Percolation of heteronuclear dimers irreversibly deposited on square lattices.
Gimenez, M C; Ramirez-Pastor, A J
2016-09-01
The percolation problem of irreversibly deposited heteronuclear dimers on square lattices is studied. A dimer is composed of two segments, and it occupies two adjacent adsorption sites. Each segment can be either a conductive segment (segment type A) or a nonconductive segment (segment type B). Three types of dimers are considered: AA, BB, and AB. The connectivity analysis is carried out by accounting only for the conductive segments (segments type A). The model offers a simplified representation of the problem of percolation of defective (nonideal) particles, where the presence of defects in the system is simulated by introducing a mixture of conductive and nonconductive segments. Different cases were investigated, according to the sequence of deposition of the particles, the types of dimers involved in the process, and the degree of alignment of the deposited objects. By means of numerical simulations and finite-size scaling analysis, the complete phase diagram separating a percolating from a nonpercolating region was determined for each case. Finally, the consistency of our results was examined by comparing with previous data in the literature for linear k-mers (particles occupying k adjacent sites) with defects.
Habasaki, Junko; Ngai, K L
2015-04-28
The typical ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO3), was examined by molecular dynamics simulations of an all-atomistic model to show the characteristics of networks of cages and/or bonds in the course of vitrification of this fragile glass-former. The system shows changes of dynamics at two characteristic temperatures, TB (or Tc) and the glass transition temperature Tg, found in other fragile glass forming liquids [K. L. Ngai and J. Habasaki, J. Chem. Phys. 141, 114502 (2014)]. On decreasing temperature, the number of neighboring cation-anion pairs, NB, within the first minimum of the pair correlation function, g(r)min, increases. On crossing TB (>Tg), the system volume and diffusion coefficient both show changes in temperature dependence, and as usual at Tg. The glass transition temperature, Tg, is characterized by the saturation of the total number of "bonds," NB and the corresponding decrease in degree of freedom, F = [(3N - 6) - NB], of the system consisting of N particles. Similar behavior holds for the other ion-ion pairs. Therefore, as an alternative, the dynamics of glass transition can be interpreted conceptually by rigidity percolation. Before saturation occurring at Tg, the number of bonds shows a remarkable change at around TB. This temperature is associated with the disappearance of the loosely packed coordination polyhedra of anions around cation (or vice versa), related to the loss of geometrical freedom of the polyhedra, fg, of each coordination polyhedron, which can be defined by fg = [(3NV - 6) - Nb]. Here, 3Nv is the degree of freedom of NV vertices of the polyhedron, and Nb is number of fictive bonds. The packing of polyhedra is characterized by the soft percolation of cages, which allows further changes with decreasing temperature. The power spectrum of displacement of the central ion in the cage is found to be correlated with the fluctuation of Nb of cation-cation (or anion-anion) pairs in the polyhedron, although the
Habasaki, Junko; Ngai, K. L.
2015-04-28
The typical ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO{sub 3}), was examined by molecular dynamics simulations of an all-atomistic model to show the characteristics of networks of cages and/or bonds in the course of vitrification of this fragile glass-former. The system shows changes of dynamics at two characteristic temperatures, T{sub B} (or T{sub c}) and the glass transition temperature T{sub g}, found in other fragile glass forming liquids [K. L. Ngai and J. Habasaki, J. Chem. Phys. 141, 114502 (2014)]. On decreasing temperature, the number of neighboring cation-anion pairs, N{sub B}, within the first minimum of the pair correlation function, g(r){sub min}, increases. On crossing T{sub B} (>T{sub g}), the system volume and diffusion coefficient both show changes in temperature dependence, and as usual at T{sub g}. The glass transition temperature, T{sub g}, is characterized by the saturation of the total number of “bonds,” N{sub B} and the corresponding decrease in degree of freedom, F = [(3N − 6) − N{sub B}], of the system consisting of N particles. Similar behavior holds for the other ion-ion pairs. Therefore, as an alternative, the dynamics of glass transition can be interpreted conceptually by rigidity percolation. Before saturation occurring at T{sub g}, the number of bonds shows a remarkable change at around T{sub B}. This temperature is associated with the disappearance of the loosely packed coordination polyhedra of anions around cation (or vice versa), related to the loss of geometrical freedom of the polyhedra, f{sub g}, of each coordination polyhedron, which can be defined by f{sub g} = [(3N{sub V} − 6) − N{sub b}]. Here, 3N{sub v} is the degree of freedom of N{sub V} vertices of the polyhedron, and N{sub b} is number of fictive bonds. The packing of polyhedra is characterized by the soft percolation of cages, which allows further changes with decreasing temperature. The power spectrum of displacement of the central ion
AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. I. POINT-SOURCE CATALOG
Kato, Daisuke; Onaka, Takashi; Shimonishi, Takashi; Sakon, Itsuki; Ita, Yoshifusa; Tanabe, Toshihiko; Takahashi, Hidenori; Kaneda, Hidehiro; Kawamura, Akiko; Wada, Takehiko; Usui, Fumihiko; Koo, Bon-Chul; Matsuura, Mikako E-mail: onaka@astron.s.u-tokyo.ac.jp
2012-12-01
We present a near- to mid-infrared point-source catalog of five photometric bands at 3.2, 7, 11, 15, and 24 {mu}m for a 10 deg{sup 2} area of the Large Magellanic Cloud (LMC) obtained with the Infrared Camera on board the AKARI satellite. To cover the survey area the observations were carried out at three separate seasons from 2006 May to June, 2006 October to December, and 2007 March to July. The 10{sigma} limiting magnitudes of the present survey are 17.9, 13.8, 12.4, 9.9, and 8.6 mag at 3.2, 7, 11, 15, and 24 {mu}m, respectively. The photometric accuracy is estimated to be about 0.1 mag at 3.2 {mu}m and 0.06-0.07 mag in the other bands. The position accuracy is 0.''3 at 3.2, 7, and 11 {mu}m and 1.''0 at 15 and 24 {mu}m. The sensitivities at 3.2, 7, and 24 {mu}m are roughly comparable to those of the Spitzer SAGE LMC point-source catalog, while the AKARI catalog provides the data at 11 and 15 {mu}m, covering the mid-infrared spectral range contiguously. Two types of catalog are provided: a Catalog and an Archive. The Archive contains all the detected sources, while the Catalog only includes the sources that have a counterpart in the Spitzer SAGE point-source catalog. The Archive contains about 650,000, 140,000, 97,000, 43,000, and 52,000 sources at 3.2, 7, 11, 15, and 24 {mu}m, respectively. Based on the catalog, we discuss the luminosity functions at each band, the color-color diagram, and the color-magnitude diagram using the 3.2, 7, and 11 {mu}m band data. Stars without circumstellar envelopes, dusty C-rich and O-rich stars, young stellar objects, and background galaxies are located at distinct regions in the diagrams, suggesting that the present catalog is useful for the classification of objects toward the LMC.
Fixed-energy sandpiles belong generically to directed percolation.
Basu, Mahashweta; Basu, Urna; Bondyopadhyay, Sourish; Mohanty, P K; Hinrichsen, Haye
2012-07-06
Fixed-energy sandpiles with stochastic update rules are known to exhibit a nonequilibrium phase transition from an active phase into infinitely many absorbing states. Examples include the conserved Manna model, the conserved lattice gas, and the conserved threshold transfer process. It is believed that the transitions in these models belong to an autonomous universality class of nonequilibrium phase transitions, the so-called Manna class. Contrarily, the present numerical study of selected (1+1)-dimensional models in this class suggests that their critical behavior converges to directed percolation after very long time, questioning the existence of an independent Manna class.
Fluid leakage near the percolation threshold
NASA Astrophysics Data System (ADS)
Dapp, Wolf B.; Müser, Martin H.
2016-02-01
Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again.
Fluid leakage near the percolation threshold
Dapp, Wolf B.; Müser, Martin H.
2016-01-01
Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again. PMID:26839261
Percolation transition in spherical granular material
NASA Astrophysics Data System (ADS)
Moore, Heather; Dumancas, Lorenzo; Rhoades, Tyler; Zimmerman, Mark; Jacobs, D. T.
2010-03-01
Two properties of percolation were studied by measuring the resistance to the flow of electricity through a system of conducting and insulating spheres. The percolation threshold was measured on two system sizes by varying the volume fraction of conducting spheres in the mixture of 1 mm diameter silver coated and uncoated glass spheres and found to be 0.180±0.006 by volume of conducting spheres. This value is consistent with other experimental observations in a variety of 3D systems. Near the percolation threshold, the conductance exhibited a power-law relation with respect to the difference of the composition from the threshold composition. We acknowledge support from the Howard Hughes Medical Institute through its undergraduate science education program and to the College of Wooster.
NASA Astrophysics Data System (ADS)
Chen, Daifen; Zhang, Qiang; Lu, Liu; Periasamy, Vijay; Tade, Moses O.; Shao, Zongping
2016-01-01
H+ based solid oxide fuel cell (SOFC) composite cathodes are generally agreed to be of quite different relationships among the microstructure parameters, electrode properties and detailed working processes from the conventional O2--SOFC composite cathodes. In this paper, the percolation theory is significantly generalized and developed to suit most of the typical H+-SOFC composite cathodes with e-/H+, e-/O2- or e-/H+/O2- mixed conducting characteristics; not just limited to the BCZY, SDC and LSCF materials. It provides an easy way to investigate the effect of microstructure parameters on the H+-SOFC electrode characteristics in quantity. The studied electrode properties include: i) the potential coexisting sites of O2, e-, and O2- transport paths for the oxygen reduction; ii) the potential coexisting sites of O2-, H+ and H2O transport paths for the vapor formation; iii) the effective e-, O2-, and H+ conducting and gas diffusing capabilities of the composite cathodes, and so on. It will be helpful for the H+-SOFC composite cathode manufacture to achieve the expected properties. Furthermore, it is also an important step for the developing of the multiphysics-model in manuscript part B to study the effect of the microstructure parameters on the H+-SOFC working details.
Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water
Davisson, M L
2001-03-01
This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Much of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.
NASA Technical Reports Server (NTRS)
Seo, Byoung-Joon; Nissly, Carl; Troy, Mitchell; Angeli, George
2010-01-01
The Normalized Point Source Sensitivity (PSSN) has previously been defined and analyzed as an On-Axis seeing-limited telescope performance metric. In this paper, we expand the scope of the PSSN definition to include Off-Axis field of view (FoV) points and apply this generalized metric for performance evaluation of the Thirty Meter Telescope (TMT). We first propose various possible choices for the PSSN definition and select one as our baseline. We show that our baseline metric has useful properties including the multiplicative feature even when considering Off-Axis FoV points, which has proven to be useful for optimizing the telescope error budget. Various TMT optical errors are considered for the performance evaluation including segment alignment and phasing, segment surface figures, temperature, and gravity, whose On-Axis PSSN values have previously been published by our group.
Comparison of line- and point-source releases of tracer gases
NASA Astrophysics Data System (ADS)
Eklund, Bart
Field measurements were made of greenhouse gas emissions from a wastewater treatment system using open path monitoring with detection by FTIR spectroscopy. Emission rates were determined by the ratio technique using a sulfur hexafluoride tracer gas released from a line source. As a quality control check, a second tracer gas - ethylene - was released from various single point locations. This paper presents a comparison of the line-source and point-source tracer releases for approximating emissions from the area source. The two types of tracer release showed excellent agreement when both release points were two hundred meters from the FTIR beam path. Data for other release points also were comparable, once differences in vertical dispersion as a function of distance are taken into account.
Mercury exposure in terrestrial birds far downstream of an historical point source.
Jackson, Allyson K; Evers, David C; Folsom, Sarah B; Condon, Anne M; Diener, John; Goodrick, Lizzie F; McGann, Andrew J; Schmerfeld, John; Cristol, Daniel A
2011-12-01
Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source.
Preliminary limits on the flux of muon neutrinos from extraterrestrial point sources
Bionta, R.M.; Blewitt, G.; Bratton, C.B.; Casper, D.; Cortez, B.G.; Chrysicopoulou, P.; Claus, R.; Dye, S.T.; Errede, S.; Foster, G.W.
1985-07-03
We present the arrival directions of 117 upward-going muon events collected with the IMB proton lifetime detector during 317 days of live detector operation. The rate of upward-going muons observed in our detector was found to be consistent with the rate expected from atmospheric neutrino production. The upper limit on the total flux of extraterrestrial neutrinos >1 GeV is <0.06 neutrinos/cm/sup 2/-sec. Using our data and a Monte Carlo simulation of high energy muon production in the earth surrounding the detector, we place limits on the flux of neutrinos from a point source in the Vela X-2 system of <0.009 neutrinos/cm/sup 2/-sec with E > 1 GeV. 6 refs., 5 figs.
An efficient method to compute microlensed light curves for point sources
NASA Technical Reports Server (NTRS)
Witt, Hans J.
1993-01-01
We present a method to compute microlensed light curves for point sources. This method has the general advantage that all microimages contributing to the light curve are found. While a source moves along a straight line, all micro images are located either on the primary image track or on the secondary image tracks (loops). The primary image track extends from - infinity to + infinity and is made of many sequents which are continuously connected. All the secondary image tracks (loops) begin and end on the lensing point masses. The method can be applied to any microlensing situation with point masses in the deflector plane, even for the overcritical case and surface densities close to the critical. Furthermore, we present general rules to evaluate the light curve for a straight track arbitrary placed in the caustic network of a sample of many point masses.
NASA Astrophysics Data System (ADS)
Perera, T. A.; Wilson, G. W.; Scott, K. S.; Austermann, J. E.; Schaar, J. R.; Mancera, A.
2013-07-01
A new technique for reliably identifying point sources in millimeter/submillimeter wavelength maps is presented. This method accounts for the frequency dependence of noise in the Fourier domain as well as nonuniformities in the coverage of a field. This optimal filter is an improvement over commonly-used matched filters that ignore coverage gradients. Treating noise variations in the Fourier domain as well as map space is traditionally viewed as a computationally intensive problem. We show that the penalty incurred in terms of computing time is quite small due to casting many of the calculations in terms of FFTs and exploiting the absence of sharp features in the noise spectra of observations. Practical aspects of implementing the optimal filter are presented in the context of data from the AzTEC bolometer camera. The advantages of using the new filter over the standard matched filter are also addressed in terms of a typical AzTEC map.
Hunting for Point Sources in the Extragalactic Gamma-Ray Sky
NASA Astrophysics Data System (ADS)
Mishra Sharma, Siddharth; Lisanti, Mariangela; Necib, Lina; Safdi, Benjamin
2017-01-01
In this talk, I will present an analysis of the extragalactic gamma-ray background (EGB) using data from the Fermi Large Area Telescope. The method takes advantage of photon-count statistics to determine the properties of resolved and unresolved gamma-ray sources that contribute to the EGB. I will present the source-count functions, as a function of energy, from 1.89 GeV to 2 TeV, as well as the energy spectra of the different contributing source components, and will discuss how the results are affected by a variety of systematic uncertainties. These results allow us to determine the fraction of point sources, predominantly AGN (blazars), that contribute to the unresolved portion of the EGB. I will also comment on the consequences of these results for future TeV observatories such as the Cherenkov Telescope Array.