Using a dynamic point-source percolation model to simulate bubble growth.
Zimmerman, Jonathan A.; Zeigler, David A.; Cowgill, Donald F.
2004-05-01
Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tritide alloys is of high scientific and technological importance. Of interest is the ability to predict both the distribution of these bubbles and the manner in which these bubbles interact at a critical concentration of helium-to-metal atoms to produce an accelerated release of helium gas. One technique that has been used in the past to model these materials, and again revisited in this research, is percolation theory. Previous efforts have used classical percolation theory to qualitatively and quantitatively model the behavior of interstitial helium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict the distribution of helium bubbles and include features that capture the underlying physical mechanisms present in these materials. In this work, we enhance classical percolation theory by developing the dynamic point-source percolation model. This model alters the traditionally binary character of site occupation probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e. nucleated bubbles. This revised model produces characteristics for one and two dimensional systems that are extremely comparable with measurements from three dimensional physical samples. Future directions for continued development of the dynamic model are also outlined.
An autoregressive point source model for spatial processes
Hughes-Oliver, Jacqueline M.; Heo, Tae-Young; Ghosh, Sujit K.
2009-01-01
We suggest a parametric modeling approach for nonstationary spatial processes driven by point sources. Baseline near-stationarity, which may be reasonable in the absence of a point source, is modeled using a conditional autoregressive (CAR) Markov random field. Variability due to the point source is captured by our proposed autoregressive point source (ARPS) model. Inference proceeds according to the Bayesian hierarchical paradigm, and is implemented using Markov chain Monte Carlo (MCMC) methods. The parametric approach allows a formal test of effectiveness of the point source. Application is made to a real dataset on electric potential measurements in a field containing a metal pole and the finding is that our approach captures the pole’s impact on small-scale variability of the electric potential process. PMID:19936263
NASA Astrophysics Data System (ADS)
Kanai, Yasuhiro; Abe, Keiji; Seki, Yoichi
2015-06-01
We propose a price percolation model to reproduce the price distribution of components used in industrial finished goods. The intent is to show, using the price percolation model and a component category as an example, that percolation behaviors, which exist in the matter system, the ecosystem, and human society, also exist in abstract, random phenomena satisfying the power law. First, we discretize the total potential demand for a component category, considering it a random field. Second, we assume that the discretized potential demand corresponding to a function of a finished good turns into actual demand if the difficulty of function realization is less than the maximum difficulty of the realization. The simulations using this model suggest that changes in a component category's price distribution are due to changes in the total potential demand corresponding to the lattice size and the maximum difficulty of realization, which is an occupation probability. The results are verified using electronic components' sales data.
NASA Astrophysics Data System (ADS)
Solomon, Sorin; Weisbuch, Gerard; de Arcangelis, Lucilla; Jan, Naeem; Stauffer, Dietrich
2000-03-01
We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.
Point source moment tensor inversion through a Bayesian hierarchical model
NASA Astrophysics Data System (ADS)
Mustać, Marija; Tkalčić, Hrvoje
2016-01-01
Characterization of seismic sources is an important aspect of seismology. Parameter uncertainties in such inversions are essential for estimating solution robustness, but are rarely available. We have developed a non-linear moment tensor inversion method in a probabilistic Bayesian framework that also accounts for noise in the data. The method is designed for point source inversion using waveform data of moderate-size earthquakes and explosions at regional distances. This probabilistic approach results in an ensemble of models, whose density is proportional to parameter probability distribution and quantifies parameter uncertainties. Furthermore, we invert for noise in the data, allowing it to determine the model complexity. We implement an empirical noise covariance matrix that accounts for interdependence of observational errors present in waveform data. After we demonstrate the feasibility of the approach on synthetic data, we apply it to a Long Valley Caldera, CA, earthquake with a well-documented anomalous (non-double-couple) radiation from previous studies. We confirm a statistically significant isotropic component in the source without a trade-off with the compensated linear vector dipoles component.
Electromagnetic modeling of foliage-obscured point source response
NASA Astrophysics Data System (ADS)
Hsu, Chih-Chien; Kong, Jin A.; Toups, Michael F.; Fleischman, Jack G.; Ayasli, Serpil; Shin, Robert T.
1993-11-01
This paper investigates the attenuation and phase fluctuations of electromagnetic waves propagating through foliage. These fluctuations are important in determining how well an object obscured by foliage can be imaged with synthetic aperture radar. A theoretical model is developed to calculate the mean attenuation and the amplitude and phase fluctuations. The attenuation of average received field is obtained from the sum of absorption loss and scattering loss. The amplitude fluctuation of electromagnetic wave is calculated from the bistatic scattering coefficients using the radiative transfer theory. The phase fluctuation is obtained from the amplitude fluctuation assuming the phase of the fluctuation field is uniformly distributed from -(pi) to (pi) . The average received power is obtained from the sum of the power of average field and the power of fluctuation field. The attenuation is then obtained by comparing the radiated power from a source under foliage to the received power from a source in free space. Theoretical results are compared with experimental data collected by MIT Lincoln Laboratory during the 1990 Foliage Penetration Experiment. This theoretical model is also used to illustrate the polarization and angular dependencies of attenuation and phase fluctuations.
HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL
The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...
Simulation of Non-point Source Pollution in the Songhua River Basin Using GBNP Model
NASA Astrophysics Data System (ADS)
Pan, J.; Tang, L.; Chen, Y. D.
2015-12-01
China is facing increasingly severe water pollution issue with rapid socio-economic development. Non-point source pollution, which is rarely monitored, has become the main forms of water pollution in China. In this study, the Geomorphology-Based Non-point source Pollution (GBNP) model was used to simulate the processes of rain-runoff, soil erosion, sediment routing and pollutant transport in the Songhua River basin from 2001 to 2010. The spatio-temporal variation of non-point source pollution and river water quality were analyzed based on the simulation outputs. In the entire basin, the annual mean loading of TN, TP and soil erosion are 270,000 ton/a, 42,200 ton/a and 55,900,000 ton/a, respectively. The point and non-point source pollution respectively account for 44.9% and 55.1% in TN loading. For TP loading, the proportions of point and non-point source pollution are 14.4% and 85.6%, respectively. It suggests that the non-point source pollution control and treatments should be paid more attention in the Songhua River basin. The inter-annual and intra-annual variations of non-point source pollution components and potential driving mechanisms are further examined. The annual loading of soil erosion, TN and TP are highly correlated with annual runoff, with the correlation coefficients of 0.75, 0.91 and 0.92, respectively, which implies that rain-runoff could be the main driving force of non-point pollution. The monthly sediment concentration in the watercourse is high in flood season and low in non-flood season, which agrees well with the seasonality of monthly runoff. By contrast, the concentrations of TN and TP in watercourse show the opposite features.
NASA Astrophysics Data System (ADS)
Zhang, Tianhe C.; Grill, Warren M.
2010-12-01
Deep brain stimulation (DBS) has emerged as an effective treatment for movement disorders; however, the fundamental mechanisms by which DBS works are not well understood. Computational models of DBS can provide insights into these fundamental mechanisms and typically require two steps: calculation of the electrical potentials generated by DBS and, subsequently, determination of the effects of the extracellular potentials on neurons. The objective of this study was to assess the validity of using a point source electrode to approximate the DBS electrode when calculating the thresholds and spatial distribution of activation of a surrounding population of model neurons in response to monopolar DBS. Extracellular potentials in a homogenous isotropic volume conductor were calculated using either a point current source or a geometrically accurate finite element model of the Medtronic DBS 3389 lead. These extracellular potentials were coupled to populations of model axons, and thresholds and spatial distributions were determined for different electrode geometries and axon orientations. Median threshold differences between DBS and point source electrodes for individual axons varied between -20.5% and 9.5% across all orientations, monopolar polarities and electrode geometries utilizing the DBS 3389 electrode. Differences in the percentage of axons activated at a given amplitude by the point source electrode and the DBS electrode were between -9.0% and 12.6% across all monopolar configurations tested. The differences in activation between the DBS and point source electrodes occurred primarily in regions close to conductor-insulator interfaces and around the insulating tip of the DBS electrode. The robustness of the point source approximation in modeling several special cases—tissue anisotropy, a long active electrode and bipolar stimulation—was also examined. Under the conditions considered, the point source was shown to be a valid approximation for predicting excitation
In this paper, results of Eulerian grid and Lagrangian photochemical model simulations of emissions from a major elevated point source are presented. eries of simulations with grid sizes varying from 30 km to 2 km were performed with the Urban Airshed Model, a photochemical grid ...
A Percolation Model for Fracking
NASA Astrophysics Data System (ADS)
Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.
2014-12-01
Developments in fracking technology have enabled the recovery of vast reserves of oil and gas; yet, there is very little publicly available scientific research on fracking. Traditional reservoir simulator models for fracking are computationally expensive, and require many hours on a supercomputer to simulate a single fracking treatment. We have developed a computationally inexpensive percolation model for fracking that can be used to understand the processes and risks associated with fracking. In our model, a fluid is injected from a single site and a network of fractures grows from the single site. The fracture network grows in bursts, the failure of a relatively strong bond followed by the failure of a series of relatively weak bonds. These bursts display similarities to micro seismic events observed during a fracking treatment. The bursts follow a power-law (Gutenburg-Richter) frequency-size distribution and have growth rates similar to observed earthquake moment rates. These are quantifiable features that can be compared to observed microseismicity to help understand the relationship between observed microseismicity and the underlying fracture network.
PHOTOCHEMICAL SIMULATIONS OF POINT SOURCE EMISSIONS WITH THE MODELS-3 CMAQ PLUME-IN-GRID APPROACH
A plume-in-grid (PinG) approach has been designed to provide a realistic treatment for the simulation the dynamic and chemical processes impacting pollutant species in major point source plumes during a subgrid scale phase within an Eulerian grid modeling framework. The PinG sci...
Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models
Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander
2014-02-18
In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient.
Stochastic point-source modeling of ground motions in the Cascadia region
Atkinson, G.M.; Boore, D.M.
1997-01-01
A stochastic model is used to develop preliminary ground motion relations for the Cascadia region for rock sites. The model parameters are derived from empirical analyses of seismographic data from the Cascadia region. The model is based on a Brune point-source characterized by a stress parameter of 50 bars. The model predictions are compared to ground-motion data from the Cascadia region and to data from large earthquakes in other subduction zones. The point-source simulations match the observations from moderate events (M 100 km). The discrepancy at large magnitudes suggests further work on modeling finite-fault effects and regional attenuation is warranted. In the meantime, the preliminary equations are satisfactory for predicting motions from events of M < 7 and provide conservative estimates of motions from larger events at distances less than 100 km.
An infrared sky model based on the IRAS point source data
NASA Technical Reports Server (NTRS)
Cohen, Martin; Walker, Russell; Wainscoat, Richard; Volk, Kevin; Walker, Helen; Schwartz, Deborah
1990-01-01
A detailed model for the infrared point source sky is presented that comprises geometrically and physically realistic representations of the galactic disk, bulge, spheroid, spiral arms, molecular ring, and absolute magnitudes. The model was guided by a parallel Monte Carlo simulation of the Galaxy. The content of the galactic source table constitutes an excellent match to the 12 micrometer luminosity function in the simulation, as well as the luminosity functions at V and K. Models are given for predicting the density of asteroids to be observed, and the diffuse background radiance of the Zodiacal cloud. The model can be used to predict the character of the point source sky expected for observations from future infrared space experiments.
Atmospheric Modeling and Verification of Point Source Fossil Fuel CO2 Emissions
NASA Astrophysics Data System (ADS)
Keller, E. D.; Turnbull, J. C.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.; Norris, M. W.; Zondervan, A.
2014-12-01
Emissions from large point sources (electricity generation and large-scale industry) of fossil fuel CO2 (CO2ff) emissions are currently determined from self-reported "bottom-up" inventory data, with an uncertainty of about 20% for individual power plants. As the world moves towards a regulatory environment, there is a need for independent, objective measurements of these emissions both to improve the accuracy of and to verify the reported amounts. "Top-down" atmospheric methods have the potential to independently constrain point source emissions, combining observations with atmospheric transport modeling to derive emission estimates. We use the Kapuni Gas Treatment Plant to examine methodologies and model sensitivities for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes and vents CO2 from locally extracted natural gas at a rate of ~0.1 Tg carbon per year. We measured the CO2ff content in three different types of observations: air samples collected in flasks over a period of a few minutes, sodium hydroxide solution exposed the atmosphere, and grass samples from the surrounding farmland, the latter two representing ~1 week integrated averages. We use the WindTrax Lagrangian plume dispersion model to compare these atmospheric observations with "expected" values given the emissions reported by the Kapuni plant. The model has difficulty accurately capturing the short-term variability in the flask samples but does well in representing the longer-term averages from grass samples, suggesting that passive integrated-sampling methods have the potential to monitor long-term emissions. Our results indicate that using this method, point source emissions can be verified to within about 30%. Further improvements in atmospheric transport modelling are needed to reduce uncertainties. In view of this, we discuss model strengths and weaknesses and explore model sensitivity to meteorological conditions
Percolation in a kinetic opinion exchange model
NASA Astrophysics Data System (ADS)
Chandra, Anjan Kumar
2012-02-01
We study the percolation transition of the geometrical clusters in the square-lattice LCCC model [a kinetic opinion exchange model introduced by Lallouache, Chakrabarti, Chakraborti, and Chakrabarti, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.056112 82, 056112 (2010)] with the change in conviction and influencing parameter. The cluster is comprised of the adjacent sites having an opinion value greater than or equal to a prefixed threshold value of opinion (Ω). The transition point is different from that obtained for the transition of the order parameter (average opinion value) found by Lallouache Although the transition point varies with the change in the threshold value of the opinion, the critical exponents for the percolation transition obtained from the data collapses of the maximum cluster size, the cluster size distribution, and the Binder cumulant remain the same. The exponents are also independent of the values of conviction and influencing parameters, indicating the robustness of this transition. The exponents do not match any other known percolation exponents (e.g., the static Ising, dynamic Ising, and standard percolation). This means that the LCCC model belongs to a separate universality class.
Double point source W-phase inversion: Real-time implementation and automated model selection
NASA Astrophysics Data System (ADS)
Nealy, Jennifer L.; Hayes, Gavin P.
2015-12-01
Rapid and accurate characterization of an earthquake source is an extremely important and ever evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa earthquake and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquake. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match published analyses of the same events.
Double point source W-phase inversion: Real-time implementation and automated model selection
Nealy, Jennifer; Hayes, Gavin
2015-01-01
Rapid and accurate characterization of an earthquake source is an extremely important and ever evolving field of research. Within this field, source inversion of the W-phase has recently been shown to be an effective technique, which can be efficiently implemented in real-time. An extension to the W-phase source inversion is presented in which two point sources are derived to better characterize complex earthquakes. A single source inversion followed by a double point source inversion with centroid locations fixed at the single source solution location can be efficiently run as part of earthquake monitoring network operational procedures. In order to determine the most appropriate solution, i.e., whether an earthquake is most appropriately described by a single source or a double source, an Akaike information criterion (AIC) test is performed. Analyses of all earthquakes of magnitude 7.5 and greater occurring since January 2000 were performed with extended analyses of the September 29, 2009 magnitude 8.1 Samoa earthquake and the April 19, 2014 magnitude 7.5 Papua New Guinea earthquake. The AIC test is shown to be able to accurately select the most appropriate model and the selected W-phase inversion is shown to yield reliable solutions that match published analyses of the same events.
Powerful model for the point source sky: Far-ultraviolet and enhanced midinfrared performance
NASA Technical Reports Server (NTRS)
Cohen, Martin
1994-01-01
I report further developments of the Wainscoat et al. (1992) model originally created for the point source infrared sky. The already detailed and realistic representation of the Galaxy (disk, spiral arms and local spur, molecular ring, bulge, spheroid) has been improved, guided by CO surveys of local molecular clouds, and by the inclusion of a component to represent Gould's Belt. The newest version of the model is very well validated by Infrared Astronomy Satellite (IRAS) source counts. A major new aspect is the extension of the same model down to the far ultraviolet. I compare predicted and observed far-utraviolet source counts from the Apollo 16 'S201' experiment (1400 A) and the TD1 satellite (for the 1565 A band).
MODELING PHOTOCHEMISTRY AND AEROSOL FORMATION IN POINT SOURCE PLUMES WITH THE CMAQ PLUME-IN-GRID
Emissions of nitrogen oxides and sulfur oxides from the tall stacks of major point sources are important precursors of a variety of photochemical oxidants and secondary aerosol species. Plumes released from point sources exhibit rather limited dimensions and their growth is gradu...
Scaling properties of percolation models for multifragmentation
NASA Astrophysics Data System (ADS)
Ngô, H.; Ngô, C.; Ighezou, F. Z.; Desbois, J.; Leray, S.; Zheng, Y.-M.
1990-03-01
We have used scaling properties of nuclear multifragmentation, which have been observed with emulsion data, to investigate the properties of some approaches based on percolation. We have studied different percolation models on a cubic lattice and shown that they can rather well reproduce the data except for binary break up. We have described what the mean field approximation would give in this context and showed that it cannot reproduce the experimental results. Most of the paper is focused on the restructured aggregation model introduced earlier which allows to well reproduce the scaling properties observed experimentally. This model has been studied in details and extended to take account of bonds breaking. It is shown that, in some cases, a nucleus can break up in two pieces. This process cannot be obtained in conventional percolation or aggregation but is observed experimentally in the emulsion data. Other features like the dimensionality of the aggregation model, the restructuration of the clusters and a schematic constraint in momentum space have also been investigated.
Modified Invasion Percolation Models for Multiphase Processes
Karpyn, Zuleima
2015-01-31
This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.
Percolation properties in a traffic model
NASA Astrophysics Data System (ADS)
Wang, Feilong; Li, Daqing; Xu, Xiaoyun; Wu, Ruoqian; Havlin, Shlomo
2015-11-01
As a dynamical complex system, traffic is characterized by a transition from free flow to congestions, which is mostly studied in highways. However, despite its importance in developing congestion mitigation strategies, the understanding of this common traffic phenomenon in a city scale is still missing. An open question is how the traffic in the network collapses from a global efficient traffic to isolated local flows in small clusters, i.e. the question of traffic percolation. Here we study the traffic percolation properties on a lattice by simulation of an agent-based model for traffic. A critical traffic volume in this model distinguishes the free state from the congested state of traffic. Our results show that the threshold of traffic percolation decreases with increasing traffic volume and reaches a minimum value at the critical traffic volume. We show that this minimal threshold is the result of longest spatial correlation between traffic flows at the critical traffic volume. These findings may help to develop congestion mitigation strategies in a network view.
Validation of a bulk turbulence model with thermal images of a point source
NASA Astrophysics Data System (ADS)
Kunz, Gerard J.; Moerman, Marcel M.; Fritz, Peter J.; de Leeuw, Gerrit
1996-10-01
A model was developed for the prediction of turbulence in the marine surface layer. The model requires standard meteorological values of air temperature, air humidity, wind speed each from any given height from within the surface layer and the sea surface temperature. Internally, the model is controlled by the exchange coefficients for momentum, heat and water vapor. A variant using the surface roughness length instead of the drag coefficient has also been implemented. The micrometeorological output parameters of the model are used to predict vertical profiles of the refractive index -- to predict refractivity effects -- and profiles of the refractive index structure function parameter C(subscript n)(superscript 2)(z). The latter is the controlling parameters to calculate optical turbulence effects such as scintillation and blurring. Experimental data were obtained from images taken of a point source over a 19 km path over the North Sea at a frame rate of 25 Hz using a 3 - 5 micrometer infrared camera system. The images were analyzed for scintillation, blur and image dancing. Predicted and measured turbulence effects are compared.
Economic-environmental modeling of point source pollution in Jefferson County, Alabama, USA.
Kebede, Ellene; Schreiner, Dean F; Huluka, Gobena
2002-05-01
This paper uses an integrated economic-environmental model to assess the point source pollution from major industries in Jefferson County, Northern Alabama. Industrial expansion generates employment, income, and tax revenue for the public sector; however, it is also often associated with the discharge of chemical pollutants. Jefferson County is one of the largest industrial counties in Alabama that experienced smog warnings and ambient ozone concentration, 1996-1999. Past studies of chemical discharge from industries have used models to assess the pollution impact of individual plants. This study, however, uses an extended Input-Output (I-O) economic model with pollution emission coefficients to assess direct and indirect pollutant emission for several major industries in Jefferson County. The major findings of the study are: (a) the principal emission by the selected industries are volatile organic compounds (VOC) and these contribute to the ambient ozone concentration; (b) the direct and indirect emissions are significantly higher than the direct emission by some industries, indicating that an isolated analysis will underestimate the emission by an industry; (c) while low emission coefficient industries may suggest industry choice they may also emit the most hazardous chemicals. This study is limited by the assumptions made, and the data availability, however it provides a useful analytical tool for direct and cumulative emission estimation and generates insights on the complexity in choice of industries. PMID:12173425
NASA Astrophysics Data System (ADS)
Juodis, Laurynas; Filistovič, Vitold; Maceika, Evaldas; Remeikis, Vidmantas
2016-03-01
An analytical model for dispersion of air pollutants released from a point source forming a secondary pollutant (e.g. chemical transformation or parent-daughter radionuclide chain) is formulated considering the constant wind speed and eddy diffusivities as an explicit function of downwind distance from the source in Cauchy (reflection-deposition type) boundary conditions. The dispersion of pollutants has been investigated by using the Gaussian plume dispersion parameters σy and σz instead of the diffusivity parameters Ky and Kz. For primary pollutant it was proposed to use the derived dry deposition factor instead of the source depletion alternative. An analytical solution for steady-state two-dimensional pollutant transport in the atmosphere is presented. Derived formulas include dependency from effective release height, gravitational and dry deposition velocities of primary and secondary pollutants, advection, surface roughness length and empirical dispersion parameters σy and σz. Demonstration of analytical solution application is provided by calculation of 135Xe and 135C air activity concentrations and the applicability of the model for the solution of atmospheric pollution transport problems.
Modied invasion percolation model for fracking
NASA Astrophysics Data System (ADS)
Norris, J.; Turcotte, D. L.; Rundle, J. B.
2013-12-01
Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large reserves of natural gas and oil. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. We consider new models of Invasion Percolation, (IP) which are models that were originally introduced to represent the injection of an invading fluid into a fluid filled porous medium. A primary difference between our model and the original model is the elimination of any unbroken bonds whose end sites are both filled with fluid. While the original model was found to have statistics nearly identical to traditional percolation, we find significant statistical differences. In particular, the distribution of broken bond strengths displays a strong roll-over near the critical point. Another difference between traditional percolation clusters and clusters generated using our model is the absence of internal loops. The modified growth rule prevents the formation of internal loops making the growing cluster ramified. Other ramified networks include drainage basins and DLA clusters. The study of drainage basins led to the development of Horton-Strahler and Tokunaga network statistics. We used both Horton-Strahler and Tokunaga network statistics to characterize simulated clusters using and found that the clusters generated by our model are statistically self-similar fractals. In addition to fractal clusters, IP also displays burst dynamics, in which the cluster extends rapidly through a spontaneous extension of percolating bonds. We define a burst to be a consecutive series of broken bonds whose strengths are all below a specified value. Using this definition of bursts we found good agreement with a power-law frequency-area distribution. Our model displays many of the characteristics of an energy landscape, and shows many similarities to DLA, neural networks, ecological landscapes, and the world wide web. We anticipate that this
Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed
Polyakov, V.; Fares, A.; Kubo, D.; Jacobi, J.; Smith, C.
2007-01-01
Impaired water quality caused by human activity and the spread of invasive plant and animal species has been identified as a major factor of degradation of coastal ecosystems in the tropics. The main goal of this study was to evaluate the performance of AnnAGNPS (Annualized Non-Point Source Pollution Model), in simulating runoff and soil erosion in a 48 km2 watershed located on the Island of Kauai, Hawaii. The model was calibrated and validated using 2 years of observed stream flow and sediment load data. Alternative scenarios of spatial rainfall distribution and canopy interception were evaluated. Monthly runoff volumes predicted by AnnAGNPS compared well with the measured data (R2 = 0.90, P < 0.05); however, up to 60% difference between the actual and simulated runoff were observed during the driest months (May and July). Prediction of daily runoff was less accurate (R2 = 0.55, P < 0.05). Predicted and observed sediment yield on a daily basis was poorly correlated (R2 = 0.5, P < 0.05). For the events of small magnitude, the model generally overestimated sediment yield, while the opposite was true for larger events. Total monthly sediment yield varied within 50% of the observed values, except for May 2004. Among the input parameters the model was most sensitive to the values of ground residue cover and canopy cover. It was found that approximately one third of the watershed area had low sediment yield (0-1 t ha-1 y-1), and presented limited erosion threat. However, 5% of the area had sediment yields in excess of 5 t ha-1 y-1. Overall, the model performed reasonably well, and it can be used as a management tool on tropical watersheds to estimate and compare sediment loads, and identify "hot spots" on the landscape. ?? 2007 Elsevier Ltd. All rights reserved.
A land use regression model incorporating data on industrial point source pollution.
Chen, Li; Wang, Yuming; Li, Peiwu; Ji, Yaqin; Kong, Shaofei; Li, Zhiyong; Bai, Zhipeng
2012-01-01
Advancing the understanding of the spatial aspects of air pollution in the city regional environment is an area where improved methods can be of great benefit to exposure assessment and policy support. We created land use regression (LUR) models for SO2, NO2 and PM10 for Tianjin, China. Traffic volumes, road networks, land use data, population density, meteorological conditions, physical conditions and satellite-derived greenness, brightness and wetness were used for predicting SO2, NO2 and PM10 concentrations. We incorporated data on industrial point sources to improve LUR model performance. In order to consider the impact of different sources, we calculated the PSIndex, LSIndex and area of different land use types (agricultural land, industrial land, commercial land, residential land, green space and water area) within different buffer radii (1 to 20 km). This method makes up for the lack of consideration of source impact based on the LUR model. Remote sensing-derived variables were significantly correlated with gaseous pollutant concentrations such as SO2 and NO2. R2 values of the multiple linear regression equations for SO2, NO2 and PM10 were 0.78, 0.89 and 0.84, respectively, and the RMSE values were 0.32, 0.18 and 0.21, respectively. Model predictions at validation monitoring sites went well with predictions generally within 15% of measured values. Compared to the relationship between dependent variables and simple variables (such as traffic variables or meteorological condition variables), the relationship between dependent variables and integrated variables was more consistent with a linear relationship. Such integration has a discernable influence on both the overall model prediction and health effects assessment on the spatial distribution of air pollution in the city region. PMID:23513446
Modeling non-point source pollutants in the vadose zone: Back to the basics
NASA Astrophysics Data System (ADS)
Corwin, Dennis L.; Letey, John, Jr.; Carrillo, Marcia L. K.
More than ever before in the history of scientific investigation, modeling is viewed as a fundamental component of the scientific method because of the relatively recent development of the computer. No longer must the scientific investigator be confined to artificially isolated studies of individual processes that can lead to oversimplified and sometimes erroneous conceptions of larger phenomena. Computer models now enable scientists to attack problems related to open systems such as climatic change, and the assessment of environmental impacts, where the whole of the interactive processes are greater than the sum of their isolated components. Environmental assessment involves the determination of change of some constituent over time. This change can be measured in real time or predicted with a model. The advantage of prediction, like preventative medicine, is that it can be used to alter the occurrence of potentially detrimental conditions before they are manifest. The much greater efficiency of preventative, rather than remedial, efforts strongly justifies the need for an ability to accurately model environmental contaminants such as non-point source (NPS) pollutants. However, the environmental modeling advances that have accompanied computer technological development are a mixed blessing. Where once we had a plethora of discordant data without a holistic theory, now the pendulum has swung so that we suffer from a growing stockpile of models of which a significant number have never been confirmed or even attempts made to confirm them. Modeling has become an end in itself rather than a means because of limited research funding, the high cost of field studies, limitations in time and patience, difficulty in cooperative research and pressure to publish papers as quickly as possible. Modeling and experimentation should be ongoing processes that reciprocally enhance one another with sound, comprehensive experiments serving as the building blocks of models and models
Modelling plume dispersion pattern from a point source using spatial auto-correlational analysis
NASA Astrophysics Data System (ADS)
Ujoh, F.; Kwabe, D.
2014-02-01
The main objective of the study is to estimate the rate and model the pattern of plume rise from Dangote Cement Plc. A handheld Garmin GPS was employed for collection of coordinates at a single kilometre graduation from the centre of the factory to 10 kilometres. Plume rate was estimated using the Gaussian model while Kriging, using ArcGIS, was adopted for modelling the pattern of plume dispersion over a 10 kilometre radius around the factory. ANOVA test was applied for statistical analysis of the plume coefficients. The results indicate that plume dispersion is generally high with highest values recorded for the atmospheric stability classes A and B, while the least values are recorded for the atmospheric stability classes F and E. The variograms derived from the Kriging reveal that the pattern of plume dispersion is outwardly radial and omni-directional. With the exception of 3 stability sub-classes (DH, EH and FH) out of a total of 12, the 24-hour average of particulate matters (PM10 and PM2.5) within the study area is outrageously higher (highest value at 21392.3) than the average safety limit of 150 ug/m3 - 230 ug/m3 prescribed by the 2006 WHO guidelines. This indicates the presence of respirable and non-respirable pollutants that create poor ambient air quality. The study concludes that the use of geospatial technology can be adopted in modelling dispersion of pollutants from a point source. The study recommends ameliorative measures to reduce the rate of plume emission at the factory.
A Percolation Model of the Streamer Discharges
NASA Astrophysics Data System (ADS)
Sasaki, Akira; Kato, Susumu; Takahashi, Eiichi; Kanazawa, Seiji
A percolation model of discharge is presented. The model can reproduce stochastic behaviors of initial partial discharge to the growth of a stepped leader. The model uses macroscopic cells, from which a network of electric circuits is defined, and the spatial and temporal evolutions of the electric field and current in the discharge medium are calculated. For each cell, one of two states, either insulator or conductor, which corresponds to neutral gas or ionized plasmas, respectively, is decided. The decision is made on the basis of probability for each calculation cell at each time step, taking the effects of local electric field and current, which enhance ionization and sustain the discharge channel, respectively, into account.
Godowitch, J.M.; Gillani, N.V.; Biazar, A.; Wu, Y.; Imhoff, R.E.
1998-12-31
A cooperative research and development effort has been conducted to design and implement a plume-in-grid (PinG) modeling techniques into the Models-3 Community Multiscale Air Quality (CMAQ) modeling system in order to address the need for an improved modeling approach to treat major point source emissions. Objectives are to provide an improved characterization of the near-source concentration field and a better far-field regional pollutant pattern due to the impact of the plume-in-grid approach. The conceptual design and an overview of the science processes contained in the PDM in PinG algorithms are briefly presented. Test simulations with and without the PinG treatment for a major NO{sub x} point source are described, and an O{sub 3} concentration pattern from the grid model reveals the impact of the plume-in-grid approach. Subgrid scale plume cell O{sub 3} concentrations are also shown.
Modelling of point and non-point source pollution of nitrate with SWAT in the river Dill, Germany
NASA Astrophysics Data System (ADS)
Pohlert, T.; Huisman, J. A.; Breuer, L.; Frede, H.-G.
2005-12-01
We used the Soil and Water Assessment Tool (SWAT) to simulate point and non-point source pollution of nitrate in a mesoscale mountainous catchment. The results show that the model efficiency for daily discharge is 0.81 for the calibration period (November 1990 to December 1993) and 0.56 for the validation period (April 2000 to January 2003). The model efficiency for monthly nitrate load is 0.66 and 0.77 for the calibration period (April 2000 to March 2002) and validation period (April 2002 to January 2003), respectively. However, the model efficiency for daily loads is low (0.15), which cannot only be attributed to the quality of input data of point source effluents. An analysis of the internal fluxes and cycles of nitrogen pointed out considerable weaknesses in the models conceptualisation of the nitrogen modules which will be improved in future research.
Two exactly soluble models of rigidity percolation
Thorpe, M. F.; Stinchcombe, R. B.
2014-01-01
We summarize results for two exactly soluble classes of bond-diluted models for rigidity percolation, which can serve as a benchmark for numerical and approximate methods. For bond dilution problems involving rigidity, the number of floppy modes F plays the role of a free energy. Both models involve pathological lattices with two-dimensional vector displacements. The first model involves hierarchical lattices where renormalization group calculations can be used to give exact solutions. Algebraic scaling transformations produce a transition of the second order, with an unstable critical point and associated scaling laws at a mean coordination 〈r〉=4.41, which is above the ‘mean field’ value 〈r〉=4 predicted by Maxwell constraint counting. The order parameter exponent associated with the spanning rigid cluster geometry is β=0.0775 and that associated with the divergence of the correlation length and the anomalous lattice dimension d is dν=3.533. The second model involves Bethe lattices where the rigidity transition is massively first order by a mean coordination 〈r〉=3.94 slightly below that predicted by Maxwell constraint counting. We show how a Maxwell equal area construction can be used to locate the first-order transition and how this result agrees with simulation results on larger random-bond lattices using the pebble game algorithm. PMID:24379428
Modeling a point-source release of 1,1,1-trichloroethane using EPA`s SCREEN model
Henriques, W.D.; Dixon, K.R.
1994-12-31
Using data from the Environmental Protection Agency`s Toxic Release Inventory 1988 (EPA TRI88), pollutant concentration estimates were modeled for a point source air release of 1,1,1-trichloroethane at the Savannah River Plant located in Aiken, South Carolina. Estimates were calculating using the EPA`s SCREEN model utilizing typical meteorological conditions to determine maximum impact of the plume under different mixing conditions for locations within 100 meters of the stack. Input data for the SCREEN model were then manipulated to simulate the impact of the release under urban conditions (for the purpose of assessing future landuse considerations) and under flare release options to determine if these parameters lessen or increase the probability of human or wildlife exposure to significant concentrations. The results were then compared to EPA reference concentrations (RfC) in order to assess the size of the buffer around the stack which may potentially have levels that exceed this level of safety.
NASA Technical Reports Server (NTRS)
Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.
1977-01-01
Estimation theory, which originated in guidance and control research, is applied to the analysis of air quality measurements and atmospheric dispersion models to provide reliable area-wide air quality estimates. A method for low dimensional modeling (in terms of the estimation state vector) of the instantaneous and time-average pollutant distributions is discussed. In particular, the fluctuating plume model of Gifford (1959) is extended to provide an expression for the instantaneous concentration due to an elevated point source. Individual models are also developed for all parameters in the instantaneous and the time-average plume equations, including the stochastic properties of the instantaneous fluctuating plume.
Percolation Model for Slow Dynamics in Glass-Forming Materials
NASA Astrophysics Data System (ADS)
Lois, Gregg; Blawzdziewicz, Jerzy; O'Hern, Corey S.
2009-01-01
We identify a link between the glass transition and percolation of regions of mobility in configuration space. We find that many hallmarks of glassy dynamics, for example, stretched-exponential response functions and a diverging structural relaxation time, are consequences of the critical properties of mean-field percolation. Specific predictions of the percolation model include the range of possible stretching exponents 1/3≤β≤1 and the functional dependence of the structural relaxation time τα and exponent β on temperature, density, and wave number.
Percolation model for selective dissolution of multi-component glasses
Kale, R.P.; Brinker, C.J.
1995-03-01
A percolation model is developed which accounts for most known features of the process of porous glass membrane preparation by selective dissolution of multi-component glasses. The model is founded within tile framework of the classical percolation theory, wherein the components of a glass are represented by random sites on a suitable lattice. Computer simulation is used to mirror the generation of a porous structure during the dissolution process, reproducing many of the features associated with the phenomenon. Simulation results evaluate the effect of the initial composition of the glass on the kinetics of the leaching process as well as the morphology of the generated porous structure. The percolation model establishes the porous structure as a percolating cluster of unreachable constituents in the glass. The simulation algorithm incorporates removal of both, the accessible leachable components in the glass as well as the independent clusters of unreachable components not attached to the percolating cluster. The dissolution process thus becomes limited by the conventional site percolation thresholds of the unreachable components (which restricts the formation of the porous network), as well as the leachable components (which restricts the accessibility of the solvating medium into the glass). The simulation results delineate the range of compositional variations for successful porous glass preparation and predict the variation of porosity, surface area, dissolution rates and effluent composition with initial composition and time. Results compared well with experimental studies and improved upon similar models attempted in die past.
Luo, Xiaolin; Zheng, Yi; Lin, Zhongrong; Wu, Bin; Han, Feng; Tian, Yong; Zhang, Wei; Wang, Xuejun
2015-01-01
Soils contaminated by Polycyclic Aromatic Hydrocarbons (PAHs) are subject to significant non-point source (NPS) pollution during rainfall events. Recent studies revealed that the classic enrichment ratio (ER) approach may not be applicable to PAHs. This study developed a model to estimate the ER of PAHs which innovatively applies the fugacity concept. The ER model has been validated with experimental data, which suggested that the transport of PAHs not only depends on their physicochemical properties, but on the sediment composition and how the composition evolves during the event. The modeling uncertainty was systematically examined, and found to be highly compound-dependent. Based on the ER model, a strategy was proposed to practically evaluate the potential NPS loading of PAHs in watersheds with heterogeneous soils. The study results have important implications to modeling and managing the NPS pollution of PAHs (or other chemicals alike) at a watershed scale. PMID:25282126
EVALUATION OF SHORT-TERM NO2 PLUME MODELS FOR POINT SOURCES. VOLUME 1: TECHNICAL DISCUSSION
Models for predicting short-term NO2 concentrations are discussed, and several (RPM-II, TCM, OLM, and CNOM) are selected for evaluation. The MISTT data, collected in 1976, were to be used to evaluate the models, but careful scrutiny of the data base revealed certain deficiencies ...
User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator
Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.
2003-01-01
BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)
ArcEGMO-URBAN--hydrological model for point sources in river basins.
Biegel, M; Schanze, J; Krebs, P
2005-01-01
The new model ArcEGMO-URBAN aims at deterministic and spatiotemporal modelling of water, nitrogen and phosphorus fluxes from all urbanised areas of a river basin considering all potential sources. Pollution loads are calculated for discrete urban patches and balanced on the level of hydrological subbasins. Modelling results can be defined by the user of any level of spatial and/or temporal aggregation, e.g. matter balances for river basins or river sections and years or months, respectively. To process spatial data, a Geographic Information System is linked to the model. Information on urban land use and general characteristics of river basins is based on digital coverages, partly generated from remote-sensing data. Moreover, statistical data, e.g. on population, sewer systems, wastewater treatment plants etc. are included. Stormwater runoff from impervious surfaces is calculated as one input to the sewer network. Wastewater is considered with its main sewer system, pumping stations and treatment plants. Finally, the discharge is balanced for discrete river sections. Modelling results attest ArcEGMO-URBAN its ability to realistically quantify matter fluxes and major pollution sources as well as their seasonal variation. This makes the model an applicable tool for the analysis of scenarios with e.g. varying population distribution or climatic and technological conditions. PMID:16248202
The transport exponent in percolation models with additional loops
NASA Astrophysics Data System (ADS)
Babalievski, F.
1994-10-01
Several percolation models with additional loops were studied. The transport exponents for these models were estimated numerically by means of a transfer-matrix approach. It was found that the transport exponent has a drastically changed value for some of the models. This result supports some previous numerical studies on the vibrational properties of similar models (with additional loops).
Concentrator optical characterization using computer mathematical modelling and point source testing
NASA Technical Reports Server (NTRS)
Dennison, E. W.; John, S. L.; Trentelman, G. F.
1984-01-01
The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.
Correlated percolation models of structured habitat in ecology
NASA Astrophysics Data System (ADS)
Huth, Géraldine; Lesne, Annick; Munoz, François; Pitard, Estelle
2014-12-01
Percolation offers acknowledged models of random media when the relevant medium characteristics can be described as a binary feature. However, when considering habitat modeling in ecology, a natural constraint comes from nearest-neighbor correlations between the suitable/unsuitable states of the spatial units forming the habitat. Such constraints are also relevant in the physics of aggregation where underlying processes may lead to a form of correlated percolation. However, in ecology, the processes leading to habitat correlations are in general not known or very complex. As proposed by Hiebeler (2000), these correlations can be captured in a lattice model by an observable aggregation parameter q, supplementing the density p of suitable sites. We investigate this model as an instance of correlated percolation. We analyze the phase diagram of the percolation transition and compute the cluster size distribution, the pair-connectedness function C(r) and the correlation function g(r). We find that while g(r) displays a power-law decrease associated with long-range correlations in a wide domain of parameter values, critical properties are compatible with the universality class of uncorrelated percolation. We contrast the correlation structures obtained respectively for the correlated percolation model and for the Ising model, and show that the diversity of habitat configurations generated by the Hiebeler model is richer than the archetypal Ising model. We also find that emergent structural properties are peculiar to the implemented algorithm, leading to questioning the notion of a well-defined model of aggregated habitat. We conclude that the choice of model and algorithm has strong consequences on what insights ecological studies can get using such models of species habitat.
Bach, M; Letzel, M; Kaul, U; Forstner, S; Metzner, G; Klasmeier, J; Reichenberger, S; Frede, H G
2010-06-01
A Water Framework Directive pilot project combines measured data and model approaches to calculate fluxes and mass balance of the pesticide bentazone in an 81 km section of the river Main (Germany). During the study period (six weeks in spring 2004) the observed bentazone inflow and outflow in the river section amounted to 52.8 and 53.1 kg, respectively; the maximum concentrations reached 220 and 290 ng l(-1). Based on sampling of seven sewage treatment plants a specific loss of 0.87 g bentazone per farm was calculated. Extrapolation to the entire sub-basin results in 2.6 kg bentazone in total as point source contribution from farms. Diffuse input into the surface water network occurred after an intensive rainfall event on May 7th. Total bentazone load was simulated with the pesticide emission model DRIPS to be 23.2 kg. One third of this load was estimated to be degraded by photolysis before reaching the main waterway, the river Main. The ATV water quality model was applied to predict the concentration profile of bentazone in river Main between Schweinfurt and Würzburg with reasonable results. The difference between total measured and modeled fluxes amounted to 1.5 kg corresponding to 2% of the overall input. The combined approach of monitoring and modeling appears to be a valuable strategy to quantify the relevance of point and non-point sources and to focus effective mitigation measures to the most relevant origins within a river basin. PMID:20546837
NASA Astrophysics Data System (ADS)
Attanayake, Januka; Fonseca, João F. B. D.
2016-05-01
The February 22nd 2006 Mw = 7 Machaze earthquake is one of the largest, if not the largest, earthquakes reported since 1900 within Continental Africa. This large continental intraplate event has important implications to our understanding of tectonics and strong ground motion prediction locally and in the global context. Thus, accurate estimates of source parameters of this earthquake are important. In this study, we inverted the complete azimuthally distributed high frequency (0.05-2 Hz) P waveform dataset available for a best-fitting point source model and obtained stress drop estimates assuming different theoretical rupture models from spectral fitting. Our best-fitting point source model confirms steep normal faulting, has strike = 173° (309°), dip = 73° (23°), rake = -72° (-132°), and shows a 12%-4% improvement in waveform fit compared to previous models, which translates into an error minimization. We attribute this improvement to higher order reverberations near the source region that we took in to account and the excellent azimuthal coverage of the dataset. Preferred stress drop estimates assuming a rupture velocity = 0.9 x shear wave velocity (Vs) are between 11 and 15 MPa though, even higher stress drop estimates are possible for rupture velocities lower than 0.9Vs. The estimated stress drop is significantly higher than the global stress drop average of intraplate earthquakes, but is consistent with stress drop estimated for some intra-continental earthquakes elsewhere. The detection of a new active structure that appears to terminate in Machaze, its step-like geometry, and lithospheric strength all favors a hypothesis of stress concentration in the source region, which is likely the cause of this event and the higher than average stress drop.
Percolation model with an additional source of disorder.
Kundu, Sumanta; Manna, S S
2016-06-01
The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p. Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R_{1} and R_{2} of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R_{1}-R_{2} plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is p_{c}(sq), the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R∈{0,R_{0}} and a percolation transition is observed with R_{0} as the control variable, similar to the site occupation probability. PMID:27415234
Percolation model with an additional source of disorder
NASA Astrophysics Data System (ADS)
Kundu, Sumanta; Manna, S. S.
2016-06-01
The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference in the environment, etc. How the varying range of transmission of the individual active elements affects the global connectivity in the network may be an important practical question to ask. Here a model of percolation phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem. As in ordinary percolation, sites of a square lattice are occupied randomly with probability p . Each occupied site is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only if the radii R1 and R2 of the disks centered at the ends satisfy a certain predefined condition. In a very general formulation, one divides the R1-R2 plane into two regions by an arbitrary closed curve. One defines a point within one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules under this general formulation indicates that the percolation threshold always varies continuously. This threshold has two limiting values, one is pc(sq) , the percolation threshold for the ordinary site percolation on the square lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized by two exponents. In a special case, all lattice sites are occupied by disks of random radii R ∈{0 ,R0} and a percolation transition is observed with R0 as the control variable, similar to the site occupation probability.
Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.
2009-02-01
The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to
Explosive percolation: Unusual transitions of a simple model
NASA Astrophysics Data System (ADS)
Bastas, N.; Giazitzidis, P.; Maragakis, M.; Kosmidis, K.
In this paper we review the recent advances in explosive percolation, a very sharp phase transition first observed by Achlioptas et al. (2009). There a simple model was proposed, which changed slightly the classical percolation process so that the emergence of the spanning cluster is delayed. This slight modification turns out to have a great impact on the percolation phase transition. The resulting transition is so sharp that it was termed explosive, and it was at first considered to be discontinuous. This surprising fact stimulated considerable interest in “Achlioptas processes”. Later work, however, showed that the transition is continuous (at least for Achlioptas processes on Erdös networks), but with very unusual finite size scaling. We present a review of the field, indicate open “problems” and propose directions for future research.
Truncated Connectivities in a Highly Supercritical Anisotropic Percolation Model
NASA Astrophysics Data System (ADS)
Couto, Rodrigo G.; de Lima, Bernardo N. B.; Sanchis, Rémy
2013-12-01
We consider an anisotropic bond percolation model on , with p=( p h , p v )∈[0,1]2, p v > p h , and declare each horizontal (respectively vertical) edge of to be open with probability p h (respectively p v ), and otherwise closed, independently of all other edges. Let with 0< x 1< x 2, and . It is natural to ask how the two point connectivity function behaves, and whether anisotropy in percolation probabilities implies the strict inequality . In this note we give an affirmative answer in the highly supercritical regime.
NASA Astrophysics Data System (ADS)
Runkle, B. R.; Liang, X.; Hao, F.
2005-12-01
Hydrological behavior is a central factor in deciding the fate of agricultural pollutants, yet the exact functions of hydrology and the scales at which they are most important are understudied. A physically based hydrological model was developed to examine the transport of common agricultural pollutants (nitrogen, phosphorus, pesticides) and problems of soil salinity. This model looks to uncover the effects of different spatial and temporal scales on the dynamics of non-point source pollution loading, transport, and distribution. The principal geochemical and physical transport mechanisms such as dissolution, adsorption, advection and mass transfer from pore water to overland flow will be characterized as functions of irrigation input and soil moisture. The model is used to examine emergent behaviors at different scales and to determine which hydrological processes and conditions are most sensitive for pollutant transport. The model will be validated by comparison with data in the Inner Mongolia Irrigation District, a 5000 km2 region along the north bank of the Yellow River in northern China. The region receives very little (<200 mm) rainfall and relies heavily on irrigation water from the Yellow River and groundwater. Polluted drainage water is threatening the ecology of nearby Wuliangsuhai Lake, a wetlands ecosystem important for bird habitat. This project is supported in part by the National Natural Science Foundation of China.
Network representation of pore scale imagery for percolation models
NASA Astrophysics Data System (ADS)
Klise, K. A.; McKenna, S. A.; Read, E.; Karpyn, Z. T.; Celauro, J.
2012-12-01
Multiphase flow under capillary dominated flow regimes is driven by an intricate relationship between pore geometry, material and fluid properties. In this research, high-resolution micro-computed tomography (CT) imaging experiments are used to investigate structural and surface properties of bead packs, and how they influence percolation pathways. Coreflood experiments use a mix of hydrophilic and hydrophobic beads to track the influence of variable contact angle on capillary flow. While high-resolution CT images can render micron scale representation of the pore space, data must be upscaled to capture pore and pore throat geometry for use in percolation models. In this analysis, the pore space is upscaled into a network representation based on properties of the medial axis. Finding the medial axis using micron scale images is computationally expensive. Here, we compare the efficiency and accuracy of medial axes using erosion-based and watershed algorithms. The resulting network representation is defined as a ball-and-stick model which represents pores and pore throats. The ball-and-stick model can be further reduced by eliminating sections of the network that fall below a capillary pressure threshold. In a system of mixed hydrophilic and hydrophobic beads, capillary pressure can change significantly throughout the network based on the interaction between surface and fluid properties. The upscaled network representations are used in percolation models to estimate transport pathway. Current results use a basic percolation model that sequentially fills neighboring pores with the highest potential. Future work will expand the percolation model to include additional mechanics, such as trapping, vacating pores, and viscous fingering. Results from the coreflood experiments will be used to validate upscaling techniques and percolation models. Preliminary results show that the relative strength of water-wet and oil-wet surfaces has a significant impact on percolation
Correlated Percolation Models of Jamming and Glass Transitions
NASA Astrophysics Data System (ADS)
Jeng, Monwhea; Schwarz, Jennifer
2007-03-01
Toninelli, Biroli, and Fisher recently introduced a model of correlated percolation called the Knight model, which they claimed to prove underwent a dynamical glass transition. This transition had novel properties, with a discontinuous jump in the order parameter, but with diverging time scales and correlation lengths. We show that their proof misidentified the critical point, so that these properties are currently unproven for this model. However, we show that these novel properties can in fact be proven for suitably modified models of correlated percolation, with qualitatively similar culling rules. We discuss the features of the models necessary for a rigorous proof to be possible. We also discuss properties of models such as the force balance model and the original Knight model, which appear to undergo novel transitions despite the lack of a rigorous proof of such a transition.
NASA Astrophysics Data System (ADS)
Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Cutini, S.; D’Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hayashi, K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Hou, X.; Jogler, T.; Jóhannesson, G.; Kamae, T.; Kuss, M.; Landriu, D.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Maldera, S.; Malyshev, D.; Manfreda, A.; Martin, P.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Remy, Q.; Renault, N.; Sánchez-Conde, M.; Schaal, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Werner, M.; Wood, K. S.; Wood, M.; Zaharijas, G.; Zimmer, S.
2016-04-01
Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.
Wada, Yuji; Kundu, Tribikram; Nakamura, Kentaro
2014-08-01
The distributed point source method (DPSM) is extended to model wave propagation in viscous fluids. Appropriate estimation on attenuation and boundary layer formation due to fluid viscosity is necessary for the ultrasonic devices used for acoustic streaming or ultrasonic levitation. The equations for DPSM modeling in viscous fluids are derived in this paper by decomposing the linearized viscous fluid equations into two components-dilatational and rotational components. By considering complex P- and S-wave numbers, the acoustic fields in viscous fluids can be calculated following similar calculation steps that are used for wave propagation modeling in solids. From the calculations reported the precision of DPSM is found comparable to that of the finite element method (FEM) for a fundamental ultrasonic field problem. The particle velocity parallel to the two bounding surfaces of the viscous fluid layer between two rigid plates (one in motion and one stationary) is calculated. The finite element results agree well with the DPSM results that were generated faster than the transient FEM results. PMID:25096081
NASA Astrophysics Data System (ADS)
Xu, Fei; Dong, Guangxia; Wang, Qingrui; Liu, Lumeng; Yu, Wenwen; Men, Cong; Liu, Ruimin
2016-09-01
The impacts of different digital elevation model (DEM) resolutions, sources and resampling techniques on nutrient simulations using the Soil and Water Assessment Tool (SWAT) model have not been well studied. The objective of this study was to evaluate the sensitivities of DEM resolutions (from 30 m to 1000 m), sources (ASTER GDEM2, SRTM and Topo-DEM) and resampling techniques (nearest neighbor, bilinear interpolation, cubic convolution and majority) to identification of non-point source (NPS) critical source area (CSA) based on nutrient loads using the SWAT model. The Xiangxi River, one of the main tributaries of Three Gorges Reservoir in China, was selected as the study area. The following findings were obtained: (1) Elevation and slope extracted from the DEMs were more sensitive to DEM resolution changes. Compared with the results of the 30 m DEM, 1000 m DEM underestimated the elevation and slope by 104 m and 41.57°, respectively; (2) The numbers of subwatersheds and hydrologic response units (HRUs) were considerably influenced by DEM resolutions, but the total nitrogen (TN) and total phosphorus (TP) loads of each subwatershed showed higher correlations with different DEM sources; (3) DEM resolutions and sources had larger effects on CSAs identifications, while TN and TP CSAs showed different response to DEM uncertainties. TN CSAs were more sensitive to resolution changes, exhibiting six distribution patterns at all DEM resolutions. TP CSAs were sensitive to source and resampling technique changes, exhibiting three distribution patterns for DEM sources and two distribution patterns for DEM resampling techniques. DEM resolutions and sources are the two most sensitive SWAT model DEM parameters that must be considered when nutrient CSAs are identified.
NASA Astrophysics Data System (ADS)
Kale, Sohan; Sabet, Fereshteh A.; Jasiuk, Iwona; Ostoja-Starzewski, Martin
2016-07-01
In this study, we examine the effect of filler alignment on percolation behavior of polymer nanocomposites using Monte Carlo simulations of monodisperse prolate and oblate hard-core soft-shell ellipsoids representing carbon nanotubes and graphene nanoplatelets, respectively. The percolation threshold is observed to increase with increasing extent of alignment as expected. For a highly aligned system of rod-like fillers, the simulation results are shown to be in good agreement with the second virial approximation based predictions. However, for a highly aligned system of disk-like fillers, the second virial approximation based results are observed to significantly deviate from the simulations, even for higher aspect ratios. The effect of filler alignment on anisotropy in percolation behavior is also studied by predicting the percolation threshold along different directions. The anisotropy in percolation threshold is found to vanish even for highly aligned systems of fillers with increasing system size.
Loopless nontrapping invasion-percolation model for fracking.
Norris, J Quinn; Turcotte, Donald L; Rundle, John B
2014-02-01
Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack. PMID:25353434
Loopless nontrapping invasion-percolation model for fracking
NASA Astrophysics Data System (ADS)
Norris, J. Quinn; Turcotte, Donald L.; Rundle, John B.
2014-02-01
Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.
Fractal structure of equipotential curves on a continuum percolation model
NASA Astrophysics Data System (ADS)
Matsutani, Shigeki; Shimosako, Yoshiyuki; Wang, Yunhong
2012-12-01
We numerically investigate the electric potential distribution over a two-dimensional continuum percolation model between the electrodes. The model consists of overlapped conductive particles on the background with an infinitesimal conductivity. Using the finite difference method, we solve the generalized Laplace equation and show that in the potential distribution, there appear quasi-equipotential clusters which approximately and locally have the same values as steps and stairs. Since the quasi-equipotential clusters have the fractal structure, we compute the fractal dimension of equipotential curves and its dependence on the volume fraction over [0,1]. The fractal dimension in [1.00, 1.246] has a peak at the percolation threshold pc.
Continuous percolation transition in suppressed random cluster growth model
NASA Astrophysics Data System (ADS)
Roy, Bappaditya; Santra, S. B.
2016-05-01
A new suppressed cluster growth model on 2D square lattice combining Hoshen-Kopelman and Leath approaches is studied here. The lattice sites are initially occupied randomly with probability (ρ). The empty perimeter sites of the clusters of occupied sites are grown with a cluster size dependent probability. The growth probability is then lowest for the largest cluster and highest for the smallest cluster. At the end of growth process all the cluster related quantities are estimated and they are found to display power law scaling as in percolation transition. However, the values of the critical exponents vary continuously with ρ, the initial seed concentration. At higher values of ρ, the model belongs the percolation universality class.
Technology Transfer Automated Retrieval System (TEKTRAN)
Today, non-point source pollution (NPS) is one of the major sources of water quality impairments globally (UNEP, 2007). In the US, nutrient pollution is the leading cause of water quality issues in lakes and estuaries (USEPA, 2002). The maximum concentration of nutrients in streams is found to be in...
The membrane skeleton of erythrocytes. A percolation model.
Saxton, M J
1990-01-01
The spectrin network on the cytoplasmic surface of the erythrocyte membrane is modeled as a triangular lattice of spectrin tetramers. This network obstructs lateral diffusion of proteins and provides mechanical reinforcement to the membrane. These effects are treated in a systematic and unified manner in terms of a percolation model. The diffusion coefficient is obtained as a function of the fraction of normal spectrin tetramers for both static and fluctuating barriers. The elasticity of the network is calculated as a function of the fraction of normal spectrin and the ratio of bending to stretching energies. For static barriers, elasticity and lateral diffusion are incompatible: if a network is connected enough to be elastic, it is connected enough to block long-range lateral diffusion. The elasticity and the force required for mechanical breakdown go to zero at the percolation threshold; experimental evidence suggests the existence of a stability threshold at or near the percolation threshold. The model is qualitatively applicable to other cells with membrane skeletons, such as epithelial cells, in which localization of membrane proteins is essential to differentiation. PMID:2393702
Modeling fractal cities using the correlated percolation model.
NASA Astrophysics Data System (ADS)
Makse, Hernán A.; Havlin, Shlomo; Stanley, H. Eugene
1996-03-01
Cities grow in a way that might be expected to resemble the growth of two-dimensional aggregates of particles, and this has led to recent attempts to model urban growth using ideas from the statistical physics of clusters. In particular, the model of diffusion limited aggregation (DLA) has been invoked to rationalize the apparently fractal nature of urban morphologies(M. Batty and P. Longley, Fractal Cities) (Academic, San Diego, 1994). The DLA model predicts that there should exist only one large fractal cluster, which is almost perfectly screened from incoming 'development units' (representing, for example, people, capital or resources), so that almost all of the cluster growth takes place at the tips of the cluster's branches. We show that an alternative model(H. A. Makse, S. Havlin, H. E. Stanley, Nature 377), 608 (1995), in which development units are correlated rather than being added to the cluster at random, is better able to reproduce the observed morphology of cities and the area distribution of sub-clusters ('towns') in an urban system, and can also describe urban growth dynamics. Our physical model, which corresponds to the correlated percolation model in the presence of a density gradient, is motivated by the fact that in urban areas development attracts further development. The model offers the possibility of predicting the global properties (such as scaling behavior) of urban morphologies.
Technology Transfer Automated Retrieval System (TEKTRAN)
This study evaluated the performance of two water quality models in accordance to specific tasks designated in the USDA Agricultural Research Service Conservation Effects Assessment Project. The Soil and Water Assessment Tool (SWAT) and the Annualized Agricultural Non-Point Source (AnnAGNPS) models ...
Effect of threshold disorder on the quorum percolation model.
Monceau, Pascal; Renault, Renaud; Métens, Stéphane; Bottani, Samuel
2016-07-01
We study the modifications induced in the behavior of the quorum percolation model on neural networks with Gaussian in-degree by taking into account an uncorrelated Gaussian thresholds variability. We derive a mean-field approach and show its relevance by carrying out explicit Monte Carlo simulations. It turns out that such a disorder shifts the position of the percolation transition, impacts the size of the giant cluster, and can even destroy the transition. Moreover, we highlight the occurrence of disorder independent fixed points above the quorum critical value. The mean-field approach enables us to interpret these effects in terms of activation probability. A finite-size analysis enables us to show that the order parameter is weakly self-averaging with an exponent independent on the thresholds disorder. Last, we show that the effects of the thresholds and connectivity disorders cannot be easily discriminated from the measured averaged physical quantities. PMID:27575157
Effect of threshold disorder on the quorum percolation model
NASA Astrophysics Data System (ADS)
Monceau, Pascal; Renault, Renaud; Métens, Stéphane; Bottani, Samuel
2016-07-01
We study the modifications induced in the behavior of the quorum percolation model on neural networks with Gaussian in-degree by taking into account an uncorrelated Gaussian thresholds variability. We derive a mean-field approach and show its relevance by carrying out explicit Monte Carlo simulations. It turns out that such a disorder shifts the position of the percolation transition, impacts the size of the giant cluster, and can even destroy the transition. Moreover, we highlight the occurrence of disorder independent fixed points above the quorum critical value. The mean-field approach enables us to interpret these effects in terms of activation probability. A finite-size analysis enables us to show that the order parameter is weakly self-averaging with an exponent independent on the thresholds disorder. Last, we show that the effects of the thresholds and connectivity disorders cannot be easily discriminated from the measured averaged physical quantities.
NASA Astrophysics Data System (ADS)
Valentine, A. P.; Kaeufl, P.; De Wit, R. W. L.; Trampert, J.
2014-12-01
Obtaining knowledge about source parameters in (near) real-time during or shortly after an earthquake is essential for mitigating damage and directing resources in the aftermath of the event. Therefore, a variety of real-time source-inversion algorithms have been developed over recent decades. This has been driven by the ever-growing availability of dense seismograph networks in many seismogenic areas of the world and the significant advances in real-time telemetry. By definition, these algorithms rely on short time-windows of sparse, local and regional observations, resulting in source estimates that are highly sensitive to observational errors, noise and missing data. In order to obtain estimates more rapidly, many algorithms are either entirely based on empirical scaling relations or make simplifying assumptions about the Earth's structure, which can in turn lead to biased results. It is therefore essential that realistic uncertainty bounds are estimated along with the parameters. A natural means of propagating probabilistic information on source parameters through the entire processing chain from first observations to potential end users and decision makers is provided by the Bayesian formalism.We present a novel method based on pattern recognition allowing us to incorporate highly accurate physical modelling into an uncertainty-aware real-time inversion algorithm. The algorithm is based on a pre-computed Green's functions database, containing a large set of source-receiver paths in a highly heterogeneous crustal model. Unlike similar methods, which often employ a grid search, we use a supervised learning algorithm to relate synthetic waveforms to point source parameters. This training procedure has to be performed only once and leads to a representation of the posterior probability density function p(m|d) --- the distribution of source parameters m given observations d --- which can be evaluated quickly for new data.Owing to the flexibility of the pattern
NASA Astrophysics Data System (ADS)
Toll, D.; Engman, T.; Edward, P.; Magness, A.; Townsend, P.; N-Meister, W.; Nigro, J.; Lee, S.
2007-12-01
The Environmental Protection Agency (EPA) estimates that over 20,000 bodies of water throughout the country do not meet water quality standards. Nonpoint sources -- pollution from urban, agricultural, and forest land that is transported by runoff -- typically cause 90 percent of impairments. EPA has developed the BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) modeling system for performing numerous water quality studies. The key to this suite of models is the Hydrological Simulation Program - Fortran (HSPF), which calculates daily stream flow rates and the corresponding pollutant concentrations at the watershed outlet. EPA has partnered with NASA to use high spatial and temporal hydrological variables (e.g., precipitation, evaporation, etc.) from the NASA Land Information System (LIS) and land cover/vegetative indices derived from primarily MODIS and Landsat satellite data non-point source water quality for the Chesapeake Bay Basin. For the precipitation and evaporation data, EPA-based BASINS-HSPF streamflow runs were conducted on seven study watersheds in the Chesapeake Bay Basin. Sets of runs using precipitation from default weather stations, the NASA LIS 1/8th degree precipitation, NOAA Stage IV precipitation, NASA LIS Noah land surface model evapotranspiration datasets were conducted for each watershed. The output statistics summarized reveal that for 74% of the runs, the NASA LIS 1/8th degree and Stage IV precipitation-based runs performed better than when using only the default EPA precipitation station data. In addition, an automatic calibration method ('PEST') and Noah land surface model evapotranspiration (ET) being further incorporated. The empirical ability of generalized spectral indices and land cover derived from Landsat and MODIS was tested for predicting stream water nitrogen export from predominately forested watersheds undergoing disturbance. The disturbance index, a summary index that is easily computed from Landsat
Interacting damage models mapped onto ising and percolation models
Toussaint, Renaud; Pride, Steven R.
2004-03-23
The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in the system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model
Interacting damage models mapped onto Ising and percolation models.
Toussaint, Renaud; Pride, Steven R
2005-04-01
We introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasi-static fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in the system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, we obtain the probability distribution of each damage configuration at any level of the imposed external deformation. We demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, we show that damage models with global load sharing are isomorphic to standard percolation theory and that damage models with a local load sharing rule are isomorphic to the standard Ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. We also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, we also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model to standard
RAPID COMMUNICATION: Percolation modelling for highly aligned polycrystalline superconducting tapes
NASA Astrophysics Data System (ADS)
Rutter, N. A.; Glowacki, B. A.; Evetts, J. E.
2000-11-01
Surface and bulk texture measurements have been carried out on highly aligned NiFe tapes, suitable for use as coated conductor substrates. Data from small-area electron backscatter diffraction measurements are compared with those from bulk x-ray analysis in the development of a two-dimensional percolation model, and the two are shown to give very similar results. No evidence of grain-to-grain correlation is found. The model is then developed to assess how the properties of a superconducting layer grown epitaxially on buffered tapes will depend on parameters such as sample size, grain size and the extent of grain alignment.
Percolation and coarsening in the bidimensional voter model
NASA Astrophysics Data System (ADS)
Tartaglia, Alessandro; Cugliandolo, Leticia F.; Picco, Marco
2015-10-01
We study the bidimensional voter model on a square lattice with numerical simulations. We demonstrate that the evolution takes place in two distinct dynamic regimes; a first approach towards critical site percolation and a further approach towards full consensus. We calculate the time dependence of the two growing lengths, finding that they are both algebraic but with different exponents (apart from possible logarithmic corrections). We analyze the morphology and statistics of clusters of voters with the same opinion. We compare these results to the ones for curvature driven two-dimensional coarsening.
Percolation phase diagrams for multi-phase models built on the overlapping sphere model
NASA Astrophysics Data System (ADS)
Garboczi, E. J.
2016-01-01
The overlapping sphere (OS) percolation model gives a two-phase microstructure (matrix plus inclusions) that is useful for testing composite material ideas and other applications, as well as serving as a paradigm of overlapping object percolation and phase transitions. Real materials often have more than two phases, so it is of interest to extend the applicability of the OS model. A flexible variant of the OS model can be constructed by randomly assigning the spheres different phase labels, according to a uniform probability distribution, as they are inserted one by one into the matrix. The resulting three or more phase models can have different amounts of percolating and non-percolating phases, depending on the volume fraction of each phase and the total OS volume fraction. A three-dimensional digital image approach is used to approximately map out the percolation phase diagram of such models, explicitly up to four phases (one matrix plus three spherical inclusion phases) and implicitly for N > 4 phases. For the three phase model, it was found that a single OS sub-phase has a percolation threshold that ranges from about a volume fraction of 0.16, when the matrix volume fraction is about 0.01, to about 0.30, at a matrix volume fraction of about 0.7. The approximate analytical dependence of this sub-phase percolation threshold on the defining model parameters serves to guide the building of the percolation phase diagram for the N-phase model, and is used to determine the maximum value of N(N = 6) at which all N phases can be simultaneously percolated.
NASA Astrophysics Data System (ADS)
Kumari, Pato; Sharma, Vikash Kumar; Modi, Chitra
2016-04-01
In the present study, propagation of magnetoelastic shear wave due to a momentary point source in a viscoelastic crustal layer over inhomogeneous viscoelastic half space has been discussed. Green's function technique and Fourier transform along with method of successive approximation are used to find the closed-form solutions for displacement and generalized shear wave period equation. Attenuation of the resultant shear wave is computed and effects of magnetic field, width of the layer, complex wave number, viscosity, and inhomogeneity parameters are distinctly marked on dissipation curves using two-dimensional and surface plots. It is found that effect of layer's magnetoelastic coupling parameter on attenuation pattern of shear wave is just the reverse of half space magnetoelastic coupling parameter. Similarly, internal friction of layer has somewhat different effect on shear wave angular frequency than lower half space viscosity. Certain published results are also derived as special cases to the present study.
The Community Multiscale Air Quality (CMAQ) / Plume-in-Grid (PinG) model was applied on a domain encompassing the greater Nashville, Tennessee region. Model simulations were performed for selected days in July 1995 during the Southern Oxidant Study (SOS) field study program wh...
Electron percolation in realistic models of carbon nanotube networks
NASA Astrophysics Data System (ADS)
Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain
2015-09-01
The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.
Electron percolation in realistic models of carbon nanotube networks
Simoneau, Louis-Philippe Villeneuve, Jérémie Rochefort, Alain
2015-09-28
The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.
Percolation and Burgers' dynamics in a model of capillary formation
NASA Astrophysics Data System (ADS)
Coniglio, A.; de Candia, A.; di Talia, S.; Gamba, A.
2004-05-01
Capillary networks are essential in vertebrates to supply tissues with nutrients. Experiments of in vitro capillary formation show that cells randomly spread on a gel matrix autonomously organize to form vascular networks. Cells form disconnected networks at low densities and connected ones above a critical density. Above the critical density the network is characterized by a typical mesh size ˜200 μm , which is approximately constant on a wide range of density values. In this paper we present a full characterization of a recently proposed model which reproduces the main features of the biological system, focusing on its dynamical properties, on the fractal properties of patterns, and on the percolative phase transition. We discuss the relevance of the model in relation with some experiments in living beings and proposed diagnostic methods based on the measurement of the fractal dimension of vascular networks.
Modelling heterogeneous meltwater percolation on the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Ligtenberg, S.
2015-12-01
The Greenland Ice Sheet (GrIS) has experienced an increase of surface meltwater production over the last decades, with the latest record set in the summer of 2012. For current and future ice sheet mass balance assessments, it is important to quantify what part of this meltwater reaches the ocean and contributes to sea level change. Meltwater produced at the surface has several options: it can infiltrate the local firn pack, where it is either stored temporarily or refrozen, or it can run off along the surface or via en-glacial drainage systems. In this study, we focus on the first; more specifically, in which manner meltwater percolates the firn column. Over the past years, GrIS research has shown that meltwater does not infiltrate the firn pack homogeneously (i.e. matrix flow), but that inhomogeneities in horizontal firn layers causes preferential flow paths for meltwater (i.e. piping). Although this process has been observed and studied on a few isolated sites, it has never been examined on the entire GrIS. To do so, we use the firn model IMAU-FDM with new parameterizations for preferential flow, impermeable ice lenses and sub-surface runoff. At the surface, IMAU-FDM is forced with realistic climate data from the regional climate model RACMO2.3. The model results are evaluated with temperatures and density measurements from firn cores across the GrIS. By allowing for heterogeneous meltwater percolation, the model is able to store heat and mass much deeper in the firn column. This is, however, in part counteracted by the inclusion of impermeability of ice lenses, which causes part of the meltwater to run off horizontally.
Series Expansion Method for Asymmetrical Percolation Models with Two Connection Probabilities
NASA Astrophysics Data System (ADS)
Inui, Norio; Komatsu, Genichi; Kameoka, Koichi
2000-01-01
In order to study the solvability of the percolation model based on Guttmann and Enting's conjecture, the power series for the percolation probability in the form of ∑nHn(q)pn is examined. Although the power series is given by calculating inverse of the transfer-matrix in principle, it is very hard to obtain the inverse matrix containing many complex polynomials as elements. We introduce a new series expansion technique which does not necessitate inverse operation for the transfer-matrix.By using the new procedure, we derive the series of the asymmetrical percolation probability including the isotropic percolation probability as a special case.
Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...
Usery, E.L.; Finn, M.P.; Scheidt, D.J.; Ruhl, S.; Beard, T.; Bearden, M.
2004-01-01
Researchers have been coupling geographic information systems (GIS) data handling and processing capability to watershed and waterquality models for many years. This capability is suited for the development of databases appropriate for water modeling. However, it is rare for GIS to provide direct inputs to the models. To demonstrate the logical procedure of coupling GIS for model parameter extraction, we selected the Agricultural Non-Point Source (AGNPS) pollution model. Investigators can generate data layers at various resolutions and resample to pixel sizes to support models at particular scales. We developed databases of elevation, land cover, and soils at various resolutions in four watersheds. The ability to use multiresolution databases for the generation of model parameters is problematic for grid-based models. We used database development procedures and observed the effects of resolution and resampling on GIS input datasets and parameters generated from those inputs for AGNPS. Results indicate that elevation values at specific points compare favorably between 3- and 30-m raster datasets. Categorical data analysis indicates that land cover classes vary significantly. Derived parameters parallel the results of the base GIS datasets. Analysis of data resampled from 30-m to 60-, 120-, 210-, 240-, 480-, 960-, and 1920-m pixels indicates a general degradation of both elevation and land cover correlations as resolution decreases. Initial evaluation of model output values for soluble nitrogen and phosphorous indicates similar degradation with resolution. ?? Springer-Verlag 2004.
NASA Astrophysics Data System (ADS)
Usery, E. Lynn; Finn, Michael P.; Scheidt, Douglas J.; Ruhl, Sheila; Beard, Thomas; Bearden, Morgan
2004-10-01
Researchers have been coupling geographic information systems (GIS) data handling and processing capability to watershed and water-quality models for many years. This capability is suited for the development of databases appropriate for water modeling. However, it is rare for GIS to provide direct inputs to the models. To demonstrate the logical procedure of coupling GIS for model parameter extraction, we selected the Agricultural Non-Point Source (AGNPS) pollution model. Investigators can generate data layers at various resolutions and resample to pixel sizes to support models at particular scales. We developed databases of elevation, land cover, and soils at various resolutions in four watersheds. The ability to use multiresolution databases for the generation of model parameters is problematic for grid-based models. We used database development procedures and observed the effects of resolution and resampling on GIS input datasets and parameters generated from those inputs for AGNPS. Results indicate that elevation values at specific points compare favorably between 3- and 30-m raster datasets. Categorical data analysis indicates that land cover classes vary significantly. Derived parameters parallel the results of the base GIS datasets. Analysis of data resampled from 30-m to 60-, 120-, 210-, 240-, 480-, 960-, and 1920-m pixels indicates a general degradation of both elevation and land cover correlations as resolution decreases. Initial evaluation of model output values for soluble nitrogen and phosphorous indicates similar degradation with resolution.
Ma, Denglong; Zhang, Zaoxiao
2016-07-01
Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem. PMID:27035273
Anisotropy in Fracking: A Percolation Model for Observed Microseismicity
NASA Astrophysics Data System (ADS)
Norris, J. Quinn; Turcotte, Donald L.; Rundle, John B.
2015-01-01
Hydraulic fracturing (fracking), using high pressures and a low viscosity fluid, allow the extraction of large quantiles of oil and gas from very low permeability shale formations. The initial production of oil and gas at depth leads to high pressures and an extensive distribution of natural fractures which reduce the pressures. With time these fractures heal, sealing the remaining oil and gas in place. High volume fracking opens the healed fractures allowing the oil and gas to flow to horizontal production wells. We model the injection process using invasion percolation. We use a 2D square lattice of bonds to model the sealed natural fractures. The bonds are assigned random strengths and the fluid, injected at a point, opens the weakest bond adjacent to the growing cluster of opened bonds. Our model exhibits burst dynamics in which the clusters extend rapidly into regions with weak bonds. We associate these bursts with the microseismic activity generated by fracking injections. A principal object of this paper is to study the role of anisotropic stress distributions. Bonds in the y-direction are assigned higher random strengths than bonds in the x-direction. We illustrate the spatial distribution of clusters and the spatial distribution of bursts (small earthquakes) for several degrees of anisotropy. The results are compared with observed distributions of microseismicity in a fracking injection. Both our bursts and the observed microseismicity satisfy Gutenberg-Richter frequency-size statistics.
A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas
White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.
1992-01-01
More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.
Johnson, Andrew C; Ternes, Thomas; Williams, Richard J; Sumpter, John P
2008-08-01
To carry out meaningful ecotoxicity studies on novel polar organic microcontaminants, it is essential to know what concentrations wildlife may be exposed to. Traditionally these values were obtained by analytical chemistry, but in recent years GIS water quality models have been developed which may offer a quick and reliable way of getting the same information. Thus, two ways of obtaining basically the same information now exist, and an issue, therefore, arises as to which method is the most appropriate to use in which situation. To address this issue we have critically reviewed and compared measuring and modeling approaches for the determination of sewage effluent and river water concentrations of organic microcontaminants. Where model predictions and chemical measurements can be directly compared in sewage effluents, receiving waters, and across catchments, reported model mean values have all been within 1 order of magnitude of the measured values, with typically no more than a 3- or 4-fold difference. Interlaboratory chemical analysis of some organic microcontaminants in effluents in the challenging ng/L range have provided results which have varied from one another by a similar margin. No such comparison has been carried out yet for GIS water quality models to determine variation in predicted concentrations. As the level of ecotoxicological effects of many chemicals is often considerably higher than the reported measured or modeled values, such errors that might occur will often be of no consequence. But due to their extraordinary potency, much more accuracy is required with some natural and synthetic hormones. Significantly, modeling is no more complex to conduct when dealing with contaminants at ng/L compared with mg/L concentrations, but the same cannot be said for chemical analysis. A combination of modeling and measuring techniques will give the greatest confidence in risk assessment. PMID:18754451
NASA Astrophysics Data System (ADS)
Day, C. A.
2014-12-01
Urban streams are often characterized by diminished water quality resulting from an increase in polluted runoff from impervious surfaces. Storm activity further reduces urban stream water quality by temporarily increasing stormwater discharge from sewer overflows. This will often manifest itself in rapid declines of dissolved oxygen and peaks in specific conductivity in response to a rising biochemical oxygen demand which slowly recovers as the pollution load is washed through the stream system. This research developed a GIS-based model to track potential sources of pollution based on the dissolved oxygen and specific conductivity response of urban streams to a series of storm events, within the city of Louisville, Kentucky. Watershed outlet hydrographs were first obtained to determine the lag time of dissolved oxygen drops and specific conductivity peaks in response to set of storm events. Using a digital elevation model and the National Landcover Database, 10m resolution rasters were then created which calculated slope and flow direction/accumulation for both open channel and overland flow conditions across the watersheds. The rasters were merged and converted to flow velocities using a series of storms with different intensities. The final step utilized the Flow Length tool in ArcGIS which calculated the travel time to the watershed outlets from each pixel weighted by the open channel and overland flow conditions. Potential pollution sources could then be located by matching the dissolved oxygen and specific conductivity response lag times to the associated watershed travel times.
Percolation models for boiling and bubble growth in porous media
Yortsos, Y.C.
1991-05-01
We analyze the liquid-to-vapor phase change in single-component fluids in porous media at low superheats. Conditions typical to steam injection in porous media are taken. We examine nucleation, phase equilibria and their stability, and the growth of vapor bubbles. Effects of pore structure are emphasized. It is shown that at low supersaturations, bubble growth can be described as a percolation process. In the absence of spatial gradients, macroscopic flow properties are calculated in terms of nucleation parameters. A modification of gradient percolation is also proposed in the case of spatial temperature gradients, when solid conduction predominates. 22 refs., 10 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Domínguez, C. G.; Pryet, A.; García Vera, M.; Gonzalez, A.; Chaumont, C.; Tournebize, J.; Villacis, M.; d'Ozouville, N.; Violette, S.
2016-01-01
A Rutter-type canopy interception model is combined with a 1-D physically-based soil water flow model to compare deep percolation rates below distinct land covers. The joint model allows the quantification of both evaporation and transpiration rates as well as deep percolation from vegetation and soil characteristics. Experimental observations are required to constitute the input and calibration datasets. An appropriate monitoring design is described which consists in meteorological monitoring together with throughfall and soil water tension measurements. The methodology is illustrated in Santa Cruz Island in the Galapagos Archipelago, which has been affected by significant land use changes. Two adjacent study plots are investigated: a secondary forest and a pasture. The results of the model reveal that evaporation of canopy interception is higher in the pasture due to the bigger canopy storage capacity, which promotes evaporation against canopy drainage. This is however compensated by higher transpiration in the secondary forest, due to the smaller surface resistance. As a consequence, total evapotranspiration is similar for the two plots and no marked difference in deep percolation can be observed. In both cases, deep percolation reaches ca. 2 m/year which corresponds to 80% of the incoming rainfall. This methodology not only allows the quantification of deep percolation, but can also be used to identify the controlling factors of deep percolation under contrasting land covers.
What are cirrus point sources?
NASA Technical Reports Server (NTRS)
Heiles, Carl; Mccarthy, Patrick J.; Reach, William; Strauss, Michael A.
1987-01-01
Most cirrus point sources are associated with interstellar gas. A subset of these was isolated, together with other sources showing large band 4 to 3 flux density ratios, that are not associated with interstellar gas. Most of the point sources are associated with diffuse cirrus emissions. The sources appear to be distributed randomly on the sky, with the exception of six clusters, one of which is not associated with any known object. Six sources out of seventeen that were observed for redshifted H I at Arecibo were found to be associated with relatively nondescript external galaxies. Most of the sources do not appear on the Palomar Sky Survey. Deep optical observations of eight fields revealed some fairly distant galaxies, one object with a very peculiar optical spectrum, and several blank fields.
Luo, B; Li, J B; Huang, G H; Li, H L
2006-05-15
This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural non-point source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and "off-site" water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties. PMID:16242757
Silva, Nayana G M; von Sperling, Marcos
2008-01-01
Downstream of Capim Branco I hydroelectric dam (Minas Gerais state, Brazil), there is the need of keeping a minimum flow of 7 m3/s. This low flow reach (LFR) has a length of 9 km. In order to raise the water level in the low flow reach, the construction of intermediate dikes along the river bed was decided. The LFR has a tributary that receives the discharge of treated wastewater. As part of this study, water quality of the low-flow reach was modelled, in order to gain insight into its possible behaviour under different scenarios (without and with intermediate dikes). QUAL2E equations were implemented in FORTRAN code. The model takes into account point-source pollution and diffuse pollution. Uncertainty analysis was performed, presenting probabilistic results and allowing identification of the more important coefficients in the LFR water-quality model. The simulated results indicate, in general, very good conditions for most of the water quality parameters The variables of more influence found in the sensitivity analysis were the conversion coefficients (without and with dikes), the initial conditions in the reach (without dikes), the non-point incremental contributions (without dikes) and the hydraulic characteristics of the reach (with dikes). PMID:18469404
NASA Astrophysics Data System (ADS)
Tasdighi, A.; Arabi, M.
2015-12-01
reducing them was assessed and bands of uncertainty around BMP efficiencies were determined. Moreover, using the predicted cumulative distribution functions (CDFs) for nonpoint loads (Agriculture) and CDFs of observed loads for point sources (WWTPs), trading ratios for specific trades were determined under uncertainty.
Kuentz, M; Leuenberger, H
1998-02-01
The purpose of this investigation was to analyze the modified Young's modulus of microcrystalline cellulose tablets at comparatively low relative densities, based on concepts of percolation theory. Tablets were prepared and tested using a Zwick 1478 universal testing instrument. For statistical evaluation a new method is introduced for power laws, which exhibits highly correlated model parameters. According to our results the model Leuenberger, Leu is consistent with an Effective Medium Approximation which exhibits an exponent equal to one far away from the percolation threshold. In addition, the results show that it is essential to evaluate the elastic behavior of tablets close to the percolation threshold. For the different types of MCC a critical exponent q = 3.95 +/- 0.14 was obtained. This result is very essential, as it is in good agreement with the theoretically expected value of 3.9 from an elastic network (central force model). The proposed model describes the modified Young's modulus better than former model equations taking into account the relative density. Thus, the process during uniaxial compaction can be imagined as a directed continuum percolation and the relative density of compacts can be identified as a space-occupation probability density phi yielding reasonable percolation thresholds. PMID:9532596
Beyond the percolation universality class: the vertex split model for tetravalent lattices
NASA Astrophysics Data System (ADS)
Nachtrab, Susan; Hoffmann, Matthias J. F.; Kapfer, Sebastian C.; Schröder-Turk, Gerd E.; Mecke, Klaus
2015-04-01
We propose a statistical model defined on tetravalent three-dimensional lattices in general and the three-dimensional diamond network in particular where the splitting of randomly selected nodes leads to a spatially disordered network, with decreasing degree of connectivity. The terminal state, that is reached when all nodes have been split, is a dense configuration of self-avoiding walks on the diamond network. Starting from the crystallographic diamond network, each of the four-coordinated nodes is replaced with probability p by a pair of two edges, each connecting a pair of the adjacent vertices. For all values 0≤slant p≤slant 1 the network percolates, yet the fraction fp of the system that belongs to a percolating cluster drops sharply at pc = 1 to a finite value fpc. This transition is reminiscent of a percolation transition yet with distinct differences to standard percolation behaviour, including a finite mass fpc\\gt 0 of the percolating clusters at the critical point. Application of finite size scaling approach for standard percolation yields scaling exponents for p\\to {{p}c} that are different from the critical exponents of the second-order phase transition of standard percolation models. This transition significantly affects the mechanical properties of linear-elastic realizations (e.g. as custom-fabricated models for artificial bone scaffolds), obtained by replacing edges with solid circular struts to give an effective density ϕ. Finite element methods demonstrate that, as a low-density cellular structure, the bulk modulus K shows a cross-over from a compression-dominated behaviour, K(φ )\\propto {{φ }κ } with κ ≈ 1, at p = 0 to a bending-dominated behaviour with κ ≈ 2 at p = 1.
Liu, Ruimin; Dong, Guangxia; Xu, Fei; Wang, Xiujuan; He, Mengchang
2015-01-01
In this paper, the spatial changes and trends in non-point source (NPS) total phosphorus (TP) pollution were analyzed by land and non-land uses in the Songliao River Basin from 1986 to 2000 (14 years). A grid-based export coefficient model was used in the process of analysis based on to a geographic information system. The Songliao Basin is divided in four regions: Liaoning province, Jilin province (JL), Heilongjiang province and the eastern part of the Inner Mongolia (IM) Autonomous Region. Results indicated that the NPS phosphorus load caused by land use and non-land use increased steadily from 3.11×10(4) tons in 1986 to 3.49×10(4) tons in 2000. The southeastern region of the Songliao Plain was the most important NPS pollution contributor of all the districts. Although the TP load caused by land use decreased during the studied period in the Songliao River Basin, the contribution of land use to the TP load was dominant compared to non-land uses. The NPS pollution caused by non-land use steadily increased over the studied period. The IM Autonomous Region and JL province had the largest mean annual rate of change among all districts (more than 30%). In this area, livestock and poultry breeding had become one of the most important NPS pollution sources. These areas will need close attention in the future. PMID:26038937
3D self-consistent percolative model for networks of randomly aligned carbon nanotubes
NASA Astrophysics Data System (ADS)
Colasanti, S.; Deep Bhatt, V.; Abdellah, A.; Lugli, P.
2015-10-01
A numerical percolative model for simulations of random networks of carbon nanotubes is presented. This algorithm takes into account the real 3D nature of these networks, allowing for a better understanding of their electrical properties. The nanotubes are modeled as non-rigid bendable cylinders with geometrical properties derived according to some statistical distributions inferred from the experiments. For the transport mechanisms we refer to the theory of one-dimensional ballistic channels which is based on the computation of the density of states. The behavior of the entire network is then simulated by coupling a SPICE program with an iterative algorithm that calculates self-consistently the electrostatic potential and the current flow in each node of the network. We performed several simulations on the resistivity of networks with different thicknesses and over different simulation domains. Our results confirm the percolative nature of the electrical transport, which are more pronounced in films close to their percolation threshold.
Point Source Location Sensitivity Analysis
NASA Astrophysics Data System (ADS)
Cox, J. Allen
1986-11-01
This paper presents the results of an analysis of point source location accuracy and sensitivity as a function of focal plane geometry, optical blur spot, and location algorithm. Five specific blur spots are treated: gaussian, diffraction-limited circular aperture with and without central obscuration (obscured and clear bessinc, respectively), diffraction-limited rectangular aperture, and a pill box distribution. For each blur spot, location accuracies are calculated for square, rectangular, and hexagonal detector shapes of equal area. The rectangular detectors are arranged on a hexagonal lattice. The two location algorithms consist of standard and generalized centroid techniques. Hexagonal detector arrays are shown to give the best performance under a wide range of conditions.
The Herschel Point Source Catalogue
NASA Astrophysics Data System (ADS)
Marton, Gabor; Schulz, Bernhard; Altieri, Bruno; Calzoletti, Luca; Kiss, Csaba; Lim, Tanya; Lu, Nanyao; Paladini, Roberta; Papageorgiou, Andreas; Pearson, Chris; Rector, John; Shupe, David; Valtchanov, Ivan; Verebélyi, Erika; Xu, Kevin
2015-08-01
The Herschel Space Observatory was the fourth cornerstone mission in the European Space Agency (ESA) science programme with excellent broad band imaging capabilities in the submillimetre and far-infrared part of the spectrum. Although the spacecraft finished its observations in 2013, it left a large legacy dataset that is far from having been fully scrutinized and still has potential for new scientific discoveries. This is specifically true for the photometric observations of the PACS and SPIRE instruments that scanned >10% of the sky at 70, 100, 160, 250, 350 and 500 microns. Some source catalogs have already been produced by individual observing programs, but there are many observations that would never be analyzed for their full source content. To maximize the science return of the SPIRE and PACS data sets, our international team of instrument experts is in the process of building the Herschel Point Source Catalog (HPSC) from all scan map observations. Our homogeneous source extraction enables a systematic and unbiased comparison of sensitivity across the different Herschel fields that single programs will generally not be able to provide. The extracted point sources will contain individual YSOs of our Galaxy, unresolved YSO clusters in resolved nearby galaxies and unresolved galaxies of the local and distant Universe that are related to star formation. Such a huge dataset will help scientists better understand the evolution from interstellar clouds to individual stars. Furthermore the analysis of stellar clusters and the star formation on galactic scales will add more details to the understanding of star formation laws through time.We present our findings on comparison of different source detection and photometric tools. First results of the extractions are shown along with the description of our pipelines and catalogue entries. We also provide an additional science product, the structure noise map, that is used for the quality assessment of the catalogue in
Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Jun
2012-10-01
The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.
NASA Astrophysics Data System (ADS)
Donado-Garzon, L. D.; Pardo, Y.
2013-12-01
Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical
NASA Astrophysics Data System (ADS)
Ha, Dong-Gwang; Kim, Jang-Joo; Baldo, Marc A.
2016-04-01
Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.
Ductile damage modeling based on void coalescence and percolation theories
Tonks, D.L.; Zurek, A.K.; Thissell, W.R.
1995-09-01
A general model for ductile damage in metals is presented. It includes damage induced by shear stress as well as damage caused by volumetric tension. Spallation is included as a special case. Strain induced damage is also treated. Void nucleation and growth are included, and give rise to strain rate effects. Strain rate effects also arise in the model through elastic release wave propagation between damage centers. The underlying physics of the model is the nucleation, growth, and coalescence of voids in a plastically flowing solid. The model is intended for hydrocode based computer simulation. An experimental program is underway to validate the model.
Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels.
Li, Ruru; Yang, Y Sam; Pan, Jinxiao; Pereira, Gerald G; Taylor, John A; Clennell, Ben; Zou, Caineng
2014-09-01
A partial-bounce-back lattice Boltzmann model has been used to simulate flow on a lattice consisting of cubic voxels with a locally varying effective percolating fraction. The effective percolating fraction of a voxel is the total response to the partial-bounce-back techniques for porous media flow due to subvoxel fine structures. The model has been verified against known analytic solutions on two- and three-dimensional regular geometries, and has been applied to simulate flow and permeabilities of two real-world rock samples. This enables quantitative determination of permeability for problems where voxels cannot be adequately segmented as discrete compositions. The voxel compositions are represented as volume fractions of various material phases and void. The numerical results have shown that, for the tight-sandstone sample, the bulk permeability is sensitive to the effective percolating fraction of calcite. That is, the subvoxel flow paths in the calcite phase are important for bulk permeability. On the other hand, flow in the calcite phase in the sandstone sample makes an insignificant contribution to the bulk permeability. The calculated permeability value for the sandstone sample is up to two orders of magnitude greater than the tight sandstone. This model is generic and could be applied to other oil and gas reservoir media or to material samples. PMID:25314558
NASA Astrophysics Data System (ADS)
Clerc, J. P.; Giraud, G.; Laugier, J. M.; Luck, J. M.
1990-05-01
We review theoretical and experimental studies of the AC dielectric response of inhomogeneous materials, modelled as bond percolation networks, with a binary (conductor-dielectric) distribution of bond conductances. We first summarize the key results of percolation theory, concerning mostly geometrical and static (DC) transport properties, with emphasis on the scaling properties of the critical region around the percolation threshold. The frequency-dependent (AC) response of a general binary model is then studied by means of various approaches, including the effective-medium approximation, a scaling theory of the critical region, numerical computations using the transfer-matrix algorithm, and several exactly solvable deterministic fractal models. Transient regimes, related to singularities in the complex-frequency plane, are also investigated. Theoretical predictions are made more explicit in two specific cases, namely R-C and RL-C networks, and compared with a broad variety of experimental results, concerning, for example, granular composites, thin films, powders, microemulsions, cermets, porous ceramics and the viscoelastic properties of gels.
Franović, Igor; Miljković, Vladimir
2009-06-01
Spike packet propagation is modeled in mesoscopic-scale networks, composed of locally and recurrently coupled neural pools, and embedded in a two-dimensional lattice. Site dynamics is governed by three key parameters--pool connectedness probability, synaptic strength (following the steady-state distribution of some realizations of spike-timing-dependent plasticity learning rule), and the neuron refractoriness. Formation of spatiotemporal patterns in our model, synfire chains, exhibits critical behavior, with the emerging percolation phase transition controlled by the probability for nonzero synaptic strength value. Applying the finite-size scaling method, we infer the critical probability dependence on synaptic strength and refractoriness and determine the effects of connection topology on the pertaining percolation clusters fractal dimensions. We find that the directed percolation and the pair contact process with diffusion constitute the relevant universality classes of phase transitions observed in a class of mesoscopic-scale network models, which may be related to recently reported data on in vitro cultures. PMID:19658540
Reentry Near the Percolation Threshold in a Heterogeneous Discrete Model for Cardiac Tissue
NASA Astrophysics Data System (ADS)
Alonso, Sergio; Bär, Markus
2013-04-01
Arrhythmias in cardiac tissue are related to irregular electrical wave propagation in the heart. Cardiac tissue is formed by a discrete cell network, which is often heterogeneous. A localized region with a fraction of nonconducting links surrounded by homogeneous conducting tissue can become a source of reentry and ectopic beats. Extensive simulations in a discrete model of cardiac tissue show that a wave crossing a heterogeneous region of cardiac tissue can disintegrate into irregular patterns, provided the fraction of nonconducting links is close to the percolation threshold of the cell network. The dependence of the reentry probability on this fraction, the system size, and the degree of excitability can be inferred from the size distribution of nonconducting clusters near the percolation threshold.
NASA Astrophysics Data System (ADS)
Pawłowski, G.
2009-04-01
The problem of order-order and order-disorder transitions in the system described by the 2D antiferromagnetic Blume-Capel model in the presence of a magnetic field is studied by the Wang and Landau flat-histogram simulation method and by the classical Monte Carlo. Anomalous thermodynamic characteristics in low temperatures indicate different type orderings in finite temperatures. The existence of pure antiferromagnetic phases as well as mixed state is shown by detailed phenomenological analysis of the system. The border lines on the phase diagram between various orderings are determined by the complementary microscopic study of the percolation problem for c(2×2) elementary structures of antiferromagnetic ordered phases. This new approach has also shown a full agreement between the percolation threshold for the cluster of mixed phase and the critical temperature of the ordered system.
NASA Astrophysics Data System (ADS)
Xu, S.; Rezvanian, O.; Peters, K.; Zikry, M. A.
2013-04-01
A new modeling method has been proposed to investigate how the electrical conductivity of carbon nanotube (CNT) reinforced polymer composites are affected by tunneling distance, volume fraction, and tube aspect ratios. A search algorithm and an electrical junction identification method was developed with a percolation approach to determine conductive paths for three-dimensional (3D) carbon nanotube arrangements and to account for electron tunneling effects. The predicted results are used to understand the limitations of percolation theory and experimental measurements and observations, and why percolation theory breaks down for specific CNT arrangements.
On chemical distances and shape theorems in percolation models with long-range correlations
Drewitz, Alexander; Ráth, Balázs; Sapozhnikov, Artëm
2014-08-01
In this paper, we provide general conditions on a one parameter family of random infinite subsets of Z{sup d} to contain a unique infinite connected component for which the chemical distances are comparable to the Euclidean distance. In addition, we show that these conditions also imply a shape theorem for the corresponding infinite connected component. By verifying these conditions for specific models, we obtain novel results about the structure of the infinite connected component of the vacant set of random interlacements and the level sets of the Gaussian free field. As a byproduct, we obtain alternative proofs to the corresponding results for random interlacements in the work of Cerný and Popov [“On the internal distance in the interlacement set,” Electron. J. Probab. 17(29), 1–25 (2012)], and while our main interest is in percolation models with long-range correlations, we also recover results in the spirit of the work of Antal and Pisztora [“On the chemical distance for supercritical Bernoulli percolation,” Ann Probab. 24(2), 1036–1048 (1996)] for Bernoulli percolation. Finally, as a corollary, we derive new results about the (chemical) diameter of the largest connected component in the complement of the trace of the random walk on the torus.
A percolation cluster model of the temperature dependent dielectric properties of hydrated proteins
NASA Astrophysics Data System (ADS)
Suherman, Phe Man; Smith, Geoff
2003-02-01
This study investigates the temperature dependence of the low frequency dielectric properties (0.1 Hz-1 MHz) of hydrated globular proteins (namely, ovalbumin, lysozyme and pepsin). The study aims to reveal the mechanisms of water-protein interaction from the dielectric response of these model proteins. Two principle dielectric responses were observed for each hydrated protein, namely, an anomalous low frequency dispersion and a dielectric loss peak at higher frequency (called the varepsilon3 dispersion). The low frequency response conformed to a fractional power low of frequency, while the higher frequency response conformed to a Davidson-Cole model. The strength of both processes reached a maximum at a certain temperature within the experimental temperature range. This temperature is referred to as the percolation threshold (PT) and is thought to be associated with the percolation of protons between hydrogen-bonded water molecules. The relaxation times of the varepsilon3 dispersion conformed to Arrhenius behaviour at temperatures below the PT, from which an activation energy (DeltaH) could be calculated. This activation energy is thought to be a measure of the concentration of available charged sites through which proton transport is facilitated. The structural fractal dimension in the hydrated protein system was also calculated, and enabled the approximation of the pathway for charge percolation in the protein matrix.
On chemical distances and shape theorems in percolation models with long-range correlations
NASA Astrophysics Data System (ADS)
Drewitz, Alexander; Ráth, Balázs; Sapozhnikov, Artëm
2014-08-01
In this paper, we provide general conditions on a one parameter family of random infinite subsets of {{Z}}^d to contain a unique infinite connected component for which the chemical distances are comparable to the Euclidean distance. In addition, we show that these conditions also imply a shape theorem for the corresponding infinite connected component. By verifying these conditions for specific models, we obtain novel results about the structure of the infinite connected component of the vacant set of random interlacements and the level sets of the Gaussian free field. As a byproduct, we obtain alternative proofs to the corresponding results for random interlacements in the work of Černý and Popov ["On the internal distance in the interlacement set," Electron. J. Probab. 17(29), 1-25 (2012)], and while our main interest is in percolation models with long-range correlations, we also recover results in the spirit of the work of Antal and Pisztora ["On the chemical distance for supercritical Bernoulli percolation," Ann Probab. 24(2), 1036-1048 (1996)] for Bernoulli percolation. Finally, as a corollary, we derive new results about the (chemical) diameter of the largest connected component in the complement of the trace of the random walk on the torus.
NASA Astrophysics Data System (ADS)
Szczygieł, Bartłomiej; Dudyński, Marek; Kwiatkowski, Kamil; Lewenstein, Maciej; Lapeyre, Gerald John; Wehr, Jan
2016-02-01
We introduce a class of discrete-continuous percolation models and an efficient Monte Carlo algorithm for computing their properties. The class is general enough to include well-known discrete and continuous models as special cases. We focus on a particular example of such a model, a nanotube model of disintegration of activated carbon. We calculate its exact critical threshold in two dimensions and obtain a Monte Carlo estimate in three dimensions. Furthermore, we use this example to analyze and characterize the efficiency of our algorithm, by computing critical exponents and properties, finding that it compares favorably to well-known algorithms for simpler systems.
Modelling of percolation rate of stormwater from underground infiltration systems.
Burszta-Adamiak, Ewa; Lomotowski, Janusz
2013-01-01
Underground or surface stormwater storage tank systems that enable the infiltration of water into the ground are basic elements used in Sustainable Urban Drainage Systems (SUDS). So far, the design methods for such facilities have not taken into account the phenomenon of ground clogging during stormwater infiltration. Top layer sealing of the filter bed influences the infiltration rate of water into the ground. This study presents an original mathematical model describing changes in the infiltration rate variability in the phases of filling and emptying the storage and infiltration tank systems, which enables the determination of the degree of top ground layer clogging. The input data for modelling were obtained from studies conducted on experimental sites on objects constructed on a semi-technological scale. The experiment conducted has proven that the application of the model developed for the phase of water infiltration enables us to estimate the degree of module clogging. However, this method is more suitable for reservoirs embedded in more permeable soils than for those located in cohesive soils. PMID:24292460
Vaccaro, J.J.
2007-01-01
A daily water-budget model for estimating ground-water recharge, the Deep Percolation Model, was modularized for inclusion into the U.S. Geological Survey's Modular Modeling System. The model was modularized in order to facilitate estimation of ground-water recharge under a large range in climatic, landscape, and land-use and land-cover conditions. The model can be applied to areas as large as regions or as small as a field plot. An overview of the Modular Modeling System and the Deep Percolation Model is presented. Data requirements, parameters, and variables for the model are described. The modules that compose the Deep Percolation Model are documented.
Research Trends in Non Point Source during 1975-2010
NASA Astrophysics Data System (ADS)
Yanhua, Zhuang; Thuminh, Nguyen; Beibei, Niu; ei, Shao; Song, Hong
According to the samples of 2924 articles about non point source of SCI and SSCI databases from 1975 to 2010, this study analysed the articles in the growth trend of article outputs, subject categories and journals, international collaborations, geographic distribution and scientific research issues by using bibliometric analysis. The results showed that non point source research steadily increased over the past 35 years and the annual number of articles published in 2010 was 79 times of that in 1975. Non point source was involved into 67 kinds of subjects and appeared in 451 journals. The main study area was concentrated in North America and Europe, following by East Asia. There were 79 countries/territories participated in non point source research, and USA was the largest contributor in non point source research and had a central position in collaboration networks. A keyword analysis indicated that water quality, non point pollutions, and watershed were the hottest issues of non point source research; "GIS, "watershed management", "modeling", "simulation", "monitoring", and "remote sensing" were the most popular research methods; and "agriculture", "land use", "runoff", and "pollution" were the leading causes of non point pollution.
Patterns in the English language: phonological networks, percolation and assembly models
NASA Astrophysics Data System (ADS)
Stella, Massimo; Brede, Markus
2015-05-01
In this paper we provide a quantitative framework for the study of phonological networks (PNs) for the English language by carrying out principled comparisons to null models, either based on site percolation, randomization techniques, or network growth models. In contrast to previous work, we mainly focus on null models that reproduce lower order characteristics of the empirical data. We find that artificial networks matching connectivity properties of the English PN are exceedingly rare: this leads to the hypothesis that the word repertoire might have been assembled over time by preferentially introducing new words which are small modifications of old words. Our null models are able to explain the ‘power-law-like’ part of the degree distributions and generally retrieve qualitative features of the PN such as high clustering, high assortativity coefficient and small-world characteristics. However, the detailed comparison to expectations from null models also points out significant differences, suggesting the presence of additional constraints in word assembly. Key constraints we identify are the avoidance of large degrees, the avoidance of triadic closure and the avoidance of large non-percolating clusters.
Unstable supercritical discontinuous percolation transitions
NASA Astrophysics Data System (ADS)
Chen, Wei; Cheng, Xueqi; Zheng, Zhiming; Chung, Ning Ning; D'Souza, Raissa M.; Nagler, Jan
2013-10-01
The location and nature of the percolation transition in random networks is a subject of intense interest. Recently, a series of graph evolution processes have been introduced that lead to discontinuous percolation transitions where the addition of a single edge causes the size of the largest component to exhibit a significant macroscopic jump in the thermodynamic limit. These processes can have additional exotic behaviors, such as displaying a “Devil's staircase” of discrete jumps in the supercritical regime. Here we investigate whether the location of the largest jump coincides with the percolation threshold for a range of processes, such as Erdős-Rényipercolation, percolation via edge competition and via growth by overtaking. We find that the largest jump asymptotically occurs at the percolation transition for Erdős-Rényiand other processes exhibiting global continuity, including models exhibiting an “explosive” transition. However, for percolation processes exhibiting genuine discontinuities, the behavior is substantially richer. In percolation models where the order parameter exhibits a staircase, the largest discontinuity generically does not coincide with the percolation transition. For the generalized Bohman-Frieze-Wormald model, it depends on the model parameter. Distinct parameter regimes well in the supercritical regime feature unstable discontinuous transitions—a novel and unexpected phenomenon in percolation. We thus demonstrate that seemingly and genuinely discontinuous percolation transitions can involve a rich behavior in supercriticality, a regime that has been largely ignored in percolation.
Ha, Dong -Gwang; Kim, Jang -Joo; Baldo, Marc A.
2016-04-29
Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl) amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl) benzene (BmPyPb)more » mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. Furthermore, the analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.« less
Modeling gravity-driven fingering in rough-walled fractures using modified percolation theory
Glass, R.J.
1992-12-31
Pore scale invasion percolation theory is modified for imbibition of.wetting fluids into fractures. The effects of gravity, local aperture field geometry, and local in-plane air/water interfacial curvatureare included in the calculation of aperture filling potential which controls wetted structure growth within the fracture. The inclusion of gravity yields fingers oriented in the direction of the gravitational gradient. These fingers widen and tend to meander and branch more as the gravitational gradient decreases. In-plane interfacial curvature also greatly affects the wetted structure in both horizontal and nonhorizontal fractures causing the formation of macroscopic wetting fronts. The modified percolation model is used to simulate imbibition into an analogue rough-walled fracture where both fingering and horizontal imbibition experiments were previously conducted. Comparison of numerical and experimental results showed reasonably good agreement. This process oriented physical and numerical modeling is-a necessary step toward including gravity-driven fingering in models of flow and transport through unsaturated, fractured rock.
Oxide thinning percolation statistical model for soft breakdown in ultrathin gate oxides
NASA Astrophysics Data System (ADS)
Chen, Ming-Jer; Kang, Ting-Kuo; Liu, Chuan-Hsi; Chang, Yih J.; Fu, Kuan-Yu
2000-07-01
An existing cell-based percolation model with parameter correlation can find its potential applications in assessing soft-breakdown (BD) statistics as long as the oxide thinning due to the localized physical damage near the SiO2/Si interface is accounted for. The resulting model is expressed explicitly with the critical trap number per cell nBD and the remaining oxide thickness tox' both as parameters. Reproduction of time-to-bimodal (soft- and hard-) breakdown statistical data from 3.3-nm-thick gate-oxide samples yields nBD of 3 and 4 for soft and hard breakdown, respectively. The extracted tox' of 1.0 nm for soft breakdown, plus the transition layer thickness of 0.5 nm in the model, is fairly comparable with literature values from current-voltage fitting. The dimension and area of the localized physically damaged region or percolation path (cell) are quantified as well. Based on the work, the origins of soft and hard breakdown are clarified in the following: (i) soft breakdown behaves intrinsically as hard breakdown, that is, they share the same defect (neutral trap) generation process and follow Poisson random statistics; (ii) both are independent events corresponding to different tox' requirements; and (iii) hard breakdown takes place in a certain path located differently from that for the first soft breakdown.
Documentation of a deep percolation model for estimating ground-water recharge
Bauer, H.H.; Vaccaro, J.J.
1987-01-01
A deep percolation model, which operates on a daily basis, was developed to estimate long-term average groundwater recharge from precipitation. It has been designed primarily to simulate recharge in large areas with variable weather, soils, and land uses, but it can also be used at any scale. The physical and mathematical concepts of the deep percolation model, its subroutines and data requirements, and input data sequence and formats are documented. The physical processes simulated are soil moisture accumulation, evaporation from bare soil, plant transpiration, surface water runoff, snow accumulation and melt, and accumulation and evaporation of intercepted precipitation. The minimum data sets for the operation of the model are daily values of precipitation and maximum and minimum air temperature, soil thickness and available water capacity, soil texture, and land use. Long-term average annual precipitation, actual daily stream discharge, monthly estimates of base flow, Soil Conservation Service surface runoff curve numbers, land surface altitude-slope-aspect, and temperature lapse rates are optional. The program is written in the FORTRAN 77 language with no enhancements and should run on most computer systems without modifications. Documentation has been prepared so that program modifications may be made for inclusions of additional physical processes or deletion of ones not considered important. (Author 's abstract)
Percolation Model of Sensory Transmission and Loss of Consciousness Under General Anesthesia
NASA Astrophysics Data System (ADS)
Zhou, David W.; Mowrey, David D.; Tang, Pei; Xu, Yan
2015-09-01
Neurons communicate with each other dynamically; how such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter p representing the percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions, and we show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation for understanding the origin of cognition.
Percolation Model of Sensory Transmission and Loss of Consciousness under General Anesthesia
Zhou, David W.; Mowrey, David D.; Tang, Pei; Xu, Yan
2015-01-01
Neurons communicate with each other dynamically. How such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter, p, representing percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions and show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner, resembling the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation to understand the origin of cognition. PMID:26382705
NASA Astrophysics Data System (ADS)
Pohlert, T.
2007-12-01
The aim of this paper is to present recent developments of an integrated water- and N-balance model for the assessment of land use changes on water and N-fluxes for meso-scale river catchments. The semi-distributed water-balance model SWAT was coupled with algorithms of the bio-geochemical model DNDC as well as the model CropSyst. The new model that is further denoted as SWAT-N was tested with leaching data from a long- term lysimeter experiment as well as results from a 5-years sampling campaign that was conducted at the outlet of the meso-scale catchment of the River Dill (Germany). The model efficiency for N-load as well as the spatial representation of N-load along the river channel that was tested with results taken from longitudinal profiles show that the accuracy of the model has improved due to the integration of the aforementioned process-oriented models. After model development and model testing, SWAT-N was then used for the assessment of the EU agricultural policy (CAP reform) on land use change and consequent changes on N-fluxes within the Dill Catchment. giessen.de/geb/volltexte/2007/4531/
Percolation on Sparse Networks
NASA Astrophysics Data System (ADS)
Karrer, Brian; Newman, M. E. J.; Zdeborová, Lenka
2014-11-01
We study percolation on networks, which is used as a model of the resilience of networked systems such as the Internet to attack or failure and as a simple model of the spread of disease over human contact networks. We reformulate percolation as a message passing process and demonstrate how the resulting equations can be used to calculate, among other things, the size of the percolating cluster and the average cluster size. The calculations are exact for sparse networks when the number of short loops in the network is small, but even on networks with many short loops we find them to be highly accurate when compared with direct numerical simulations. By considering the fixed points of the message passing process, we also show that the percolation threshold on a network with few loops is given by the inverse of the leading eigenvalue of the so-called nonbacktracking matrix.
NASA Astrophysics Data System (ADS)
Whitehead, P. G.; Heathwaite, A. L.; Flynn, N. J.; Wade, A. J.; Quinn, P. F.
2007-01-01
A semi-distributed model, INCA, has been developed to determine the fate and distribution of nutrients in terrestrial and aquatic systems. The model simulates nitrogen and phosphorus processes in soils, groundwaters and river systems and can be applied in a semi-distributed manner at a range of scales. In this study, the model has been applied at field to sub-catchment to whole catchment scale to evaluate the behaviour of biosolid-derived losses of P in agricultural systems. It is shown that process-based models such as INCA, applied at a wide range of scales, reproduce field and catchment behaviour satisfactorily. The INCA model can also be used to generate generic information for risk assessment. By adjusting three key variables: biosolid application rates, the hydrological connectivity of the catchment and the initial P-status of the soils within the model, a matrix of P loss rates can be generated to evaluate the behaviour of the model and, hence, of the catchment system. The results, which indicate the sensitivity of the catchment to flow paths, to application rates and to initial soil conditions, have been incorporated into a Nutrient Export Risk Matrix (NERM).
Fraga, I; Charters, F J; O'Sullivan, A D; Cochrane, T A
2016-02-01
Stormwater runoff in urban catchments contains heavy metals (zinc, copper, lead) and suspended solids (TSS) which can substantially degrade urban waterways. To identify these pollutant sources and quantify their loads the MEDUSA (Modelled Estimates of Discharges for Urban Stormwater Assessments) modelling framework was developed. The model quantifies pollutant build-up and wash-off from individual impervious roof, road and car park surfaces for individual rain events, incorporating differences in pollutant dynamics between surface types and rainfall characteristics. This requires delineating all impervious surfaces and their material types, the drainage network, rainfall characteristics and coefficients for the pollutant dynamics equations. An example application of the model to a small urban catchment demonstrates how the model can be used to identify the magnitude of pollutant loads, their spatial origin and the response of the catchment to changes in specific rainfall characteristics. A sensitivity analysis then identifies the key parameters influencing each pollutant load within the stormwater given the catchment characteristics, which allows development of a targeted calibration process that will enhance the certainty of the model outputs, while minimizing the data collection required for effective calibration. A detailed explanation of the modelling framework and pre-calibration sensitivity analysis is presented. PMID:26613353
Self-organization with equilibration: a model for the intermediate phase in rigidity percolation.
Chubynsky, M V; Brière, M-A; Mousseau, Normand
2006-07-01
Recent experimental results for covalent glasses suggest the existence of an intermediate phase attributed to the self-organization of the glass network resulting from the tendency to minimize its internal stress. However, the exact nature of this experimentally measured phase remains unclear. We modified a previously proposed model of self-organization by generating a uniform sampling of stress-free networks. In our model, studied on a diluted triangular lattice, an unusual intermediate phase appears, in which both rigid and floppy networks have a chance to occur, a result also observed in a related model on a Bethe lattice by Barré et al[Phys. Rev. Lett. 94, 208701 (2005)]. Our results for the bond-configurational entropy of self-organized networks, which turns out to be only about 2% lower than that of random networks, suggest that a self-organized intermediate phase could be common in systems near the rigidity percolation threshold. PMID:16907160
NASA Astrophysics Data System (ADS)
Lu, Nianduan; Li, Ling; Liu, Ming
2015-05-01
Recent measurements conducted over a large range of temperature and carrier density have found that the Seebeck coefficient exhibits an approaching disorder-free transport feature in high-mobility conjugated polymers [D. Venkateshvaran et al., Nature 515, 384 (2014), 10.1038/nature13854]. It is difficult for the current Seebeck coefficient model to interpret the feature of the charge transport approaching disorder-free transport. We present a general analytical model to describe the Seebeck effect for organic semiconductors based on the hopping transport and percolation theory. The proposed model can well explain the Seebeck feature of the polymers with approaching disorder-free transport, as well as that of the organic semiconductors with the general disorder. The simulated results imply that the Seebeck coefficient in the organic semiconductors would happen to transfer from temperature dependence to temperature independence with the decrease of the energetic disorder.
In the EPA document Predicting Attenuation of Viruses During Percolation in Soils 1. Probabilistic Model the conceptual, theoretical, and mathematical foundations for a predictive screening model were presented. In this current volume we present a User's Guide for the computer mo...
Variational Formulas and Cocycle solutions for Directed Polymer and Percolation Models
NASA Astrophysics Data System (ADS)
Georgiou, Nicos; Rassoul-Agha, Firas; Seppäläinen, Timo
2016-03-01
We discuss variational formulas for the law of large numbers limits of certain models of motion in a random medium: namely, the limiting time constant for last-passage percolation and the limiting free energy for directed polymers. The results are valid for models in arbitrary dimension, steps of the admissible paths can be general, the environment process is ergodic under spatial translations, and the potential accumulated along a path can depend on the environment and the next step of the path. The variational formulas come in two types: one minimizes over gradient-like cocycles, and another one maximizes over invariant measures on the space of environments and paths. Minimizing cocycles can be obtained from Busemann functions when these can be proved to exist. The results are illustrated through 1+1 dimensional exactly solvable examples, periodic examples, and polymers in weak disorder.
Mean-field behavior of the negative-weight percolation model on random regular graphs.
Melchert, Oliver; Hartmann, Alexander K; Mézard, Marc
2011-10-01
We investigate both analytically and numerically the ensemble of minimum-weight loops in the negative-weight percolation model on random graphs with fixed connectivity and bimodal weight distribution. This allows us to study the mean-field behavior of this model. The analytical study is based on a conjectured equivalence with the problem of self-avoiding walks in a random medium. The numerical study is based on a mapping to a standard minimum-weight matching problem for which fast algorithms exist. Both approaches yield results that are in agreement on the location of the phase transition, on the value of critical exponents, and on the absence of any sizable indications of a glass phase. By these results, the previously conjectured upper critical dimension of d(u)=6 is confirmed. PMID:22181086
Point source detection in infrared astronomical surveys
NASA Technical Reports Server (NTRS)
Pelzmann, R. F., Jr.
1977-01-01
Data processing techniques useful for infrared astronomy data analysis systems are reported. This investigation is restricted to consideration of data from space-based telescope systems operating as survey instruments. In this report the theoretical background for specific point-source detection schemes is completed, and the development of specific algorithms and software for the broad range of requirements is begun.
IMPACT OF POINT SOURCE CONTROL STRATEGIES ON NO2 LEVELS
The report gives final results of a study of the effect of two point source NOx control strategies in the Chicago Air Quality Control Region (AQCR): combustion modification and flue gas treatment. The study involved the dispersion modeling of essentially all point and area source...
NASA Astrophysics Data System (ADS)
Jiang, Yefang; Somers, George
2009-05-01
Intensification of potato farming has contaminated groundwater with nitrate in many cases in Prince Edward Island, Canada, which raises concerns for drinking water quality and associated ecosystem protection. Numerical models were developed to simulate nitrate-N transport in groundwater and enhance understanding of the impacts of farming on water quality in the Wilmot River watershed. Nitrate is assumed non-reactive based on δ15N and δ18O in nitrate and geochemical information. The source functions were reconstructed from tile drain measurements, N budget and historical land-use information. The transport model was calibrated to long-term nitrate-N observations in the Wilmot River and verified against nitrate-N measurements in two rivers from watersheds with similar physical conditions. Simulations show groundwater flow is stratified and vertical flux decreases exponentially with depth. While it would take several years to reduce the nitrate-N in the shallow portion of the aquifer, it would take several decades or even longer to restore water quality in the deeper portions of the aquifer. Elevated nitrate-N concentrations in base flow are positively correlated with potato cropping intensity and significant reductions in nitrate-N loading are required if the nitrate level of surface water is to recover to the standard in the Canadian Water Quality Guidelines.
NASA Astrophysics Data System (ADS)
Gao, Nan; Li, Ling; Lu, Nianduan; Xie, Changqing; Liu, Ming; Bässler, Heinz
2016-08-01
The fact that in organic semiconductors the Hubbard energy is usually positive appears to be at variance with a bipolaron model to explain magnetoresistance (MR) in those systems. Employing percolation theory, we demonstrate that a moderately positive U is indeed compatible with the bipolaron concept for MR in unipolar current flow, provided that the system is energetically disordered, and the density of states (DOS) distribution is partially filled, so that the Fermi level overlaps with tail states of the DOS. By exploring a broad parameter space, we show that MR becomes maximal around U =0 and even diminishes at large negative values of U because of spin independent bipolaron dissociation. Trapping effects and reduced dimension enhance MR.
High-precision percolation thresholds and Potts-model critical manifolds from graph polynomials
NASA Astrophysics Data System (ADS)
>Jesper Lykke Jacobsen,
2014-04-01
The critical curves of the q-state Potts model can be determined exactly for regular two-dimensional lattices G that are of the three-terminal type. This comprises the square, triangular, hexagonal and bow-tie lattices. Jacobsen and Scullard have defined a graph polynomial PB(q, v) that gives access to the critical manifold for general lattices. It depends on a finite repeating part of the lattice, called the basis B, and its real roots in the temperature variable v = eK - 1 provide increasingly accurate approximations to the critical manifolds upon increasing the size of B. Using transfer matrix techniques, these authors computed PB(q, v) for large bases (up to 243 edges), obtaining determinations of the ferromagnetic critical point vc > 0 for the (4, 82), kagome, and (3, 122) lattices to a precision (of the order 10-8) slightly superior to that of the best available Monte Carlo simulations. In this paper we describe a more efficient transfer matrix approach to the computation of PB(q, v) that relies on a formulation within the periodic Temperley-Lieb algebra. This makes possible computations for substantially larger bases (up to 882 edges), and the precision on vc is hence taken to the range 10-13. We further show that a large variety of regular lattices can be cast in a form suitable for this approach. This includes all Archimedean lattices, their duals and their medials. For all these lattices we tabulate high-precision estimates of the bond percolation thresholds pc and Potts critical points vc. We also trace and discuss the full Potts critical manifold in the (q, v) plane, paying special attention to the antiferromagnetic region v < 0. Finally, we adapt the technique to site percolation as well, and compute the polynomials PB(p) for certain Archimedean and dual lattices (those having only cubic and quartic vertices), using very large bases (up to 243 vertices). This produces the site percolation thresholds pc to a precision of the order of 10-9.
NASA Astrophysics Data System (ADS)
Xu, Hao; Yang, Hong; Wang, Yan-Rong; Wang, Wen-Wu; Luo, Wei-Chun; Qi, Lu-Wei; Li, Jun-Feng; Zhao, Chao; Chen, Da-Peng; Ye, Tian-Chun
2016-08-01
High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes. The reliability of thin dielectric films becomes a limitation to device manufacturing, especially to the breakdown characteristic. In this work, a breakdown simulator based on a percolation model and the kinetic Monte Carlo method is set up, and the intrinsic relation between time to breakdown and trap generation rate R is studied by TDDB simulation. It is found that all degradation factors, such as trap generation rate time exponent m, Weibull slope β and percolation factor s, each could be expressed as a function of trap density time exponent α. Based on the percolation relation and power law lifetime projection, a temperature related trap generation model is proposed. The validity of this model is confirmed by comparing with experiment results. For other device and material conditions, the percolation relation provides a new way to study the relationship between trap generation and lifetime projection. Project supported by the National High Technology Research and Development Program of China (Grant No. SS2015AA010601), the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroElectronics of Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Wiśniowski, R.; Olchawa, W.; Frączek, D.; Piasecki, R.
2016-02-01
Recently, the effective medium approach (EMA) using 2×2 basic cluster of model lattice sites to predict the conductivity of interacting microemulsion droplets has been presented by Hattori et al. To make a step aside from pure applications, we studied earlier a multi-scale percolation, employing any k× k basic cluster for non-interacting particles. Here, with interactions included, we examine in what way they alter the percolation threshold for any cluster case. We found that at a fixed length scale k, the interaction reduces the range of shifts of the percolation threshold. To determine the critical concentrations, the simplified EMA-model is used. It diminishes the number of local conductivities into two main ones. In the presence of a dominance of the repulsive interaction over the thermal energy, the exact percolation thresholds at two small scales can be revealed from analytical formulas. Furthermore, at large scales, the highest possible value of the estimated threshold can be obtained.
2D numerical modelling of fluid percolation in the subduction zone
NASA Astrophysics Data System (ADS)
Dymkova, D.; Gerya, T.; Podladchikov, Y.
2012-04-01
Subducting slab dehydration and resulting aqueous fluid percolation triggers partial melting in the mantle wedge and is accompanied with the further melt percolation through the porous space to the region above the slab. This problem is a complex coupled chemical, thermal and mechanical process responsible for the magmatic arcs formation and change of the mantle wedge properties. We have created a two-dimensional model of a two-phase flow in a porous media solving a coupled Darcy-Stokes system of equations for two incompressible media for the case of nonlinear visco-plastic rheology of solid matrix. Our system of equation is expanded for the high-porosity limits and stabilized for the case of high porosity contrasts. We use a finite-difference method with fully staggered grid in a combination with marker-in-cell technique for advection of fluid and solid phase. We performed a comparison with a benchmark of a thermal convection in a porous media in a bottom-heated box to verify the interdependency of Rayleigh and Nusselt numbers with earlier obtained ones (Cherkaoui & Wilcock, 1999). We have demonstrated the stability and robustness of the algorithm in case of strongly non-linear visco-plastic rheology of solid including cases with localization of both deformation and porous flow along spontaneously forming shear bands. We have checked our model for the forming of localized porous channels under a simple shear stress (Katz et al, 2006). We have developed a setup of a self-initiating due to gravitational instability subduction. With our coupled fluid-solid flow we have achieved a self-consistent water downward suction by a slab bending predicted by the other models with a simplified fluid kinematical motion implementation (Faccenda et al, 2009). With this setup we have obtained a self-consistent upper crust weakening by a porous fluid pressure which was theoretically assumed in the previously existing subduction models (Gerya & Meilick, 2011; Faccenda et al, 2009
Universal energy spectrum from point sources
NASA Technical Reports Server (NTRS)
Tomozawa, Yukio
1992-01-01
The suggestion is made that the energy spectrum from point sources such as galactic black hole candidates (GBHC) and active galactic nuclei (AGN) is universal on the average, irrespective of the species of the emitted particles, photons, nucleons, or others. The similarity between the observed energy spectra of cosmic rays, gamma-rays, and X-rays is discussed. In other words, the existing data for gamma-rays and X-rays seem to support the prediction. The expected data from the Gamma Ray Observatory are to provide a further test.
Critical behavior of a tumor growth model: directed percolation with a mean-field flavor.
Lipowski, Adam; Ferreira, António Luis; Wendykier, Jacek
2012-10-01
We examine the critical behavior of a lattice model of tumor growth where supplied nutrients are correlated with the distribution of tumor cells. Our results support the previous report [Ferreira et al., Phys. Rev. E 85, 010901(R) (2012)], which suggested that the critical behavior of the model differs from the expected directed percolation (DP) universality class. Surprisingly, only some of the critical exponents (β, α, ν([perpendicular]), and z) take non-DP values while some others (β', ν(||), and spreading-dynamics exponents Θ, δ, z') remain very close to their DP counterparts. The obtained exponents satisfy the scaling relations β=αν(||), β'=δν(||), and the generalized hyperscaling relation Θ+α+δ=d/z, where the dynamical exponent z is, however, used instead of the spreading exponent z'. Both in d=1 and d=2 versions of our model, the exponent β most likely takes the mean-field value β=1, and we speculate that it might be due to the roulette-wheel selection, which is used to choose the site to supply a nutrient. PMID:23214560
Percolation-Continuum Model of Evaporative Drying: Homogeneous or Patchy Saturation?
Wang, H F; Strand, T E; Berryman, J G
2005-02-18
Porous rock on the earth's surface often contains more than one fluid phase, and an important case is partial saturation with air and water. We implemented a pore-scale, percolation model coupled with a continuum model for water vapor diffusion in order to create a simulated tomographic image of water distribution within a rock core during drying. As drying proceeds, the initial, continuous water cluster breaks up into smaller and smaller clusters with an increasing surface-area-to-volume ratio. Drying times are a function of the number and location of boundary surfaces, but the surface-area-to-volume ratio is approximately the same for a given saturation. By applying a Voigt volume average of the elastic properties of water-filled and air-filled cells, and by introducing the ad hoc rule that water-filled pores on the air-water interface of a cluster behave in a drained manner, we find elastic moduli as a function of saturation that mimic laboratory experimental data.
Percolation model for growth rates of aggregates and its application for business firm growth
NASA Astrophysics Data System (ADS)
Fu, Dongfeng; Buldyrev, Sergey V.; Salinger, Michael A.; Stanley, H. Eugene
2006-09-01
Motivated by recent empirical studies of business firm growth, we develop a dynamic percolation model which captures some of the features of the economical system—i.e., merging and splitting of business firms—represented as aggregates on a d -dimensional lattice. We find the steady-state distribution of the aggregate size and explore how this distribution depends on the model parameters. We find that at the critical threshold, the standard deviation of the aggregate growth rates, σ , increases with aggregate size S as σ˜Sβ , where β can be explained in terms of the connectedness length exponent ν and the fractal dimension df , with β=1/(2νdf)≈0.20 for d=2 and 0.125 for d→∞ . The distributions of aggregate growth rates have a sharp peak at the center and pronounced wings extending over many standard deviations, giving the distribution a tent-shape form—the Laplace distribution. The distributions for different aggregate sizes scaled by their standard deviations collapse onto the same curve.
NASA Astrophysics Data System (ADS)
Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Dubinin, Dmitri O.; Laptev, Valeri V.; Vygornitskii, Nikolai V.
2015-12-01
The jamming and percolation for two generalized models of random sequential adsorption (RSA) of linear k -mers (particles occupying k adjacent sites) on a square lattice are studied by means of Monte Carlo simulation. The classical RSA model assumes the absence of overlapping of the new incoming particle with the previously deposited ones. The first model is a generalized variant of the RSA model for both k -mers and a lattice with defects. Some of the occupying k adjacent sites are considered as insulating and some of the lattice sites are occupied by defects (impurities). For this model even a small concentration of defects can inhibit percolation for relatively long k -mers. The second model is the cooperative sequential adsorption one where, for each new k -mer, only a restricted number of lateral contacts z with previously deposited k -mers is allowed. Deposition occurs in the case when z ≤(1 -d ) zm where zm=2 (k +1 ) is the maximum numbers of the contacts of k -mer, and d is the fraction of forbidden contacts. Percolation is observed only at some interval kmin≤k ≤kmax where the values kmin and kmax depend upon the fraction of forbidden contacts d . The value kmax decreases as d increases. A logarithmic dependence of the type log10(kmax) =a +b d , where a =4.04 ±0.22 ,b =-4.93 ±0.57 , is obtained.
NASA Astrophysics Data System (ADS)
Srivastava, Brijesh K.
2011-07-01
Possible phase transition of strongly interacting matter from hadron to a Quark-Gluon Plasma (QGP) state have in the past received considerable interest. It has been suggested that this problem might be treated by percolation theory. The Color String Percolation Model (CSPM) is used to determine the equation of state (EOS) of the QGP produced in central Au-Au collisions at RHIC energies. The bulk thermodynamic quantities - energy density, entropy density and the sound velocity - are obtained in the framework of CSPM. It is shown that the results are in excellent agreement with the recent lattice QCD calculations(LQCD).
Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R
2016-06-01
The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available. PMID:27176640
Ding, Chengxiang; Fu, Zhe; Guo, Wenan; Wu, F Y
2010-06-01
In the preceding paper, one of us (F. Y. Wu) considered the Potts model and bond and site percolation on two general classes of two-dimensional lattices, the triangular-type and kagome-type lattices, and obtained closed-form expressions for the critical frontier with applications to various lattice models. For the triangular-type lattices Wu's result is exact, and for the kagome-type lattices Wu's expression is under a homogeneity assumption. The purpose of the present paper is twofold: First, an essential step in Wu's analysis is the derivation of lattice-dependent constants A,B,C for various lattice models, a process which can be tedious. We present here a derivation of these constants for subnet networks using a computer algorithm. Second, by means of a finite-size scaling analysis based on numerical transfer matrix calculations, we deduce critical properties and critical thresholds of various models and assess the accuracy of the homogeneity assumption. Specifically, we analyze the q -state Potts model and the bond percolation on the 3-12 and kagome-type subnet lattices (n×n):(n×n) , n≤4 , for which the exact solution is not known. Our numerical determination of critical properties such as conformal anomaly and magnetic correlation length verifies that the universality principle holds. To calibrate the accuracy of the finite-size procedure, we apply the same numerical analysis to models for which the exact critical frontiers are known. The comparison of numerical and exact results shows that our numerical values are correct within errors of our finite-size analysis, which correspond to 7 or 8 significant digits. This in turn infers that the homogeneity assumption determines critical frontiers with an accuracy of 5 decimal places or higher. Finally, we also obtained the exact percolation thresholds for site percolation on kagome-type subnet lattices (1×1):(n×n) for 1≤n≤6 . PMID:20866382
Point source solutions and coupling parameters in cratering mechanics
NASA Technical Reports Server (NTRS)
Holsapple, K. A.; Schmidt, R. M.
1987-01-01
The use of a point source of an impactor energy and momentum to replace the effects of the impactor is examined. The general framework and notation of the impact cratering problems are described; it is determined that the cratering phenomena are governed by Froude, Cauchy, and Reynolds numbers. The coupling parameter concept is defined mathematically as the measure that governs limit point source solutions. Examples of cases where coupling parameters are used are presented. The relationships of the coupling parameter concept with steady flow and the Z-model of cratering of Maxwell (1973, 1977) are studied. Crater size, ejecta distributions, growth histories, time of formation, melt volume, and shock decay for various scale factors for impact cratering mechanics are calculated, and the applicability of the coupling parameter to the study of cratering mechanics is revealed.
Weak percolation on multiplex networks.
Baxter, Gareth J; Dorogovtsev, Sergey N; Mendes, José F F; Cellai, Davide
2014-04-01
Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters. PMID:24827287
Weak percolation on multiplex networks
NASA Astrophysics Data System (ADS)
Baxter, Gareth J.; Dorogovtsev, Sergey N.; Mendes, José F. F.; Cellai, Davide
2014-04-01
Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.
NASA Astrophysics Data System (ADS)
Ghanbarian, Behzad; Cheng, Ping
2016-03-01
Percolation theory is used to model intrinsic and relative permeabilities as well as tortuosity in anisotropic carbon paper gas diffusion layers (GDL) and compared with existing results from lattice-Boltzmann (LB) simulations and experimental measurements. Although single- and two-phase characteristics of the carbon paper GDL are mainly affected by medium geometrical and topological properties, e.g., pore-size distribution, connectivity, and pore geometry, analyzing capillary pressure curves implies that the pore-size distribution of the carbon paper GDL is very narrow. This suggests that its effect on tortuosity and wetting- and nonwetting-phase relative permeabilities is trivial. However, integrated effects of pore geometry, surface area, connectivity, and tortuosity on intrinsic permeability might be substantial. Universal power laws from percolation theory predict the tortuosity-porosity and relative permeability-saturation curves accurately, indicating both characteristics not affected by the pore-size distribution. The permeability-porosity relationship, however, conforms to nonuniversality.
Surface growth on percolation networks by a conserved-noise restricted solid-on-solid growth model
NASA Astrophysics Data System (ADS)
Lee, Sang Bub
2016-02-01
Surface growth by the conserved-noise restricted solid-on-solid model is investigated on diluted lattices, i.e., on percolation networks that are embedded in two spatial dimensions. The growth exponent β and the roughness exponent α are defined, respectively, by the mean-square surface width via W2(t ) ˜t2 β and the mean-square saturated width via Wsat2(L ) ˜L2 α , where L is the system size. These are measured on both an infinite network and a backbone network and the results are compared with power-counting predictions obtained using the fractional Langevin equation. While the Monte Carlo results on deterministic fractal substrates show excellent agreement with the predictions [D. H. Kim and J. M. Kim, Phys. Rev. E 84, 011105 (2011), 10.1103/PhysRevE.84.011105], the results on critical percolation networks deviate by 8%-12% from these predictions.
Surface growth on percolation networks by a conserved-noise restricted solid-on-solid growth model.
Lee, Sang Bub
2016-02-01
Surface growth by the conserved-noise restricted solid-on-solid model is investigated on diluted lattices, i.e., on percolation networks that are embedded in two spatial dimensions. The growth exponent β and the roughness exponent α are defined, respectively, by the mean-square surface width via W(2)(t)∼t(2β) and the mean-square saturated width via W(sat)(2)(L)∼L(2α), where L is the system size. These are measured on both an infinite network and a backbone network and the results are compared with power-counting predictions obtained using the fractional Langevin equation. While the Monte Carlo results on deterministic fractal substrates show excellent agreement with the predictions [D. H. Kim and J. M. Kim, Phys. Rev. E 84, 011105 (2011)], the results on critical percolation networks deviate by 8%-12% from these predictions. PMID:26986299
Percolation testing and hydraulic conductivity of soils for percolation areas.
Mulqueen, J; Rodgers, M
2001-11-01
The results of specific percolation tests are expressed in terms of field saturated hydraulic conductivity (Kfs) of the soil. The specific tests comprise the Irish SR 6 and the UK BS 6297 standard tests and the inversed auger hole and square hole tests employed for the design of land drainage. Percolation times from these tests are converted to Kfs values using unit gradient theory and the Elrick and Reynolds (Soil Sci. 142(5) (1986) 308) model which takes into account gravitational, pressure head and matric potential gradients. Kfs is then expressed as the inverse of the percolation rate times a constant, in this way the percolation rate can be directly related to Kfs of the soil. A plot of Kfs against percolation rate for the Irish SR 6 and the UK BS 6297 standard tests is asymptotic at Kfs values less than 0.2 m/d and greater than 0.8 m/d. This behaviour creates difficulty in setting limits for percolation rates in standards. Curves are provided which enable Kfs values to be read off from percolation tests without the restrictions of head range currently enforced, for example in the Irish SR 6 and BS 6297 standards. Experimental measurements of percolation rates and Kfs were carried out on two sands in the laboratory and in the field on two soils. Kfs of these four materials was also measured using a tension infiltrometer and the Guelph permeameter. The saturated hydraulic conductivities (Ks) of the sands were also estimated in a falling head laboratory apparatus and by the Hazen formula. There was good agreement between the different tests for Kfs on each material. Because percolation time continued to increase significantly in consecutive tests in the same test hole while Kfs became constant, the latter is a better measure of the suitability of soils for percolation. PMID:12230173
Is a wind turbine a point source? (L).
Makarewicz, Rufin
2011-02-01
Measurements show that practically all noise of wind turbine noise is produced by turbine blades, sometimes a few tens of meters long, despite that the model of a point source located at the hub height is commonly used. The plane of rotating blades is the critical location of the receiver because the distances to the blades are the shortest. It is shown that such location requires certain condition to be met. The model is valid far away from the wind turbine as well. PMID:21361413
NASA Astrophysics Data System (ADS)
Boadh, Rahul; Satyanarayana A. N., V.; Ramakrishna T. V. B. P., S.; Madala, Srikanth
2015-04-01
The deterioration of air quality may be attributed to the rapid industrialization, consequent urbanization and increased growth of vehicular traffic. In urban areas, the day to day increase in vehicular traffic has provided the impetus for comprehensive monitoring/modeling of air quality. In the present study, vehicular traffic as area sources and power plant as point source, the two major sources of oxides of nitrogen (NOX), was has considered. Gaussian plume air dispersion model, AERMOD is used for assessment of NOX dispersion over Nagpur city, Maharashtra. The processes within the planetary boundary layer (PBL) play an important role in the dispersion of air pollutants. AERMOD requires surface and upper air meteorological observations and various PBL parameters with good temporal resolution in the stand alone mode and mostly the data on PBL parameters is not available routinely over India. In the present study, an attempt has been made to simulate the necessary boundary layer parameters from WRF-ARW model and then offline coupled with AERMOD dispersion model. High resolution simulations with triple nested domain (horizontal resolution of 27, 9 and 3 km; 27 vertical levels) are carried out with WRF-ARW model. The surface and upper air meteorological data along with the computed PBL parameters of winter and pre-monsoon seasons representing January and April respectively in the year 2009 are considered for dispersion of the NOX over Nagpur. Experiments are conducted with two best PBL parameterization schemes over study region, non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) schemes. AERMOD with 1 km resolution has been used for predicting the concentrations of NOX over Nagpur city. NOX observations from six monitoring stations of Central Pollution Control Board are used for validation of model predicted concentrations. The NOX concentrations are found to have over-predicted in both seasons. Close examination of the computed statistical errors
Conductivity of continuum percolating systems
NASA Astrophysics Data System (ADS)
Stenull, Olaf; Janssen, Hans-Karl
2001-11-01
We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese model, where the conducting medium is the space between randomly placed spherical holes, near the percolation threshold. This model can be mapped onto a bond percolation model where the conductance σ of randomly occupied bonds is drawn from a probability distribution of the form σ-a. Employing the methods of renormalized field theory we show to arbitrary order in ɛ expansion that the critical conductivity exponent of the Swiss-cheese model is given by tSC(a)=(d-2)ν+max[φ,(1-a)-1], where d is the spatial dimension and ν and φ denote the critical exponents for the percolation correlation length and resistance, respectively. Our result confirms a conjecture that is based on the ``nodes, links, and blobs'' picture of percolation clusters.
Signature of Thermal Rigidity Percolation
NASA Astrophysics Data System (ADS)
Huerta, Adrián
2013-12-01
To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of "physical cluster". For certain parameters of this model we observe two well defined peaks of CV, that suggest the existence of two kinds of "physical percolation", namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter.
NASA Astrophysics Data System (ADS)
Jha, Anjani K.
Particulate materials are routinely handled in large quantities by industries such as, agriculture, electronic, ceramic, chemical, cosmetic, fertilizer, food, nutraceutical, pharmaceutical, power, and powder metallurgy. These industries encounter segregation due to the difference in physical and mechanical properties of particulates. The general goal of this research was to study percolation segregation in multi-size and multi-component particulate mixtures, especially measurement, sampling, and modeling. A second generation primary segregation shear cell (PSSC-II), an industrial vibrator, a true cubical triaxial tester, and two samplers (triers) were used as primary test apparatuses for quantifying segregation and flowability; furthermore, to understand and propose strategies to mitigate segregation in particulates. Toward this end, percolation segregation in binary, ternary, and quaternary size mixtures for two particulate types: urea (spherical) and potash (angular) were studied. Three coarse size ranges 3,350-4,000 mum (mean size = 3,675 mum), 2,800-3,350 mum (3,075 mum), and 2,360-2,800 mum (2,580 mum) and three fines size ranges 2,000-2,360 mum (2,180 mum), 1,700-2,000 mum (1,850 mum), and 1,400-1,700 mum (1,550 mum) for angular-shaped and spherical-shaped were selected for tests. Since the fines size 1,550 mum of urea was not available in sufficient quantity; therefore, it was not included in tests. Percolation segregation in fertilizer bags was tested also at two vibration frequencies of 5 Hz and 7Hz. The segregation and flowability of binary mixtures of urea under three equilibrium relative humidities (40%, 50%, and 60%) were also tested. Furthermore, solid fertilizer sampling was performed to compare samples obtained from triers of opening widths 12.7 mm and 19.1 mm and to determine size segregation in blend fertilizers. Based on experimental results, the normalized segregation rate (NSR) of binary mixtures was dependent on size ratio, mixing ratio
Dithering Strategies and Point-Source Photometry
Samsing, Johan; Kim, Alex G
2011-02-22
The accuracy in the photometry of a point source depends on the point-spread function (PSF), detector pixelization, and observing strategy. The PSF and pixel response describe the spatial blurring of the source, the pixel scale describes the spatial sampling of a single exposure, and the observing strategy determines the set of dithered exposures with pointing offsets from which the source flux is inferred. In a wide-field imaging survey, sources of interest are randomly distributed within the field of view and hence are centered randomly within a pixel. A given hardware configuration and observing strategy therefore have a distribution of photometric uncertainty for sources of fixed flux that fall in the field. In this article we explore the ensemble behavior of photometric and position accuracies for different PSFs, pixel scales, and dithering patterns. We find that the average uncertainty in the flux determination depends slightly on dither strategy, whereas the position determination can be strongly dependent on the dithering. For cases with pixels much larger than the PSF, the uncertainty distributions can be non-Gaussian, with rms values that are particularly sensitive to the dither strategy. We also find that for these configurations with large pixels, pointings dithered by a fractional pixel amount do not always give minimal average uncertainties; this is in contrast to image reconstruction for which fractional dithers are optimal. When fractional pixel dithering is favored, a pointing accuracy of better than {approx}0.15 {approx}0.15 pixel width is required to maintain half the advantage over random dithers.
Lebovka, Nikolai I; Tarasevich, Yuri Yu; Dubinin, Dmitri O; Laptev, Valeri V; Vygornitskii, Nikolai V
2015-12-01
The jamming and percolation for two generalized models of random sequential adsorption (RSA) of linear k-mers (particles occupying k adjacent sites) on a square lattice are studied by means of Monte Carlo simulation. The classical RSA model assumes the absence of overlapping of the new incoming particle with the previously deposited ones. The first model is a generalized variant of the RSA model for both k-mers and a lattice with defects. Some of the occupying k adjacent sites are considered as insulating and some of the lattice sites are occupied by defects (impurities). For this model even a small concentration of defects can inhibit percolation for relatively long k-mers. The second model is the cooperative sequential adsorption one where, for each new k-mer, only a restricted number of lateral contacts z with previously deposited k-mers is allowed. Deposition occurs in the case when z≤(1-d)z(m) where z(m)=2(k+1) is the maximum numbers of the contacts of k-mer, and d is the fraction of forbidden contacts. Percolation is observed only at some interval k(min)≤k≤k(max) where the values k(min) and k(max) depend upon the fraction of forbidden contacts d. The value k(max) decreases as d increases. A logarithmic dependence of the type log(10)(k(max))=a+bd, where a=4.04±0.22,b=-4.93±0.57, is obtained. PMID:26764641
Explosive percolation in thresholded networks
NASA Astrophysics Data System (ADS)
Hayasaka, Satoru
2016-06-01
Explosive percolation in a network is a phase transition where a large portion of nodes becomes connected with an addition of a small number of edges. Although extensively studied in random network models and reconstructed real networks, explosive percolation has not been observed in a more realistic scenario where a network is generated by thresholding a similarity matrix describing between-node associations. In this report, I examine construction schemes of such thresholded networks, and demonstrate that explosive percolation can be observed by introducing edges in a particular order.
Atmospheric Verification of Point Source Fossil Fuel CO2 Emissions
NASA Astrophysics Data System (ADS)
Turnbull, J. C.; Keller, E. D.; Norris, M. W.; Wiltshire, R.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.
2015-12-01
Large point sources (electricity generation and large-scale industry) make up roughly one third of all fossil fuel CO2 (CO2ff) emissions. Currently, these emissions are determined from self-reported inventory data, and sometimes from smokestack emissions monitoring, and the uncertainty in emissions from individual power plants is about 20%. We examine the utility of atmospheric 14C measurements combined with atmospheric transport modelling as a tool for independently quantifying point source CO2ff emissions, to both improve the accuracy of the reported emissions and for verification as we move towards a regulatory environment. We use the Kapuni Gas Treatment Facility as a test case. It is located in rural New Zealand with no other significant fossil fuel CO2 sources nearby, and emits CO2ff at ~0.1 Tg carbon per year. We use several different sampling methods to determine the 14C and hence the CO2ff content downwind of the emission source: grab flask samples of whole air; absorption of CO2 into sodium hydroxide integrated over many hours; and plant material which faithfully records the 14C content of assimilated CO2. We use a plume dispersion model to compare the reported emissions with our observed CO2ff mole fractions. We show that the short-term variability in plume dispersion makes it difficult to interpret the grab flask sample results, whereas the variability is averaged out in the integrated samples and we obtain excellent agreement between the reported and observed emissions, indicating that the 14C method can reliably be used to evaluated point source emissions.
Monte Carlo study of the site-percolation model in two and three dimensions.
Deng, Youjin; Blöte, Henk W J
2005-07-01
We investigate the site-percolation problem on the square and simple-cubic lattices by means of a Monte Carlo algorithm that in fact simulates systems with size L(d-1) x infinity, where L specifies the linear system size. This algorithm can be regarded either as an extension of the Hoshen-Kopelman method or as a special case of the transfer-matrix Monte Carlo technique. Various quantities, such as the magnetic correlation function, are sampled in the finite directions of the above geometry. Simulations are arranged such that both bulk and surface quantities can be sampled. On the square lattice, we locate the percolation threshold at p(c) =0.592 746 5 (4) , and determine two universal quantities as Q(gbc) =0.930 34 (1) and Q(gsc) =0.793 72 (3) , which are associated with bulk and surface correlations, respectively. These values agree well with the exact values 2(-5/48) and 2(-1/3) , respectively, which follow from conformal invariance. On the simple-cubic lattice, we locate the percolation threshold at p(c) =0.311 607 7 (4) . We further determine the bulk thermal and magnetic exponents as y(t) =1.1437 (6) and y(h) =2.5219 (2) , respectively, and the surface magnetic exponent at the ordinary phase transition as y (o)(hs) =1.0248 (3) . PMID:16090055
Monte Carlo study of the site-percolation model in two and three dimensions
NASA Astrophysics Data System (ADS)
Deng, Youjin; Blöte, Henk W. J.
2005-07-01
We investigate the site-percolation problem on the square and simple-cubic lattices by means of a Monte Carlo algorithm that in fact simulates systems with size Ld-1×∞ , where L specifies the linear system size. This algorithm can be regarded either as an extension of the Hoshen-Kopelman method or as a special case of the transfer-matrix Monte Carlo technique. Various quantities, such as the magnetic correlation function, are sampled in the finite directions of the above geometry. Simulations are arranged such that both bulk and surface quantities can be sampled. On the square lattice, we locate the percolation threshold at pc=0.5927465(4) , and determine two universal quantities as Qgbc=0.93034(1) and Qgsc=0.79372(3) , which are associated with bulk and surface correlations, respectively. These values agree well with the exact values 2-5/48 and 2-1/3 , respectively, which follow from conformal invariance. On the simple-cubic lattice, we locate the percolation threshold at pc=0.3116077(4) . We further determine the bulk thermal and magnetic exponents as yt=1.1437(6) and yh=2.5219(2) , respectively, and the surface magnetic exponent at the ordinary phase transition as yhs(o)=1.0248(3) .
NASA Astrophysics Data System (ADS)
Ding, Chengxiang; Fu, Zhe; Guo, Wenan; Wu, F. Y.
2010-06-01
In the preceding paper, one of us (F. Y. Wu) considered the Potts model and bond and site percolation on two general classes of two-dimensional lattices, the triangular-type and kagome-type lattices, and obtained closed-form expressions for the critical frontier with applications to various lattice models. For the triangular-type lattices Wu’s result is exact, and for the kagome-type lattices Wu’s expression is under a homogeneity assumption. The purpose of the present paper is twofold: First, an essential step in Wu’s analysis is the derivation of lattice-dependent constants A,B,C for various lattice models, a process which can be tedious. We present here a derivation of these constants for subnet networks using a computer algorithm. Second, by means of a finite-size scaling analysis based on numerical transfer matrix calculations, we deduce critical properties and critical thresholds of various models and assess the accuracy of the homogeneity assumption. Specifically, we analyze the q -state Potts model and the bond percolation on the 3-12 and kagome-type subnet lattices (n×n):(n×n) , n≤4 , for which the exact solution is not known. Our numerical determination of critical properties such as conformal anomaly and magnetic correlation length verifies that the universality principle holds. To calibrate the accuracy of the finite-size procedure, we apply the same numerical analysis to models for which the exact critical frontiers are known. The comparison of numerical and exact results shows that our numerical values are correct within errors of our finite-size analysis, which correspond to 7 or 8 significant digits. This in turn infers that the homogeneity assumption determines critical frontiers with an accuracy of 5 decimal places or higher. Finally, we also obtained the exact percolation thresholds for site percolation on kagome-type subnet lattices (1×1):(n×n) for 1≤n≤6 .
Wang, Yang; Weng, George J.; Meguid, Shaker A.; Hamouda, Abdel Magid
2014-05-21
A continuum model that possesses several desirable features of the electrical conduction process in carbon-nanotube (CNT) based nanocomposites is developed. Three basic elements are included: (i) percolation threshold, (ii) interface effects, and (iii) tunneling-assisted interfacial conductivity. We approach the first one through the selection of an effective medium theory. We approach the second one by the introduction of a diminishing layer of interface with an interfacial conductivity to build a 'thinly coated' CNT. The third one is introduced through the observation that interface conductivity can be enhanced by electron tunneling which in turn can be facilitated with the formation of CNT networks. We treat this last issue in a continuum fashion by taking the network formation as a statistical process that can be represented by Cauchy's probability density function. The outcome is a simple and yet widely useful model that can simultaneously capture all these fundamental characteristics. It is demonstrated that, without considering the interface effect, the predicted conductivity would be too high, and that, without accounting for the additional contribution from the tunneling-assisted interfacial conductivity, the predicted conductivity beyond the percolation threshold would be too low. It is with the consideration of all three elements that the theory can fully account for the experimentally measured data. We further use the developed model to demonstrate that, despite the anisotropy of the intrinsic CNT conductivity, it is its axial component along the CNT direction that dominates the overall conductivity. This theory is also proved that, even with a totally insulating matrix, it is still capable of delivering non-zero conductivity beyond the percolation threshold.
A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model
NASA Astrophysics Data System (ADS)
Duminil-Copin, Hugo; Tassion, Vincent
2016-04-01
We provide a new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. The proof applies to infinite-range models on arbitrary locally finite transitive infinite graphs. For Bernoulli percolation, we prove finiteness of the susceptibility in the subcritical regime {β < β_c}, and the mean-field lower bound {{P}_β[0longleftrightarrow infty ]ge (β-β_c)/β} for {β > β_c}. For finite-range models, we also prove that for any {β < β_c}, the probability of an open path from the origin to distance n decays exponentially fast in n. For the Ising model, we prove finiteness of the susceptibility for {β < β_c}, and the mean-field lower bound {< σ_0rangle_β^+ge sqrt{(β^2-β_c^2)/β^2}} for {β > β_c}. For finite-range models, we also prove that the two-point correlation functions decay exponentially fast in the distance for {β < β_c}.
NASA Astrophysics Data System (ADS)
Bautista, I.; Téllez, A. Fernandez; Ghosh, Premomoy
2015-10-01
We analyze high-multiplicity proton-proton (p p ) collision data in the framework of the string percolation model that has been successful in describing several phenomena of multiparticle production, including the signatures of recent discovery of strongly interacting partonic matter, the quark-gluon plasma, in relativistic heavy-ion collisions. Our study in terms of the ratio of shear viscosity and entropy density (η /s ) and the [Lattice Quantum Chromodinamics (LQCD)] predicted signature of QCD change of phase, in terms of the effective number of degrees of freedom (ɛ /T4), reiterates the possibility of a strongly interacting collective medium in these events.
Locally self-organized quasicritical percolation in a multiple-disease model.
Juul, Jeppe; Sneppen, Kim
2011-09-01
Diseases emerge, persist, and vanish in an ongoing battle for available hosts. Hosts, on the other hand, defend themselves by developing immunity that limits the ability of pathogens to reinfect them. We here explore a multidisease system with emphasis on mutual exclusion. We demonstrate that such a system develops toward a steady state, where the spread of individual diseases self-organizes to a state close to that of critical percolation, without any global control mechanism or separation of time scale. For a broad range of introduction rates of new diseases, the likelihood of transmitting diseases remains approximately constant. PMID:22060468
Deep Percolation in Devegetated Hillslopes
NASA Astrophysics Data System (ADS)
Ebel, B. A.; Hinckley, E. S.
2011-12-01
Deep percolation has recently been recognized as a critical component in hillslope hydrology studies. In devegetated hillslopes where vegetation is killed and, in some cases, removed, deep percolation may be substantially enhanced beyond pre-disturbance magnitudes. We discuss two examples of devegetated hillslopes where water balance partitioning shifted to favor increased deep percolation fluxes for some hydrologic conditions. The first is the Coos Bay Experimental Catchment in Oregon, USA, where commercial forestry resulted in the complete removal of trees. An intensive field campaign in the 1990's resulted in a long term record of precipitation, discharge, piezometric response, and groundwater levels. Hydrologic response modeling confirms hypotheses from the field-data analysis and points to unresolved questions regarding feedbacks between deep percolation and near-surface hydrologic processes. The second example is the area burned by the Fourmile Canyon Fire in Colorado, USA, where a severe wildland fire removed all vegetation from a north-aspect hillslope in 2010. Precipitation, atmospheric conditions, soil-water content, matric potential, and runoff have been measured since the fire devegetated the site. Subsurface sampling of the vadose zone is accomplished using suction lysimeters to capture total nitrate, ammonium, and dissolved organic carbon concentrations. Darcian flux calculations of net infiltration from the shallow soil into fractured granodiorite bedrock are used to estimate solute fluxes to a deeper groundwater system. Virtual experiments using numerical models of unsaturated fluid flow and solute transport further elucidate the temporal dynamics of deep percolation and associated solute fluxes during spring snowmelt and frontal rainstorms, which are the major hydrologic drivers of deep percolation in this fire-impacted system. Together, these examples serve to illustrate the critical importance of deep percolation in disturbed landscapes. The
Semi-directed percolation in two dimensions
NASA Astrophysics Data System (ADS)
Knežević, Dragica; Knežević, Milan
2016-02-01
We studied a model of semi-directed percolation on finite strips of the square and triangular lattices. Using the transfer-matrix method, combined with phenomenological renormalization group approach, we obtain good numerical estimates for critical probabilities and correlation lengths critical exponents. Our results confirm the conjecture that semi-directed percolation belongs to the universality class of the usual fully-directed percolation model.
Gönci, Balázs; Németh, Valéria; Balogh, Emeric; Szabó, Bálint; Dénes, Ádám; Környei, Zsuzsanna; Vicsek, Tamás
2010-01-01
Because of its relevance to everyday life, the spreading of viral infections has been of central interest in a variety of scientific communities involved in fighting, preventing and theoretically interpreting epidemic processes. Recent large scale observations have resulted in major discoveries concerning the overall features of the spreading process in systems with highly mobile susceptible units, but virtually no data are available about observations of infection spreading for a very large number of immobile units. Here we present the first detailed quantitative documentation of percolation-type viral epidemics in a highly reproducible in vitro system consisting of tens of thousands of virtually motionless cells. We use a confluent astroglial monolayer in a Petri dish and induce productive infection in a limited number of cells with a genetically modified herpesvirus strain. This approach allows extreme high resolution tracking of the spatio-temporal development of the epidemic. We show that a simple model is capable of reproducing the basic features of our observations, i.e., the observed behaviour is likely to be applicable to many different kinds of systems. Statistical physics inspired approaches to our data, such as fractal dimension of the infected clusters as well as their size distribution, seem to fit into a percolation theory based interpretation. We suggest that our observations may be used to model epidemics in more complex systems, which are difficult to study in isolation. PMID:21187920
NASA Astrophysics Data System (ADS)
Harris, Jamie; Connaughton, Colm; Bustamante, Miguel D.
2013-08-01
We study the kinematics of nonlinear resonance broadening of interacting Rossby waves as modelled by the Charney-Hasegawa-Mima equation on a biperiodic domain. We focus on the set of wave modes which can interact quasi-resonantly at a particular level of resonance broadening and aim to characterize how the structure of this set changes as the level of resonance broadening is varied. The commonly held view that resonance broadening can be thought of as a thickening of the resonant manifold is misleading. We show that in fact the set of modes corresponding to a single quasi-resonant triad has a non-trivial structure and that its area in fact diverges for a finite degree of broadening. We also study the connectivity of the network of modes which is generated when quasi-resonant triads share common modes. This network has been argued to form the backbone for energy transfer in Rossby wave turbulence. We show that this network undergoes a percolation transition when the level of resonance broadening exceeds a critical value. Below this critical value, the largest connected component of the quasi-resonant network contains a negligible fraction of the total number of modes in the system whereas above this critical value a finite fraction of the total number of modes in the system are contained in the largest connected component. We argue that this percolation transition should correspond to the transition to turbulence in the system.
Great lakes eutrophication: the effect of point source control of total phosphorus.
Chapra, S C; Robertson, A
1977-06-24
A mathematical model of the Great Lakes total phosphorus budgets indicates that a 1 milligram per liter effluent restriction for point sources would result in significant improvement in the trophic status of most of the system. However, because large areas of their drainage basins are devoted to agriculture or are urbanized, western Lake Erie, lower Green Bay, and Saginaw Bay may require non-point source controls to effect significant improvements in their trophic status. PMID:17776924
Noise scaling in continuum percolating films
NASA Astrophysics Data System (ADS)
Garfunkel, G. A.; Weissman, M. B.
1985-07-01
Measurements of the scaling of 1/f noise magnitude versus resistance were made in metal films as the metal was removed by sandblasting. This procedure gives an approximate experimental realization of a Swiss-cheese continuum-percolation model, for which theory indicates some scaling properties very different from lattice percolation. The ratio of the resistance and noise exponents was in strong disagreement with lattice-percolation predictions and agreed approximately with simple continuum predictions.
Russ, Stefanie
2014-08-01
It is shown that a two-component percolation model on a simple cubic lattice can explain an experimentally observed behavior [Savage et al., Sens. Actuators B 79, 17 (2001); Sens. Actuators B 72, 239 (2001).], namely, that a network built up by a mixture of sintered nanocrystalline semiconducting n and p grains can exhibit selective behavior, i.e., respond with a resistance increase when exposed to a reducing gas A and with a resistance decrease in response to another reducing gas B. To this end, a simple model is developed, where the n and p grains are simulated by overlapping spheres, based on realistic assumptions about the gas reactions on the grain surfaces. The resistance is calculated by random walk simulations with nn, pp, and np bonds between the grains, and the results are found in very good agreement with the experiments. Contrary to former assumptions, the np bonds are crucial to obtain this accordance. PMID:25215722
NASA Astrophysics Data System (ADS)
Ovaska, M.; Alava, M. J.
2015-10-01
Nuclear fuel material is an example of a sintered, porous ceramic material. We formulate a two-dimensional model which couples three physical mechanisms in the material: (scalar) damage accumulation by thermal creep and radiation effects, porosity changes due to the damage, and the time-dependent diffusion of (radiation-induced) gases in the pore system thus created. The most important effect in the dynamics arises from the process where the pore system is swept through the percolation transition. The main conclusions that can be drawn concern the fractional gas release and its dependence on the three effects present in the damage dynamics: creep, radiation-induced bubble formation, and recovery due to bubble closure. In the main, the model reproduces the experimentally observed quick gas release phenomenon qualitatively.
Inference of Dim Gamma-Ray Point Sources Using Probabilistic Catalogues
NASA Astrophysics Data System (ADS)
Daylan, Tansu; Portillo, Stephen K. N.; Finkbeiner, Douglas P.
2016-07-01
Poisson regression of the Fermi-LAT data in the inner Milky Way reveals an extended gamma-ray excess. The anomalous emission falls steeply away from the galactic center and has an energy spectrum that peaks at 1-2 GeV. An important question is whether the signal is coming from a collection of unresolved point sources, possibly recycled pulsars, or constitutes a truly diffuse emission component. Previous analyses have relied on non-Poissonian template fits or wavelet decomposition of the Fermi-LAT data, which find evidence for a population of dim point sources just below the 3FGL flux limit. In order to draw conclusions about a potentially dim population, we propose to sample from the catalog space of point sources, where the model dimensionality, i.e., the number of sources, is unknown. Although being a computationally expensive sampling problem, this approach allows us to infer the number, flux and radial distribution of the point sources consistent with the observed count data. Probabilistic cataloging is specifically useful in the crowded field limit, such as in the galactic disk, where the typical separation between point sources is comparable to the PSF. Using this approach, we recover the results of the deterministic Fermi-LAT 3FGL catalog, as well as sub-detection threshold information and fold the point source parameter degeneracies into the model-choice problem of whether an emission is coming from unresolved MSPs or dark matter annihilation.
Inference of Dim Gamma-Ray Point Sources Using Probabilistic Catalogues
NASA Astrophysics Data System (ADS)
Daylan, Tansu; Portillo, Stephen; Finkbeiner, Douglas P.
2016-01-01
Poisson regression of the Fermi-LAT data in the inner Milky Way reveals an extended gamma-ray excess. The anomalous emission falls steeply away from the galactic center and has an energy spectrum that peaks at 1-2 GeV. An important question is whether the signal is coming from a collection of unresolved point sources, possibly recycled pulsars, or constitutes a truly diffuse emission component. Previous analyses have relied on non-Poissonian template fits or wavelet decomposition of the Fermi-LAT data, which find evidence for a population of dim point sources just below the 3FGL flux limit. In order to be able to make conclusions about such a dim population we propose to sample from the catalogue space of point sources in the inner galaxy, where the model dimensionality, i.e., the number of sources, is unknown. Although being a computationally expensive sampling problem, this approach allows us to infer the number, luminosity and radial distribution of the point source population that is consistent with the data while providing a Bayesian evidence for the point source hypothesis, which is independent of the model indicator. This talk will focus on the method of trans-dimensional sampling using the reversible-jump formalism and its application to the inference of a mock point source population. See the poster by Stephen K. N. Portillo for the inferred catalogue using the high latitude Fermi-LAT data.
NASA Astrophysics Data System (ADS)
Pfeffer, Michael; Kumar, Praveen; Eibl, Oliver
2016-08-01
Resistive losses corresponding to the front-side metallization limit the efficiency of Si solar cells. At the front-side contact, the Si emitter is covered by a glass layer that is less than 1 μm thick embedded with Ag colloids to volume fraction >20%. Bulk Ag fingers are arranged on top of the glass layer. A similar microstructure is found for both n-type and p-type cells showing high efficiency. The Ag colloids constitute current filaments with reduced resistance in the glass layer, thereby introducing a percolative current which is the basis of the proposed model. This model is new and differs from the classical percolation model in its direct reliance on the macroscopic resistance of these filaments, and in considering the matrix as semiconducting rather than insulating. For periodically arranged Ag colloids of fixed diameter, the percolative limit of 13% in two dimensions (2D) and 15% in three dimensions (3D) depends only on the volume fraction of colloids but not their size. The resistance of randomly arranged and sized Ag colloids confirms the analytical results. The model explains quantitatively, consistent with microstructural analyses, why low contact resistances are found in solar cells with high colloid density. The introduced percolation model is also relevant for other systems in which metallic precipitates are found in a semiconducting matrix.
NASA Astrophysics Data System (ADS)
Moriya, Masataka; Huong, Tran Thi Thu; Matsumoto, Kazuhiko; Shimada, Hiroshi; Kimura, Yasuo; Hirano-Iwata, Ayumi; Mizugaki, Yoshinao
2016-08-01
We calculated the connection probability, P C, between electrodes on the basis of the triangular lattice percolation model for investigating the effect of distance variation between electrodes and the electrode width on fabricated capacitively coupled single-electron transistors. Single-electron devices were fabricated via the dispersion of gold nanoparticles (NPs). The NPs were dispersed via the repeated dropping of an NP solution onto a chip. The experimental results were fitted to the calculated values, and the fitting parameters were compared with the occupation probability, P O, which was estimated for one drop of the NP solution. On the basis of curves of the drain current versus the drain-source voltage ( I D- V DS) measured at 77 K, the current was suppressed at approximately 0 V.
NASA Astrophysics Data System (ADS)
Métens, S.; Monceau, P.; Renault, R.; Bottani, S.
2016-03-01
We start from a continuous extension of a mean field approach of the quorum percolation model, accounting for the response of in vitro neuronal cultures, to carry out a normal form analysis of the critical behavior. We highlight the effects of nonlinearities associated with this mean field approach even in the close vicinity of the critical point. Statistical properties of random networks with Gaussian in-degree are related to the outcoming links distribution. Finite size analysis of explicit Monte Carlo simulations enables us to confirm the relevance of the mean field approach on such networks and to show that the order parameter is weakly self-averaging; dynamical relaxation is investigated. Furthermore we derive a mean field equation taking into account the effect of inhibitory neurons and discuss the equivalence with a purely excitatory network.
Point source searches with the IceCube Neutrino Observatory
NASA Astrophysics Data System (ADS)
Feintzeig, Jacob
2013-04-01
Observing a point source of astrophysical neutrinos would be a ``smoking gun'' signature of a cosmic ray accelerator. Here we discuss past and future searches for point sources using IceCube, a cubic kilometer Cherenkov detector at the South Pole. Results from three years of partial-detector data will be shown. I will then describe how upcoming analyses will improve IceCube's sensitivity to point sources by including two years of full-detector data and incorporating new event reconstruction techniques.
Percolation transitions in two dimensions.
Feng, Xiaomei; Deng, Youjin; Blöte, Henk W J
2008-09-01
We investigate bond- and site-percolation models on several two-dimensional lattices numerically, by means of transfer-matrix calculations and Monte Carlo simulations. The lattices include the square, triangular, honeycomb kagome, and diced lattices with nearest-neighbor bonds, and the square lattice with nearest- and next-nearest-neighbor bonds. Results are presented for the bond-percolation thresholds of the kagome and diced lattices, and the site-percolation thresholds of the square, honeycomb, and diced lattices. We also include the bond- and site-percolation thresholds for the square lattice with nearest- and next-nearest-neighbor bonds. We find that corrections to scaling behave according to the second temperature dimension X_{t2}=4 predicted by the Coulomb gas theory and the theory of conformal invariance. In several cases there is evidence for an additional term with the same exponent, but modified by a logarithmic factor. Only for the site-percolation problem on the triangular lattice does such a logarithmic term appear to be small or absent. The amplitude of the power-law correction associated with X_{t2}=4 is found to be dependent on the orientation of the lattice with respect to the cylindrical geometry of the finite systems. PMID:18851022
Percolation transitions in two dimensions
NASA Astrophysics Data System (ADS)
Feng, Xiaomei; Deng, Youjin; Blöte, Henk W. J.
2008-09-01
We investigate bond- and site-percolation models on several two-dimensional lattices numerically, by means of transfer-matrix calculations and Monte Carlo simulations. The lattices include the square, triangular, honeycomb kagome, and diced lattices with nearest-neighbor bonds, and the square lattice with nearest- and next-nearest-neighbor bonds. Results are presented for the bond-percolation thresholds of the kagome and diced lattices, and the site-percolation thresholds of the square, honeycomb, and diced lattices. We also include the bond- and site-percolation thresholds for the square lattice with nearest- and next-nearest-neighbor bonds. We find that corrections to scaling behave according to the second temperature dimension Xt2=4 predicted by the Coulomb gas theory and the theory of conformal invariance. In several cases there is evidence for an additional term with the same exponent, but modified by a logarithmic factor. Only for the site-percolation problem on the triangular lattice does such a logarithmic term appear to be small or absent. The amplitude of the power-law correction associated with Xt2=4 is found to be dependent on the orientation of the lattice with respect to the cylindrical geometry of the finite systems.
ESTIMATION OF VIABLE AIRBORNE MICROBES DOWNWIND FROM A POINT SOURCE
Modification of the Pasquill atmospheric diffusion equations for estimating viable microbial airborne cell concentrations downwind from a continuous point source is presented. A graphical method is given to estimate the ground level cell concentration given (1) microbial death ra...
Scattering of point source illumination by an arbitrary configuration
NASA Technical Reports Server (NTRS)
Solakiewicz, Richard
1994-01-01
The problem of electromagnetic scattering of an incident plane wave by an arbitrary configuration of obstacles was solved by Twersky. In this report, the results are extended to point source incidence corresponding to a Hertz dipole. Knowledge of the response of a fixed configuration of scatterers excited by a point source may provide insight to improve the accuracy of the values of bulk parameters for clouds which have been found using plane wave excitation.
Point-source imbibition into dry aqueous foams
NASA Astrophysics Data System (ADS)
Mensire, Rémy; Ault, Jesse T.; Lorenceau, Elise; Stone, Howard A.
2016-02-01
We use experiments, modeling and numerics to study the imbibition dynamics from a point source into a homogeneous dry aqueous foam. A distinctive feature of foams compared to solid porous material is that imbibition occurs in the liquid microchannels of the foam called Plateau borders, which have a volume varying in space and time. Dynamics is driven by the capillary pressure and resisted by the viscous and gravity forces in the liquid microchannels. Assuming a constant pressure in the imbibing liquid reservoir, we show that the imbibition front advances and flattens out in time due to gravity, the effect of which is quantified by introducing the Bond number B, which compares the gravitational effects to the capillary pressure using the mean bubble radius as the characteristic length. This evolution describes both miscible and immiscible imbibing liquids. For the latter, we introduce the idea of an effective interfacial tension γ\\textit{eff} to take the oil-water interfacial energy into account. The details of the imbibition process are confirmed by experiments and numerics using foams with tangentially immobile interfaces in the channel-dominated model.
Identifying populations at risk from environmental contamination from point sources
Williams, F; Ogston, S
2002-01-01
Objectives: To compare methods for defining the population at risk from a point source of air pollution. A major challenge for environmental epidemiology lies in correctly identifying populations at risk from exposure to environmental pollutants. The complexity of today's environment makes it essential that the methods chosen are accurate and sensitive. Methods: Environmental and mathematical methods were used to identify the population potentially exposed to a point source of airborne pollution emanating from a waste incinerator. Soil sampling was undertaken at 83 sites throughout the city and environs. The concentrations of arsenic and copper were measured at each site. Computer software produced smoothed contour plots of the distribution of arsenic and copper in the soil based on the information derived from the sampling sites. The population at risk was also identified using concentric rings of varying radii, with the source of pollution at the centre. Lastly, we used the sites that had previously been selected and measured the frequency of wind direction, speed and distance from the source of pollution at each site. Theoretical contour plots were constructed using the distance from the source of pollution at each site, with and without incorporating wind frequency as a function of direction. Results: Each method identified different populations at risk from airborne pollution. The use of circles was a very imprecise way of identifying exposed populations. Mathematical modelling that incorporated wind direction was better. Soil sampling at many sites was accurate, as the method is direct; but it is very costly and the close proximity of high and low concentrations hindered interpretation. The smoothed contour plots derived from the soil sampling sites identified an exposed population that was similar to that derived from the spot sampling. Conclusions: Using circles as the only means of identifying the exposed population leads to dilution of the potential
Chandra Spectra of the Cassiopeia A Point Source
NASA Astrophysics Data System (ADS)
Stage, Michael D.; Joss, Paul C.
2001-09-01
We present the first Chandra High Energy Transmission Grating (HETG) spectra of the X-ray point source (XPS) at the center of the Cassiopeia A supernova remnant, using our recent HETGS observation of Cas A (Obsid 1046), as well as spectra extracted from the long duration archival 50 ksec ACIS-S3 observation (Obsid 114). Discovered in the Chandra first light image, the flux and spectrum of XPS strongly indicate that it is associated with the remnant, but it has been difficult to classify the point source unambiguously. The assertion that the XPS is a weakly magnetized neutron star (B <= 1010 G) radiating primarily via thermal emission is supported by the recent discovery of weak X-ray pulsations with a 13 ms period (H. Tananbaum, talk presented at 198th Mtg. AAS). Such a source is an ideal candidate to fit with our new theoretical atmosphere models (Joss, Madej, and Stage, these proceedings). Early data fit well to a variety of spectral forms, including power laws, model neutron star atmospheres, pure blackbody, and thermal bremsstrahlung (Chakrabarty et al., ApJ 548: 800; Pavlov et al., ApJ 531: L53). With our longer duration and higher resolution observations, we have greater ability to discriminate among the possible spectral models. We have previously carried out model atmosphere fits to a spectrum extracted from the archival 50 ksec observation. Our results yielded effective temperatures (kTeff ~= 0.2 keV) and radii (Reff ~= 2 km) that are comparable to those obtained in earlier fits to neutron-star model atmospheres (Chakrabarty et. al.). The lack of detection of radio pulsations or of a synchrotron nebula from the location of the XPS (McLaughlin et al., ApJ 547: L41) suggests that the XPS is not a classical young pulsar, a result with which we agree. The quality of our model atmosphere fits is superior to those we obtained using simple power law or blackbody models. Furthermore, recent upper limits on the emission from the XPS at near infrared and optical
NASA Astrophysics Data System (ADS)
Nichols, J. M.; Waterman, J. R.
2016-07-01
This work derives the modeling and detection theory required to predict the performance of an infrared focal plane array in detecting point source targets. Specifically, we focus on modeling the uncertainty associated with the location of the point source on the array. In the process we derive several new expressions related to pixel-averaged detection performance under a variety of problem assumptions. The resulting predictions are compared to standard approaches where the location is assumed fixed and known. It is further shown how to incorporate these predictions into multi-frame detection strategies.
A guide to differences between stochastic point-source and stochastic finite-fault simulations
Atkinson, G.M.; Assatourians, K.; Boore, D.M.; Campbell, K.; Motazedian, D.
2009-01-01
Why do stochastic point-source and finite-fault simulation models not agree on the predicted ground motions for moderate earthquakes at large distances? This question was posed by Ken Campbell, who attempted to reproduce the Atkinson and Boore (2006) ground-motion prediction equations for eastern North America using the stochastic point-source program SMSIM (Boore, 2005) in place of the finite-source stochastic program EXSIM (Motazedian and Atkinson, 2005) that was used by Atkinson and Boore (2006) in their model. His comparisons suggested that a higher stress drop is needed in the context of SMSIM to produce an average match, at larger distances, with the model predictions of Atkinson and Boore (2006) based on EXSIM; this is so even for moderate magnitudes, which should be well-represented by a point-source model. Why? The answer to this question is rooted in significant differences between point-source and finite-source stochastic simulation methodologies, specifically as implemented in SMSIM (Boore, 2005) and EXSIM (Motazedian and Atkinson, 2005) to date. Point-source and finite-fault methodologies differ in general in several important ways: (1) the geometry of the source; (2) the definition and application of duration; and (3) the normalization of finite-source subsource summations. Furthermore, the specific implementation of the methods may differ in their details. The purpose of this article is to provide a brief overview of these differences, their origins, and implications. This sets the stage for a more detailed companion article, "Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM," in which Boore (2009) provides modifications and improvements in the implementations of both programs that narrow the gap and result in closer agreement. These issues are important because both SMSIM and EXSIM have been widely used in the development of ground-motion prediction equations and in modeling the parameters that control
NASA Astrophysics Data System (ADS)
Sasaki, Akira; Kato, Susumu; Takahashii, Eiichi; Kishimoto, Yasuaki; Fujii, Takashi; Kanazawa, Seiji
2016-02-01
We show a cell simulation of a discharge in an insulating gas from the initial partial discharge to leader inception until breakdown, based on the percolation model. In the model, we consider that the propagation of the leader occurs when connections between randomly produced ionized regions in the discharge medium are established. To determine the distribution of ionized regions, the state of each simulation cell is decided by evaluating the probability of ionization in SF6, which depends on the local electric field. The electric field as well as the discharge current are calculated by solving circuit equations for the network of simulation cells. Both calculations are coupled to each other and the temporal evolution of discharge is self-consistently calculated. The model dependence of the features of the discharge is investigated. It is found that taking the suppression of attachment in the presence of a discharge current into account, the calculation reproduces the behavior of experimental discharges. It is shown that for a strong electric field, the inception of a stepped leader causes immediate breakdown. For an electric field of 30-50% of the critical field, the initial partial discharge persists for a stochastic time lag and then the propagation of a leader takes place. As the strength of the electric field decreases, the time lag increases rapidly and eventually only a partial discharge with a short arrested leader occurs, as observed in experiments.
NASA Astrophysics Data System (ADS)
Ordway, Stephen; King, Dawn; Bahar, Sonya
Reaction-diffusion processes, such as branching-coalescing random walks, can be used to describe the underlying dynamics of nonequilibrium phase transitions. In an agent-based, neutral model of evolutionary dynamics, we have previously shown that our system undergoes a continuous, nonequilibrium phase transition, from extinction to survival, as various system parameters were tuned. This model was shown to belong to the directed percolation (DP) universality class, by measuring the critical exponents corresponding to correlation length ξ⊥, correlation time ξ| |, and particle density β. The fourth critical exponent that defines the DP universality class is β', which measures the survival probability of growth from a single seed organism. Since DP universality is theorized to have time-reversal symmetry, it is assumed that β = β '. In order to confirm the existence of time-reversal symmetry in our model, we evaluate the system growth from a single asexually reproducing organism. Importantly, the critical exponent β' could be useful for comparison to experimental studies of phase transitions in biological systems, since observing growth of microbial populations is significantly easier than observing death. This research was supported by funding from the James S. McDonnell Foundation.
Emergence of coexisting percolating clusters in networks
NASA Astrophysics Data System (ADS)
Faqeeh, Ali; Melnik, Sergey; Colomer-de-Simón, Pol; Gleeson, James P.
2016-06-01
It is commonly assumed in percolation theories that at most one percolating cluster can exist in a network. We show that several coexisting percolating clusters (CPCs) can emerge in networks due to limited mixing, i.e., a finite and sufficiently small number of interlinks between network modules. We develop an approach called modular message passing (MMP) to describe and verify these observations. We demonstrate that the appearance of CPCs is an important source of inaccuracy in previously introduced percolation theories, such as the message passing (MP) approach, which is a state-of-the-art theory based on the belief propagation method. Moreover, we show that the MMP theory improves significantly over the predictions of MP for percolation on synthetic networks with limited mixing and also on several real-world networks. These findings have important implications for understanding the robustness of networks and in quantifying epidemic outbreaks in the susceptible-infected-recovered (SIR) model of disease spread.
Emergence of coexisting percolating clusters in networks.
Faqeeh, Ali; Melnik, Sergey; Colomer-de-Simón, Pol; Gleeson, James P
2016-06-01
It is commonly assumed in percolation theories that at most one percolating cluster can exist in a network. We show that several coexisting percolating clusters (CPCs) can emerge in networks due to limited mixing, i.e., a finite and sufficiently small number of interlinks between network modules. We develop an approach called modular message passing (MMP) to describe and verify these observations. We demonstrate that the appearance of CPCs is an important source of inaccuracy in previously introduced percolation theories, such as the message passing (MP) approach, which is a state-of-the-art theory based on the belief propagation method. Moreover, we show that the MMP theory improves significantly over the predictions of MP for percolation on synthetic networks with limited mixing and also on several real-world networks. These findings have important implications for understanding the robustness of networks and in quantifying epidemic outbreaks in the susceptible-infected-recovered (SIR) model of disease spread. PMID:27415281
Atmospheric measurement of point source fossil fuel CO2 emissions
NASA Astrophysics Data System (ADS)
Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.
2013-11-01
We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.
Power-Law Template for IR Point Source Clustering
NASA Technical Reports Server (NTRS)
Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; Marriage, Tobias A.; Moodley, Kavilan; Page, Lyman A.; Reese, Erik D.; Scott, Douglass; Spergel, David N.; Staggs,Suzanne T.; Wollack, Edward
2011-01-01
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 < I < 2200), the Balloonborne Large-Aperture Submillimeter Telescope (BLAST; 250, 350 and 500 microns; 1000 < I < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
Power-Law Template for Infrared Point-Source Clustering
NASA Technical Reports Server (NTRS)
Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee; Marriage, Tobias A.; Moodley, Kavilan; Page, Lyman A.; Reese, Erik D.; Scott, Douglas; Spergel, David N.; Staggs, Suzanne T.; Wollack, Edward
2012-01-01
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx < l approx < 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 micron; 1000 approx < l approx < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
POWER-LAW TEMPLATE FOR INFRARED POINT-SOURCE CLUSTERING
Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Das, Sudeep; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T.; Viero, Marco; Bond, J. Richard; Devlin, Mark J.; Reese, Erik D.; Halpern, Mark; Scott, Douglas; Hlozek, Renee; Marriage, Tobias A.; Spergel, David N.; Moodley, Kavilan; Wollack, Edward
2012-06-20
We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 {approx}< l {approx}< 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 {mu}m; 1000 {approx}< l {approx}< 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C{sup clust}{sub l}{proportional_to}l{sup -n} with n = 1.25 {+-} 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, {nu}{sup {beta}} B({nu}, T{sub eff}), with a single emissivity index {beta} = 2.20 {+-} 0.07 and effective temperature T{sub eff} = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be {alpha}{sub 150-220} = 3.68 {+-} 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.
NASA Astrophysics Data System (ADS)
Scala, Antonio
2015-03-01
We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. Self-healing is a crucial in implementing the next generation of smart grids allowing to ensure a high quality of service to the users. We then map our self-healing procedure in a percolation problem and analyse the interplay between redundancies and topology in improving the resilience of networked infrastructures to multiple failures. We find exact results both for planar lattices and for random lattices, hinting the role of duality in the design of resilient networks. Finally, we introduce a cavity method approach to study the recovery of connectivity after damage in self-healing networks. CNR-PNR National Project ``Crisis-Lab,'' EU HOME/2013/CIPS/AG/4000005013 project CI2C and EU FET project MULTIPLEX nr.317532.
Radio Point Sources Toward Galaxy Clusters at 30 GHz
NASA Technical Reports Server (NTRS)
Coble, K.; Carlstrom, J. E.; Bonamente, M.; Dawson, K.; Holzapfel, W.; Joy, M.; LaRoque, S.; Reese, E. D.
2006-01-01
Extra-galactic point sources are a significant contaminant in cosmic microwave background and Sunyaev-Zel'dovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio point sources toward galaxy clusters at 28.5 GHz. We compute counts of mJy point source fluxes from 90 fields centered on known massive galaxy clusters and 8 non-cluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We also compute counts towards clusters as a function of luminosity in three redshift bins out to z = 1.0 and see no clear evidence for evolution with redshift. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz. The distribution is skewed, with a median spectral index of 0.76 and 25th and 75th percentiles of 0.55 and 0.95, respectively. This is steeper than the spectral indices of brighter field point sources measured by other surveys.
ENERGY CONSERVATION THROUGH POINT SOURCE RECYCLE WITH HIGH TEMPERATURE HYPERFILTRATION
The report gives results of a study of energy conservation effects of point source recycle with high-temperature hyperfiltration (HF) in the textile industry. (HF and ultrafiltration (UF) are pressure-driven membrane processes which have potential for recycle of water, energy, an...
TMDLS: AFTER POINT SOURCES, WHAT CAN WE DO NEXT?
Section 303(d) of the Clean Water Act required TMDLs (total maximum daily loads) for all waters for which effluent or point source limitations are insufficient to meet water quality standards. Concerns may arise regarding the manner by which TMDLs are established, the corrective ...
Search for Extragalactic Point Sources in WMAP First Year Data
NASA Astrophysics Data System (ADS)
Chen, X.; Wright, E. L.
2005-12-01
In 2003, Bennett et al. made a search for point sources in the WMAP maps and provided a catalog of 208 detected sources (with 98% reliability). These sources tend to be radio galaxies and quasars, and most of them have strong radiation at the K, Ka and Q bands, but not necessarily at the V and W bands. Here we present a new search for extragalactic point sources in V- and W-band full sky WMAP maps, using a different approach that cancels the ``noise'' due to the CMB anisotropy signal. 29 point sources are found in our study including 16 WMAP point sources, which is a strong proof of the feasibility and reliability of our method. Also since in our method the major noise contribution is due to random errors in the observations which can be minimized by repeated observations, the sensitivity of our study is expected to be greatly enhanced when more years of WMAP data are available. A comparison to previous surveys shows that 5 of our point source candidates have nearby infrared sources which cannot be positively associated due to insufficient spectral data; and another 3 do not have any companions in a 4-arcmin radius vicinity, which are most likely sources undetected before. We have proposed VLA X-band observations for these unidentified sources. The observation results should be available at the time of this meeting and will be presented along with the WMAP analysis. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science.
Coalescence and percolation in thin metal films
Yu, X.; Duxbury, P.M.; Jeffers, G.; Dubson, M.A. Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 )
1991-12-15
Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates ({ital p}{sub {ital c}}) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-{ital p}{sub {ital c}}'s arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius {ital R}{sub {ital c}}, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.
Anomalous critical and supercritical phenomena in explosive percolation
NASA Astrophysics Data System (ADS)
D'Souza, Raissa M.; Nagler, Jan
2015-07-01
The emergence of large-scale connectivity on an underlying network or lattice, the so-called percolation transition, has a profound impact on the system’s macroscopic behaviours. There is thus great interest in controlling the location of the percolation transition to either enhance or delay its onset and, more generally, in understanding the consequences of such control interventions. Here we review explosive percolation, the sudden emergence of large-scale connectivity that results from repeated, small interventions designed to delay the percolation transition. These transitions exhibit drastic, unanticipated and exciting consequences that make explosive percolation an emerging paradigm for modelling real-world systems ranging from social networks to nanotubes.
Reversible first-order transition in Pauli percolation
NASA Astrophysics Data System (ADS)
Maksymenko, Mykola; Moessner, Roderich; Shtengel, Kirill
2015-06-01
Percolation plays an important role in fields and phenomena as diverse as the study of social networks, the dynamics of epidemics, the robustness of electricity grids, conduction in disordered media, and geometric properties in statistical physics. We analyze a new percolation problem in which the first-order nature of an equilibrium percolation transition can be established analytically and verified numerically. The rules for this site percolation model are physical and very simple, requiring only the introduction of a weight W (n )=n +1 for a cluster of size n . This establishes that a discontinuous percolation transition can occur with qualitatively more local interactions than in all currently considered examples of explosive percolation; and that, unlike these, it can be reversible. This greatly extends both the applicability of such percolation models in principle and their reach in practice.
Reversible first-order transition in Pauli percolation.
Maksymenko, Mykola; Moessner, Roderich; Shtengel, Kirill
2015-06-01
Percolation plays an important role in fields and phenomena as diverse as the study of social networks, the dynamics of epidemics, the robustness of electricity grids, conduction in disordered media, and geometric properties in statistical physics. We analyze a new percolation problem in which the first-order nature of an equilibrium percolation transition can be established analytically and verified numerically. The rules for this site percolation model are physical and very simple, requiring only the introduction of a weight W(n)=n+1 for a cluster of size n. This establishes that a discontinuous percolation transition can occur with qualitatively more local interactions than in all currently considered examples of explosive percolation; and that, unlike these, it can be reversible. This greatly extends both the applicability of such percolation models in principle and their reach in practice. PMID:26172657
NASA Astrophysics Data System (ADS)
Liu, Jie; Regenauer-Lieb, Klaus
2011-01-01
Percolation theory provides a tool for linking microstructure and macroscopic material properties. In this paper, percolation theory is applied to the analysis of microtomographic images for the purpose of deriving scaling laws for upscaling of properties. We have tested the acquisition of quantities such as percolation threshold, crossover length, fractal dimension, and critical exponent of correlation length from microtomography. By inflating or deflating the target phase and percolation analysis, we can get a critical model and an estimation of the percolation threshold. The crossover length is determined from the critical model by numerical simulation. The fractal dimension can be obtained either from the critical model or from the relative size distribution of clusters. Local probabilities of percolation are used to extract the critical exponent of the correlation length. For near-isotropic samples such as sandstone and bread, the approach works very well. For strongly anisotropic samples, such as highly deformed rock (mylonite) and a tree branch, the percolation threshold and fractal dimension can be assessed with accuracy. However, the uncertainty of the correlation length makes it difficult to accurately extract its critical exponents. Therefore, this aspect of percolation theory cannot be reliably used for upscaling properties of strongly anisotropic media. Other methods of upscaling have to be used for such media.
NASA Astrophysics Data System (ADS)
Wehrer, Markus; Lissner, Heidi; Totsche, Kai
2013-04-01
A quantitative knowledge of the fate of deicing chemicals in the subsurface can be provided by analysis of laboratory and field experiments with numerical simulation models. In the present study, experimental data of microbial degradation of the deicing chemical propylene glycol (PG) under flow conditions in soil columns and field lysimeters were simulated to analyze the process conditions of degradation and to obtain the according parameters. Results from the column experiment were evaluated applying different scenarios of an advection-dispersion model using HYDRUS-1D. To reconstruct the data, different competing degradation models were included, i.e., zero order, first order and inclusion of a growing and decaying biomass. The general breakthrough behavior of propylene glycol in soil columns can be simulated well using a coupled model of solute transport and degradation with growth and decay of biomass. The susceptibility of the model to non-unique solutions was investigated using systematical forward and inverse simulations. We found that the model tends to equifinal solutions under certain conditions. Complex experimental boundary conditions can help to avoid this. Under field conditions, the situation is far more complex than in the laboratory. Studying the fate of PG with undisturbed lysimeters we found that aerobic and anaerobic degradation occurs simultaneously. We attribute this to the physical structure and the aggregated nature of the undisturbed soil material . This results in the presence of spatially disjoint oxidative and reductive regions of microbial activity and requires, but is not fully reflected by a dual porosity model. Currently, the numerical simulation of this system is in progress, considering several flow and transport models. A stochastic global search algorithm (DREAM-ZS) is used in conjuction with HYDRUS-1D to avoid local minima in the inverse simulations. The study shows the current limitations and potentials of modeling degradation
NASA Astrophysics Data System (ADS)
Faulkner, B. R.; Lyon, W. G.
2001-12-01
We present a probabilistic model for predicting virus attenuation. The solution employs the assumption of complete mixing. Monte Carlo methods are used to generate ensemble simulations of virus attenuation due to physical, biological, and chemical factors. The model generates a probability of failure to achieve 4-log attenuation. We tabulated data from related studies to develop probability density functions for input parameters, and utilized a database of soil hydraulic parameters based on the 12 USDA soil categories. Regulators can use the model based on limited information such as boring logs, climate data, and soil survey reports for a particular site of interest. Plackett-Burman sensitivity analysis indicated the most important main effects on probability of failure to achieve 4-log attenuation in our model were mean logarithm of saturated hydraulic conductivity (+0.396), mean water content (+0.203), mean solid-water mass transfer coefficient (-0.147), and the mean solid-water equilibrium partitioning coefficient (-0.144). Using the model, we predicted the probability of failure of a one-meter thick proposed hydrogeologic barrier and a water content of 0.3. With the currently available data and the associated uncertainty, we predicted soils classified as sand would fail (p=0.999), silt loams would also fail (p=0.292), but soils classified as clays would provide the required 4-log attenuation (p=0.001). The model is extendible in the sense that probability density functions of parameters can be modified as future studies refine the uncertainty, and the lightweight object-oriented design of the computer model (implemented in Java) will facilitate reuse with modified classes. This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.
Impact of point source clustering on cosmological parameters with CMB anisotropies
Serra, Paolo; Cooray, Asantha; Amblard, Alexandre; Pagano, Luca; Melchiorri, Alessandro
2008-08-15
The faint radio point sources that are unresolved in cosmic microwave background (CMB) anisotropy maps are likely to be a biased tracer of the large-scale structure dark matter distribution. While the shot-noise contribution to the angular power spectrum of unresolved radio point sources is included either when optimally constructing the CMB angular power spectrum, as with WMAP data, or when extracting cosmological parameters, we suggest that clustering part of the point source power spectrum should also be included. This is especially necessary at high frequencies above 150 GHz, where the clustering of far-IR sources is expected to dominate the shot-noise level of the angular power spectrum at tens of arcminute angular scales of both radio and sub-mm sources. We make an estimate of source clustering of unresolved radio sources in both WMAP and ACBAR, and marginalize over the amplitude of source clustering in each CMB data set when model fitting for cosmological parameters. For the combination of WMAP 5-year data and ACBAR, we find that the spectral index changes from the value of 0.963{+-}0.014 to 0.959{+-}0.014 (at 68% C.L.) when the clustering power spectrum of point sources is included in model fits. While we find that the differences are marginal with and without source clustering in current data, it may be necessary to account for source clustering with future data sets such as Planck, especially to properly model fit anisotropies at arcminute angular scales. If clustering is not accounted and point sources are modeled with a shot noise only out to l{approx}2000, the spectral index will be biased by about 1.5{sigma}.
Bak–Tang–Wiesenfeld model on the square site-percolation lattice
NASA Astrophysics Data System (ADS)
Najafi, M. N.
2016-08-01
The Bak–Tang–Wiesenfeld (BTW) model is considered on the site-diluted square lattice, tuned by the occupancy probability p. Various statistical observables of the avalanches are analyzed in terms of p, e.g. the fractal dimension of their exterior frontiers, gyration radius, loop lengths and Green’s function. The model exhibits critical behavior for all amounts of p, and the exponents of the statistical observables are analyzed. We find a distinct universality class at p={p}c, which is unstable towards a p = 1 (BTW) fixed point. This universality class displays some common features such as a two-dimensional (2D) Ising universality class, e.g. the fractal dimension of loops in the thermodynamic limit is {D}Fp={pc}=1.38\\mp 0.01 which is compatible with the fractal dimension of geometrical spin clusters of the 2D critical Ising model (with {D}F{{Ising}}=\\tfrac{11}{8}).
First Passage Percolation on the Newman-Watts Small World Model
NASA Astrophysics Data System (ADS)
Komjáthy, Júlia; Vadon, Viktória
2016-02-01
The Newman-Watts model is given by taking a cycle graph of n vertices and then adding each possible edge (i,j), |i-j|≠ 1 mod n with probability ρ /n for some ρ >0 constant. In this paper we add i.i.d. exponential edge weights to this graph, and investigate typical distances in the corresponding random metric space given by the least weight paths between vertices. We show that typical distances grow as 1/λ log n for a λ >0 and determine the distribution of smaller order terms in terms of limits of branching process random variables. We prove that the number of edges along the shortest weight path follows a Central Limit Theorem, and show that in a corresponding epidemic spread model the fraction of infected vertices follows a deterministic curve with a random shift.
NASA Astrophysics Data System (ADS)
Seiffert, Franz; Bandow, Nicole; Kalbe, Ute; Milke, Ralf; Gorbushina, Anna
2016-04-01
Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i) the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.
SEARCH FOR ASTROPHYSICAL NEUTRINO POINT SOURCES AT SUPER-KAMIOKANDE
Thrane, E.; Abe, K.; Hayato, Y.; Iida, T.; Ikeda, M.; Kameda, J.; Kobayashi, K.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.
2009-10-10
It has been hypothesized that large fluxes of neutrinos may be created in astrophysical 'cosmic accelerators'. The primary background for a search for astrophysical neutrinos comes from atmospheric neutrinos, which do not exhibit the pointlike directional clustering that characterizes a distant astrophysical signal. We perform a search for neutrino point sources using the upward-going muon data from three phases of operation (SK-I, SK-II, and SK-III) spanning 2623 days of live time taken from 1996 April 1 to 2007 August 11. The search looks for signals from suspected galactic and extragalactic sources, transient sources, and uncataloged sources. While we find interesting signatures from two objects-RX J1713.7-3946 (97.5% CL) and GRB 991004D (95.3% CL)-these signatures lack compelling statistical significance given trial factors. We set limits on the flux and fluence of neutrino point sources above energies of 1.6 GeV.
Fluid flow into vertical fractures from a point source
Clark, P.E.; Zhu, Q.
1995-03-01
Flow into a fracture from a point source recently has been the focus of attention in the petroleum industry. The suggestion has been made that, in this flow configuration, convection (gravity-driven flow) would dominate Stokes`-type settling for determining final proppant distribution. The theory is that when a dense fluid flows into a fracture filled with a less dense fluid from a point source, the density of the fluid will force it to the bottom of the fracture. This clearly happens when the two fluids have low viscosity. However, viscosity of both the fluid in the fracture and the displacing fluid and nonuniformities in the fracture influence displacement process significantly. Results presented in this study clearly show the effects of viscosity and fracture nonuniformity on the convective settling mechanism.
2011 Radioactive Materials Usage Survey for Unmonitored Point Sources
Sturgeon, Richard W.
2012-06-27
This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are
Simulation of Urban Runoff Non-point Source Pollution Load and Analysis on Its Influencing Factors
NASA Astrophysics Data System (ADS)
Li, R.; Ruan, X.
2013-12-01
As the point source pollution control has advanced, the proportion of urban non-point pollution caused by rainfall in urban water pollution is increasing. For quantitative evaluation of non-point source pollution in urban rivers and to study their influencing factors, this study takes the inner Qinhuai River in Nanjing as the study area. The non-point source pollution load simulation model of the study area was built based on the Storm Water Management Model (SWMM), and was calibrated using the real-time monitoring data of rainfall and the outlet of the pipes during a short duration rainfall in 2011. TSS, CODMn, TN and TP were selected as the major pollution load indicators to quantitatively assess the rainfall runoff and non-point source pollution of 328.2ha confluence area of inner Qinhuai River, emphatically probe into the variation of the rainfall runoff and non-point source pollution in response to variability in underlying surface and drainage pipes. The results show that: (1) the pollution load concentration in the outlet of the popes increases initially and then decreases, the peak concentration appears at 5~15minutes after the effluent. The concentration of TN and TP appears apparent randomness and fluctuation due to the spatial-temporal uncertainty of the distribution of the non-point source pollution. The maximum flow into the river, the total runoff, the total output of TSS, CODMn, TN and TP during a typical year rainfall in two years return period are 19.67m3/s, 81.74×103m3, 2318.59kg, 1598.08kg, 476.09kg and 24.24kg, respectively. (2)The percentage of impervious underlying surface, the slope of the underlying surface, the percentage of no depression of the impervious underlying surface and the roughness of the pipes, which are the sensitive parameters of the model, have an significant impact on the runoff and pollution load in the outlet of the pipes. Urban rainfall runoff and non-point source pollution can be reduced by reducing the percentage of
Lateral diffusion and percolation in membranes.
Sung, Bong June; Yethiraj, Arun
2006-06-01
An algorithm based on Voronoi tessellation and percolation theory is presented to study the diffusion of model membrane components (solutes) in the plasma membrane. The membrane is modeled as a two-dimensional space with integral membrane proteins as static obstacles. The Voronoi diagram consists of vertices, which are equidistant from three matrix obstacles, joined by edges. An edge between two vertices is said to be connected if solute particles can pass directly between the two regions. The percolation threshold, pc, determined using this passage criterion is pc approximately equal to 0.53. This is smaller than if the connectivity of edges were assigned randomly, in which case the percolation threshold pr=2/3, where p is the fraction of connected edges. Molecular dynamics simulations show that diffusion is determined by percolation of clusters of edges. PMID:16803348
Algorithm for astronomical, point source, signal to noise ratio calculations
NASA Technical Reports Server (NTRS)
Jayroe, R. R.; Schroeder, D. J.
1984-01-01
An algorithm was developed to simulate the expected signal to noise ratios as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth's atmosphere for a signal star, and an optional secondary star, embedded in a uniform cosmic background. By choosing the appropriate input values, the expected point source signal to noise ratio can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.
Lunar occultations of IRAS point sources, 1986-1990
NASA Technical Reports Server (NTRS)
Simon, M.; Chen, W. P.; Cassar, L.
1986-01-01
A complete listing is given for objects in the IRAS Point Source Catalog which will be occulted by the moon over the course of 1986-1990. A total of 14,148 ASCII card images is encompassed by the complete listing of objects having geocentric events during this period. The results contained in this complete listing are illustrated in two of the present tables for the brightest objects at 12 and 100 micron wavelengths.
Percolation in a nanotube-polymer system and its lumped-circuit modeling
NASA Astrophysics Data System (ADS)
Tuncer, Enis; Vaia, Richard A.; Arlen, Michael
2010-09-01
Electrical properties of composites composed of polyurethane polymer and multi-walled nanotubes are reported. Samples with different nanotube volume fractions are prepared, and an impedance spectroscopy technique in the frequency range from 10 mHz to 10 MHz is used to characterize the properties of the samples. It is observed that the resistivity of the mixture can be varied widely, from ∼10 MΩm to ∼1 Ωm, just by slightly altering the volume fraction of nanotubes. A lumped-circuit model illustrated that the micro-scale morphology between nanotube-clusters influences the resistive relaxation in the composite system. The investigations show that the presented binary mixture has a potential to be utilized in conductive electrical components (flexible electrodes), electromagnetic shielding, and electrostatic and field grading materials for electronic and high voltage insulation technologies.
Percolation in a nanotube-polymer system and its lumped-circuit modeling
Tuncer, Enis; Vaia, Richard A; Arlen, Michael Jeffrey
2010-01-01
Electrical properties of composites composed of polyurethane polymer and multi-walled nanotubes are reported. Samples with different nanotube volume fractions are prepared, and an impedance spectroscopy technique in the frequency range from 10 mHz to 10 MHz is used to characterize the properties of the samples. It is observed that the resistivity of the mixture can be varied widely, from {approx}10 M{Omega}m to {approx}1 {Omega}m, just by slightly altering the volume fraction of nanotubes. A lumped-circuit model illustrated that the micro-scale morphology between nanotube-clusters influences the resistive relaxation in the composite system. The investigations show that the presented binary mixture has a potential to be utilized in conductive electrical components (flexible electrodes), electromagnetic shielding, and electrostatic and field grading materials for electronic and high voltage insulation technologies.
Percolation on correlated random networks
NASA Astrophysics Data System (ADS)
Agliari, E.; Cioli, C.; Guadagnini, E.
2011-09-01
We consider a class of random, weighted networks, obtained through a redefinition of patterns in an Hopfield-like model, and, by performing percolation processes, we get information about topology and resilience properties of the networks themselves. Given the weighted nature of the graphs, different kinds of bond percolation can be studied: stochastic (deleting links randomly) and deterministic (deleting links based on rank weights), each mimicking a different physical process. The evolution of the network is accordingly different, as evidenced by the behavior of the largest component size and of the distribution of cluster sizes. In particular, we can derive that weak ties are crucial in order to maintain the graph connected and that, when they are the most prone to failure, the giant component typically shrinks without abruptly breaking apart; these results have been recently evidenced in several kinds of social networks.
The XXL Survey. VI. The 1000 brightest X-ray point sources
NASA Astrophysics Data System (ADS)
Fotopoulou, S.; Pacaud, F.; Paltani, S.; Ranalli, P.; Ramos-Ceja, M. E.; Faccioli, L.; Plionis, M.; Adami, C.; Bongiorno, A.; Brusa, M.; Chiappetti, L.; Desai, S.; Elyiv, A.; Lidman, C.; Melnyk, O.; Pierre, M.; Piconcelli, E.; Vignali, C.; Alis, S.; Ardila, F.; Arnouts, S.; Baldry, I.; Bremer, M.; Eckert, D.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Liske, J.; Maurogordato, S.; Menanteau, F.; Mohr, J. J.; Owers, M.; Poggianti, B.; Pompei, E.; Sadibekova, T.; Stanford, A.; Tuffs, R.; Willis, J.
2016-06-01
Context. X-ray extragalactic surveys are ideal laboratories for the study of the evolution and clustering of active galactic nuclei (AGN). Usually, a combination of deep and wide surveys is necessary to create a complete picture of the population. Deep X-ray surveys provide the faint population at high redshift, while wide surveys provide the rare bright sources. Nevertheless, very wide area surveys often lack the ancillary information available for modern deep surveys. The XXL survey spans two fields of a combined 50 deg2 observed for more than 6Ms with XMM-Newton, occupying the parameter space that lies between deep surveys and very wide area surveys; at the same time it benefits from a wealth of ancillary data. Aims: This paper marks the first release of the XXL point source catalogue including four optical photometry bands and redshift estimates. Our sample is selected in the 2 - 10 keV energy band with the goal of providing a sizable sample useful for AGN studies. The limiting flux is F2 - 10 keV = 4.8 × 10-14 erg s-1 cm-2. Methods: We use both public and proprietary data sets to identify the counterparts of the X-ray point-like sources by means of a likelihood ratio test. We improve upon the photometric redshift determination for AGN by applying a Random Forest classification trained to identify for each object the optimal photometric redshift category (passive, star forming, starburst, AGN, quasi-stellar objects (QSO)). Additionally, we assign a probability to each source that indicates whether it might be a star or an outlier. We apply Bayesian analysis to model the X-ray spectra assuming a power-law model with the presence of an absorbing medium. Results: We find that the average unabsorbed photon index is ⟨Γ⟩ = 1.85 ± 0.40 while the average hydrogen column density is log ⟨NH⟩ = 21.07 ± 1.2 cm-2. We find no trend of Γ or NH with redshift and a fraction of 26% absorbed sources (log NH> 22) consistent with the literature on bright sources (log
Crossover from percolation to self-organized criticality
NASA Astrophysics Data System (ADS)
Drossel, Barbara; Clar, Siegfried; Schwabl, Franz
1994-10-01
We include immunity against fire into the self-organized critical forest-fire model. When the immunity assumes a critical value, clusters of burnt trees are identical to percolation clusters of random bond percolation. As long as the immunity is below its critical value, the asymptotic critical exponents are those of the original self-organized critical model, i.e., the system performs a crossover from percolation to self-organized criticality. We present a scaling theory and computer simulation results.
Percolation under noise: Detecting explosive percolation using the second-largest component
NASA Astrophysics Data System (ADS)
Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.
2016-05-01
We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.
Breaking of the site-bond percolation universality in networks
Radicchi, Filippo; Castellano, Claudio
2015-01-01
The stochastic addition of either vertices or connections in a network leads to the observation of the percolation transition, a structural change with the appearance of a connected component encompassing a finite fraction of the system. Percolation has always been regarded as a substrate-dependent but model-independent process, in the sense that the critical exponents of the transition are determined by the geometry of the system, but they are identical for the bond and site percolation models. Here, we report a violation of such assumption. We provide analytical and numerical evidence of a difference in the values of the critical exponents between the bond and site percolation models in networks with null percolation thresholds, such as scale-free graphs with diverging second moment of the degree distribution. We discuss possible implications of our results in real networks, and provide additional insights on the anomalous nature of the percolation transition with null threshold. PMID:26667155
Low-energy point source searches with IceCube
NASA Astrophysics Data System (ADS)
Euler, Sebastian; Altmann, David; Ström, Rickard
2016-04-01
Due to the overwhelming background of atmospheric muons, the traditional IceCube point source search in the Southern Hemisphere is mainly sensitive to neutrinos with energies above 100TeV. A new approach focuses on events starting inside the instrumented volume. By utilizing different veto techniques we are able to significantly reduce the energy threshold and can now for the first time explore the entire Southern Hemisphere at neutrino energies as low as 100GeV. We present the results of two analyses targeting slightly different energy ranges. Both use one year of data taken with the completed IceCube detector in 2011/12.
Roots at the percolation threshold
NASA Astrophysics Data System (ADS)
Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea
2015-04-01
The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?
Percolation in real interdependent networks
NASA Astrophysics Data System (ADS)
Radicchi, Filippo
2015-07-01
The function of a real network depends not only on the reliability of its own components, but is affected also by the simultaneous operation of other real networks coupled with it. Whereas theoretical methods of direct applicability to real isolated networks exist, the frameworks developed so far in percolation theory for interdependent network layers are of little help in practical contexts, as they are suited only for special models in the limit of infinite size. Here, we introduce a set of heuristic equations that takes as inputs the adjacency matrices of the layers to draw the entire phase diagram for the interconnected network. We demonstrate that percolation transitions in interdependent networks can be understood by decomposing these systems into uncoupled graphs: the intersection among the layers, and the remainders of the layers. When the intersection dominates the remainders, an interconnected network undergoes a smooth percolation transition. Conversely, if the intersection is dominated by the contribution of the remainders, the transition becomes abrupt even in small networks. We provide examples of real systems that have developed interdependent networks sharing cores of `high quality’ edges to prevent catastrophic failures.
Roots at the percolation threshold.
Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea
2015-04-01
The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water? PMID:25974526
NASA Astrophysics Data System (ADS)
Ganjeh-Ghazvini, Mostafa; Masihi, Mohsen; Ghaedi, Mojtaba
2014-07-01
Fluid flow modeling in porous media has many applications in waste treatment, hydrology and petroleum engineering. In any geological model, flow behavior is controlled by multiple properties. These properties must be known in advance of common flow simulations. When uncertainties are present, deterministic modeling often produces poor results. Percolation and Random Walk (RW) methods have recently been used in flow modeling. Their stochastic basis is useful in dealing with uncertainty problems. They are also useful in finding the relationship between porous media descriptions and flow behavior. This paper employs a simple methodology based on random walk and percolation techniques. The method is applied to a well-defined model reservoir in which the breakthrough time distributions are estimated. The results of this method and the conventional simulation are then compared. The effect of the net to gross ratio on the breakthrough time distribution is studied in terms of Shannon entropy. Use of the entropy plot allows one to assign the appropriate net to gross ratio to any porous medium.
A search for point sources of EeV photons
Aab, A.; Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Arqueros, F.; Collaboration: Pierre Auger Collaboration102; and others
2014-07-10
Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from –85° to +20°, in an energy range from 10{sup 17.3} eV to 10{sup 18.5} eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of –2, is 0.06 eV cm{sup –2} s{sup –1}, and no celestial direction exceeds 0.25 eV cm{sup –2} s{sup –1}. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.
Limitation of point source pesticide pollution: results of bioremediation system.
Spanoghe, P; Maes, A; Steurbaut, W
2004-01-01
Groundwater and surface water is at risk of contamination from the use of some agricultural pesticides. In many circumstances pesticide contamination of water resources is more likely to result from point sources than from diffuse sources following approved application to crops in the field. Such point sources include areas on farms where pesticides are handled, filled into sprayers or where sprayers are washed down. To overcome this way of contamination different kind of bio-remediation systems are nowadays in development. In Flanders, Belgium two pilot plants of bioremediation systems for the in situ retention and/or degradation of pesticides were installed. Both systems were based on the Phytobac concept, a watertight excavation filled with straw, peat, compost and soil. The channel was made in the bottom from plastic foil. All kinds of spray rests were captured by the phytobacs. This study focuses on what level pesticides leach, bio-degrade or are retained by the filling of the phytobac. The soil-properties of the filling were investigated. Pesticide tracers were added for monitoring to both phytobacs. Soil and water samples were taken during one year. Pesticides are retained at least for one month by the filling of the phytobac. Almost no pesticide leached out. In winter hardly any pesticide degradation was observed in the filling of the phytobac. In summer no detectable pesticides were still left in the phytobacs. PMID:15756863
Correcting STIS CCD Point-Source Spectra for CTE Loss
NASA Technical Reports Server (NTRS)
Goudfrooij, Paul; Bohlin, Ralph C.; Maiz-Apellaniz, Jesus
2006-01-01
We review the on-orbit spectroscopic observations that are being used to characterize the Charge Transfer Efficiency (CTE) of the STIS CCD in spectroscopic mode. We parameterize the CTE-related loss for spectrophotometry of point sources in terms of dependencies on the brightness of the source, the background level, the signal in the PSF outside the standard extraction box, and the time of observation. Primary constraints on our correction algorithm are provided by measurements of the CTE loss rates for simulated spectra (images of a tungsten lamp taken through slits oriented along the dispersion axis) combined with estimates of CTE losses for actual spectra of spectrophotometric standard stars in the first order CCD modes. For point-source spectra at the standard reference position at the CCD center, CTE losses as large as 30% are corrected to within approx.1% RMS after application of the algorithm presented here, rendering the Poisson noise associated with the source detection itself to be the dominant contributor to the total flux calibration uncertainty.
Recent advances in percolation theory and its applications
NASA Astrophysics Data System (ADS)
Saberi, Abbas Ali
2015-05-01
Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin-Kasteleyn and geometric spin clusters. As an application we will discuss how percolation
Reprint of : Dynamics of a quantum wave emitted by a decaying and evanescent point source
NASA Astrophysics Data System (ADS)
Delgado, F.; Muga, J. G.
2016-08-01
We put forward a model that describes a decaying and evanescent point source of non-interacting quantum waves in 1D. This point-source assumption allows for a simple description that captures the essential aspects of the dynamics of a wave traveling through a classically forbidden region without the need to specify the details of the inner region. The dynamics of the resulting wave is examined and several characteristic times are identified. One of them generalizes the tunneling time-scale introduced by Büttiker and Landauer and it characterizes the arrival of the maximum of the wave function. Diffraction in time and deviations from exponential decay are also studied. Here we show that there exists an optimal injection frequency and detection point for the observation of these two quantum phenomena.
Gamma-ray observations of Ophiuchus with EGRET: The diffuse emission and point sources
NASA Technical Reports Server (NTRS)
Hunter, S. D.; Digel, S. W.; De Geus, E. J.; Kanbach, G.
1994-01-01
Observations of the Ophiuchus region made with the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during the first 2 1/2 years of operation show the diffuse emission from the interstellar gas in Ophiuchus as well as variable emission from two point sources. The gamma-ray emission is modeled in terms of cosmic-ray interactions with atomic and molecular hydrogen in Ophiuchus and with low-energy photons along the line of sight. The model also includes the flux from the two point sources and an isotropic diffuse contribution. The cosmic-ray density is assumed to be uniform. The derived ratio of molecular hydrogen column density to integrated CO intensity is (1.1 +/- 0.2) x 10(exp 20) H-mols/sq cm (K km/s)(exp -1). At the sensitivity and resolution of the gamma-ray data, no variation of this ratio over the modeled region is discernible, nor are any regions of enhanced cosmic-ray density apparent. The model was fitted to seven narrow energy bands to obtain the energy depedence of the gamma-ray production function and the spectra of the point sources. The derived production function is in good agreement with theoretical calculations and the local cosmic-ray electron and proton spectra. The positions of the point sources were determined from maximum likelihood analysis of the gamma-ray emission observed in excess of the diffuse model. We identify one point source with the quasar PKS 1622-253, which has an average flux, E greater than 100 MeV, of (2.5 +/- 0.5) x 10(exp -7) photons/sq cm/s and photon spectral index -1.9 +/- 0.3. The other source, denoted GRO J1631-27, has not yet been identified at other wavelengths. Its average flux, E greater than 100 MeV, is (1.1 +/- 0.4) x 10(exp -7) photons/sq cm/s; however, its spectral index is poorly determined. The spectral index and intensity of the isotropic contribution to the model agree well with the extragalactic diffuse emission derived from the SAS 2 data.
Detecting Long-term Changes in Point Source Fossil CO2 Emissions with Tree Ring Archives
NASA Astrophysics Data System (ADS)
Keller, E. D.; Turnbull, J. C.; Norris, M. W.
2015-12-01
We examine the utility of tree ring 14C archives for detecting long term changes in fossil CO2 emissions from a point source. Trees assimilate carbon from the atmosphere during photosynthesis, in the process faithfully recording the average atmospheric 14C content over the growing season in each annual tree ring. Using 14C as a proxy for fossil CO2, we examine interannual variability over six years of fossil CO2 observations between 2004 and 2012 from two trees growing near the Kapuni Natural Gas Plant in rural Taranaki, New Zealand. We quantify the amount of variability that can be attributed to transport and meteorology by simulating constant point source fossil CO2 emissions over the observation period with the atmospheric transport model WindTrax. We then calculate the amount of change in emissions that we can detect with new observations over annual or multi-year time periods given both measurement uncertainty of 1ppm and the modelled variation in transport. In particular, we ask, what is the minimum amount of change in emissions that we can detect using this method, given a reference period of six years? We find that changes of 42% or more could be detected in a new sample from one year at the pine tree, or 22% in the case of four years of new samples. This threshold lowers and the method becomes more practical with a larger signal; for point sources 10 times the magnitude of the Kapuni plant (a typical size for large electricity generation point sources worldwide), it would be possible to detect sustained emissions changes on the order of 10% given suitable meteorology and observations.
Exploring percolative landscapes: Infinite cascades of geometric phase transitions
NASA Astrophysics Data System (ADS)
Timonin, P. N.; Chitov, Gennady Y.
2016-01-01
The evolution of many kinetic processes in 1+1 (space-time) dimensions results in 2 D directed percolative landscapes. The active phases of these models possess numerous hidden geometric orders characterized by various types of large-scale and/or coarse-grained percolative backbones that we define. For the patterns originated in the classical directed percolation (DP) and contact process we show from the Monte Carlo simulation data that these percolative backbones emerge at specific critical points as a result of continuous phase transitions. These geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of corresponding backbones. The multitude of conceivable percolative backbones implies the existence of infinite cascades of such geometric transitions in the kinetic processes considered. We present simple arguments to support the conjecture that such cascades of transitions are a generic feature of percolation as well as of many other transitions with nonlocal order parameters.
Exploring percolative landscapes: Infinite cascades of geometric phase transitions.
Timonin, P N; Chitov, Gennady Y
2016-01-01
The evolution of many kinetic processes in 1+1 (space-time) dimensions results in 2D directed percolative landscapes. The active phases of these models possess numerous hidden geometric orders characterized by various types of large-scale and/or coarse-grained percolative backbones that we define. For the patterns originated in the classical directed percolation (DP) and contact process we show from the Monte Carlo simulation data that these percolative backbones emerge at specific critical points as a result of continuous phase transitions. These geometric transitions belong to the DP universality class and their nonlocal order parameters are the capacities of corresponding backbones. The multitude of conceivable percolative backbones implies the existence of infinite cascades of such geometric transitions in the kinetic processes considered. We present simple arguments to support the conjecture that such cascades of transitions are a generic feature of percolation as well as of many other transitions with nonlocal order parameters. PMID:26871019
Point source diffraction by a slit in a moving fluid
NASA Astrophysics Data System (ADS)
Nawaz, Rab; Naeem, Amjad; Ayub, Muhammad; Javaid, Akmal
2014-10-01
The diffraction of a spherical acoustic wave generated by a point source from impedance slit in a moving fluid is investigated. The diffracted wave is calculated in the far field regime as a sum of fields produced by the edges of the slit and an incident field. The Myers' impedance conditions are assumed along the edges of the slit. Such conditions are well adopted for the boundaries of the impedance barriers and yield reliable predictions of the diffraction patterns. A Wiener-Hopf technique is invoked to resolve the problem in combination with Fourier transform techniques and asymptotic analysis. The appositeness of the results and the effect of pertinent physical parameters on the separated field are presented and analyzed graphically.
Positive deconvolution for superimposed extended source and point sources
NASA Astrophysics Data System (ADS)
Giovannelli, J.-F.; Coulais, A.
2005-08-01
The paper deals with the construction of images from visibilities acquired using aperture synthesis instruments: Fourier synthesis, deconvolution, and spectral interpolation/extrapolation. Its intended application is to specific situations in which the imaged object possesses two superimposed components: (i) an extended component together with (ii) a set of point sources. It is also specifically designed to the case of positive maps, and accounts for a known support. Its originality lies within joint estimation of the two components, coherently with data, properties of each component, positivity and possible support. We approach the subject as an inverse problem within a regularization framework: a regularized least-squares criterion is specifically proposed and the estimated maps are defined as its minimizer. We have investigated several options for the numerical minimization and we propose a new efficient algorithm based on augmented Lagrangian. Evaluation is carried out using simulated and real data (from radio interferometry) demonstrating the capability to accurately separate the two components.
Discretized energy minimization in a wave guide with point sources
NASA Technical Reports Server (NTRS)
Propst, G.
1994-01-01
An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.
Search for point sources of high energy neutrinos with Amanda
Ahrens, J.
2002-08-01
Report of search for likely point sources for neutrinos observed by the Amanda detector. Places intensity limits on observable point sources. This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes, used for the detection of Cherenkov light from upward traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cherenkov telescope and the SPASE extensive air shower array. Using data collected from April to October of 1997 (130.1 days of livetime), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the Northern sky, the effective detection area exceeds 10,000 m{sup 2} for E{sub {mu}} {approx} 10 TeV. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to E{sub {nu}}{sup -2} and declination larger than +40{sup o}, we obtain E{sup 2} (dN{sub {nu}}/dE) {le} 10{sup -6} GeV cm{sup -2} s{sup -1} for an energy threshold of 10 GeV.
The Chandra Cosmos Legacy Survey: Overview and Point Source Catalog
NASA Astrophysics Data System (ADS)
Civano, F.; Marchesi, S.; Comastri, A.; Urry, M. C.; Elvis, M.; Cappelluti, N.; Puccetti, S.; Brusa, M.; Zamorani, G.; Hasinger, G.; Aldcroft, T.; Alexander, D. M.; Allevato, V.; Brunner, H.; Capak, P.; Finoguenov, A.; Fiore, F.; Fruscione, A.; Gilli, R.; Glotfelty, K.; Griffiths, R. E.; Hao, H.; Harrison, F. A.; Jahnke, K.; Kartaltepe, J.; Karim, A.; LaMassa, S. M.; Lanzuisi, G.; Miyaji, T.; Ranalli, P.; Salvato, M.; Sargent, M.; Scoville, N. J.; Schawinski, K.; Schinnerer, E.; Silverman, J.; Smolcic, V.; Stern, D.; Toft, S.; Trakhtenbrot, B.; Treister, E.; Vignali, C.
2016-03-01
The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg2 of the COSMOS field with an effective exposure of ≃ 160 ks over the central 1.5 deg2 and of ≃ 80 ks in the remaining area. The survey is the combination of 56 new observations obtained as an X-ray Visionary Project with the previous C-COSMOS survey. We describe the reduction and analysis of the new observations and the properties of 2273 point sources detected above a spurious probability of 2 × 10-5. We also present the updated properties of the C-COSMOS sources detected in the new data. The whole survey includes 4016 point sources (3814, 2920 and 2440 in the full, soft, and hard band). The limiting depths are 2.2 × 10-16, 1.5 × 10-15, and 8.9 × 10-16 {\\text{erg cm}}-2 {{{s}}}-1 in the 0.5-2, 2-10, and 0.5-10 keV bands, respectively. The observed fraction of obscured active galactic nuclei with a column density >1022 cm-2 from the hardness ratio (HR) is ˜50{}-16+17%. Given the large sample we compute source number counts in the hard and soft bands, significantly reducing the uncertainties of 5%-10%. For the first time we compute number counts for obscured (HR > -0.2) and unobscured (HR < -0.2) sources and find significant differences between the two populations in the soft band. Due to the unprecedent large exposure, COSMOS-Legacy area is three times larger than surveys at similar depths and its depth is three times fainter than surveys covering similar areas. The area-flux region occupied by COSMOS-Legacy is likely to remain unsurpassed for years to come.
Guo, En-Yu; Chawla, Nikhilesh; Jing, Tao; Torquato, Salvatore; Jiao, Yang
2014-03-01
Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide range of important engineering applications. Accurate modeling and reconstructing three-dimensional (3D) microstructure of topologically complex materials from limited morphological information such as a two-dimensional (2D) micrograph is crucial to the assessment and prediction of effective material properties and performance under extreme conditions. Here, we extend a recently developed dilation–erosion method and employ the Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as well as the standard stochastic reconstructions incorporating topological connectedness information. The fact that the former can achieve the same level of accuracy as the latter suggests that the dilation–erosion procedure is tantamount to incorporating appreciably more topological and geometrical information into the reconstruction while being much more computationally efficient. - Highlights: • Spatial correlation functions used to characterize filamentary ferrite phase • Clustering information assessed from 3D experimental structure via serial sectioning • Stochastic reconstruction used to generate 3D virtual structure 2D micrograph • Dilation–erosion method to improve accuracy of 3D reconstruction.
Weighted Percolation on Directed Networks
NASA Astrophysics Data System (ADS)
Restrepo, Juan G.; Ott, Edward; Hunt, Brian R.
2008-02-01
We present and numerically test an analysis of the percolation transition for general node removal strategies valid for locally treelike directed networks. On the basis of heuristic arguments we predict that, if the probability of removing node i is pi, the network disintegrates if pi is such that the largest eigenvalue of the matrix with entries Aij(1-pi) is less than 1, where A is the adjacency matrix of the network. The knowledge or applicability of a Markov network model is not required by our theory, thus making it applicable to situations not covered by previous works.
Percolation conductivity in hafnium sub-oxides
Islamov, D. R. Gritsenko, V. A.; Cheng, C. H.; Chin, A.
2014-12-29
In this study, we demonstrated experimentally that formation of chains and islands of oxygen vacancies in hafnium sub-oxides (HfO{sub x}, x < 2) leads to percolation charge transport in such dielectrics. Basing on the model of Éfros-Shklovskii percolation theory, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. Based on the percolation theory suggested model shows that hafnium sub-oxides consist of mixtures of metallic Hf nanoscale clusters of 1–2 nm distributed onto non-stoichiometric HfO{sub x}. It was shown that reported approach might describe low resistance state current-voltage characteristics of resistive memory elements based on HfO{sub x}.
Percolation conductivity in hafnium sub-oxides
NASA Astrophysics Data System (ADS)
Islamov, D. R.; Gritsenko, V. A.; Cheng, C. H.; Chin, A.
2014-12-01
In this study, we demonstrated experimentally that formation of chains and islands of oxygen vacancies in hafnium sub-oxides (HfOx, x < 2) leads to percolation charge transport in such dielectrics. Basing on the model of Éfros-Shklovskii percolation theory, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. Based on the percolation theory suggested model shows that hafnium sub-oxides consist of mixtures of metallic Hf nanoscale clusters of 1-2 nm distributed onto non-stoichiometric HfOx. It was shown that reported approach might describe low resistance state current-voltage characteristics of resistive memory elements based on HfOx.
Resnicoff, M.; Medrano, E.E.; Podhajcer, O.L.; Bravo, A.I.; Bover, L.; Mordoh, J.
1987-10-01
Exponentially growing MCF7 human breast cancer cells were separated in Percoll gradients into six different fractions of increasing density (A to F). These fractions could be subcultured and were found to contain different cellular subpopulations as defined by the following criteria: ability to generate other cellular subpopulations; growth rate; DNA synthesis; and expression of estrogen receptors, ras oncogene-encoded protein p21, and carcinoembryonic antigen. One of the minor fractions (E), which contained about 5% of the total cell number, appeared to contain the stem cells, on the basis of the following criteria: (i) its ability to reproduce the other cellular subpopulations, (ii) its high rate of growth and DNA synthesis, and (iii) the inability of the other subpopulations to generate it. The most differentiated subpopulation appeared to be the densest one (F), since it was the slowest growing and appeared to be the end point of the other subpopulations.
NASA Astrophysics Data System (ADS)
Nakayama, Masanobu; Kimura, Mayumi; Jalem, Randy; Kasuga, Toshihiro
2016-01-01
Fast ion conductive solid oxide electrolytes are urgently needed because of the development of batteries, fuel cells, and sensors. Ab initio density functional theory can predict ionic conductivities with high accuracy, although it often requires large computational resources and time. In this paper, we use empirical bond valence relations [Adams et al., Phys. Status Solidi A 208, 1746 (2011)] and a percolation algorithm for fast, efficient, fully automated evaluation of migration energies for Li ion conduction in 14 olivine-type LiMXO4 compounds. The results showed a high correlation coefficient with the ab initio density functional theory (DFT) approach, indicating that our method could be attractive for identifying fast ion conductors in databases of numerous candidates.
Multi-point sources and imaging compound infrared target simulator
NASA Astrophysics Data System (ADS)
Shi, Rui; Xu, Rui; Wang, Hongjie; Wang, Xin; Wu, Di; Li, Zhuo
2014-11-01
Infrared target simulator is an important unit in guidance hardware-in-the-loop simulation systems. It is used to simulate the radiation and motion characteristics of target, decoy and background. This paper proposed a multi-channel IR target simulator. It could generate one IR point target, two pairs of IR decoys and background respectively in the same field of view of the seeker's optical system simultaneously. An IR imaging fiber bundle as the focal plane of the projection optical system was used to compound the target, decoys and background. The compound scene was projected to the seeker by the projection optical system. In IR imaging channel, IR scene was generated by an optical film chip as a visible to thermal transducer which was placed in a vacuum cell. The simulated temperature range of IR scene could be from room temperature to 430K.The thin film transducer had 512×512 pixels. Its frame rate could reach to 100Hz. Light sources with high equivalent black body temperature were adopted in IR target and decoy channels. The size and the radiation intensity of the IR point target and decoys could be controlled by pin holes and attenuators. The point target and decoys driven by high precise motors could travel through the whole instantaneous field of view of the seeker's optical system. Two pairs of decoys could move away from the center to the edge of the instantaneous field of view. The highest simulated black body temperature of the point source was 1200K.
Rounds, Stewart A.
2007-01-01
Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate
NASA Astrophysics Data System (ADS)
Fang, Huaiyang; Lu, Qingshui; Gao, Zhiqiang; Shi, Runhe; Gao, Wei
2013-09-01
China economy has been rapidly increased since 1978. Rapid economic growth led to fast growth of fertilizer and pesticide consumption. A significant portion of fertilizers and pesticides entered the water and caused water quality degradation. At the same time, rapid economic growth also caused more and more point source pollution discharge into the water. Eutrophication has become a major threat to the water bodies. Worsening environment problems forced governments to take measures to control water pollution. We extracted land cover from Landsat TM images; calculated point source pollution with export coefficient method; then SWAT model was run to simulate non-point source pollution. We found that the annual TP loads from industry pollution into rivers are 115.0 t in the entire watershed. Average annual TP loads from each sub-basin ranged from 0 to 189.4 ton. Higher TP loads of each basin from livestock and human living mainly occurs in the areas where they are far from large towns or cities and the TP loads from industry are relatively low. Mean annual TP loads that delivered to the streams was 246.4 tons and the highest TP loads occurred in north part of this area, and the lowest TP loads is mainly distributed in middle part. Therefore, point source pollution has much high proportion in this area and governments should take measures to control point source pollution.
40 CFR 414.111 - Toxic pollutant standards for indirect discharge point sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Toxic pollutant standards for indirect discharge point sources. 414.111 Section 414.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Discharge Point Sources § 414.111 Toxic pollutant standards for indirect discharge point sources. (a)...
40 CFR 414.111 - Toxic pollutant standards for indirect discharge point sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Toxic pollutant standards for indirect discharge point sources. 414.111 Section 414.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Discharge Point Sources § 414.111 Toxic pollutant standards for indirect discharge point sources. (a)...
40 CFR 414.111 - Toxic pollutant standards for indirect discharge point sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Toxic pollutant standards for indirect discharge point sources. 414.111 Section 414.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Discharge Point Sources § 414.111 Toxic pollutant standards for indirect discharge point sources. (a)...
40 CFR 414.111 - Toxic pollutant standards for indirect discharge point sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Toxic pollutant standards for indirect discharge point sources. 414.111 Section 414.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Discharge Point Sources § 414.111 Toxic pollutant standards for indirect discharge point sources. (a)...
NASA Astrophysics Data System (ADS)
Mogus, Mamaru; Schmitter, Petra; Tilahun, Seifu; Steenhuise, Tammo
2016-04-01
Intensification of agriculture will bring along non-point source pollution in the Ethiopian highlands resulting in eutrophication of lakes. The first signs of eutrophication have been observed already in Lake Tana. The lake it supports the lives of millions in the surrounding through fishing, tourism, transportation and hydropower.Presently, information on non-point source pollution is lacking in the Ethiopian highlands. There are few studies carried out in the highlands on the extent and the source areas of pollution, and models are not available for predicting sediment and phosphorus loading other than those developed for temperate climates. The objective of this chapter is to review existing non-point source studies, report on our findings of sediment and phosphorus sources that are related the non-point source pollution of Lake Tana and to present a non-point source model for the Ethiopian highland based on the Parameter Efficient Semi-distributed Watershed Hydrology Model (PED-WHM).In our research we have found that the saturation excess runoff from valley bottoms and from degraded lands are prevalent in the Ethiopia highlands. The periodically runoff source areas are also the sources for the non-point source pollution and by concentrating best management practices in these source areas we expect that we can reduce pollution without affecting the profitability of the existing farms. The water balance component of the non-point source model has been performing well in predicting both the discharge and the location of the runoff source areas. Sediment and phosphorus prediction models have been developed and are currently being tested for the 7km2Awramba watershed and the 1350 km2Gumara basin. Initial results indicate that 11.2 ton/ha/year sediment load and an accumulation rate of 17.3 mg/kg/year of dissolved phosphorus from Gumara watershed joining the lake. By developing best management practices at this time before non-point source pollution is rampant and
NASA Astrophysics Data System (ADS)
Zhang, W. S.; Swaney, D. P.; Li, X. Y.; Hong, B.; Howarth, R. W.; Ding, S. H.
2015-07-01
This study provides a new approach to estimate both anthropogenic non-point-source and point-source nitrogen (N) inputs to the landscape, and determines their impacts on riverine ammonia-nitrogen (AN) flux, providing a foundation for further exploration of anthropogenic effects on N pollution. Our study site is Huai River basin of China, a water-shed with one of the highest levels of N input in the world. Multi-year average (2003-2010) inputs of N to the watershed are 27 200 ± 1100 kg N km-2 yr-1. Non-point sources comprised about 98 % of total N input, and only 2 % of inputs are directly added to the aquatic ecosystem as point sources. Fertilizer application was the largest non-point source of new N to the Huai River basin (69 % of net anthropogenic N inputs), followed by atmospheric deposition (20 %), N fixation in croplands (7 %), and N content of imported food and feed (2 %). High N inputs showed impacts on riverine AN flux: fertilizer application, point-source N input, and atmospheric N deposition were proved as more direct sources to riverine AN flux. Modes of N delivery and losses associated with biological denitrification in rivers, water consumption, interception by dams may influence the extent of export of riverine AN flux from N sources. Our findings highlight the importance of anthropogenic N inputs from both point sources and non-point sources in heavily polluted watersheds, and provide some implications for AN prediction and management.
Field-scale operation of methane biofiltration systems to mitigate point source methane emissions.
Hettiarachchi, Vijayamala C; Hettiaratchi, Patrick J; Mehrotra, Anil K; Kumar, Sunil
2011-06-01
Methane biofiltration (MBF) is a novel low-cost technique for reducing low volume point source emissions of methane (CH₄). MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting CH₄ to carbon dioxide (CO₂) and water (H₂O). A field research program was undertaken to evaluate the potential to treat low volume point source engineered CH₄ emissions using an MBF at a natural gas monitoring station. A new comprehensive three-dimensional numerical model was developed incorporating advection-diffusive flow of gas, biological reactions and heat and moisture flow. The one-dimensional version of this model was used as a guiding tool for designing and operating the MBF. The long-term monitoring results of the field MBF are also presented. The field MBF operated with no control of precipitation, evaporation, and temperature, provided more than 80% of CH₄ oxidation throughout spring, summer, and fall seasons. The numerical model was able to predict the CH₄ oxidation behavior of the field MBF with high accuracy. The numerical model simulations are presented for estimating CH₄ oxidation efficiencies under various operating conditions, including different filter bed depths and CH₄ flux rates. The field observations as well as numerical model simulations indicated that the long-term performance of MBFs is strongly dependent on environmental factors, such as ambient temperature and precipitation. PMID:21414700
Radio-Quiet Pulsars and Point Sources in Supernova Remnants
NASA Astrophysics Data System (ADS)
Helfand, David
2002-04-01
Since Baade and Zwicky made their prescient remark identifying the central blue star in the Crab Nebula as a neutron star, this pulsar's period has increased by 0.9 msec, turning 10^48 ergs of rotational kinetic energy into a relativistic wind that has been deposited in its surroundings. This makes the compact remnant of the supernova of 1054 AD highly conspicuous. It also makes this remnant highly anomalous. Nowhere else in the Galaxy does such a luminous young pulsar exists, despite the fact that at least half a dozen core-collapse supernovae have occurred since the Crab's birth. Indeed, the newly discovered central object in Cas A is four orders of magnitude less luminous in the X-ray band. While the Chandra and XMM-Newton Observatories are discovering an increasing number of Crab-like synchrotron nebulae (albeit, far less luminous than the prototype), they are also revealing X-ray point sources inside supernova remnants that lack detectable radio pulses and show no evidence of a relativistic outflow to power a surrounding nebula. I will provide an inventory of these objects, discuss whether or not truly radio-silent young neutron stars exist, and speculate on the emission mechanisms and power sources which make such objects shine. I will conclude with a commentary on the implications of this population for the distributions of pulsar birth parameters such as spin period, magnetic field strength, and space velocity, as well as offer a glimpse of what future observations might reveal about the demographics of core-collapse remnants.
Bond Percolation on Multiplex Networks
NASA Astrophysics Data System (ADS)
Hackett, A.; Cellai, D.; Gómez, S.; Arenas, A.; Gleeson, J. P.
2016-04-01
We present an analytical approach for bond percolation on multiplex networks and use it to determine the expected size of the giant connected component and the value of the critical bond occupation probability in these networks. We advocate the relevance of these tools to the modeling of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying a full multiplex structure as opposed to its monoplex projection, especially in the seemingly irrelevant case of a bond occupation probability that does not depend on the layer. Although we find that in many cases the predictions of our theory for multiplex networks coincide with previously derived results for monoplex networks, we also uncover the remarkable result that for a certain class of multiplex networks, well described by our theory, new critical phenomena occur as multiple percolation phase transitions are present. We provide an instance of this phenomenon in a multiplex network constructed from London rail and European air transportation data sets.
Crossover from isotropic to directed percolation
NASA Astrophysics Data System (ADS)
Zhou, Zongzheng; Yang, Ji; Ziff, Robert M.; Deng, Youjin
2012-08-01
We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as p↓=ppd and p↑=p(1-pd), with p representing the average occupation probability and pd controlling the anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP) and DP are the two limiting cases of the BDP model, corresponding to pd=1/2 and pd=0,1 respectively. In this work, besides IP and DP, we also consider the 1/2
Crossover from isotropic to directed percolation.
Zhou, Zongzheng; Yang, Ji; Ziff, Robert M; Deng, Youjin
2012-08-01
We generalize the directed percolation (DP) model by relaxing the strict directionality of DP such that propagation can occur in either direction but with anisotropic probabilities. We denote the probabilities as p(↓) = pp(d) and p(↑) = p(1-p(d)), with p representing the average occupation probability and p(d) controlling the anisotropy. The Leath-Alexandrowicz method is used to grow a cluster from an active seed site. We call this model with two main growth directions biased directed percolation (BDP). Standard isotropic percolation (IP) and DP are the two limiting cases of the BDP model, corresponding to p(d) =1/2 and p(d) = 0,1 respectively. In this work, besides IP and DP, we also consider the 1/2 < p(d) <1 region. Extensive Monte Carlo simulations are carried out on the square and the simple-cubic lattices, and the numerical data are analyzed by finite-size scaling. We locate the percolation thresholds of the BDP model for p(d) = 0.6 and 0.8, and determine various critical exponents. These exponents are found to be consistent with those for standard DP. We also determine the renormalization exponent associated with the asymmetric perturbation due to p(d)-1/2 ≠ 0 near IP, and confirm that such an asymmetric scaling field is relevant at IP. PMID:23005718
THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG
Elvis, Martin; Civano, Francesca; Aldcroft, T. L.; Fruscione, Antonella; Vignali, Cristian; Puccetti, Simonetta; Fiore, Fabrizio; Cappelluti, Nico; Brusa, Marcella; Finoguenov, Alexis; Brunner, Hermann; Zamorani, G.; Comastri, Andrea; Gilli, Roberto; Miyaji, Takamitsu; Damiani, Francesco; Koekemoer, Anton M.; Urry, C.M.; Silverman, John; Mainieri, Vincenzo
2009-09-01
The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg{sup 2} of the COSMOS field (centered at 10 {sup h}, +02 deg.) with an effective exposure of {approx}160 ks, and an outer 0.4 deg{sup 2} area with an effective exposure of {approx}80 ks. The limiting source detection depths are 1.9 x 10{sup -16} erg cm{sup -2} s{sup -1} in the soft (0.5-2 keV) band, 7.3 x 10{sup -16} erg cm{sup -2} s{sup -1} in the hard (2-10 keV) band, and 5.7 x 10{sup -16} erg cm{sup -2} s{sup -1} in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 x 10{sup -5} (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily ({approx}50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform ({+-}12%) exposure across the inner 0.5 deg{sup 2} field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.
Estimating dispersed and point source emissions of methane in East Anglia: results and implications
NASA Astrophysics Data System (ADS)
Harris, Neil; Connors, Sarah; Hancock, Ben; Jones, Pip; Murphy, Jonathan; Riddick, Stuart; Robinson, Andrew; Skelton, Robert; Manning, Alistair; Forster, Grant; Oram, David; O'Doherty, Simon; Young, Dickon; Stavert, Ann; Fisher, Rebecca; Lowry, David; Nisbet, Euan; Zazzeri, Guilia; Allen, Grant; Pitt, Joseph
2016-04-01
We have been investigating ways to estimate dispersed and point source emissions of methane. To do so we have used continuous measurements from a small network of instruments at 4 sites across East Anglia since 2012. These long-term series have been supplemented by measurements taken in focussed studies at landfills, which are important point sources of methane, and by measurements of the 13C:12C ratio in methane to provide additional information about its sources. These measurements have been analysed using the NAME InTEM inversion model to provide county-level emissions (~30 km x ~30 km) in East Anglia. A case study near a landfill just north of Cambridge was also analysed using a Gaussian plume model and the Windtrax dispersion model. The resulting emission estimates from the three techniques are consistent within the uncertainties, despite the different spatial scales being considered. A seasonal cycle in emissions from the landfill (identified by the isotopic measurements) is observed with higher emissions in winter than summer. This would be expected from consideration of the likely activity of methanogenic bacteria in the landfill, but is not currently represented in emission inventories such as the UK National Atmospheric Emissions Inventory. The possibility of assessing North Sea gas field emissions using ground-based measurements will also be discussed.
Temporal percolation in activity-driven networks
NASA Astrophysics Data System (ADS)
Starnini, Michele; Pastor-Satorras, Romualdo
2014-03-01
We study the temporal percolation properties of temporal networks by taking as a representative example the recently proposed activity-driven-network model [N. Perra et al., Sci. Rep. 2, 469 (2012), 10.1038/srep00469]. Building upon an analytical framework based on a mapping to hidden variables networks, we provide expressions for the percolation time Tp marking the onset of a giant connected component in the integrated network. In particular, we consider both the generating function formalism, valid for degree-uncorrelated networks, and the general case of networks with degree correlations. We discuss the different limits of the two approaches, indicating the parameter regions where the correlated threshold collapses onto the uncorrelated case. Our analytical predictions are confirmed by numerical simulations of the model. The temporal percolation concept can be fruitfully applied to study epidemic spreading on temporal networks. We show in particular how the susceptible-infected-removed model on an activity-driven network can be mapped to the percolation problem up to a time given by the spreading rate of the epidemic process. This mapping allows us to obtain additional information on this process, not available for previous approaches.
Electrical Percolation Based Biosensors
Bruck, Hugh Alan; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham
2013-01-01
A new approach to label free biosensing has been developed based on the principle of “electrical percolation”. In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-Staphylococcal enterotoxin B (SEB) IgG as a “gate” and SEB as an “actuator”, it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create “Biological Central Processing Units (CPUs)” with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously. PMID:24041756
Color and Variability Characteristics of Point Sources in the Faint Sky Variability Survey
Huber, M E; Everett, M E; Howell, S B
2005-03-07
The authors present an analysis of the color and variability characteristics for point sources in the Faint Sky Variability Survey (FSVS). The FSVS cataloged {approx} 23 square degrees in BVI filters from {approx} 16-24 mag to investigate variability in faint sources at moderate to high Galactic latitudes. Point source completeness is found to be >83% for a selected representative sample (V - 17.5-22.0 mag, B-V = 0.0-1.5) containing both photometric B, V detections and 80% of the time-sampled V data available compared to a basic internal source completeness of 99%. Multi-epoch (10-30) observations in V spanning minutes to years modeled by light curve simulations reveal amplitude sensitivities to {approx} 0.015-0.075 mag over a representative V = 18-22 mag range. Periodicity determinations appear viable to time-scales of an order 1 day or less using the most sampled fields ({approx} 30 epochs). The fraction of point sources is found to be generally variable at 5-8% over V = 17.5-22.0 mag. For V brighter than 19 mag, the variable population is dominated by low amplitude (< 0.05 mag) and blue (B-V < 0.35) sources, possibly representing a population of {gamma} Doradus stars. Overall, the dominant population of variable sources are bluer than B-V = 0.65 and have Main Sequence colors, likely reflecting larger populations of RR Lyrae, SX Phe, {gamma} Doradus, and W UMa variables.
NASA Astrophysics Data System (ADS)
Steenhuisen, Frits; Wilson, Simon J.
2015-07-01
Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national
Fast and mechanistic ultrasound simulation using a point source/receiver approach.
Aguilar, Luis A; Cobbold, Richard S C; Steinman, David A
2013-11-01
Ultrasound simulators relying on impulse response methods are faithful to the mechanisms of image formation from the underlying radio-frequency signals, but as a result tend to be relatively slow. At the other extreme are fast techniques, often motivated by the development of teaching and training simulators, which approximate the image formation processes rather than rigorously modeling the underlying physics. Previously, we have shown that transmit field distributions from linear phased-array transducers can be modeled accurately and efficiently using arrays of point sources. This approach is now extended to point sources/receivers, which allows for simulation of the transmit/receive fields, and thus the physical processes underlying ultrasound image formation. Field distributions and fast-time signals are shown to compare favorably to those obtained using the impulse response method. Doppler spectrogram and B-mode images derived from these signals also show excellent agreement with the results obtained using the impulse response method, but with a computational savings of nearly two orders of magnitude. Because of the inherent simplicity of our Fast and Mechanistic Ultrasound Simulation (FAMUS) approach, CPU parallelization was readily achieved, and further orders of magnitude speed improvements, and thus real-time performance, can be anticipated via extension to modern graphics processing units. PMID:24158289
Roots at the Percolation Threshold
NASA Astrophysics Data System (ADS)
Kroener, E.; Ahmed, M. A.; Kaestner, A.; Vontobel, P.; Zarebanadkouki, M.; Carminati, A.
2014-12-01
Much of the carbon assimilated by plants during photosynthesis is lost to the soil via rhizodepositions. One component of rhizopdeposition is mucilage, a hydrogel that dramatically alters the soil physical properties. Mucilage was assumed to explain unexpectedly low rhizosphere rewetting rates during irrigation (Carminati et al. 2010) and temporarily water repellency in the rhizosphere after severe drying (Moradi et al. 2012).Here, we present an experimental and theoretical study for the rewetting behaviour of a soil mixed with mucilage, which was used as an analogue of the rhizosphere. Our samples were made of two layers of untreated soils separated by a thin layer (ca. 1 mm) of soil treated with mucilage. We prepared soil columns of varying particle size, mucilage concentration and height of the middle layer above the water table. The dry soil columns were re-wetted by capillary rise from the bottom.The rewetting of the middle layer showed a distinct dual behavior. For mucilage concentrations lower than a certain threshold, water could cross the thin layer almost immediately after rewetting of bulk soil. At slightly higher mucilage concentrations, the thin layer was almost impermeable. The mucilage concentration at the threshold strongly depended on particle size: the smaller the particle size the larger the soil specific surface and the more mucilage was needed to cover the entire particle surface and to induce water repellency.We applied a classic pore network model to simulate the experimental observations. In the model a certain fraction of nodes were randomly disconnected to reproduce the effect of mucilage in temporarily blocking the flow. The percolation model could qualitatively reproduce well the threshold characteristics of the experiments. Our experiments, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively
Transport on exploding percolation clusters
NASA Astrophysics Data System (ADS)
Andrade, José S., Jr.; Herrmann, Hans J.; Moreira, André A.; Oliveira, Cláudio L. N.
2011-03-01
We propose a simple generalization of the explosive percolation process [Achlioptas , ScienceSCIEAS0036-807510.1126/science.1167782 323, 1453 (2009)], and investigate its structural and transport properties. In this model, at each step, a set of q unoccupied bonds is randomly chosen. Each of these bonds is then associated with a weight given by the product of the cluster sizes that they would potentially connect, and only that bond among the q set which has the smallest weight becomes occupied. Our results indicate that, at criticality, all finite-size scaling exponents for the spanning cluster, the conducting backbone, the cutting bonds, and the global conductance of the system, change continuously and significantly with q. Surprisingly, we also observe that systems with intermediate values of q display the worst conductive performance. This is explained by the strong inhibition of loops in the spanning cluster, resulting in a substantially smaller associated conducting backbone.
Assessment of Non-Point Source Pollution in the Vadose Zone
NASA Astrophysics Data System (ADS)
Corwin, L.; Loague, Keith; Ellsworth, R.
Non-point source (NPS) pollution in the vadose zone (simply defined as the layer of soil extending from the soil surface to the groundwater table) is a global environmental problem. Characteristically, NPS pollutants are widespread and occasionally ubiquitous in extent, thus making remediation efforts difficult and complex; have the potential for maintaining a relatively long active presence in the global ecosystem; and may result in long-term, chronic health effects in humans and other life forms. Similar to other global environmental issues, the knowledge and information required to address the problem of NPS pollutants in the vadose zone cross several technological and subdisciplinary lines: spatial statistics, geographic information systems (GIS), hydrology, soil science, and remote sensing. Cooperation between disciplines and scientific societies is essential to address the problem. Evidence of such cooperation was the jointly sponsored American Geophysical Union Chapman/Soil Science Society of America (SSSA) Outreach Conference that occurred in October 1997, entitled "Applications of GIS, Remote Sensing, Geostatistics, and Solute Transport Modeling to the Assessment of Non-Point Source Pollution in the Vadose Zone." The objective of the conference and this book, which was developed from the conference, was to explore current multidisciplinary research for assessing NPS pollution in soil and groundwater resources.
NASA Astrophysics Data System (ADS)
Cheng, Wei Ping; Jia, Yafei
2010-04-01
A backward location probability density function (BL-PDF) method capable of identifying location of point sources in surface waters is presented in this paper. The relation of forward location probability density function (FL-PDF) and backward location probability density, based on adjoint analysis, is validated using depth-averaged free-surface flow and mass transport models and several surface water test cases. The solutions of the backward location PDF transport equation agreed well to the forward location PDF computed using the pollutant concentration at the monitoring points. Using this relation and the distribution of the concentration detected at the monitoring points, an effective point source identification method is established. The numerical error of the backward location PDF simulation is found to be sensitive to the irregularity of the computational meshes, diffusivity, and velocity gradients. The performance of identification method is evaluated regarding the random error and number of observed values. In addition to hypothetical cases, a real case was studied to identify the source location where a dye tracer was instantaneously injected into a stream. The study indicated the proposed source identification method is effective, robust, and quite efficient in surface waters; the number of advection-diffusion equations needed to solve is equal to the number of observations.
Point Source Correction And The Galaxy-reduced Map From Wmap 3-yr Data
NASA Astrophysics Data System (ADS)
Chen, Xi; Wright, E. L.
2007-12-01
Combining the new sources we found using a CMB-independent method in WMAP V- and W-band (61 and 94 GHz) maps with those in the WMAP three-year point source catalog, we find a source correction A = 0.012 ± 0.004 uK2·sr to the CMB power spectrum. More sources are found by adding in the Q-band (41 GHz) map in our search since Q band has a higher SNR. We therefore re-model the source count distribution and report a new estimate of the level of residual contamination due to unresolved point sources. We also present a three-color weighted combination image from the WMAP three-year Q-, V- and W-band maps. The V- and W-band maps are smoothed to match Q-band resolution. The band weights are chosen in such a way as to maintain unity response to the CMB while reducing the galactic light as well as minimizing the variance of the resulting map. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science.
Detection of trace gas emissions from point sources using shortwave infrared imaging spectrometry
NASA Astrophysics Data System (ADS)
Thorpe, A. K.; Roberts, D. A.; Dennison, P. E.; Bradley, E. S.; Funk, C. C.
2011-12-01
Existing spaceborne remote sensing provides an effective means of detecting continental-scale variation in trace gas concentrations, but does not permit mapping of local emissions from point sources. Point source emissions of methane (CH4), nitrous oxide (N2O) and particulates, often associated with combustion and carbon dioxide (CO2) emissions, have significant impacts on air quality. Using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data and a cluster-tuned matched filter technique, we have mapped local CH4, N2O and CO2 emissions from terrestrial sources in the Los Angeles basin. CH4 anomalies were in close proximity to known and probable emission sources, including hydrocarbon storage tanks and gas flares. Multiple N2O and CH4 anomalies were detected at a wastewater treatment facility, while CH4 and CO2 anomalies were also identified at a large oil refinery. We discuss ongoing efforts to estimate CH4 concentrations using radiative transfer modeling and potential application of this technique to additional trace gasses with distinct absorption features. This method could be applied to data from existing airborne sensors and planned satellite missions like HyspIRI, thereby improving high resolution mapping of trace gasses and better constraining local sources.
Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area
NASA Astrophysics Data System (ADS)
Du, Tangzheng; Liu, Chun-Ho
2013-04-01
Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.
Phase transitions in supercritical explosive percolation
NASA Astrophysics Data System (ADS)
Chen, Wei; Nagler, Jan; Cheng, Xueqi; Jin, Xiaolong; Shen, Huawei; Zheng, Zhiming; D'Souza, Raissa M.
2013-05-01
Percolation describes the sudden emergence of large-scale connectivity as edges are added to a lattice or random network. In the Bohman-Frieze-Wormald model (BFW) of percolation, edges sampled from a random graph are considered individually and either added to the graph or rejected provided that the fraction of accepted edges is never smaller than a decreasing function with asymptotic value of α, a constant. The BFW process has been studied as a model system for investigating the underlying mechanisms leading to discontinuous phase transitions in percolation. Here we focus on the regime α∈[0.6,0.95] where it is known that only one giant component, denoted C1, initially appears at the discontinuous phase transition. We show that at some point in the supercritical regime C1 stops growing and eventually a second giant component, denoted C2, emerges in a continuous percolation transition. The delay between the emergence of C1 and C2 and their asymptotic sizes both depend on the value of α and we establish by several techniques that there exists a bifurcation point αc=0.763±0.002. For α∈[0.6,αc), C1 stops growing the instant it emerges and the delay between the emergence of C1 and C2 decreases with increasing α. For α∈(αc,0.95], in contrast, C1 continues growing into the supercritical regime and the delay between the emergence of C1 and C2 increases with increasing α. As we show, αc marks the minimal delay possible between the emergence of C1 and C2 (i.e., the smallest edge density for which C2 can exist). We also establish many features of the continuous percolation of C2 including scaling exponents and relations.
RADIAL DISTRIBUTION OF X-RAY POINT SOURCES NEAR THE GALACTIC CENTER
Hong, Jae Sub; Van den Berg, Maureen; Grindlay, Jonathan E.; Laycock, Silas
2009-11-20
We present the log N-log S and spatial distributions of X-ray point sources in seven Galactic bulge (GB) fields within 4 deg. from the Galactic center (GC). We compare the properties of 1159 X-ray point sources discovered in our deep (100 ks) Chandra observations of three low extinction Window fields near the GC with the X-ray sources in the other GB fields centered around Sgr B2, Sgr C, the Arches Cluster, and Sgr A* using Chandra archival data. To reduce the systematic errors induced by the uncertain X-ray spectra of the sources coupled with field-and-distance-dependent extinction, we classify the X-ray sources using quantile analysis and estimate their fluxes accordingly. The result indicates that the GB X-ray population is highly concentrated at the center, more heavily than the stellar distribution models. It extends out to more than 1.{sup 0}4 from the GC, and the projected density follows an empirical radial relation inversely proportional to the offset from the GC. We also compare the total X-ray and infrared surface brightness using the Chandra and Spitzer observations of the regions. The radial distribution of the total infrared surface brightness from the 3.6 band mum images appears to resemble the radial distribution of the X-ray point sources better than that predicted by the stellar distribution models. Assuming a simple power-law model for the X-ray spectra, the closer to the GC the intrinsically harder the X-ray spectra appear, but adding an iron emission line at 6.7 keV in the model allows the spectra of the GB X-ray sources to be largely consistent across the region. This implies that the majority of these GB X-ray sources can be of the same or similar type. Their X-ray luminosity and spectral properties support the idea that the most likely candidate is magnetic cataclysmic variables (CVs), primarily intermediate polars (IPs). Their observed number density is also consistent with the majority being IPs, provided the relative CV to star density in
Social percolation and the influence of mass media
NASA Astrophysics Data System (ADS)
Proykova, Ana; Stauffer, Dietrich
2002-09-01
In the marketing model of Solomon and Weisbuch, people buy a product only if their neighbours tell them of its quality, and if this quality is higher than their own quality expectations. Now we introduce additional information from the mass media, which is analogous to the ghost field in percolation theory. The mass media shift the percolative phase transition observed in the model, and decrease the time after which the stationary state is reached.
Phase Diagram of Inhomogeneous Percolation with a Defect Plane
NASA Astrophysics Data System (ADS)
Iliev, G. K.; Janse van Rensburg, E. J.; Madras, N.
2015-01-01
Let be the -dimensional hypercubic lattice and let be an -dimensional sublattice, with . We consider a model of inhomogeneous bond percolation on at densities and , in which edges in are open with probability , and edges in open with probability . We generalize several classical results of (homogeneous) bond percolation to this inhomogeneous model. The phase diagram of the model is presented, and it is shown that there is a subcritical regime for and (where is the critical probability for homogeneous percolation in ), a bulk supercritical regime for , and a surface supercritical regime for and . We show that is a strictly decreasing function for , with a jump discontinuity at . We extend the Aizenman-Barsky differential inequalities for homogeneous percolation to the inhomogeneous model and use them to prove that the susceptibility is finite inside the subcritical phase. We prove that the cluster size distribution decays exponentially in the subcritical phase, and sub-exponentially in the supercritical phases. For a model of lattice animals with a defect plane, the free energy is related to functions of the inhomogeneous percolation model, and we show how the percolation transition implies a non-analyticity in the free energy of the animal model. Finally, we present simulation estimates of the critical curve.
NASA Astrophysics Data System (ADS)
Awarke, Ali; Lauer, Sven; Pischinger, Stefan; Wittler, Michael
In this work a percolation-tunneling based model is developed and used to study the electrical conductivity of LiFePO 4 composite Li-ion battery cathodes. The active and conductive additive particles are explicitly represented using a random hybrid geometric-mechanical packing algorithm, while the inter-particle electric transport is achieved by including electron tunneling effects. The model is adjusted to the experimental data of a PVDF/C composite with different mixing ratios. The performed study aims to capture the variation of the conductivity of the LiFePO 4 cathode with particle sizes, carbon black particles wt.% and carbon coating wt.%. It is found that ultra fine carbon-free nanosized particles (∼50 nm), which are favorable for improved diffusion, would require a relatively high amount of carbon black (15 wt.%) putting at risk the gravimetric capacity of the cell. On the other hand, particles with 1 wt.% continuous carbon coating delivers already sufficient conductivity for all particle sizes without any additives. The further addition of conductive phases is at the risk of redundancy in view of conductivity enhancements. Although continuous carbon coating with loading as low as 1 wt.% is thought to be the most efficient way to achieve electric conductivity, its manufacturability and effect on Li ion diffusion remain to be assessed.
SENSITIVITY OF RADM TO POINT SOURCE EMISSIONS PROCESSING
The Regional Acid Deposition Model (RADM) and associated Engineering Model have been developed to study episodic source-receptor relationships on a regional scale. he RADM includes transport, chemical transformation, and deposition processes as well as input of emissions into the...
Percolation of spatially constraint networks
NASA Astrophysics Data System (ADS)
Li, Daqing; Li, Guanliang; Kosmidis, Kosmas; Stanley, H. E.; Bunde, Armin; Havlin, Shlomo
2011-03-01
We study how spatial constraints are reflected in the percolation properties of networks embedded in one-dimensional chains and two-dimensional lattices. We assume long-range connections between sites on the lattice where two sites at distance r are chosen to be linked with probability p(r)~r-δ. Similar distributions have been found in spatially embedded real networks such as social and airline networks. We find that for networks embedded in two dimensions, with 2<δ<4, the percolation properties show new intermediate behavior different from mean field, with critical exponents that depend on δ. For δ<2, the percolation transition belongs to the universality class of percolation in Erdös-Rényi networks (mean field), while for δ>4 it belongs to the universality class of percolation in regular lattices. For networks embedded in one dimension, we find that, for δ<1, the percolation transition is mean field. For 1<δ<2, the critical exponents depend on δ, while for δ>2 there is no percolation transition as in regular linear chains.
Experimental and Analytical Studies of Shielding Concepts for Point Sources and Jet Noises.
NASA Astrophysics Data System (ADS)
Wong, Raymond Lee Man
This analytical and experimental study explores concepts for jet noise shielding. Model experiments centre on solid planar shields, simulating engine-over-wing installations, and 'sugar scoop' shields. Tradeoff on effective shielding length is set by interference 'edge noise' as the shield trailing edge approaches the spreading jet. Edge noise is minimized by (i) hyperbolic cutouts which trim off the portions of most intense interference between the jet flow and the barrier and (ii) hybrid shields--a thermal refractive extension (a flame); for (ii) the tradeoff is combustion noise. In general, shielding attenuation increases steadily with frequency, following low frequency enhancement by edge noise. Although broadband attenuation is typically only several dB, the reduction of the subjectively weighted perceived noise levels is higher. In addition, calculated ground contours of peak PN dB show a substantial contraction due to shielding: this reaches 66% for one of the 'sugar scoop' shields for the 90 PN dB contour. The experiments are complemented by analytical predictions. They are divided into an engineering scheme for jet noise shielding and more rigorous analysis for point source shielding. The former approach combines point source shielding with a suitable jet source distribution. The results are synthesized into a predictive algorithm for jet noise shielding: the jet is modelled as a line distribution of incoherent sources with narrow band frequency (TURN)(axial distance)('-1). The predictive version agrees well with experiment (1 to 1.5 dB) up to moderate frequencies. The insertion loss deduced from the point source measurements for semi-infinite as well as finite rectangular shields agrees rather well with theoretical calculation based on the exact half plane solution and the superposition of asymptotic closed-form solutions. An approximate theory, the Maggi-Rubinowicz line integral, is found to yield reasonable predictions for thin barriers including
Core percolation on complex networks.
Liu, Yang-Yu; Csóka, Endre; Zhou, Haijun; Pósfai, Márton
2012-11-16
We analytically solve the core percolation problem for complex networks with arbitrary degree distributions. We find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is continuous while for directed networks it is discontinuous (and hybrid) if the in- and out-degree distributions differ. We also find that core percolations on undirected and directed networks have completely different critical exponents associated with their critical singularities. PMID:23215509
A plasma-based non-intrusive point source for acoustic beamforming applications
NASA Astrophysics Data System (ADS)
Bahr, Christopher J.; Zawodny, Nikolas S.; Bertolucci, Brandon; Li, Jian; Sheplak, Mark; Cattafesta, Louis N.
2015-05-01
A laser-generated plasma acoustic point source is used to directly measure the point spread function (PSF) of a microphone phased array. In beamforming analysis of microphone phased array data, the true acoustic field is convolved with the array's PSF. By directly measuring the PSF, corrections to the array analysis can be computed and applied. The acoustic source is measured in an open-jet aeroacoustic facility to evaluate the effects of sampling rate, microphone installation, source shift, reflections, shear layer refraction and model presence. Results show that measurements exhibit behavior consistent with theory with regard to source shift and shear layer refraction. Application of a measured PSF in beamforming analysis shows that the process provides an effective in situ method for array calibration both with and without flow and allows for corrections to incorporate reflections and scattering. The technique improves the agreement of beamforming results with the true spectrum of a known source, especially in the presence of reflections.
Mixing of a point-source indoor pollutant: Numerical predictions and comparison with experiments
Lobscheid, C.; Gadgil, A.J.
2002-01-01
In most practical estimates of indoor pollutant exposures, it is common to assume that the pollutant is uniformly and instantaneously mixed in the indoor space. It is also commonly known that this assumption is simplistic, particularly for point sources, and for short-term or localized indoor exposures. We report computational fluid dynamics (CFD) predictions of mixing time of a point-pulse release of a pollutant in an unventilated mechanically mixed isothermal room. We aimed to determine the adequacy of the standard RANS two-equation ({kappa}-{var_epsilon}) turbulence model to predict the mixing times under these conditions. The predictions were made for the twelve mixing time experiments performed by Drescher et al. (1995). We paid attention to adequate grid resolution, suppression of numerical diffusion, and careful simulation of the mechanical blowers used in the experiments. We found that the predictions are in good agreement with experimental measurements.
Estimates of Emissions and Chemical Lifetimes of NOx from Point Sources using OMI Retrievals
NASA Astrophysics Data System (ADS)
de Foy, B.
2014-12-01
We use three different methods to estimate emissions of NOx from large point sources based on OMI retrievals. The results are evaluated against data from the Continuous Emission Monitoring System (CEMS). The methods tested are: 1. Simple box model, 2. Two-dimensional Gaussian fit and 3. Exponentially-Modified Gaussian Fit. The sensitivity of the results to the plume speed and wind direction was explored by considering different ways of estimating these from wind measurements. The accuracy of the emissions estimates compared with the CEMS data was found to be variable from site to site. Furthermore, lifetimes obtained from some of the methods were found to be very short and are thought to be more representative of plume transport than of chemical transformation. We explore the strengths and weaknesses of the methods and consider avenues for improved estimates.
SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE
Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M. C.; Baret, B.; Bouhou, B.; Basa, S.; Biagi, S.; and others
2012-11-20
In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E {sup -2} {sub {nu}} spectrum, these flux limits are at 1-10 Multiplication-Sign 10{sup -8} GeV cm{sup -2} s{sup -1} for declinations ranging from -90 Degree-Sign to 40 Degree-Sign . Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.
Experimental and analytical studies of shielding concepts for point sources and jet noise
NASA Astrophysics Data System (ADS)
Wong, R. L. M.
1983-05-01
Concepts for jet noise shielding were explored. Model experiments center on solid planar shields, simulating engine-over-wing installations and sugar scoop shields. Tradeoff on effective shielding length is set by interference "edge noise' as the shield trailing edge approaches the spreading jet. In general, shielding attentuation increases steadily with frequency, following low frequency enhancement by edge noise. Although broadband attenuation is typically only several decibels, the reduction of the subjectively weighted perceived noise levels is higher. Calculated ground contours of peak PN dB (perceived noise level) show a substantial contraction due to shielding: this reaches 66% for one of the sugar scoop shields for the 90 PN dB contour. The experiments are complemented by analytical predictions. They are divided into an engineering scheme for jet noise shielding and more rigorous analysis for point source shielding.
40 CFR 414.111 - Toxic pollutant standards for indirect discharge point sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Toxic pollutant standards for indirect... Discharge Point Sources § 414.111 Toxic pollutant standards for indirect discharge point sources. (a) Any...) shall be determined by multiplying the concentrations listed in the following table for these...
Image method for the derivation of point sources in elastostatic problems with plane interfaces
NASA Technical Reports Server (NTRS)
Fares, Nabil; Li, Victor C.
1986-01-01
An image method algorithm is presented for the derivation of point sources of elastostatics in multilayered media assuming the infinite space point source is known. Specific cases were worked out and shown to coincide with well known solutions in the literature.
Technology Transfer Automated Retrieval System (TEKTRAN)
Agricultural non-point source pollution is a major source of water quality impairment. When considering responses to non-point source pollution, several policy options have been considered historically, including reducing inputs (e.g. fertilizers) altering technologies on the landscape (e.g. conserv...
Network robustness and fragility: percolation on random graphs.
Callaway, D S; Newman, M E; Strogatz, S H; Watts, D J
2000-12-18
Recent work on the Internet, social networks, and the power grid has addressed the resilience of these networks to either random or targeted deletion of network nodes or links. Such deletions include, for example, the failure of Internet routers or power transmission lines. Percolation models on random graphs provide a simple representation of this process but have typically been limited to graphs with Poisson degree distribution at their vertices. Such graphs are quite unlike real-world networks, which often possess power-law or other highly skewed degree distributions. In this paper we study percolation on graphs with completely general degree distribution, giving exact solutions for a variety of cases, including site percolation, bond percolation, and models in which occupation probabilities depend on vertex degree. We discuss the application of our theory to the understanding of network resilience. PMID:11136023
Assigning Star-galaxy Probabilities to SDSS Stripe 82 Point Sources
NASA Astrophysics Data System (ADS)
Preston, Annie; Willman, B.; Fadely, R.; Bochanski, J. J.; Hogg, D. W.
2013-01-01
Sloan Digital Sky Survey (SDSS) Stripe 82 imaging covers 275 deg^2 in ugriz. Reaching ~ 1-2 magnitudes deeper than the SDSS main survey (50% point source completeness at r ~24.2 mag), the public Stripe 82 catalog provides new opportunities in Galactic structure, weak lensing, and large scale structure. However, at magnitudes fainter than r ~ 22, unresolved galaxies dominate star counts in the point source catalog. The resulting contamination of point sources by galaxies can be mitigated by using multi-color information to derive star-galaxy probabilities. In this poster, we quantify the expected demographics of the Stripe 82 point source catalog. We use ugriz magnitudes to assign star-galaxy classification probabilities to Stripe 82 point sources with maximum likelihood, hierarchical Bayesian, and SVM techniques. We thank NSF AST-0908193 and NSF AST-1151462 for support.
NASA Astrophysics Data System (ADS)
Zhang, S.; Tang, L.
2007-05-01
Panjiakou Reservoir is an important drinking water resource in Haihe River Basin, Hebei Province, People's Republic of China. The upstream watershed area is about 35,000 square kilometers. Recently, the water pollution in the reservoir is becoming more serious owing to the non-point pollution as well as point source pollution on the upstream watershed. To effectively manage the reservoir and watershed and develop a plan to reduce pollutant loads, the loading of non-point and point pollution and their distribution on the upstream watershed must be understood fully. The SWAT model is used to simulate the production and transportation of the non-point source pollutants in the upstream watershed of the Panjiakou Reservoir. The loadings of non-point source pollutants are calculated for different hydrologic years and the spatial and temporal characteristics of non-point source pollution are studied. The stream network and topographic characteristics of the stream network and sub-basins are all derived from the DEM by ArcGIS software. The soil and land use data are reclassified and the soil physical properties database file is created for the model. The SWAT model was calibrated with observed data of several hydrologic monitoring stations in the study area. The results of the calibration show that the model performs fairly well. Then the calibrated model was used to calculate the loadings of non-point source pollutants for a wet year, a normal year and a dry year respectively. The time and space distribution of flow, sediment and non-point source pollution were analyzed depending on the simulated results. The comparison of different hydrologic years on calculation results is dramatic. The loading of non-point source pollution in the wet year is relatively larger but smaller in the dry year since the non-point source pollutants are mainly transported through the runoff. The pollution loading within a year is mainly produced in the flood season. Because SWAT is a
A CMB foreground study in WMAP data: Extragalactic point sources and zodiacal light emission
NASA Astrophysics Data System (ADS)
Chen, Xi
The Cosmic Microwave Background (CMB) radiation is the remnant heat from the Big Bang. It serves as a primary tool to understand the global properties, content and evolution of the universe. Since 2001, NASA's Wilkinson Microwave Anisotropy Probe (WMAP) satellite has been napping the full sky anisotropy with unprecedented accuracy, precision and reliability. The CMB angular power spectrum calculated from the WMAP full sky maps not only enables accurate testing of cosmological models, but also places significant constraints on model parameters. The CMB signal in the WMAP sky maps is contaminated by microwave emission from the Milky Way and from extragalactic sources. Therefore, in order to use the maps reliably for cosmological studies, the foreground signals must be well understood and removed from the maps. This thesis focuses on the separation of two foreground contaminants from the WMAP maps: extragalactic point sources and zodiacal light emission. Extragalactic point sources constitute the most important foreground on small angular scales. Various methods have been applied to the WMAP single frequency maps to extract sources. However, due to the limited angular resolution of WMAP, it is possible to confuse positive CMB excursions with point sources or miss sources that are embedded in negative CMB fluctuations. We present a novel CMB-free source finding technique that utilizes the spectrum difference of point sources and CMB to form internal linear combinations of multifrequency maps to suppress the CMB and better reveal sources. When applied to the WMAP 41, 64 and 94 GHz maps, this technique has not only enabled detection of sources that are previously cataloged by independent methods, but also allowed disclosure of new sources. Without the noise contribution from the CMB, this method responds rapidly with the integration time. The number of detections varies as 0( t 0.72 in the two-band search and 0( t 0.70 in the three-band search from one year to five years
Hidden percolation transition in kinetic replication process
NASA Astrophysics Data System (ADS)
Timonin, P. N.; Chitov, G. Y.
2015-04-01
The one-dimensional kinetic contact process with parallel update is introduced and studied by the mean-field approximation and Monte Carlo (MC) simulations. Contrary to a more conventional scenario with single active phase for 1d models with Ising-like variables, we find two different adjacent active phases in the parameter space of the proposed model with a second-order transition between them and a multiphase point where the active and the absorbing phases meet. While one of the active phases is quite standard with a smooth average filling of the space-time lattice, the second active phase demonstrates a very subtle (hidden) percolating order which becomes manifest only after certain transformation from the original model. We determine the percolation order parameter for active-active phase transition and discuss such hidden orders in other low-dimensional systems. Our MC data demonstrate finite-size critical and near-critical scaling of the order parameter relaxation for the two phase transitions. We find three independent critical indices for them and conclude that they both belong to the directed percolation universality class.
Uncertainty Analysis of non-point source pollution control facilities design techniques in Korea
NASA Astrophysics Data System (ADS)
Lee, J.; Okjeong, L.; Gyeong, C. B.; Park, M. W.; Kim, S.
2015-12-01
The design of non-point sources control facilities in Korea is divided largely by the stormwater capture ratio, the stormwater load capture ratio, and the pollutant reduction efficiency of the facility. The stormwater capture ratio is given by a design formula as a function of the water quality treatment capacity, the greater the capacity, the more the amount of stormwater intercepted by the facility. The stormwater load capture ratio is defined as the ratio of the load entering the facility of the total pollutant load generated in the target catchment, and is given as a design formula represented by a function of the stormwater capture ratio. In order to estimate the stormwater capture ratio and load capture ratio, a lot of quantitative analysis of hydrologic processes acted in pollutant emission is required, but these formulas have been applied without any verification. Since systematic monitoring programs were insufficient, verification of these formulas was fundamentally impossible. However, recently the Korean ministry of Environment has conducted an long-term systematic monitoring project, and thus the verification of the formulas became possible. In this presentation, the stormwater capture ratio and load capture ratio are re-estimated using actual TP data obtained from long-term monitoring program at Noksan industrial complex located in Busan, Korea. Through the re-estimated process, the uncertainty included in the design process that has been applied until now will be shown in a quantitative extent. In addition, each uncertainty included in the stormwater capture ratio estimation and in the stormwater load capture ratio estimation will be expressed to quantify the relative impact on the overall non-point pollutant control facilities design process. Finally, the SWMM-Matlab interlocking module for model parameters estimation will be introduced. Acknowledgement This subject is supported by Korea Ministry of Environment as "The Eco Innovation Project : Non-point
Fission gas bubble percolation on crystallographically consistent grain boundary networks
NASA Astrophysics Data System (ADS)
Sabogal-Suárez, Daniel; David Alzate-Cardona, Juan; Restrepo-Parra, Elisabeth
2016-07-01
Fission gas release in nuclear fuels can be modeled in the framework of percolation theory, where each grain boundary is classified as open or closed to the release of the fission gas. In the present work, two-dimensional grain boundary networks were assembled both at random and in a crystallographically consistent manner resembling a general textured microstructure. In the crystallographically consistent networks, grain boundaries were classified according to its misorientation. The percolation behavior of the grain boundary networks was evaluated as a function of radial cracks and radial thermal gradients in the fuel pellet. Percolation thresholds tend to shift to the left with increasing length and number of cracks, especially in the presence of thermal gradients. In general, the topology and percolation behavior of the crystallographically consistent networks differs from those of the random network.
On directed interacting animals and directed percolation
NASA Astrophysics Data System (ADS)
Knezevic, Milan; Vannimenus, Jean
2002-03-01
We study the phase diagram of fully directed lattice animals with nearest-neighbour interactions on the square lattice. This model comprises several interesting ensembles (directed site and bond trees, bond animals, strongly embeddable animals) as special cases and its collapse transition is equivalent to a directed bond percolation threshold. Precise estimates for the animal size exponents in the different phases and for the critical fugacities of these special ensembles are obtained from a phenomenological renormalization group analysis of the correlation lengths for strips of width up to n = 17. The crossover region in the vicinity of the collapse transition is analysed in detail and the crossover exponent φ is determined directly from the singular part of the free energy. We show using scaling arguments and an exact relation due to Dhar that φ is equal to the Fisher exponent σ governing the size distribution of large directed percolation clusters.
Discontinuous percolation transitions in real physical systems
NASA Astrophysics Data System (ADS)
Cho, Y. S.; Kahng, B.
2011-11-01
We study discontinuous percolation transitions (PTs) in the diffusion-limited cluster aggregation model of the sol-gel transition as an example of real physical systems, in which the number of aggregation events is regarded as the number of bonds occupied in the system. When particles are Brownian, in which cluster velocity depends on cluster size as vs˜sη with η=-0.5, a larger cluster has less probability to collide with other clusters because of its smaller mobility. Thus, the cluster is effectively more suppressed in growth of its size. Then the giant cluster size increases drastically by merging those suppressed clusters near the percolation threshold, exhibiting a discontinuous PT. We also study the tricritical behavior by controlling the parameter η, and the tricritical point is determined by introducing an asymmetric Smoluchowski equation.
Multiple-well invasion percolation.
Araújo, A D; Romeu, M C; Moreira, A A; Andrade, R F S; Andrade, J S
2008-04-01
When the invasion percolation model is applied as a simplified model for the displacement of a viscous fluid by a less viscous one, the distribution of displaced mass follows two distinct universality classes, depending on the criteria used to stop the displacement. Here we study the distribution of mass for this process, in the case where four extraction wells are placed around a single injection well in the middle of a square lattice. Our analysis considers the limit where the pressure of the extraction well Pe is zero; in other words, an extraction well is capped as soon as less viscous fluid reaches that extraction well. Our results show that, as expected, the probability of stopping the production with small amounts of displaced mass is greatly reduced. We also investigate whether or not creating extra extraction wells is an efficient strategy. We show that the probability of increasing the amount of displaced fluid by adding an extra extraction well depends on the total recovered mass obtained before adding this well. The results presented here could be relevant to determine efficient strategies in oil exploration. PMID:18517620
Percolation Theory and Modern Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.
2015-12-01
During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.
NASA Astrophysics Data System (ADS)
Tang, Y. B.; Li, M.; Bernabé, Y.; Tang, H. M.; Li, X. F.; Bai, X. Y.; Tao, Z. W.
2015-06-01
In this paper, we modelled the electrical transport behaviour of bimodal carbonate rocks from a reservoir in China using dual-pore networks. One basic assumption, generally supported by experimental data and microstructure observations in the reservoir samples, was that the low porosity, monomodal rocks had the same properties and structure as the microporous matrix of the high porosity, bimodal samples. We assumed that the matrix was homogeneous and always interconnected but that the connectivity and the pore size distribution of macropore system was randomly variable. Both pore systems were supposed to act locally as `in parallel' electrical conductors, an approach previously used by Bauer et al. Hence, the effect of matrix properties, macropore size distribution and connectivity on electrical properties of bimodal rocks could be modelled and investigated. We simulated electrical current through 3-D, simple cubic and body-centred cubic networks with different coordination numbers, different pipe radius distributions of macropore system and different matrix properties. The main result was that the formation factor of dual-pore network obeyed a `universal' scaling relationship (i.e. independent of lattice type). Based on this result, we extended the power-law model derived by Bernabé et al. for monomodal porous media. We developed methods for evaluating the scale-invariant pore structure parameters in the model using conventional core analysis and satisfactorily tested the proposed model against experimental data from the Chinese reservoir as well as some other previously published data sets.
Guided wave radiation from a point source in the proximity of a pipe bend
Brath, A. J.; Nagy, P. B.; Simonetti, F.; Instanes, G.
2014-02-18
Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-D elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.
Guided wave radiation from a point source in the proximity of a pipe bend
NASA Astrophysics Data System (ADS)
Brath, A. J.; Simonetti, F.; Nagy, P. B.; Instanes, G.
2014-02-01
Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-D elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8" diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.
NASA Astrophysics Data System (ADS)
Foster-Wittig, Tierney A.; Thoma, Eben D.; Albertson, John D.
2015-08-01
Emerging mobile fugitive emissions detection and measurement approaches require robust inverse source algorithms to be effective. Two Gaussian plume inverse approaches are described for estimating emission rates from ground-level point sources observed from remote vantage points. The techniques were tested using data from 41 controlled methane release experiments (14 studies) and further investigated using 7 field studies executed downwind of oil and gas well pads in Wyoming. Analyzed measurements were acquired from stationary observation locations 18-106 m downwind of the emission sources. From the fluctuating wind direction, the lateral plume geometry is reconstructed using a derived relationship between the wind direction and crosswind plume position. The crosswind plume spread is determined with both modeled and reconstructed Gaussian plume approaches and estimates of source emission rates are found through inversion. The source emission rates were compared to a simple point source Gaussian emission estimation approach that is part of Draft EPA Method OTM 33A. Compared to the known release rates, the modeled, reconstructed, and point source Gaussian controlled release results yield average percent errors of -5%, -2%, and 6% with standard deviations of 29%, 25%, and 37%, respectively. Compared to each other, the three methods agree within 30% for 78% of all 48 observations (41 CR and 7 Wyoming).
Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics
NASA Astrophysics Data System (ADS)
Becker, M.; Allen, E. M.; Hutchinson, A.
2014-12-01
into question the relevance of simple wetting models for predicting percolation behavior in infiltration basins.
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics.
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-01-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-08-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.
Percolation velocity dependence on local concentration in bidisperse granular flows
NASA Astrophysics Data System (ADS)
Jones, Ryan P.; Xiao, Hongyi; Deng, Zhekai; Umbanhowar, Paul B.; Lueptow, Richard M.
The percolation velocity, up, of granular material in size or density bidisperse mixtures depends on the local concentration, particle size ratio, particle density ratio, and shear rate, γ ˙. Discrete element method computational results were obtained for bounded heap flows with size ratios between 1 and 3 and for density ratios between 1 and 4. The results indicate that small particles percolate downward faster when surrounded by large particles than large particles percolate upward when surrounded by small particles, as was recently observed in shear-box experiments. Likewise, heavy particles percolate downward faster when surrounded by light particles than light particles percolate upward when surrounded by heavy particles. The dependence of up / γ ˙ on local concentration results in larger percolation flux magnitudes at high concentrations of large (or light) particles compared to high concentrations of small (or heavy) particles, while local volumetric flux is conserved. The dependence of up / γ ˙ on local concentration can be incorporated into a continuum model, but the impact on global segregation patterns is usually minimal. Partially funded by Dow Chemical Company and NSF Grant No. CBET-1511450.
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-01-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998
Clique percolation in random graphs.
Li, Ming; Deng, Youjin; Wang, Bing-Hong
2015-10-01
As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least l
Clique percolation in random graphs
NASA Astrophysics Data System (ADS)
Li, Ming; Deng, Youjin; Wang, Bing-Hong
2015-10-01
As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least l
NASA Technical Reports Server (NTRS)
Rauchmiller, Robert F., Jr.; Schowengerdt, Robert A.
1988-01-01
This paper presents a method for measuring the Thematic Mapper (TM) imaging system point spread function (PSF) using TM imagery or a specially constructed target consisting of a two-dimensional array of approximate point sources of known dimensions and radiometric qualities. The target allows 16 separate point sources to be imaged simultaneously by the TM. The point sources were carefully placed on the ground so that their relative positions were known. Owing to sample-scene phasing, each imaged point source exhibits a different amount of blur in the digital image. The target pixels may then be recombined according to their known relative positions to form a single, sampled, nonaliased imaging system PSF. The modulation transfer function is then obtained as the modulus of the discrete Fourier transform of the PSF.
Gibson, Alexander
2015-08-23
In my research, I analyzed how two gamma-ray source models interact with one another when optimizing to fit data. This is important because it becomes hard to distinguish between the two point sources when they are close together or looking at low energy photons. The reason for the first is obvious, the reason why they become harder to distinguish at lower photon energies is the resolving power of the Fermi Gamma-Ray Space Telescope gets worse at lower energies. When the two point sources are highly correlated (hard to distinguish between), we need to change our method of statistical analysis. What I did was show that highly correlated sources have larger uncertainties associated with them, caused by an optimizer not knowing which point source’s parameters to optimize. I also mapped out where their is high correlation for 2 different theoretical mass dark matter point sources so that people analyzing them in the future knew where they had to use more sophisticated statistical analysis.
Liu, Mei-bing; Chen, Xing-wei; Chen, Ying
2015-07-01
Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff. PMID:26710649
Lowering IceCube's Energy Threshold for Point Source Searches in the Southern Sky
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration
2016-06-01
Observation of a point source of astrophysical neutrinos would be a “smoking gun” signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν μ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (∼100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.
Lowering IceCube's Energy Threshold for Point Source Searches in the Southern Sky
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration
2016-06-01
Observation of a point source of astrophysical neutrinos would be a “smoking gun” signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν μ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (˜100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.
Clique percolation in random networks.
Derényi, Imre; Palla, Gergely; Vicsek, Tamás
2005-04-29
The notion of k-clique percolation in random graphs is introduced, where k is the size of the complete subgraphs whose large scale organizations are analytically and numerically investigated. For the Erdos-Rényi graph of N vertices we obtain that the percolation transition of k-cliques takes place when the probability of two vertices being connected by an edge reaches the threshold p(c) (k) = [(k - 1)N](-1/(k - 1)). At the transition point the scaling of the giant component with N is highly nontrivial and depends on k. We discuss why clique percolation is a novel and efficient approach to the identification of overlapping communities in large real networks. PMID:15904198
Clique Percolation in Random Networks
NASA Astrophysics Data System (ADS)
Derényi, Imre; Palla, Gergely; Vicsek, Tamás
2005-04-01
The notion of k-clique percolation in random graphs is introduced, where k is the size of the complete subgraphs whose large scale organizations are analytically and numerically investigated. For the Erdős-Rényi graph of N vertices we obtain that the percolation transition of k-cliques takes place when the probability of two vertices being connected by an edge reaches the threshold pc(k)=[(k-1)N]-1/(k-1). At the transition point the scaling of the giant component with N is highly nontrivial and depends on k. We discuss why clique percolation is a novel and efficient approach to the identification of overlapping communities in large real networks.
Outdoor air pollution in close proximity to a continuous point source
NASA Astrophysics Data System (ADS)
Klepeis, Neil E.; Gabel, Etienne B.; Ott, Wayne R.; Switzer, Paul
Data are lacking on human exposure to air pollutants occurring in ground-level outdoor environments within a few meters of point sources. To better understand outdoor exposure to tobacco smoke from cigarettes or cigars, and exposure to other types of outdoor point sources, we performed more than 100 controlled outdoor monitoring experiments on a backyard residential patio in which we released pure carbon monoxide (CO) as a tracer gas for continuous time periods lasting 0.5-2 h. The CO was emitted from a single outlet at a fixed per-experiment rate of 120-400 cc min -1 (˜140-450 mg min -1). We measured CO concentrations every 15 s at up to 36 points around the source along orthogonal axes. The CO sensors were positioned at standing or sitting breathing heights of 2-5 ft (up to 1.5 ft above and below the source) and at horizontal distances of 0.25-2 m. We simultaneously measured real-time air speed, wind direction, relative humidity, and temperature at single points on the patio. The ground-level air speeds on the patio were similar to those we measured during a survey of 26 outdoor patio locations in 5 nearby towns. The CO data exhibited a well-defined proximity effect similar to the indoor proximity effect reported in the literature. Average concentrations were approximately inversely proportional to distance. Average CO levels were approximately proportional to source strength, supporting generalization of our results to different source strengths. For example, we predict a cigarette smoker would cause average fine particle levels of approximately 70-110 μg m -3 at horizontal distances of 0.25-0.5 m. We also found that average CO concentrations rose significantly as average air speed decreased. We fit a multiplicative regression model to the empirical data that predicts outdoor concentrations as a function of source emission rate, source-receptor distance, air speed and wind direction. The model described the data reasonably well, accounting for ˜50% of the log
NASA Astrophysics Data System (ADS)
Felber, R.; Münger, A.; Neftel, A.; Ammann, C.
2015-06-01
Methane (CH4) from ruminants contributes one-third of global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analyzers, the instrumentation at many flux sites has been amended for these gases. However, the application of EC over pastures is challenging due to the spatially and temporally uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to 2 orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best estimate from this study) correspond well to animal respiration chamber measurements reported in the literature. However, a systematic effect of the distance between source and EC tower on cow emissions was found, which is attributed to the analytical footprint model used. We show that the EC method allows one to determine CH4 emissions of cows on a pasture if the data evaluation is adjusted for this purpose and if some cow distribution information is available.
NASA Astrophysics Data System (ADS)
Felber, R.; Münger, A.; Neftel, A.; Ammann, C.
2015-02-01
Methane (CH4) from ruminants contributes one third to global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analysers the instrumentation at many flux sites have been amended for these gases. However the application of EC over pastures is challenging due to the spatial and temporal uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to two orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best guess of this study) correspond well to animal respiration chamber measurements reported in the literature. However a systematic effect of the distance between source and EC tower on cow emissions was found which is attributed to the analytical footprint model used. We show that the EC method allows to determine CH4 emissions of grazing cows if the data evaluation is adjusted for this purpose and if some cow distribution information is available.
Epidemic Percolation Networks, Epidemic Outcomes, and Interventions
Kenah, Eben; Miller, Joel C.
2011-01-01
Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic “Susceptible-Infectious-Removed” (SIR) and “Susceptible-Exposed-Infectious-Removed” (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies.
Epidemic percolation networks, epidemic outcomes, and interventions.
Kenah, Eben; Miller, Joel C
2011-01-01
Epidemic percolation networks (EPNs) are directed random networks that can be used to analyze stochastic "Susceptible-Infectious-Removed" (SIR) and "Susceptible-Exposed-Infectious-Removed" (SEIR) epidemic models, unifying and generalizing previous uses of networks and branching processes to analyze mass-action and network-based S(E)IR models. This paper explains the fundamental concepts underlying the definition and use of EPNs, using them to build intuition about the final outcomes of epidemics. We then show how EPNs provide a novel and useful perspective on the design of vaccination strategies. PMID:21437002
Invasion percolation between two wells in continuous media
NASA Astrophysics Data System (ADS)
Lee, Sang Bub
2016-03-01
Invasion percolation between two wells was studied in continuous media consisted of overlapping disks and spheres. The invasion percolation between injection and extraction wells occurs when a fluid injected through the injection well invades less pressurized neighboring pores until it reaches the extraction well. Attention was paid to whether the probability distribution of the invading mass m and the fractal dimension of the clusters of invaded pore particles remain similar to those of the lattice model. Our results indicated that the power α characterizing the probability distribution via P( m) ∝ m - α was considerably larger than that of the lattice model for a reduced volume density η = η c of pore particles, η c being the percolation critical density, and that it converged to the value for the lattice model for p e = 0 as η was increased, where p e is the pressure of an extraction site for the lattice model. The fractal dimension of the invaded clusters was found to be similar to that of the ordinary lattice percolation clusters generated at the percolation threshold. The scaling of the invaded clusters was also examined, and it held in both two and three dimensions.
Estimating CO2 emissions from point sources: a case study of an isolated power station
NASA Astrophysics Data System (ADS)
Utembe, S. R.; Jones, N.; Rayner, P. J.; Genkova, I.; Griffith, D. W. T.; O'Brien, D. M.; Lunney, C.; Clark, A. J.
2014-12-01
A methodology to estimate CO2 emissions from an isolated power plant is presented and illustrated for the Northern Power Station at Port Augusta, South Australia. The method involves measurement of in-situ and column-averaged CO2 at a site near the power plant, forward modelling (using WRF-Chem) of the observed signals and inverse modelling to obtain an estimate of the fluxes from the power plant. By subtracting the simulated background CO2 (obtained from Monitoring Atmospheric Composition and Climate CO2 fields) from the observed and simulated signals, we are able to account for fluxes from the power plant that are mainly responsible for the variations in the CO2 concentrations. Although the enhancements of the surface concentration of CO2 are a factor of 10 larger than the enhancements in the column-averaged concentration, the forward transport model has difficulty predicting the in-situ data, which is complicated by sea breeze effects and influence from other local sources. Better simulation is obtained for the column-averaged data leading to better estimates of fluxes. The ratio of our estimated emissions to the reported values is 1.06 ± 0.54. Modelling local biospheric fluxes makes little difference either to the estimated emissions or quality of the fit to the data. Variations in the large-scale concentration field have a larger impact highlighting the importance of good boundary conditions even in the relatively homogeneous Southern Hemisphere. The estimates are insensitive to details of the calculation such as stack height or modelling of plume injection. We conclude that column-integrated measurements offer a reasonable trade-off between sensitivity and model capability for estimating point sources.
Percolation of interaction diffusing particles
NASA Technical Reports Server (NTRS)
Selinger, Robin Blumberg; Stanley, H. Eugene
1990-01-01
The connectivity properties of systems of diffusing interacting particles with the blind and myopic diffusion rules are studied. It is found that the blind rule case is equivalent to the lattice gas with J = 0 in all dimensions. The connectivity properties of blind rule diffusion are described by random site percolation due to the fact that the density on neighboring sites is uncorrelated.
NASA Technical Reports Server (NTRS)
Karamchandani, P.; Peters, L. K.
1983-01-01
The steady-state, three-dimensional transport equation for inert pollutant dispersion in the atmosphere is solved analytically to obtain expressions for pollutant concentrations from both a point source and a rectangular area source. The results of this analysis have application to numerical grid models in which the smallest resolvable source is the size of a single grid. The concentrations at ground level along the plume centerline from the two types of sources are in close agreement with each other at distances greater than 10 km downwind when the horizontal dimension of the rectangular source is not less than 100 m. The dimension of the source in the vertical direction is held constant at 50 m. Similar results are obtained for concentrations along the plume centerline at the effective stack height. When the size of the source in the crosswind direction is increased to 1 km, good agreement between the two concentrations is obtained for downwind distances over 60 km for the ground level case and over 140 km for the concentration at stack height level. For the horizontal dimension equal to 10 km, good agreement between the two cases is only obtained at extremely large downwind distances at both the stack height and ground levels.
NASA Astrophysics Data System (ADS)
Corwin, Dennis L.; Loague, Keith; Ellsworth, Timothy R.
The information age has ushered in a global awareness of complex environmental problems that do not respect political or physical boundaries: climatic change, ozone layer depletion, deforestation, desertification, and non-point source (NPS) pollution. Among these global environmental problems, NPS pollutants represent a perfect example of a complex multidisciplinary problem that exists over multiple scales with tremendous spatial and temporal complexity. To address the NPS problem, specific to the vadose zone, advanced information technologies must be applied in a spatial context. An integrated system of advanced information technologies (i.e., global positioning, geographic information system, geostatistics, remote sensing, solute transport modeling, neural networks, transfer functions, fuzzy logic, hierarchical theory, and uncertainty analysis) provides a framework from which real-time and/or simulated assessments of NPS pollution can be made. The ability to accurately assess present and future NPS-pollution impacts on ecosystems ranging from local to global scales provides a powerful tool for environmental stewardship and guiding future human activities.
Bayesian approach for counting experiment statistics applied to a neutrino point source analysis
NASA Astrophysics Data System (ADS)
Bose, D.; Brayeur, L.; Casier, M.; de Vries, K. D.; Golup, G.; van Eijndhoven, N.
2013-12-01
In this paper we present a model independent analysis method following Bayesian statistics to analyse data from a generic counting experiment and apply it to the search for neutrinos from point sources. We discuss a test statistic defined following a Bayesian framework that will be used in the search for a signal. In case no signal is found, we derive an upper limit without the introduction of approximations. The Bayesian approach allows us to obtain the full probability density function for both the background and the signal rate. As such, we have direct access to any signal upper limit. The upper limit derivation directly compares with a frequentist approach and is robust in the case of low-counting observations. Furthermore, it allows also to account for previous upper limits obtained by other analyses via the concept of prior information without the need of the ad hoc application of trial factors. To investigate the validity of the presented Bayesian approach, we have applied this method to the public IceCube 40-string configuration data for 10 nearby blazars and we have obtained a flux upper limit, which is in agreement with the upper limits determined via a frequentist approach. Furthermore, the upper limit obtained compares well with the previously published result of IceCube, using the same data set.
Designation of lenses with a single freeform surface for multiple point sources.
Lin, Ku Chin
2012-03-01
Optical lenses with a freeform surface can be designed for diverse illumination profiles with uniformity. However, most of the previous studies formulate the problem for a single point source, and the lens topology has freeform top and spherical bottom surfaces. In this study, the formulation is extended for multiple point sources, and a flat surface is included in the lens bottom topology for ease of prototyping and manufacturing. The extended formulation for multiple point sources requires only a freeform surface to design. The formulation of overdetermined coupling equations is solved by applying the weighted least-square method. The weightings are correlated with the emitting intensities of sources in terms of an inverse gamma function. The weighting scheme gives a parameter space for designation of illumination profile fit and uniformity. The adequacy of the extended formulation is demonstrated by simulation. Examples of circular and rectangular illumination for single and multiple point sources are studied. The simulation results show that unbalanced luminance distribution can be induced by an offset source and collimated by a lens, which is designated by taking the offset into account. For multiple point sources, illumination profile fit and uniformity are designated in trade off based on the parameter design. PMID:22472748
Explosive percolation transitions in growing networks
NASA Astrophysics Data System (ADS)
Oh, S. M.; Son, S.-W.; Kahng, B.
2016-03-01
Recent extensive studies of the explosive percolation (EP) model revealed that the EP transition is second order with an extremely small value of the critical exponent β associated with the order parameter. This result was obtained from static networks, in which the number of nodes in the system remains constant during the evolution of the network. However, explosive percolating behavior of the order parameter can be observed in social networks, which are often growing networks, where the number of nodes in the system increases as dynamics proceeds. However, extensive studies of the EP transition in such growing networks are still missing. Here we study the nature of the EP transition in growing networks by extending an existing growing network model to a general case in which m node candidates are picked up in the Achiloptas process. When m =2 , this model reduces to the existing model, which undergoes an infinite-order transition. We show that when m ≥3 , the transition becomes second order due to the suppression effect against the growth of large clusters. Using the rate-equation approach and performing numerical simulations, we also show that the exponent β decreases algebraically with increasing m , whereas it does exponentially in a corresponding static random network model. Finally, we find that the hyperscaling relations hold but in different forms.
Explosive percolation transitions in growing networks.
Oh, S M; Son, S-W; Kahng, B
2016-03-01
Recent extensive studies of the explosive percolation (EP) model revealed that the EP transition is second order with an extremely small value of the critical exponent β associated with the order parameter. This result was obtained from static networks, in which the number of nodes in the system remains constant during the evolution of the network. However, explosive percolating behavior of the order parameter can be observed in social networks, which are often growing networks, where the number of nodes in the system increases as dynamics proceeds. However, extensive studies of the EP transition in such growing networks are still missing. Here we study the nature of the EP transition in growing networks by extending an existing growing network model to a general case in which m node candidates are picked up in the Achiloptas process. When m = 2, this model reduces to the existing model, which undergoes an infinite-order transition. We show that when m ≥ 3, the transition becomes second order due to the suppression effect against the growth of large clusters. Using the rate-equation approach and performing numerical simulations, we also show that the exponent β decreases algebraically with increasing m, whereas it does exponentially in a corresponding static random network model. Finally, we find that the hyperscaling relations hold but in different forms. PMID:27078375
Estimation of the skull insertion loss using an optoacoustic point source
NASA Astrophysics Data System (ADS)
Estrada, Héctor; Rebling, Johannes; Turner, Jake; Kneipp, Moritz; Shoham, Shy; Razansky, Daniel
2016-03-01
The acoustically-mismatched skull bone poses significant challenges for the application of ultrasonic and optical techniques in neuroimaging, still typically requiring invasive approaches using craniotomy or skull thinning. Optoacoustic imaging partially circumvents the acoustic distortions due to the skull because the induced wave is transmitted only once as opposed to the round trip in pulse-echo ultrasonography. To this end, the mouse brain has been successfully imaged transcranially by optoacoustic scanning microscopy. Yet, the skull may adversely affect the lateral and axial resolution of transcranial brain images. In order to accurately characterize the complex behavior of the optoacoustic signal as it traverses through the skull, one needs to consider the ultrawideband nature of the optoacoustic signals. Here the insertion loss of murine skull has been measured by means of a hybrid optoacoustic-ultrasound scanning microscope having a spherically focused PVDF transducer and pulsed laser excitation at 532 nm of a 20 μm diameter absorbing microsphere acting as an optoacoustic point source. Accurate modeling of the acoustic transmission through the skull is further performed using a Fourier-domain expansion of a solid-plate model, based on the simultaneously acquired pulse-echo ultrasound image providing precise information about the skull's position and its orientation relative to the optoacoustic source. Good qualitative agreement has been found between the a solid-plate model and experimental measurements. The presented strategy might pave the way for modeling skull effects and deriving efficient correction schemes to account for acoustic distortions introduced by an adult murine skull, thus improving the spatial resolution, effective penetration depth and overall image quality of transcranial optoacoustic brain microscopy.
NASA Astrophysics Data System (ADS)
Tohme, Michel S.; Qi, Jinyi
2009-06-01
The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 × 3 line phantom, an ultra-micro resolution phantom and a 22Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP
Tohme, Michel S.; Qi, Jinyi
2009-01-01
The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can be easily applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2-D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3-by-3 line phantom, an ultra-micro resolution phantom, and a 22Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP
Code of Federal Regulations, 2012 CFR
2012-07-01
... and standards for direct discharge point sources that use end-of-pipe biological treatment. 414.91... Use End-of-Pipe Biological Treatment § 414.91 Toxic pollutant effluent limitations and standards for direct discharge point sources that use end-of-pipe biological treatment. (a) Any point source subject...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and standards for direct discharge point sources that use end-of-pipe biological treatment. 414.91... Use End-of-Pipe Biological Treatment § 414.91 Toxic pollutant effluent limitations and standards for direct discharge point sources that use end-of-pipe biological treatment. (a) Any point source subject...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and standards for direct discharge point sources that use end-of-pipe biological treatment. 414.91... Use End-of-Pipe Biological Treatment § 414.91 Toxic pollutant effluent limitations and standards for direct discharge point sources that use end-of-pipe biological treatment. (a) Any point source subject...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and standards for direct discharge point sources that use end-of-pipe biological treatment. 414.91... Use End-of-Pipe Biological Treatment § 414.91 Toxic pollutant effluent limitations and standards for direct discharge point sources that use end-of-pipe biological treatment. (a) Any point source subject...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and standards for direct discharge point sources that use end-of-pipe biological treatment. 414.91... Use End-of-Pipe Biological Treatment § 414.91 Toxic pollutant effluent limitations and standards for direct discharge point sources that use end-of-pipe biological treatment. (a) Any point source subject...
Memory decay and loss of criticality in quorum percolation.
Renault, Renaud; Monceau, Pascal; Bottani, Samuel
2013-12-01
In this paper, we present the effects of memory decay on a bootstrap percolation model applied to random directed graphs (quorum percolation). The addition of decay was motivated by its natural occurrence in physical systems previously described by percolation theory, such as cultured neuronal networks, where decay originates from ionic leakage through the membrane of neurons and/or synaptic depression. Surprisingly, this feature alone appears to change the critical behavior of the percolation transition, where discontinuities are replaced by steep but finite slopes. Using different numerical approaches, we show evidence for this qualitative change even for very small decay values. In experiments where the steepest slopes can not be resolved and still appear as discontinuities, decay produces nonetheless a quantitative difference on the location of the apparent critical point. We discuss how this shift impacts network connectivity previously estimated without considering decay. In addition to this particular example, we believe that other percolation models are worth reinvestigating, taking into account similar sorts of memory decay. PMID:24483413
Extending the search for neutrino point sources with IceCube above the horizon
IceCube Collaboration; Abbasi, R.
2009-11-20
Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This approach improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies.
Baseline point source load inventory, 1985. 1991 reevaluation report No. 2
Not Available
1993-02-04
The report finalizes and documents the Chesapeake Bay Agreement states' 1985 point source nutrient load estimates initially presented in the Baywide Nutrient Reduction Strategy (BNRS). The Bay Agreement states include Maryland, Virginia, Pennsylvania, and the District of Columbia. Each of the states final, annual, discharged, 1985 point source total phosphorus and total nitrogen nutrient load estimates are presented. These estimates are to serve as the point source baseline for the year 2000 40% nutrient reduction goal. Facility by facility flows, nutrient concentrations and nutrient loads for 1985 from above the fall line (AFL) and from below the fall line (BFL) are presented. The report presents the percent change in the 1985 baseline loads for each of the Bay agreement states relative to 1991. Estimates of 1991 nutrient loads are not available for non-agreement states at this time.
Long Term Temporal and Spectral Evolution of Point Sources in Nearby Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Durmus, D.; Guver, T.; Hudaverdi, M.; Sert, H.; Balman, Solen
2016-06-01
We present the results of an archival study of all the point sources detected in the lines of sight of the elliptical galaxies NGC 4472, NGC 4552, NGC 4649, M32, Maffei 1, NGC 3379, IC 1101, M87, NGC 4477, NGC 4621, and NGC 5128, with both the Chandra and XMM-Newton observatories. Specifically, we studied the temporal and spectral evolution of these point sources over the course of the observations of the galaxies, mostly covering the 2000 - 2015 period. In this poster we present the first results of this study, which allows us to further constrain the X-ray source population in nearby elliptical galaxies and also better understand the nature of individual point sources.
The acoustic gravity wave induced by a point source in the middle atmosphere
NASA Technical Reports Server (NTRS)
Zhang, X. J.; Xiong, N. L.
1985-01-01
Acoustic gravity wave (AGW) results computed for a stationary impulsive point source and a moving point source in the middle atmosphere are presented. For a stationary impulsive point Row's far field formula of the AGW was extended into the near field one, which comprises the Zeroth order Bessel function and its derivative terms. When (t-t sub o) is not large, the contribution of the derivative terms is important. The computed results agree with the experimental ones. For a moving point source with supersonic velocity, AGW is calculated using the moving point theory. Two solar eclipses that occurred in the lower latitude and over the ocean on Feb. 16, 1980, and June 11, 1983, were compared. The results show that the theoretical curve of AGW is fairly consistent with the observed ones.
NASA Astrophysics Data System (ADS)
Ariskin, Alexey; Danyushevsky, Leonid
2013-04-01
An important feature of the Dovyren intrusive complex [1] is its fertility due to the presence of massive sulphide ores near the bottom of the Ioko-Dovyren massif (YDM, SW and NE margins), as well as PGE-reefs in anorthosites from the Ol-gabbronorite zone in the centre [2]. These observations argue for the importance of downward percolation of sulphides through the porous space of cumulates and probable link of this process with upward migration of intercumulus melts at a post-cumulus stage. Indirectly, this is supported by the basic conclusion on the open-system behavior of the magma chamber [1]. A key aspect of these speculations is the onset of sulphide immiscibility in YDM parental magmas and the original cumulates. To reconstruct the sulphide saturation history, we applied a newly developed sulphide version of COMAGMAT (ver. 5.2 [3]) to the rocks from the chilled zone of YDM and underlying ultramafic sills, by simulating the course of their crystallization coupled with the SCSS calculations. Modeled crystallization trajectories evidence for under-saturated nature of the most primitive parental magmas (1310oC, Fo88) from which the chilled rocks were crystallized, whereas more evolved rocks from the sills demonstrate sulphide saturation starting from their initial temperature (1190oC, Fo85), see [1]. This correlates with the absence of sulphide ores in the central parts of the pluton and their occurrence in underlying ultramafics and YDM border series containing olivine Fo~85. Another set of calculations was carried out to demonstrate the effect of bulk Ni contents in Ol cumulate piles on the evolution of SCSS during their post-cumulus crystallization [3]. To achieve the goal, two calculations by the COMAGMAT-5.2 model were carried out. The first one involved modelling equilibrium crystallization for an initial mixture of Ol (Fo88) and intercumulus melt (~1320oC), with the starting composition corresponding to that of a bottom Pl-dunite (2315 ppm NiO, 0.030 wt
Detecting long-term changes in point-source fossil CO2 emissions with tree ring archives
NASA Astrophysics Data System (ADS)
Keller, Elizabeth D.; Turnbull, Jocelyn C.; Norris, Margaret W.
2016-05-01
We examine the utility of tree ring 14C archives for detecting long-term changes in fossil CO2 emissions from a point source. Trees assimilate carbon from the atmosphere during photosynthesis, in the process faithfully recording the average atmospheric 14C content in each new annual tree ring. Using 14C as a proxy for fossil CO2, we examine interannual variability over six years of fossil CO2 observations between 2004-2005 and 2011-2012 from two trees growing near the Kapuni Gas Treatment Plant in rural Taranaki, New Zealand. We quantify the amount of variability that can be attributed to transport and meteorology by simulating constant point-source fossil CO2 emissions over the observation period with the atmospheric transport model WindTrax. We compare model simulation results to observations and calculate the amount of change in emissions that we can detect with new observations over annual or multi-year time periods, given both the measurement uncertainty of 1ppm and the modelled variation in transport. In particular, we ask, what is the minimum amount of change in emissions that we can detect using this method, given a reference period of six years? We find that changes of 42 % or more could be detected in a new sample from one year at the same observation location or 22 % in the case of four years of new samples. This threshold is reduced and the method becomes more practical the more the size of the signal increases. For point sources 10 times larger than the Kapuni plant (a more typical size for power plants worldwide), it would be possible to detect sustained emissions changes on the order of 10 %, given suitable meteorology and observations.
Conductivity in percolation networks with broad distributions of resistances
NASA Astrophysics Data System (ADS)
Machta, J.; Guyer, R. A.; Moore, S. M.
1986-04-01
Diluted resistor networks with a broad distribution of resistances are studied near the percolation threshold. A hierarchical model of the backbone of the percolation cluster is employed. Resistor networks are considered where the resistors, R, are chosen from a distribution having a power-law tail such that Prob\\{R>X\\}~X-α as X-->∞, 0<α<1. Such distributions arise naturally in con- tinuum percolation systems. The hierarchical model is studied numerically and using a renormalization-group transformation for the distribution of resistances. The conclusion is that the conductivity exponent t is the greater of to and (d-2)ν+1/α where to is the universal value of the conductivity exponent and ν is the correlation-length exponent. This result is in agreement with Straley's earlier predictions [J. Phys. C 15, 2333 (1982); 15, 2343 (1982)].
Steady-state response of an elastic half space containing a point source of heat. Research report
Booker, J.R.; Carter, J.P.
1985-08-01
Closed form solutions are presented for the steady-state distributions of temperature, displacement, and stress around a point source of heat embedded in a homogeneous, isotropic elastic half space. These solutions were evaluated for a typical case of a heat source buried, in rock and quantities such as the heave of the ground surface and the maximum horizontal tensile stress at the surface estimated. The results may have applications in the fields of geothermal, geotechnical, nuclear, and petroleum engineering where the soil or rock might reasonably be modelled, at least in the first instance, as a linear thermoelastic material.
Percolation on bipartite scale-free networks
NASA Astrophysics Data System (ADS)
Hooyberghs, H.; Van Schaeybroeck, B.; Indekeu, J. O.
2010-08-01
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual-contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with a probability proportional to (, where α is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.
Ning, Shu-Kuang; Chang, Ni-Bin; Jeng, Kai-Yu; Tseng, Yi-Hsing
2006-04-01
Soil erosion associated with non-point source pollution is viewed as a process of land degradation in many terrestrial environments. Careful monitoring and assessment of land use variations with different temporal and spatial scales would reveal a fluctuating interface, punctuated by changes in rainfall and runoff, movement of people, perturbation from environmental disasters, and shifts in agricultural activities and cropping patterns. The use of multi-temporal remote sensing images in support of environmental modeling analysis in a geographic information system (GIS) environment leading to identification of a variety of long-term interactions between land, resources, and the built environment has been a highly promising approach in recent years. This paper started with a series of supervised land use classifications, using SPOT satellite imagery as a means, in the Kao-Ping River Basin, South Taiwan. Then, it was designed to differentiate the variations of eight land use patterns in the past decade, including orchard, farmland, sugarcane field, forest, grassland, barren, community, and water body. Final accuracy was confirmed based on interpretation of available aerial photographs and global positioning system (GPS) measurements. Finally, a numerical simulation model (General Watershed Loading Function, GWLF) was used to relate soil erosion to non-point source pollution impacts in the coupled land and river water systems. Research findings indicate that while the decadal increase in orchards poses a significant threat to water quality, the continual decrease in forested land exhibits a potential impact on water quality management. Non-point source pollution, contributing to part of the downstream water quality deterioration of the Kao-Ping River system in the last decade, has resulted in an irreversible impact on land integrity from a long-term perspective. PMID:16182435
Analysis of SO II point source emissions using NASA atmospheric infrared sounder data
NASA Astrophysics Data System (ADS)
Shen, Sylvia S.; Miller, David P.; Lewis, Paul E.
2007-04-01
Determining the extent to which large power plant emission sources interacting with atmospheric constituents affect the environment could play a significant role in future U.S. energy production policy. The effects on the environment caused by the interaction between power plant emissions and atmospheric constituents has not been investigated in depth due to the lack of calibrated spectral data on a suitable temporal and spatial scale. The availability of NASA's space-based Atmospheric Infrared Sounder (AIRS) data makes it possible to explore, and begin the first steps toward establishing, a correlation between known emission sources and environmental indicators. An exploratory study was conducted in which a time series of 26 cloud-free AIRS data containing two coal-fired power plants in northern New Mexico were selected, acquired, and analyzed for SO II emissions. A generic forward modeling process was also developed to derive an estimate of the expected AIRS pixel radiance containing the SO II emissions from the two power plants based on published combustion analysis data for coal and available power plant documentation. Analysis of the AIRS NEΔR calculated in this study and subsequent comparison with the radiance values for SO II calculated from the forward model provided essential information regarding the suitability and risk in the use of a modified AIRS configuration for monitoring anthropogenic point source emissions. The results of this study along with its conclusions and recommendations in conjunction with additional research collaboration in several specific topics will provide guidance for the development of the next generation infrared spectrometer system that NASA is considering building for environmental monitoring.
Bounds for percolation thresholds on directed and undirected graphs
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Pryadko, Leonid
2015-03-01
Percolation theory is an efficient approach to problems with strong disorder, e.g., in quantum or classical transport, composite materials, and diluted magnets. Recently, the growing role of big data in scientific and industrial applications has led to a renewed interest in graph theory as a tool for describing complex connections in various kinds of networks: social, biological, technological, etc. In particular, percolation on graphs has been used to describe internet stability, spread of contagious diseases and computer viruses; related models describe market crashes and viral spread in social networks. We consider site-dependent percolation on directed and undirected graphs, and present several exact bounds for location of the percolation transition in terms of the eigenvalues of matrices associated with graphs, including the adjacency matrix and the Hashimoto matrix used to enumerate non-backtracking walks. These bounds correspond t0 a mean field approximation and become asymptotically exact for graphs with no short cycles. We illustrate this convergence numerically by simulating percolation on several families of graphs with different cycle lengths. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.
The Herschel Virgo Cluster Survey. XVII. SPIRE point-source catalogs and number counts
NASA Astrophysics Data System (ADS)
Pappalardo, Ciro; Bendo, George J.; Bianchi, Simone; Hunt, Leslie; Zibetti, Stefano; Corbelli, Edvige; di Serego Alighieri, Sperello; Grossi, Marco; Davies, Jonathan; Baes, Maarten; De Looze, Ilse; Fritz, Jacopo; Pohlen, Michael; Smith, Matthew W. L.; Verstappen, Joris; Boquien, Médéric; Boselli, Alessandro; Cortese, Luca; Hughes, Thomas; Viaene, Sebastien; Bizzocchi, Luca; Clemens, Marcel
2015-01-01
Aims: We present three independent catalogs of point-sources extracted from SPIRE images at 250, 350, and 500 μm, acquired with the Herschel Space Observatory as a part of the Herschel Virgo Cluster Survey (HeViCS). The catalogs have been cross-correlated to consistently extract the photometry at SPIRE wavelengths for each object. Methods: Sources have been detected using an iterative loop. The source positions are determined by estimating the likelihood to be a real source for each peak on the maps, according to the criterion defined in the sourceExtractorSussextractor task. The flux densities are estimated using the sourceExtractorTimeline, a timeline-based point source fitter that also determines the fitting procedure with the width of the Gaussian that best reproduces the source considered. Afterwards, each source is subtracted from the maps, removing a Gaussian function in every position with the full width half maximum equal to that estimated in sourceExtractorTimeline. This procedure improves the robustness of our algorithm in terms of source identification. We calculate the completeness and the flux accuracy by injecting artificial sources in the timeline and estimate the reliability of the catalog using a permutation method. Results: The HeViCS catalogs contain about 52 000, 42 200, and 18 700 sources selected at 250, 350, and 500 μm above 3σ and are ~75%, 62%, and 50% complete at flux densities of 20 mJy at 250, 350, 500 μm, respectively. We then measured source number counts at 250, 350, and 500 μm and compare them with previous data and semi-analytical models. We also cross-correlated the catalogs with the Sloan Digital Sky Survey to investigate the redshift distribution of the nearby sources. From this cross-correlation, we select ~2000 sources with reliable fluxes and a high signal-to-noise ratio, finding an average redshift z ~ 0.3 ± 0.22 and 0.25 (16-84 percentile). Conclusions: The number counts at 250, 350, and 500 μm show an increase in
Krings, Thomas; Mauerhofer, Eric
2011-06-01
This work improves the reliability and accuracy in the reconstruction of the total isotope activity content in heterogeneous nuclear waste drums containing point sources. The method is based on χ(2)-fits of the angular dependent count rate distribution measured during a drum rotation in segmented gamma scanning. A new description of the analytical calculation of the angular count rate distribution is introduced based on a more precise model of the collimated detector. The new description is validated and compared to the old description using MCNP5 simulations of angular dependent count rate distributions of Co-60 and Cs-137 point sources. It is shown that the new model describes the angular dependent count rate distribution significantly more accurate compared to the old model. Hence, the reconstruction of the activity is more accurate and the errors are considerably reduced that lead to more reliable results. Furthermore, the results are compared to the conventional reconstruction method assuming a homogeneous matrix and activity distribution. PMID:21353575
String percolation and the Glasma
NASA Astrophysics Data System (ADS)
de Deus, J. Dias; Pajares, C.
2011-01-01
We compare string percolation phenomenology to Glasma results on particle rapidity densities, effective string or flux tube intrinsic correlations, the ridge phenomena and long range forward-backward correlations. Effective strings may be a tool to extend the Glasma to the low density QCD regime. A good example is given by the minimum of the negative binomial distribution parameter k expected to occur at low energy/centrality.
Novel percolation transitions and coupled catastrophes
NASA Astrophysics Data System (ADS)
D'Souza, Raissa
Collections of interdependent networks are at the core of modern society, spanning physical, biological and social systems. Simple mathematical models of the structure and function of networks can provide important insights into real-world systems, enhancing our ability to steer and control them. Here our focus is on abrupt changes in networks, due both to phase transitions and to jumping between bi-stable equilibria. We begin with an overview of novel classes of percolation phase transitions that result from repeated, small interventions intended to delay the transition. These new phenomena allow us to extend percolation approaches to modular networks, Brownian motion, and cluster growth dynamics. We then focus on abrupt transitions due to a system jumping between bi-stable equilibria, modeled as a cusp catastrophe in nonlinear dynamics. We show that when systems that each undergo a cusp catastrophe interact, we can observe a new phenomena of catastrophe-hopping leading to non-local cascading failures. Here an intermediate system facilitates the propagation of a sudden change or collapse, and we show that catastrophe hopping is consistent with the outbreak of protests observed during the Arab Spring of 2011.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
...EPA is proposing changes to the effluent limitations guidelines and standards for the Construction and Development point source category. EPA is proposing these changes pursuant to a settlement agreement to resolve litigation. This proposed rule would withdraw the numeric discharge standards, which are currently stayed, and change several of the non-numeric provisions of the existing...
40 CFR 1066.930 - Equipment for point-source measurement of running losses.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-source measurement of running losses. For point-source measurement of running loss emissions, use equipment meeting the specifications in 40 CFR 86.107-96(i) Evaporative and Refueling Emission Test... of running losses. 1066.930 Section 1066.930 Protection of Environment ENVIRONMENTAL...
Technology Transfer Automated Retrieval System (TEKTRAN)
A study was conducted to determine the impact of tillage on dispersal of Tilletia indica teliospores from a concentrated point source in Arizona in November 2004. The infested source was created using a 300 ml teliospore suspension, containing approximately 90,000 teliospores per ml, sprayed onto a...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... AGENCY 40 CFR Part 450 Proposed Rule Staying Numeric Limitation for the Construction and Development... requirements for the Construction and Development Point Source Category. This action is necessary so that EPA... regulated by this action, you should carefully examine the applicability criteria in 40 CFR 450.10 (74...
A New Method for Finding Point Sources in High-energy Neutrino Data
NASA Astrophysics Data System (ADS)
Fang, Ke; Miller, M. Coleman
2016-08-01
The IceCube collaboration has reported the first detection of high-energy astrophysical neutrinos, including ˜50 high-energy starting events, but no individual sources have been identified. It is therefore important to develop the most sensitive and efficient possible algorithms to identify the point sources of these neutrinos. The most popular current method works by exploring a dense grid of possible directions to individual sources, and identifying the single direction with the maximum probability of having produced multiple detected neutrinos. This method has numerous strengths, but it is computationally intensive and because it focuses on the single best location for a point source, additional point sources are not included in the evidence. We propose a new maximum likelihood method that uses the angular separations between all pairs of neutrinos in the data. Unlike existing autocorrelation methods for this type of analysis, which also use angular separations between neutrino pairs, our method incorporates information about the point-spread function and can identify individual point sources. We find that if the angular resolution is a few degrees or better, then this approach reduces both false positive and false negative errors compared to the current method, and is also more computationally efficient up to, potentially, hundreds of thousands of detected neutrinos.
Effect of tissue inhomogeneity on dose distribution of point sources of low-energy electrons.
Kwok, C S; Bialobzyski, P J; Yu, S K; Prestwich, W V
1990-01-01
Perturbation in dose distributions of point sources of low-energy electrons at planar interfaces of cortical bone (CB) and red marrow (RM) was investigated experimentally and by Monte Carlo codes EGS and the TIGER series. Ultrathin LiF thermoluminescent dosimeters were used to measure the dose distributions of point sources of 204Tl and 147Pm in RM. When the point sources were at 12 mg/cm2 from a planar interface of CB and RM equivalent plastics, dose enhancement ratios in RM averaged over the region 0-12 mg/cm2 from the interface were measured to be 1.08 +/- 0.03 (SE) and 1.03 +/- 0.03 (SE) for 204Tl and 147Pm, respectively. The Monte Carlo codes predicted 1.05 +/- 0.02 and 1.01 +/- 0.02 for the two nuclides, respectively. However, EGS gave consistently 3% higher dose in the dose scoring region than the TIGER series when point sources of monoenergetic electrons up to 0.75 MeV energy were considered in the homogeneous RM situation or in the CB and RM heterogeneous situation. By means of the TIGER series, it was demonstrated that aluminum, which is normally assumed to be equivalent to CB in radiation dosimetry, leads to an overestimation of backscattering of low-energy electrons in soft tissue at a CB-soft-tissue interface by as much as a factor of 2. PMID:2233564
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-03
... Section 450.10 of the December 1, 2009 final rule (74 FR 62995) and the definition of ``storm water... Development Point Source Category (hereafter referred to as the ``C&D rule'') on December 1, 2009 (74 FR 62995... Elimination System (NPDES) stormwater regulations (55 FR 47990) on November 16, 1990. The Phase I...
Percolation-based precursors of transitions in extended systems
Rodríguez-Méndez, Víctor; Eguíluz M, Víctor M.; Hernández-García, Emilio; Ramasco, José J.
2016-01-01
Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system’s time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system’s tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon. PMID:27412567
Percolation-based precursors of transitions in extended systems.
Rodríguez-Méndez, Víctor; Eguíluz M, Víctor M; Hernández-García, Emilio; Ramasco, José J
2016-01-01
Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system's time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system's tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon. PMID:27412567
Percolation-based precursors of transitions in extended systems
NASA Astrophysics Data System (ADS)
Rodríguez-Méndez, Víctor; Eguíluz M, Víctor M.; Hernández-García, Emilio; Ramasco, José J.
2016-07-01
Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system’s time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system’s tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon.
Electrical percolation of fibre mixtures
NASA Astrophysics Data System (ADS)
Xie, Juan; Gordon, Stuart; Long, Hairu; Miao, Menghe
2015-11-01
In the development of conductive threads for wearable electronics, nonconductive cotton fibres and conductive stainless steel fibres are mixed to produce composite yarns at a wide range of stainless steel fibre weight fractions. The electrical resistance of the composite yarns is measured at different probe span lengths, ranging from 0.5 to 10 L ss ( L ss = 50 mm is the average length of stainless steel fibres). The percolation threshold and critical exponent are determined for each span length. The critical exponent followed a decreasing trend from 1.87 to 1.17 as the span length was increased. When the conductive fibre loading was expressed in terms of conductive fibre volume fraction, the percolation critical exponent showed a similar trend of change with probe span length. Such a dependence of percolation critical exponent on resistance probe span length has not been previously reported for conductive particle-filled polymer composites, probably because the probe span length used in resistance measurement is orders of magnitude larger than the dimension of the conductive fillers in the composites.
Percolation in dense storage arrays
NASA Astrophysics Data System (ADS)
Kirkpatrick, Scott; Wilcke, Winfried W.; Garner, Robert B.; Huels, Harald
2002-11-01
As computers and their accessories become smaller, cheaper, and faster the providers of news, retail sales, and other services we now take for granted on the Internet have met their increasing computing needs by putting more and more computers, hard disks, power supplies, and the data communications linking them to each other and to the rest of the wired world into ever smaller spaces. This has created a new and quite interesting percolation problem. It is no longer desirable to fix computers, storage or switchgear which fail in such a dense array. Attempts to repair things are all too likely to make problems worse. The alternative approach, letting units “fail in place”, be removed from service and routed around, means that a data communications environment will evolve with an underlying regular structure but a very high density of missing pieces. Some of the properties of this kind of network can be described within the existing paradigm of site or bond percolation on lattices, but other important questions have not been explored. I will discuss 3D arrays of hundreds to thousands of storage servers (something which it is quite feasible to build in the next few years), and show that bandwidth, but not percolation fraction or shortest path lengths, is the critical factor affected by the “fail in place” disorder. Redundancy strategies traditionally employed in storage systems may have to be revised. Novel approaches to routing information among the servers have been developed to minimize the impact.
Percolative fragmentation and spontaneous agglomeration
Hurt, R.; Davis, K.
1999-03-01
Captive particle imaging experiments were performed on over 200 coal and char particles in the pulverized size range from four coals of various rank at oxygen concentration from 3--19 mol% and at gas temperatures of about 1250 K. Despite wide variations in single-particle behavior, the data set reveals two clear trends that provide new information on the nature of char combustion. First, the low-rank coal chars are observed to maintain their high reactivity through the late stages of combustion, thus avoiding the near-extinction events and long burnout tails observed for bituminous coal chars. Secondly, percolative fragmentation in the late stages of combustion is a rare event under these conditions. Some particles reach a percolation threshold rate in combustion, but typically undergo spontaneous agglomeration rather than liberation of the incipient fragments. It is concluded that percolative fragmentation behavior in the pulverized size range is determined not only by solid-phase connectivity, but also by a real competition between disruptive and cohesive forces present at the time of formation of the colloidal-sized incipient fragments.
Watershed-based point sources permitting strategy and dynamic permit-trading analysis.
Ning, Shu-Kuang; Chang, Ni-Bin
2007-09-01
Permit-trading policy in a total maximum daily load (TMDL) program may provide an additional avenue to produce environmental benefit, which closely approximates what would be achieved through a command and control approach, with relatively lower costs. One of the important considerations that might affect the effective trading mechanism is to determine the dynamic transaction prices and trading ratios in response to seasonal changes of assimilative capacity in the river. Advanced studies associated with multi-temporal spatially varied trading ratios among point sources to manage water pollution hold considerable potential for industries and policy makers alike. This paper aims to present an integrated simulation and optimization analysis for generating spatially varied trading ratios and evaluating seasonal transaction prices accordingly. It is designed to configure a permit-trading structure basin-wide and provide decision makers with a wealth of cost-effective, technology-oriented, risk-informed, and community-based management strategies. The case study, seamlessly integrating a QUAL2E simulation model with an optimal waste load allocation (WLA) scheme in a designated TMDL study area, helps understand the complexity of varying environmental resources values over space and time. The pollutants of concern in this region, which are eligible for trading, mainly include both biochemical oxygen demand (BOD) and ammonia-nitrogen (NH3-N). The problem solution, as a consequence, suggests an array of waste load reduction targets in a well-defined WLA scheme and exhibits a dynamic permit-trading framework among different sub-watersheds in the study area. Research findings gained in this paper may extend to any transferable dynamic-discharge permit (TDDP) program worldwide. PMID:16930806
Directed compact percolation near a damp wall with biased growth
NASA Astrophysics Data System (ADS)
Lonsdale, H.; Owczarek, A. L.
2012-11-01
The model of directed compact percolation near a damp wall is generalized to allow for a bias in the growth of a cluster, either towards or away from the wall. The percolation probability for clusters beginning with seed width m, any distance from the wall, is derived exactly by solving the associated recurrences. It is found that the general biased case near a damp wall leads to a critical exponent β = 1, in line with the dry biased case, which differs from the unbiased damp/dry exponent β = 2.
Multifractality of self-avoiding walks on percolation clusters.
Blavatska, Viktoria; Janke, Wolfhard
2008-09-19
We consider self-avoiding walks on the backbone of percolation clusters in space dimensions d=2,3,4. Applying numerical simulations, we show that the whole multifractal spectrum of singularities emerges in exploring the peculiarities of the model. We obtain estimates for the set of critical exponents that govern scaling laws of higher moments of the distribution of percolation cluster sites visited by self-avoiding walks, in a good correspondence with an appropriately summed field-theoretical epsilon=6-d expansion [H.-K. Janssen and O. Stenull, Phys. Rev. E 75, 020801(R) (2007)10.1103/PhysRevE.75.020801]. PMID:18851389
Gas transport through magma near the percolation threshold (Invited)
NASA Astrophysics Data System (ADS)
Llewellin, E. W.; Blower, J.; Leslie, D.
2009-12-01
Explosive silicic eruptions may simultaneously produce both tube pumice - containing highly-elongate vesicles - and pumice containing sub-spherical vesicles. This has been cited as evidence for strain localization within the volcanic conduit: in a relatively-undeformed axial ‘plug’ bubbles are spherical (regime 1) whilst near the conduit margin rapidly-shearing magma bears elongate bubbles (regime 2). Published numerical studies support this model and indicate that bubbly-magma rheology or viscous heating may be responsible for strain localization. The difference in bubble morphology in these two regimes has important consequences for magma permeability. We present the results of fluid dynamic simulations which quantify the anisotropy of permeability in regime 2 as a function of gas volume fraction and bubble aspect ratio. In this regime, we find that vertical permeability may be many times greater than radial permeability, and that permeability anisotropy is most pronounced near the percolation threshold. We further use a network model to quantify the development of permeability in regime 1. In the case where the predominantly vertical expansion of the magma is slow compared with bubble relaxation time, we find that permeability is, again, anisotropic, but that radial permeability dominates. This effect is also most pronounced near the percolation threshold, and percolation is expected to occur radially before vertical percolation occurs. Our findings imply that gas transport in regime 1 is predominantly radial, whilst vertical gas transport is favoured in regime 2. Consequently, near the percolation threshold, conditions are appropriate for effective degassing of the central magma plug as gas permeates radially to the conduit margin and then vertically upwards. Repeated cycles of percolation, radial gas loss and densification may degas the central magma plug without the development of large gas volume fractions.
Crossover phenomena of percolation transition in evolution networks with hybrid attachment.
Chen, Xiaolong; Yang, Chun; Zhong, Linfeng; Tang, Ming
2016-08-01
A first-order percolation transition, called explosive percolation, was recently discovered in evolution networks with random edge selection under a certain restriction. For many real world networks, the mechanism of preferential attachment plays a significant role in the formation of heterogeneous structures, but the network percolation in evolution process with preferential attachment has not yet been concerned. We propose a tunable network percolation model by introducing a hybrid mechanism of edge selection into the Bohman-Frieze-Wormald model, in which a parameter adjusts the relative weights between random and preferential selections. A large number of simulations indicate that there exist crossover phenomena of percolation transition by adjusting the parameter in the evolution processes. When the strategy of selecting a candidate edge is dominated by random selection, a single discontinuous percolation transition occurs. When a candidate edge is selected more preferentially based on nodes degree, the size of the largest component undergoes multiple discontinuous jumps, which exhibits a peculiar difference from the network percolation of random selection with a certain restriction. Besides, the percolation transition becomes continuous when the candidate edge is selected completely preferentially. PMID:27586610
Spectral Dimension of a Percolation Network
NASA Astrophysics Data System (ADS)
Rudra, Jayanta
2005-03-01
While the fractal dimension df describes the self-similar static nature of the lattice, the spectral dimension ds dictates the dynamic properties on it. Alexander and Orbach^1 conjectured that the spectral dimension might be exactly 4/3 for percolation networks with embedding euclidian dimension de >= 2. Recent numerical simulations^2, however, could not decisively prove or disprove this conjecture, although there are other indirect evidences that it is true. We believe that the failure of the simulations to decisively check the validity of the conjecture is due to the non-stochastic nature of the methods. Most of these simulations are Monte Carlo Methods based on a random-walk model and, in spite of very large number of walks on huge lattices, the results do not reach the satisfactory level. In this work we apply a stochastic approach^3 to determine the spectral dimension of percolation network for de >= 2 and check the validity of the Alexander-Orbach-conjecture. Due to its stochastic nature this method is numerically superior and more accurate than the conventional Monte Carlo simulations. References: 1. S. Alexander and R. Orbach, J. Phys. Lett. (Paris) 43 (1982) L625. 2. N. Pitsianis, G. Bleris and P. Argyrakis, Phys. Rev. B 39 (1989) 7097. 3. J. Rudra and J. Kozak, Phys. Lett A 151 (1990) 429.
Percolation experiments in complex fractal media
NASA Astrophysics Data System (ADS)
Redondo, Jose Manuel; Tarquis, Ana Maria; Cherubini, Claudia; Lopez Gzlez-Nieto, Pilar; Vila, Teresa
2013-04-01
Series of flow percolation experiments under gravity were performed in different glass model and real karstic media samples. We present a multifractal characterization of the experiments in several parametric non-dimensional flow descriptors. Using the maximum local multifractal dimension as an additional flow indicator. Also experiments on Non laminar flow and transport conditions in fractured and karstified media were performed at Bari. The investigation on hypothesis of non linear flow and non fickian transport in fractured aquifers led to a distinction on the different role of channels and microchannels and of the presence of vortices and eddy trapping. The dominance of the elongated channels produced early arrival times, with the solute traveling along the high velocity channel network. On the other hand in a lumped structured karstic media, the percolation flow produced long tails with local Eddy mixing, entrapment in eddies, and slow flow out of the eddies. In The laboratory experiments performed in Madrid and in DAMTP Cambridge the role of the initial pressure produced fractal pathway structures even in iniatilly uniform ballotini substrates.
Percolation effect in thick film superconductors
Sali, R.; Harsanyi, G.
1994-12-31
A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.
Scodeller, Sandro; Hansen, Frode K. E-mail: frodekh@astro.uio.no
2012-12-20
In Scodeller et al., a new and extended point source catalog obtained from the Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data was presented. It includes most of the sources included in the standard WMAP seven-year point source catalogs as well as a large number of new detections. Here, we study the effects on the estimated CMB power spectrum when taking the newly detected point sources into consideration. We create point source masks for all the 2102 sources that we detected as well as a smaller one for the 665 sources detected in the Q, V, and W bands. We also create WMAP7 maps with point sources subtracted in order to compare with the spectrum obtained with source masks. The extended point source masks and point source cleaned WMAP7 maps are made publicly available. Using the proper residual correction, we find that the CMB power spectrum obtained from the point source cleaned map without any source mask is fully consistent with the spectrum obtained from the masked map. We further find that the spectrum obtained masking all 2102 sources is consistent with the results obtained using the standard WMAP seven-year point source mask (KQ85y7). We also verify that the removal of point sources does not introduce any skewness.
Temporal percolation of a susceptible adaptive network
NASA Astrophysics Data System (ADS)
Valdez, L. D.; Macri, P. A.; Braunstein, L. A.
2013-09-01
In the past decades, many authors have used the susceptible-infected-recovered model to study the impact of the disease spreading on the evolution of the infected individuals. However, few authors focused on the temporal unfolding of the susceptible individuals. In this paper, we study the dynamic of the susceptible-infected-recovered model in an adaptive network that mimics the transitory deactivation of permanent social contacts, such as friendship and work-ship ties. Using an edge-based compartmental model and percolation theory, we obtain the evolution equations for the fraction susceptible individuals in the susceptible biggest component. In particular, we focus on how the individual’s behavior impacts on the dilution of the susceptible network. We show that, as a consequence, the spreading of the disease slows down, protecting the biggest susceptible cluster by increasing the critical time at which the giant susceptible component is destroyed. Our theoretical results are fully supported by extensive simulations.
Biosolid stockpiles are a significant point source for greenhouse gas emissions.
Majumder, Ramaprasad; Livesley, Stephen J; Gregory, David; Arndt, Stefan K
2014-10-01
The wastewater treatment process generates large amounts of sewage sludge that are dried and then often stored in biosolid stockpiles in treatment plants. Because the biosolids are rich in decomposable organic matter they could be a significant source for greenhouse gas (GHG) emissions, yet there are no direct measurements of GHG from stockpiles. We therefore measured the direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) on a monthly basis from three different age classes of biosolid stockpiles at the Western Treatment Plant (WTP), Melbourne, Australia, from December 2009 to November 2011 using manual static chambers. All biosolid stockpiles were a significant point source for CH4 and N2O emissions. The youngest biosolids (<1 year old) had the greatest CH4 and N2O emissions of 60.2 kg of CO2-e per Mg of biosolid per year. Stockpiles that were between 1 and 3 years old emitted less overall GHG (∼29 kg CO2-e Mg(-1) yr(-1)) and the oldest stockpiles emitted the least GHG (∼10 kg CO2-e Mg(-1) yr(-1)). Methane emissions were negligible in all stockpiles but the relative contribution of N2O and CO2 changed with stockpile age. The youngest stockpile emitted two thirds of the GHG emission as N2O, while the 1-3 year old stockpile emitted an equal amount of N2O and CO2 and in the oldest stockpile CO2 emissions dominated. We did not detect any seasonal variability of GHG emissions and did not observe a correlation between GHG flux and environmental variables such as biosolid temperature, moisture content or nitrate and ammonium concentration. We also modeled CH4 emissions based on a first order decay model and the model based estimated annual CH4 emissions were higher as compared to the direct field based estimated annual CH4 emissions. Our results indicate that labile organic material in stockpiles is decomposed over time and that nitrogen decomposition processes lead to significant N2O emissions. Carbon decomposition favors CO2 over
NASA Astrophysics Data System (ADS)
Borrello, M. C.; Scribner, M.; Chessin, K.
2013-12-01
A growing body of research draws attention to the negative environmental impacts on surface water from large livestock facilities. These impacts are mostly in the form of excessive nutrient loading resulting in significantly decreased oxygen levels. Over-application of animal waste on fields as well as direct discharge into surface water from facilities themselves has been identified as the main contributor to the development of hypoxic zones in Lake Erie, Chesapeake Bay and the Gulf of Mexico. Some regulators claim enforcement of water quality laws is problematic because of the nature and pervasiveness of non-point source impacts. Any direct discharge by a facility is a violation of permits governed by the Clean Water Act, unless the facility has special dispensation for discharge. Previous research by the principal author and others has shown runoff and underdrain transport are the main mechanisms by which nutrients enter surface water. This study utilized previous work to determine if the effects of non-point source discharge can be distinguished from direct (point-source) discharge using simple nutrient analysis and dissolved oxygen (DO) parameters. Nutrient and DO parameters were measured from three sites: 1. A stream adjacent to a field receiving manure, upstream of a large livestock facility with a history of direct discharge, 2. The same stream downstream of the facility and 3. A stream in an area relatively unimpacted by large-scale agriculture (control site). Results show that calculating a simple Pearson correlation coefficient (r) of soluble reactive phosphorus (SRP) and ammonia over time as well as temperature and DO, distinguishes non-point source from point source discharge into surface water. The r value for SRP and ammonia for the upstream site was 0.01 while the r value for the downstream site was 0.92. The control site had an r value of 0.20. Likewise, r values were calculated on temperature and DO for each site. High negative correlations
Search for Extragalactic Point Sources using WMAP Q-, Vand W-band Data
NASA Astrophysics Data System (ADS)
Chen, Xi; Wright, E. L.
2006-12-01
The CMB signal in the WMAP sky maps is primarily contaminated by microwave emission from extragalactic point sources on small angular scales. Driven by the goal to provide a clean CMB map for cosmological analysis, we performed a series of extragalactic point source searches in the WMAP Q-, Vand W-band maps, using a method that cancels the CMB anisotropy signal. These bands are chosen because they have relatively higher resolution and less foreground contamination among the WMAP bands. We reported our result for the search using WMAP first-year Vand W-band sky maps in the 207th AAS meeting; 30 point sources were detected, of which 27 were identified with catalogued objects (1σ = 2.2’). With the release of WMAP three-year data this year, we repeated this 2-band search and found 63 point sources (53 identified, 1σ = 1.3’). We further did a 3-band search using Q-, Vand W-band sky maps. 254 point sources (99 identified, 1σ = 1.7’) and 470 point sources (204 identified, 1σ =1.5’) were found in the WMAP first-year and three-year data respectively. A major advantage of this method is that it has no CMB signal dependency; the noise comes primarily from the detector noise that can be reduced as 1/√t by integrating longer. As the three-year WMAP data is nearly √3 times less noisy than the first year data, we did find more than √3 times as many sources in the three-year search. VLA and ATCA observations were proposed and approved for all the sources without solid identification in the 2-band search. Observations on currently unidentified sources in the 3-band search will be proposed in the near future. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science.
NASA Technical Reports Server (NTRS)
Weistrop, D.; Shaffer, D. B.; Mushotzky, R. F.; Reitsma, H. J.; Smith, B. A.
1981-01-01
Visual and far red surface photometry were obtained of two X-ray emitting BL Lacertae objects, 1218+304 (2A1219+305) and 1727+50 (Izw 187), as well as the highly variable object 1219+28 (ON 231, W Com). The intensity distribution for 1727+50 can be modeled using a central point source plus a de Vaucouleurs intensity law for an underlying galaxy. The broad band spectral energy distribution so derived is consistent with what is expected for an elliptical galaxy. The spectral index of the point source is alpha = 0.97. Additional VLBI and X-ray data are also reported for 1727+50. There is nebulosity associated with the recently discovered object 1218+304. No nebulosity is found associated with 1219+28. A comparison of the results with observations at X-ray and radio frequencies suggests that all the emission from 1727+50 and 1218+304 can be interpreted as due solely to direct synchrotron emission. If this is the case, the data further imply the existence of relativistic motion effects and continuous particle injection.
Tohme, Michel S.; Qi, Jinyi
2010-01-01
Purpose: The accuracy of the system model that governs the transformation from the image space to the projection space in positron emission tomography (PET) greatly affects the quality of reconstructed images. For efficient computation in iterative reconstructions, the system model in PET can be factored into a product of geometric projection and sinogram blurring function. To further speed up reconstruction, fully 3D PET data can be rebinned into a stack of 2D sinograms and then be reconstructed using 2D iterative algorithms. The purpose of this work is to develop a method to estimate the sinogram blurring function to be used in reconstruction of Fourier-rebinned data. Methods: In a previous work, the authors developed an approach to estimating the sinogram blurring function of nonrebinned PET data from experimental scans of point sources. In this study, the authors extend this method to the estimation of sinogram blurring function for Fourier-rebinned PET data. A point source was scanned at a set of sampled positions in the microPET II scanner. The sinogram blurring function is considered to be separable between the transaxial and axial directions. A radially and angularly variant 2D blurring function is estimated from Fourier-rebinned point source scans to model the transaxial blurring with consideration of the detector block structure of the scanner; a space-variant 1D blurring kernel along the axial direction is estimated separately to model the correlation between neighboring planes due to detector intrinsic blurring and Fourier rebinning. The estimated sinogram blurring function is incorporated in a 2D maximum a posteriori (MAP) reconstruction algorithm for image reconstruction. Results: Physical phantom experiments were performed on the microPET II scanner to validate the proposed method. The authors compared the proposed method to 2D MAP reconstruction without sinogram blurring model and 2D MAP reconstruction with a Monte Carlo based blurring model. The
Variation of the critical percolation threshold with the method of preparation of the system
NASA Astrophysics Data System (ADS)
Giazitzidis, Paraskevas; Avramov, Isak; Argyrakis, Panos
2015-12-01
In the present work we propose a model in which one may vary at will the critical threshold p c of the percolation transition, by probing one candidate site (or bond) at a time. This is realised by implementing an attractive (repulsive) rule when building up the lattice, so that newly added sites are either attracted or repelled by the already existing clusters. We use a tuning parameter k, which is the number of attempts for a site to be occupied, leading to a continuous change of the percolation threshold while the new percolation process still belongs to the same universality class as the ordinary random percolation. We find that by increasing the value of the tuning parameter k, p c decreases until it reaches a minimum value where nucleation effects are now more pronounced than the percolation process. Such results are useful for the explanation of several new experimental systems that have recently appeared.
Interaction between a percolation network and a cubic cavity
NASA Astrophysics Data System (ADS)
Mourzenko, Valeri; Adler, Pierre; Thovert, Jean Francois; Sangaré, Daouda
2015-04-01
The intersection between a percolating network of fractures modeled as polygons and a cubic cavity is important for the safe storage of wastes in a fractured medium. The cavities where the wastes are stored should not intersect the percolating network of fractures which may exist, or these cavities should not enable a fracture network to percolate. The fractures are hexagons inscribed in a circle of radius R which are uniformly distributed in space and isotropically oriented. Nfr is the number of fractures generated in a finite unit cell Omega of size L^3. The fracture density is conveniently represented by the dimensionless density rho ' which is the average number of intersections per fracture with the other fractures [1]. In addition, a cubic cavity C formed by six squares inscribed in a circle of radius Rs is randomly located in Omega. N spatially periodic networks are generated. Generally, N is equal to 500. Among these N networks, Np percolate and the cavity intersects one or more fractures in Nrc realizations; no fracture-cavity intersection occurs in Nnrc realizations. Moreover, when the network alone does not percolate (which occurs in Nnp realisations), the set composed by the hexagons and the cavity percolates Nnpc times. These quantities and the corresponding probabilities were systematically calculated as functions of L' = L/R , R' s = R_s/R and rho'. An important quantity is the conditional probability Pic that the percolating cluster intersects the cavity when it exists. It could be extrapolated to an infinite cell size L'. This conditional probability is an increasing function of rho' and of R' _s. The probability Pi that an object X intersects the fracture network with the density rho is given by the expression Pi=1-exp(- rho V) where V is the excluded volume for the object X and a fracture. This quantity is obtained for a cube. This prediction is in good agreement with the conditional probability Pic for large rho' or small R_s. However, Pi and
NASA Astrophysics Data System (ADS)
Lai, Xiaoming; Liao, Kaihua; Feng, Huihui; Zhu, Qing
2016-09-01
Knowledge of soil water percolation below the rooting zone and its responses to the dynamic interactions of different factors are important for the control of non-point source pollution. Based on 3600 scenarios in Hydrus-1D simulation, this study revealed the integrated effects of rainfall characteristics (rainfall amount, maximum rainfall intensity or MRI, time distribution characteristics of rainfall or TDC), antecedent moisture and the season on deep percolation (DP) at a forest site in Taihu Lake Basin, China. Results showed that Hydrus-1D model can well simulate the soil water dynamics at this site. Antecedent moisture had the greatest relative contribution to DP (85.7%), followed by rainfall amount (10.9%) and MRI (3.4%). As the antecedent moisture increased, the relative contribution of the season on DP increased from 0.0% to 16.4%. In comparison, that of MRI decreased from 58.7% to 38.5% and that of rainfall amount followed a bell shape pattern (greatest when the antecedent moisture was 0.26 m3 m-3). The relative contribution of antecedent moisture to DP in summer was the greatest (87.8%), while that of the rainfall was the least. The TDC influenced DP by affecting the responses of DP to other factors. When the rainfall amount was ⩾80 mm and the antecedent moisture content was ⩾0.34 m3 m-3, effect of TDC on DP could be observed. The DP of TDC_B (rainfall intensity linearly increased with time) was the lowest, while that of TDC_E (rainfall intensity kept constant with time) was the greatest. Findings of this study have practical significance for investigating the water and pollutant transport in vadose zone.
NASA Astrophysics Data System (ADS)
Choquet, Elodie; Chen, C.; Debes, J. H.; Golimowski, D. A.; Hagan, J.; Hines, D. C.; Lonsdale, S.; Marois, C.; Mawet, D.; Mittal, T.; Moerchen, M.; N'Diaye, M.; Perrin, M. D.; Pueyo, L.; Rajan, A.; Reid, I. N.; Schneider, G.; Wolff, S.; Soummer, R.
2014-01-01
The Archival Legacy Investigation of Circumstellar Environments (ALICE) project (HST/AR program 12652; PI Soummer) is currently conducting a comprehensive and consistent reprocessing of HST-NICMOS coronagraphic survey data to search for point sources and disks using advanced PSF subtraction. The Karhunen-Loeve Image Projection (KLIP) algorithm based on principal component analysis was developed for this project. We present the main concept for the pipeline, reduction strategy, and PSF subtraction implementation and performance. The ALICE pipeline was designed to process automatically approximately 400 targets in the NICMOS coronagraphic archive, and to deliver High-Level Science Products (HLSPs) back to the MAST archive at STScI. The HLSPs are defined in collaboration with other similar projects to define a standard format for high-contrast imaging. We present and discuss the ALICE point source candidates detected in the NICMOS archive together with a statistical analysis of the population of background objects.
Point Source Scatter Contributions From Finite Size Objects In Radioisotope Imaging
NASA Astrophysics Data System (ADS)
Bieszk, J. A.; Lim, C. B.
1982-11-01
A Monte Carlo simulation was developed to study scatter contributions from a 140 keV point source at various depths and for different energy windows in finite water phantoms. Photoelectric and Compton interactions were considered. Scatter fractions, energy spectra, and radial spread functions of three approximately patientsized phantoms (rectangular prism, elliptical cylinder, and a sphere) were examined as a function of point-source depth and detector energy-window width. For a 100% energy window, energy spectra are characterized by a high energy region, a backscatter peak region, and a low energy, multi-scatter region. Depth dependent spatial limitations to the radial spread functions occur with decreasing window width. Scatter fractions for the sphere are much smaller than those of the other two phantoms, but approach their values as the size of the energy window decreases.
Resolution of point sources of light as analyzed by quantum detection theory.
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1973-01-01
The resolvability of point sources of incoherent thermal light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.
The resolution of point sources of light as analyzed by quantum detection theory
NASA Technical Reports Server (NTRS)
Helstrom, C. W.
1972-01-01
The resolvability of point sources of incoherent light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.
Mapping Correlation of Two Point Sources in the Gamma-Ray Sky
Gibson, Alexander
2015-08-20
The Fermi Gamma-Ray Space Telescope has been taking data on high energy photons or γ rays since June 11th, 2008, and people have been cataloging and profiling point sources of these γ rays ever since. After roughly one year of being in operation over 1400 sources were cataloged. Now, in 2015 we have 3033 sources cataloged. With the increasing amount of sources it’s important to think about the limitations of likelihood analysis for highly correlated sources. In this paper I will present the problems of using likelihood analysis for sources that are highly correlated as well as show under what circumstances sources can be considered highly correlated. Dark matter over densities may show up as a point source, so it is a necessary step to learn how the two signals will interact to allow for a proper search for dark matter.
VizieR Online Data Catalog: LMC point source classification in SAGE-Spec (Woods+, 2011)
NASA Astrophysics Data System (ADS)
Woods, P. M.; Oliveira, J. M.; Kemper, F.; van Loon, J. T.; Sargent, B. A.; Matsuura, M.; Szczerba, R.; Volk, K.; Zijlstra, A. A.; Sloan, G. C.; Lagadec, E.; McDonald, I.; Jones, O.; Gorjian, V.; Kraemer, K. E.; Gielen, C.; Meixner, M.; Blum, R. D.; Sewilo, M.; Riebel, D.; Shiao, B.; Chen, C.-H. R.; Boyer, M. L.; Indebetouw, R.; Antoniou, V.; Bernard, J.-P.; Cohen, M.; Dijkstra, C.; Galametz, M.; Galliano, F.; Gordon, K. D.; Harris, J.; Hony, S.; Hora, J. L.; Kawamura, A.; Lawton, B.; Leisenring, J. M.; Madden, S.; Marengo, M.; McGuire, C.; Mulia, A. J.; O'Halloran, B.; Olsen, K.; Paladini, R.; Paradis, D.; Reach, W. T.; Rubin, D.; Sandstrom, K.; Soszynski, I.; Speck, A. K.; Srinivasan, S.; Tielens, A. G. G. M.; van Aarle, E.; van Dyk, S. D.; van Winckel, H.; Vijh, U. P.; Whitney, B.; Wilkins, A. N.
2011-09-01
We present the classification of 197 point sources observed with the Infrared Spectrograph in the SAGE-Spec Legacy programme on the Spitzer Space Telescope. We introduce a decision-tree method of object classification based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information, which is used to classify the SAGE-Spec sample of point sources. The decision tree has a broad application to mid-infrared spectroscopic surveys, where supporting photometry and variability information are available. We use these classifications to make deductions about the stellar populations of the Large Magellanic Cloud and the success of photometric classification methods. We find 90 asymptotic giant branch (AGB) stars, 29 young stellar objects, 23 post-AGB objects, 19 red supergiants, eight stellar photospheres, seven background galaxies, seven planetary nebulae, two HII regions and 12 other objects, seven of which remain unclassified. (1 data file).
Evaluation of selective vs. point-source perforating for hydraulic fracturing
Underwood, P.J.; Kerley, L.
1996-12-31
This paper is a case history comparing and evaluating the effects of fracturing the Reef Ridge Diatomite formation in the Midway-Sunset Field, Kern County, California, using {open_quotes}select-fire{close_quotes} and {open_quotes}point-source{close_quotes} perforating completions. A description of the reservoir, production history, and fracturing techniques used leading up to this study is presented. Fracturing treatment analysis and production history matching were used to evaluate the reservoir and fracturing parameters for both completion types. The work showed that single fractures were created with the point-source (PS) completions, and multiple fractures resulted from many of the select-fire (SF) completions. A good correlation was developed between productivity and the product of formation permeability, net fracture height, bottomhole pressure, and propped fracture length. Results supported the continued development of 10 wells using the PS concept with a more efficient treatment design, resulting in substantial cost savings.
THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION
Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J.
2012-09-20
Precise subtraction of foreground sources is crucial for detecting and estimating 21 cm H I signals from the Epoch of Reionization (EoR). We quantify how imperfect point-source subtraction due to limitations of the measurement data set yields structured residual signal in the data set. We use the Cramer-Rao lower bound, as a metric for quantifying the precision with which a parameter may be measured, to estimate the residual signal in a visibility data set due to imperfect point-source subtraction. We then propagate these residuals into two metrics of interest for 21 cm EoR experiments-the angular power spectrum and two-dimensional power spectrum-using a combination of full analytic covariant derivation, analytic variant derivation, and covariant Monte Carlo simulations. This methodology differs from previous work in two ways: (1) it uses information theory to set the point-source position error, rather than assuming a global rms error, and (2) it describes a method for propagating the errors analytically, thereby obtaining the full correlation structure of the power spectra. The methods are applied to two upcoming low-frequency instruments that are proposing to perform statistical EoR experiments: the Murchison Widefield Array and the Precision Array for Probing the Epoch of Reionization. In addition to the actual antenna configurations, we apply the methods to minimally redundant and maximally redundant configurations. We find that for peeling sources above 1 Jy, the amplitude of the residual signal, and its variance, will be smaller than the contribution from thermal noise for the observing parameters proposed for upcoming EoR experiments, and that optimal subtraction of bright point sources will not be a limiting factor for EoR parameter estimation. We then use the formalism to provide an ab initio analytic derivation motivating the 'wedge' feature in the two-dimensional power spectrum, complementing previous discussion in the literature.
The correlation of the displacements of the images of point sources in the turbulent atmosphere
NASA Astrophysics Data System (ADS)
Marakasov, Dmitri A.
2015-11-01
We consider the problem of determining of the transverse wind speed on atmospheric path from the temporal correlation of the displacements of the centroids of the images of point sources shifted in the transverse. In the framework of the first approximation of the method of small perturbations expressions for correlation functions are outlined. The possibility of estimation of the wind velocity averaged over the optical path is shown.
Point Source Information Provision and Exchange System (PIPES). user`s manual
1995-02-01
The Point Source Information Provision and Exchange System (PIPES) is an Electronic Bulletin Board System (BBS or Board) designed to facilitate the exchange of information among EPA, states, municipalities, and industry. This manual describes how to access and use PIPES. It explains how to call PIPES, how to sent and receive electronic mail, how to access information on PIPES, and how to perform other important functions on the BBS. This user`s manual is current as of February 1995.
NASA Astrophysics Data System (ADS)
Snyder, David C.; Schauer, James J.; Gross, Deborah S.; Turner, Jay R.
Single-particle mass spectra were collected using an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) during December of 2003 and February of 2004 at an industrially impacted location in East St. Louis, IL. Hourly integrated peak areas for twenty ions were evaluated for their suitability in representing metals/metalloids, particularly those reported in the US EPA Toxic Release Inventory (TRI). Of the initial twenty ions examined, six (Al, As, Cu, Hg, Ti, and V) were found to be unsuitable due to strong isobaric interferences with commonly observed organic fragments, and one (Be) was found to have no significant signal. The usability of three ions (Co, Cr, and Mn) was limited due to suspected isobaric interferences based on temporal comparisons with commonly observed organic fragments. The identity of the remaining ions (Sb, Ba, Cd, Ca, Fe, Ni, Pb, K, Se, and Zn) was substantiated by comparing their signals with the integrated hourly signals of one or more isotope ions. When compared with one-in-six day integrated elemental data as determined by X-ray fluorescence spectroscopy (XRF), the daily integrated ATOFMS signal for several metal ions revealed a semi-quantitative relationship between ATOFMS peak area and XRF concentrations, although in some cases comparison of these measurements were poor at low elemental concentrations/ion signals due to isobaric interferences. A method of estimating the impact of local point sources was developed using hourly integrated ATOFMS peak areas, and this method attributed as much as 85% of the concentration of individual metals observed at the study site to local point sources. Hourly surface wind data were used in conjunction with TRI facility emissions data to reveal likely point sources impacting metal concentrations at the study site and to illustrate the utility of using single-particle mass spectral data to characterize atmospheric metals and identify point sources.
HerMES: point source catalogues from Herschel-SPIRE observations II
NASA Astrophysics Data System (ADS)
Wang, L.; Viero, M.; Clarke, C.; Bock, J.; Buat, V.; Conley, A.; Farrah, D.; Guo, K.; Heinis, S.; Magdis, G.; Marchetti, L.; Marsden, G.; Norberg, P.; Oliver, S. J.; Page, M. J.; Roehlly, Y.; Roseboom, I. G.; Schulz, B.; Smith, A. J.; Vaccari, M.; Zemcov, M.
2014-11-01
The Herschel Multi-tiered Extragalactic Survey (HerMES) is the largest Guaranteed Time Key Programme on the Herschel Space Observatory. With a wedding cake survey strategy, it consists of nested fields with varying depth and area totalling ˜380 deg2. In this paper, we present deep point source catalogues extracted from Herschel-Spectral and Photometric Imaging Receiver (SPIRE) observations of all HerMES fields, except for the later addition of the 270 deg2 HerMES Large-Mode Survey (HeLMS) field. These catalogues constitute the second Data Release (DR2) made in 2013 October. A sub-set of these catalogues, which consists of bright sources extracted from Herschel-SPIRE observations completed by 2010 May 1 (covering ˜74 deg2) were released earlier in the first extensive data release in 2012 March. Two different methods are used to generate the point source catalogues, the SUSSEXTRACTOR point source extractor used in two earlier data releases (EDR and EDR2) and a new source detection and photometry method. The latter combines an iterative source detection algorithm, STARFINDER, and a De-blended SPIRE Photometry algorithm. We use end-to-end Herschel-SPIRE simulations with realistic number counts and clustering properties to characterize basic properties of the point source catalogues, such as the completeness, reliability, photometric and positional accuracy. Over 500 000 catalogue entries in HerMES fields (except HeLMS) are released to the public through the HeDAM (Herschel Database in Marseille) website (http://hedam.lam.fr/HerMES).
NASA Astrophysics Data System (ADS)
Minato, Shohei; Ghose, Ranajit
2014-05-01
The inverse scattering of seismic waves can reveal the spatial distribution of the elastic compliances along a non-welded interface, such as a fracture surface. The spatial heterogeneity along the surface of a fracture is a key determinant for fracture-associated hydraulic properties. In this paper, we demonstrate that the inverse scattering solution can be successfully applied to the point source response of a subhorizontal fracture. In the scale of seismic exploration, it is more appropriate to consider spherical waves from a point source than plane waves. Further, from only the P-wave point source response it is possible to estimate both normal and tangential fracture compliances. The synthetic seismic wavefield due to a P-wave point source in a 2-D elastic medium was computed using a time-domain finite difference approach. On this spherical wave data set, the correct estimation of the position and dip of the non-welded interface was possible through reverse-time migration followed by least-square fitting of the maximum amplitude of the P-P reflection. In order to estimate the heterogeneity along the non-welded interface, we first extract the elastic wavefield at the interface position. The extrapolated wavefield is then rotated such that the horizontal axis aligns along the fracture plane. Next, using this extrapolated and rotated wavefield, we solve the linear-slip boundary condition to obtain the distribution of normal and tangential compliances. Our result shows that the estimates of normal compliance are very accurate around the dominant frequency of the incident seismic wavefield. At lower frequencies, the estimated compliance distribution is less accurate and rather smooth due to the presence of evanescent waves. Extracting the distribution of the tangential compliance requires a larger stabilization factor. For a correct estimation of the tangential compliance, one needs S-wave sources or multiple sources providing more grazing angles to avoid the shadow
Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination.
De Wilde, Tineke; Spanoghe, Pieter; Debaer, Christof; Ryckeboer, Jaak; Springael, Dirk; Jaeken, Peter
2007-02-01
Contamination of ground and surface water puts pressure on the use of pesticides. Pesticide contamination of water can often be linked to point sources rather than to diffuse sources. Examples of such point sources are areas on farms where pesticides are handled and filled into sprayers, and where sprayers are cleaned. To reduce contamination from these point sources, different kinds of bioremediation system are being researched in various member states of the EU. Bioremediation is the use of living organisms, primarily microorganisms, to degrade the environmental contaminants into less toxic forms. The systems available for biocleaning of pesticides vary according to their shape and design. Up till now, three systems have been extensively described and reported: the biobed, the Phytobac and the biofilter. Most of these constructions are excavations or different sizes of container filled with biological material. Typical overall clean-up efficiency exceeds 95%, realising even more than 99% in many cases. This paper provides an overview of the state of the art of these bioremediation systems and discusses their construction, efficiency and drawbacks. PMID:17199234
[Transformation of Non-point Source Soluble Nitrogen in Simulated Drainage Ditch].
Li, Qiang-kun; Song, Chang-ji; Hu, Ya-wei; Peng, Cong; Ma, Qiang; Jiang, Zheng-xi; Ju, Yi-rheng
2016-02-15
The drainage ditch has a compound ecosystem structure consisting of water, sediment and plants. Migration and transformation of the non-point source solute is important to study interception, control and management of agricultural non-point source pollution in the drainage ditch. Based on the experiment on static simulation of drainage ditches, the article used typical non-point source soluble nitrogen as an example to analyze the changing process of nitrogen content in water, sediment and reeds, and to study the effects of the sediment adsorption and desorption, reeds growth and death in different periods on nitrogen concentration in water. The article discussed nitrogen migration in water-sediment-reeds compound ecosystem and its influence on nitrogen concentration in water. The results showed that both adsorption and desorption in sediment and absorption and assimilation of reeds growth had effect on nitrogen concentration in water. The effect before October was reducing the nitrogen concentration in water, which was the process of nitrogen purification in water. After October, the nitrogen concentration in water increased and made it easy to form secondary nitrogen pollution. Meanwhile, the migration in the water-sediment-seeds ecosystem in simulated drainage ditch had close ties, any migration and transformation of nitrogen in a single medium or between different mediums would cause adjustment of nitrogen concentration in water. PMID:27363139
Radiant fluxes from various off-axis point sources incident on a circular disk.
Tryka, Stanislaw
2013-09-20
A general multidomain integral formula is presented for calculating fluxes of radiation striking a circular disk from various off-axis point source types embedded in an attenuating or nonattenuating medium. This formula is expressed by double line integrals of radiant intensity and sine functions with respect to the polar and horizontal angles determining the angular distribution of the emitted radiation. The formula reduces to single line integral expressions when radiation does not depend on the horizontal angle and is directly applicable for calculating fluxes of revolutional symmetry around the optical axis of the source perpendicular to the disk. The applicability of this reduced formula is tested by computing radiant fluxes from Lambertian and Gaussian point sources using a simple numerical procedure for single integrals. The computed data are illustrated graphically, tabulated, and validated using OSLO. Finally, the accuracy, similarity, and applicability of the results provided by the integral formula and the OSLO program are analyzed. Numerical results have shown the effectiveness of the presented formulas for calculating radiant fluxes from various on- and off-axis point sources passing through a nonattenuating or attenuating homogeneous isotropic media and incident on a circular disk perpendicular to optical axes of these sources. Practical applications of these formulas include optical sensing and metrology, optical coupling, fiber optic for biomedical measurements, and creative lighting design. PMID:24085174
FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22-STRING ICECUBE DETECTOR
IceCube Collaboration; Klein, Spencer
2009-05-14
We present new results of searches for neutrino point sources in the northern sky, using data recorded in 2007-08 with 22 strings of the IceCube detector (approximately one-fourth of the planned total) and 275.7 days of livetime. The final sample of 5114 neutrino candidate events agrees well with the expected background of atmospheric muon neutrinos and a small component of atmospheric muons. No evidence of a point source is found, with the most significant excess of events in the sky at 2.2 {sigma} after accounting for all trials. The average upper limit over the northern sky for point sources of muon-neutrinos with E{sup -2} spectrum is E{sup 2} {Phi}{sub {nu}{sub {mu}}} < 1.4 x 10{sup -1} TeV cm{sup -2}s{sup -1}, in the energy range from 3 TeV to 3 PeV, improving the previous best average upper limit by the AMANDA-II detector by a factor of two.
Diffuse and point sources of silica in the Seine River watershed.
Sferratore, Agata; Garnier, Josette; Billen, Gilles; Conley, Daniel I; Pinault, Séverine
2006-11-01
Dissolved silica (DSi) is believed to enter aquatic ecosystems primarily through diffuse sources by weathering. Point sources have generally been considered negligible, although recent reports of DSi inputs from domestic and industrial sources suggest otherwise. In addition, particulate amorphous silica (ASi) inputs from terrestrial ecosystems during soil erosion and in vegetation can dissolve and also be a significant source of DSi. We quantify here both point and diffuse sources of DSi and particulate ASi to the Seine River watershed. The total per capita point source inputs of Si (DSi + ASi) were found to be 1.0 and 0.8 g Si inhabitant(-1) d(-1) in raw and treated waters of the Achères wastewater treatment plant, in agreement with calculations based on average food intake and silica-containing washing products consumption. A mass balance of Si inputs and outputs for the Seine drainage network was established for wet and dry hydrological conditions (2001 and 2003, respectively). Diffuse sources of Si are of 1775 kg Si km(-2) y(-1) in wet conditions and 762 kg Si km(-2) y(-1) in dry conditions, with the proportion of ASi around 6%. Point sources of Si from urban discharge can contribute to more than 8% of the total Si inputs at the basin scale in hydrologically dry years. An in-stream retention of 6% of total inputs in dry conditions and 12% in wet conditions is inferred from the budget. PMID:17144288
Percolation induced heat transfer in deep unsaturated zones
Lu, N.; LeCain, G.D.
2003-01-01
Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.
Bootstrap percolation on spatial networks
NASA Astrophysics Data System (ADS)
Gao, Jian; Zhou, Tao; Hu, Yanqing
2015-10-01
Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.
Bootstrap percolation on spatial networks
Gao, Jian; Zhou, Tao; Hu, Yanqing
2015-01-01
Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around −1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value −1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading. PMID:26423347
NASA Astrophysics Data System (ADS)
Arnold, Tim; Manning, Alistair J.; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Fraser, Paul J.; Mitrevski, Blagoj; Steele, L. Paul; Krummel, Paul B.; Mühle, Jens; Weiss, Ray F.
2016-04-01
The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacement compounds that are emitted from fugitive and mobile emission sources, these gases are largely emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane factories (HFC-23). In this work we show the potential for atmospheric measurements to understand regional sources of these gases and to highlight emission 'hotspots'. We target our analysis on measurements from two Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites that are particularly sensitive to regional emissions of these gases: Gosan on Jeju Island in the Republic of Korea and Cape Grim on Tasmania in Australia. These sites measure CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over a decade (2005-2015) at high spatial resolution. At present these gases make a small contribution to global radiative forcing, however, given that their impact could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.
Clarification of the Bootstrap Percolation Paradox
NASA Astrophysics Data System (ADS)
de Gregorio, Paolo; Lawlor, Aonghus; Bradley, Phil; Dawson, Kenneth A.
2004-07-01
We study the onset of the bootstrap percolation transition as a model of generalized dynamical arrest. Our results apply to two dimensions, but there is no significant barrier to extending them to higher dimensionality. We develop a new importance-sampling procedure in simulation, based on rare events around “holes”, that enables us to access bootstrap lengths beyond those previously studied. By framing a new theory in terms of paths or processes that lead to emptying of the lattice we are able to develop systematic corrections to the existing theory and compare them to simulations. Thereby, for the first time in the literature, it is possible to obtain credible comparisons between theory and simulation in the accessible density range.
Percolation and permeability of heterogeneous fracture networks
NASA Astrophysics Data System (ADS)
Adler, Pierre; Mourzenko, Valeri; Thovert, Jean-François
2013-04-01
Natural fracture fields are almost necessarily heterogeneous with a fracture density varying with space. Two classes of variations are quite frequent. In the first one, the fracture density is decreasing from a given surface; the fracture density is usually (but not always see [1]) an exponential function of depth as it has been shown by many measurements. Another important example of such an exponential decrease consists of the Excavated Damaged Zone (EDZ) which is created by the excavation process of a gallery [2,3]. In the second one, the fracture density undergoes some local random variations around an average value. This presentation is mostly focused on the first class and numerical samples are generated with an exponentially decreasing density from a given plane surface. Their percolation status and hydraulic transmissivity can be calculated by the numerical codes which are detailed in [4]. Percolation is determined by a pseudo diffusion algorithm. Flow determination necessitates the meshing of the fracture networks and the discretisation of the Darcy equation by a finite volume technique; the resulting linear system is solved by a conjugate gradient algorithm. Only the flow properties of the EDZ along the directions which are parallel to the wall are of interest when a pressure gradient parallel to the wall is applied. The transmissivity T which relates the total flow rate per unit width Q along the wall through the whole fractured medium to the pressure gradient grad p, is defined by Q = - T grad p/mu where mu is the fluid viscosity. The percolation status and hydraulic transmissivity are systematically determined for a wide range of decay lengths and anisotropy parameters. They can be modeled by comparison with anisotropic fracture networks with a constant density. A heuristic power-law model is proposed which accurately describes the results for the percolation threshold over the whole investigated range of heterogeneity and anisotropy. Then, the data
Percolation in suspensions and de Gennes conjectures
NASA Astrophysics Data System (ADS)
Gallier, Stany; Lemaire, Elisabeth; Peters, François; Lobry, Laurent
2015-08-01
Dense suspensions display complex flow properties, intermediate between solid and liquid. When sheared, a suspension self-organizes and forms particle clusters that are likely to percolate, possibly leading to significant changes in the overall behavior. Some theoretical conjectures on percolation in suspensions were proposed by de Gennes some 35 years ago. Although still used, they have not received any validations so far. In this Rapid Communication, we use three-dimensional detailed numerical simulations to understand the formation of percolation clusters and assess de Gennes conjectures. We found that sheared noncolloidal suspensions do show percolation clusters occurring at a critical volume fraction in the range 0.3-0.4 depending on the system size. Percolation clusters are roughly linear, extremely transient, and involve a limited number of particles. We have computed critical exponents and found that clusters can be described reasonably well by standard isotropic percolation theory. The only disagreement with de Gennes concerns the role of percolation clusters on rheology which is found to be weak. Our results eventually validate de Gennes conjectures and demonstrate the relevance of percolation concepts in suspension physics.
Tunable Percolation in Semiconducting Binary Polymer Nanoparticle Glasses.
Renna, Lawrence A; Bag, Monojit; Gehan, Timothy S; Han, Xu; Lahti, Paul M; Maroudas, Dimitrios; Venkataraman, D
2016-03-10
Binary polymer nanoparticle glasses provide opportunities to realize the facile assembly of disparate components, with control over nanoscale and mesoscale domains, for the development of functional materials. This work demonstrates that tunable electrical percolation can be achieved through semiconducting/insulating polymer nanoparticle glasses by varying the relative percentages of equal-sized nanoparticle constituents of the binary assembly. Using time-of-flight charge carrier mobility measurements and conducting atomic force microscopy, we show that these systems exhibit power law scaling percolation behavior with percolation thresholds of ∼24-30%. We develop a simple resistor network model, which can reproduce the experimental data, and can be used to predict percolation trends in binary polymer nanoparticle glasses. Finally, we analyze the cluster statistics of simulated binary nanoparticle glasses, and characterize them according to their predominant local motifs as (p(i), p(1-i))-connected networks that can be used as a supramolecular toolbox for rational material design based on polymer nanoparticles. PMID:26854924
Kim, Geonha; Hur, Jin
2010-01-01
This research measured the mortality rates of pathogen indicator microorganisms discharged from various point and non-point sources in an urban area. Water samples were collected from a domestic sewer, a combined sewer overflow, the effluent of a wastewater treatment plant, and an urban river. Mortality rates of indicator microorganisms in sediment of an urban river were also measured. Mortality rates of indicator microorganisms in domestic sewage, estimated by assuming first order kinetics at 20 degrees C were 0.197 day(-1), 0.234 day(-1), 0.258 day(-1) and 0.276 day(-1) for total coliform, fecal coliform, Escherichia coli, and fecal streptococci, respectively. Effects of temperature, sunlight irradiation and settlement on the mortality rate were measured. Results of this research can be used as input data for water quality modeling or can be used as design factors for treatment facilities. PMID:20923108
Code of Federal Regulations, 2011 CFR
2011-07-01
... subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. 414.100... Not Use End-of-Pipe Biological Treatment § 414.100 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. The provisions of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and standards for direct discharge point sources that do not use end-of-pipe biological treatment. 414... That Do Not Use End-of-Pipe Biological Treatment § 414.101 Toxic pollutant effluent limitations and standards for direct discharge point sources that do not use end-of-pipe biological treatment. (a)Any...
Code of Federal Regulations, 2011 CFR
2011-07-01
... subcategory of direct discharge point sources that use end-of-pipe biological treatment. 414.90 Section 414.90... Biological Treatment § 414.90 Applicability; description of the subcategory of direct discharge point sources that use end-of-pipe biological treatment. The provisions of this subpart are applicable to the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... subcategory of direct discharge point sources that use end-of-pipe biological treatment. 414.90 Section 414.90... Biological Treatment § 414.90 Applicability; description of the subcategory of direct discharge point sources that use end-of-pipe biological treatment. The provisions of this subpart are applicable to the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... subcategory of direct discharge point sources that use end-of-pipe biological treatment. 414.90 Section 414.90... Biological Treatment § 414.90 Applicability; description of the subcategory of direct discharge point sources that use end-of-pipe biological treatment. The provisions of this subpart are applicable to the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. 414.100... Not Use End-of-Pipe Biological Treatment § 414.100 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. The provisions of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. 414.100... Not Use End-of-Pipe Biological Treatment § 414.100 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. The provisions of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and standards for direct discharge point sources that do not use end-of-pipe biological treatment. 414... That Do Not Use End-of-Pipe Biological Treatment § 414.101 Toxic pollutant effluent limitations and standards for direct discharge point sources that do not use end-of-pipe biological treatment. (a)Any...
Code of Federal Regulations, 2012 CFR
2012-07-01
... subcategory of direct discharge point sources that use end-of-pipe biological treatment. 414.90 Section 414.90... Biological Treatment § 414.90 Applicability; description of the subcategory of direct discharge point sources that use end-of-pipe biological treatment. The provisions of this subpart are applicable to the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... subcategory of direct discharge point sources that use end-of-pipe biological treatment. 414.90 Section 414.90... Biological Treatment § 414.90 Applicability; description of the subcategory of direct discharge point sources that use end-of-pipe biological treatment. The provisions of this subpart are applicable to the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and standards for direct discharge point sources that do not use end-of-pipe biological treatment. 414... That Do Not Use End-of-Pipe Biological Treatment § 414.101 Toxic pollutant effluent limitations and standards for direct discharge point sources that do not use end-of-pipe biological treatment. (a)Any...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and standards for direct discharge point sources that do not use end-of-pipe biological treatment. 414... That Do Not Use End-of-Pipe Biological Treatment § 414.101 Toxic pollutant effluent limitations and standards for direct discharge point sources that do not use end-of-pipe biological treatment. (a)Any...
Code of Federal Regulations, 2010 CFR
2010-07-01
... subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. 414.100... Not Use End-of-Pipe Biological Treatment § 414.100 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. The provisions of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and standards for direct discharge point sources that do not use end-of-pipe biological treatment. 414... That Do Not Use End-of-Pipe Biological Treatment § 414.101 Toxic pollutant effluent limitations and standards for direct discharge point sources that do not use end-of-pipe biological treatment. (a)Any...
Code of Federal Regulations, 2014 CFR
2014-07-01
... subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. 414.100... Not Use End-of-Pipe Biological Treatment § 414.100 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. The provisions of...
REVIEW OF “PERCOLATION THEORY FOR FLOW IN POROUS MEDIA (LECTURE NOTES IN PHYSICS 674)”
Technology Transfer Automated Retrieval System (TEKTRAN)
Percolation theory is a mathematical model that has been used in the past by physicists to study a variety of physical processes such as fluid flow and electrical conduction. In this short note, we favorably review a new book describing the use of percolation theory for modeling the flow of fluids ...
Evidence of Universal Temperature Scaling in Self-Heated Percolating Networks.
Das, Suprem R; Mohammed, Amr M S; Maize, Kerry; Sadeque, Sajia; Shakouri, Ali; Janes, David B; Alam, Muhammad A
2016-05-11
During routine operation, electrically percolating nanocomposites are subjected to high voltages, leading to spatially heterogeneous current distribution. The heterogeneity implies localized self-heating that may (self-consistently) reroute the percolation pathways and even irreversibly damage the material. In the absence of experiments that can spatially resolve the current distribution and a nonlinear percolation model suitable to interpret them, one relies on empirical rules and safety factors to engineer these materials. In this paper, we use ultrahigh resolution thermo-reflectance imaging, coupled with a new imaging processing technique, to map the spatial distribution ΔT(x, y; I) and histogram f(ΔT) of temperature rise due to self-heating in two types of 2D networks (percolating and copercolating). Remarkably, we find that the self-heating can be described by a simple two-parameter Weibull distribution, even under voltages high enough to reconfigure the percolation pathways. Given the generality of the phenomenological argument supporting the distribution, other percolating networks are likely to show similar stress distribution in response to sufficiently large stimuli. Furthermore, the spatial evolution of the self-heating of network was investigated by analyzing the spatial distribution and spatial correlation, respectively. An estimation of degree of hotspot clustering reveals a mechanism analogous to crystallization physics. The results should encourage nonlinear generalization of percolation models necessary for predictive engineering of nanocomposite materials. PMID:27070737
Strategies for satellite-based monitoring of CO2 from distributed area and point sources
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Miller, Charles E.; Duren, Riley M.; Natraj, Vijay; Eldering, Annmarie; Gunson, Michael R.; Crisp, David
2014-05-01
Atmospheric CO2 budgets are controlled by the strengths, as well as the spatial and temporal variabilities of CO2 sources and sinks. Natural CO2 sources and sinks are dominated by the vast areas of the oceans and the terrestrial biosphere. In contrast, anthropogenic and geogenic CO2 sources are dominated by distributed area and point sources, which may constitute as much as 70% of anthropogenic (e.g., Duren & Miller, 2012), and over 80% of geogenic emissions (Burton et al., 2013). Comprehensive assessments of CO2 budgets necessitate robust and highly accurate satellite remote sensing strategies that address the competing and often conflicting requirements for sampling over disparate space and time scales. Spatial variability: The spatial distribution of anthropogenic sources is dominated by patterns of production, storage, transport and use. In contrast, geogenic variability is almost entirely controlled by endogenic geological processes, except where surface gas permeability is modulated by soil moisture. Satellite remote sensing solutions will thus have to vary greatly in spatial coverage and resolution to address distributed area sources and point sources alike. Temporal variability: While biogenic sources are dominated by diurnal and seasonal patterns, anthropogenic sources fluctuate over a greater variety of time scales from diurnal, weekly and seasonal cycles, driven by both economic and climatic factors. Geogenic sources typically vary in time scales of days to months (geogenic sources sensu stricto are not fossil fuels but volcanoes, hydrothermal and metamorphic sources). Current ground-based monitoring networks for anthropogenic and geogenic sources record data on minute- to weekly temporal scales. Satellite remote sensing solutions would have to capture temporal variability through revisit frequency or point-and-stare strategies. Space-based remote sensing offers the potential of global coverage by a single sensor. However, no single combination of orbit
NASA Astrophysics Data System (ADS)
Wang, X.; wang, y; cai, x; wang, x
2001-12-01
Nitrogen and phosphorus, coming mainly from non-point sources (NPS), are major nutrients to cause eutrophication to degrade water quality of Miyun Reservoir, the only one surface drinking water source of Beijing, China. The spatial nature of the NPS pollution problem necessitates the use of a geographic information system (GIS) to manipulate, retrieve, and display the large volumes of spatial data. Based on the relevant data which range from meteorological and hydrological data to land use, fertilizer and pesticide usage, and even livestock raising information, the database of NPS of Shixia Catchment in Miyun Reservoir watershed were established. Using GIS, abstracting attribute data, digitizing, editing, coordinate transferring and generating the digital elevation model (DEM) could be finished. A total of four land use scenarios were modeled to evaluate various land management strategies on sediment and nutrient loading from catchment. The results suggest that high nutrient loads are associated with village, which has unsuitable livestock raising. Different land use influences intensively the loss of pollutants, especially slope tilling in agricultural land. The amount of nutrient loss from the agricultural land per unit is the highest, that from forestry is the secondary and that from grassland is the lowest. However, due to the variability of land use areas, agricultural land contributes the greatest effort to TP and forestry lands to TN. The loss amount of pollutant in flood season is nearly 60% of annual loss amount. The amount of nutrient loss from hill areas is larger than that from mountain areas. Pattern of non-point source pollution in Miyun County is showed that near the north and east boundary of the Reservoir is the heaviest area. It is indicated that nutrient loss is correlated with people density, fertilizer usage and soil erosion.
NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources
NASA Astrophysics Data System (ADS)
Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas
2016-07-01
We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3–79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ˜4× and ˜8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3–10 and 10–40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%–60%). Both spectral analysis and logN–logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5–2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.
NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources
NASA Astrophysics Data System (ADS)
Hong, JaeSub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E.; Alexander, David M.; Aramaki, Tsuguo; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Desai, Meera A.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Harrison, Fiona A.; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas
2016-07-01
We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3–79 keV) X-ray point sources in a 0.6 deg{}2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ∼4× and ∼8 × 10{}32 erg s{}-1 at the GC (8 kpc) in the 3–10 and 10–40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%–60%). Both spectral analysis and logN–logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Γ = 1.5–2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.
NASA Astrophysics Data System (ADS)
Huang, Lianjie; Lin, Youzuo; Zhang, Zhigang; Labyed, Yassin; Tan, Sirui; Nguyen, Nghia; Hanson, Kenneth; Sandoval, Daniel; Williamson, Michael
2014-03-01
Ultrasound transmission tomography usually generates low-resolution breast images. We improve sound-speed reconstructions using ultrasound waveform tomography with both transmission and reflection data. We validate the improvement using computer-generated synthetic-aperture ultrasound transmission and reflection data for numerical breast phantoms. Our tomography results demonstrate that using both transmission and reflection data in ultrasound waveform tomography greatly enhances the resolution and accuracy of tomographic reconstructions compared to ultrasound waveform tomography using either transmission data or reflection data alone. To verify the capability of our novel ultrasound waveform tomography, we design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays for clinical studies. The distance of the two transducer arrays is adjustable for accommodating different sizes of the breast. The parallel transducer arrays also allow us to easily scan the axillary region to evaluate the status of axillary lymph nodes and detect breast cancer in the axillary region. However, synthetic-aperture ultrasound reflection data acquired by firing each transducer element sequentially are usually much weaker than transmission data, and have much lower signal-to-noise ratios than the latter. We develop a numerical virtual-point-source method to enhance ultrasound reflection data using synthetic-aperture ultrasound data acquired by firing each transducer element sequentially. Synthetic-aperture ultrasound reflection data for a breast phantom obtained using our numerical virtual-point-source method reveals many coherent ultrasound reflection waveforms that are weak or invisible in the original synthetic-aperture ultrasound data. Ultrasound waveform tomography using both transmission and reflection data together with numerical virtual-point-source method has great potential to produce high-resolution tomographic
Point source pollution and variability of nitrate concentrations in water from shallow aquifers
NASA Astrophysics Data System (ADS)
Nemčić-Jurec, Jasna; Jazbec, Anamarija
2016-01-01
Agriculture is one of the several major sources of nitrate pollution, and therefore the EU Nitrate Directive, designed to decrease pollution, has been implemented. Point sources like septic systems and broken sewage systems also contribute to water pollution. Pollution of groundwater by nitrate from 19 shallow wells was studied in a typical agricultural region, middle Podravina, in northwest Croatia. The concentration of nitrate ranged from <0.1 to 367 mg/l in water from wells, and 29.8 % of 253 total samples were above maximum acceptable value of 50 mg/l (MAV). Among regions R1-R6, there was no statistically significant difference in nitrate concentrations (F = 1.98; p = 0.15) during the years 2002-2007. Average concentrations of nitrate in all 19 wells for all the analyzed years were between recommended limit value of 25 mg/l (RLV) and MAV except in 2002 (concentration was under RLV). The results of the repeated measures ANOVA showed statistically significant differences between the wells at the point source distance (proximity) of <10 m, compared to the wells at the point source distance of >20 m (F = 10.6; p < 0.001). Average annual concentrations of nitrate during the years studied are not statistically different, but interaction between proximity and years is statistically significant (F = 2.07; p = 0.04). Results of k-means clustering confirmed division into four clusters according to the pollution. Principal component analysis showed that there is only one significant factor, proximity, which explains 91.6 % of the total variability of nitrate. Differences in water quality were found as a result of different environmental factors. These results will contribute to the implementation of the Nitrate Directive in Croatia and the EU.
The gamma ray continuum spectrum from the galactic center disk and point sources
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Tueller, Jack
1992-01-01
A light curve of gamma-ray continuum emission from point sources in the galactic center region is generated from balloon and satellite observations made over the past 25 years. The emphasis is on the wide field-of-view instruments which measure the combined flux from all sources within approximately 20 degrees of the center. These data have not been previously used for point-source analyses because of the unknown contribution from diffuse disk emission. In this study, the galactic disk component is estimated from observations made by the Gamma Ray Imaging Spectrometer (GRIS) instrument in Oct. 1988. Surprisingly, there are several times during the past 25 years when all gamma-ray sources (at 100 keV) within about 20 degrees of the galactic center are turned off or are in low emission states. This implies that the sources are all variable and few in number. The continuum gamma-ray emission below approximately 150 keV from the black hole candidate 1E1740.7-2942 is seen to turn off in May 1989 on a time scale of less than two weeks, significantly shorter than ever seen before. With the continuum below 150 keV turned off, the spectral shape derived from the HEXAGONE observation on 22 May 1989 is very peculiar with a peak near 200 keV. This source was probably in its normal state for more than half of all observations since the mid-1960's. There are only two observations (in 1977 and 1979) for which the sum flux from the point sources in the region significantly exceeds that from 1E1740.7-2942 in its normal state.
Global persistence in directed percolation
NASA Astrophysics Data System (ADS)
Oerding, K.; van Wijland, F.
1998-08-01
We consider a directed percolation process at its critical point. The probability that the deviation of the global order parameter with respect to its average has not changed its sign between 0 and t decays with t as a power law. In space dimensions 0305-4470/31/34/004/img5 the global persistence exponent 0305-4470/31/34/004/img6 that characterizes this decay is 0305-4470/31/34/004/img7 while for d<4 its value is increased to first order in 0305-4470/31/34/004/img8. Combining a method developed by Majumdar and Sire with renormalization group techniques we compute the correction to 0305-4470/31/34/004/img6 to first order in 0305-4470/31/34/004/img10. The global persistence exponent is found to be a new and independent exponent. Finally we compare our results with existing simulations.
Search for UHE point-source emission over various time scales
The CYGNUS Collaboration
1993-05-01
A method has been developed to search for pulsed and/or unpulsed ultra high energy (UHE) emission from point sources over a range of time scales. This method has been applied to data accumulated with the CYGNUS extensive air-shower array for events associated with the directions of Cyg X-3, Her X-1, the Crab nebula, and a collection of 48 secondary source candidates. An examination of time scales ranging from minutes to years has yielded results consistent with background fluctuations.
Search for UHE point-source emission over various time scales
Not Available
1993-01-01
A method has been developed to search for pulsed and/or unpulsed ultra high energy (UHE) emission from point sources over a range of time scales. This method has been applied to data accumulated with the CYGNUS extensive air-shower array for events associated with the directions of Cyg X-3, Her X-1, the Crab nebula, and a collection of 48 secondary source candidates. An examination of time scales ranging from minutes to years has yielded results consistent with background fluctuations.
A study on the evaporation process with multiple point-sources
NASA Astrophysics Data System (ADS)
Jun, Sunghoon; Kim, Minseok; Kim, Suk Han; Lee, Moon Yong; Lee, Eung Ki
2013-10-01
In Organic Light Emitting Display (OLED) manufacturing processes, there is a need to enlarge the mother glass substrate to raise its productivity and enable OLED TV. The larger the size of the glass substrate, the more difficult it is to establish a uniform thickness profile of the organic thin-film layer in the vacuum evaporation process. In this paper, a multiple point-source evaporation process is proposed to deposit a uniform organic layer uniformly. Using this method, a uniformity of 3.75% was achieved along a 1,300 mm length of Gen. 5.5 glass substrate (1300 × 1500 mm2).
The Unicellular State as a Point Source in a Quantum Biological System
Torday, John S.; Miller, William B.
2016-01-01
A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins. PMID:27240413
Spitzer mid-infrared point sources in the fields of nearby galaxies
NASA Astrophysics Data System (ADS)
Williams, S. J.; Bonanos, A. Z.
2016-03-01
Aims: To complement the study of transient phenomena and to assist subsequent observations in the mid-infrared, we extract point source photometry from archival mosaics of nearby galaxies with high star formation rates within 4 Mpc. Methods: Point spread function photometry was performed on sources detected in both Spitzer IRAC 3.6 μm and 4.5 μm bands at greater than 3σ above background. These data were then supplemented by aperture photometry in the IRAC 5.8 μm and 8.0 μm bands conducted at the positions of the shorter wavelength sources. For sources with no detected object in the longer wavelengths, we estimated magnitude limits based on the local sky background. Results: We present Spitzer IRAC mid-infrared point source catalogs for mosaics covering the fields of the nearby (≲4 Mpc) galaxies NGC 55, NGC 253, NGC 2366, NGC 4214, and NGC 5253. We detect a total of 20159 sources in these five fields. The individual galaxy point source breakdown is the following: NGC 55, 8746 sources; NGC 253, 9001 sources; NGC 2366, 505 sources; NGC 4214, 1185 sources; NGC 5253, 722 sources. The completeness limits of the full catalog vary with bandpass and were found to be m3.6 = 18.0, m4.5 = 17.5, m5.8 = 17.0, and m8.0 = 16.5 mag. For all galaxies, this corresponds to detection of point sources brighter than M3.6 = -10. These catalogs can be used as a reference for stellar population investigations, individual stellar object studies, and in planning future mid-infrared observations with the James Webb Space Telescope. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.Full Tables 2-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A121
A Point-Source Norovirus Outbreak Caused by Exposure to Fomites
Repp, Kimberly K.; Keene, William E.
2012-01-01
We investigated a norovirus outbreak (genotype GII.2) affecting 9 members of a soccer team. Illness was associated with touching a reusable grocery bag or consuming its packaged food contents (risk difference, 0.636; P < .01). By polymerase chain reaction, GII norovirus was recovered from the bag, which had been stored in a bathroom used before the outbreak by a person with norovirus-like illness. Airborne contamination of fomites can lead to subsequent point-source outbreaks. When feasible, we recommend dedicated bathrooms for sick persons and informing cleaning staff (professional or otherwise) about the need for adequate environmental sanitation of surfaces and fomites to prevent spread. PMID:22573873
Multiaxis inertial sensing with long-time point source atom interferometry.
Dickerson, Susannah M; Hogan, Jason M; Sugarbaker, Alex; Johnson, David M S; Kasevich, Mark A
2013-08-23
We show that light-pulse atom interferometry with atomic point sources and spatially resolved detection enables multiaxis (two rotation, one acceleration) precision inertial sensing at long interrogation times. Using this method, we demonstrate a light-pulse atom interferometer for 87Rb with 1.4 cm peak wave packet separation and a duration of 2T=2.3 s. The inferred acceleration sensitivity of each shot is 6.7×10(-12)g, which improves on previous limits by more than 2 orders of magnitude. We also measure Earth's rotation rate with a precision of 200 nrad/s. PMID:24010433
Nealy, Jennifer L; Collis, Jon M; Frank, Scott D
2016-04-01
Normal mode solutions to range-independent seismo-acoustic problems are benchmarked against elastic parabolic equation solutions and then used to benchmark the shear elastic parabolic equation self-starter [Frank, Odom, and Collis, J. Acoust. Soc. Am. 133, 1358-1367 (2013)]. The Pekeris waveguide with an elastic seafloor is considered for a point source located in the ocean emitting compressional waves, or in the seafloor, emitting both compressional and shear waves. Accurate solutions are obtained when the source is in the seafloor, and when the source is at the interface between the fluid and elastic layers. PMID:27106346
Spitzer mid-infrared point sources in the fields of nearby galaxies⋆
NASA Astrophysics Data System (ADS)
Williams, S. J.; Bonanos, A. Z.
2016-03-01
Aims: To complement the study of transient phenomena and to assist subsequent observations in the mid-infrared, we extract point source photometry from archival mosaics of nearby galaxies with high star formation rates within 4 Mpc. Methods: Point spread function photometry was performed on sources detected in both Spitzer IRAC 3.6 μm and 4.5 μm bands at greater than 3σ above background. These data were then supplemented by aperture photometry in the IRAC 5.8 μm and 8.0 μm bands conducted at the positions of the shorter wavelength sources. For sources with no detected object in the longer wavelengths, we estimated magnitude limits based on the local sky background. Results: We present Spitzer IRAC mid-infrared point source catalogs for mosaics covering the fields of the nearby (≲4 Mpc) galaxies NGC 55, NGC 253, NGC 2366, NGC 4214, and NGC 5253. We detect a total of 20159 sources in these five fields. The individual galaxy point source breakdown is the following: NGC 55, 8746 sources; NGC 253, 9001 sources; NGC 2366, 505 sources; NGC 4214, 1185 sources; NGC 5253, 722 sources. The completeness limits of the full catalog vary with bandpass and were found to be m3.6 = 18.0, m4.5 = 17.5, m5.8 = 17.0, and m8.0 = 16.5 mag. For all galaxies, this corresponds to detection of point sources brighter than M3.6 = -10. These catalogs can be used as a reference for stellar population investigations, individual stellar object studies, and in planning future mid-infrared observations with the James Webb Space Telescope. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.Full Tables 2-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A121
Intermediate mass black holes and nearby dark matter point sources: a critical reassessment.
Bringmann, Torsten; Lavalle, Julien; Salati, Pierre
2009-10-16
Dark matter (DM) "minispikes" around intermediate mass black holes are sometimes quoted as one of the most promising targets for indirect DM searches. Here, we stress that existing cosmic ray data place severe constraints on the possibility to detect DM annihilation signals from these objects in gamma rays; observational prospects for neutrinos or charged cosmic rays seem even worse. Similar bounds severely constrain the possibility that the excess in the cosmic ray positron or electron flux recently reported by PAMELA/ATIC could be due to a nearby point source like a DM clump or minispike. PMID:19905686
Point source moving above a finite impedance reflecting plane - Experiment and theory
NASA Technical Reports Server (NTRS)
Norum, T. D.; Liu, C. H.
1978-01-01
A widely used experimental version of the acoustic monopole consists of an acoustic driver of restricted opening forced by a discrete frequency oscillator. To investigate the effects of forward motion on this source, it was mounted above an automobile and driven over an asphalt surface at constant speed past a microphone array. The shapes of the received signal were compared to results computed from an analysis of a fluctuating-mass-type point source moving above a finite impedance reflecting plane. Good agreement was found between experiment and theory when a complex normal impedance representative of a fairly hard acoustic surface was used in the analysis.
An analysis of the facsimile-camera response to radiant point sources. [visual and red stars
NASA Technical Reports Server (NTRS)
Huck, F. O.; Katzberg, S. J.; Jobson, D. J.; Fales, C. L., Jr.
1973-01-01
In addition to imaging the surrounding terrain, planetary lander cameras may also be used to survey the stars to aid in locating the lander site. The response of the facsimile camera, which was selected for the Viking lander missions to Mars, to a radiant point source is formulated and shown to result in a statistical rather than deterministic signal. The signal statistics are derived and magnitudes are evaluated for the brighter visual and red stars. The probability of detecting the resultant statistical signals in photosensor and preamplifier noise and the associated probability of false alarms are also determined.
Acoustic waves generated by a laser point source in an isotropic cylinder
NASA Astrophysics Data System (ADS)
Pan, Yongdong; Rossignol, Clément; Audoin, Bertrand
2004-08-01
The acoustic field of a homogeneous and isotropic cylinder generated by a laser point source in either ablation or thermoelastic regime is obtained theoretically. A three-dimensional Fourier transform is used to calculate the acoustic displacement at the cylinder surface. Experimental waveforms were measured and analyzed for both regimes. Theoretical normal displacements under either regime are calculated and compared to the experimental signals for aluminum cylinders. Very good agreements are observed in the arrival time, shape, and relative amplitude (i) of the cylindrical Rayleigh waves with different round trips, and (ii) of the various longitudinal and transverse bulk waves propagating through the cylinder or reflected at the free circular surface.
The Unicellular State as a Point Source in a Quantum Biological System.
Torday, John S; Miller, William B
2016-01-01
A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins. PMID:27240413
Electromagnetic field generated by a modulated moving point source in a planarly layered waveguide
NASA Astrophysics Data System (ADS)
Barrera-Figueroa, V.; Rabinovich, V. S.
2016-04-01
In the present work, we consider a modulated point source in an arbitrary motion in an isotropic planarly layered waveguide. The radiation field generated by this source is represented in the form of double oscillatory integrals in terms of the time and the frequency, depending on the large parameter λ. By means of the stationary phase method, we analyze, in the waveguide, the Doppler effect, the retarded time, and the Vavilov-Cherenkov radiation. Numerically, the problem of the moving source is approached by the method of spectral parameter power series.
Tritium percolation, convection, and permeation in fusion solid breeder blankets
Billone, M.C.; Liu, Y.Y.
1985-01-01
Models are developed to describe the percolation of released tritium through the breeder interconnected porosity to the purge stream, convection of tritium by the helium purge stream, and leakage or permeation of tritium through the structural material to the primary coolant system. Important parameters in the models are tritium generation rate, breeder microstructure, tritium species in the gas phase, temperatures, tritium diffusivities and permeabilities, and effectiveness of oxide barriers.
Saremi, Saeed; Sejnowski, Terrence J.
2016-01-01
Natural images are scale invariant with structures at all length scales. We formulated a geometric view of scale invariance in natural images using percolation theory, which describes the behavior of connected clusters on graphs. We map images to the percolation model by defining clusters on a binary representation for images. We show that critical percolating structures emerge in natural images and study their scaling properties by identifying fractal dimensions and exponents for the scale-invariant distributions of clusters. This formulation leads to a method for identifying clusters in images from underlying structures as a starting point for image segmentation. PMID:26415153
Saremi, Saeed; Sejnowski, Terrence J
2016-05-01
Natural images are scale invariant with structures at all length scales.We formulated a geometric view of scale invariance in natural images using percolation theory, which describes the behavior of connected clusters on graphs.We map images to the percolation model by defining clusters on a binary representation for images. We show that critical percolating structures emerge in natural images and study their scaling properties by identifying fractal dimensions and exponents for the scale-invariant distributions of clusters. This formulation leads to a method for identifying clusters in images from underlying structures as a starting point for image segmentation. PMID:26415153
Range effect on percolation threshold and structural properties for short-range attractive spheres
NASA Astrophysics Data System (ADS)
Wei, Jiachen; Xu, Limei; Song, Fan
2015-01-01
Percolation or aggregation in colloidal system is important in many fields of science and technology. Using molecular dynamics simulations, we study the percolation behavior for systems consisting of spheres interacting with short-range square-well (SRSW) which mimic colloidal particles, with different interaction ranges. We specifically focus on how the interaction range affects the percolation thresholds in the supercritical region. We find that the contact percolation boundaries are strongly dependent on the interaction ranges of SRSW, especially away from the liquid-liquid critical point. However, varying the interaction ranges of SRSW does not affect much the structure along percolation boundaries especially for low packing fractions. For instance, along the percolation boundary, distributions of coordination number show convergence, and distributions of cluster size are universal for different interaction ranges considered. In addition, either the bond percolation boundaries or isolines of average bond coordination number collapse to those for Baxter sticky model on phase diagram, which confirms the extended law of corresponding states.
Two-dimensional continuum percolation threshold for diffusing particles of nonzero radius.
Saxton, Michael J
2010-09-01
Lateral diffusion in the plasma membrane is obstructed by proteins bound to the cytoskeleton. The most important parameter describing obstructed diffusion is the percolation threshold. The thresholds are well known for point tracers, but for tracers of nonzero radius, the threshold depends on the excluded area, not just the obstacle concentration. Here thresholds are obtained for circular obstacles on the continuum. Random obstacle configurations are generated by Brownian dynamics or Monte Carlo methods, the obstacles are immobilized, and the percolation threshold is obtained by solving a bond percolation problem on the Voronoi diagram of the obstacles. The percolation threshold is expressed as the diameter of the largest tracer that can cross a set of immobile obstacles at a prescribed number density. For random overlapping obstacles, the results agree with the known analytical solution quantitatively. When the obstacles are soft disks with a 1/r(12) repulsion, the percolating diameter is approximately 20% lower than for overlapping obstacles. A percolation model predicts that the threshold is highly sensitive to the tracer radius. To our knowledge, such a strong dependence has so far not been reported for the plasma membrane, suggesting that percolation is not the factor controlling lateral diffusion. A definitive experiment is proposed. PMID:20816061
The removal of nutrients from non-point source wastewater by a hybrid bioreactor.
Wu, Yonghong; Hu, Zhengyi; Yang, Linzhang; Graham, Bruce; Kerr, Philip G
2011-02-01
The aim of this project was to establish an economical and environmentally benign biotechnology for removing nutrients from non-point source wastewater. The proposal involves a hybrid bioreactor comprised of sequential anaerobic, anoxic and aerobic (A(2)/O) processes and an eco-ditch being constructed and applied in a suburban area, Kunming, south-western China, where wastewater was discharged from an industrial park and suburban communities. The results show that the hybrid bioreactor fosters heterotrophic and autotrophic microorganisms. When the hydraulic load is 200 m(3) per day with the running mode in 12h cycles, the removal efficiencies of the nutrients were 81% for TP, 74% for TDP, 82% for TN, 79% for NO(3)-N and 86% for NH(4)-N. The improved bacterial community structure and bacterial habitats further implied enhanced water quality and indicates that the easily-deployed, affordable and environmentally-friendly hybrid bioreactor is a promising bio-measure for removing high loadings of nutrients from non-point source wastewater. PMID:21093255
Natural Wetlands Mediate Non-point Source Water Pollution From Irrigated Pastures
NASA Astrophysics Data System (ADS)
Knox, K.; Dahlgren, R. A.; Tate, K. W.
2005-12-01
Non-point source discharge from grazed pastures may be high in nutrients, sediment, and pathogens, three major contributors to water quality impairment in California. Intercepting pollution at its source and managing water quality within the landscape are essential to maintaining healthy downstream waters. We investigated the efficacy of flow-through wetlands interspersed throughout the agricultural landscape to reduce non-point source pollution of tailwater from cattle-grazed, irrigated pastures in the Sierra Nevada Foothills of California. Wetlands are known to positively impact water quality through ecological processes such as filtration, sedimentation, microbial transformations and plant uptake of nutrients. Influent and effluent water of small (0.25 ha), natural wetlands located downstream from flood irrigated pastures was analyzed for Escherichia coli, NO3-N, total N, total suspended solids (TSS), total P, and dissolved organic carbon (DOC) throughout two summer irrigation seasons (June to October). We compared reductions of sediment, nutrients and E. coli provided by a healthy, non-degraded wetland with reductions from flow through a channelized, degraded wetland. Large reductions in E. coli (>75%) and TSS (>50%) were observed in water exiting the healthy wetland while nutrient and DOC (~ 20%) concentrations were less affected by flow through the wetland. The channelized wetland provided smaller reductions in all constituents than did the non-degraded wetland. Results from this study demonstrate that small flow-through wetlands can improve water quality through the attenuation of E. coli and suspended sediments, and to a lesser degree DOC and nutrients.
DETECTION OF NEW POINT SOURCES IN WMAP 7 YEAR DATA USING INTERNAL TEMPLATES AND NEEDLETS
Scodeller, Sandro; Hansen, Frode K.; Marinucci, Domenico E-mail: frodekh@astro.uio.no
2012-07-01
We have developed a new needlet-based method to detect point sources in cosmic microwave background (CMB) maps and have applied it to the Wilkinson Microwave Anisotropy Probe (WMAP) 7 year data. We use both the individual frequency channels as well as internal templates, the latter being the difference between pairs of frequency channels and hence having the advantage that the CMB component is eliminated. Using the area of the sky outside the Kq85 galactic mask, we detect a total of 2102 point sources at the 5{sigma} level in either the frequency maps or the internal templates. Of these, 1116 are detected either at 5{sigma} directly in the frequency channels or at 5{sigma} in the internal templates and {>=}3{sigma} at the corresponding position in the frequency channels. Of the 1116 sources, 603 are detections that have not been reported so far in WMAP data. We have made a catalog of these sources available with position and flux estimated in the WMAP channels where they are seen. In total, we identified 1029 of the 1116 sources with counterparts at 5 GHz and 69 at other frequencies.
H2O and CO emission towards IRAS point sources in regions of star formation.
NASA Astrophysics Data System (ADS)
Fiegle, K.; Wouterloot, J. G. A.; Brand, J.
H2O masers are good indicators for the presence of star formation in molecular clouds. Wouterloot and Walmsley (1986) showed that all H2O maser sources in regions of star formation are associated with IRAS point sources with specific colours, so that the IRAS Point Source Catalog can be used to select maser candidates. The authors have searched for 22 GHz H2O maser emission using the 100-m radiotelescope in Effelsberg and the 32-m radiotelescope in Medicina, Italy. The total sample of sources consists of 1390 objects, selected according to their IRAS colour indices. Spectra and line parameters are given in Wouterloot et al. (1993). The H2O data are compared with results of observations of 12CO (1-0) (and of 12CO (2-1) and 12CO(3-2) in some cases) towards a large fraction of these sources, made with the 30-m IRAM, 15-m SEST, or 3-m KOSMA telescopes.
Exploring the 2MASS extended and point source catalogues with clustering redshifts
NASA Astrophysics Data System (ADS)
Rahman, Mubdi; Ménard, Brice; Scranton, Ryan
2016-04-01
The Two-Micron All-Sky Survey (2MASS) has mapped out the low-redshift Universe down to KS ˜ 14 mag. As its near-infrared photometry primarily probes the featureless Rayleigh-Jeans tail of galaxy spectral energy distributions, colour-based redshift estimation is rather uninformative. Until now, redshift estimates for this data set have relied on optical follow-up suffering from selection biases. Here, we use the newly developed technique of clustering-based redshift estimation to infer the redshift distribution of the 2MASS sources regardless of their optical properties. We characterize redshift distributions of objects from the Extended Source Catalogue as a function of near-infrared colours and brightness and report some observed trends. We also apply the clustering redshift technique to dropout populations, sources with non-detections in one or more near-infrared bands, and present their redshift distributions. Combining all extended sources, we confirm with clustering redshifts that the distribution of this sample extends up to z ˜ 0.35. We perform a similar analysis with the Point Source Catalogue and show that it can be separated into stellar and extragalactic contributions with galaxies reaching z ˜ 0.7. We estimate that the Point Source Catalogue contains 1.6 million extragalactic objects: as many as in the Extended Source Catalogue but probing a cosmic volume 10 times larger.
Inexact Bregman iteration for deconvolution of superimposed extended and point sources
NASA Astrophysics Data System (ADS)
Benfenati, A.; Ruggiero, V.
2015-03-01
In this paper we consider the deconvolution of high contrast images consisting of very bright stars (point component) and smooth structures underlying the stars (diffuse component). A typical case is a weak diffuse jet line emission superimposed to a strong stellar continuum. In order to reconstruct the diffuse component, the original object can be regarded as the sum of these two components. When the position of the point sources is known, a regularization term can be introduced for the second component. An approximation of the original object can be obtained by solving a reduced variational problem whose unknowns are the intensities of the stars and the diffuse component. We analyze this problem when the detected image is corrupted by Poisson noise and Tikhonov-like regularization is used, giving conditions for the existence and the uniqueness of the solution. Furthermore, since only an overestimation of the regularization parameter is available, we propose to solve the variational problem by inexact Bregman iteration combined with a Scaled Gradient Projection method (SGP). Numerical simulations show that the images obtained with this approach enable us to reconstruct the original intensity distribution around the point source with satisfactory accuracy.
Reprint of Inexact Bregman iteration for deconvolution of superimposed extended and point sources
NASA Astrophysics Data System (ADS)
Benfenati, A.; Ruggiero, V.
2015-04-01
In this paper we consider the deconvolution of high contrast images consisting of very bright stars (point component) and smooth structures underlying the stars (diffuse component). A typical case is a weak diffuse jet line emission superimposed to a strong stellar continuum. In order to reconstruct the diffuse component, the original object can be regarded as the sum of these two components. When the position of the point sources is known, a regularization term can be introduced for the second component. An approximation of the original object can be obtained by solving a reduced variational problem whose unknowns are the intensities of the stars and the diffuse component. We analyze this problem when the detected image is corrupted by Poisson noise and Tikhonov-like regularization is used, giving conditions for the existence and the uniqueness of the solution. Furthermore, since only an overestimation of the regularization parameter is available, we propose to solve the variational problem by inexact Bregman iteration combined with a Scaled Gradient Projection method (SGP). Numerical simulations show that the images obtained with this approach enable us to reconstruct the original intensity distribution around the point source with satisfactory accuracy.
Spitzer infrared spectrograph point source classification in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Ruffle, Paul M. E.; Kemper, F.; Jones, O. C.; Sloan, G. C.; Kraemer, K. E.; Woods, Paul M.; Boyer, M. L.; Srinivasan, S.; Antoniou, V.; Lagadec, E.; Matsuura, M.; McDonald, I.; Oliveira, J. M.; Sargent, B. A.; Sewiło, M.; Szczerba, R.; van Loon, J. Th.; Volk, K.; Zijlstra, A. A.
2015-08-01
The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf-Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.
Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT
NASA Astrophysics Data System (ADS)
Liu, Ruimin; Xu, Fei; Zhang, Peipei; Yu, Wenwen; Men, Cong
2016-02-01
The identification of critical source areas (CSAs) is a precondition for non-point source (NPS) pollution control at a basin scale, especially in areas with limited resources. Based on the Soil and Water Assessment Tool (SWAT), nutrient loads coupled with population density and water quality requirements are regarded as multi-factors for CSAs identification in Xiangxi river watershed, the first tributary of the Yangtze River. The results based on the calibrated model found that the subbasins heavily and seriously polluted by nutrient loads were different from the subbasins identified as CSAs, demonstrating integrating socio-economic factors like population density and water quality requirements to identify CSAs is of much necessity. The CSAs occupied 19.7% of the total subbasins, and accounted for 53% total nitrogen loads, 54% total phosphorus loads and 36% of the total population. Considering the model calibration and validation will take a long time as well as data deficiency in some subbasins, the influence of uncalibrated SWAT on CSAs identifications was discussed. The comparative results between CSAs identification with calibrated and uncalibrated SWAT model revealed that model calibration had little effect on nutrients distribution and CSAs locations in the study area. Uncalibrated SWAT model may be applied when the research objective is less related to model calibration. The results will be greatly effective for CSAs identification and NPS pollution control at a basin scale.
Percolation analysis of nonlinear structures in scale-free two-dimensional simulations
NASA Technical Reports Server (NTRS)
Dominik, Kurt G.; Shandarin, Sergei F.
1992-01-01
Results are presented of applying percolation analysis to several two-dimensional N-body models which simulate the formation of large-scale structure. Three parameters are estimated: total area (a(c)), total mass (M(C)), and percolation density (rho(c)) of the percolating structure at the percolation threshold for both unsmoothed and smoothed (with different scales L(s)) nonlinear with filamentary structures, confirming early speculations that this type of model has several features of filamentary-type distributions. Also, it is shown that, by properly applying smoothing techniques, many problems previously considered detrimental can be dealt with and overcome. Possible difficulties and prospects with the use of this method are discussed, specifically relating to techniques and methods already applied to CfA deep sky surveys. The success of this test in two dimensions and the potential for extrapolation to three dimensions is also discussed.
NASA Astrophysics Data System (ADS)
Hamdi, Adel
2009-11-01
This paper deals with the identification of a point source (localization of its position and recovering the history of its time-varying intensity function) that constitutes the right-hand side of the first equation in a system of two coupled 1D linear transport equations. Assuming that the source intensity function vanishes before reaching the final control time, we prove the identifiability of the sought point source from recording the state relative to the second coupled transport equation at two observation points framing the source region. Note that at least one of the two observation points should be strategic. We establish an identification method that uses these records to identify the source position as the root of a continuous and strictly monotonic function. Whereas the source intensity function is recovered using a recursive formula without any need of an iterative process. Some numerical experiments on a variant of the surface water pollution BOD-OD coupled model are presented.
AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. I. POINT-SOURCE CATALOG
Kato, Daisuke; Onaka, Takashi; Shimonishi, Takashi; Sakon, Itsuki; Ita, Yoshifusa; Tanabe, Toshihiko; Takahashi, Hidenori; Kaneda, Hidehiro; Kawamura, Akiko; Wada, Takehiko; Usui, Fumihiko; Koo, Bon-Chul; Matsuura, Mikako E-mail: onaka@astron.s.u-tokyo.ac.jp
2012-12-01
We present a near- to mid-infrared point-source catalog of five photometric bands at 3.2, 7, 11, 15, and 24 {mu}m for a 10 deg{sup 2} area of the Large Magellanic Cloud (LMC) obtained with the Infrared Camera on board the AKARI satellite. To cover the survey area the observations were carried out at three separate seasons from 2006 May to June, 2006 October to December, and 2007 March to July. The 10{sigma} limiting magnitudes of the present survey are 17.9, 13.8, 12.4, 9.9, and 8.6 mag at 3.2, 7, 11, 15, and 24 {mu}m, respectively. The photometric accuracy is estimated to be about 0.1 mag at 3.2 {mu}m and 0.06-0.07 mag in the other bands. The position accuracy is 0.''3 at 3.2, 7, and 11 {mu}m and 1.''0 at 15 and 24 {mu}m. The sensitivities at 3.2, 7, and 24 {mu}m are roughly comparable to those of the Spitzer SAGE LMC point-source catalog, while the AKARI catalog provides the data at 11 and 15 {mu}m, covering the mid-infrared spectral range contiguously. Two types of catalog are provided: a Catalog and an Archive. The Archive contains all the detected sources, while the Catalog only includes the sources that have a counterpart in the Spitzer SAGE point-source catalog. The Archive contains about 650,000, 140,000, 97,000, 43,000, and 52,000 sources at 3.2, 7, 11, 15, and 24 {mu}m, respectively. Based on the catalog, we discuss the luminosity functions at each band, the color-color diagram, and the color-magnitude diagram using the 3.2, 7, and 11 {mu}m band data. Stars without circumstellar envelopes, dusty C-rich and O-rich stars, young stellar objects, and background galaxies are located at distinct regions in the diagrams, suggesting that the present catalog is useful for the classification of objects toward the LMC.
X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION
Morihana, Kumiko; Tsujimoto, Masahiro; Ebisawa, Ken; Yoshida, Tessei
2013-03-20
Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.
Discrete scale invariance in supercritical percolation
NASA Astrophysics Data System (ADS)
Schröder, Malte; Chen, Wei; Nagler, Jan
2016-01-01
Recently it has been demonstrated that the connectivity transition from microscopic connectivity to macroscopic connectedness, known as percolation, is generically announced by a cascade of microtransitions of the percolation order parameter (Chen et al 2014 Phys. Rev. Lett. 112 155701). Here we report the discovery of macrotransition cascades which follow percolation. The order parameter grows in discrete macroscopic steps with positions that can be randomly distributed even in the thermodynamic limit. These transition positions are, however, correlated and follow scaling laws which arise from discrete scale invariance (DSI) and non self-averaging, both traditionally unrelated to percolation. We reveal the DSI in ensemble measurements of these non self-averaging systems by rescaling of the individual realizations before averaging.
Percolation effects on entangled polymer rheology and the glass transition
NASA Astrophysics Data System (ADS)
Wool, Richard P.
2012-07-01
Current thinking on the fundamentals of entangled polymer melt rheology suggests that stress relaxation in the terminal zone occurs via Reptation, chain-end fluctuation and (convective) constraint release. This scenario is not correct. It is shown through a series of experiments with selectively deuterated model polymers that relaxation occurs through a percolation process which permits large clusters of entangled polymers to stress relax before their conformations are fully relaxed. The percolation model of entanglements (R.P. Wool, Macromolecules 26, 1564, 1993) makes unique predictions regarding the dynamics of polymer chains in the terminal relaxation zone. These include: (a) Reptating homopolymer chains with molecular weight M >> Mc appear to be non-Reptating as their ends and centers relax at the same rate in a Rouse-like manner during percolation. (b) The mechanical relaxation time τ(M) is related to the Reptation time Tr˜ M3 by τ(M) = Tr[(1-Mc/M)Me/Mc]2, which is the origin of the zero shear viscosity behaving as ηo˜M3.4 (c) The biggest surprise is that during stress relaxation, the random coil dimensions Rg(//) and Rg(⊥) are not fully relaxed when the stress and birefringence relax to zero. (d) Matrix molecular weight P effects on relaxation time τ(M) of the probe chain M are as follows: When the probe chain M>>P, the matrix P-chains percolate and Rouse-like dynamics is observed for the M-Reptating chains with τ(M) ˜ P1M2. (e) When the matrix P>>M, percolation does not occur for the M-chain and the relaxation time of the probe chain τ(M) ˜ PoM3 is in accord with DeGennes Reptation theory. These unusual results predicted by entanglement percolation are supported by extensive experimental data (NR, SANS, DSIMS, FTIR, BR) from selectively deuterated polystyrene chains HDH, DHD, HPS and DPS. These results clearly suggest that current notions of polymer rheology need to be reconsidered. Near Tg, a new perspective on the Glass Transition of amorphous
NASA Astrophysics Data System (ADS)
Fessel, Adrian; Oettmeier, Christina; Bernitt, Erik; Gauthier, Nils C.; Döbereiner, Hans-Günther
2012-08-01
We study the formation of transportation networks of the true slime mold Physarum polycephalum after fragmentation by shear. Small fragments, called microplasmodia, fuse to form macroplasmodia in a percolation transition. At this topological phase transition, one single giant component forms, connecting most of the previously isolated microplasmodia. Employing the configuration model of graph theory for small link degree, we have found analytically an exact solution for the phase transition. It is generally applicable to percolation as seen, e.g., in vascular networks.
Percolation of secret correlations in a network
Leverrier, Anthony; Garcia-Patron, Raul
2011-09-15
In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.
VizieR Online Data Catalog: Spitzer point source catalogs in 7 nearby gal. (Khan+, 2015)
NASA Astrophysics Data System (ADS)
Khan, R.; Stanek, K. Z.; Kochanek, C. S.; Sonneborn, G.
2015-10-01
We present Spitzer IRAC 3.6-8μm and Multiband Imaging Photometer 24μm point-source catalogs for seven galaxies: NGC6822, M33, NGC300, NGC2403, M81, NGC0247, and NGC7793. The catalogs contain a total of ~300000 sources and were created by dual-band selection of sources with >3σ detections at both 3.6 and 4.5μm. The source lists become significantly incomplete near m3.6=m_4.5~=18. We complement the 3.6 and 4.5μm fluxes with 5.8, 8.0, and 24μm fluxes or 3σ upper limits using a combination of PSF and aperture photometry. This catalog is a resource as an archive for studying mid-infrared transients and for planning observations with the James Webb Space Telescope. (7 data files).
Search for neutrino point sources with ANTARES 2007-2012 data
Zornoza, J. D.
2014-11-18
Neutrinos are unique probes to study the high energy Universe, since they are neutral, only interact weakly and are stable. Furthermore, they can provide key information about several fundamental questions in Physics like the origin of cosmic rays and the nature of dark matter. The ANTARES neutrino telescope, installed in the Mediterranean Sea, has been taking data since 2007. In this paper we review the results concerning the search for point sources of cosmic neutrinos, using data of 2007–2012. Two main strategies have been followed: to look towards the direction of sources candidate to emmit neutrinos and to make an all-sky scan. Although no significant cluster has been found above the background, flux limits have been set at the level of E{sup 2}φν{sup 90CL}∼1–2×10{sup −8} GeV cm{sup −}2s{sup −1}.
An efficient method to compute microlensed light curves for point sources
NASA Technical Reports Server (NTRS)
Witt, Hans J.
1993-01-01
We present a method to compute microlensed light curves for point sources. This method has the general advantage that all microimages contributing to the light curve are found. While a source moves along a straight line, all micro images are located either on the primary image track or on the secondary image tracks (loops). The primary image track extends from - infinity to + infinity and is made of many sequents which are continuously connected. All the secondary image tracks (loops) begin and end on the lensing point masses. The method can be applied to any microlensing situation with point masses in the deflector plane, even for the overcritical case and surface densities close to the critical. Furthermore, we present general rules to evaluate the light curve for a straight track arbitrary placed in the caustic network of a sample of many point masses.