Sample records for pointwise adaptive estimation

  1. Pointwise influence matrices for functional-response regression.

    PubMed

    Reiss, Philip T; Huang, Lei; Wu, Pei-Shien; Chen, Huaihou; Colcombe, Stan

    2017-12-01

    We extend the notion of an influence or hat matrix to regression with functional responses and scalar predictors. For responses depending linearly on a set of predictors, our definition is shown to reduce to the conventional influence matrix for linear models. The pointwise degrees of freedom, the trace of the pointwise influence matrix, are shown to have an adaptivity property that motivates a two-step bivariate smoother for modeling nonlinear dependence on a single predictor. This procedure adapts to varying complexity of the nonlinear model at different locations along the function, and thereby achieves better performance than competing tensor product smoothers in an analysis of the development of white matter microstructure in the brain. © 2017, The International Biometric Society.

  2. A-Posteriori Error Estimation for Hyperbolic Conservation Laws with Constraint

    NASA Technical Reports Server (NTRS)

    Barth, Timothy

    2004-01-01

    This lecture considers a-posteriori error estimates for the numerical solution of conservation laws with time invariant constraints such as those arising in magnetohydrodynamics (MHD) and gravitational physics. Using standard duality arguments, a-posteriori error estimates for the discontinuous Galerkin finite element method are then presented for MHD with solenoidal constraint. From these estimates, a procedure for adaptive discretization is outlined. A taxonomy of Green's functions for the linearized MHD operator is given which characterizes the domain of dependence for pointwise errors. The extension to other constrained systems such as the Einstein equations of gravitational physics are then considered. Finally, future directions and open problems are discussed.

  3. Image denoising in mixed Poisson-Gaussian noise.

    PubMed

    Luisier, Florian; Blu, Thierry; Unser, Michael

    2011-03-01

    We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on a purely data-adaptive unbiased estimate of the mean-squared error (MSE), derived in a non-Bayesian framework (PURE: Poisson-Gaussian unbiased risk estimate). We provide a practical approximation of this theoretical MSE estimate for the tractable optimization of arbitrary transform-domain thresholding. We then propose a pointwise estimator for undecimated filterbank transforms, which consists of subband-adaptive thresholding functions with signal-dependent thresholds that are globally optimized in the image domain. We finally demonstrate the potential of the proposed approach through extensive comparisons with state-of-the-art techniques that are specifically tailored to the estimation of Poisson intensities. We also present denoising results obtained on real images of low-count fluorescence microscopy.

  4. The pointwise estimates of diffusion wave of the compressible micropolar fluids

    NASA Astrophysics Data System (ADS)

    Wu, Zhigang; Wang, Weike

    2018-09-01

    The pointwise estimates for the compressible micropolar fluids in dimension three are given, which exhibit generalized Huygens' principle for the fluid density and fluid momentum as the compressible Navier-Stokes equation, while the micro-rational momentum behaves like the fluid momentum of the Euler equation with damping. To circumvent the complexity from 7 × 7 Green's matrix, we use the decomposition of fluid part and electromagnetic part for the momentums to study three smaller Green's matrices. The following from this decomposition is that we have to deal with the new problem that the nonlinear terms contain nonlocal operators. We solve it by using the natural match of these new Green's functions and the nonlinear terms. Moreover, to derive the different pointwise estimates for different unknown variables such that the estimate of each unknown variable is in agreement with its Green's function, we develop some new estimates on the nonlinear interplay between different waves.

  5. Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR).

    PubMed

    O'Leary, Neil; Chauhan, Balwantray C; Artes, Paul H

    2012-10-01

    To establish a method for estimating the overall statistical significance of visual field deterioration from an individual patient's data, and to compare its performance to pointwise linear regression. The Truncated Product Method was used to calculate a statistic S that combines evidence of deterioration from individual test locations in the visual field. The overall statistical significance (P value) of visual field deterioration was inferred by comparing S with its permutation distribution, derived from repeated reordering of the visual field series. Permutation of pointwise linear regression (PoPLR) and pointwise linear regression were evaluated in data from patients with glaucoma (944 eyes, median mean deviation -2.9 dB, interquartile range: -6.3, -1.2 dB) followed for more than 4 years (median 10 examinations over 8 years). False-positive rates were estimated from randomly reordered series of this dataset, and hit rates (proportion of eyes with significant deterioration) were estimated from the original series. The false-positive rates of PoPLR were indistinguishable from the corresponding nominal significance levels and were independent of baseline visual field damage and length of follow-up. At P < 0.05, the hit rates of PoPLR were 12, 29, and 42%, at the fifth, eighth, and final examinations, respectively, and at matching specificities they were consistently higher than those of pointwise linear regression. In contrast to population-based progression analyses, PoPLR provides a continuous estimate of statistical significance for visual field deterioration individualized to a particular patient's data. This allows close control over specificity, essential for monitoring patients in clinical practice and in clinical trials.

  6. Absolute phase estimation: adaptive local denoising and global unwrapping.

    PubMed

    Bioucas-Dias, Jose; Katkovnik, Vladimir; Astola, Jaakko; Egiazarian, Karen

    2008-10-10

    The paper attacks absolute phase estimation with a two-step approach: the first step applies an adaptive local denoising scheme to the modulo-2 pi noisy phase; the second step applies a robust phase unwrapping algorithm to the denoised modulo-2 pi phase obtained in the first step. The adaptive local modulo-2 pi phase denoising is a new algorithm based on local polynomial approximations. The zero-order and the first-order approximations of the phase are calculated in sliding windows of varying size. The zero-order approximation is used for pointwise adaptive window size selection, whereas the first-order approximation is used to filter the phase in the obtained windows. For phase unwrapping, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [IEEE Trans. Image Process.16, 698 (2007)] to the denoised wrapped phase. Simulations give evidence that the proposed algorithm yields state-of-the-art performance, enabling strong noise attenuation while preserving image details. (c) 2008 Optical Society of America

  7. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-04-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  8. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chu; Wang, Haitao; Wu, Kung-Chien

    2018-06-01

    We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad's angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543-1608, 2004), (Bull Inst Math Acad Sin 1:1-78, 2006), (Bull Inst Math Acad Sin 6:151-243, 2011) and Lee et al. (Commun Math Phys 269:17-37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

  9. An adaptive Bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release

    NASA Astrophysics Data System (ADS)

    Rajaona, Harizo; Septier, François; Armand, Patrick; Delignon, Yves; Olry, Christophe; Albergel, Armand; Moussafir, Jacques

    2015-12-01

    In the eventuality of an accidental or intentional atmospheric release, the reconstruction of the source term using measurements from a set of sensors is an important and challenging inverse problem. A rapid and accurate estimation of the source allows faster and more efficient action for first-response teams, in addition to providing better damage assessment. This paper presents a Bayesian probabilistic approach to estimate the location and the temporal emission profile of a pointwise source. The release rate is evaluated analytically by using a Gaussian assumption on its prior distribution, and is enhanced with a positivity constraint to improve the estimation. The source location is obtained by the means of an advanced iterative Monte-Carlo technique called Adaptive Multiple Importance Sampling (AMIS), which uses a recycling process at each iteration to accelerate its convergence. The proposed methodology is tested using synthetic and real concentration data in the framework of the Fusion Field Trials 2007 (FFT-07) experiment. The quality of the obtained results is comparable to those coming from the Markov Chain Monte Carlo (MCMC) algorithm, a popular Bayesian method used for source estimation. Moreover, the adaptive processing of the AMIS provides a better sampling efficiency by reusing all the generated samples.

  10. Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions

    PubMed Central

    Park, Yongseok; Taylor, Jeremy M. G.; Kalbfleisch, John D.

    2012-01-01

    In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method. PMID:23843661

  11. Marginal regression analysis of recurrent events with coarsened censoring times.

    PubMed

    Hu, X Joan; Rosychuk, Rhonda J

    2016-12-01

    Motivated by an ongoing pediatric mental health care (PMHC) study, this article presents weakly structured methods for analyzing doubly censored recurrent event data where only coarsened information on censoring is available. The study extracted administrative records of emergency department visits from provincial health administrative databases. The available information of each individual subject is limited to a subject-specific time window determined up to concealed data. To evaluate time-dependent effect of exposures, we adapt the local linear estimation with right censored survival times under the Cox regression model with time-varying coefficients (cf. Cai and Sun, Scandinavian Journal of Statistics 2003, 30, 93-111). We establish the pointwise consistency and asymptotic normality of the regression parameter estimator, and examine its performance by simulation. The PMHC study illustrates the proposed approach throughout the article. © 2016, The International Biometric Society.

  12. New approach to estimating variability in visual field data using an image processing technique.

    PubMed Central

    Crabb, D P; Edgar, D F; Fitzke, F W; McNaught, A I; Wynn, H P

    1995-01-01

    AIMS--A new framework for evaluating pointwise sensitivity variation in computerised visual field data is demonstrated. METHODS--A measure of local spatial variability (LSV) is generated using an image processing technique. Fifty five eyes from a sample of normal and glaucomatous subjects, examined on the Humphrey field analyser (HFA), were used to illustrate the method. RESULTS--Significant correlation between LSV and conventional estimates--namely, HFA pattern standard deviation and short term fluctuation, were found. CONCLUSION--LSV is not dependent on normals' reference data or repeated threshold determinations, thus potentially reducing test time. Also, the illustrated pointwise maps of LSV could provide a method for identifying areas of fluctuation commonly found in early glaucomatous field loss. PMID:7703196

  13. Returns to Scale and Economies of Scale: Further Observations.

    ERIC Educational Resources Information Center

    Gelles, Gregory M.; Mitchell, Douglas W.

    1996-01-01

    Maintains that most economics textbooks continue to repeat past mistakes concerning returns to scale and economies of scale under assumptions of constant and nonconstant input prices. Provides an adaptation for a calculus-based intermediate microeconomics class that demonstrates the pointwise relationship between returns to scale and economies of…

  14. Structural Properties and Estimation of Delay Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kwong, R. H. S.

    1975-01-01

    Two areas in the theory of delay systems were studied: structural properties and their applications to feedback control, and optimal linear and nonlinear estimation. The concepts of controllability, stabilizability, observability, and detectability were investigated. The property of pointwise degeneracy of linear time-invariant delay systems is considered. Necessary and sufficient conditions for three dimensional linear systems to be made pointwise degenerate by delay feedback were obtained, while sufficient conditions for this to be possible are given for higher dimensional linear systems. These results were applied to obtain solvability conditions for the minimum time output zeroing control problem by delay feedback. A representation theorem is given for conditional moment functionals of general nonlinear stochastic delay systems, and stochastic differential equations are derived for conditional moment functionals satisfying certain smoothness properties.

  15. Fast function-on-scalar regression with penalized basis expansions.

    PubMed

    Reiss, Philip T; Huang, Lei; Mennes, Maarten

    2010-01-01

    Regression models for functional responses and scalar predictors are often fitted by means of basis functions, with quadratic roughness penalties applied to avoid overfitting. The fitting approach described by Ramsay and Silverman in the 1990 s amounts to a penalized ordinary least squares (P-OLS) estimator of the coefficient functions. We recast this estimator as a generalized ridge regression estimator, and present a penalized generalized least squares (P-GLS) alternative. We describe algorithms by which both estimators can be implemented, with automatic selection of optimal smoothing parameters, in a more computationally efficient manner than has heretofore been available. We discuss pointwise confidence intervals for the coefficient functions, simultaneous inference by permutation tests, and model selection, including a novel notion of pointwise model selection. P-OLS and P-GLS are compared in a simulation study. Our methods are illustrated with an analysis of age effects in a functional magnetic resonance imaging data set, as well as a reanalysis of a now-classic Canadian weather data set. An R package implementing the methods is publicly available.

  16. Approximation by the iterates of Bernstein operator

    NASA Astrophysics Data System (ADS)

    Zapryanova, Teodora; Tachev, Gancho

    2012-11-01

    We study the degree of pointwise approximation of the iterated Bernstein operators to its limiting operator. We obtain a quantitative estimates related to the conjecture of Gonska and Raşa from 2006.

  17. Fractal stock markets: International evidence of dynamical (in)efficiency.

    PubMed

    Bianchi, Sergio; Frezza, Massimiliano

    2017-07-01

    The last systemic financial crisis has reawakened the debate on the efficient nature of financial markets, traditionally described as semimartingales. The standard approaches to endow the general notion of efficiency of an empirical content turned out to be somewhat inconclusive and misleading. We propose a topological-based approach to quantify the informational efficiency of a financial time series. The idea is to measure the efficiency by means of the pointwise regularity of a (stochastic) function, given that the signature of a martingale is that its pointwise regularity equals 12. We provide estimates for real financial time series and investigate their (in)efficient behavior by comparing three main stock indexes.

  18. Fractal stock markets: International evidence of dynamical (in)efficiency

    NASA Astrophysics Data System (ADS)

    Bianchi, Sergio; Frezza, Massimiliano

    2017-07-01

    The last systemic financial crisis has reawakened the debate on the efficient nature of financial markets, traditionally described as semimartingales. The standard approaches to endow the general notion of efficiency of an empirical content turned out to be somewhat inconclusive and misleading. We propose a topological-based approach to quantify the informational efficiency of a financial time series. The idea is to measure the efficiency by means of the pointwise regularity of a (stochastic) function, given that the signature of a martingale is that its pointwise regularity equals 1/2 . We provide estimates for real financial time series and investigate their (in)efficient behavior by comparing three main stock indexes.

  19. Dissipative structure and global existence in critical space for Timoshenko system of memory type

    NASA Astrophysics Data System (ADS)

    Mori, Naofumi

    2018-08-01

    In this paper, we consider the initial value problem for the Timoshenko system with a memory term in one dimensional whole space. In the first place, we consider the linearized system: applying the energy method in the Fourier space, we derive the pointwise estimate of the solution in the Fourier space, which first gives the optimal decay estimate of the solution. Next, we give a characterization of the dissipative structure of the system by using the spectral analysis, which confirms our pointwise estimate is optimal. In the second place, we consider the nonlinear system: we show that the global-in-time existence and uniqueness result could be proved in the minimal regularity assumption in the critical Sobolev space H2. In the proof we don't need any time-weighted norm as recent works; we use just an energy method, which is improved to overcome the difficulties caused by regularity-loss property of Timoshenko system.

  20. Locality of the Thomas-Fermi-von Weizsäcker Equations

    NASA Astrophysics Data System (ADS)

    Nazar, F. Q.; Ortner, C.

    2017-06-01

    We establish a pointwise stability estimate for the Thomas-Fermi-von Weiz-säcker (TFW) model, which demonstrates that a local perturbation of a nuclear arrangement results also in a local response in the electron density and electrostatic potential. The proof adapts the arguments for existence and uniqueness of solutions to the TFW equations in the thermodynamic limit by Catto et al. (The mathematical theory of thermodynamic limits: Thomas-Fermi type models. Oxford mathematical monographs. The Clarendon Press, Oxford University Press, New York, 1998). To demonstrate the utility of this combined locality and stability result we derive several consequences, including an exponential convergence rate for the thermodynamic limit, partition of total energy into exponentially localised site energies (and consequently, exponential locality of forces), and generalised and strengthened results on the charge neutrality of local defects.

  1. Space-time mesh adaptation for solute transport in randomly heterogeneous porous media.

    PubMed

    Dell'Oca, Aronne; Porta, Giovanni Michele; Guadagnini, Alberto; Riva, Monica

    2018-05-01

    We assess the impact of an anisotropic space and time grid adaptation technique on our ability to solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale. The flow field, which provides the advective component of transport, is obtained through the numerical solution of Darcy's law. A suitable recovery-based error estimator is analyzed to guide the adaptive discretization. We investigate two diverse strategies guiding the (space-time) anisotropic mesh adaptation. These are respectively grounded on the definition of the guiding error estimator through the spatial gradients of: (i) the concentration field only; (ii) both concentration and velocity components. We test the approach for two-dimensional computational scenarios with moderate and high levels of heterogeneity, the latter being expressed in terms of the variance of Y. As quantities of interest, we key our analysis towards the time evolution of section-averaged and point-wise solute breakthrough curves, second centered spatial moment of concentration, and scalar dissipation rate. As a reference against which we test our results, we consider corresponding solutions associated with uniform space-time grids whose level of refinement is established through a detailed convergence study. We find a satisfactory comparison between results for the adaptive methodologies and such reference solutions, our adaptive technique being associated with a markedly reduced computational cost. Comparison of the two adaptive strategies tested suggests that: (i) defining the error estimator relying solely on concentration fields yields some advantages in grasping the key features of solute transport taking place within low velocity regions, where diffusion-dispersion mechanisms are dominant; and (ii) embedding the velocity field in the error estimator guiding strategy yields an improved characterization of the forward fringe of solute fronts which propagate through high velocity regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The output least-squares approach to estimating Lamé moduli

    NASA Astrophysics Data System (ADS)

    Gockenbach, Mark S.

    2007-12-01

    The Lamé moduli of a heterogeneous, isotropic, planar membrane can be estimated by observing the displacement of the membrane under a known edge traction, and choosing estimates of the moduli that best predict the observed displacement under a finite-element simulation. This algorithm converges to the exact moduli given pointwise measurements of the displacement on an increasingly fine mesh. The error estimates that prove this convergence also show the instability of the inverse problem.

  3. Pointwise regularity of parameterized affine zipper fractal curves

    NASA Astrophysics Data System (ADS)

    Bárány, Balázs; Kiss, Gergely; Kolossváry, István

    2018-05-01

    We study the pointwise regularity of zipper fractal curves generated by affine mappings. Under the assumption of dominated splitting of index-1, we calculate the Hausdorff dimension of the level sets of the pointwise Hölder exponent for a subinterval of the spectrum. We give an equivalent characterization for the existence of regular pointwise Hölder exponent for Lebesgue almost every point. In this case, we extend the multifractal analysis to the full spectrum. In particular, we apply our results for de Rham’s curve.

  4. A Radial Basis Function Approach to Financial Time Series Analysis

    DTIC Science & Technology

    1993-12-01

    including efficient methods for parameter estimation and pruning, a pointwise prediction error estimator, and a methodology for controlling the "data...collection of practical techniques to address these issues for a modeling methodology . Radial Basis Function networks. These techniques in- clude efficient... methodology often then amounts to a careful consideration of the interplay between model complexity and reliability. These will be recurrent themes

  5. Exact simulation of max-stable processes.

    PubMed

    Dombry, Clément; Engelke, Sebastian; Oesting, Marco

    2016-06-01

    Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.

  6. Effective Dynamic Range and Retest Reliability of Dark-Adapted Two-Color Fundus-Controlled Perimetry in Patients With Macular Diseases.

    PubMed

    Pfau, Maximilian; Lindner, Moritz; Müller, Philipp L; Birtel, Johannes; Finger, Robert P; Harmening, Wolf M; Fleckenstein, Monika; Holz, Frank G; Schmitz-Valckenberg, Steffen

    2017-05-01

    To determine the effective dynamic range (EDR), retest reliability, and number of discriminable steps (DS) for mesopic and dark-adapted two-color fundus-controlled perimetry (FCP) using the S-MAIA (Scotopic-Macular Integrity Assessment) "micro-perimeter." In this prospective cross-sectional study, each of the 52 eyes of 52 subjects with various macular diseases (mean age 62.0 ± 16.9 years; range, 19.1-90.1 years) underwent duplicate mesopic (achromatic stimuli, 400-800 nm), dark-adapted cyan (505 nm), and dark-adapted red (627 nm) FCP using a grid of 61 stimuli covering 18° of the central retina. The EDR, the number of DS, and the retest reliability for point-wise sensitivity (PWS) were analyzed. The effects of fixation stability, sensitivity, and age on retest reliability were examined using mixed-effects models. The EDR was 10 to 30 dB with five DS for mesopic and 4 to 17 dB with four DS for dark-adapted cyan and red testing. PWS retest reliability was good among all three types of retinal sensitivity assessments (coefficient of repeatability ±5.79, ±4.72, and ±4.77 dB, respectively) and did not depend on fixation stability or age. PWS had no effect on retest variability in dark-adapted cyan and dark-adapted red testing but had a minor effect in mesopic testing. Combined mesopic and dark-adapted two-color FCP allows for reliable topographic testing of cone and rod function in patients with various macular diseases with and without foveal fixation. Retest reliability is homogeneous across eccentricities and various degrees of scotoma depth, including zones at risk for disease progression. These reliability estimates can serve for the design of future clinical trials.

  7. Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials

    NASA Astrophysics Data System (ADS)

    Cameron, Stephen; Silvestre, Luis; Snelson, Stanley

    2018-05-01

    We establish a priori upper bounds for solutions to the spatially inhomogeneous Landau equation in the case of moderately soft potentials, with arbitrary initial data, under the assumption that mass, energy and entropy densities stay under control. Our pointwise estimates decay polynomially in the velocity variable. We also show that if the initial data satisfies a Gaussian upper bound, this bound is propagated for all positive times.

  8. Pointwise probability reinforcements for robust statistical inference.

    PubMed

    Frénay, Benoît; Verleysen, Michel

    2014-02-01

    Statistical inference using machine learning techniques may be difficult with small datasets because of abnormally frequent data (AFDs). AFDs are observations that are much more frequent in the training sample that they should be, with respect to their theoretical probability, and include e.g. outliers. Estimates of parameters tend to be biased towards models which support such data. This paper proposes to introduce pointwise probability reinforcements (PPRs): the probability of each observation is reinforced by a PPR and a regularisation allows controlling the amount of reinforcement which compensates for AFDs. The proposed solution is very generic, since it can be used to robustify any statistical inference method which can be formulated as a likelihood maximisation. Experiments show that PPRs can be easily used to tackle regression, classification and projection: models are freed from the influence of outliers. Moreover, outliers can be filtered manually since an abnormality degree is obtained for each observation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Learning With Mixed Hard/Soft Pointwise Constraints.

    PubMed

    Gnecco, Giorgio; Gori, Marco; Melacci, Stefano; Sanguineti, Marcello

    2015-09-01

    A learning paradigm is proposed and investigated, in which the classical framework of learning from examples is enhanced by the introduction of hard pointwise constraints, i.e., constraints imposed on a finite set of examples that cannot be violated. Such constraints arise, e.g., when requiring coherent decisions of classifiers acting on different views of the same pattern. The classical examples of supervised learning, which can be violated at the cost of some penalization (quantified by the choice of a suitable loss function) play the role of soft pointwise constraints. Constrained variational calculus is exploited to derive a representer theorem that provides a description of the functional structure of the optimal solution to the proposed learning paradigm. It is shown that such an optimal solution can be represented in terms of a set of support constraints, which generalize the concept of support vectors and open the doors to a novel learning paradigm, called support constraint machines. The general theory is applied to derive the representation of the optimal solution to the problem of learning from hard linear pointwise constraints combined with soft pointwise constraints induced by supervised examples. In some cases, closed-form optimal solutions are obtained.

  10. Resonance treatment using pin-based pointwise energy slowing-down method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sooyoung, E-mail: csy0321@unist.ac.kr; Lee, Changho, E-mail: clee@anl.gov; Lee, Deokjung, E-mail: deokjung@unist.ac.kr

    A new resonance self-shielding method using a pointwise energy solution has been developed to overcome the drawbacks of the equivalence theory. The equivalence theory uses a crude resonance scattering source approximation, and assumes a spatially constant scattering source distribution inside a fuel pellet. These two assumptions cause a significant error, in that they overestimate the multi-group effective cross sections, especially for {sup 238}U. The new resonance self-shielding method solves pointwise energy slowing-down equations with a sub-divided fuel rod. The method adopts a shadowing effect correction factor and fictitious moderator material to model a realistic pointwise energy solution. The slowing-down solutionmore » is used to generate the multi-group cross section. With various light water reactor problems, it was demonstrated that the new resonance self-shielding method significantly improved accuracy in the reactor parameter calculation with no compromise in computation time, compared to the equivalence theory.« less

  11. Generalized local emission tomography

    DOEpatents

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  12. Detection of Functional Change Using Cluster Trend Analysis in Glaucoma.

    PubMed

    Gardiner, Stuart K; Mansberger, Steven L; Demirel, Shaban

    2017-05-01

    Global analyses using mean deviation (MD) assess visual field progression, but can miss localized changes. Pointwise analyses are more sensitive to localized progression, but more variable so require confirmation. This study assessed whether cluster trend analysis, averaging information across subsets of locations, could improve progression detection. A total of 133 test-retest eyes were tested 7 to 10 times. Rates of change and P values were calculated for possible re-orderings of these series to generate global analysis ("MD worsening faster than x dB/y with P < y"), pointwise and cluster analyses ("n locations [or clusters] worsening faster than x dB/y with P < y") with specificity exactly 95%. These criteria were applied to 505 eyes tested over a mean of 10.5 years, to find how soon each detected "deterioration," and compared using survival models. This was repeated including two subsequent visual fields to determine whether "deterioration" was confirmed. The best global criterion detected deterioration in 25% of eyes in 5.0 years (95% confidence interval [CI], 4.7-5.3 years), compared with 4.8 years (95% CI, 4.2-5.1) for the best cluster analysis criterion, and 4.1 years (95% CI, 4.0-4.5) for the best pointwise criterion. However, for pointwise analysis, only 38% of these changes were confirmed, compared with 61% for clusters and 76% for MD. The time until 25% of eyes showed subsequently confirmed deterioration was 6.3 years (95% CI, 6.0-7.2) for global, 6.3 years (95% CI, 6.0-7.0) for pointwise, and 6.0 years (95% CI, 5.3-6.6) for cluster analyses. Although the specificity is still suboptimal, cluster trend analysis detects subsequently confirmed deterioration sooner than either global or pointwise analyses.

  13. Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Akram; Ozel, Cenap

    It is known from [K. Yano and M. Kon, Structures on Manifolds (World Scientific, 1984)] that the integration of the Laplacian of a smooth function defined on a compact orientable Riemannian manifold without boundary vanishes with respect to the volume element. In this paper, we find out the some potential applications of this notion, and study the concept of warped product pointwise semi-slant submanifolds in cosymplectic manifolds as a generalization of contact CR-warped product submanifolds. Then, we prove the existence of warped product pointwise semi-slant submanifolds by their characterizations, and give an example supporting to this idea. Further, we obtain an interesting inequality in terms of the second fundamental form and the scalar curvature using Gauss equation and then, derive some applications of it with considering the equality case. We provide many trivial results for the warped product pointwise semi-slant submanifolds in cosymplectic space forms in various mathematical and physical terms such as Hessian, Hamiltonian and kinetic energy, and generalize the triviality results for contact CR-warped products as well.

  14. Estimation of two ordered mean residual lifetime functions.

    PubMed

    Ebrahimi, N

    1993-06-01

    In many statistical studies involving failure data, biometric mortality data, and actuarial data, mean residual lifetime (MRL) function is of prime importance. In this paper we introduce the problem of nonparametric estimation of a MRL function on an interval when this function is bounded from below by another such function (known or unknown) on that interval, and derive the corresponding two functional estimators. The first is to be used when there is a known bound, and the second when the bound is another MRL function to be estimated independently. Both estimators are obtained by truncating the empirical estimator discussed by Yang (1978, Annals of Statistics 6, 112-117). In the first case, it is truncated at a known bound; in the second, at a point somewhere between the two empirical estimates. Consistency of both estimators is proved, and a pointwise large-sample distribution theory of the first estimator is derived.

  15. Isogeometric Divergence-conforming B-splines for the Steady Navier-Stokes Equations

    DTIC Science & Technology

    2012-04-01

    discretizations produce pointwise divergence-free velocity elds and hence exactly satisfy mass conservation. Consequently, discrete variational formulations...cretizations produce pointwise divergence-free velocity fields and hence exactly satisfy mass conservation. Consequently, discrete variational ... variational formulation. Using a combination of an advective for- mulation, SUPG, PSPG, and grad-div stabilization, provably convergent numerical methods

  16. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies.

    PubMed

    Artes, Paul H; Iwase, Aiko; Ohno, Yuko; Kitazawa, Yoshiaki; Chauhan, Balwantray C

    2002-08-01

    To investigate the distributions of threshold estimates with the Swedish Interactive Threshold Algorithms (SITA) Standard, SITA Fast, and the Full Threshold algorithm (Humphrey Field Analyzer; Zeiss-Humphrey Instruments, Dublin, CA) and to compare the pointwise test-retest variability of these strategies. One eye of 49 patients (mean age, 61.6 years; range, 22-81) with glaucoma (Mean Deviation mean, -7.13 dB; range, +1.8 to -23.9 dB) was examined four times with each of the three strategies. The mean and median SITA Standard and SITA Fast threshold estimates were compared with a "best available" estimate of sensitivity (mean results of three Full Threshold tests). Pointwise 90% retest limits (5th and 95th percentiles of retest thresholds) were derived to assess the reproducibility of individual threshold estimates. The differences between the threshold estimates of the SITA and Full Threshold strategies were largest ( approximately 3 dB) for midrange sensitivities ( approximately 15 dB). The threshold distributions of SITA were considerably different from those of the Full Threshold strategy. The differences remained of similar magnitude when the analysis was repeated on a subset of 20 locations that are examined early during the course of a Full Threshold examination. With sensitivities above 25 dB, both SITA strategies exhibited lower test-retest variability than the Full Threshold strategy. Below 25 dB, the retest intervals of SITA Standard were slightly smaller than those of the Full Threshold strategy, whereas those of SITA Fast were larger. SITA Standard may be superior to the Full Threshold strategy for monitoring patients with visual field loss. The greater test-retest variability of SITA Fast in areas of low sensitivity is likely to offset the benefit of even shorter test durations with this strategy. The sensitivity differences between the SITA and Full Threshold strategies may relate to factors other than reduced fatigue. They are, however, small in comparison to the test-retest variability.

  17. Visual Field Outcomes for the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT).

    PubMed

    Wall, Michael; Johnson, Chris A; Cello, Kimberly E; Zamba, K D; McDermott, Michael P; Keltner, John L

    2016-03-01

    The Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) showed that acetazolamide provided a modest, significant improvement in mean deviation (MD). Here, we further analyze visual field changes over the 6-month study period. Of 165 subjects with mild visual loss in the IIHTT, 125 had perimetry at baseline and 6 months. We evaluated pointwise linear regression of visual sensitivity versus time to classify test locations in the worst MD (study) eye as improving or not; pointwise changes from baseline to month 6 in decibels; and clinical consensus of change from baseline to 6 months. The average study eye had 36 of 52 test locations with improving sensitivity over 6 months using pointwise linear regression, but differences between the acetazolamide and placebo groups were not significant. Pointwise results mostly improved in both treatment groups with the magnitude of the mean change within groups greatest and statistically significant around the blind spot and the nasal area, especially in the acetazolamide group. The consensus classification of visual field change from baseline to 6 months in the study eye yielded percentages (acetazolamide, placebo) of 7.2% and 17.5% worse, 35.1% and 31.7% with no change, and 56.1% and 50.8% improved; group differences were not statistically significant. In the IIHTT, compared to the placebo group, the acetazolamide group had a significant pointwise improvement in visual field function, particularly in the nasal and pericecal areas; the latter is likely due to reduction in blind spot size related to improvement in papilledema. (ClinicalTrials.gov number, NCT01003639.).

  18. Integrated Mueller-matrix near-infrared imaging and point-wise spectroscopy improves colonic cancer detection

    PubMed Central

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-01-01

    We report the development and implementation of a unique integrated Mueller-matrix (MM) near-infrared (NIR) imaging and Mueller-matrix point-wise diffuse reflectance (DR) spectroscopy technique for improving colonic cancer detection and diagnosis. Point-wise MM DR spectra can be acquired from any suspicious tissue areas indicated by MM imaging. A total of 30 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated MM imaging and point-wise MM DR spectroscopy system. Polar decomposition algorithms are employed on the acquired images and spectra to derive three polarization metrics including depolarization, diattentuation and retardance for colonic tissue characterization. The decomposition results show that tissue depolarization and retardance are significantly decreased (p<0.001, paired 2-sided Student’s t-test, n = 30); while the tissue diattentuation is significantly increased (p<0.001, paired 2-sided Student’s t-test, n = 30) associated with colonic cancer. Further partial least squares discriminant analysis (PLS-DA) and leave-one tissue site-out, cross validation (LOSCV) show that the combination of the three polarization metrics provide the best diagnostic accuracy of 95.0% (sensitivity: 93.3%, and specificity: 96.7%) compared to either of the three polarization metrics (sensitivities of 93.3%, 83.3%, and 80.0%; and specificities of 90.0%, 96.7%, and 80.0%, respectively, for the depolarization, diattentuation and retardance metrics) for colonic cancer detection. This work suggests that the integrated MM NIR imaging and point-wise MM NIR diffuse reflectance spectroscopy has the potential to improve the early detection and diagnosis of malignant lesions in the colon. PMID:27446640

  19. A precise and accurate acupoint location obtained on the face using consistency matrix pointwise fusion method.

    PubMed

    Yanq, Xuming; Ye, Yijun; Xia, Yong; Wei, Xuanzhong; Wang, Zheyu; Ni, Hongmei; Zhu, Ying; Xu, Lingyu

    2015-02-01

    To develop a more precise and accurate method, and identified a procedure to measure whether an acupoint had been correctly located. On the face, we used an acupoint location from different acupuncture experts and obtained the most precise and accurate values of acupoint location based on the consistency information fusion algorithm, through a virtual simulation of the facial orientation coordinate system. Because of inconsistencies in each acupuncture expert's original data, the system error the general weight calculation. First, we corrected each expert of acupoint location system error itself, to obtain a rational quantification for each expert of acupuncture and moxibustion acupoint location consistent support degree, to obtain pointwise variable precision fusion results, to put every expert's acupuncture acupoint location fusion error enhanced to pointwise variable precision. Then, we more effectively used the measured characteristics of different acupuncture expert's acupoint location, to improve the measurement information utilization efficiency and acupuncture acupoint location precision and accuracy. Based on using the consistency matrix pointwise fusion method on the acupuncture experts' acupoint location values, each expert's acupoint location information could be calculated, and the most precise and accurate values of each expert's acupoint location could be obtained.

  20. Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Wang, Jian-Zhong

    1993-01-01

    We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.

  1. Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.

    2005-01-01

    For a general class of exponential weights on the line and on (-1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near +/-[infinity] (Freud weights), even weights of faster than smooth polynomial decay near +/-[infinity] (Erdos weights) and even weights which vanish strongly near +/-1, for example Pollaczek type weights.

  2. Digital Processing Of Young's Fringes In Speckle Photography

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Chiang, F. P.

    1989-01-01

    A new technique for fully automatic diffraction fringe measurement in point-wise speckle photograph analysis is presented in this paper. The fringe orientation and spacing are initially estimated with the help of 1-D FFT. A 2-D convolution filter is then applied to enhance the estimated image . High signal-to-noise rate (SNR) fringe pattern is achieved which makes it feasible for precise determination of the displacement components. The halo-effect is also optimally eliminated in a new way. With the computation time compared favorably with those of 2-D autocorrelation method and the iterative 2-D FFT method. High reliability and accurate determination of displacement components are achieved over a wide range of fringe density.

  3. Beyond Worst-Case Analysis in Privacy and Clustering: Exploiting Explicit and Implicit Assumptions

    DTIC Science & Technology

    2013-08-01

    Dwork et al [63]. Given a query function f , the curator first estimates the global sensitivity of f , denoted GS(f) = maxD,D′ f(D)− f(D′), then outputs f...Ostrovsky et al [121]. Ostrovsky et al study instances in which the ratio between the cost of the optimal (k − 1)-means solu- tion and the cost of the...k-median objective. We also build on the work of Balcan et al [25] that investigate the connection between point-wise approximations of the target

  4. Chaos in the brain: imaging via chaoticity of EEG/MEG signals

    NASA Astrophysics Data System (ADS)

    Kowalik, Zbigniew J.; Elbert, Thomas; Rockstroh, Brigitte; Hoke, Manfried

    1995-03-01

    Brain electro- (EEG) or magnetoencephalogram (MEG) can be analyzed by using methods of the nonlinear system theory. We show that even for very short and nonstationary time series it is possible to functionally differentiate various brain activities. Usually the analysis assumes that the analyzed signals are both long and stationary, so that the classic spectral methods can be used. Even more convincing results can be obtained under these circumstances when the dimensional analysis or estimation of the Kolmogorov entropy or the Lyapunov exponent are performed. When measuring the spontaneous activity of a human brain the assumption of stationarity is questionable and `static' methods (correlation dimension, entropy, etc.) are then not adequate. In this case `dynamic' methods like pointwise-D2 dimension or chaoticity measures should be applied. Predictability measures in the form of local Lyapunov exponents are capable of revealing directly the chaoticity of a given process, and can practically be applied for functional differentiation of brain activity. We exemplify these in cases of apallic syndrome, tinnitus and schizophrenia. We show that: the average chaoticity in apallic syndrome differentiates brain states both in space and time, chaoticity changes temporally in case of schizophrenia (critical jumps of chaoticity), chaoticity changes locally in space, i.e., in the cortex plane in case of tinnitus.

  5. Pointwise Partial Information Decomposition Using the Specificity and Ambiguity Lattices

    NASA Astrophysics Data System (ADS)

    Finn, Conor; Lizier, Joseph

    2018-04-01

    What are the distinct ways in which a set of predictor variables can provide information about a target variable? When does a variable provide unique information, when do variables share redundant information, and when do variables combine synergistically to provide complementary information? The redundancy lattice from the partial information decomposition of Williams and Beer provided a promising glimpse at the answer to these questions. However, this structure was constructed using a much criticised measure of redundant information, and despite sustained research, no completely satisfactory replacement measure has been proposed. In this paper, we take a different approach, applying the axiomatic derivation of the redundancy lattice to a single realisation from a set of discrete variables. To overcome the difficulty associated with signed pointwise mutual information, we apply this decomposition separately to the unsigned entropic components of pointwise mutual information which we refer to as the specificity and ambiguity. This yields a separate redundancy lattice for each component. Then based upon an operational interpretation of redundancy, we define measures of redundant specificity and ambiguity enabling us to evaluate the partial information atoms in each lattice. These atoms can be recombined to yield the sought-after multivariate information decomposition. We apply this framework to canonical examples from the literature and discuss the results and the various properties of the decomposition. In particular, the pointwise decomposition using specificity and ambiguity satisfies a chain rule over target variables, which provides new insights into the so-called two-bit-copy example.

  6. Rigidity of complete generic shrinking Ricci solitons

    NASA Astrophysics Data System (ADS)

    Chu, Yawei; Zhou, Jundong; Wang, Xue

    2018-01-01

    Let (Mn , g , X) be a complete generic shrinking Ricci soliton of dimension n ≥ 3. In this paper, by employing curvature inequalities, the formula of X-Laplacian for the norm square of the trace-free curvature tensor, the weak maximum principle and the estimate of the scalar curvature of (Mn , g) , we prove some rigidity results for (Mn , g , X) . In particular, it is showed that (Mn , g , X) is isometric to Rn or a finite quotient of Sn under a pointwise pinching condition. Moreover, we establish several optimal inequalities and classify those shrinking solitons for equalities.

  7. Indirect boundary force measurements in beam-like structures using a derivative estimator

    NASA Astrophysics Data System (ADS)

    Chesne, Simon

    2014-12-01

    This paper proposes a new method for the identification of boundary forces (shear force or bending moment) in a beam, based on displacement measurements. The problem is considered in terms of the determination of the boundary spatial derivatives of transverse displacements. By assuming the displacement fields to be approximated by Taylor expansions in a domain close to the boundaries, the spatial derivatives can be estimated using specific point-wise derivative estimators. This approach makes it possible to extract the derivatives using a weighted spatial integration of the displacement field. Following the theoretical description, numerical simulations made with exact and noisy data are used to determine the relationship between the size of the integration domain and the wavelength of the vibrations. The simulations also highlight the self-regularization of the technique. Experimental measurements demonstrate the feasibility and accuracy of the proposed method.

  8. Poloidal flux profile reconstruction from pointwise measurements via extended Kalman filtering in the DIII-D Tokamak

    DOE PAGES

    Wang, Hexiang; Barton, Justin E.; Schuster, Eugenio

    2015-09-01

    The accuracy of the internal states of a tokamak, which usually cannot be measured directly, is of crucial importance for feedback control of the plasma dynamics. A first-principles-driven plasma response model could provide an estimation of the internal states given the boundary conditions on the magnetic axis and at plasma boundary. However, the estimation would highly depend on initial conditions, which may not always be known, disturbances, and non-modeled dynamics. Here in this work, a closed-loop state observer for the poloidal magnetic flux is proposed based on a very limited set of real-time measurements by following an Extended Kalman Filteringmore » (EKF) approach. Comparisons between estimated and measured magnetic flux profiles are carried out for several discharges in the DIII-D tokamak. The experimental results illustrate the capability of the proposed observer in dealing with incorrect initial conditions and measurement noise.« less

  9. Potential estimates for the p-Laplace system with data in divergence form

    NASA Astrophysics Data System (ADS)

    Cianchi, A.; Schwarzacher, S.

    2018-07-01

    A pointwise bound for local weak solutions to the p-Laplace system is established in terms of data on the right-hand side in divergence form. The relevant bound involves a Havin-Maz'ya-Wolff potential of the datum, and is a counterpart for data in divergence form of a classical result of [25], recently extended to systems in [28]. A local bound for oscillations is also provided. These results allow for a unified approach to regularity estimates for broad classes of norms, including Banach function norms (e.g. Lebesgue, Lorentz and Orlicz norms), and norms depending on the oscillation of functions (e.g. Hölder, BMO and, more generally, Campanato type norms). In particular, new regularity properties are exhibited, and well-known results are easily recovered.

  10. Sensing Slow Mobility and Interesting Locations for Lombardy Region (italy): a Case Study Using Pointwise Geolocated Open Data

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Oxoli, D.; Zurbarán, M. A.

    2016-06-01

    During the past years Web 2.0 technologies have caused the emergence of platforms where users can share data related to their activities which in some cases are then publicly released with open licenses. Popular categories for this include community platforms where users can upload GPS tracks collected during slow travel activities (e.g. hiking, biking and horse riding) and platforms where users share their geolocated photos. However, due to the high heterogeneity of the information available on the Web, the sole use of these user-generated contents makes it an ambitious challenge to understand slow mobility flows as well as to detect the most visited locations in a region. Exploiting the available data on community sharing websites allows to collect near real-time open data streams and enables rigorous spatial-temporal analysis. This work presents an approach for collecting, unifying and analysing pointwise geolocated open data available from different sources with the aim of identifying the main locations and destinations of slow mobility activities. For this purpose, we collected pointwise open data from the Wikiloc platform, Twitter, Flickr and Foursquare. The analysis was confined to the data uploaded in Lombardy Region (Northern Italy) - corresponding to millions of pointwise data. Collected data was processed through the use of Free and Open Source Software (FOSS) in order to organize them into a suitable database. This allowed to run statistical analyses on data distribution in both time and space by enabling the detection of users' slow mobility preferences as well as places of interest at a regional scale.

  11. Multifractal surrogate-data generation algorithm that preserves pointwise Hölder regularity structure, with initial applications to turbulence

    NASA Astrophysics Data System (ADS)

    Keylock, C. J.

    2017-03-01

    An algorithm is described that can generate random variants of a time series while preserving the probability distribution of original values and the pointwise Hölder regularity. Thus, it preserves the multifractal properties of the data. Our algorithm is similar in principle to well-known algorithms based on the preservation of the Fourier amplitude spectrum and original values of a time series. However, it is underpinned by a dual-tree complex wavelet transform rather than a Fourier transform. Our method, which we term the iterated amplitude adjusted wavelet transform can be used to generate bootstrapped versions of multifractal data, and because it preserves the pointwise Hölder regularity but not the local Hölder regularity, it can be used to test hypotheses concerning the presence of oscillating singularities in a time series, an important feature of turbulence and econophysics data. Because the locations of the data values are randomized with respect to the multifractal structure, hypotheses about their mutual coupling can be tested, which is important for the velocity-intermittency structure of turbulence and self-regulating processes.

  12. Assessing NARCCAP climate model effects using spatial confidence regions.

    PubMed

    French, Joshua P; McGinnis, Seth; Schwartzman, Armin

    2017-01-01

    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference.

  13. Algebraic and adaptive learning in neural control systems

    NASA Astrophysics Data System (ADS)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  14. Surface sampling techniques for 3D object inspection

    NASA Astrophysics Data System (ADS)

    Shih, Chihhsiong S.; Gerhardt, Lester A.

    1995-03-01

    While the uniform sampling method is quite popular for pointwise measurement of manufactured parts, this paper proposes three novel sampling strategies which emphasize 3D non-uniform inspection capability. They are: (a) the adaptive sampling, (b) the local adjustment sampling, and (c) the finite element centroid sampling techniques. The adaptive sampling strategy is based on a recursive surface subdivision process. Two different approaches are described for this adaptive sampling strategy. One uses triangle patches while the other uses rectangle patches. Several real world objects were tested using these two algorithms. Preliminary results show that sample points are distributed more closely around edges, corners, and vertices as desired for many classes of objects. Adaptive sampling using triangle patches is shown to generally perform better than both uniform and adaptive sampling using rectangle patches. The local adjustment sampling strategy uses a set of predefined starting points and then finds the local optimum position of each nodal point. This method approximates the object by moving the points toward object edges and corners. In a hybrid approach, uniform points sets and non-uniform points sets, first preprocessed by the adaptive sampling algorithm on a real world object were then tested using the local adjustment sampling method. The results show that the initial point sets when preprocessed by adaptive sampling using triangle patches, are moved the least amount of distance by the subsequently applied local adjustment method, again showing the superiority of this method. The finite element sampling technique samples the centroids of the surface triangle meshes produced from the finite element method. The performance of this algorithm was compared to that of the adaptive sampling using triangular patches. The adaptive sampling with triangular patches was once again shown to be better on different classes of objects.

  15. Detection of longitudinal visual field progression in glaucoma using machine learning.

    PubMed

    Yousefi, Siamak; Kiwaki, Taichi; Zheng, Yuhui; Suigara, Hiroki; Asaoka, Ryo; Murata, Hiroshi; Lemij, Hans; Yamanishi, Kenji

    2018-06-16

    Global indices of standard automated perimerty are insensitive to localized losses, while point-wise indices are sensitive but highly variable. Region-wise indices sit in between. This study introduces a machine-learning-based index for glaucoma progression detection that outperforms global, region-wise, and point-wise indices. Development and comparison of a prognostic index. Visual fields from 2085 eyes of 1214 subjects were used to identify glaucoma progression patterns using machine learning. Visual fields from 133 eyes of 71 glaucoma patients were collected 10 times over 10 weeks to provide a no-change, test-retest dataset. The parameters of all methods were identified using visual field sequences in the test-retest dataset to meet fixed 95% specificity. An independent dataset of 270 eyes of 136 glaucoma patients and survival analysis were utilized to compare methods. The time to detect progression in 25% of the eyes in the longitudinal dataset using global mean deviation (MD) was 5.2 years (95% confidence interval, 4.1 - 6.5 years); 4.5 years (4.0 - 5.5) using region-wise, 3.9 years (3.5 - 4.6) using point-wise, and 3.5 years (3.1 - 4.0) using machine learning analysis. The time until 25% of eyes showed subsequently confirmed progression after two additional visits were included were 6.6 years (5.6 - 7.4 years), 5.7 years (4.8 - 6.7), 5.6 years (4.7 - 6.5), and 5.1 years (4.5 - 6.0) for global, region-wise, point-wise, and machine learning analyses, respectively. Machine learning analysis detects progressing eyes earlier than other methods consistently, with or without confirmation visits. In particular, machine learning detects more slowly progressing eyes than other methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Assessing NARCCAP climate model effects using spatial confidence regions

    PubMed Central

    French, Joshua P.; McGinnis, Seth; Schwartzman, Armin

    2017-01-01

    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference. PMID:28936474

  17. Asymptotic Time Decay in Quantum Physics: a Selective Review and Some New Results

    NASA Astrophysics Data System (ADS)

    Marchetti, Domingos H. U.; Wreszinski, Walter F.

    2013-05-01

    Decay of various quantities (return or survival probability, correlation functions) in time are the basis of a multitude of important and interesting phenomena in quantum physics, ranging from spectral properties, resonances, return and approach to equilibrium, to dynamical stability properties and irreversibility and the "arrow of time" in [Asymptotic Time Decay in Quantum Physics (World Scientific, 2013)]. In this review, we study several types of decay — decay in the average, decay in the Lp-sense, and pointwise decay — of the Fourier-Stieltjes transform of a measure, usually identified with the spectral measure, which appear naturally in different mathematical and physical settings. In particular, decay in the Lp-sense is related both to pointwise decay and to decay in the average and, from a physical standpoint, relates to a rigorous form of the time-energy uncertainty relation. Both decay on the average and in the Lp-sense are related to spectral properties, in particular, absolute continuity of the spectral measure. The study of pointwise decay for singular continuous measures (Rajchman measures) provides a bridge between ergodic theory, number theory and analysis, including the method of stationary phase. The theory is illustrated by some new results in the theory of sparse models.

  18. Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.

    2015-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.

  19. Joint classification and contour extraction of large 3D point clouds

    NASA Astrophysics Data System (ADS)

    Hackel, Timo; Wegner, Jan D.; Schindler, Konrad

    2017-08-01

    We present an effective and efficient method for point-wise semantic classification and extraction of object contours of large-scale 3D point clouds. What makes point cloud interpretation challenging is the sheer size of several millions of points per scan and the non-grid, sparse, and uneven distribution of points. Standard image processing tools like texture filters, for example, cannot handle such data efficiently, which calls for dedicated point cloud labeling methods. It turns out that one of the major drivers for efficient computation and handling of strong variations in point density, is a careful formulation of per-point neighborhoods at multiple scales. This allows, both, to define an expressive feature set and to extract topologically meaningful object contours. Semantic classification and contour extraction are interlaced problems. Point-wise semantic classification enables extracting a meaningful candidate set of contour points while contours help generating a rich feature representation that benefits point-wise classification. These methods are tailored to have fast run time and small memory footprint for processing large-scale, unstructured, and inhomogeneous point clouds, while still achieving high classification accuracy. We evaluate our methods on the semantic3d.net benchmark for terrestrial laser scans with >109 points.

  20. Converting point-wise nuclear cross sections to pole representation using regularized vector fitting

    NASA Astrophysics Data System (ADS)

    Peng, Xingjie; Ducru, Pablo; Liu, Shichang; Forget, Benoit; Liang, Jingang; Smith, Kord

    2018-03-01

    Direct Doppler broadening of nuclear cross sections in Monte Carlo codes has been widely sought for coupled reactor simulations. One recent approach proposed analytical broadening using a pole representation of the commonly used resonance models and the introduction of a local windowing scheme to improve performance (Hwang, 1987; Forget et al., 2014; Josey et al., 2015, 2016). This pole representation has been achieved in the past by converting resonance parameters in the evaluation nuclear data library into poles and residues. However, cross sections of some isotopes are only provided as point-wise data in ENDF/B-VII.1 library. To convert these isotopes to pole representation, a recent approach has been proposed using the relaxed vector fitting (RVF) algorithm (Gustavsen and Semlyen, 1999; Gustavsen, 2006; Liu et al., 2018). This approach however needs to specify ahead of time the number of poles. This article addresses this issue by adding a poles and residues filtering step to the RVF procedure. This regularized VF (ReV-Fit) algorithm is shown to efficiently converge the poles close to the physical ones, eliminating most of the superfluous poles, and thus enabling the conversion of point-wise nuclear cross sections.

  1. Profile local linear estimation of generalized semiparametric regression model for longitudinal data.

    PubMed

    Sun, Yanqing; Sun, Liuquan; Zhou, Jie

    2013-07-01

    This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.

  2. Method for mapping a natural gas leak

    DOEpatents

    Reichardt, Thomas A [Livermore, CA; Luong, Amy Khai [Dublin, CA; Kulp, Thomas J [Livermore, CA; Devdas, Sanjay [Albany, CA

    2009-02-03

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formatted into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimposed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  3. Natural gas leak mapper

    DOEpatents

    Reichardt, Thomas A [Livermore, CA; Luong, Amy Khai [Dublin, CA; Kulp, Thomas J [Livermore, CA; Devdas, Sanjay [Albany, CA

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  4. SUBGR: A Program to Generate Subgroup Data for the Subgroup Resonance Self-Shielding Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog

    2016-06-06

    The Subgroup Data Generation (SUBGR) program generates subgroup data, including levels and weights from the resonance self-shielded cross section table as a function of background cross section. Depending on the nuclide and the energy range, these subgroup data can be generated by (a) narrow resonance approximation, (b) pointwise flux calculations for homogeneous media; and (c) pointwise flux calculations for heterogeneous lattice cells. The latter two options are performed by the AMPX module IRFFACTOR. These subgroup data are to be used in the Consortium for Advanced Simulation of Light Water Reactors (CASL) neutronic simulator MPACT, for which the primary resonance self-shieldingmore » method is the subgroup method.« less

  5. Asymptotic behavior for systems of nonlinear wave equations with multiple propagation speeds in three space dimensions

    NASA Astrophysics Data System (ADS)

    Katayama, Soichiro

    We consider the Cauchy problem for systems of nonlinear wave equations with multiple propagation speeds in three space dimensions. Under the null condition for such systems, the global existence of small amplitude solutions is known. In this paper, we will show that the global solution is asymptotically free in the energy sense, by obtaining the asymptotic pointwise behavior of the derivatives of the solution. Nonetheless we can also show that the pointwise behavior of the solution itself may be quite different from that of the free solution. In connection with the above results, a theorem is also developed to characterize asymptotically free solutions for wave equations in arbitrary space dimensions.

  6. Analysis of the stress field in a wedge using the fast expansions with pointwise determined coefficients

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. D.; Goryainov, V. V.; Danshin, A. A.

    2018-03-01

    The stress problem for the elastic wedge-shaped cutter of finite dimensions with mixed boundary conditions is considered. The differential problem is reduced to the system of linear algebraic equations by applying twice the fast expansions with respect to the angular and radial coordinate. In order to determine the unknown coefficients of fast expansions, the pointwise method is utilized. The problem solution derived has explicit analytical form and it’s valid for the entire domain including its boundary. The computed profiles of the displacements and stresses in a cross-section of the cutter are provided. The stress field is investigated for various values of opening angle and cusp’s radius.

  7. Distributed mean curvature on a discrete manifold for Regge calculus

    NASA Astrophysics Data System (ADS)

    Conboye, Rory; Miller, Warner A.; Ray, Shannon

    2015-09-01

    The integrated mean curvature of a simplicial manifold is well understood in both Regge Calculus and Discrete Differential Geometry. However, a well motivated pointwise definition of curvature requires a careful choice of the volume over which to uniformly distribute the local integrated curvature. We show that hybrid cells formed using both the simplicial lattice and its circumcentric dual emerge as a remarkably natural structure for the distribution of this local integrated curvature. These hybrid cells form a complete tessellation of the simplicial manifold, contain a geometric orthonormal basis, and are also shown to give a pointwise mean curvature with a natural interpretation as the fractional rate of change of the normal vector.

  8. Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2018-02-01

    Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.

  9. Modeling Fetal Weight for Gestational Age: A Comparison of a Flexible Multi-level Spline-based Model with Other Approaches

    PubMed Central

    Villandré, Luc; Hutcheon, Jennifer A; Perez Trejo, Maria Esther; Abenhaim, Haim; Jacobsen, Geir; Platt, Robert W

    2011-01-01

    We present a model for longitudinal measures of fetal weight as a function of gestational age. We use a linear mixed model, with a Box-Cox transformation of fetal weight values, and restricted cubic splines, in order to flexibly but parsimoniously model median fetal weight. We systematically compare our model to other proposed approaches. All proposed methods are shown to yield similar median estimates, as evidenced by overlapping pointwise confidence bands, except after 40 completed weeks, where our method seems to produce estimates more consistent with observed data. Sex-based stratification affects the estimates of the random effects variance-covariance structure, without significantly changing sex-specific fitted median values. We illustrate the benefits of including sex-gestational age interaction terms in the model over stratification. The comparison leads to the conclusion that the selection of a model for fetal weight for gestational age can be based on the specific goals and configuration of a given study without affecting the precision or value of median estimates for most gestational ages of interest. PMID:21931571

  10. Corrected confidence bands for functional data using principal components.

    PubMed

    Goldsmith, J; Greven, S; Crainiceanu, C

    2013-03-01

    Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. Copyright © 2013, The International Biometric Society.

  11. Corrected Confidence Bands for Functional Data Using Principal Components

    PubMed Central

    Goldsmith, J.; Greven, S.; Crainiceanu, C.

    2014-01-01

    Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. PMID:23003003

  12. Golay Complementary Waveforms in Reed–Müller Sequences for Radar Detection of Nonzero Doppler Targets

    PubMed Central

    Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill

    2018-01-01

    Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708

  13. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1989-01-01

    Let u(x,t) be the possibly discontinuous entropy solution of a nonlinear scalar conservation law with smooth initial data. Suppose u sub epsilon(x,t) is the solution of an approximate viscosity regularization, where epsilon greater than 0 is the small viscosity amplitude. It is shown that by post-processing the small viscosity approximation u sub epsilon, pointwise values of u and its derivatives can be recovered with an error as close to epsilon as desired. The analysis relies on the adjoint problem of the forward error equation, which in this case amounts to a backward linear transport with discontinuous coefficients. The novelty of this approach is to use a (generalized) E-condition of the forward problem in order to deduce a W(exp 1,infinity) energy estimate for the discontinuous backward transport equation; this, in turn, leads one to an epsilon-uniform estimate on moments of the error u(sub epsilon) - u. This approach does not follow the characteristics and, therefore, applies mutatis mutandis to other approximate solutions such as E-difference schemes.

  14. Magnetohydrodynamic cellular automata

    NASA Technical Reports Server (NTRS)

    Montgomery, David; Doolen, Gary D.

    1987-01-01

    A generalization of the hexagonal lattice gas model of Frisch, Hasslacher and Pomeau is shown to lead to two-dimensional magnetohydrodynamics. The method relies on the ideal point-wise conservation law for vector potential.

  15. Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume

    NASA Astrophysics Data System (ADS)

    Mackay, Tom G.

    2004-08-01

    The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.

  16. Inverse constraints for emission fluxes of atmospheric tracers estimated from concentration measurements and Lagrangian transport

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Patra, Prabir; Breivik, Knut

    2015-04-01

    Lagrangian transport models based on times series of Eulerian fields provide a computationally affordable way of achieving very high resolution for limited areas and time periods. This makes them especially suitable for the analysis of point-wise measurements of atmospheric tracers. We present an application illustrated with examples of greenhouse gases from anthropogenic emissions in urban areas and biogenic emissions in Japan and of pollutants in the Arctic. We asses the algorithmic complexity of the numerical implementation as well as the use of non-procedural techniques such as Object-Oriented programming. We discuss aspects related to the quantification of uncertainty from prior information in the presence of model error and limited number of observations. The case of non-linear constraints is explored using direct numerical optimisation methods.

  17. Velocity-intermittency structure for wake flow of the pitched single wind turbine under different inflow conditions

    NASA Astrophysics Data System (ADS)

    Crist, Ryan; Cal, Raul Bayoan; Ali, Naseem; Rockel, Stanislav; Peinke, Joachim; Hoelling, Michael

    2017-11-01

    The velocity-intermittency quadrant method is used to characterize the flow structure of the wake flow in the boundary layer of a wind turbine array. Multifractal framework presents the intermittency as a pointwise Hölder exponent. A 3×3 wind turbine array tested experimentally provided a velocity signal at a 21×9 downstream location, measured via hot-wire anemometry. The results show a negative correlation between the velocity and the intermittency at the hub height and bottom tip, whereas the top tip regions show a positive correlation. Sweep and ejection based on the velocity and intermittency are dominant downstream from the rotor. The pointwise results reflect large-scale organization of the flow and velocity-intermittency events corresponding to a foreshortened recirculation region near the hub height and the bottom tip.

  18. Soot Volume Fraction Imaging

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1994-01-01

    A new technique is described for the full-field determination of soot volume fractions via laser extinction measurements. This technique differs from previously reported point-wise methods in that a two-dimensional array (i.e., image) of data is acquired simultaneously. In this fashion, the net data rate is increased, allowing the study of time-dependent phenomena and the investigation of spatial and temporal correlations. A telecentric imaging configuration is employed to provide depth-invariant magnification and to permit the specification of the collection angle for scattered light. To improve the threshold measurement sensitivity, a method is employed to suppress undesirable coherent imaging effects. A discussion of the tomographic inversion process is provided, including the results obtained from numerical simulation. Results obtained with this method from an ethylene diffusion flame are shown to be in close agreement with those previously obtained by sequential point-wise interrogation.

  19. APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES.

    PubMed

    Han, Qiyang; Wellner, Jon A

    2016-01-01

    In this paper, we study the approximation and estimation of s -concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s -concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [ Ann. Statist. 38 (2010) 2998-3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q : if Q n → Q in the Wasserstein metric, then the projected densities converge in weighted L 1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s -concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s -concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s -concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s -concave.

  20. APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES

    PubMed Central

    Han, Qiyang; Wellner, Jon A.

    2017-01-01

    In this paper, we study the approximation and estimation of s-concave densities via Rényi divergence. We first show that the approximation of a probability measure Q by an s-concave density exists and is unique via the procedure of minimizing a divergence functional proposed by [Ann. Statist. 38 (2010) 2998–3027] if and only if Q admits full-dimensional support and a first moment. We also show continuity of the divergence functional in Q: if Qn → Q in the Wasserstein metric, then the projected densities converge in weighted L1 metrics and uniformly on closed subsets of the continuity set of the limit. Moreover, directional derivatives of the projected densities also enjoy local uniform convergence. This contains both on-the-model and off-the-model situations, and entails strong consistency of the divergence estimator of an s-concave density under mild conditions. One interesting and important feature for the Rényi divergence estimator of an s-concave density is that the estimator is intrinsically related with the estimation of log-concave densities via maximum likelihood methods. In fact, we show that for d = 1 at least, the Rényi divergence estimators for s-concave densities converge to the maximum likelihood estimator of a log-concave density as s ↗ 0. The Rényi divergence estimator shares similar characterizations as the MLE for log-concave distributions, which allows us to develop pointwise asymptotic distribution theory assuming that the underlying density is s-concave. PMID:28966410

  1. A Piecewise Deterministic Markov Toy Model for Traffic/Maintenance and Associated Hamilton–Jacobi Integrodifferential Systems on Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goreac, Dan, E-mail: Dan.Goreac@u-pem.fr; Kobylanski, Magdalena, E-mail: Magdalena.Kobylanski@u-pem.fr; Martinez, Miguel, E-mail: Miguel.Martinez@u-pem.fr

    2016-10-15

    We study optimal control problems in infinite horizon whxen the dynamics belong to a specific class of piecewise deterministic Markov processes constrained to star-shaped networks (corresponding to a toy traffic model). We adapt the results in Soner (SIAM J Control Optim 24(6):1110–1122, 1986) to prove the regularity of the value function and the dynamic programming principle. Extending the networks and Krylov’s “shaking the coefficients” method, we prove that the value function can be seen as the solution to a linearized optimization problem set on a convenient set of probability measures. The approach relies entirely on viscosity arguments. As a by-product,more » the dual formulation guarantees that the value function is the pointwise supremum over regular subsolutions of the associated Hamilton–Jacobi integrodifferential system. This ensures that the value function satisfies Perron’s preconization for the (unique) candidate to viscosity solution.« less

  2. Measurement of entropy generation within bypass transitional flow

    NASA Astrophysics Data System (ADS)

    Skifton, Richard; Budwig, Ralph; McEligot, Donald; Crepeau, John

    2012-11-01

    A flat plate made from quartz was submersed in the Idaho National Laboratory's Matched Index of Refraction (MIR) flow facility. PIV was utilized to capture spatial vectors maps at near wall locations with five to ten points within the viscous sublayer. Entropy generation was calculated directly from measured velocity fluctuation derivatives. Two flows were studied: a zero pressure gradient and an adverse pressure gradient (β = -0.039). The free stream turbulence intensity to drive bypass transition ranged between 3% (near trailing edge) and 8% (near leading edge). The pointwise entropy generation rate will be utilized as a design parameter to systematically reduce losses. As a second observation, the pointwise entropy can be shown to predict the onset of transitional flow. This research was partially supported by the DOE EPSCOR program, grant DE-SC0004751 and by the Idaho National Laboratory. Center for Advanced Energy Studies.

  3. Pion distribution amplitude from lattice QCD.

    PubMed

    Cloët, I C; Chang, L; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-08-30

    A method is explained through which a pointwise accurate approximation to the pion's valence-quark distribution amplitude (PDA) may be obtained from a limited number of moments. In connection with the single nontrivial moment accessible in contemporary simulations of lattice-regularized QCD, the method yields a PDA that is a broad concave function whose pointwise form agrees with that predicted by Dyson-Schwinger equation analyses of the pion. Under leading-order evolution, the PDA remains broad to energy scales in excess of 100 GeV, a feature which signals persistence of the influence of dynamical chiral symmetry breaking. Consequently, the asymptotic distribution φπ(asy)(x) is a poor approximation to the pion's PDA at all such scales that are either currently accessible or foreseeable in experiments on pion elastic and transition form factors. Thus, related expectations based on φ φπ(asy)(x) should be revised.

  4. A sharp interpolation between the Hölder and Gaussian Young inequalities

    NASA Astrophysics Data System (ADS)

    da Pelo, Paolo; Lanconelli, Alberto; Stan, Aurel I.

    2016-03-01

    We prove a very general sharp inequality of the Hölder-Young-type for functions defined on infinite dimensional Gaussian spaces. We begin by considering a family of commutative products for functions which interpolates between the pointwise and Wick products; this family arises naturally in the context of stochastic differential equations, through Wong-Zakai-type approximation theorems, and plays a key role in some generalizations of the Beckner-type Poincaré inequality. We then obtain a crucial integral representation for that family of products which is employed, together with a generalization of the classic Young inequality due to Lieb, to prove our main theorem. We stress that our main inequality contains as particular cases the Hölder inequality and Nelson’s hyper-contractive estimate, thus providing a unified framework for two fundamental results of the Gaussian analysis.

  5. Matrix metalloproteinases and educational attainment in refractive error: evidence of gene-environment interactions in the AREDS study

    PubMed Central

    Wojciechowski, Robert; Yee, Stephanie S.; Simpson, Claire L.; Bailey-Wilson, Joan E.; Stambolian, Dwight

    2012-01-01

    Purpose A previous study of Old Order Amish families has shown association of ocular refraction with markers proximal to matrix metalloproteinase (MMP) genes MMP1 and MMP10 and intragenic to MMP2. We conducted a candidate gene replication study of association between refraction and single nucleotide polymorphisms (SNPs) within these genomic regions. Design Candidate gene genetic association study. Participants 2,000 participants drawn from the Age Related Eye Disease Study (AREDS) were chosen for genotyping. After quality control filtering, 1912 individuals were available for analysis. Methods Microarray genotyping was performed using the HumanOmni 2.5 bead array. SNPs originally typed in the previous Amish association study were extracted for analysis. In addition, haplotype tagging SNPs were genotyped using TaqMan assays. Quantitative trait association analyses of mean spherical equivalent refraction (MSE) were performed on 30 markers using linear regression models and an additive genetic risk model, while adjusting for age, sex, education, and population substructure. Post-hoc analyses were performed after stratifying on a dichotomous education variable. Pointwise (P-emp) and multiple-test study-wise (P-multi) significance levels were calculated empirically through permutation. Main outcome measures MSE was used as a quantitative measure of ocular refraction. Results The mean age and ocular refraction were 68 years (SD=4.7) and +0.55 D (SD=2.14), respectively. Pointwise statistical significance was obtained for rs1939008 (P-emp=0.0326). No SNP attained statistical significance after correcting for multiple testing. In stratified analyses, multiple SNPs reached pointwise significance in the lower-education group: 2 of these were statistically significant after multiple testing correction. The two highest-ranking SNPs in Amish families (rs1939008 and rs9928731) showed pointwise P-emp<0.01 in the lower-education stratum of AREDS participants. Conclusions We show suggestive evidence of replication of an association signal for ocular refraction to a marker between MMP1 and MMP10. We also provide evidence of a gene-environment interaction between previously-reported markers and education on refractive error. Variants in MMP1- MMP10 and MMP2 regions appear to affect population variation in ocular refraction in environmental conditions less favorable for myopia development. PMID:23098370

  6. Bounding the moment deficit rate on crustal faults using geodetic data: Methods

    DOE PAGES

    Maurer, Jeremy; Segall, Paul; Bradley, Andrew Michael

    2017-08-19

    Here, the geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, butmore » can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.« less

  7. Bounding the moment deficit rate on crustal faults using geodetic data: Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, Jeremy; Segall, Paul; Bradley, Andrew Michael

    Here, the geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, butmore » can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.« less

  8. Test–Retest Reproducibility of the Microperimeter MP3 With Fundus Image Tracking in Healthy Subjects and Patients With Macular Disease

    PubMed Central

    Palkovits, Stefan; Hirnschall, Nino; Georgiev, Stefan; Leisser, Christoph

    2018-01-01

    Purpose To evaluate the test–retest reproducibility of a novel microperimeter with fundus image tracking (MP3, Nidek Co, Japan) in healthy subjects and patients with macular disease. Methods Ten healthy subjects and 20 patients suffering from range of macular diseases were included. After training measurements, two additional microperimetry measurements were scheduled. Test–retest reproducibility was assessed for mean retinal sensitivity, pointwise sensitivity, and deep scotoma size using the coefficient of repeatability and Bland-Altman diagrams. In addition, in a subgroup of patients microperimetry was compared with conventional perimetry. Results Average differences in mean retinal sensitivity between the two study measurements were 0.26 ± 1.7 dB (median 0 dB; interquartile range [IQR] −1 to 1) for the healthy and 0.36 ± 2.5 dB (median 0 dB; IQR −1 to 2) for the macular patient group. Coefficients of repeatability for mean retinal sensitivity and pointwise retinal sensitivity were 1.2 and 3.3 dB for the healthy subjects and 1.6 and 5.0 dB for the macular disease patients, respectively. Absolute agreement in deep scotoma size between both study days was found in 79.9% of the test loci. Conclusion The microperimeter MP3 shows an adequate test–retest reproducibility for mean retinal sensitivity, pointwise retinal sensitivity, and deep scotoma size in healthy subjects and patients suffering from macular disease. Furthermore, reproducibility of microperimetry is higher than conventional perimetry. Translational Relevance Reproducibility is an important measure for each diagnostic device. Especially in a clinical setting high reproducibility set the basis to achieve reliable results using the specific device. Therefore, assessment of the reproducibility is of eminent importance to interpret the findings of future studies. PMID:29430338

  9. Test-Retest Reproducibility of the Microperimeter MP3 With Fundus Image Tracking in Healthy Subjects and Patients With Macular Disease.

    PubMed

    Palkovits, Stefan; Hirnschall, Nino; Georgiev, Stefan; Leisser, Christoph; Findl, Oliver

    2018-02-01

    To evaluate the test-retest reproducibility of a novel microperimeter with fundus image tracking (MP3, Nidek Co, Japan) in healthy subjects and patients with macular disease. Ten healthy subjects and 20 patients suffering from range of macular diseases were included. After training measurements, two additional microperimetry measurements were scheduled. Test-retest reproducibility was assessed for mean retinal sensitivity, pointwise sensitivity, and deep scotoma size using the coefficient of repeatability and Bland-Altman diagrams. In addition, in a subgroup of patients microperimetry was compared with conventional perimetry. Average differences in mean retinal sensitivity between the two study measurements were 0.26 ± 1.7 dB (median 0 dB; interquartile range [IQR] -1 to 1) for the healthy and 0.36 ± 2.5 dB (median 0 dB; IQR -1 to 2) for the macular patient group. Coefficients of repeatability for mean retinal sensitivity and pointwise retinal sensitivity were 1.2 and 3.3 dB for the healthy subjects and 1.6 and 5.0 dB for the macular disease patients, respectively. Absolute agreement in deep scotoma size between both study days was found in 79.9% of the test loci. The microperimeter MP3 shows an adequate test-retest reproducibility for mean retinal sensitivity, pointwise retinal sensitivity, and deep scotoma size in healthy subjects and patients suffering from macular disease. Furthermore, reproducibility of microperimetry is higher than conventional perimetry. Reproducibility is an important measure for each diagnostic device. Especially in a clinical setting high reproducibility set the basis to achieve reliable results using the specific device. Therefore, assessment of the reproducibility is of eminent importance to interpret the findings of future studies.

  10. Empirical single sample quantification of bias and variance in Q-ball imaging.

    PubMed

    Hainline, Allison E; Nath, Vishwesh; Parvathaneni, Prasanna; Blaber, Justin A; Schilling, Kurt G; Anderson, Adam W; Kang, Hakmook; Landman, Bennett A

    2018-02-06

    The bias and variance of high angular resolution diffusion imaging methods have not been thoroughly explored in the literature and may benefit from the simulation extrapolation (SIMEX) and bootstrap techniques to estimate bias and variance of high angular resolution diffusion imaging metrics. The SIMEX approach is well established in the statistics literature and uses simulation of increasingly noisy data to extrapolate back to a hypothetical case with no noise. The bias of calculated metrics can then be computed by subtracting the SIMEX estimate from the original pointwise measurement. The SIMEX technique has been studied in the context of diffusion imaging to accurately capture the bias in fractional anisotropy measurements in DTI. Herein, we extend the application of SIMEX and bootstrap approaches to characterize bias and variance in metrics obtained from a Q-ball imaging reconstruction of high angular resolution diffusion imaging data. The results demonstrate that SIMEX and bootstrap approaches provide consistent estimates of the bias and variance of generalized fractional anisotropy, respectively. The RMSE for the generalized fractional anisotropy estimates shows a 7% decrease in white matter and an 8% decrease in gray matter when compared with the observed generalized fractional anisotropy estimates. On average, the bootstrap technique results in SD estimates that are approximately 97% of the true variation in white matter, and 86% in gray matter. Both SIMEX and bootstrap methods are flexible, estimate population characteristics based on single scans, and may be extended for bias and variance estimation on a variety of high angular resolution diffusion imaging metrics. © 2018 International Society for Magnetic Resonance in Medicine.

  11. Deconvolution of post-adaptive optics images of faint circumstellar environments by means of the inexact Bregman procedure

    NASA Astrophysics Data System (ADS)

    Benfenati, A.; La Camera, A.; Carbillet, M.

    2016-02-01

    Aims: High-dynamic range images of astrophysical objects present some difficulties in their restoration because of the presence of very bright point-wise sources surrounded by faint and smooth structures. We propose a method that enables the restoration of this kind of images by taking these kinds of sources into account and, at the same time, improving the contrast enhancement in the final image. Moreover, the proposed approach can help to detect the position of the bright sources. Methods: The classical variational scheme in the presence of Poisson noise aims to find the minimum of a functional compound of the generalized Kullback-Leibler function and a regularization functional: the latter function is employed to preserve some characteristic in the restored image. The inexact Bregman procedure substitutes the regularization function with its inexact Bregman distance. This proposed scheme allows us to take under control the level of inexactness arising in the computed solution and permits us to employ an overestimation of the regularization parameter (which balances the trade-off between the Kullback-Leibler and the Bregman distance). This aspect is fundamental, since the estimation of this kind of parameter is very difficult in the presence of Poisson noise. Results: The inexact Bregman procedure is tested on a bright unresolved binary star with a faint circumstellar environment. When the sources' position is exactly known, this scheme provides us with very satisfactory results. In case of inexact knowledge of the sources' position, it can in addition give some useful information on the true positions. Finally, the inexact Bregman scheme can be also used when information about the binary star's position concerns a connected region instead of isolated pixels.

  12. Uncertainties for two-dimensional models of solar rotation from helioseismic eigenfrequency splitting

    NASA Technical Reports Server (NTRS)

    Genovese, Christopher R.; Stark, Philip B.; Thompson, Michael J.

    1995-01-01

    Observed solar p-mode frequency splittings can be used to estimate angular velocity as a function of position in the solar interior. Formal uncertainties of such estimates depend on the method of estimation (e.g., least-squares), the distribution of errors in the observations, and the parameterization imposed on the angular velocity. We obtain lower bounds on the uncertainties that do not depend on the method of estimation; the bounds depend on an assumed parameterization, but the fact that they are lower bounds for the 'true' uncertainty does not. Ninety-five percent confidence intervals for estimates of the angular velocity from 1986 Big Bear Solar Observatory (BBSO) data, based on a 3659 element tensor-product cubic-spline parameterization, are everywhere wider than 120 nHz, and exceed 60,000 nHz near the core. When compared with estimates of the solar rotation, these bounds reveal that useful inferences based on pointwise estimates of the angular velocity using 1986 BBSO splitting data are not feasible over most of the Sun's volume. The discouraging size of the uncertainties is due principally to the fact that helioseismic measurements are insensitive to changes in the angular velocity at individual points, so estimates of point values based on splittings are extremely uncertain. Functionals that measure distributed 'smooth' properties are, in general, better constrained than estimates of the rotation at a point. For example, the uncertainties in estimated differences of average rotation between adjacent blocks of about 0.001 solar volumes across the base of the convective zone are much smaller, and one of several estimated differences we compute appears significant at the 95% level.

  13. Heritability maps of human face morphology through large-scale automated three-dimensional phenotyping

    NASA Astrophysics Data System (ADS)

    Tsagkrasoulis, Dimosthenis; Hysi, Pirro; Spector, Tim; Montana, Giovanni

    2017-04-01

    The human face is a complex trait under strong genetic control, as evidenced by the striking visual similarity between twins. Nevertheless, heritability estimates of facial traits have often been surprisingly low or difficult to replicate. Furthermore, the construction of facial phenotypes that correspond to naturally perceived facial features remains largely a mystery. We present here a large-scale heritability study of face geometry that aims to address these issues. High-resolution, three-dimensional facial models have been acquired on a cohort of 952 twins recruited from the TwinsUK registry, and processed through a novel landmarking workflow, GESSA (Geodesic Ensemble Surface Sampling Algorithm). The algorithm places thousands of landmarks throughout the facial surface and automatically establishes point-wise correspondence across faces. These landmarks enabled us to intuitively characterize facial geometry at a fine level of detail through curvature measurements, yielding accurate heritability maps of the human face (www.heritabilitymaps.info).

  14. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries

    NASA Astrophysics Data System (ADS)

    Morales Escalante, José A.; Gamba, Irene M.

    2018-06-01

    We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.

  15. Point-wise and whole-field laser speckle intensity fluctuation measurements applied to botanical specimens

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Wang, Junlan; Wu, Xiaoping; Williams, Fred W.; Schmidt, Richard J.

    1997-12-01

    Based on multi-scattering speckle theory, the speckle fields generated by plant specimens irradiated by laser light have been studied using a pointwise method. In addition, a whole-field method has been developed with which entire botanical specimens may be studied. Results are reported from measurements made on tomato and apple fruits, orange peel, leaves of tobacco seedlings, leaves of shihu seedlings (a Chinese medicinal herb), soy-bean sprouts, and leaves from an unidentified trailing houseplant. Although differences where observed in the temporal fluctuations of speckles that could be ascribed to differences in age and vitality, the growing tip of the bean sprout and the shihu seedling both generated virtually stationary speckles such as were observed from boiled orange peel and from localised heat-damaged regions on apple fruit. Our results suggest that both the identity of the botanical specimen and the site at which measurements are taken are likely to critically affect the observation or otherwise of temporal fluctuations of laser speckles.

  16. THE ARS-MISSOURI SOIL STRENGTH PROFILE SENSOR: CURRENT STATUS AND FUTURE PROSPECTS

    USDA-ARS?s Scientific Manuscript database

    Soil compaction that is induced by tillage and traction is an ongoing concern in crop production, and also has environmental consequences. Although cone penetrometers provide standardized compaction measurements, the pointwise data collected makes it difficult to obtain enough data to represent with...

  17. A versatile nondestructive evaluation imaging workstation

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1994-01-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  18. A versatile nondestructive evaluation imaging workstation

    NASA Astrophysics Data System (ADS)

    Chern, E. James; Butler, David W.

    1994-02-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  19. Incipient singularities in the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Siggia, E. D.; Pumir, A.

    1985-01-01

    Infinite pointwise stretching in a finite time for general initial conditions is found in a simulation of the Biot-Savart equation for a slender vortex tube in three dimensions. Viscosity is ineffective in limiting the divergence in the vorticity as long as it remains concentrated in tubes. Stability has not been shown.

  20. Solution of a Nonlinear Heat Conduction Equation for a Curvilinear Region with Dirichlet Conditions by the Fast-Expansion Method

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. D.

    2018-05-01

    The analytical solution of the nonlinear heat conduction problem for a curvilinear region is obtained with the use of the fast-expansion method together with the method of extension of boundaries and pointwise technique of computing Fourier coefficients.

  1. Adaptive, fast walking in a biped robot under neuronal control and learning.

    PubMed

    Manoonpong, Poramate; Geng, Tao; Kulvicius, Tomas; Porr, Bernd; Wörgötter, Florentin

    2007-07-01

    Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori-motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks.

  2. Mapping snow depth return levels: smooth spatial modeling versus station interpolation

    NASA Astrophysics Data System (ADS)

    Blanchet, J.; Lehning, M.

    2010-12-01

    For adequate risk management in mountainous countries, hazard maps for extreme snow events are needed. This requires the computation of spatial estimates of return levels. In this article we use recent developments in extreme value theory and compare two main approaches for mapping snow depth return levels from in situ measurements. The first one is based on the spatial interpolation of pointwise extremal distributions (the so-called Generalized Extreme Value distribution, GEV henceforth) computed at station locations. The second one is new and based on the direct estimation of a spatially smooth GEV distribution with the joint use of all stations. We compare and validate the different approaches for modeling annual maximum snow depth measured at 100 sites in Switzerland during winters 1965-1966 to 2007-2008. The results show a better performance of the smooth GEV distribution fitting, in particular where the station network is sparser. Smooth return level maps can be computed from the fitted model without any further interpolation. Their regional variability can be revealed by removing the altitudinal dependent covariates in the model. We show how return levels and their regional variability are linked to the main climatological patterns of Switzerland.

  3. Graphical Construction of a Local Perspective on Differentiation and Integration

    ERIC Educational Resources Information Center

    Hong, Ye Yoon; Thomas, Michael O. J.

    2015-01-01

    Recent studies of the transition from school to university mathematics have identified a number of epistemological gaps, including the need to change from an emphasis on equality to that of inequality. Another crucial epistemological change during this transition involves the movement from the pointwise and global perspectives of functions usually…

  4. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    PubMed

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  5. Continuity properties of the semi-group and its integral kernel in non-relativistic QED

    NASA Astrophysics Data System (ADS)

    Matte, Oliver

    2016-07-01

    Employing recent results on stochastic differential equations associated with the standard model of non-relativistic quantum electrodynamics by B. Güneysu, J. S. Møller, and the present author, we study the continuity of the corresponding semi-group between weighted vector-valued Lp-spaces, continuity properties of elements in the range of the semi-group, and the pointwise continuity of an operator-valued semi-group kernel. We further discuss the continuous dependence of the semi-group and its integral kernel on model parameters. All these results are obtained for Kato decomposable electrostatic potentials and the actual assumptions on the model are general enough to cover the Nelson model as well. As a corollary, we obtain some new pointwise exponential decay and continuity results on elements of low-energetic spectral subspaces of atoms or molecules that also take spin into account. In a simpler situation where spin is neglected, we explain how to verify the joint continuity of positive ground state eigenvectors with respect to spatial coordinates and model parameters. There are no smallness assumptions imposed on any model parameter.

  6. Structure-Preserving Variational Multiscale Modeling of Turbulent Incompressible Flow with Subgrid Vortices

    NASA Astrophysics Data System (ADS)

    Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey

    2017-11-01

    In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.

  7. Automatic selection of optimal Savitzky-Golay filter parameters for Coronary Wave Intensity Analysis.

    PubMed

    Rivolo, Simone; Nagel, Eike; Smith, Nicolas P; Lee, Jack

    2014-01-01

    Coronary Wave Intensity Analysis (cWIA) is a technique capable of separating the effects of proximal arterial haemodynamics from cardiac mechanics. The cWIA ability to establish a mechanistic link between coronary haemodynamics measurements and the underlying pathophysiology has been widely demonstrated. Moreover, the prognostic value of a cWIA-derived metric has been recently proved. However, the clinical application of cWIA has been hindered due to the strong dependence on the practitioners, mainly ascribable to the cWIA-derived indices sensitivity to the pre-processing parameters. Specifically, as recently demonstrated, the cWIA-derived metrics are strongly sensitive to the Savitzky-Golay (S-G) filter, typically used to smooth the acquired traces. This is mainly due to the inability of the S-G filter to deal with the different timescale features present in the measured waveforms. Therefore, we propose to apply an adaptive S-G algorithm that automatically selects pointwise the optimal filter parameters. The newly proposed algorithm accuracy is assessed against a cWIA gold standard, provided by a newly developed in-silico cWIA modelling framework, when physiological noise is added to the simulated traces. The adaptive S-G algorithm, when used to automatically select the polynomial degree of the S-G filter, provides satisfactory results with ≤ 10% error for all the metrics through all the levels of noise tested. Therefore, the newly proposed method makes cWIA fully automatic and independent from the practitioners, opening the possibility to multi-centre trials.

  8. MC 2 -3: Multigroup Cross Section Generation Code for Fast Reactor Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Changho; Yang, Won Sik

    This paper presents the methods and performance of the MC2 -3 code, which is a multigroup cross-section generation code for fast reactor analysis, developed to improve the resonance self-shielding and spectrum calculation methods of MC2 -2 and to simplify the current multistep schemes generating region-dependent broad-group cross sections. Using the basic neutron data from ENDF/B data files, MC2 -3 solves the consistent P1 multigroup transport equation to determine the fundamental mode spectra for use in generating multigroup neutron cross sections. A homogeneous medium or a heterogeneous slab or cylindrical unit cell problem is solved in ultrafine (2082) or hyperfine (~400more » 000) group levels. In the resolved resonance range, pointwise cross sections are reconstructed with Doppler broadening at specified temperatures. The pointwise cross sections are directly used in the hyperfine group calculation, whereas for the ultrafine group calculation, self-shielded cross sections are prepared by numerical integration of the pointwise cross sections based upon the narrow resonance approximation. For both the hyperfine and ultrafine group calculations, unresolved resonances are self-shielded using the analytic resonance integral method. The ultrafine group calculation can also be performed for a two-dimensional whole-core problem to generate region-dependent broad-group cross sections. Verification tests have been performed using the benchmark problems for various fast critical experiments including Los Alamos National Laboratory critical assemblies; Zero-Power Reactor, Zero-Power Physics Reactor, and Bundesamt für Strahlenschutz experiments; Monju start-up core; and Advanced Burner Test Reactor. Verification and validation results with ENDF/B-VII.0 data indicated that eigenvalues from MC2 -3/DIF3D agreed well with Monte Carlo N-Particle5 MCNP5 or VIM Monte Carlo solutions within 200 pcm and regionwise one-group fluxes were in good agreement with Monte Carlo solutions.« less

  9. A Genomewide Linkage Scan of Cocaine Dependence and Major Depressive Episode in Two Populations

    PubMed Central

    Yang, Bao-Zhu; Han, Shizhong; Kranzler, Henry R; Farrer, Lindsay A; Gelernter, Joel

    2011-01-01

    Cocaine dependence (CD) and major depressive episode (MDE) frequently co-occur with poorer treatment outcome and higher relapse risk. Shared genetic risk was affirmed; to date, there have been no reports of genomewide linkage scans (GWLSs) surveying the susceptibility regions for comorbid CD and MDE (CD–MDE). We aimed to identify chromosomal regions and candidate genes susceptible to CD, MDE, and CD–MDE in African Americans (AAs) and European Americans (EAs). A total of 1896 individuals were recruited from 384 AA and 355 EA families, each with at least a sibling-pair with CD and/or opioid dependence. Array-based genotyping of about 6000 single-nucleotide polymorphisms was completed for all individuals. Parametric and non-parametric genomewide linkage analyses were performed. We found a genomewide-significant linkage peak on chromosome 7 at 183.4 cM for non-parametric analysis of CD–MDE in AAs (lod=3.8, genomewide empirical p=0.016; point-wise p=0.00001). A nearly genomewide significant linkage was identified for CD–MDE in EAs on chromosome 5 at 14.3 cM (logarithm of odds (lod)=2.95, genomewide empirical p=0.055; point-wise p=0.00012). Parametric analysis corroborated the findings in these two regions and improved the support for the peak on chromosome 5 so that it reached genomewide significance (heterogeneity lod=3.28, genomewide empirical p=0.046; point-wise p=0.00053). This is the first GWLS for CD–MDE. The genomewide significant linkage regions on chromosomes 5 and 7 harbor four particularly promising candidate genes: SRD5A1, UBE3C, PTPRN2, and VIPR2. Replication of the linkage findings in other populations is warranted, as is a focused analysis of the genes located in the linkage regions implicated here. PMID:21849985

  10. The Effective Dynamic Ranges for Glaucomatous Visual Field Progression With Standard Automated Perimetry and Stimulus Sizes III and V.

    PubMed

    Wall, Michael; Zamba, Gideon K D; Artes, Paul H

    2018-01-01

    It has been shown that threshold estimates below approximately 20 dB have little effect on the ability to detect visual field progression in glaucoma. We aimed to compare stimulus size V to stimulus size III, in areas of visual damage, to confirm these findings by using (1) a different dataset, (2) different techniques of progression analysis, and (3) an analysis to evaluate the effect of censoring on mean deviation (MD). In the Iowa Variability in Perimetry Study, 120 glaucoma subjects were tested every 6 months for 4 years with size III SITA Standard and size V Full Threshold. Progression was determined with three complementary techniques: pointwise linear regression (PLR), permutation of PLR, and linear regression of the MD index. All analyses were repeated on "censored'' datasets in which threshold estimates below a given criterion value were set to equal the criterion value. Our analyses confirmed previous observations that threshold estimates below 20 dB contribute much less to visual field progression than estimates above this range. These findings were broadly similar with stimulus sizes III and V. Censoring of threshold values < 20 dB has relatively little impact on the rates of visual field progression in patients with mild to moderate glaucoma. Size V, which has lower retest variability, performs at least as well as size III for longitudinal glaucoma progression analysis and appears to have a larger useful dynamic range owing to the upper sensitivity limit being higher.

  11. Data on the application of Functional Data Analysis in food fermentations.

    PubMed

    Ruiz-Bellido, M A; Romero-Gil, V; García-García, P; Rodríguez-Gómez, F; Arroyo-López, F N; Garrido-Fernández, A

    2016-12-01

    This article refers to the paper "Assessment of table olive fermentation by functional data analysis" (Ruiz-Bellido et al., 2016) [1]. The dataset include pH, titratable acidity, yeast count and area values obtained during fermentation process (380 days) of Aloreña de Málaga olives subjected to five different fermentation systems: i) control of acidified cured olives, ii) highly acidified cured olives, iii) intermediate acidified cured olives, iv) control of traditional cracked olives, and v) traditional olives cracked after 72 h of exposure to air. Many of the Tables and Figures shown in this paper were deduced after application of Functional Data Analysis to raw data using a routine executed under R software for comparison among treatments by the transformation of raw data into smooth curves and the application of a new battery of statistical tools (functional pointwise estimation of the averages and standard deviations, maximum, minimum, first and second derivatives, functional regression, and functional F and t-tests).

  12. Leveraging Multiactions to Improve Medical Personalized Ranking for Collaborative Filtering.

    PubMed

    Gao, Shan; Guo, Guibing; Li, Runzhi; Wang, Zongmin

    2017-01-01

    Nowadays, providing high-quality recommendation services to users is an essential component in web applications, including shopping, making friends, and healthcare. This can be regarded either as a problem of estimating users' preference by exploiting explicit feedbacks (numerical ratings), or as a problem of collaborative ranking with implicit feedback (e.g., purchases, views, and clicks). Previous works for solving this issue include pointwise regression methods and pairwise ranking methods. The emerging healthcare websites and online medical databases impose a new challenge for medical service recommendation. In this paper, we develop a model, MBPR (Medical Bayesian Personalized Ranking over multiple users' actions), based on the simple observation that users tend to assign higher ranks to some kind of healthcare services that are meanwhile preferred in users' other actions. Experimental results on the real-world datasets demonstrate that MBPR achieves more accurate recommendations than several state-of-the-art methods and shows its generality and scalability via experiments on the datasets from one mobile shopping app.

  13. Leveraging Multiactions to Improve Medical Personalized Ranking for Collaborative Filtering

    PubMed Central

    2017-01-01

    Nowadays, providing high-quality recommendation services to users is an essential component in web applications, including shopping, making friends, and healthcare. This can be regarded either as a problem of estimating users' preference by exploiting explicit feedbacks (numerical ratings), or as a problem of collaborative ranking with implicit feedback (e.g., purchases, views, and clicks). Previous works for solving this issue include pointwise regression methods and pairwise ranking methods. The emerging healthcare websites and online medical databases impose a new challenge for medical service recommendation. In this paper, we develop a model, MBPR (Medical Bayesian Personalized Ranking over multiple users' actions), based on the simple observation that users tend to assign higher ranks to some kind of healthcare services that are meanwhile preferred in users' other actions. Experimental results on the real-world datasets demonstrate that MBPR achieves more accurate recommendations than several state-of-the-art methods and shows its generality and scalability via experiments on the datasets from one mobile shopping app. PMID:29118963

  14. Correlated full-field and pointwise temporally resolved measurements of thermomechanical stress inside an operating power transistor

    NASA Astrophysics Data System (ADS)

    Borza, Dan N.; Gautrelet, Christophe

    2015-01-01

    The paper describes a measurement system based on time-resolved speckle interferometry, able to record long series of thermally induced full-field deformation maps of die and wire bonds inside an operating power transistor. The origin of the deformation is the transistor heating during its normal operation. The full-field results consist in completely unwrapped deformation maps for out-of-plane displacements greater than 14 μm, with nanometer resolution, in presence of discontinuities due to structural and material inhomogeneity. These measurements are synchronized with the measurement of heatsink temperature and of base-emitter junction temperature, so as to provide data related to several interacting physical parameters. The temporal histories of the displacement are also accessible for any point. They are correlated with the thermal and electrical time series. Mechanical full-field curvatures may also be estimated, making these measurements useful for inspecting physical origins of thermomechanical stresses and for interacting with numerical models used in reliability-related studies.

  15. Applying Emax model and bivariate thin plate splines to assess drug interactions

    PubMed Central

    Kong, Maiying; Lee, J. Jack

    2014-01-01

    We review the semiparametric approach previously proposed by Kong and Lee and extend it to a case in which the dose-effect curves follow the Emax model instead of the median effect equation. When the maximum effects for the investigated drugs are different, we provide a procedure to obtain the additive effect based on the Loewe additivity model. Then, we apply a bivariate thin plate spline approach to estimate the effect beyond additivity along with its 95% point-wise confidence interval as well as its 95% simultaneous confidence interval for any combination dose. Thus, synergy, additivity, and antagonism can be identified. The advantages of the method are that it provides an overall assessment of the combination effect on the entire two-dimensional dose space spanned by the experimental doses, and it enables us to identify complex patterns of drug interaction in combination studies. In addition, this approach is robust to outliers. To illustrate this procedure, we analyzed data from two case studies. PMID:20036878

  16. Applying Emax model and bivariate thin plate splines to assess drug interactions.

    PubMed

    Kong, Maiying; Lee, J Jack

    2010-01-01

    We review the semiparametric approach previously proposed by Kong and Lee and extend it to a case in which the dose-effect curves follow the Emax model instead of the median effect equation. When the maximum effects for the investigated drugs are different, we provide a procedure to obtain the additive effect based on the Loewe additivity model. Then, we apply a bivariate thin plate spline approach to estimate the effect beyond additivity along with its 95 per cent point-wise confidence interval as well as its 95 per cent simultaneous confidence interval for any combination dose. Thus, synergy, additivity, and antagonism can be identified. The advantages of the method are that it provides an overall assessment of the combination effect on the entire two-dimensional dose space spanned by the experimental doses, and it enables us to identify complex patterns of drug interaction in combination studies. In addition, this approach is robust to outliers. To illustrate this procedure, we analyzed data from two case studies.

  17. Treatment selection in a randomized clinical trial via covariate-specific treatment effect curves.

    PubMed

    Ma, Yunbei; Zhou, Xiao-Hua

    2017-02-01

    For time-to-event data in a randomized clinical trial, we proposed two new methods for selecting an optimal treatment for a patient based on the covariate-specific treatment effect curve, which is used to represent the clinical utility of a predictive biomarker. To select an optimal treatment for a patient with a specific biomarker value, we proposed pointwise confidence intervals for each covariate-specific treatment effect curve and the difference between covariate-specific treatment effect curves of two treatments. Furthermore, to select an optimal treatment for a future biomarker-defined subpopulation of patients, we proposed confidence bands for each covariate-specific treatment effect curve and the difference between each pair of covariate-specific treatment effect curve over a fixed interval of biomarker values. We constructed the confidence bands based on a resampling technique. We also conducted simulation studies to evaluate finite-sample properties of the proposed estimation methods. Finally, we illustrated the application of the proposed method in a real-world data set.

  18. A Bayesian Hierarchical Modeling Scheme for Estimating Erosion Rates Under Current Climate Conditions

    NASA Astrophysics Data System (ADS)

    Lowman, L.; Barros, A. P.

    2014-12-01

    Computational modeling of surface erosion processes is inherently difficult because of the four-dimensional nature of the problem and the multiple temporal and spatial scales that govern individual mechanisms. Landscapes are modified via surface and fluvial erosion and exhumation, each of which takes place over a range of time scales. Traditional field measurements of erosion/exhumation rates are scale dependent, often valid for a single point-wise location or averaging over large aerial extents and periods with intense and mild erosion. We present a method of remotely estimating erosion rates using a Bayesian hierarchical model based upon the stream power erosion law (SPEL). A Bayesian approach allows for estimating erosion rates using the deterministic relationship given by the SPEL and data on channel slopes and precipitation at the basin and sub-basin scale. The spatial scale associated with this framework is the elevation class, where each class is characterized by distinct morphologic behavior observed through different modes in the distribution of basin outlet elevations. Interestingly, the distributions of first-order outlets are similar in shape and extent to the distribution of precipitation events (i.e. individual storms) over a 14-year period between 1998-2011. We demonstrate an application of the Bayesian hierarchical modeling framework for five basins and one intermontane basin located in the central Andes between 5S and 20S. Using remotely sensed data of current annual precipitation rates from the Tropical Rainfall Measuring Mission (TRMM) and topography from a high resolution (3 arc-seconds) digital elevation map (DEM), our erosion rate estimates are consistent with decadal-scale estimates based on landslide mapping and sediment flux observations and 1-2 orders of magnitude larger than most millennial and million year timescale estimates from thermochronology and cosmogenic nuclides.

  19. Considerations about expected a posteriori estimation in adaptive testing: adaptive a priori, adaptive correction for bias, and adaptive integration interval.

    PubMed

    Raiche, Gilles; Blais, Jean-Guy

    2009-01-01

    In a computerized adaptive test, we would like to obtain an acceptable precision of the proficiency level estimate using an optimal number of items. Unfortunately, decreasing the number of items is accompanied by a certain degree of bias when the true proficiency level differs significantly from the a priori estimate. The authors suggest that it is possible to reduced the bias, and even the standard error of the estimate, by applying to each provisional estimation one or a combination of the following strategies: adaptive correction for bias proposed by Bock and Mislevy (1982), adaptive a priori estimate, and adaptive integration interval.

  20. Receiver Operating Characteristic Analysis for Classification Based on Various Prior Probabilities of Groups with an Application to Breath Analysis

    NASA Astrophysics Data System (ADS)

    Cimermanová, K.

    2009-01-01

    In this paper we illustrate the influence of prior probabilities of diseases on diagnostic reasoning. For various prior probabilities of classified groups characterized by volatile organic compounds of breath profile, smokers and non-smokers, we constructed the ROC curve and the Youden index with related asymptotic pointwise confidence intervals.

  1. Grid Work

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.

  2. Regularity for Fully Nonlinear Elliptic Equations with Oblique Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Zhang, Kai

    2018-06-01

    In this paper, we obtain a series of regularity results for viscosity solutions of fully nonlinear elliptic equations with oblique derivative boundary conditions. In particular, we derive the pointwise C α, C 1,α and C 2,α regularity. As byproducts, we also prove the A-B-P maximum principle, Harnack inequality, uniqueness and solvability of the equations.

  3. Testing of the ABBN-RF multigroup data library in photon transport calculations

    NASA Astrophysics Data System (ADS)

    Koscheev, Vladimir; Lomakov, Gleb; Manturov, Gennady; Tsiboulia, Anatoly

    2017-09-01

    Gamma radiation is produced via both of nuclear fuel and shield materials. Photon interaction is known with appropriate accuracy, but secondary gamma ray production known much less. The purpose of this work is studying secondary gamma ray production data from neutron induced reactions in iron and lead by using MCNP code and modern nuclear data as ROSFOND, ENDF/B-7.1, JEFF-3.2 and JENDL-4.0. Results of calculations show that all of these nuclear data have different photon production data from neutron induced reactions and have poor agreement with evaluated benchmark experiment. The ABBN-RF multigroup cross-section library is based on the ROSFOND data. It presented in two forms of micro cross sections: ABBN and MATXS formats. Comparison of group-wise calculations using both ABBN and MATXS data to point-wise calculations with the ROSFOND library shows a good agreement. The discrepancies between calculation and experimental C/E results in neutron spectra are in the limit of experimental errors. For the photon spectrum they are out of experimental errors. Results of calculations using group-wise and point-wise representation of cross sections show a good agreement both for photon and neutron spectra.

  4. Finite-volume application of high order ENO schemes to multi-dimensional boundary-value problems

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Dorrepaal, J. Mark

    1990-01-01

    The finite volume approach in developing multi-dimensional, high-order accurate essentially non-oscillatory (ENO) schemes is considered. In particular, a two dimensional extension is proposed for the Euler equation of gas dynamics. This requires a spatial reconstruction operator that attains formal high order of accuracy in two dimensions by taking account of cross gradients. Given a set of cell averages in two spatial variables, polynomial interpolation of a two dimensional primitive function is employed in order to extract high-order pointwise values on cell interfaces. These points are appropriately chosen so that correspondingly high-order flux integrals are obtained through each interface by quadrature, at each point having calculated a flux contribution in an upwind fashion. The solution-in-the-small of Riemann's initial value problem (IVP) that is required for this pointwise flux computation is achieved using Roe's approximate Riemann solver. Issues to be considered in this two dimensional extension include the implementation of boundary conditions and application to general curvilinear coordinates. Results of numerical experiments are presented for qualitative and quantitative examination. These results contain the first successful application of ENO schemes to boundary value problems with solid walls.

  5. A spatial domain decomposition approach to distributed H ∞ observer design of a linear unstable parabolic distributed parameter system with spatially discrete sensors

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Wei; Liu, Ya-Qiang; Hu, Yan-Yan; Sun, Chang-Yin

    2017-12-01

    This paper discusses the design problem of distributed H∞ Luenberger-type partial differential equation (PDE) observer for state estimation of a linear unstable parabolic distributed parameter system (DPS) with external disturbance and measurement disturbance. Both pointwise measurement in space and local piecewise uniform measurement in space are considered; that is, sensors are only active at some specified points or applied at part thereof of the spatial domain. The spatial domain is decomposed into multiple subdomains according to the location of the sensors such that only one sensor is located at each subdomain. By using Lyapunov technique, Wirtinger's inequality at each subdomain, and integration by parts, a Lyapunov-based design of Luenberger-type PDE observer is developed such that the resulting estimation error system is exponentially stable with an H∞ performance constraint, and presented in terms of standard linear matrix inequalities (LMIs). For the case of local piecewise uniform measurement in space, the first mean value theorem for integrals is utilised in the observer design development. Moreover, the problem of optimal H∞ observer design is also addressed in the sense of minimising the attenuation level. Numerical simulation results are presented to show the satisfactory performance of the proposed design method.

  6. The tensile strength characteristics study of the laser welds of biological tissue using the nanocomposite solder

    NASA Astrophysics Data System (ADS)

    Rimshan, I. B.; Ryabkin, D. I.; Savelyev, M. S.; Zhurbina, N. N.; Pyanov, I. V.; Eganova, E. M.; Pavlov, A. A.; Podgaetsky, V. M.; Ichkitidze, L. P.; Selishchev, S. V.; Gerasimenko, A. Y.

    2016-04-01

    Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.

  7. The Effective Dynamic Ranges for Glaucomatous Visual Field Progression With Standard Automated Perimetry and Stimulus Sizes III and V

    PubMed Central

    Zamba, Gideon K. D.; Artes, Paul H.

    2018-01-01

    Purpose It has been shown that threshold estimates below approximately 20 dB have little effect on the ability to detect visual field progression in glaucoma. We aimed to compare stimulus size V to stimulus size III, in areas of visual damage, to confirm these findings by using (1) a different dataset, (2) different techniques of progression analysis, and (3) an analysis to evaluate the effect of censoring on mean deviation (MD). Methods In the Iowa Variability in Perimetry Study, 120 glaucoma subjects were tested every 6 months for 4 years with size III SITA Standard and size V Full Threshold. Progression was determined with three complementary techniques: pointwise linear regression (PLR), permutation of PLR, and linear regression of the MD index. All analyses were repeated on “censored'' datasets in which threshold estimates below a given criterion value were set to equal the criterion value. Results Our analyses confirmed previous observations that threshold estimates below 20 dB contribute much less to visual field progression than estimates above this range. These findings were broadly similar with stimulus sizes III and V. Conclusions Censoring of threshold values < 20 dB has relatively little impact on the rates of visual field progression in patients with mild to moderate glaucoma. Size V, which has lower retest variability, performs at least as well as size III for longitudinal glaucoma progression analysis and appears to have a larger useful dynamic range owing to the upper sensitivity limit being higher. PMID:29356822

  8. The NJOY Nuclear Data Processing System, Version 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macfarlane, Robert; Muir, Douglas W.; Boicourt, R. M.

    The NJOY Nuclear Data Processing System, version 2016, is a comprehensive computer code package for producing pointwise and multigroup cross sections and related quantities from evaluated nuclear data in the ENDF-4 through ENDF-6 legacy card-image formats. NJOY works with evaluated files for incident neutrons, photons, and charged particles, producing libraries for a wide variety of particle transport and reactor analysis codes.

  9. Repeatability of Retinal Sensitivity Measurements Using a Medmont Dark-Adapted Chromatic Perimeter in Healthy and Age-Related Macular Degeneration Cases.

    PubMed

    Tan, Rose S; Guymer, Robyn H; Luu, Chi D

    2018-05-01

    To determine the intrasession and intersession test-retest repeatability of retinal sensitivity measurements using a dark-adapted chromatic perimeter (DACP). For intrasession testing, retinal sensitivity within the central 24° for the 505-nm stimulus was measured after 20, 30, and 40 minutes of dark adaptation (DA) and for the 625-nm stimulus was measured after the first and second 505-nm tests. For intersession testing, retinal sensitivity for both stimuli was measured after 30 minutes of DA at baseline and 1 month. The point-wise sensitivity (PWS) difference and coefficient of repeatability (CoR) of each stimulus and group were determined. For intrasession testing, 10 age-related macular degeneration (AMD) and eight control subjects were recruited. The overall CoR for the 505-nm stimulus was 8.4 dB for control subjects and 9.1 dB for AMD cases, and for the 625-nm stimulus was 6.7 dB for control subjects and 9.5 dB for AMD cases. For intersession testing, seven AMD cases and 13 control subjects returned an overall CoR for the 505-nm stimulus of 8.2 dB for the control and 11.7 dB for the AMD group. For the 625-nm stimulus the CoR was 6.2 dB for the control group and 8.4 dB for the AMD group. Approximately 80% of all test points had a PWS difference of ±5 dB between the two intrasession or intersession measurements for both stimuli. The CoR for the DACP is larger than that reported for scotopic perimeters; however, the majority of test points had a PWS difference of ±5 dB between tests. The DACP offers an opportunity to measure static and dynamic rod function at multiple locations with an acceptable reproducibility level.

  10. Adaptive multitaper time-frequency spectrum estimation

    NASA Astrophysics Data System (ADS)

    Pitton, James W.

    1999-11-01

    In earlier work, Thomson's adaptive multitaper spectrum estimation method was extended to the nonstationary case. This paper reviews the time-frequency multitaper method and the adaptive procedure, and explores some properties of the eigenvalues and eigenvectors. The variance of the adaptive estimator is used to construct an adaptive smoother, which is used to form a high resolution estimate. An F-test for detecting and removing sinusoidal components in the time-frequency spectrum is also given.

  11. Udzawa-type iterative method with parareal preconditioner for a parabolic optimal control problem

    NASA Astrophysics Data System (ADS)

    Lapin, A.; Romanenko, A.

    2016-11-01

    The article deals with the optimal control problem with the parabolic equation as state problem. There are point-wise constraints on the state and control functions. The objective functional involves the observation given in the domain at each moment. The conditions for convergence Udzawa's type iterative method are given. The parareal method to inverse preconditioner is given. The results of calculations are presented.

  12. High order cell-centered scheme totally based on cell average

    NASA Astrophysics Data System (ADS)

    Liu, Ze-Yu; Cai, Qing-Dong

    2018-05-01

    This work clarifies the concept of cell average by pointing out the differences between cell average and cell centroid value, which are averaged cell-centered value and pointwise cell-centered value, respectively. Interpolation based on cell averages is constructed and high order QUICK-like numerical scheme is designed for such interpolation. A new approach of error analysis is introduced in this work, which is similar to Taylor’s expansion.

  13. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution

    NASA Astrophysics Data System (ADS)

    Kreeft, Jasper; Gerritsma, Marc

    2013-05-01

    In this paper we apply the recently developed mimetic discretization method to the mixed formulation of the Stokes problem in terms of vorticity, velocity and pressure. The mimetic discretization presented in this paper and in Kreeft et al. [51] is a higher-order method for curvilinear quadrilaterals and hexahedrals. Fundamental is the underlying structure of oriented geometric objects, the relation between these objects through the boundary operator and how this defines the exterior derivative, representing the grad, curl and div, through the generalized Stokes theorem. The mimetic method presented here uses the language of differential k-forms with k-cochains as their discrete counterpart, and the relations between them in terms of the mimetic operators: reduction, reconstruction and projection. The reconstruction consists of the recently developed mimetic spectral interpolation functions. The most important result of the mimetic framework is the commutation between differentiation at the continuous level with that on the finite dimensional and discrete level. As a result operators like gradient, curl and divergence are discretized exactly. For Stokes flow, this implies a pointwise divergence-free solution. This is confirmed using a set of test cases on both Cartesian and curvilinear meshes. It will be shown that the method converges optimally for all admissible boundary conditions.

  14. Linkage Analysis of a Model Quantitative Trait in Humans: Finger Ridge Count Shows Significant Multivariate Linkage to 5q14.1

    PubMed Central

    Medland, Sarah E; Loesch, Danuta Z; Mdzewski, Bogdan; Zhu, Gu; Montgomery, Grant W; Martin, Nicholas G

    2007-01-01

    The finger ridge count (a measure of pattern size) is one of the most heritable complex traits studied in humans and has been considered a model human polygenic trait in quantitative genetic analysis. Here, we report the results of the first genome-wide linkage scan for finger ridge count in a sample of 2,114 offspring from 922 nuclear families. Both univariate linkage to the absolute ridge count (a sum of all the ridge counts on all ten fingers), and multivariate linkage analyses of the counts on individual fingers, were conducted. The multivariate analyses yielded significant linkage to 5q14.1 (Logarithm of odds [LOD] = 3.34, pointwise-empirical p-value = 0.00025) that was predominantly driven by linkage to the ring, index, and middle fingers. The strongest univariate linkage was to 1q42.2 (LOD = 2.04, point-wise p-value = 0.002, genome-wide p-value = 0.29). In summary, the combination of univariate and multivariate results was more informative than simple univariate analyses alone. Patterns of quantitative trait loci factor loadings consistent with developmental fields were observed, and the simple pleiotropic model underlying the absolute ridge count was not sufficient to characterize the interrelationships between the ridge counts of individual fingers. PMID:17907812

  15. The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chiun-Chang, E-mail: chlee@mail.nhcue.edu.tw

    2014-05-15

    The present article is concerned with the charge conserving Poisson-Boltzmann (CCPB) equation in high-dimensional bounded smooth domains. The CCPB equation is a Poisson-Boltzmann type of equation with nonlocal coefficients. First, under the Robin boundary condition, we get the existence of weak solutions to this equation. The main approach is variational, based on minimization of a logarithm-type energy functional. To deal with the regularity of weak solutions, we establish a maximum modulus estimate for the standard Poisson-Boltzmann (PB) equation to show that weak solutions of the CCPB equation are essentially bounded. Then the classical solutions follow from the elliptic regularity theorem.more » Second, a maximum principle for the CCPB equation is established. In particular, we show that in the case of global electroneutrality, the solution achieves both its maximum and minimum values at the boundary. However, in the case of global non-electroneutrality, the solution may attain its maximum value at an interior point. In addition, under certain conditions on the boundary, we show that the global non-electroneutrality implies pointwise non-electroneutrality.« less

  16. PIV Measurements in Weakly Buoyant Gas Jet Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  17. Poroelastic Modeling as a Proof of Concept for Modular Representation of Coupled Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Walker, R. L., II; Knepley, M.; Aminzadeh, F.

    2017-12-01

    We seek to use the tools provided by the Portable, Extensible Toolkit for Scientific Computation (PETSc) to represent a multiphysics problem in a form that decouples the element definition from the fully coupled equation through the use of pointwise functions that imitate the strong form of the governing equation. This allows allows individual physical processes to be expressed as independent kernels that may be then coupled with the existing finite element framework, PyLith, and capitalizes upon the flexibility offered by the solver, data management, and time stepping algorithms offered by PETSc. To demonstrate a characteristic example of coupled geophysical simulation devised in this manner, we present a model of a synthetic poroelastic environment, with and without the consideration of inertial effects, with fluid initially represented as a single phase. Matrix displacement and fluid pressure serve as the desired unknowns, with the option for various model parameters represented as dependent variables of the central unknowns. While independent of PyLith, this model also serves to showcase the adaptability of physics kernels for synthetic forward modeling. In addition, we seek to expand the base case to demonstrate the impact of modeling fluid as single phase compressible versus a single incompressible phase. As a goal, we also seek to include multiphase fluid modeling, as well as capillary effects.

  18. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks.

    PubMed

    Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène

    2015-03-01

    Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort. © 2014, The International Biometric Society.

  19. Estimating Time to Event From Longitudinal Categorical Data: An Analysis of Multiple Sclerosis Progression.

    PubMed

    Mandel, Micha; Gauthier, Susan A; Guttmann, Charles R G; Weiner, Howard L; Betensky, Rebecca A

    2007-12-01

    The expanded disability status scale (EDSS) is an ordinal score that measures progression in multiple sclerosis (MS). Progression is defined as reaching EDSS of a certain level (absolute progression) or increasing of one point of EDSS (relative progression). Survival methods for time to progression are not adequate for such data since they do not exploit the EDSS level at the end of follow-up. Instead, we suggest a Markov transitional model applicable for repeated categorical or ordinal data. This approach enables derivation of covariate-specific survival curves, obtained after estimation of the regression coefficients and manipulations of the resulting transition matrix. Large sample theory and resampling methods are employed to derive pointwise confidence intervals, which perform well in simulation. Methods for generating survival curves for time to EDSS of a certain level, time to increase of EDSS of at least one point, and time to two consecutive visits with EDSS greater than three are described explicitly. The regression models described are easily implemented using standard software packages. Survival curves are obtained from the regression results using packages that support simple matrix calculation. We present and demonstrate our method on data collected at the Partners MS center in Boston, MA. We apply our approach to progression defined by time to two consecutive visits with EDSS greater than three, and calculate crude (without covariates) and covariate-specific curves.

  20. SU-F-T-450: The Investigation of Radiotherapy Quality Assurance and Automatic Treatment Planning Based On the Kernel Density Estimation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J; Fan, J; Hu, W

    Purpose: To develop a fast automatic algorithm based on the two dimensional kernel density estimation (2D KDE) to predict the dose-volume histogram (DVH) which can be employed for the investigation of radiotherapy quality assurance and automatic treatment planning. Methods: We propose a machine learning method that uses previous treatment plans to predict the DVH. The key to the approach is the framing of DVH in a probabilistic setting. The training consists of estimating, from the patients in the training set, the joint probability distribution of the dose and the predictive features. The joint distribution provides an estimation of the conditionalmore » probability of the dose given the values of the predictive features. For the new patient, the prediction consists of estimating the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimation of the DVH. The 2D KDE is implemented to predict the joint probability distribution of the training set and the distribution of the predictive features for the new patient. Two variables, including the signed minimal distance from each OAR (organs at risk) voxel to the target boundary and its opening angle with respect to the origin of voxel coordinate, are considered as the predictive features to represent the OAR-target spatial relationship. The feasibility of our method has been demonstrated with the rectum, breast and head-and-neck cancer cases by comparing the predicted DVHs with the planned ones. Results: The consistent result has been found between these two DVHs for each cancer and the average of relative point-wise differences is about 5% within the clinical acceptable extent. Conclusion: According to the result of this study, our method can be used to predict the clinical acceptable DVH and has ability to evaluate the quality and consistency of the treatment planning.« less

  1. Pointwise approximation of modified conjugate functions by matrix operators of conjugate Fourier series of [Formula: see text]-periodic functions.

    PubMed

    Kubiak, Mateusz; Łenski, Włodzimierz; Szal, Bogdan

    2018-01-01

    We extend the results of Xh. Z. Krasniqi (Acta Comment. Univ. Tartu Math. 17:89-101, 2013) and the authors (Acta Comment. Univ. Tartu Math. 13:11-24, 2009; Proc. Est. Acad. Sci. 67:50-60, 2018) to the case when considered function is [Formula: see text]-periodic and the measure of approximation depends on r -differences of the entries of the considered matrices.

  2. Practical Considerations about Expected A Posteriori Estimation in Adaptive Testing: Adaptive A Priori, Adaptive Correction for Bias, and Adaptive Integration Interval.

    ERIC Educational Resources Information Center

    Raiche, Gilles; Blais, Jean-Guy

    In a computerized adaptive test (CAT), it would be desirable to obtain an acceptable precision of the proficiency level estimate using an optimal number of items. Decreasing the number of items is accompanied, however, by a certain degree of bias when the true proficiency level differs significantly from the a priori estimate. G. Raiche (2000) has…

  3. Active machine learning for rapid landslide inventory mapping with VHR satellite images (Invited)

    NASA Astrophysics Data System (ADS)

    Stumpf, A.; Lachiche, N.; Malet, J.; Kerle, N.; Puissant, A.

    2013-12-01

    VHR satellite images have become a primary source for landslide inventory mapping after major triggering events such as earthquakes and heavy rainfalls. Visual image interpretation is still the prevailing standard method for operational purposes but is time-consuming and not well suited to fully exploit the increasingly better supply of remote sensing data. Recent studies have addressed the development of more automated image analysis workflows for landslide inventory mapping. In particular object-oriented approaches that account for spatial and textural image information have been demonstrated to be more adequate than pixel-based classification but manually elaborated rule-based classifiers are difficult to adapt under changing scene characteristics. Machine learning algorithm allow learning classification rules for complex image patterns from labelled examples and can be adapted straightforwardly with available training data. In order to reduce the amount of costly training data active learning (AL) has evolved as a key concept to guide the sampling for many applications. The underlying idea of AL is to initialize a machine learning model with a small training set, and to subsequently exploit the model state and data structure to iteratively select the most valuable samples that should be labelled by the user. With relatively few queries and labelled samples, an AL strategy yields higher accuracies than an equivalent classifier trained with many randomly selected samples. This study addressed the development of an AL method for landslide mapping from VHR remote sensing images with special consideration of the spatial distribution of the samples. Our approach [1] is based on the Random Forest algorithm and considers the classifier uncertainty as well as the variance of potential sampling regions to guide the user towards the most valuable sampling areas. The algorithm explicitly searches for compact regions and thereby avoids a spatially disperse sampling pattern inherent to most other AL methods. The accuracy, the sampling time and the computational runtime of the algorithm were evaluated on multiple satellite images capturing recent large scale landslide events. Sampling between 1-4% of the study areas the accuracies between 74% and 80% were achieved, whereas standard sampling schemes yielded only accuracies between 28% and 50% with equal sampling costs. Compared to commonly used point-wise AL algorithm the proposed approach significantly reduces the number of iterations and hence the computational runtime. Since the user can focus on relatively few compact areas (rather than on hundreds of distributed points) the overall labeling time is reduced by more than 50% compared to point-wise queries. An experimental evaluation of multiple expert mappings demonstrated strong relationships between the uncertainties of the experts and the machine learning model. It revealed that the achieved accuracies are within the range of the inter-expert disagreement and that it will be indispensable to consider ground truth uncertainties to truly achieve further enhancements in the future. The proposed method is generally applicable to a wide range of optical satellite images and landslide types. [1] A. Stumpf, N. Lachiche, J.-P. Malet, N. Kerle, and A. Puissant, Active learning in the spatial domain for remote sensing image classification, IEEE Transactions on Geosciece and Remote Sensing. 2013, DOI 10.1109/TGRS.2013.2262052.

  4. J-Adaptive estimation with estimated noise statistics. [for orbit determination

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Hipkins, C.

    1975-01-01

    The J-Adaptive estimator described by Jazwinski and Hipkins (1972) is extended to include the simultaneous estimation of the statistics of the unmodeled system accelerations. With the aid of simulations it is demonstrated that the J-Adaptive estimator with estimated noise statistics can automatically estimate satellite orbits to an accuracy comparable with the data noise levels, when excellent, continuous tracking coverage is available. Such tracking coverage will be available from satellite-to-satellite tracking.

  5. Adaptive Window Zero-Crossing-Based Instantaneous Frequency Estimation

    NASA Astrophysics Data System (ADS)

    Sekhar, S. Chandra; Sreenivas, TV

    2004-12-01

    We address the problem of estimating instantaneous frequency (IF) of a real-valued constant amplitude time-varying sinusoid. Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpolynomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of window length to minimize the mean square error (MSE). The optimal window length found by directly minimizing the MSE is a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables minimum MSE-IF (MMSE-IF) estimation without requiring a priori information about the IF. Simulation results show that the adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive spectrogram and adaptive Wigner-Ville distribution (WVD)-based IF estimators for different signal-to-noise ratio (SNR).

  6. Visual field progression with frequency-doubling matrix perimetry and standard automated perimetry in patients with glaucoma and in healthy controls.

    PubMed

    Redmond, Tony; O'Leary, Neil; Hutchison, Donna M; Nicolela, Marcelo T; Artes, Paul H; Chauhan, Balwantray C

    2013-12-01

    A new analysis method called permutation of pointwise linear regression measures the significance of deterioration over time at each visual field location, combines the significance values into an overall statistic, and then determines the likelihood of change in the visual field. Because the outcome is a single P value, individualized to that specific visual field and independent of the scale of the original measurement, the method is well suited for comparing techniques with different stimuli and scales. To test the hypothesis that frequency-doubling matrix perimetry (FDT2) is more sensitive than standard automated perimetry (SAP) in identifying visual field progression in glaucoma. Patients with open-angle glaucoma and healthy controls were examined by FDT2 and SAP, both with the 24-2 test pattern, on the same day at 6-month intervals in a longitudinal prospective study conducted in a hospital-based setting. Only participants with at least 5 examinations were included. Data were analyzed with permutation of pointwise linear regression. Permutation of pointwise linear regression is individualized to each participant, in contrast to current analyses in which the statistical significance is inferred from population-based approaches. Analyses were performed with both total deviation and pattern deviation. Sixty-four patients and 36 controls were included in the study. The median age, SAP mean deviation, and follow-up period were 65 years, -2.6 dB, and 5.4 years, respectively, in patients and 62 years, +0.4 dB, and 5.2 years, respectively, in controls. Using total deviation analyses, statistically significant deterioration was identified in 17% of patients with FDT2, in 34% of patients with SAP, and in 14% of patients with both techniques; in controls these percentages were 8% with FDT2, 31% with SAP, and 8% with both. Using pattern deviation analyses, statistically significant deterioration was identified in 16% of patients with FDT2, in 17% of patients with SAP, and in 3% of patients with both techniques; in controls these values were 3% with FDT2 and none with SAP. No evidence was found that FDT2 is more sensitive than SAP in identifying visual field deterioration. In about one-third of healthy controls, age-related deterioration with SAP reached statistical significance.

  7. Deformation quantizations with separation of variables on a Kähler manifold

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    1996-10-01

    We give a simple geometric description of all formal differentiable deformation quantizations on a Kähler manifold M such that for each open subset U⊂ M ⋆-multiplication from the left by a holomorphic function and from the right by an antiholomorphic function on U coincides with the pointwise multiplication by these functions. We show that these quantizations are in 1-1 correspondence with the formal deformations of the original Kähler metrics on M.

  8. More powerful haplotype sharing by accounting for the mode of inheritance.

    PubMed

    Ziegler, Andreas; Ewhida, Adel; Brendel, Michael; Kleensang, André

    2009-04-01

    The concept of haplotype sharing (HS) has received considerable attention recently, and several haplotype association methods have been proposed. Here, we extend the work of Beckmann and colleagues [2005 Hum. Hered. 59:67-78] who derived an HS statistic (BHS) as special case of Mantel's space-time clustering approach. The Mantel-type HS statistic correlates genetic similarity with phenotypic similarity across pairs of individuals. While phenotypic similarity is measured as the mean-corrected cross product of phenotypes, we propose to incorporate information of the underlying genetic model in the measurement of the genetic similarity. Specifically, for the recessive and dominant modes of inheritance we suggest the use of the minimum and maximum of shared length of haplotypes around a marker locus for pairs of individuals. If the underlying genetic model is unknown, we propose a model-free HS Mantel statistic using the max-test approach. We compare our novel HS statistics to BHS using simulated case-control data and illustrate its use by re-analyzing data from a candidate region of chromosome 18q from the Rheumatoid Arthritis (RA) Consortium. We demonstrate that our approach is point-wise valid and superior to BHS. In the re-analysis of the RA data, we identified three regions with point-wise P-values<0.005 containing six known genes (PMIP1, MC4R, PIGN, KIAA1468, TNFRSF11A and ZCCHC2) which might be worth follow-up.

  9. Sparsity-driven tomographic reconstruction of atmospheric water vapor using GNSS and InSAR observations

    NASA Astrophysics Data System (ADS)

    Heublein, Marion; Alshawaf, Fadwa; Zhu, Xiao Xiang; Hinz, Stefan

    2016-04-01

    An accurate knowledge of the 3D distribution of water vapor in the atmosphere is a key element for weather forecasting and climate research. On the other hand, as water vapor causes a delay in the microwave signal propagation within the atmosphere, a precise determination of water vapor is required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). However, due to its high variability in time and space, the atmospheric water vapor distribution is difficult to model. Since GNSS meteorology was introduced about twenty years ago, it has increasingly been used as a geodetic technique to generate maps of 2D Precipitable Water Vapor (PWV). Moreover, several approaches for 3D tomographic water vapor reconstruction from GNSS-based estimates using the simple least squares adjustment were presented. In this poster, we present an innovative and sophisticated Compressive Sensing (CS) concept for sparsity-driven tomographic reconstruction of 3D atmospheric wet refractivity fields using data from GNSS and InSAR. The 2D zenith wet delay (ZWD) estimates are obtained by a combination of point-wise estimates of the wet delay using GNSS observations and partial InSAR wet delay maps. These ZWD estimates are aggregated to derive realistic wet delay input data of 100 points as if corresponding to 100 GNSS sites within an area of 100 km × 100 km in the test region of the Upper Rhine Graben. The made-up ZWD values can be mapped into different elevation and azimuth angles. Using the Cosine transform, a sparse representation of the wet refractivity field is obtained. In contrast to existing tomographic approaches, we exploit sparsity as a prior for the regularization of the underdetermined inverse system. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation. The accuracy of the estimated 3D water vapor field is determined by comparing slant integrated wet delays computed from the estimated wet refractivities with real GNSS wet delay estimates. This comparison is performed along different elevation and azimuth angles.

  10. Estimating the limits of adaptation from historical behaviour: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in a number of economic sectors [1]. The main analysis presents projections of climate impacts with an assumption of "no adaptation". Yet, historically, when the climate imposed an economic cost upon society, adaptive responses were taken to minimise these costs. These adaptive behaviours, both autonomous and planned, can be expected to occur as climate impacts increase in the future. To understand the extent to which adaptation might decrease some of the worst impacts of climate change, we empirically estimate adaptive responses. We do this in three sectors considered in the analysis - crop yield, crime, and mortality - and estimate adaptive capacity in two steps. First, looking at changes in climate impacts through time, we identify a historical rate of adaptation. Second, spatial differences in climate impacts are then used to stratify regions into more adapted or less adapted based on climate averages. As these averages change across counties in the US, we allow each to become more adapted at the rate identified in step one. We are then able to estimate the residual damages, assuming that only the historical adaptive behaviours have taken place (fig 1). Importantly, we are unable to estimate any costs associated with these adaptations, nor are we able to estimate more novel (for example, new technological discoveries) or more disruptive (for example, migration) adaptive behaviours. However, an important insight is that historical adaptive behaviours may not be capable of reducing the worst impacts of climate change. The persistence of impacts in even the most exposed areas indicates that there are non-trivial costs associated with adaptation that will need to be met from other sources or through novel behavioural changes. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org.

  11. J-adaptive estimation with estimated noise statistics

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Hipkins, C.

    1973-01-01

    The J-adaptive sequential estimator is extended to include simultaneous estimation of the noise statistics in a model for system dynamics. This extension completely automates the estimator, eliminating the requirement of an analyst in the loop. Simulations in satellite orbit determination demonstrate the efficacy of the sequential estimation algorithm.

  12. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    DTIC Science & Technology

    2017-06-30

    along the intermetallic component or at the interface between the two components of the composite. The availability of rnicroscale experimental data in...obtained with the PD model; (c) map of strain energy density; (d) the new quasi -index damage is a predictor of fai lure. As in the case of FRCs, one...which points are most likely to fail, before actual failure happens. The " quasi -damage index", shown in the formula below, is a point-wise measure

  13. Robust Controller Design: A Bounded-Input-Bounded-Output Worst-Case Approach

    DTIC Science & Technology

    1992-03-01

    show that 2 implies 1, suppose 1 does not hold, i.e., that p(M) > 1. The Perron - Frobenius theory for nonnegative matrices states that p(M) is itself an...Pz denote the positive cones inside X, Z consisting of elements with nonnegative pointwise components. Define the operator .4 : X -* Z, decomposed...topology.) The dual cone P! again consists of the nonnegative elements in Z*. The Lagrangian can be defined as L(x,z ’) {< x,c" > + < Ax - b,z

  14. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  15. PyFly: A fast, portable aerodynamics simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.

    Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less

  16. PyFly: A fast, portable aerodynamics simulator

    DOE PAGES

    Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.; ...

    2018-03-14

    Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less

  17. Verification test of the SURF and SURFplus models in xRage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2016-05-18

    As a verification test of the SURF and SURFplus models in the xRage code we use a propagating underdriven detonation wave in 1-D. This is about the only test cases for which an accurate solution can be determined based on the theoretical structure of the solution. The solution consists of a steady ZND reaction zone profile joined with a scale invariant rarefaction or Taylor wave and followed by a constant state. The end of the reaction profile and the head of the rarefaction coincide with the sonic CJ state of the detonation wave. The constant state is required to matchmore » a rigid wall boundary condition. For a test case, we use PBX 9502 with the same EOS and burn rate as previously used to test the shock detector algorithm utilized by the SURF model. The detonation wave is propagated for 10 μs (slightly under 80mm). As expected, the pointwise errors are largest in the neighborhood of discontinuities; pressure discontinuity at the lead shock front and pressure derivative discontinuities at the head and tail of the rarefaction. As a quantitative measure of the overall accuracy, the L2 norm of the difference of the numerical pressure and the exact solution is used. Results are presented for simulations using both a uniform grid and an adaptive grid that refines the reaction zone.« less

  18. Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

    NASA Astrophysics Data System (ADS)

    Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.

    2018-04-01

    The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

  19. Smoothing spline analysis of variance models: A new tool for the analysis of cyclic biomechanical data.

    PubMed

    Helwig, Nathaniel E; Shorter, K Alex; Ma, Ping; Hsiao-Wecksler, Elizabeth T

    2016-10-03

    Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare biomechanical differences between experimental conditions and/or subject populations. A common approach to analyzing cyclic biomechanical data involves averaging the biomechanical signals across cycle replications, and then comparing mean differences at specific points of the cycle. This pointwise analysis approach ignores the functional nature of the data, which can hinder one׳s ability to find subtle differences between experimental conditions and/or subject populations. To overcome this limitation, we propose using mixed-effects smoothing spline analysis of variance (SSANOVA) to analyze differences in cyclic biomechanical data. The SSANOVA framework makes it possible to decompose the estimated function into the portion that is common across groups (i.e., the average cycle, AC) and the portion that differs across groups (i.e., the contrast cycle, CC). By partitioning the signal in such a manner, we can obtain estimates of the CC differences (CCDs), which are the functions directly describing group differences in the cyclic biomechanical data. Using both simulated and experimental data, we illustrate the benefits of using SSANOVA models to analyze differences in noisy biomechanical (gait) signals collected from multiple locations (joints) of subjects participating in different experimental conditions. Using Bayesian confidence intervals, the SSANOVA results can be used in clinical and research settings to reliably quantify biomechanical differences between experimental conditions and/or subject populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  1. Hypersonic entry vehicle state estimation using nonlinearity-based adaptive cubature Kalman filters

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Xin, Ming

    2017-05-01

    Guidance, navigation, and control of a hypersonic vehicle landing on the Mars rely on precise state feedback information, which is obtained from state estimation. The high uncertainty and nonlinearity of the entry dynamics make the estimation a very challenging problem. In this paper, a new adaptive cubature Kalman filter is proposed for state trajectory estimation of a hypersonic entry vehicle. This new adaptive estimation strategy is based on the measure of nonlinearity of the stochastic system. According to the severity of nonlinearity along the trajectory, the high degree cubature rule or the conventional third degree cubature rule is adaptively used in the cubature Kalman filter. This strategy has the benefit of attaining higher estimation accuracy only when necessary without causing excessive computation load. The simulation results demonstrate that the proposed adaptive filter exhibits better performance than the conventional third-degree cubature Kalman filter while maintaining the same performance as the uniform high degree cubature Kalman filter but with lower computation complexity.

  2. ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆

    PubMed Central

    Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk

    2014-01-01

    In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725

  3. Multiple testing with discrete data: Proportion of true null hypotheses and two adaptive FDR procedures.

    PubMed

    Chen, Xiongzhi; Doerge, Rebecca W; Heyse, Joseph F

    2018-05-11

    We consider multiple testing with false discovery rate (FDR) control when p values have discrete and heterogeneous null distributions. We propose a new estimator of the proportion of true null hypotheses and demonstrate that it is less upwardly biased than Storey's estimator and two other estimators. The new estimator induces two adaptive procedures, that is, an adaptive Benjamini-Hochberg (BH) procedure and an adaptive Benjamini-Hochberg-Heyse (BHH) procedure. We prove that the adaptive BH (aBH) procedure is conservative nonasymptotically. Through simulation studies, we show that these procedures are usually more powerful than their nonadaptive counterparts and that the adaptive BHH procedure is usually more powerful than the aBH procedure and a procedure based on randomized p-value. The adaptive procedures are applied to a study of HIV vaccine efficacy, where they identify more differentially polymorphic positions than the BH procedure at the same FDR level. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  5. Drought Management Activities of the National Drought Mitigation Center (NDMC): Contributions Toward a Global Drought Early Warning System (GDEWS)

    NASA Astrophysics Data System (ADS)

    Stumpf, A.; Lachiche, N.; Malet, J.; Kerle, N.; Puissant, A.

    2011-12-01

    VHR satellite images have become a primary source for landslide inventory mapping after major triggering events such as earthquakes and heavy rainfalls. Visual image interpretation is still the prevailing standard method for operational purposes but is time-consuming and not well suited to fully exploit the increasingly better supply of remote sensing data. Recent studies have addressed the development of more automated image analysis workflows for landslide inventory mapping. In particular object-oriented approaches that account for spatial and textural image information have been demonstrated to be more adequate than pixel-based classification but manually elaborated rule-based classifiers are difficult to adapt under changing scene characteristics. Machine learning algorithm allow learning classification rules for complex image patterns from labelled examples and can be adapted straightforwardly with available training data. In order to reduce the amount of costly training data active learning (AL) has evolved as a key concept to guide the sampling for many applications. The underlying idea of AL is to initialize a machine learning model with a small training set, and to subsequently exploit the model state and data structure to iteratively select the most valuable samples that should be labelled by the user. With relatively few queries and labelled samples, an AL strategy yields higher accuracies than an equivalent classifier trained with many randomly selected samples. This study addressed the development of an AL method for landslide mapping from VHR remote sensing images with special consideration of the spatial distribution of the samples. Our approach [1] is based on the Random Forest algorithm and considers the classifier uncertainty as well as the variance of potential sampling regions to guide the user towards the most valuable sampling areas. The algorithm explicitly searches for compact regions and thereby avoids a spatially disperse sampling pattern inherent to most other AL methods. The accuracy, the sampling time and the computational runtime of the algorithm were evaluated on multiple satellite images capturing recent large scale landslide events. Sampling between 1-4% of the study areas the accuracies between 74% and 80% were achieved, whereas standard sampling schemes yielded only accuracies between 28% and 50% with equal sampling costs. Compared to commonly used point-wise AL algorithm the proposed approach significantly reduces the number of iterations and hence the computational runtime. Since the user can focus on relatively few compact areas (rather than on hundreds of distributed points) the overall labeling time is reduced by more than 50% compared to point-wise queries. An experimental evaluation of multiple expert mappings demonstrated strong relationships between the uncertainties of the experts and the machine learning model. It revealed that the achieved accuracies are within the range of the inter-expert disagreement and that it will be indispensable to consider ground truth uncertainties to truly achieve further enhancements in the future. The proposed method is generally applicable to a wide range of optical satellite images and landslide types. [1] A. Stumpf, N. Lachiche, J.-P. Malet, N. Kerle, and A. Puissant, Active learning in the spatial domain for remote sensing image classification, IEEE Transactions on Geosciece and Remote Sensing. 2013, DOI 10.1109/TGRS.2013.2262052.

  6. Broad frequency band full field measurements for advanced applications: Point-wise comparisons between optical technologies

    NASA Astrophysics Data System (ADS)

    Zanarini, Alessandro

    2018-01-01

    The progress of optical systems gives nowadays at disposal on lightweight structures complex dynamic measurements and modal tests, each with its own advantages, drawbacks and preferred usage domains. It is thus more easy than before to obtain highly spatially defined vibration patterns for many applications in vibration engineering, testing and general product development. The potential of three completely different technologies is here benchmarked on a common test rig and advanced applications. SLDV, dynamic ESPI and hi-speed DIC are here first deployed in a complex and unique test on the estimation of FRFs with high spatial accuracy from a thin vibrating plate. The latter exhibits a broad band dynamics and high modal density in the common frequency domain where the techniques can find an operative intersection. A peculiar point-wise comparison is here addressed by means of discrete geometry transforms to put all the three technologies on trial at each physical point of the surface. Full field measurement technologies cannot estimate only displacement fields on a refined grid, but can exploit the spatial consistency of the results through neighbouring locations by means of numerical differentiation operators in the spatial domain to obtain rotational degrees of freedom and superficial dynamic strain distributions, with enhanced quality, compared to other technologies in literature. Approaching the task with the aid of superior quality receptance maps from the three different full field gears, this work calculates and compares rotational and dynamic strain FRFs. Dynamic stress FRFs can be modelled directly from the latter, by means of a constitutive model, avoiding the costly and time-consuming steps of building and tuning a numerical dynamic model of a flexible component or a structure in real life conditions. Once dynamic stress FRFs are obtained, spectral fatigue approaches can try to predict the life of a component in many excitation conditions. Different spectral shaping of the excitation can easily be used to enhance the comparison in the framework of any of the spectral approaches for fatigue life calculations, highlighting benefits and drawbacks of a direct experimental approach to failure and risk assessment in structural dynamics when dealing with complex patterns in real-life testing. Are optical measurements and spatially dense datasets really effective in advanced model updating of lightweight structures with complex structural dynamics? The noise shown in the raw signal of some experiments may pose issues in proficiently exploiting the added data in a fruitful model updating procedure. Model updating results are here compared between scanning and native full field technologies, with comments and details on the test rig, on the advantages and drawbacks of the approaches. The identification of EMA models highlights the increasing quality of shapes that can be obtained from native full field high resolution gears, against that (some time unexpectedly poor) of SLDV tested.

  7. Application of Parallel Adjoint-Based Error Estimation and Anisotropic Grid Adaptation for Three-Dimensional Aerospace Configurations

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.

    2005-01-01

    This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge in order to achieve the requested drag tolerance. Although further adaptation was required to meet the requested tolerance, no further cycles were computed in order to avoid large discrepancies between the surface mesh spacing and the refined field spacing.

  8. Dynamic Sensing Performance of a Point-Wise Fiber Bragg Grating Displacement Measurement System Integrated in an Active Structural Control System

    PubMed Central

    Chuang, Kuo-Chih; Liao, Heng-Tseng; Ma, Chien-Ching

    2011-01-01

    In this work, a fiber Bragg grating (FBG) sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV) is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution. PMID:22247683

  9. Automatic Railway Traffic Object Detection System Using Feature Fusion Refine Neural Network under Shunting Mode.

    PubMed

    Ye, Tao; Wang, Baocheng; Song, Ping; Li, Juan

    2018-06-12

    Many accidents happen under shunting mode when the speed of a train is below 45 km/h. In this mode, train attendants observe the railway condition ahead using the traditional manual method and tell the observation results to the driver in order to avoid danger. To address this problem, an automatic object detection system based on convolutional neural network (CNN) is proposed to detect objects ahead in shunting mode, which is called Feature Fusion Refine neural network (FR-Net). It consists of three connected modules, i.e., the depthwise-pointwise convolution, the coarse detection module, and the object detection module. Depth-wise-pointwise convolutions are used to improve the detection in real time. The coarse detection module coarsely refine the locations and sizes of prior anchors to provide better initialization for the subsequent module and also reduces search space for the classification, whereas the object detection module aims to regress accurate object locations and predict the class labels for the prior anchors. The experimental results on the railway traffic dataset show that FR-Net achieves 0.8953 mAP with 72.3 FPS performance on a machine with a GeForce GTX1080Ti with the input size of 320 × 320 pixels. The results imply that FR-Net takes a good tradeoff both on effectiveness and real time performance. The proposed method can meet the needs of practical application in shunting mode.

  10. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  11. An adaptive displacement estimation algorithm for improved reconstruction of thermal strain.

    PubMed

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M; Tillman, Bryan; Leers, Steven A; Kim, Kang

    2015-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.

  12. An Adaptive Displacement Estimation Algorithm for Improved Reconstruction of Thermal Strain

    PubMed Central

    Ding, Xuan; Dutta, Debaditya; Mahmoud, Ahmed M.; Tillman, Bryan; Leers, Steven A.; Kim, Kang

    2014-01-01

    Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas’ estimator and time-shift estimators like normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas’ estimator is limited by phase-wrapping and NXcorr performs poorly when the signal-to-noise ratio (SNR) is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas’ estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex-vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas’ estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas’ estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI using Field II showed that the adaptive displacement estimator was less biased than either Loupas’ estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7–350% and the spatial accuracy by 1.2–23.0% (p < 0.001). An ex-vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and results in improved strain reconstruction. PMID:25585398

  13. Effects of Estimation Bias on Multiple-Category Classification with an IRT-Based Adaptive Classification Procedure

    ERIC Educational Resources Information Center

    Yang, Xiangdong; Poggio, John C.; Glasnapp, Douglas R.

    2006-01-01

    The effects of five ability estimators, that is, maximum likelihood estimator, weighted likelihood estimator, maximum a posteriori, expected a posteriori, and Owen's sequential estimator, on the performances of the item response theory-based adaptive classification procedure on multiple categories were studied via simulations. The following…

  14. Empirical Estimation of Climate Impacts Under Adaptation

    NASA Astrophysics Data System (ADS)

    Rising, J. A.; Jina, A.; Hsiang, S. M.

    2016-12-01

    Estimating the impacts of climate change requires a careful account of both the present levels of adaptation observed in different regions and the adaptive capacity those regions might show under climate change. To date, little empirical evidence on either of these components. We present a general approach for empirically estimating the impacts of climate change under both forms of adaptation, applied to the United States. We draw upon relationships between daily temperatures and impacts on mortality, agriculture, and crime, from the econometric climate impacts literature. These are estimated using year-to-year temperature variation within each location. The degree to which regions are vulnerable to high temperatures varies across the US, with warmer regions generally showing less vulnerability. As climate changes, cooler regions will adopt behaviors from warmer regions, such as greater use of air conditioning, and their impact relationships will change accordingly. The rate at which regions have adapted is estimated from changes in these relationships over recent decades. We use these results to model future changes in each US county. as they are exposed to warmer temperatures and adopt characteristics of currently warmer areas. We do this across a full range of climate and statistical uncertainty. The median degree to which adaptation alleviates impacts varies by sector, with 10% lower rates of temperature-induced crime, 15% lower yield losses to maize, to 80% lower rates of heat-related mortality. However, the uncertainty in adaptive capacity remains greater than these changes. Uncertainty in regional response relationships and the rate of adaptation dominate the uncertainty in our total result. We perform two thought experiments to explore the extreme potential for adaptation in light of this uncertainty. We replace the regional relationships with a uniform approach to complete temperature insensitivity, using the normal estimated rate of adaptation. We also apply instantaneous adaptation in each year to the regional relationship corresponding to each region's new climate. We show that the rate of adaptation is the critical obstacle to further mortality benefits, while the small observed range of regional adaptations is causing the low adaptive benefits in crime.

  15. How Big Is Big Enough? Sample Size Requirements for CAST Item Parameter Estimation

    ERIC Educational Resources Information Center

    Chuah, Siang Chee; Drasgow, Fritz; Luecht, Richard

    2006-01-01

    Adaptive tests offer the advantages of reduced test length and increased accuracy in ability estimation. However, adaptive tests require large pools of precalibrated items. This study looks at the development of an item pool for 1 type of adaptive administration: the computer-adaptive sequential test. An important issue is the sample size required…

  16. Modeling Speed-Accuracy Tradeoff in Adaptive System for Practicing Estimation

    ERIC Educational Resources Information Center

    Nižnan, Juraj

    2015-01-01

    Estimation is useful in situations where an exact answer is not as important as a quick answer that is good enough. A web-based adaptive system for practicing estimates is currently being developed. We propose a simple model for estimating student's latent skill of estimation. This model combines a continuous measure of correctness and response…

  17. An hp-adaptivity and error estimation for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.

    1995-01-01

    This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.

  18. Adaptive torque estimation of robot joint with harmonic drive transmission

    NASA Astrophysics Data System (ADS)

    Shi, Zhiguo; Li, Yuankai; Liu, Guangjun

    2017-11-01

    Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.

  19. Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.

    2002-01-01

    Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.

  20. An adaptive observer for on-line tool wear estimation in turning, Part I: Theory

    NASA Astrophysics Data System (ADS)

    Danai, Kourosh; Ulsoy, A. Galip

    1987-04-01

    On-line sensing of tool wear has been a long-standing goal of the manufacturing engineering community. In the absence of any reliable on-line tool wear sensors, a new model-based approach for tool wear estimation has been proposed. This approach is an adaptive observer, based on force measurement, which uses both parameter and state estimation techniques. The design of the adaptive observer is based upon a dynamic state model of tool wear in turning. This paper (Part I) presents the model, and explains its use as the basis for the adaptive observer design. This model uses flank wear and crater wear as state variables, feed as the input, and the cutting force as the output. The suitability of the model as the basis for adaptive observation is also verified. The implementation of the adaptive observer requires the design of a state observer and a parameter estimator. To obtain the model parameters for tuning the adaptive observer procedures for linearisation of the non-linear model are specified. The implementation of the adaptive observer in turning and experimental results are presented in a companion paper (Part II).

  1. Adaptive estimation of the log fluctuating conductivity from tracer data at the Cape Cod Site

    USGS Publications Warehouse

    Deng, F.W.; Cushman, J.H.; Delleur, J.W.

    1993-01-01

    An adaptive estimation scheme is used to obtain the integral scale and variance of the log-fluctuating conductivity at the Cape Cod site based on the fast Fourier transform/stochastic model of Deng et al. (1993) and a Kalmanlike filter. The filter incorporates prior estimates of the unknown parameters with tracer moment data to adaptively obtain improved estimates as the tracer evolves. The results show that significant improvement in the prior estimates of the conductivity can lead to substantial improvement in the ability to predict plume movement. The structure of the covariance function of the log-fluctuating conductivity can be identified from the robustness of the estimation. Both the longitudinal and transverse spatial moment data are important to the estimation.

  2. Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng

    2015-12-01

    This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.

  3. A reconstruction algorithm for helical CT imaging on PI-planes.

    PubMed

    Liang, Hongzhu; Zhang, Cishen; Yan, Ming

    2006-01-01

    In this paper, a Feldkamp type approximate reconstruction algorithm is presented for helical cone-beam Computed Tomography. To effectively suppress artifacts due to large cone angle scanning, it is proposed to reconstruct the object point-wisely on unique customized tilted PI-planes which are close to the data collecting helices of the corresponding points. Such a reconstruction scheme can considerably suppress the artifacts in the cone-angle scanning. Computer simulations show that the proposed algorithm can provide improved imaging performance compared with the existing approximate cone-beam reconstruction algorithms.

  4. Engineering Design Handbook. Maintainability Engineering Theory and Practice

    DTIC Science & Technology

    1976-01-01

    5—46 5—8.4.1.1 Human Body Measurement ( Anthropometry ) . 5—46 5-8.4.1.2 Man’s Sensory Capability and Psychological Makeup 5-46 5—8.4.1.3...Availability of System With Maintenance Time Ratio 1:4 2-32 2—9 Average and Pointwise Availability 2—34 2—10 Hypothetical...density function ( pdf ) of the normal distribution (Ref. 22, Chapter 10, and Ref. 23, Chapter 1) has the equation where cr is the standard deviation of

  5. Vibration suppression with approximate finite dimensional compensators for distributed systems: Computational methods and experimental results

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.; Wang, Yun

    1994-01-01

    Based on a distributed parameter model for vibrations, an approximate finite dimensional dynamic compensator is designed to suppress vibrations (multiple modes with a broad band of frequencies) of a circular plate with Kelvin-Voigt damping and clamped boundary conditions. The control is realized via piezoceramic patches bonded to the plate and is calculated from information available from several pointwise observed state variables. Examples from computational studies as well as use in laboratory experiments are presented to demonstrate the effectiveness of this design.

  6. The τq-Fourier transform: Covariance and uniqueness

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Nikolaos

    2018-05-01

    We propose an alternative definition for a Tsallis entropy composition-inspired Fourier transform, which we call “τq-Fourier transform”. We comment about the underlying “covariance” on the set of algebraic fields that motivates its introduction. We see that the definition of the τq-Fourier transform is automatically invertible in the proper context. Based on recent results in Fourier analysis, it turns that the τq-Fourier transform is essentially unique under the assumption of the exchange of the point-wise product of functions with their convolution.

  7. Necessary optimality conditions for infinite dimensional state constrained control problems

    NASA Astrophysics Data System (ADS)

    Frankowska, H.; Marchini, E. M.; Mazzola, M.

    2018-06-01

    This paper is concerned with first order necessary optimality conditions for state constrained control problems in separable Banach spaces. Assuming inward pointing conditions on the constraint, we give a simple proof of Pontryagin maximum principle, relying on infinite dimensional neighboring feasible trajectories theorems proved in [20]. Further, we provide sufficient conditions guaranteeing normality of the maximum principle. We work in the abstract semigroup setting, but nevertheless we apply our results to several concrete models involving controlled PDEs. Pointwise state constraints (as positivity of the solutions) are allowed.

  8. Statistical Indexes for Monitoring Item Behavior under Computer Adaptive Testing Environment.

    ERIC Educational Resources Information Center

    Zhu, Renbang; Yu, Feng; Liu, Su

    A computerized adaptive test (CAT) administration usually requires a large supply of items with accurately estimated psychometric properties, such as item response theory (IRT) parameter estimates, to ensure the precision of examinee ability estimation. However, an estimated IRT model of a given item in any given pool does not always correctly…

  9. Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.

    PubMed

    Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu

    2015-08-01

    This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm.

  10. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  11. Adaptive kernel function using line transect sampling

    NASA Astrophysics Data System (ADS)

    Albadareen, Baker; Ismail, Noriszura

    2018-04-01

    The estimation of f(0) is crucial in the line transect method which is used for estimating population abundance in wildlife survey's. The classical kernel estimator of f(0) has a high negative bias. Our study proposes an adaptation in the kernel function which is shown to be more efficient than the usual kernel estimator. A simulation study is adopted to compare the performance of the proposed estimators with the classical kernel estimators.

  12. Application of adaptive cluster sampling to low-density populations of freshwater mussels

    USGS Publications Warehouse

    Smith, D.R.; Villella, R.F.; Lemarie, D.P.

    2003-01-01

    Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research is warranted on application of adaptive cluster sampling to freshwater mussels. However, at this time we do not recommend routine application of adaptive cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective procedure needs to be developed to identify biological populations for which adaptive cluster sampling is appropriate.

  13. Generation of real-time mode high-resolution water vapor fields from GPS observations

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  14. Sequential causal inference: Application to randomized trials of adaptive treatment strategies

    PubMed Central

    Dawson, Ree; Lavori, Philip W.

    2009-01-01

    SUMMARY Clinical trials that randomize subjects to decision algorithms, which adapt treatments over time according to individual response, have gained considerable interest as investigators seek designs that directly inform clinical decision making. We consider designs in which subjects are randomized sequentially at decision points, among adaptive treatment options under evaluation. We present a sequential method to estimate the comparative effects of the randomized adaptive treatments, which are formalized as adaptive treatment strategies. Our causal estimators are derived using Bayesian predictive inference. We use analytical and empirical calculations to compare the predictive estimators to (i) the ‘standard’ approach that allocates the sequentially obtained data to separate strategy-specific groups as would arise from randomizing subjects at baseline; (ii) the semi-parametric approach of marginal mean models that, under appropriate experimental conditions, provides the same sequential estimator of causal differences as the proposed approach. Simulation studies demonstrate that sequential causal inference offers substantial efficiency gains over the standard approach to comparing treatments, because the predictive estimators can take advantage of the monotone structure of shared data among adaptive strategies. We further demonstrate that the semi-parametric asymptotic variances, which are marginal ‘one-step’ estimators, may exhibit significant bias, in contrast to the predictive variances. We show that the conditions under which the sequential method is attractive relative to the other two approaches are those most likely to occur in real studies. PMID:17914714

  15. Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Jun, GaRam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching

    2014-01-01

    The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Centers Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.

  16. Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil

    NASA Technical Reports Server (NTRS)

    Jun, Garam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching

    2014-01-01

    The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Center's Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.

  17. Walking Ahead: The Headed Social Force Model.

    PubMed

    Farina, Francesco; Fontanelli, Daniele; Garulli, Andrea; Giannitrapani, Antonio; Prattichizzo, Domenico

    2017-01-01

    Human motion models are finding an increasing number of novel applications in many different fields, such as building design, computer graphics and robot motion planning. The Social Force Model is one of the most popular alternatives to describe the motion of pedestrians. By resorting to a physical analogy, individuals are assimilated to point-wise particles subject to social forces which drive their dynamics. Such a model implicitly assumes that humans move isotropically. On the contrary, empirical evidence shows that people do have a preferred direction of motion, walking forward most of the time. Lateral motions are observed only in specific circumstances, such as when navigating in overcrowded environments or avoiding unexpected obstacles. In this paper, the Headed Social Force Model is introduced in order to improve the realism of the trajectories generated by the classical Social Force Model. The key feature of the proposed approach is the inclusion of the pedestrians' heading into the dynamic model used to describe the motion of each individual. The force and torque representing the model inputs are computed as suitable functions of the force terms resulting from the traditional Social Force Model. Moreover, a new force contribution is introduced in order to model the behavior of people walking together as a single group. The proposed model features high versatility, being able to reproduce both the unicycle-like trajectories typical of people moving in open spaces and the point-wise motion patterns occurring in high density scenarios. Extensive numerical simulations show an increased regularity of the resulting trajectories and confirm a general improvement of the model realism.

  18. A prospective study of medical students' perspective of teaching-learning media: reiterating the importance of feedback.

    PubMed

    Dhaliwal, Upreet

    2007-11-01

    To enhance successful communication, medical teachers are increasingly using teaching-learning media. To determine medical students' perception of three such media (blackboard, overhead projector, and slides), and to generate recommendations for their optimal use, a prospective questionnaire-based study was carried out among 7th semester medical students of the University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi. Students made a forced choice between: (1) The three media on 8 questions regarding their advantages and disadvantages and (2) four aspects of a lecture (teaching-learning media, topic, teacher and time of day) regarding which made the lecture most engaging. Resulting data was analysed by Chi-square and Fisher's exact tests. Chalk and blackboard was rated as best in allowing interaction and helping recall (p<0.001 each). The overhead projector was best in providing information pointwise (p<0.001; 67 students, 89.3%, considered this an advantage). More subject matter could be covered per lecture (p=0.001; 58 students, 77.3%, considered this a disadvantage). Slides were best in imparting clinical details (p=0.004), but were sleep inducing (p<0.001). The teacher's style of instruction was most important in making the lecture engaging (p<0.001). The teacher's role in the learning process is important. Students enjoy the slow pace and interaction allowed by blackboard, pointwise information presented by the overhead projector, and the clinical details a slide can provide. The results suggest that the lecture could best be a combination of two or more teaching-learning media. Students' interaction should be encouraged whatever the media used.

  19. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  20. Thermal Non-Equilibrium Flows in Three Space Dimensions

    NASA Astrophysics Data System (ADS)

    Zeng, Yanni

    2016-01-01

    We study the equations describing the motion of a thermal non-equilibrium gas in three space dimensions. It is a hyperbolic system of six equations with a relaxation term. The dissipation mechanism induced by the relaxation is weak in the sense that the Shizuta-Kawashima criterion is violated. This implies that a perturbation of a constant equilibrium state consists of two parts: one decays in time while the other stays. In fact, the entropy wave grows weakly along the particle path as the process is irreversible. We study thermal properties related to the well-posedness of the nonlinear system. We also obtain a detailed pointwise estimate on the Green's function for the Cauchy problem when the system is linearized around an equilibrium constant state. The Green's function provides a complete picture of the wave pattern, with an exact and explicit leading term. Comparing with existing results for one dimensional flows, our results reveal a new feature of three dimensional flows: not only does the entropy wave not decay, but the velocity also contains a non-decaying part, strongly coupled with its decaying one. The new feature is supported by the second order approximation via the Chapman-Enskog expansions, which are the Navier-Stokes equations with vanished shear viscosity and heat conductivity.

  1. Evaluation of a pointwise microcirculation assessment method using liquid and multilayered tissue simulating phantoms

    NASA Astrophysics Data System (ADS)

    Fredriksson, Ingemar; Saager, Rolf B.; Durkin, Anthony J.; Strömberg, Tomas

    2017-11-01

    A fiber-optic probe-based instrument, designed for assessment of parameters related to microcirculation, red blood cell tissue fraction (fRBC), oxygen saturation (S), and speed resolved perfusion, has been evaluated using state-of-the-art tissue phantoms. The probe integrates diffuse reflectance spectroscopy (DRS) at two source-detector separations and laser Doppler flowmetry, using an inverse Monte Carlo method for identifying the parameters of a multilayered tissue model. Here, we characterize the accuracy of the DRS aspect of the instrument using (1) liquid blood phantoms containing yeast and (2) epidermis-dermis mimicking solid-layered phantoms fabricated from polydimethylsiloxane, titanium oxide, hemoglobin, and coffee. The root-mean-square (RMS) deviations for fRBC for the two liquid phantoms were 11% and 5.3%, respectively, and 11% for the solid phantoms with highest hemoglobin signatures. The RMS deviation for S was 5.2% and 2.9%, respectively, for the liquid phantoms, and 2.9% for the solid phantoms. RMS deviation for the reduced scattering coefficient (μs‧), for the solid phantoms was 15% (475 to 850 nm). For the liquid phantoms, the RMS deviation in average vessel diameter (D) was 1 μm. In conclusion, the skin microcirculation parameters fRBC and S, as well as, μs‧ and D are estimated with reasonable accuracy.

  2. Phosphor thermometry on a rotating flame holder for combustion applications

    NASA Astrophysics Data System (ADS)

    Xavier, Pradip; Selle, Laurent; Oztarlik, Gorkem; Poinsot, Thierry

    2018-02-01

    This study presents a method to measure wall temperatures of a rotating flame holder, which could be used as a combustion control device. Laser-induced phosphorescence is found to be a reliable technique to gather such experimental data. The paper first investigates how the coating (thickness, emissivity and lifetime) influence the flame stabilization. While the low thermal conductivity of the coating is estimated to induce a temperature difference of only 0.08-0.4 K, the emissivity increases by 40%. Nevertheless, the transient and steady-state flame locations are not affected. Second, because temperature measurements on the rotating cylinder are likely to fail due the long phosphor lifetimes, we modify the classical point-wise arrangement. We propose to illuminate a larger area, and to correct the signal with a distortion function that accounts for the displacement of the target. An analytical distortion function is derived and compared to measured ones. It shows that the range of measurements is limited by the signal extinction and the rapid distortion function decay. A diagram summarizes the range of operating conditions where measurements are valid. Finally, these experimental data are used to validate direct numerical simulations. Cylinder temperature variations within the precision of these measurements are shown not to influence the flame location, but larger deviations highlight different trends for the two asymmetric flame branches.

  3. A frequency-domain estimator for use in adaptive control systems

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter

    1991-01-01

    This paper presents a frequency-domain estimator that can identify both a parametrized nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which we call a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.

  4. Adaptive statistical pattern classifiers for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Gonzalez, R. C.; Pace, M. O.; Raulston, H. S.

    1975-01-01

    A technique for the adaptive estimation of nonstationary statistics necessary for Bayesian classification is developed. The basic approach to the adaptive estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest and (2) a projection of the parameters in time or position. A divergence criterion is developed to monitor algorithm performance. Comparative results of adaptive and nonadaptive classifier tests are presented for simulated four dimensional spectral scan data.

  5. RAD-ADAPT: Software for modelling clonogenic assay data in radiation biology.

    PubMed

    Zhang, Yaping; Hu, Kaiqiang; Beumer, Jan H; Bakkenist, Christopher J; D'Argenio, David Z

    2017-04-01

    We present a comprehensive software program, RAD-ADAPT, for the quantitative analysis of clonogenic assays in radiation biology. Two commonly used models for clonogenic assay analysis, the linear-quadratic model and single-hit multi-target model, are included in the software. RAD-ADAPT uses maximum likelihood estimation method to obtain parameter estimates with the assumption that cell colony count data follow a Poisson distribution. The program has an intuitive interface, generates model prediction plots, tabulates model parameter estimates, and allows automatic statistical comparison of parameters between different groups. The RAD-ADAPT interface is written using the statistical software R and the underlying computations are accomplished by the ADAPT software system for pharmacokinetic/pharmacodynamic systems analysis. The use of RAD-ADAPT is demonstrated using an example that examines the impact of pharmacologic ATM and ATR kinase inhibition on human lung cancer cell line A549 after ionizing radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An Analysis of a Finite Element Method for Convection-Diffusion Problems. Part II. A Posteriori Error Estimates and Adaptivity.

    DTIC Science & Technology

    1983-03-01

    AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for

  7. Adaptive sampling in research on risk-related behaviors.

    PubMed

    Thompson, Steven K; Collins, Linda M

    2002-11-01

    This article introduces adaptive sampling designs to substance use researchers. Adaptive sampling is particularly useful when the population of interest is rare, unevenly distributed, hidden, or hard to reach. Examples of such populations are injection drug users, individuals at high risk for HIV/AIDS, and young adolescents who are nicotine dependent. In conventional sampling, the sampling design is based entirely on a priori information, and is fixed before the study begins. By contrast, in adaptive sampling, the sampling design adapts based on observations made during the survey; for example, drug users may be asked to refer other drug users to the researcher. In the present article several adaptive sampling designs are discussed. Link-tracing designs such as snowball sampling, random walk methods, and network sampling are described, along with adaptive allocation and adaptive cluster sampling. It is stressed that special estimation procedures taking the sampling design into account are needed when adaptive sampling has been used. These procedures yield estimates that are considerably better than conventional estimates. For rare and clustered populations adaptive designs can give substantial gains in efficiency over conventional designs, and for hidden populations link-tracing and other adaptive procedures may provide the only practical way to obtain a sample large enough for the study objectives.

  8. Construction of a Computerized Adaptive Testing Version of the Quebec Adaptive Behavior Scale.

    ERIC Educational Resources Information Center

    Tasse, Marc J.; And Others

    Multilog (Thissen, 1991) was used to estimate parameters of 225 items from the Quebec Adaptive Behavior Scale (QABS). A database containing actual data from 2,439 subjects was used for the parameterization procedures. The two-parameter-logistic model was used in estimating item parameters and in the testing strategy. MicroCAT (Assessment Systems…

  9. Towards an Optimal Noise Versus Resolution Trade-Off in Wind Scatterometry

    NASA Technical Reports Server (NTRS)

    Williams, Brent A.

    2011-01-01

    A scatterometer is a radar that measures the normalized radar cross section sigma(sup 0) of the Earth's surface. Over the ocean this signal is related to the wind via the geophysical model function (GMF). The objective of wind scatterometry is to estimate the wind vector field from sigma(sup 0) measurements; however, there are many subtleties that complicate this problem-making it difficult to obtain a unique wind field estimate. Conventionally, wind estimation is split into two stages: a wind retrieval stage in which several ambiguous solutions are obtained, and an ambiguity removal stage in which ambiguities are chosen to produce an appropriate wind vector field estimate. The most common approach to wind field estimation is to grid the scatterometer swath into wind vector cells and estimate wind vector ambiguities independently for each cell. Then, field wise structure is imposed on the solution by an ambiguity selection routine. Although this approach is simple and practical, it neglects field wise structure in the retrieval step and does not account for the spatial correlation imposed by the sampling. This makes it difficult to develop a theoretically appropriate noise versus resolution trade-off using pointwise retrieval. Fieldwise structure may be imposed in the retrieval step using a model-based approach. However, this approach is generally only practical if a low order wind field model is applied, which may discard more information than is desired. Furthermore, model-based approaches do not account for the structure imposed by the sampling. A more general fieldwise approach is to estimate all the wind vectors for all the WVCs simultaneously from all the measurements. This approach can account for structure of the wind field as well as structure imposed by the sampling in the wind retrieval step. Williams and Long in 2010 developed a fieldwise retrieval method based on maximum a posteriori estimation (MAP). This MAP approach can be extended to perform a noise versus resolution trade-off, and deal with ambiguity selection. This paper extends the fieldwise MAP estimation approach and investigates both the noise versus resolution trade-off as well as ambiguity removal in the fieldwise wind retrieval step. The method is then applied to the Sea Winds scatterometer and the results are analyzed. This paper extends the fieldwise MAP estimation approach and investigates both the noise versus resolution trade-off as well as ambiguity removal in the fieldwise wind retrieval step. The method is then applied to the Sea Winds scatterometer and the results are analyzed.

  10. Multichannel Speech Enhancement Based on Generalized Gamma Prior Distribution with Its Online Adaptive Estimation

    NASA Astrophysics Data System (ADS)

    Dat, Tran Huy; Takeda, Kazuya; Itakura, Fumitada

    We present a multichannel speech enhancement method based on MAP speech spectral magnitude estimation using a generalized gamma model of speech prior distribution, where the model parameters are adapted from actual noisy speech in a frame-by-frame manner. The utilization of a more general prior distribution with its online adaptive estimation is shown to be effective for speech spectral estimation in noisy environments. Furthermore, the multi-channel information in terms of cross-channel statistics are shown to be useful to better adapt the prior distribution parameters to the actual observation, resulting in better performance of speech enhancement algorithm. We tested the proposed algorithm in an in-car speech database and obtained significant improvements of the speech recognition performance, particularly under non-stationary noise conditions such as music, air-conditioner and open window.

  11. Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin

    2016-10-01

    An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.

  12. Estimating the Relevance of World Disturbances to Explain Savings, Interference and Long-Term Motor Adaptation Effects

    PubMed Central

    Berniker, Max; Kording, Konrad P.

    2011-01-01

    Recent studies suggest that motor adaptation is the result of multiple, perhaps linear processes each with distinct time scales. While these models are consistent with some motor phenomena, they can neither explain the relatively fast re-adaptation after a long washout period, nor savings on a subsequent day. Here we examined if these effects can be explained if we assume that the CNS stores and retrieves movement parameters based on their possible relevance. We formalize this idea with a model that infers not only the sources of potential motor errors, but also their relevance to the current motor circumstances. In our model adaptation is the process of re-estimating parameters that represent the body and the world. The likelihood of a world parameter being relevant is then based on the mismatch between an observed movement and that predicted when not compensating for the estimated world disturbance. As such, adapting to large motor errors in a laboratory setting should alert subjects that disturbances are being imposed on them, even after motor performance has returned to baseline. Estimates of this external disturbance should be relevant both now and in future laboratory settings. Estimated properties of our bodies on the other hand should always be relevant. Our model demonstrates savings, interference, spontaneous rebound and differences between adaptation to sudden and gradual disturbances. We suggest that many issues concerning savings and interference can be understood when adaptation is conditioned on the relevance of parameters. PMID:21998574

  13. Low-drag events in transitional wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.

    2017-03-01

    Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.

  14. Revisiting and Extending Interface Penalties for Multi-Domain Summation-by-Parts Operators

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Nordstrom, Jan; Gottlieb, David

    2007-01-01

    General interface coupling conditions are presented for multi-domain collocation methods, which satisfy the summation-by-parts (SBP) spatial discretization convention. The combined interior/interface operators are proven to be L2 stable, pointwise stable, and conservative, while maintaining the underlying accuracy of the interior SBP operator. The new interface conditions resemble (and were motivated by) those used in the discontinuous Galerkin finite element community, and maintain many of the same properties. Extensive validation studies are presented using two classes of high-order SBP operators: 1) central finite difference, and 2) Legendre spectral collocation.

  15. Semismooth Newton method for gradient constrained minimization problem

    NASA Astrophysics Data System (ADS)

    Anyyeva, Serbiniyaz; Kunisch, Karl

    2012-08-01

    In this paper we treat a gradient constrained minimization problem, particular case of which is the elasto-plastic torsion problem. In order to get the numerical approximation to the solution we have developed an algorithm in an infinite dimensional space framework using the concept of the generalized (Newton) differentiation. Regularization was done in order to approximate the problem with the unconstrained minimization problem and to make the pointwise maximum function Newton differentiable. Using semismooth Newton method, continuation method was developed in function space. For the numerical implementation the variational equations at Newton steps are discretized using finite elements method.

  16. A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems

    NASA Astrophysics Data System (ADS)

    Dölz, Jürgen; Harbrecht, Helmut; Kurz, Stefan; Schöps, Sebastian; Wolf, Felix

    2018-03-01

    We present an indirect higher order boundary element method utilising NURBS mappings for exact geometry representation and an interpolation-based fast multipole method for compression and reduction of computational complexity, to counteract the problems arising due to the dense matrices produced by boundary element methods. By solving Laplace and Helmholtz problems via a single layer approach we show, through a series of numerical examples suitable for easy comparison with other numerical schemes, that one can indeed achieve extremely high rates of convergence of the pointwise potential through the utilisation of higher order B-spline-based ansatz functions.

  17. An iterative solver for the 3D Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir

    2017-09-01

    We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.

  18. Multi-scale kinetic description of granular clusters: invariance, balance, and temperature

    NASA Astrophysics Data System (ADS)

    Capriz, Gianfranco; Mariano, Paolo Maria

    2017-12-01

    We discuss a multi-scale continuum representation of bodies made of several mass particles flowing independently each other. From an invariance procedure and a nonstandard balance of inertial actions, we derive the balance equations introduced in earlier work directly in pointwise form, essentially on the basis of physical plausibility. In this way, we analyze their foundations. Then, we propose a Boltzmann-type equation for the distribution of kinetic energies within control volumes in space and indicate how such a distribution allows us to propose a definition of (granular) temperature along processes far from equilibrium.

  19. Accounting for adaptation and intensity in projecting heat wave-related mortality.

    PubMed

    Wang, Yan; Nordio, Francesco; Nairn, John; Zanobetti, Antonella; Schwartz, Joel D

    2018-02-01

    How adaptation and intensity of heat waves affect heat wave-related mortality is unclear, making health projections difficult. We estimated the effect of heat waves, the effect of the intensity of heat waves, and adaptation on mortality in 209 U.S. cities with 168 million people during 1962-2006. We improved the standard time-series models by incorporating the intensity of heat waves using excess heat factor (EHF) and estimating adaptation empirically using interactions with yearly mean summer temperature (MST). We combined the epidemiological estimates for heat wave, intensity, and adaptation with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset to project heat wave-related mortality by 2050. The effect of heat waves increased with its intensity. Adaptation to heat waves occurred, which was shown by the decreasing effect of heat waves with MST. However, adaptation was lessened as MST increased. Ignoring adaptation in projections would result in a substantial overestimate of the projected heat wave-related mortality (by 277-747% in 2050). Incorporating the empirically estimated adaptation into projections would result in little change in the projected heat wave-related mortality between 2006 and 2050. This differs regionally, however, with increasing mortality over time for cities in the southern and western U.S. but decreasing mortality over time for the north. Accounting for adaptation is important to reduce bias in the projections of heat wave-related mortality. The finding that the southern and western U.S. are the areas that face increasing heat-related deaths is novel, and indicates that more regional adaptation strategies are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Adaptive estimation of nonlinear parameters of a nonholonomic spherical robot using a modified fuzzy-based speed gradient algorithm

    NASA Astrophysics Data System (ADS)

    Roozegar, Mehdi; Mahjoob, Mohammad J.; Ayati, Moosa

    2017-05-01

    This paper deals with adaptive estimation of the unknown parameters and states of a pendulum-driven spherical robot (PDSR), which is a nonlinear in parameters (NLP) chaotic system with parametric uncertainties. Firstly, the mathematical model of the robot is deduced by applying the Newton-Euler methodology for a system of rigid bodies. Then, based on the speed gradient (SG) algorithm, the states and unknown parameters of the robot are estimated online for different step length gains and initial conditions. The estimated parameters are updated adaptively according to the error between estimated and true state values. Since the errors of the estimated states and parameters as well as the convergence rates depend significantly on the value of step length gain, this gain should be chosen optimally. Hence, a heuristic fuzzy logic controller is employed to adjust the gain adaptively. Simulation results indicate that the proposed approach is highly encouraging for identification of this NLP chaotic system even if the initial conditions change and the uncertainties increase; therefore, it is reliable to be implemented on a real robot.

  1. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820

  2. Gain-adaptive vector quantization for medium-rate speech coding

    NASA Technical Reports Server (NTRS)

    Chen, J.-H.; Gersho, A.

    1985-01-01

    A class of adaptive vector quantizers (VQs) that can dynamically adjust the 'gain' of codevectors according to the input signal level is introduced. The encoder uses a gain estimator to determine a suitable normalization of each input vector prior to VQ coding. The normalized vectors have reduced dynamic range and can then be more efficiently coded. At the receiver, the VQ decoder output is multiplied by the estimated gain. Both forward and backward adaptation are considered and several different gain estimators are compared and evaluated. An approach to optimizing the design of gain estimators is introduced. Some of the more obvious techniques for achieving gain adaptation are substantially less effective than the use of optimized gain estimators. A novel design technique that is needed to generate the appropriate gain-normalized codebook for the vector quantizer is introduced. Experimental results show that a significant gain in segmental SNR can be obtained over nonadaptive VQ with a negligible increase in complexity.

  3. Entropy-based adaptive attitude estimation

    NASA Astrophysics Data System (ADS)

    Kiani, Maryam; Barzegar, Aylin; Pourtakdoust, Seid H.

    2018-03-01

    Gaussian approximation filters have increasingly been developed to enhance the accuracy of attitude estimation in space missions. The effective employment of these algorithms demands accurate knowledge of system dynamics and measurement models, as well as their noise characteristics, which are usually unavailable or unreliable. An innovation-based adaptive filtering approach has been adopted as a solution to this problem; however, it exhibits two major challenges, namely appropriate window size selection and guaranteed assurance of positive definiteness for the estimated noise covariance matrices. The current work presents two novel techniques based on relative entropy and confidence level concepts in order to address the abovementioned drawbacks. The proposed adaptation techniques are applied to two nonlinear state estimation algorithms of the extended Kalman filter and cubature Kalman filter for attitude estimation of a low earth orbit satellite equipped with three-axis magnetometers and Sun sensors. The effectiveness of the proposed adaptation scheme is demonstrated by means of comprehensive sensitivity analysis on the system and environmental parameters by using extensive independent Monte Carlo simulations.

  4. Mitigation, adaptation, and climate change: results from recent research on US timber markets.

    Treesearch

    Brent Sohngen; Ralph Alig

    2000-01-01

    This paper reviews recent studies that have addressed how US timber markets may adapt to climate change, and how US forests could be used to mitigate potential climate change. The studies are discussed in light of the ecological and economic assumptions used to estimate adaptation. Estimates of both economic impacts and carbon sequestration costs depend heavily on the...

  5. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations

    NASA Astrophysics Data System (ADS)

    Loseille, A.; Dervieux, A.; Alauzet, F.

    2010-04-01

    This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.

  6. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates

    NASA Astrophysics Data System (ADS)

    Huang, Weizhang; Kamenski, Lennard; Lang, Jens

    2010-03-01

    A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.

  7. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  8. Adjoint-Based Mesh Adaptation for the Sonic Boom Signature Loudness

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.; Park, Michael A.

    2017-01-01

    The mesh adaptation functionality of FUN3D is utilized to obtain a mesh optimized to calculate sonic boom ground signature loudness. During this process, the coupling between the discrete-adjoints of the computational fluid dynamics tool FUN3D and the atmospheric propagation tool sBOOM is exploited to form the error estimate. This new mesh adaptation methodology will allow generation of suitable meshes adapted to reduce the estimated errors in the ground loudness, which is an optimization metric employed in supersonic aircraft design. This new output-based adaptation could allow new insights into meshing for sonic boom analysis and design, and complements existing output-based adaptation techniques such as adaptation to reduce estimated errors in off-body pressure functional. This effort could also have implications for other coupled multidisciplinary adjoint capabilities (e.g., aeroelasticity) as well as inclusion of propagation specific parameters such as prevailing winds or non-standard atmospheric conditions. Results are discussed in the context of existing methods and appropriate conclusions are drawn as to the efficacy and efficiency of the developed capability.

  9. Simple robust control laws for robot manipulators. Part 2: Adaptive case

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Wen, J. T.

    1987-01-01

    A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations.

  10. Adaptive Environmental Source Localization and Tracking with Unknown Permittivity and Path Loss Coefficients †

    PubMed Central

    Fidan, Barış; Umay, Ilknur

    2015-01-01

    Accurate signal-source and signal-reflector target localization tasks via mobile sensory units and wireless sensor networks (WSNs), including those for environmental monitoring via sensory UAVs, require precise knowledge of specific signal propagation properties of the environment, which are permittivity and path loss coefficients for the electromagnetic signal case. Thus, accurate estimation of these coefficients has significant importance for the accuracy of location estimates. In this paper, we propose a geometric cooperative technique to instantaneously estimate such coefficients, with details provided for received signal strength (RSS) and time-of-flight (TOF)-based range sensors. The proposed technique is integrated to a recursive least squares (RLS)-based adaptive localization scheme and an adaptive motion control law, to construct adaptive target localization and adaptive target tracking algorithms, respectively, that are robust to uncertainties in aforementioned environmental signal propagation coefficients. The efficiency of the proposed adaptive localization and tracking techniques are both mathematically analysed and verified via simulation experiments. PMID:26690441

  11. Introduction to State Estimation of High-Rate System Dynamics.

    PubMed

    Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan

    2018-01-13

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.

  12. Distributed estimation for adaptive sensor selection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  13. Light-based Modeling and Control of Circadian Rhythm

    DTIC Science & Technology

    2016-08-29

    the foundation of the full research. 1. Circadian phase estimation and control: Demonstrate the applicability of the adaptive notch filter (ANF) to...the adaptive notch filter (ANF) to extract circadian phase from noisy Drosophila locomotive activity measurements and the efficacy of using the ANF...full research. 1. Circadian phase estimation and control: Demonstrate the applicability of the adaptive notch filter (ANF) to extract circadian

  14. Application of Avco data analysis and prediction techniques (ADAPT) to prediction of sunspot activity

    NASA Technical Reports Server (NTRS)

    Hunter, H. E.; Amato, R. A.

    1972-01-01

    The results are presented of the application of Avco Data Analysis and Prediction Techniques (ADAPT) to derivation of new algorithms for the prediction of future sunspot activity. The ADAPT derived algorithms show a factor of 2 to 3 reduction in the expected 2-sigma errors in the estimates of the 81-day running average of the Zurich sunspot numbers. The report presents: (1) the best estimates for sunspot cycles 20 and 21, (2) a comparison of the ADAPT performance with conventional techniques, and (3) specific approaches to further reduction in the errors of estimated sunspot activity and to recovery of earlier sunspot historical data. The ADAPT programs are used both to derive regression algorithm for prediction of the entire 11-year sunspot cycle from the preceding two cycles and to derive extrapolation algorithms for extrapolating a given sunspot cycle based on any available portion of the cycle.

  15. Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers.

    PubMed

    Spagnolo, Daniel M; Gyanchandani, Rekha; Al-Kofahi, Yousef; Stern, Andrew M; Lezon, Timothy R; Gough, Albert; Meyer, Dan E; Ginty, Fiona; Sarachan, Brion; Fine, Jeffrey; Lee, Adrian V; Taylor, D Lansing; Chennubhotla, S Chakra

    2016-01-01

    Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME) are key contributors to heterogeneity. We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI) and visually represent heterogeneity with a two-dimensional map. We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI), which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different components within the TME. We hypothesize that PMI will uncover key spatial interactions in the TME that contribute to disease proliferation and progression.

  16. Preictal dynamics of EEG complexity in intracranially recorded epileptic seizure: a case report.

    PubMed

    Bob, Petr; Roman, Robert; Svetlak, Miroslav; Kukleta, Miloslav; Chladek, Jan; Brazdil, Milan

    2014-11-01

    Recent findings suggest that neural complexity reflecting a number of independent processes in the brain may characterize typical changes during epileptic seizures and may enable to describe preictal dynamics. With respect to previously reported findings suggesting specific changes in neural complexity during preictal period, we have used measure of pointwise correlation dimension (PD2) as a sensitive indicator of nonstationary changes in complexity of the electroencephalogram (EEG) signal. Although this measure of complexity in epileptic patients was previously reported by Feucht et al (Applications of correlation dimension and pointwise dimension for non-linear topographical analysis of focal onset seizures. Med Biol Comput. 1999;37:208-217), it was not used to study changes in preictal dynamics. With this aim to study preictal changes of EEG complexity, we have examined signals from 11 multicontact depth (intracerebral) EEG electrodes located in 108 cortical and subcortical brain sites, and from 3 scalp EEG electrodes in a patient with intractable epilepsy, who underwent preoperative evaluation before epilepsy surgery. From those 108 EEG contacts, records related to 44 electrode contacts implanted into lesional structures and white matter were not included into the experimental analysis.The results show that in comparison to interictal period (at about 8-6 minutes before seizure onset), there was a statistically significant decrease in PD2 complexity in the preictal period at about 2 minutes before seizure onset in all 64 intracranial channels localized in various brain sites that were included into the analysis and in 3 scalp EEG channels as well. Presented results suggest that using PD2 in EEG analysis may have significant implications for research of preictal dynamics and prediction of epileptic seizures.

  17. Frequency doubling technology perimetry for detection of visual field progression in glaucoma: a pointwise linear regression analysis.

    PubMed

    Liu, Shu; Yu, Marco; Weinreb, Robert N; Lai, Gilda; Lam, Dennis Shun-Chiu; Leung, Christopher Kai-Shun

    2014-05-02

    We compared the detection of visual field progression and its rate of change between standard automated perimetry (SAP) and Matrix frequency doubling technology perimetry (FDTP) in glaucoma. We followed prospectively 217 eyes (179 glaucoma and 38 normal eyes) for SAP and FDTP testing at 4-month intervals for ≥36 months. Pointwise linear regression analysis was performed. A test location was considered progressing when the rate of change of visual sensitivity was ≤-1 dB/y for nonedge and ≤-2 dB/y for edge locations. Three criteria were used to define progression in an eye: ≥3 adjacent nonedge test locations (conservative), any three locations (moderate), and any two locations (liberal) progressed. The rate of change of visual sensitivity was calculated with linear mixed models. Of the 217 eyes, 6.1% and 3.9% progressed with the conservative criteria, 14.5% and 5.6% of eyes progressed with the moderate criteria, and 20.1% and 11.7% of eyes progressed with the liberal criteria by FDTP and SAP, respectively. Taking all test locations into consideration (total, 54 × 179 locations), FDTP detected more progressing locations (176) than SAP (103, P < 0.001). The rate of change of visual field mean deviation (MD) was significantly faster for FDTP (all with P < 0.001). No eyes showed progression in the normal group using the conservative and the moderate criteria. With a faster rate of change of visual sensitivity, FDTP detected more progressing eyes than SAP at a comparable level of specificity. Frequency doubling technology perimetry can provide a useful alternative to monitor glaucoma progression.

  18. A Simple Method for Deriving the Confidence Regions for the Penalized Cox’s Model via the Minimand Perturbation†

    PubMed Central

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox’s proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer. PMID:29326496

  19. A Simple Method for Deriving the Confidence Regions for the Penalized Cox's Model via the Minimand Perturbation.

    PubMed

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox's proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer.

  20. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction

    PubMed Central

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-01-01

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions. PMID:27754469

  1. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction.

    PubMed

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-10-16

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions.

  2. Decentralized Adaptive Control of Systems with Uncertain Interconnections, Plant-Model Mismatch and Actuator Failures

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.

  3. Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.

    PubMed

    Wu, Dongjin; Xia, Linyuan; Geng, Jijun

    2018-06-19

    Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.

  4. Methodologies for Adaptive Flight Envelope Estimation and Protection

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine

    2009-01-01

    This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.

  5. Pitch-Learning Algorithm For Speech Encoders

    NASA Technical Reports Server (NTRS)

    Bhaskar, B. R. Udaya

    1988-01-01

    Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.

  6. Adaptive Disturbance Tracking Theory with State Estimation and State Feedback for Region II Control of Large Wind Turbines

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.

    2013-01-01

    A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.

  7. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  8. Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression

    PubMed Central

    Hu, Rongrong; Wang, Chenkun; Gu, Yangshun; Racette, Lyne

    2016-01-01

    Abstract Detection of progression is paramount to the clinical management of glaucoma. Our goal is to compare the performance of standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology (FDT) perimetry in monitoring glaucoma progression. Longitudinal data of paired SAP, SWAP, and FDT from 113 eyes with primary open-angle glaucoma enrolled in the Diagnostic Innovations in Glaucoma Study or the African Descent and Glaucoma Evaluation Study were included. Data from all tests were expressed in comparable units by converting the sensitivity from decibels to unitless contrast sensitivity and by expressing sensitivity values in percent of mean normal based on an independent dataset of 207 healthy eyes with aging deterioration taken into consideration. Pointwise linear regression analysis was performed and 3 criteria (conservative, moderate, and liberal) were used to define progression and improvement. Global mean sensitivity (MS) was fitted with linear mixed models. No statistically significant difference in the proportion of progressing and improving eyes was observed across tests using the conservative criterion. Fewer eyes showed improvement on SAP compared to SWAP and FDT using the moderate criterion; and FDT detected less progressing eyes than SAP and SWAP using the liberal criterion. The agreement between these test types was poor. The linear mixed model showed a progressing trend of global MS overtime for SAP and SWAP, but not for FDT. The baseline estimate of SWAP MS was significantly lower than SAP MS by 21.59% of mean normal. FDT showed comparable estimation of baseline MS with SAP. SWAP and FDT do not appear to have significant benefits over SAP in monitoring glaucoma progression. SAP, SWAP, and FDT may, however, detect progression in different glaucoma eyes. PMID:26886602

  9. 2-D left ventricular flow estimation by combining speckle tracking with Navier-Stokes-based regularization: an in silico, in vitro and in vivo study.

    PubMed

    Gao, Hang; Bijnens, Nathalie; Coisne, Damien; Lugiez, Mathieu; Rutten, Marcel; D'hooge, Jan

    2015-01-01

    Despite the availability of multiple ultrasound approaches to left ventricular (LV) flow characterization in two dimensions, this technique remains in its childhood and further developments seem warranted. This article describes a new methodology for tracking the 2-D LV flow field based on ultrasound data. Hereto, a standard speckle tracking algorithm was modified by using a dynamic kernel embedding Navier-Stokes-based regularization in an iterative manner. The performance of the proposed approach was first quantified in synthetic ultrasound data based on a computational fluid dynamics model of LV flow. Next, an experimental flow phantom setup mimicking the normal human heart was used for experimental validation by employing simultaneous optical particle image velocimetry as a standard reference technique. Finally, the applicability of the approach was tested in a clinical setting. On the basis of the simulated data, pointwise evaluation of the estimated velocity vectors correlated well (mean r = 0.84) with the computational fluid dynamics measurement. During the filling period of the left ventricle, the properties of the main vortex obtained from the proposed method were also measured, and their correlations with the reference measurement were also calculated (radius, r = 0.96; circulation, r = 0.85; weighted center, r = 0.81). In vitro results at 60 bpm during one cardiac cycle confirmed that the algorithm properly measures typical characteristics of the vortex (radius, r = 0.60; circulation, r = 0.81; weighted center, r = 0.92). Preliminary qualitative results on clinical data revealed physiologic flow fields. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation.

    PubMed

    Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan

    2017-09-05

    The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes.

  11. An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation

    PubMed Central

    Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan

    2017-01-01

    The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes. PMID:28872629

  12. A new adaptive algorithm for automated feature extraction in exponentially damped signals for health monitoring of smart structures

    NASA Astrophysics Data System (ADS)

    Qarib, Hossein; Adeli, Hojjat

    2015-12-01

    In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.

  13. An a-posteriori finite element error estimator for adaptive grid computation of viscous incompressible flows

    NASA Astrophysics Data System (ADS)

    Wu, Heng

    2000-10-01

    In this thesis, an a-posteriori error estimator is presented and employed for solving viscous incompressible flow problems. In an effort to detect local flow features, such as vortices and separation, and to resolve flow details precisely, a velocity angle error estimator e theta which is based on the spatial derivative of velocity direction fields is designed and constructed. The a-posteriori error estimator corresponds to the antisymmetric part of the deformation-rate-tensor, and it is sensitive to the second derivative of the velocity angle field. Rationality discussions reveal that the velocity angle error estimator is a curvature error estimator, and its value reflects the accuracy of streamline curves. It is also found that the velocity angle error estimator contains the nonlinear convective term of the Navier-Stokes equations, and it identifies and computes the direction difference when the convective acceleration direction and the flow velocity direction have a disparity. Through benchmarking computed variables with the analytic solution of Kovasznay flow or the finest grid of cavity flow, it is demonstrated that the velocity angle error estimator has a better performance than the strain error estimator. The benchmarking work also shows that the computed profile obtained by using etheta can achieve the best matching outcome with the true theta field, and that it is asymptotic to the true theta variation field, with a promise of fewer unknowns. Unstructured grids are adapted by employing local cell division as well as unrefinement of transition cells. Using element class and node class can efficiently construct a hierarchical data structure which provides cell and node inter-reference at each adaptive level. Employing element pointers and node pointers can dynamically maintain the connection of adjacent elements and adjacent nodes, and thus avoids time-consuming search processes. The adaptive scheme is applied to viscous incompressible flow at different Reynolds numbers. It is found that the velocity angle error estimator can detect most flow characteristics and produce dense grids in the regions where flow velocity directions have abrupt changes. In addition, the e theta estimator makes the derivative error dilutely distribute in the whole computational domain and also allows the refinement to be conducted at regions of high error. Through comparison of the velocity angle error across the interface with neighbouring cells, it is verified that the adaptive scheme in using etheta provides an optimum mesh which can clearly resolve local flow features in a precise way. The adaptive results justify the applicability of the etheta estimator and prove that this error estimator is a valuable adaptive indicator for the automatic refinement of unstructured grids.

  14. Introduction to State Estimation of High-Rate System Dynamics

    PubMed Central

    Dodson, Jacob; Joyce, Bryan

    2018-01-01

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer’s convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model. PMID:29342855

  15. About an adaptively weighted Kaplan-Meier estimate.

    PubMed

    Plante, Jean-François

    2009-09-01

    The minimum averaged mean squared error nonparametric adaptive weights use data from m possibly different populations to infer about one population of interest. The definition of these weights is based on the properties of the empirical distribution function. We use the Kaplan-Meier estimate to let the weights accommodate right-censored data and use them to define the weighted Kaplan-Meier estimate. The proposed estimate is smoother than the usual Kaplan-Meier estimate and converges uniformly in probability to the target distribution. Simulations show that the performances of the weighted Kaplan-Meier estimate on finite samples exceed that of the usual Kaplan-Meier estimate. A case study is also presented.

  16. Reduced rank regression via adaptive nuclear norm penalization

    PubMed Central

    Chen, Kun; Dong, Hongbo; Chan, Kung-Sik

    2014-01-01

    Summary We propose an adaptive nuclear norm penalization approach for low-rank matrix approximation, and use it to develop a new reduced rank estimation method for high-dimensional multivariate regression. The adaptive nuclear norm is defined as the weighted sum of the singular values of the matrix, and it is generally non-convex under the natural restriction that the weight decreases with the singular value. However, we show that the proposed non-convex penalized regression method has a global optimal solution obtained from an adaptively soft-thresholded singular value decomposition. The method is computationally efficient, and the resulting solution path is continuous. The rank consistency of and prediction/estimation performance bounds for the estimator are established for a high-dimensional asymptotic regime. Simulation studies and an application in genetics demonstrate its efficacy. PMID:25045172

  17. On Using Exponential Parameter Estimators with an Adaptive Controller

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  18. Modeling, Control, and Estimation of Flexible, Aerodynamic Structures

    NASA Astrophysics Data System (ADS)

    Ray, Cody W.

    Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.

  19. The use of perturbed physics ensembles and emulation in palaeoclimate reconstruction (Invited)

    NASA Astrophysics Data System (ADS)

    Edwards, T. L.; Rougier, J.; Collins, M.

    2010-12-01

    Climate is a coherent process, with correlations and dependencies across space, time, and climate variables. However, reconstructions of palaeoclimate traditionally consider individual pieces of information independently, rather than making use of this covariance structure. Such reconstructions are at risk of being unphysical or at least implausible. Climate simulators such as General Circulation Models (GCMs), on the other hand, contain climate system theory in the form of dynamical equations describing physical processes, but are imperfect and computationally expensive. These two datasets - pointwise palaeoclimate reconstructions and climate simulator evaluations - contain complementary information, and a statistical synthesis can produce a palaeoclimate reconstruction that combines them while not ignoring their limitations. We use an ensemble of simulators with perturbed parameterisations, to capture the uncertainty about the simulator variant, and our method also accounts for structural uncertainty. The resulting reconstruction contains a full expression of climate uncertainty, not just pointwise but also jointly over locations. Such joint information is crucial in determining spatially extensive features such as isotherms, or the location of the tree-line. A second outcome of the statistical analysis is a refined distribution for the simulator parameters. In this way, information from palaeoclimate observations can be used directly in quantifying uncertainty in future climate projections. The main challenge is the expense of running a large scale climate simulator: each evaluation of an atmosphere-ocean GCM takes several months of computing time. The solution is to interpret the ensemble of evaluations within an 'emulator', which is a statistical model of the simulator. This technique has been used fruitfully in the statistical field of Computer Models for two decades, and has recently been applied in estimating uncertainty in future climate predictions in the UKCP09 (http://ukclimateprojections.defra.gov.uk). But only in the last couple of years has it developed to the point where it can be applied to large-scale spatial fields. We construct an emulator for the mid-Holocene (6000 calendar years BP) temperature anomaly over North America, at the resolution of our simulator (2.5° latitude by 3.75° longitude). This allows us to explore the behaviour of simulator variants that we could not afford to evaluate directly. We introduce the technique of 'co-emulation' of two versions of the climate simulator: the coupled atmosphere-ocean model HadCM3, and an equivalent with a simplified ocean, HadSM3. Running two different versions of a simulator is a powerful tool for increasing the information yield from a fixed budget of computer time, but the results must be combined statistically to account for the reduced fidelity of the quicker version. Emulators provide the appropriate framework.

  20. Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications

    PubMed Central

    Huang, Jian; Zhang, Cun-Hui

    2013-01-01

    The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted ℓ1-penalized estimator in sparse, high-dimensional settings where the number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as a special case. A multistage method is developed to approximate concave regularized estimation by applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound for the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results. PMID:24348100

  1. An adaptive state of charge estimation approach for lithium-ion series-connected battery system

    NASA Astrophysics Data System (ADS)

    Peng, Simin; Zhu, Xuelai; Xing, Yinjiao; Shi, Hongbing; Cai, Xu; Pecht, Michael

    2018-07-01

    Due to the incorrect or unknown noise statistics of a battery system and its cell-to-cell variations, state of charge (SOC) estimation of a lithium-ion series-connected battery system is usually inaccurate or even divergent using model-based methods, such as extended Kalman filter (EKF) and unscented Kalman filter (UKF). To resolve this problem, an adaptive unscented Kalman filter (AUKF) based on a noise statistics estimator and a model parameter regulator is developed to accurately estimate the SOC of a series-connected battery system. An equivalent circuit model is first built based on the model parameter regulator that illustrates the influence of cell-to-cell variation on the battery system. A noise statistics estimator is then used to attain adaptively the estimated noise statistics for the AUKF when its prior noise statistics are not accurate or exactly Gaussian. The accuracy and effectiveness of the SOC estimation method is validated by comparing the developed AUKF and UKF when model and measurement statistics noises are inaccurate, respectively. Compared with the UKF and EKF, the developed method shows the highest SOC estimation accuracy.

  2. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    PubMed

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-07-16

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.

  3. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  4. Point-Wise Phase Matching for Nonlinear Frequency Generation in Dielectric Resonators

    NASA Technical Reports Server (NTRS)

    Yu, Nan (Inventor); Strekalov, Dmitry V. (Inventor); Lin, Guoping (Inventor)

    2016-01-01

    An optical resonator fabricated from a uniaxial birefringent crystal, such as beta barium borate. The crystal is cut with the optical axis not perpendicular to a face of the cut crystal. In some cases the optical axis lies in the plane of the cut crystal face. An incident (input) electromagnetic signal (which can range from the infrared through the visible to the ultraviolet) is applied to the resonator. An output signal is recovered which has a frequency that is an integer multiple of the frequency of the input signal. In some cases a prism is used to evanescently couple the input and the output signals to the resonator.

  5. Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso.

    PubMed

    Kong, Shengchun; Nan, Bin

    2014-01-01

    We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses.

  6. Non-Asymptotic Oracle Inequalities for the High-Dimensional Cox Regression via Lasso

    PubMed Central

    Kong, Shengchun; Nan, Bin

    2013-01-01

    We consider finite sample properties of the regularized high-dimensional Cox regression via lasso. Existing literature focuses on linear models or generalized linear models with Lipschitz loss functions, where the empirical risk functions are the summations of independent and identically distributed (iid) losses. The summands in the negative log partial likelihood function for censored survival data, however, are neither iid nor Lipschitz.We first approximate the negative log partial likelihood function by a sum of iid non-Lipschitz terms, then derive the non-asymptotic oracle inequalities for the lasso penalized Cox regression using pointwise arguments to tackle the difficulties caused by lacking iid Lipschitz losses. PMID:24516328

  7. On character amenability of Banach algebras

    NASA Astrophysics Data System (ADS)

    Kaniuth, E.; Lau, A. T.; Pym, J.

    2008-08-01

    We continue our work [E. Kaniuth, A.T. Lau, J. Pym, On [phi]-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008) 85-96] in the study of amenability of a Banach algebra A defined with respect to a character [phi] of A. Various necessary and sufficient conditions of a global and a pointwise nature are found for a Banach algebra to possess a [phi]-mean of norm 1. We also completely determine the size of the set of [phi]-means for a separable weakly sequentially complete Banach algebra A with no [phi]-mean in A itself. A number of illustrative examples are discussed.

  8. Statistical considerations in the development of injury risk functions.

    PubMed

    McMurry, Timothy L; Poplin, Gerald S

    2015-01-01

    We address 4 frequently misunderstood and important statistical ideas in the construction of injury risk functions. These include the similarities of survival analysis and logistic regression, the correct scale on which to construct pointwise confidence intervals for injury risk, the ability to discern which form of injury risk function is optimal, and the handling of repeated tests on the same subject. The statistical models are explored through simulation and examination of the underlying mathematics. We provide recommendations for the statistically valid construction and correct interpretation of single-predictor injury risk functions. This article aims to provide useful and understandable statistical guidance to improve the practice in constructing injury risk functions.

  9. Clinical value of pointwise encoding time reduction with radial acquisition (PETRA) MR sequence in assessing internal derangement of knee.

    PubMed

    Kim, Sung Kwan; Kim, Donghyun; Lee, Sun Joo; Choo, Hye Jung; Oh, Minkyung; Son, Yohan; Paek, MunYoung

    2018-06-01

    The purpose was to evaluate the clinical value of PETRA sequence for the diagnosis of internal derangement of the knee. The major structures of the knee in 34 patients were evaluated and compared among conventional MRI findings, PETRA images, and arthroscopic findings. The specificities of PETRA with 2D FSE sequence were higher for meniscal lesions than those obtained when using 2D FSE alone. Using PETRA images along with conventional 2D FSE images can increase the accuracy of assessing internal derangements of the knee and, specifically, meniscal lesions. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Density of convex intersections and applications

    PubMed Central

    Rautenberg, C. N.; Rösel, S.

    2017-01-01

    In this paper, we address density properties of intersections of convex sets in several function spaces. Using the concept of Γ-convergence, it is shown in a general framework, how these density issues naturally arise from the regularization, discretization or dualization of constrained optimization problems and from perturbed variational inequalities. A variety of density results (and counterexamples) for pointwise constraints in Sobolev spaces are presented and the corresponding regularity requirements on the upper bound are identified. The results are further discussed in the context of finite-element discretizations of sets associated with convex constraints. Finally, two applications are provided, which include elasto-plasticity and image restoration problems. PMID:28989301

  11. An adaptive technique for estimating the atmospheric density profile during the AE mission

    NASA Technical Reports Server (NTRS)

    Argentiero, P.

    1973-01-01

    A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.

  12. An evaluation of inferential procedures for adaptive clinical trial designs with pre-specified rules for modifying the sample size.

    PubMed

    Levin, Gregory P; Emerson, Sarah C; Emerson, Scott S

    2014-09-01

    Many papers have introduced adaptive clinical trial methods that allow modifications to the sample size based on interim estimates of treatment effect. There has been extensive commentary on type I error control and efficiency considerations, but little research on estimation after an adaptive hypothesis test. We evaluate the reliability and precision of different inferential procedures in the presence of an adaptive design with pre-specified rules for modifying the sampling plan. We extend group sequential orderings of the outcome space based on the stage at stopping, likelihood ratio statistic, and sample mean to the adaptive setting in order to compute median-unbiased point estimates, exact confidence intervals, and P-values uniformly distributed under the null hypothesis. The likelihood ratio ordering is found to average shorter confidence intervals and produce higher probabilities of P-values below important thresholds than alternative approaches. The bias adjusted mean demonstrates the lowest mean squared error among candidate point estimates. A conditional error-based approach in the literature has the benefit of being the only method that accommodates unplanned adaptations. We compare the performance of this and other methods in order to quantify the cost of failing to plan ahead in settings where adaptations could realistically be pre-specified at the design stage. We find the cost to be meaningful for all designs and treatment effects considered, and to be substantial for designs frequently proposed in the literature. © 2014, The International Biometric Society.

  13. RLS Channel Estimation with Adaptive Forgetting Factor for DS-CDMA Frequency-Domain Equalization

    NASA Astrophysics Data System (ADS)

    Kojima, Yohei; Tomeba, Hiromichi; Takeda, Kazuaki; Adachi, Fumiyuki

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can increase the downlink bit error rate (BER) performance of DS-CDMA beyond that possible with conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. Recently, we proposed a pilot-assisted channel estimation (CE) based on the MMSE criterion. Using MMSE-CE, the channel estimation accuracy is almost insensitive to the pilot chip sequence, and a good BER performance is achieved. In this paper, we propose a channel estimation scheme using one-tap recursive least square (RLS) algorithm, where the forgetting factor is adapted to the changing channel condition by the least mean square (LMS)algorithm, for DS-CDMA with FDE. We evaluate the BER performance using RLS-CE with adaptive forgetting factor in a frequency-selective fast Rayleigh fading channel by computer simulation.

  14. Rigorous Statistical Bounds in Uncertainty Quantification for One-Layer Turbulent Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Qi, Di; Majda, Andrew J.

    2018-04-01

    Statistical bounds controlling the total fluctuations in mean and variance about a basic steady-state solution are developed for the truncated barotropic flow over topography. Statistical ensemble prediction is an important topic in weather and climate research. Here, the evolution of an ensemble of trajectories is considered using statistical instability analysis and is compared and contrasted with the classical deterministic instability for the growth of perturbations in one pointwise trajectory. The maximum growth of the total statistics in fluctuations is derived relying on the statistical conservation principle of the pseudo-energy. The saturation bound of the statistical mean fluctuation and variance in the unstable regimes with non-positive-definite pseudo-energy is achieved by linking with a class of stable reference states and minimizing the stable statistical energy. Two cases with dependence on initial statistical uncertainty and on external forcing and dissipation are compared and unified under a consistent statistical stability framework. The flow structures and statistical stability bounds are illustrated and verified by numerical simulations among a wide range of dynamical regimes, where subtle transient statistical instability exists in general with positive short-time exponential growth in the covariance even when the pseudo-energy is positive-definite. Among the various scenarios in this paper, there exist strong forward and backward energy exchanges between different scales which are estimated by the rigorous statistical bounds.

  15. Trends in Extreme Rainfall Frequency in the Contiguous United States: Attribution to Climate Change and Climate Variability Modes

    NASA Astrophysics Data System (ADS)

    Armal, S.; Devineni, N.; Khanbilvardi, R.

    2017-12-01

    This study presents a systematic analysis for identifying and attributing trends in the annual frequency of extreme rainfall events across the contiguous United States to climate change and climate variability modes. A Bayesian multilevel model is developed for 1,244 stations simultaneously to test the null hypothesis of no trend and verify two alternate hypotheses: Trend can be attributed to changes in global surface temperature anomalies, or to a combination of cyclical climate modes with varying quasi-periodicities and global surface temperature anomalies. The Bayesian multilevel model provides the opportunity to pool information across stations and reduce the parameter estimation uncertainty, hence identifying the trends better. The choice of the best alternate hypotheses is made based on Watanabe-Akaike Information Criterion, a Bayesian pointwise predictive accuracy measure. Statistically significant time trends are observed in 742 of the 1,244 stations. Trends in 409 of these stations can be attributed to changes in global surface temperature anomalies. These stations are predominantly found in the Southeast and Northeast climate regions. The trends in 274 of these stations can be attributed to the El Nino Southern Oscillations, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation along with changes in global surface temperature anomalies. These stations are mainly found in the Northwest, West and Southwest climate regions.

  16. Energy balance and mass conservation in reduced order models of fluid flows

    NASA Astrophysics Data System (ADS)

    Mohebujjaman, Muhammad; Rebholz, Leo G.; Xie, Xuping; Iliescu, Traian

    2017-10-01

    In this paper, we investigate theoretically and computationally the conservation properties of reduced order models (ROMs) for fluid flows. Specifically, we investigate whether the ROMs satisfy the same (or similar) energy balance and mass conservation as those satisfied by the Navier-Stokes equations. All of our theoretical findings are illustrated and tested in numerical simulations of a 2D flow past a circular cylinder at a Reynolds number Re = 100. First, we investigate the ROM energy balance. We show that using the snapshot average for the centering trajectory (which is a popular treatment of nonhomogeneous boundary conditions in ROMs) yields an incorrect energy balance. Then, we propose a new approach, in which we replace the snapshot average with the Stokes extension. Theoretically, the Stokes extension produces an accurate energy balance. Numerically, the Stokes extension yields more accurate results than the standard snapshot average, especially for longer time intervals. Our second contribution centers around ROM mass conservation. We consider ROMs created using two types of finite elements: the standard Taylor-Hood (TH) element, which satisfies the mass conservation weakly, and the Scott-Vogelius (SV) element, which satisfies the mass conservation pointwise. Theoretically, the error estimates for the SV-ROM are sharper than those for the TH-ROM. Numerically, the SV-ROM yields significantly more accurate results, especially for coarser meshes and longer time intervals.

  17. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F { X ( t ), t } where F (·,·) is an unknown regression function and X ( t ) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F (·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X ( t ) is a signal from diffusion tensor imaging at position, t , along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online.

  18. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  19. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    PubMed Central

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  20. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-12-19

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.

  1. Adaptive Local Realignment of Protein Sequences.

    PubMed

    DeBlasio, Dan; Kececioglu, John

    2018-06-11

    While mutation rates can vary markedly over the residues of a protein, multiple sequence alignment tools typically use the same values for their scoring-function parameters across a protein's entire length. We present a new approach, called adaptive local realignment, that in contrast automatically adapts to the diversity of mutation rates along protein sequences. This builds upon a recent technique known as parameter advising, which finds global parameter settings for an aligner, to now adaptively find local settings. Our approach in essence identifies local regions with low estimated accuracy, constructs a set of candidate realignments using a carefully-chosen collection of parameter settings, and replaces the region if a realignment has higher estimated accuracy. This new method of local parameter advising, when combined with prior methods for global advising, boosts alignment accuracy as much as 26% over the best default setting on hard-to-align protein benchmarks, and by 6.4% over global advising alone. Adaptive local realignment has been implemented within the Opal aligner using the Facet accuracy estimator.

  2. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  3. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  4. Two-stage sequential sampling: A neighborhood-free adaptive sampling procedure

    USGS Publications Warehouse

    Salehi, M.; Smith, D.R.

    2005-01-01

    Designing an efficient sampling scheme for a rare and clustered population is a challenging area of research. Adaptive cluster sampling, which has been shown to be viable for such a population, is based on sampling a neighborhood of units around a unit that meets a specified condition. However, the edge units produced by sampling neighborhoods have proven to limit the efficiency and applicability of adaptive cluster sampling. We propose a sampling design that is adaptive in the sense that the final sample depends on observed values, but it avoids the use of neighborhoods and the sampling of edge units. Unbiased estimators of population total and its variance are derived using Murthy's estimator. The modified two-stage sampling design is easy to implement and can be applied to a wider range of populations than adaptive cluster sampling. We evaluate the proposed sampling design by simulating sampling of two real biological populations and an artificial population for which the variable of interest took the value either 0 or 1 (e.g., indicating presence and absence of a rare event). We show that the proposed sampling design is more efficient than conventional sampling in nearly all cases. The approach used to derive estimators (Murthy's estimator) opens the door for unbiased estimators to be found for similar sequential sampling designs. ?? 2005 American Statistical Association and the International Biometric Society.

  5. Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation.

    PubMed

    Merfeld, Daniel M

    2003-01-01

    Normally, the nervous system must process ambiguous graviceptor (e.g., otolith) cues to estimate tilt and translation. The neural processes that help perform these estimation processes must adapt upon exposure to weightlessness and readapt upon return to Earth. In this paper we present a review of evidence supporting a new hypothesis that explains some aspects of these adaptive processes. This hypothesis, which we label the rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis, suggests that the neural processes resulting in spaceflight adaptation include deterioration in the ability of the nervous system to use rotational cues to help accurately estimate the relative orientation of gravity ("tilt"). Changes in the ability to estimate gravity then also influence the ability of the nervous system to estimate linear acceleration ("translation"). We explicitly hypothesize that such changes in the ability to estimate "tilt" and "translation" will be measurable upon return to Earth and will, at least partially, explain the disorientation experienced when astronauts return to Earth. In this paper, we present the details and implications of ROTTR, review data related to ROTTR, and discuss the relationship of ROTTR to the influential otolith tilt-translation reinterpretation (OTTR) hypothesis as well as discuss the distinct differences between ROTTR and OTTR.

  6. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong

    2013-09-01

    This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.

  7. Evaluating sampling designs by computer simulation: A case study with the Missouri bladderpod

    USGS Publications Warehouse

    Morrison, L.W.; Smith, D.R.; Young, C.; Nichols, D.W.

    2008-01-01

    To effectively manage rare populations, accurate monitoring data are critical. Yet many monitoring programs are initiated without careful consideration of whether chosen sampling designs will provide accurate estimates of population parameters. Obtaining accurate estimates is especially difficult when natural variability is high, or limited budgets determine that only a small fraction of the population can be sampled. The Missouri bladderpod, Lesquerella filiformis Rollins, is a federally threatened winter annual that has an aggregated distribution pattern and exhibits dramatic interannual population fluctuations. Using the simulation program SAMPLE, we evaluated five candidate sampling designs appropriate for rare populations, based on 4 years of field data: (1) simple random sampling, (2) adaptive simple random sampling, (3) grid-based systematic sampling, (4) adaptive grid-based systematic sampling, and (5) GIS-based adaptive sampling. We compared the designs based on the precision of density estimates for fixed sample size, cost, and distance traveled. Sampling fraction and cost were the most important factors determining precision of density estimates, and relative design performance changed across the range of sampling fractions. Adaptive designs did not provide uniformly more precise estimates than conventional designs, in part because the spatial distribution of L. filiformis was relatively widespread within the study site. Adaptive designs tended to perform better as sampling fraction increased and when sampling costs, particularly distance traveled, were taken into account. The rate that units occupied by L. filiformis were encountered was higher for adaptive than for conventional designs. Overall, grid-based systematic designs were more efficient and practically implemented than the others. ?? 2008 The Society of Population Ecology and Springer.

  8. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  9. Quantifying the effect of autonomous adaptation to global river flood projections: application to future flood risk assessments

    NASA Astrophysics Data System (ADS)

    Kinoshita, Youhei; Tanoue, Masahiro; Watanabe, Satoshi; Hirabayashi, Yukiko

    2018-01-01

    This study represents the first attempt to quantify the effects of autonomous adaptation on the projection of global flood hazards and to assess future flood risk by including this effect. A vulnerability scenario, which varies according to the autonomous adaptation effect for conventional disaster mitigation efforts, was developed based on historical vulnerability values derived from flood damage records and a river inundation simulation. Coupled with general circulation model outputs and future socioeconomic scenarios, potential future flood fatalities and economic loss were estimated. By including the effect of autonomous adaptation, our multimodel ensemble estimates projected a 2.0% decrease in potential flood fatalities and an 821% increase in potential economic losses by 2100 under the highest emission scenario together with a large population increase. Vulnerability changes reduced potential flood consequences by 64%-72% in terms of potential fatalities and 28%-42% in terms of potential economic losses by 2100. Although socioeconomic changes made the greatest contribution to the potential increased consequences of future floods, about a half of the increase of potential economic losses was mitigated by autonomous adaptation. There is a clear and positive relationship between the global temperature increase from the pre-industrial level and the estimated mean potential flood economic loss, while there is a negative relationship with potential fatalities due to the autonomous adaptation effect. A bootstrapping analysis suggests a significant increase in potential flood fatalities (+5.7%) without any adaptation if the temperature increases by 1.5 °C-2.0 °C, whereas the increase in potential economic loss (+0.9%) was not significant. Our method enables the effects of autonomous adaptation and additional adaptation efforts on climate-induced hazards to be distinguished, which would be essential for the accurate estimation of the cost of adaptation to climate change.

  10. Optimization of an on-board imaging system for extremely rapid radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He

    2015-11-15

    Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors aremore » proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration deformation fields was computed. Results: By most global metrics (e.g., mean, median, and maximum pointwise distance), the high-resolution detector had the best performance but the medium-resolution detector was comparable. For all medium- and high-resolution detector registrations, mean error between the realistic and gold standard deformation fields was less than 4 mm. By pointwise metrics (e.g., tracking a small lesion), the high- and medium-resolution detectors performed similarly. For these detectors, the smallest error between the realistic and gold standard registrations was 0.6 mm and the largest error was 3.6 mm. Conclusions: The medium-resolution CT detector was selected as the best for an extremely rapid radiation therapy system. In essentially all test cases, data from this detector produced a significantly better registration than data from the low-resolution detector and a comparable registration to data from the high-resolution detector. The medium-resolution detector provides an appropriate compromise between registration accuracy and system cost.« less

  11. Online vegetation parameter estimation using passive microwave remote sensing observations

    USDA-ARS?s Scientific Manuscript database

    In adaptive system identification the Kalman filter can be used to identify the coefficient of the observation operator of a linear system. Here the ensemble Kalman filter is tested for adaptive online estimation of the vegetation opacity parameter of a radiative transfer model. A state augmentatio...

  12. An Adaptive Model of Student Performance Using Inverse Bayes

    ERIC Educational Resources Information Center

    Lang, Charles

    2014-01-01

    This article proposes a coherent framework for the use of Inverse Bayesian estimation to summarize and make predictions about student behaviour in adaptive educational settings. The Inverse Bayes Filter utilizes Bayes theorem to estimate the relative impact of contextual factors and internal student factors on student performance using time series…

  13. Sampling procedures for inventory of commercial volume tree species in Amazon Forest.

    PubMed

    Netto, Sylvio P; Pelissari, Allan L; Cysneiros, Vinicius C; Bonazza, Marcelo; Sanquetta, Carlos R

    2017-01-01

    The spatial distribution of tropical tree species can affect the consistency of the estimators in commercial forest inventories, therefore, appropriate sampling procedures are required to survey species with different spatial patterns in the Amazon Forest. For this, the present study aims to evaluate the conventional sampling procedures and introduce the adaptive cluster sampling for volumetric inventories of Amazonian tree species, considering the hypotheses that the density, the spatial distribution and the zero-plots affect the consistency of the estimators, and that the adaptive cluster sampling allows to obtain more accurate volumetric estimation. We use data from a census carried out in Jamari National Forest, Brazil, where trees with diameters equal to or higher than 40 cm were measured in 1,355 plots. Species with different spatial patterns were selected and sampled with simple random sampling, systematic sampling, linear cluster sampling and adaptive cluster sampling, whereby the accuracy of the volumetric estimation and presence of zero-plots were evaluated. The sampling procedures applied to species were affected by the low density of trees and the large number of zero-plots, wherein the adaptive clusters allowed concentrating the sampling effort in plots with trees and, thus, agglutinating more representative samples to estimate the commercial volume.

  14. Adaptive enhanced sampling by force-biasing using neural networks

    NASA Astrophysics Data System (ADS)

    Guo, Ashley Z.; Sevgen, Emre; Sidky, Hythem; Whitmer, Jonathan K.; Hubbell, Jeffrey A.; de Pablo, Juan J.

    2018-04-01

    A machine learning assisted method is presented for molecular simulation of systems with rugged free energy landscapes. The method is general and can be combined with other advanced sampling techniques. In the particular implementation proposed here, it is illustrated in the context of an adaptive biasing force approach where, rather than relying on discrete force estimates, one can resort to a self-regularizing artificial neural network to generate continuous, estimated generalized forces. By doing so, the proposed approach addresses several shortcomings common to adaptive biasing force and other algorithms. Specifically, the neural network enables (1) smooth estimates of generalized forces in sparsely sampled regions, (2) force estimates in previously unexplored regions, and (3) continuous force estimates with which to bias the simulation, as opposed to biases generated at specific points of a discrete grid. The usefulness of the method is illustrated with three different examples, chosen to highlight the wide range of applicability of the underlying concepts. In all three cases, the new method is found to enhance considerably the underlying traditional adaptive biasing force approach. The method is also found to provide improvements over previous implementations of neural network assisted algorithms.

  15. Errors in the estimation method for the rejection of vibrations in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz

    2017-06-01

    In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.

  16. An automated dose tracking system for adaptive radiation therapy.

    PubMed

    Liu, Chang; Kim, Jinkoo; Kumarasiri, Akila; Mayyas, Essa; Brown, Stephen L; Wen, Ning; Siddiqui, Farzan; Chetty, Indrin J

    2018-02-01

    The implementation of adaptive radiation therapy (ART) into routine clinical practice is technically challenging and requires significant resources to perform and validate each process step. The objective of this report is to identify the key components of ART, to illustrate how a specific automated procedure improves efficiency, and to facilitate the routine clinical application of ART. Data was used from patient images, exported from a clinical database and converted to an intermediate format for point-wise dose tracking and accumulation. The process was automated using in-house developed software containing three modularized components: an ART engine, user interactive tools, and integration tools. The ART engine conducts computing tasks using the following modules: data importing, image pre-processing, dose mapping, dose accumulation, and reporting. In addition, custom graphical user interfaces (GUIs) were developed to allow user interaction with select processes such as deformable image registration (DIR). A commercial scripting application programming interface was used to incorporate automated dose calculation for application in routine treatment planning. Each module was considered an independent program, written in C++or C#, running in a distributed Windows environment, scheduled and monitored by integration tools. The automated tracking system was retrospectively evaluated for 20 patients with prostate cancer and 96 patients with head and neck cancer, under institutional review board (IRB) approval. In addition, the system was evaluated prospectively using 4 patients with head and neck cancer. Altogether 780 prostate dose fractions and 2586 head and neck cancer dose fractions went processed, including DIR and dose mapping. On average, daily cumulative dose was computed in 3 h and the manual work was limited to 13 min per case with approximately 10% of cases requiring an additional 10 min for image registration refinement. An efficient and convenient dose tracking system for ART in the clinical setting is presented. The software and automated processes were rigorously evaluated and validated using patient image datasets. Automation of the various procedures has improved efficiency significantly, allowing for the routine clinical application of ART for improving radiation therapy effectiveness. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Method for six-legged robot stepping on obstacles by indirect force estimation

    NASA Astrophysics Data System (ADS)

    Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun

    2016-07-01

    Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.

  18. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  19. Genetic potential of black bean genotypes with predictable behaviors in multienvironment trials.

    PubMed

    Torga, P P; Melo, P G S; Pereira, H S; Faria, L C; Melo, L C

    2016-10-24

    The aim of this study was to evaluate the phenotypic stability and specific and broad adaptability of common black bean genotypes for the Central and Center-South regions of Brazil by using the Annicchiarico and AMMI (weighted average of absolute scores: WAAS, and weighted average of absolute scores and productivity: WAASP) methodologies. We carried out 69 trials, with 43 and 26 trials in the Central and Center-South regions, respectively. Thirteen genotypes were evaluated in a randomized block design with three replications, during the rainy, dry, and winter seasons in 2 years. To obtain estimates of specific adaptation, we analyzed the parameters for each method obtained in the two geographic regions separately. To estimate broad adaptation, we used the average of the parameters obtained from each region. The lines identified with high specific adaptation in each region were not the same based on the Annicchiarico and AMMI (WAAS) methodologies. It was not possible to identify the same genotypes with specific or broad stability by using these methods. By contrast, the Annicchiarico and AMMI (WAASP) methods presented very similar estimates of broad and specific adaptation. Based on these methods, the lines with more specific adaptation were CNFP 8000 and CNFP 7994, in the Central and Center-South regions, respectively, of which the CNFP 8000 line was more widely adapted.

  20. Development of a Bayesian response-adaptive trial design for the Dexamethasone for Excessive Menstruation study.

    PubMed

    Holm Hansen, Christian; Warner, Pamela; Parker, Richard A; Walker, Brian R; Critchley, Hilary Od; Weir, Christopher J

    2017-12-01

    It is often unclear what specific adaptive trial design features lead to an efficient design which is also feasible to implement. This article describes the preparatory simulation study for a Bayesian response-adaptive dose-finding trial design. Dexamethasone for Excessive Menstruation aims to assess the efficacy of Dexamethasone in reducing excessive menstrual bleeding and to determine the best dose for further study. To maximise learning about the dose response, patients receive placebo or an active dose with randomisation probabilities adapting based on evidence from patients already recruited. The dose-response relationship is estimated using a flexible Bayesian Normal Dynamic Linear Model. Several competing design options were considered including: number of doses, proportion assigned to placebo, adaptation criterion, and number and timing of adaptations. We performed a fractional factorial study using SAS software to simulate virtual trial data for candidate adaptive designs under a variety of scenarios and to invoke WinBUGS for Bayesian model estimation. We analysed the simulated trial results using Normal linear models to estimate the effects of each design feature on empirical type I error and statistical power. Our readily-implemented approach using widely available statistical software identified a final design which performed robustly across a range of potential trial scenarios.

  1. Effectiveness of Item Response Theory (IRT) Proficiency Estimation Methods under Adaptive Multistage Testing. Research Report. ETS RR-15-11

    ERIC Educational Resources Information Center

    Kim, Sooyeon; Moses, Tim; Yoo, Hanwook Henry

    2015-01-01

    The purpose of this inquiry was to investigate the effectiveness of item response theory (IRT) proficiency estimators in terms of estimation bias and error under multistage testing (MST). We chose a 2-stage MST design in which 1 adaptation to the examinees' ability levels takes place. It includes 4 modules (1 at Stage 1, 3 at Stage 2) and 3 paths…

  2. New model for estimating the relationship between surface area and volume in the human body using skeletal remains.

    PubMed

    Kasabova, Boryana E; Holliday, Trenton W

    2015-04-01

    A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) "independently estimated" body surface areas and "independently estimated" body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when "independently estimated" surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between "heat-adapted" and "cold-adapted" populations. As expected, the "cold-adapted" group has significantly more of its body surface area and volume in its trunk than does the "heat-adapted" group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions. © 2014 Wiley Periodicals, Inc.

  3. Convex Banding of the Covariance Matrix

    PubMed Central

    Bien, Jacob; Bunea, Florentina; Xiao, Luo

    2016-01-01

    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings. PMID:28042189

  4. Convex Banding of the Covariance Matrix.

    PubMed

    Bien, Jacob; Bunea, Florentina; Xiao, Luo

    2016-01-01

    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.

  5. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  6. Optimal structure of metaplasticity for adaptive learning

    PubMed Central

    2017-01-01

    Learning from reward feedback in a changing environment requires a high degree of adaptability, yet the precise estimation of reward information demands slow updates. In the framework of estimating reward probability, here we investigated how this tradeoff between adaptability and precision can be mitigated via metaplasticity, i.e. synaptic changes that do not always alter synaptic efficacy. Using the mean-field and Monte Carlo simulations we identified ‘superior’ metaplastic models that can substantially overcome the adaptability-precision tradeoff. These models can achieve both adaptability and precision by forming two separate sets of meta-states: reservoirs and buffers. Synapses in reservoir meta-states do not change their efficacy upon reward feedback, whereas those in buffer meta-states can change their efficacy. Rapid changes in efficacy are limited to synapses occupying buffers, creating a bottleneck that reduces noise without significantly decreasing adaptability. In contrast, more-populated reservoirs can generate a strong signal without manifesting any observable plasticity. By comparing the behavior of our model and a few competing models during a dynamic probability estimation task, we found that superior metaplastic models perform close to optimally for a wider range of model parameters. Finally, we found that metaplastic models are robust to changes in model parameters and that metaplastic transitions are crucial for adaptive learning since replacing them with graded plastic transitions (transitions that change synaptic efficacy) reduces the ability to overcome the adaptability-precision tradeoff. Overall, our results suggest that ubiquitous unreliability of synaptic changes evinces metaplasticity that can provide a robust mechanism for mitigating the tradeoff between adaptability and precision and thus adaptive learning. PMID:28658247

  7. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE PAGES

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  8. Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks.

    PubMed

    Wen, Chih-Yu; Chan, Fu-Kai

    2010-01-01

    Location-awareness is crucial and becoming increasingly important to many applications in wireless sensor networks. This paper presents a network-based positioning system and outlines recent work in which we have developed an efficient principled approach to localize a mobile sensor using time of arrival (TOA) and angle of arrival (AOA) information employing multiple seeds in the line-of-sight scenario. By receiving the periodic broadcasts from the seeds, the mobile target sensors can obtain adequate observations and localize themselves automatically. The proposed positioning scheme performs location estimation in three phases: (I) AOA-aided TOA measurement, (II) Geometrical positioning with particle filter, and (III) Adaptive fuzzy control. Based on the distance measurements and the initial position estimate, adaptive fuzzy control scheme is applied to solve the localization adjustment problem. The simulations show that the proposed approach provides adaptive flexibility and robust improvement in position estimation.

  9. Adaptive super-twisting observer for estimation of random road excitation profile in automotive suspension systems.

    PubMed

    Rath, J J; Veluvolu, K C; Defoort, M

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system.

  10. Adaptive Super-Twisting Observer for Estimation of Random Road Excitation Profile in Automotive Suspension Systems

    PubMed Central

    Rath, J. J.; Veluvolu, K. C.; Defoort, M.

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system. PMID:24683321

  11. The Role of Parametric Assumptions in Adaptive Bayesian Estimation

    ERIC Educational Resources Information Center

    Alcala-Quintana, Rocio; Garcia-Perez, Miguel A.

    2004-01-01

    Variants of adaptive Bayesian procedures for estimating the 5% point on a psychometric function were studied by simulation. Bias and standard error were the criteria to evaluate performance. The results indicated a superiority of (a) uniform priors, (b) model likelihood functions that are odd symmetric about threshold and that have parameter…

  12. Item Selection and Ability Estimation Procedures for a Mixed-Format Adaptive Test

    ERIC Educational Resources Information Center

    Ho, Tsung-Han; Dodd, Barbara G.

    2012-01-01

    In this study we compared five item selection procedures using three ability estimation methods in the context of a mixed-format adaptive test based on the generalized partial credit model. The item selection procedures used were maximum posterior weighted information, maximum expected information, maximum posterior weighted Kullback-Leibler…

  13. A Feedback Control Strategy for Enhancing Item Selection Efficiency in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Weissman, Alexander

    2006-01-01

    A computerized adaptive test (CAT) may be modeled as a closed-loop system, where item selection is influenced by trait level ([theta]) estimation and vice versa. When discrepancies exist between an examinee's estimated and true [theta] levels, nonoptimal item selection is a likely result. Nevertheless, examinee response behavior consistent with…

  14. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  15. Global mortality consequences of climate change accounting for adaptation costs and benefits

    NASA Astrophysics Data System (ADS)

    Rising, J. A.; Jina, A.; Carleton, T.; Hsiang, S. M.; Greenstone, M.

    2017-12-01

    Empirically-based and plausibly causal estimates of the damages of climate change are greatly needed to inform rapidly developing global and local climate policies. To accurately reflect the costs of climate change, it is essential to estimate how much populations will adapt to a changing climate, yet adaptation remains one of the least understood aspects of social responses to climate. In this paper, we develop and implement a novel methodology to estimate climate impacts on mortality rates. We assemble comprehensive sub-national panel data in 41 countries that account for 56% of the world's population, and combine them with high resolution daily climate data to flexibly estimate the causal effect of temperature on mortality. We find the impacts of temperature on mortality have a U-shaped response; both hot days and cold days cause excess mortality. However, this average response obscures substantial heterogeneity, as populations are differentially adapted to extreme temperatures. Our empirical model allows us to extrapolate response functions across the entire globe, as well as across time, using a range of economic, population, and climate change scenarios. We also develop a methodology to capture not only the benefits of adaptation, but also its costs. We combine these innovations to produce the first causal, micro-founded, global, empirically-derived climate damage function for human health. We project that by 2100, business-as-usual climate change is likely to incur mortality-only costs that amount to approximately 5% of global GDP for 5°C degrees of warming above pre-industrial levels. On average across model runs, we estimate that the upper bound on adaptation costs amounts to 55% of the total damages.

  16. [Perception of approaching and withdrawing sound sources following exposure to broadband noise. The effect of spatial domain].

    PubMed

    Malinina, E S

    2014-01-01

    The spatial specificity of auditory aftereffect was studied after a short-time adaptation (5 s) to the broadband noise (20-20000 Hz). Adapting stimuli were sequences of noise impulses with the constant amplitude, test stimuli--with the constant and changing amplitude: an increase of amplitude of impulses in sequence was perceived by listeners as approach of the sound source, while a decrease of amplitude--as its withdrawal. The experiments were performed in an anechoic chamber. The auditory aftereffect was estimated under the following conditions: the adapting and test stimuli were presented from the loudspeaker located at a distance of 1.1 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively near spatial domain) or 4.5 m from the listeners (the subjectively far spatial domain); the adapting and test stimuli were presented from different distances. The obtained data showed that perception of the imitated movement of the sound source in both spatial domains had the common characteristic peculiarities that manifested themselves both under control conditions without adaptation and after adaptation to noise. In the absence of adaptation for both distances, an asymmetry of psychophysical curves was observed: the listeners estimated the test stimuli more often as approaching. The overestimation by listeners of test stimuli as the approaching ones was more pronounced at their presentation from the distance of 1.1 m, i. e., from the subjectively near spatial domain. After adaptation to noise the aftereffects showed spatial specificity in both spatial domains: they were observed only at the spatial coincidence of adapting and test stimuli and were absent at their separation. The aftereffects observed in two spatial domains were similar in direction and value: the listeners estimated the test stimuli more often as withdrawing as compared to control. The result of such aftereffect was restoration of the symmetry of psychometric curves and of the equiprobable estimation of direction of movement of test signals.

  17. Developing Bayesian adaptive methods for estimating sensitivity thresholds (d′) in Yes-No and forced-choice tasks

    PubMed Central

    Lesmes, Luis A.; Lu, Zhong-Lin; Baek, Jongsoo; Tran, Nina; Dosher, Barbara A.; Albright, Thomas D.

    2015-01-01

    Motivated by Signal Detection Theory (SDT), we developed a family of novel adaptive methods that estimate the sensitivity threshold—the signal intensity corresponding to a pre-defined sensitivity level (d′ = 1)—in Yes-No (YN) and Forced-Choice (FC) detection tasks. Rather than focus stimulus sampling to estimate a single level of %Yes or %Correct, the current methods sample psychometric functions more broadly, to concurrently estimate sensitivity and decision factors, and thereby estimate thresholds that are independent of decision confounds. Developed for four tasks—(1) simple YN detection, (2) cued YN detection, which cues the observer's response state before each trial, (3) rated YN detection, which incorporates a Not Sure response, and (4) FC detection—the qYN and qFC methods yield sensitivity thresholds that are independent of the task's decision structure (YN or FC) and/or the observer's subjective response state. Results from simulation and psychophysics suggest that 25 trials (and sometimes less) are sufficient to estimate YN thresholds with reasonable precision (s.d. = 0.10–0.15 decimal log units), but more trials are needed for FC thresholds. When the same subjects were tested across tasks of simple, cued, rated, and FC detection, adaptive threshold estimates exhibited excellent agreement with the method of constant stimuli (MCS), and with each other. These YN adaptive methods deliver criterion-free thresholds that have previously been exclusive to FC methods. PMID:26300798

  18. Career Adapt-Abilities Scale--Brazilian Form: Psychometric Properties and Relationships to Personality

    ERIC Educational Resources Information Center

    Teixeira, Marco Antonio Pereira; Bardagi, Marucia Patta; Lassance, Maria Celia Pacheco; Magalhaes, Mauro de Oliveira; Duarte, Maria Eduarda

    2012-01-01

    The Career Adapt-Abilities Scale--Brazilian Form (CAASBrazil) consists of four scales which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. Internal consistency estimates for the subscale and total scores ranged from good to excellent. The…

  19. A decision directed detector for the phase incoherent Gaussian channel

    NASA Technical Reports Server (NTRS)

    Kazakos, D.

    1975-01-01

    A vector digital signalling scheme is proposed for simultaneous adaptive data transmission and phase estimation. The use of maximum likelihood estimation methods predicts a better performance than the phase-locked loop. The phase estimate is shown to converge to the true value, so that the adaptive nature of the detector effectively achieves phase acquisition and improvement in performance. No separate synchronization interval is required and phase fluctuations can be tracked simultaneously with the transmission of information.

  20. Adaptive local linear regression with application to printer color management.

    PubMed

    Gupta, Maya R; Garcia, Eric K; Chin, Erika

    2008-06-01

    Local learning methods, such as local linear regression and nearest neighbor classifiers, base estimates on nearby training samples, neighbors. Usually, the number of neighbors used in estimation is fixed to be a global "optimal" value, chosen by cross validation. This paper proposes adapting the number of neighbors used for estimation to the local geometry of the data, without need for cross validation. The term enclosing neighborhood is introduced to describe a set of neighbors whose convex hull contains the test point when possible. It is proven that enclosing neighborhoods yield bounded estimation variance under some assumptions. Three such enclosing neighborhood definitions are presented: natural neighbors, natural neighbors inclusive, and enclosing k-NN. The effectiveness of these neighborhood definitions with local linear regression is tested for estimating lookup tables for color management. Significant improvements in error metrics are shown, indicating that enclosing neighborhoods may be a promising adaptive neighborhood definition for other local learning tasks as well, depending on the density of training samples.

  1. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation.

    PubMed

    Zhang, Xiangjun; Wu, Xiaolin

    2008-06-01

    The challenge of image interpolation is to preserve spatial details. We propose a soft-decision interpolation technique that estimates missing pixels in groups rather than one at a time. The new technique learns and adapts to varying scene structures using a 2-D piecewise autoregressive model. The model parameters are estimated in a moving window in the input low-resolution image. The pixel structure dictated by the learnt model is enforced by the soft-decision estimation process onto a block of pixels, including both observed and estimated. The result is equivalent to that of a high-order adaptive nonseparable 2-D interpolation filter. This new image interpolation approach preserves spatial coherence of interpolated images better than the existing methods, and it produces the best results so far over a wide range of scenes in both PSNR measure and subjective visual quality. Edges and textures are well preserved, and common interpolation artifacts (blurring, ringing, jaggies, zippering, etc.) are greatly reduced.

  2. Estimating farmers' willingness to pay for climate change adaptation: the case of the Malaysian agricultural sector.

    PubMed

    Masud, Muhammad Mehedi; Junsheng, Ha; Akhtar, Rulia; Al-Amin, Abul Quasem; Kari, Fatimah Binti

    2015-02-01

    This paper estimates Malaysian farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in the Malaysian agricultural sector. We used the contingent valuation method (CVM) for a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues in the Malaysian agricultural sector. Structured questionnaires were distributed among the sampled farmers. The study found that 74 % of respondents were willing to pay for a planned adaptation programme and that several socioeconomic and motivation factors have greater influence on their WTP. This paper clearly specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support policy makers to better design an efficient adaptation framework for adapting to the adverse impacts of climate change.

  3. Adaptive control of bivalirudin in the cardiac intensive care unit.

    PubMed

    Zhao, Qi; Edrich, Thomas; Paschalidis, Ioannis Ch

    2015-02-01

    Bivalirudin is a direct thrombin inhibitor used in the cardiac intensive care unit when heparin is contraindicated due to heparin-induced thrombocytopenia. Since it is not a commonly used drug, clinical experience with its dosing is sparse. In earlier work [1], we developed a dynamic system model that accurately predicts the effect of bivalirudin given dosage over time and patient physiological characteristics. This paper develops adaptive dosage controllers that regulate its effect to desired levels. To that end, and in the case that bivalirudin model parameters are available, we develop a Model Reference Control law. In the case that model parameters are unknown, an indirect Model Reference Adaptive Control scheme is applied to estimate model parameters first and then adapt the controller. Alternatively, direct Model Reference Adaptive Control is applied to adapt the controller directly without estimating model parameters first. Our algorithms are validated using actual patient data from a large hospital in the Boston area.

  4. Adaptive functioning in children with epilepsy and learning problems.

    PubMed

    Buelow, Janice M; Perkins, Susan M; Johnson, Cynthia S; Byars, Anna W; Fastenau, Philip S; Dunn, David W; Austin, Joan K

    2012-10-01

    In the study we describe adaptive functioning in children with epilepsy whose primary caregivers identified them as having learning problems. This was a cross-sectional study of 50 children with epilepsy and learning problems. Caregivers supplied information regarding the child's adaptive functioning and behavior problems. Children rated their self-concept and completed a battery of neuropsychological tests. Mean estimated IQ (PPVT-III) in the participant children was 72.8 (SD = 18.3). On average, children scored 2 standard deviations below the norm on the Vineland Adaptive Behavior Scale-II and this was true even for children with epilepsy who had estimated IQ in the normal range. In conclusion, children with epilepsy and learning problems had relatively low adaptive functioning scores and substantial neuropsychological and mental health problems. In epilepsy, adaptive behavior screening can be very informative and guide further evaluation and intervention, even in those children whose IQ is in the normal range.

  5. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter

    PubMed Central

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan

    2018-01-01

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509

  6. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    PubMed

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  7. Self-Tuning Adaptive-Controller Using Online Frequency Identification

    NASA Technical Reports Server (NTRS)

    Chiang, W. W.; Cannon, R. H., Jr.

    1985-01-01

    A real time adaptive controller was designed and tested successfully on a fourth order laboratory dynamic system which features very low structural damping and a noncolocated actuator sensor pair. The controller, implemented in a digital minicomputer, consists of a state estimator, a set of state feedback gains, and a frequency locked loop (FLL) for real time parameter identification. The FLL can detect the closed loop natural frequency of the system being controlled, calculate the mismatch between a plant parameter and its counterpart in the state estimator, and correct the estimator parameter in real time. The adaptation algorithm can correct the controller error and stabilize the system for more than 50% variation in the plant natural frequency, compared with a 10% stability margin in frequency variation for a fixed gain controller having the same performance at the nominal plant condition. After it has locked to the correct plant frequency, the adaptive controller works as well as the fixed gain controller does when there is no parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally, and can also be proven with simple root locus methods.

  8. Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.

  9. Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system

    NASA Astrophysics Data System (ADS)

    Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping

    2017-12-01

    This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.

  10. Three-dimensional elliptic grid generation technique with application to turbomachinery cascades

    NASA Technical Reports Server (NTRS)

    Chen, S. C.; Schwab, J. R.

    1988-01-01

    Described is a numerical method for generating 3-D grids for turbomachinery computational fluid dynamic codes. The basic method is general and involves the solution of a quasi-linear elliptic partial differential equation via pointwise relaxation with a local relaxation factor. It allows specification of the grid point distribution on the boundary surfaces, the grid spacing off the boundary surfaces, and the grid orthogonality at the boundary surfaces. A geometry preprocessor constructs the grid point distributions on the boundary surfaces for general turbomachinery cascades. Representative results are shown for a C-grid and an H-grid for a turbine rotor. Two appendices serve as user's manuals for the basic solver and the geometry preprocessor.

  11. A note on the accuracy of spectral method applied to nonlinear conservation laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang; Wong, Peter S.

    1994-01-01

    Fourier spectral method can achieve exponential accuracy both on the approximation level and for solving partial differential equations if the solutions are analytic. For a linear partial differential equation with a discontinuous solution, Fourier spectral method produces poor point-wise accuracy without post-processing, but still maintains exponential accuracy for all moments against analytic functions. In this note we assess the accuracy of Fourier spectral method applied to nonlinear conservation laws through a numerical case study. We find that the moments with respect to analytic functions are no longer very accurate. However the numerical solution does contain accurate information which can be extracted by a post-processing based on Gegenbauer polynomials.

  12. Impact of using different blood donor subpopulations and models on the estimation of transfusion transmission residual risk of human immunodeficiency virus, hepatitis B virus, and hepatitis C virus in Zimbabwe.

    PubMed

    Mapako, Tonderai; Janssen, Mart P; Mvere, David A; Emmanuel, Jean C; Rusakaniko, Simbarashe; Postma, Maarten J; van Hulst, Marinus

    2016-06-01

    Various models for estimating the residual risk (RR) of transmission of infections by blood transfusion have been published mainly based on data from high-income countries. However, to obtain the data required for such an assessment remains challenging for most developing settings. The National Blood Service Zimbabwe (NBSZ) adapted a published incidence-window period (IWP) model, which has less demanding data requirements. In this study we assess the impact of various definitions of blood donor subpopulations and models on RR estimates. We compared the outcomes of two published models and an adapted NBSZ model. The Schreiber IWP model (Model 1), an amended version (Model 2), and an adapted NBSZ model (Model 3) were applied. Variably the three models include prevalence, incidence, preseroconversion intervals, mean lifetime risk, and person-years at risk. Annual mean RR estimates and 95% confidence intervals for each of the three models for human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) were determined using NBSZ blood donor data from 2002 through 2011. The annual mean RR estimates for Models 1 through 3 were 1 in 6542, 5805, and 6418, respectively for HIV; 1 in 1978, 2027, and 1628 for HBV; and 1 in 9588, 15,126, and 7750, for HCV. The adapted NBSZ model provided comparable results to the published methods and these highlight the high occurrence of HBV in Zimbabwe. The adapted NBSZ model could be used as an alternative to estimate RRs when in settings where two repeat donations are not available. © 2016 AABB.

  13. Control algorithms for aerobraking in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Ward, Donald T.; Shipley, Buford W., Jr.

    1991-01-01

    The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.

  14. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  15. Psychophysical measurements in children: challenges, pitfalls, and considerations.

    PubMed

    Witton, Caroline; Talcott, Joel B; Henning, G Bruce

    2017-01-01

    Measuring sensory sensitivity is important in studying development and developmental disorders. However, with children, there is a need to balance reliable but lengthy sensory tasks with the child's ability to maintain motivation and vigilance. We used simulations to explore the problems associated with shortening adaptive psychophysical procedures, and suggest how these problems might be addressed. We quantify how adaptive procedures with too few reversals can over-estimate thresholds, introduce substantial measurement error, and make estimates of individual thresholds less reliable. The associated measurement error also obscures group differences. Adaptive procedures with children should therefore use as many reversals as possible, to reduce the effects of both Type 1 and Type 2 errors. Differences in response consistency, resulting from lapses in attention, further increase the over-estimation of threshold. Comparisons between data from individuals who may differ in lapse rate are therefore problematic, but measures to estimate and account for lapse rates in analyses may mitigate this problem.

  16. Demosaicking of noisy Bayer-sampled color images with least-squares luma-chroma demultiplexing and noise level estimation.

    PubMed

    Jeon, Gwanggil; Dubois, Eric

    2013-01-01

    This paper adapts the least-squares luma-chroma demultiplexing (LSLCD) demosaicking method to noisy Bayer color filter array (CFA) images. A model is presented for the noise in white-balanced gamma-corrected CFA images. A method to estimate the noise level in each of the red, green, and blue color channels is then developed. Based on the estimated noise parameters, one of a finite set of configurations adapted to a particular level of noise is selected to demosaic the noisy data. The noise-adaptive demosaicking scheme is called LSLCD with noise estimation (LSLCD-NE). Experimental results demonstrate state-of-the-art performance over a wide range of noise levels, with low computational complexity. Many results with several algorithms, noise levels, and images are presented on our companion web site along with software to allow reproduction of our results.

  17. Adaptive Sparse Representation for Source Localization with Gain/Phase Errors

    PubMed Central

    Sun, Ke; Liu, Yimin; Meng, Huadong; Wang, Xiqin

    2011-01-01

    Sparse representation (SR) algorithms can be implemented for high-resolution direction of arrival (DOA) estimation. Additionally, SR can effectively separate the coherent signal sources because the spectrum estimation is based on the optimization technique, such as the L1 norm minimization, but not on subspace orthogonality. However, in the actual source localization scenario, an unknown gain/phase error between the array sensors is inevitable. Due to this nonideal factor, the predefined overcomplete basis mismatches the actual array manifold so that the estimation performance is degraded in SR. In this paper, an adaptive SR algorithm is proposed to improve the robustness with respect to the gain/phase error, where the overcomplete basis is dynamically adjusted using multiple snapshots and the sparse solution is adaptively acquired to match with the actual scenario. The simulation results demonstrate the estimation robustness to the gain/phase error using the proposed method. PMID:22163875

  18. Effects of Content Balancing and Item Selection Method on Ability Estimation in Computerized Adaptive Tests

    ERIC Educational Resources Information Center

    Sahin, Alper; Ozbasi, Durmus

    2017-01-01

    Purpose: This study aims to reveal effects of content balancing and item selection method on ability estimation in computerized adaptive tests by comparing Fisher's maximum information (FMI) and likelihood weighted information (LWI) methods. Research Methods: Four groups of examinees (250, 500, 750, 1000) and a bank of 500 items with 10 different…

  19. Technical Adequacy of Growth Estimates from a Computer Adaptive Test: Implications for Progress Monitoring

    ERIC Educational Resources Information Center

    Van Norman, Ethan R.; Nelson, Peter M.; Parker, David C.

    2017-01-01

    Computer adaptive tests (CATs) hold promise to monitor student progress within multitiered systems of support. However, the relationship between how long and how often data are collected and the technical adequacy of growth estimates from CATs has not been explored. Given CAT administration times, it is important to identify optimal data…

  20. Impact of Violation of the Missing-at-Random Assumption on Full-Information Maximum Likelihood Method in Multidimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Han, Kyung T.; Guo, Fanmin

    2014-01-01

    The full-information maximum likelihood (FIML) method makes it possible to estimate and analyze structural equation models (SEM) even when data are partially missing, enabling incomplete data to contribute to model estimation. The cornerstone of FIML is the missing-at-random (MAR) assumption. In (unidimensional) computerized adaptive testing…

  1. Multilocus analyses reveal little evidence for lineage-wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus)

    Treesearch

    Andrew J. Eckert; Andrew D. Bower; Kathleen D. Jermstad; Jill L. Wegrzyn; Brian J. Knaus; John V. Syring; David B. Neale

    2013-01-01

    Estimates from molecular data for the fraction of new nonsynonymous mutations that are adaptive vary strongly across plant species. Much of this variation is due to differences in life history strategies as they influence the effective population size (Ne). Ample variation for these estimates, however, remains even when...

  2. An improved adaptive weighting function method for State Estimation in Power Systems with VSC-MTDC

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Yang, Xiaonan; Lang, Yansheng; Song, Xuri; Wang, Minkun; Luo, Yadi; Wu, Lingyun; Liu, Peng

    2017-04-01

    This paper presents an effective approach for state estimation in power systems that include multi-terminal voltage source converter based high voltage direct current (VSC-MTDC), called improved adaptive weighting function method. The proposed approach is simplified in which the VSC-MTDC system is solved followed by the AC system. Because the new state estimation method only changes the weight and keeps the matrix dimension unchanged. Accurate and fast convergence of AC/DC system can be realized by adaptive weight function method. This method also provides the technical support for the simulation analysis and accurate regulation of AC/DC system. Both the oretical analysis and numerical tests verify practicability, validity and convergence of new method.

  3. F-8C adaptive flight control extensions. [for maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Stein, G.; Hartmann, G. L.

    1977-01-01

    An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated.

  4. Adaptive measurement selection for progressive damage estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Wenfan; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Chattopadhyay, Aditi; Peralta, Pedro

    2011-04-01

    Noise and interference in sensor measurements degrade the quality of data and have a negative impact on the performance of structural damage diagnosis systems. In this paper, a novel adaptive measurement screening approach is presented to automatically select the most informative measurements and use them intelligently for structural damage estimation. The method is implemented efficiently in a sequential Monte Carlo (SMC) setting using particle filtering. The noise suppression and improved damage estimation capability of the proposed method is demonstrated by an application to the problem of estimating progressive fatigue damage in an aluminum compact-tension (CT) sample using noisy PZT sensor measurements.

  5. Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: case studies in Australian cities.

    PubMed

    Sharifi, Ehsan; Boland, John

    2018-06-18

    Outdoor thermal comfort is influenced by people's climate expectations, perceptions and adaptation capacity. Varied individual response to comfortable or stressful thermal environments results in a deviation between actual outdoor thermal activity choices and those predicted by thermal comfort indices. This paper presents a passive activity observation (PAO) method for estimating contextual limits of outdoor thermal adaptation. The PAO method determines which thermal environment result in statistically meaningful changes may occur in outdoor activity patterns, and it estimates thresholds of outdoor thermal neutrality and limits of thermal adaptation in public space based on activity observation and microclimate field measurement. Applications of the PAO method have been demonstrated in Adelaide, Melbourne and Sydney, where outdoor activities were analysed against outdoor thermal comfort indices between 2013 and 2014. Adjusted apparent temperature (aAT), adaptive predicted mean vote (aPMV), outdoor standard effective temperature (OUT_SET), physiological equivalent temperature (PET) and universal thermal comfort index (UTCI) are calculated from the PAO data. Using the PAO method, the high threshold of outdoor thermal neutrality was observed between 24 °C for optional activities and 34 °C for necessary activities (UTCI scale). Meanwhile, the ultimate limit of thermal adaptation in uncontrolled public spaces is estimated to be between 28 °C for social activities and 48 °C for necessary activities. Normalised results indicate that city-wide high thresholds for outdoor thermal neutrality vary from 25 °C in Melbourne to 26 °C in Sydney and 30 °C in Adelaide. The PAO method is a relatively fast and localised method for measuring limits of outdoor thermal adaptation and effectively informs urban design and policy making in the context of climate change.

  6. Global cost analysis on adaptation to sea level rise based on RCP/SSP scenarios

    NASA Astrophysics Data System (ADS)

    Kumano, N.; Tamura, M.; Yotsukuri, M.; Kuwahara, Y.; Yokoki, H.

    2017-12-01

    Low-lying areas are the most vulnerable to sea level rise (SLR) due to climate change in the future. In order to adapt to SLR, it is necessary to decide whether to retreat from vulnerable areas or to install dykes to protect them from inundation. Therefore, cost- analysis of adaptation using coastal dykes is one of the most essential issues in the context of climate change and its countermeasures. However, few studies have globally evaluated the future costs of adaptation in coastal areas. This study tries to globally analyze the cost of adaptation in coastal areas. First, global distributions of projected inundation impacts induced by SLR including astronomical high tide were assessed. Economic damage was estimated on the basis of the econometric relationship between past hydrological disasters, affected population, and per capita GDP using CRED's EM-DAT database. Second, the cost of adaptation was also determined using the cost database and future scenarios. The authors have built a cost database for installed coastal dykes worldwide and applied it to estimating the future cost of adaptation. The unit costs of dyke construction will increase with socio-economic scenario (SSP) such as per capita GDP. Length of vulnerable coastline is calculated by identifying inundation areas using ETOPO1. Future cost was obtained by multiplying the length of vulnerable coastline and the unit cost of dyke construction. Third, the effectiveness of dyke construction was estimated by comparing cases with and without adaptation.As a result, it was found that incremental adaptation cost is lower than economic damage in the cases of SSP1 and SSP3 under RCP scenario, while the cost of adaptation depends on the durability of the coastal dykes.

  7. An analysis of neural receptive field plasticity by point process adaptive filtering

    PubMed Central

    Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor

    2001-01-01

    Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043

  8. Robust Battery Fuel Gauge Algorithm Development, Part 3: State of Charge Tracking

    DTIC Science & Technology

    2014-10-19

    X. Zhang, F. Sun, and J. Fan, “State-of-charge estimation of the lithium - ion battery using an adaptive extended kalman filter based on an improved...framework with ex- tended kalman filter for lithium - ion battery soc and capacity estimation,” Applied Energy, vol. 92, pp. 694–704, 2012. [16] X. Hu, F...Sun, and Y. Zou, “Estimation of state of charge of a lithium - ion battery pack for electric vehicles using an adaptive luenberger observer,” Energies

  9. Adaptive temporal compressive sensing for video with motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yeru; Tang, Chaoying; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2018-04-01

    In this paper, we present an adaptive reconstruction method for temporal compressive imaging with pixel-wise exposure. The motion of objects is first estimated from interpolated images with a designed coding mask. With the help of motion estimation, image blocks are classified according to the degree of motion and reconstructed with the corresponding dictionary, which was trained beforehand. Both the simulation and experiment results show that the proposed method can obtain accurate motion information before reconstruction and efficiently reconstruct compressive video.

  10. Enhanced degradation and soil depth effects on the fate of atrazine and major metabolites in Colorado and Mississippi soils.

    PubMed

    Krutz, L Jason; Shaner, Dale L; Zablotowicz, Robert M

    2010-01-01

    The aim of this report is to inform modelers of the differences in atrazine fate between s-triazine-adapted and nonadapted soils as a function of depth in the profile and to recommend atrazine and metabolite input values for pesticide process submodules. The objectives of this study were to estimate the atrazine-mineralizing bacterial population, cumulative atrazine mineralization, atrazine persistence, and metabolite (desethylatrazine [DEA], deisopropylatrazine [DIA], and hydroxyatrazine [HA]) formation and degradation in Colorado and Mississippi s-triazine-adapted and nonadapted soils at three depths (0-5, 5-15, and 15-30 cm). Regardless of depth, the AMBP and cumulative atrazine mineralization was at least 3.8-fold higher in s-triazine-adapted than nonadapted soils. Atrazine half-life (T1/2) values pooled over nonadapted soils and depths approximated historic estimates (T1/2 = 60 d). Atrazine persistence in all depths of s-triazine-adapted soils was at least fourfold lower than that of the nonadapted soil. Atrazine metabolite concentrations were lower in s-triazine-adapted than in nonadapted soil by 35 d after incubation regardless of depth. Results indicate that (i) reasonable fate and transport modeling of atrazine will require identifying if soils are adapted to s-triazine herbicides. For example, our data confirm the 60-d T1/2 for atrazine in nonadapted soils, but a default input value of 6 d for atrazine is required for s-triazine adapted soils. (ii) Literature estimates for DEA, DIA, and HA T1/2 values in nonadapted soils are 52, 36, and 60 d, respectively, whereas our analysis indicates that reasonable T1/2 values for s-triazine-adapted soils are 10 d for DEA, 8 d for DIA, and 6 d for HA. (iii) An estimate for the relative distribution of DIA, DEA, and HA produced in nonadapted soils is 18, 72, and 10% of parent, respectively. In s-triazine-adapted soils, the values were 6, 23, and 71% for DIA, DEA, and HA, respectively. The effects of soil adaptation on metabolite distribution need to be confirmed in field experiments.

  11. Career Adapt-Abilities Scale--Netherlands Form: Psychometric Properties and Relationships to Ability, Personality, and Regulatory Focus

    ERIC Educational Resources Information Center

    van Vianen, Annelies E. M.; Klehe, Ute-Christine; Koen, Jessie; Dries, Nicky

    2012-01-01

    The Career Adapt-Abilities Scale (CAAS)--Netherlands Form consists of four scales, each with six items, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. Internal consistency estimates for the subscale and total scores ranged from…

  12. The Effects of Test Difficulty Manipulation in Computerized Adaptive Testing and Self-Adapted Testing.

    ERIC Educational Resources Information Center

    Ponsoda, Vicente; Olea, Julio; Rodriguez, Maria Soledad; Revuelta, Javier

    1999-01-01

    Compared easy and difficult versions of self-adapted tests (SAT) and computerized adapted tests. No significant differences were found among the tests for estimated ability or posttest state anxiety in studies with 187 Spanish high school students, although other significant differences were found. Discusses implications for interpreting test…

  13. A modified adjoint-based grid adaptation and error correction method for unstructured grid

    NASA Astrophysics Data System (ADS)

    Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi

    2018-05-01

    Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.

  14. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.

    PubMed

    Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing

    2018-03-07

    The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.

  15. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance

    PubMed Central

    Zheng, Binqi; Yuan, Xiaobing

    2018-01-01

    The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results. PMID:29518960

  16. A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.

    2010-01-01

    A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.

  17. Adaptive Quadrature Detection for Multicarrier Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2015-03-01

    We propose the adaptive quadrature detection for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD scheme uses Gaussian subcarrier continuous variables for the information conveying and Gaussian sub-channels for the transmission. The proposed multicarrier detection scheme dynamically adapts to the sub-channel conditions using a corresponding statistics which is provided by our sophisticated sub-channel estimation procedure. The sub-channel estimation phase determines the transmittance coefficients of the sub-channels, which information are used further in the adaptive quadrature decoding process. We define the technique called subcarrier spreading to estimate the transmittance conditions of the sub-channels with a theoretical error-minimum in the presence of a Gaussian noise. We introduce the terms of single and collective adaptive quadrature detection. We also extend the results for a multiuser multicarrier CVQKD scenario. We prove the achievable error probabilities, the signal-to-noise ratios, and quantify the attributes of the framework. The adaptive detection scheme allows to utilize the extra resources of multicarrier CVQKD and to maximize the amount of transmittable information. This work was partially supported by the GOP-1.1.1-11-2012-0092 (Secure quantum key distribution between two units on optical fiber network) project sponsored by the EU and European Structural Fund, and by the COST Action MP1006.

  18. Adaptive regularization network based neural modeling paradigm for nonlinear adaptive estimation of cerebral evoked potentials.

    PubMed

    Zhang, Jian-Hua; Böhme, Johann F

    2007-11-01

    In this paper we report an adaptive regularization network (ARN) approach to realizing fast blind separation of cerebral evoked potentials (EPs) from background electroencephalogram (EEG) activity with no need to make any explicit assumption on the statistical (or deterministic) signal model. The ARNs are proposed to construct nonlinear EEG and EP signal models. A novel adaptive regularization training (ART) algorithm is proposed to improve the generalization performance of the ARN. Two adaptive neural modeling methods based on the ARN are developed and their implementation and performance analysis are also presented. The computer experiments using simulated and measured visual evoked potential (VEP) data have shown that the proposed ARN modeling paradigm yields computationally efficient and more accurate VEP signal estimation owing to its intrinsic model-free and nonlinear processing characteristics.

  19. Distributed and self-adaptive vehicle speed estimation in the composite braking case for four-wheel drive hybrid electric car

    NASA Astrophysics Data System (ADS)

    Zhao, Z.-G.; Zhou, L.-J.; Zhang, J.-T.; Zhu, Q.; Hedrick, J.-K.

    2017-05-01

    Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.

  20. Solving delay differential equations in S-ADAPT by method of steps.

    PubMed

    Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech

    2013-09-01

    S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. Published by Elsevier Ireland Ltd.

  1. Mid-humerus adaptation in fast pitch softballers and the impact of throwing mechanics

    PubMed Central

    Bogenschutz, Elizabeth D.; Smith, Heather D.; Warden, Stuart J.

    2011-01-01

    Purpose Throwing is a vigorous activity that generates large internal loads. There is limited evidence of the effect of these loads on bone adaptation. The aim of this study was to investigate the: 1) magnitude of bone adaptation within the midshaft humerus of female fast-pitch softball players and 2) influence of throwing mechanics (windmill vs. overhand throwing) on the magnitude of adaptation. Methods Midshaft humeral bone mass, structure and estimated strength were assessed via peripheral quantitative computed tomography in fast-pitch softball players (throwers; n=15) and matched controls (controls; n=15). The effect of throwing was examined by comparing dominant-to-nondominant differences in throwers to controls, while the influence of mechanics was determined by comparing dominant-to-nondominant differences in throwers who primarily play as pitcher (windmill thrower), catcher (overhand thrower) or fielder (overhand thrower). Results Throwers had greater dominant-to-nondominant difference in midshaft humeral bone mass, structure and estimated strength relative to controls (all P<0.05). The largest effect was for estimated torsional strength with throwers having a mean dominant-to-nondominant difference of 22.5% (range, 6.7% to 43.9%) compared to 4.4% (range, -8.3% to 17.5%) in controls (P<0.001). Throwing mechanics appeared to influence the magnitude of skeletal adaptation, with overhand throwers having more than double dominant-to-nondominant difference in midshaft humeral bone mass, structure and estimated strength than windmill throwers (all P<0.05). Conclusion Throwing induces substantial skeletal adaptation at the midshaft humerus of the dominant upper extremity. Throwing mechanics appears to the influence the magnitude of adaptation as catchers and fielders (overhand throwers) had twice as much adaptation as pitchers (windmill throwers). The latter finding may have implications for skeletal injury risk at the midshaft humerus in throwing athletes. PMID:21311354

  2. Adaptation of the Tool to Estimate Patient Costs Questionnaire into Indonesian Context for Tuberculosis-affected Households.

    PubMed

    Fuady, Ahmad; Houweling, Tanja A; Mansyur, Muchtaruddin; Richardus, Jan H

    2018-01-01

    Indonesia is the second-highest country for tuberculosis (TB) incidence worldwide. Hence, it urgently requires improvements and innovations beyond the strategies that are currently being implemented throughout the country. One fundamental step in monitoring its progress is by preparing a validated tool to measure total patient costs and catastrophic total costs. The World Health Organization (WHO) recommends using a version of the generic questionnaire that has been adapted to the local cultural context in order to interpret findings correctly. This study is aimed to adapt the Tool to Estimate Patient Costs questionnaire into the Indonesian context, which measures total costs and catastrophic total costs for tuberculosis-affected households. the tool was adapted using best-practice guidelines. On the basis of a pre-test performed in a previous study (referred to as Phase 1 Study), we refined the adaptation process by comparing it with the generic tool introduced by the WHO. We also held an expert committee review and performed pre-testing by interviewing 30 TB patients. After pre-testing, the tool was provided with complete explanation sheets for finalization. seventy-two major changes were made during the adaptation process including changing the answer choices to match the Indonesian context, refining the flow of questions, deleting questions, changing some words and restoring original questions that had been changed in Phase 1 Study. Participants indicated that most questions were clear and easy to understand. To address recall difficulties by the participants, we made some adaptations to obtain data that might be missing, such as tracking data to medical records, developing a proxy of costs and guiding interviewers to ask for a specific value when participants were uncertain about the estimated market value of property they had sold. the adapted Tool to Estimate Patient Costs in Bahasa Indonesia is comprehensive and ready for use in future studies on TB-related catastrophic costs and is suitable for monitoring progress to achieve the target of the End TB Strategy.

  3. Effects of Calibration Sample Size and Item Bank Size on Ability Estimation in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Sahin, Alper; Weiss, David J.

    2015-01-01

    This study aimed to investigate the effects of calibration sample size and item bank size on examinee ability estimation in computerized adaptive testing (CAT). For this purpose, a 500-item bank pre-calibrated using the three-parameter logistic model with 10,000 examinees was simulated. Calibration samples of varying sizes (150, 250, 350, 500,…

  4. Progress Monitoring with Computer Adaptive Assessments: The Impact of Data Collection Schedule on Growth Estimates

    ERIC Educational Resources Information Center

    Nelson, Peter M.; Van Norman, Ethan R.; Klingbeil, Dave A.; Parker, David C.

    2017-01-01

    Although extensive research exists on the use of curriculum-based measures for progress monitoring, little is known about using computer adaptive tests (CATs) for progress-monitoring purposes. The purpose of this study was to evaluate the impact of the frequency of data collection on individual and group growth estimates using a CAT. Data were…

  5. Coestimation of recombination, substitution and molecular adaptation rates by approximate Bayesian computation.

    PubMed

    Lopes, J S; Arenas, M; Posada, D; Beaumont, M A

    2014-03-01

    The estimation of parameters in molecular evolution may be biased when some processes are not considered. For example, the estimation of selection at the molecular level using codon-substitution models can have an upward bias when recombination is ignored. Here we address the joint estimation of recombination, molecular adaptation and substitution rates from coding sequences using approximate Bayesian computation (ABC). We describe the implementation of a regression-based strategy for choosing subsets of summary statistics for coding data, and show that this approach can accurately infer recombination allowing for intracodon recombination breakpoints, molecular adaptation and codon substitution rates. We demonstrate that our ABC approach can outperform other analytical methods under a variety of evolutionary scenarios. We also show that although the choice of the codon-substitution model is important, our inferences are robust to a moderate degree of model misspecification. In addition, we demonstrate that our approach can accurately choose the evolutionary model that best fits the data, providing an alternative for when the use of full-likelihood methods is impracticable. Finally, we applied our ABC method to co-estimate recombination, substitution and molecular adaptation rates from 24 published human immunodeficiency virus 1 coding data sets.

  6. Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice

    2018-05-01

    In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.

  7. Adaptive particle filter for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai

    2009-10-01

    Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.

  8. An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST

    NASA Astrophysics Data System (ADS)

    Hang, Xu; Jun, Zhao

    2018-05-01

    Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.

  9. Wavefront Reconstruction and Mirror Surface Optimizationfor Adaptive Optics

    DTIC Science & Technology

    2014-06-01

    TERMS Wavefront reconstruction, Adaptive optics , Wavelets, Atmospheric turbulence , Branch points, Mirror surface optimization, Space telescope, Segmented...contribution adapts the proposed algorithm to work when branch points are present from significant atmospheric turbulence . An analysis of vector spaces...estimate the distortion of the collected light caused by the atmosphere and corrected by adaptive optics . A generalized orthogonal wavelet wavefront

  10. Modeling Tropical Cyclone Storm Surge and Wind Induced Risk Along the Bay of Bengal Coastline Using a Statistical Copula

    NASA Astrophysics Data System (ADS)

    Bushra, N.; Trepanier, J. C.; Rohli, R. V.

    2017-12-01

    High winds, torrential rain, and storm surges from tropical cyclones (TCs) cause massive destruction to property and cost the lives of many people. The coastline of the Bay of Bengal (BoB) ranks as one of the most susceptible to TC storm surges in the world due to low-lying elevation and a high frequency of occurrence. Bangladesh suffers the most due to its geographical setting and population density. Various models have been developed to predict storm surge in this region but none of them quantify statistical risk with empirical data. This study describes the relationship and dependency between empirical TC storm surge and peak reported wind speed at the BoB using a bivariate statistical copula and data from 1885-2011. An Archimedean, Gumbel copula with margins defined by the empirical distributions is specified as the most appropriate choice for the BoB. The model provides return periods for pairs of TC storm surge and peak wind along the BoB coastline. The BoB can expect a TC with peak reported winds of at least 24 m s-1 and surge heights of at least 4.0 m, on average, once every 3.2 years, with a quartile pointwise confidence interval of 2.7-3.8 years. In addition, the BoB can expect peak reported winds of 62 m s-1 and surge heights of at least 8.0 m, on average, once every 115.4 years, with a quartile pointwise confidence interval of 55.8-381.1 years. The purpose of the analysis is to increase the understanding of these dangerous TC characteristics to reduce fatalities and monetary losses into the future. Application of the copula will mitigate future threats of storm surge impacts on coastal communities of the BoB.

  11. Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers

    PubMed Central

    Spagnolo, Daniel M.; Gyanchandani, Rekha; Al-Kofahi, Yousef; Stern, Andrew M.; Lezon, Timothy R.; Gough, Albert; Meyer, Dan E.; Ginty, Fiona; Sarachan, Brion; Fine, Jeffrey; Lee, Adrian V.; Taylor, D. Lansing; Chennubhotla, S. Chakra

    2016-01-01

    Background: Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME) are key contributors to heterogeneity. Methods: We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI) and visually represent heterogeneity with a two-dimensional map. Results: We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. Conclusions: This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI), which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different components within the TME. We hypothesize that PMI will uncover key spatial interactions in the TME that contribute to disease proliferation and progression. PMID:27994939

  12. Six-month Longitudinal Comparison of a Portable Tablet Perimeter With the Humphrey Field Analyzer.

    PubMed

    Prea, Selwyn Marc; Kong, Yu Xiang George; Mehta, Aditi; He, Mingguang; Crowston, Jonathan G; Gupta, Vinay; Martin, Keith R; Vingrys, Algis J

    2018-06-01

    To establish the medium-term repeatability of the iPad perimetry app Melbourne Rapid Fields (MRF) compared to Humphrey Field Analyzer (HFA) 24-2 SITA-standard and SITA-fast programs. Multicenter longitudinal observational clinical study. Sixty patients (stable glaucoma/ocular hypertension/glaucoma suspects) were recruited into a 6-month longitudinal clinical study with visits planned at baseline and at 2, 4, and 6 months. At each visit patients undertook visual field assessment using the MRF perimetry application and either HFA SITA-fast (n = 21) or SITA-standard (n = 39). The primary outcome measure was the association and repeatability of mean deviation (MD) for the MRF and HFA tests. Secondary measures were the point-wise threshold and repeatability for each test, as well as test time. MRF was similar to SITA-fast in speed and significantly faster than SITA-standard (MRF 4.6 ± 0.1 minutes vs SITA-fast 4.3 ± 0.2 minutes vs SITA-standard 6.2 ± 0.1 minutes, P < .001). Intraclass correlation coefficients (ICC) between MRF and SITA-fast for MD at the 4 visits ranged from 0.71 to 0.88. ICC values between MRF and SITA-standard for MD ranged from 0.81 to 0.90. Repeatability of MRF MD outcomes was excellent, with ICC for baseline and the 6-month visit being 0.98 (95% confidence interval: 0.96-0.99). In comparison, ICC at 6-month retest for SITA-fast was 0.95 and SITA-standard 0.93. Fewer points changed with the MRF, although for those that did, the MRF gave greater point-wise variability than did the SITA tests. MRF correlated strongly with HFA across 4 visits over a 6-month period, and has good test-retest reliability. MRF is suitable for monitoring visual fields in settings where conventional perimetry is not readily accessible. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Improved neural network based scene-adaptive nonuniformity correction method for infrared focal plane arrays.

    PubMed

    Lai, Rui; Yang, Yin-tang; Zhou, Duan; Li, Yue-jin

    2008-08-20

    An improved scene-adaptive nonuniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPAs) is proposed. This method simultaneously estimates the infrared detectors' parameters and eliminates the nonuniformity causing fixed pattern noise (FPN) by using a neural network (NN) approach. In the learning process of neuron parameter estimation, the traditional LMS algorithm is substituted with the newly presented variable step size (VSS) normalized least-mean square (NLMS) based adaptive filtering algorithm, which yields faster convergence, smaller misadjustment, and lower computational cost. In addition, a new NN structure is designed to estimate the desired target value, which promotes the calibration precision considerably. The proposed NUC method reaches high correction performance, which is validated by the experimental results quantitatively tested with a simulative testing sequence and a real infrared image sequence.

  14. Development of the One-Sided Nonlinear Adaptive Doppler Shift Estimation

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.; Serror, Judith A.

    2009-01-01

    The new development of a one-sided nonlinear adaptive shift estimation technique (NADSET) is introduced. The background of the algorithm and a brief overview of NADSET are presented. The new technique is applied to the wind parameter estimates from a 2-micron wavelength coherent Doppler lidar system called VALIDAR located in NASA Langley Research Center in Virginia. The new technique enhances wind parameters such as Doppler shift and power estimates in low Signal-To-Noise-Ratio (SNR) regimes using the estimates in high SNR regimes as the algorithm scans the range bins from low to high altitude. The original NADSET utilizes the statistics in both the lower and the higher range bins to refine the wind parameter estimates in between. The results of the two different approaches of NADSET are compared.

  15. Estimating power capability of aged lithium-ion batteries in presence of communication delays

    NASA Astrophysics Data System (ADS)

    Fridholm, Björn; Wik, Torsten; Kuusisto, Hannes; Klintberg, Anton

    2018-04-01

    Efficient control of electrified powertrains requires accurate estimation of the power capability of the battery for the next few seconds into the future. When implemented in a vehicle, the power estimation is part of a control loop that may contain several networked controllers which introduces time delays that may jeopardize stability. In this article, we present and evaluate an adaptive power estimation method that robustly can handle uncertain health status and time delays. A theoretical analysis shows that stability of the closed loop system can be lost if the resistance of the model is under-estimated. Stability can, however, be restored by filtering the estimated power at the expense of slightly reduced bandwidth of the signal. The adaptive algorithm is experimentally validated in lab tests using an aged lithium-ion cell subject to a high power load profile in temperatures from -20 to +25 °C. The upper voltage limit was set to 4.15 V and the lower voltage limit to 2.6 V, where significant non-linearities are occurring and the validity of the model is limited. After an initial transient when the model parameters are adapted, the prediction accuracy is within ± 2 % of the actually available power.

  16. Modeling and quantification of repolarization feature dependency on heart rate.

    PubMed

    Minchole, A; Zacur, E; Pueyo, E; Laguna, P

    2014-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". This work aims at providing an efficient method to estimate the parameters of a non linear model including memory, previously proposed to characterize rate adaptation of repolarization indices. The physiological restrictions on the model parameters have been included in the cost function in such a way that unconstrained optimization techniques such as descent optimization methods can be used for parameter estimation. The proposed method has been evaluated on electrocardiogram (ECG) recordings of healthy subjects performing a tilt test, where rate adaptation of QT and Tpeak-to-Tend (Tpe) intervals has been characterized. The proposed strategy results in an efficient methodology to characterize rate adaptation of repolarization features, improving the convergence time with respect to previous strategies. Moreover, Tpe interval adapts faster to changes in heart rate than the QT interval. In this work an efficient estimation of the parameters of a model aimed at characterizing rate adaptation of repolarization features has been proposed. The Tpe interval has been shown to be rate related and with a shorter memory lag than the QT interval.

  17. Estimating the effect of the reorganization of interactions on the adaptability of species to changing environments.

    PubMed

    Cenci, Simone; Montero-Castaño, Ana; Saavedra, Serguei

    2018-01-21

    A major challenge in community ecology is to understand how species respond to environmental changes. Previous studies have shown that the reorganization of interactions among co-occurring species can modulate their chances to adapt to novel environmental conditions. Moreover, empirical evidence has shown that these ecological dynamics typically facilitate the persistence of groups of species rather than entire communities. However, so far, we have no systematic methodology to identify those groups of species with the highest or lowest chances to adapt to new environments through a reorganization of their interactions. Yet, this could prove extremely valuable for developing new conservation strategies. Here, we introduce a theoretical framework to estimate the effect of the reorganization of interactions on the adaptability of a group of species, within a community, to novel environmental conditions. We introduce the concept of the adaptation space of a group of species based on a feasibility analysis of a population dynamics model. We define the adaptation space of a group as the set of environmental conditions that can be made compatible with its persistence thorough the reorganization of interactions among species within the group. The larger the adaptation space of a group, the larger its likelihood to adapt to a novel environment. We show that the interactions in the community outside a group can act as structural constraints and be used to quantitatively compare the size of the adaptation space among different groups of species within a community. To test our theoretical framework, we perform a data analysis on several pairs of natural and artificially perturbed ecological communities. Overall, we find that the groups of species present in both control and perturbed communities are among the ones with the largest adaptation space. We believe that the results derived from our framework point out towards new directions to understand and estimate the adaptability of species to changing environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modified visual field trend analysis.

    PubMed

    De Moraes, Carlos Gustavo V; Ritch, Robert; Tello, Celso; Liebmann, Jeffrey M

    2011-01-01

    Visual field trend analysis can be influenced by outlying values that may disproportionately affect estimation of the rate of change. We tested a modified approach to visual field trend analysis to minimize this problem. Automated pointwise linear regression (PLR) was used in glaucoma patients with ≥13 SITA-Standard 24-2 VF tests in either eye. In the control group (Group A), conventional PLR using the entire set of VF tests was carried out. In the other 3 groups (study groups), a truncated analysis was done using only the first and last 3 (Group B), first and last 4 (Group C), or first and last 5 (Group D) VF tests. We compared the global slopes (dB/y), number of eyes experiencing significant progression, and significant improvement between groups. Ninety eyes of 90 patients were evaluated. The mean number±SD of VF tests was 15.7±2.6, spanning 7.8±1.7 years. The study groups showed similar global rates of VF change as the control group (Group A=-0.48±0.5, Group B=-0.48±0.6, Group C=-0.48±0.6, Group D=-0.48±0.5 dB/y, P>0.05), and a similar number of eyes reaching a progression endpoint (Group A=53, Group B=52, Group C=49, Group D=53, P>0.05). However, Group B showed fewer eyes presenting VF improvement (false-positives). The modified VF trend-analysis showed greater specificity than conventional PLR in a population with glaucoma.

  19. The geometry of chaotic dynamics — a complex network perspective

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J.

    2011-12-01

    Recently, several complex network approaches to time series analysis have been developed and applied to study a wide range of model systems as well as real-world data, e.g., geophysical or financial time series. Among these techniques, recurrence-based concepts and prominently ɛ-recurrence networks, most faithfully represent the geometrical fine structure of the attractors underlying chaotic (and less interestingly non-chaotic) time series. In this paper we demonstrate that the well known graph theoretical properties local clustering coefficient and global (network) transitivity can meaningfully be exploited to define two new local and two new global measures of dimension in phase space: local upper and lower clustering dimension as well as global upper and lower transitivity dimension. Rigorous analytical as well as numerical results for self-similar sets and simple chaotic model systems suggest that these measures are well-behaved in most non-pathological situations and that they can be estimated reasonably well using ɛ-recurrence networks constructed from relatively short time series. Moreover, we study the relationship between clustering and transitivity dimensions on the one hand, and traditional measures like pointwise dimension or local Lyapunov dimension on the other hand. We also provide further evidence that the local clustering coefficients, or equivalently the local clustering dimensions, are useful for identifying unstable periodic orbits and other dynamically invariant objects from time series. Our results demonstrate that ɛ-recurrence networks exhibit an important link between dynamical systems and graph theory.

  20. Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions.

    PubMed

    Chaudhuri, Shomesh E; Merfeld, Daniel M

    2013-03-01

    Psychophysics generally relies on estimating a subject's ability to perform a specific task as a function of an observed stimulus. For threshold studies, the fitted functions are called psychometric functions. While fitting psychometric functions to data acquired using adaptive sampling procedures (e.g., "staircase" procedures), investigators have encountered a bias in the spread ("slope" or "threshold") parameter that has been attributed to the serial dependency of the adaptive data. Using simulations, we confirm this bias for cumulative Gaussian parametric maximum likelihood fits on data collected via adaptive sampling procedures, and then present a bias-reduced maximum likelihood fit that substantially reduces the bias without reducing the precision of the spread parameter estimate and without reducing the accuracy or precision of the other fit parameters. As a separate topic, we explain how to implement this bias reduction technique using generalized linear model fits as well as other numeric maximum likelihood techniques such as the Nelder-Mead simplex. We then provide a comparison of the iterative bootstrap and observed information matrix techniques for estimating parameter fit variance from adaptive sampling procedure data sets. The iterative bootstrap technique is shown to be slightly more accurate; however, the observed information technique executes in a small fraction (0.005 %) of the time required by the iterative bootstrap technique, which is an advantage when a real-time estimate of parameter fit variance is required.

  1. A Robust Step Detection Algorithm and Walking Distance Estimation Based on Daily Wrist Activity Recognition Using a Smart Band.

    PubMed

    Trong Bui, Duong; Nguyen, Nhan Duc; Jeong, Gu-Min

    2018-06-25

    Human activity recognition and pedestrian dead reckoning are an interesting field because of their importance utilities in daily life healthcare. Currently, these fields are facing many challenges, one of which is the lack of a robust algorithm with high performance. This paper proposes a new method to implement a robust step detection and adaptive distance estimation algorithm based on the classification of five daily wrist activities during walking at various speeds using a smart band. The key idea is that the non-parametric adaptive distance estimator is performed after two activity classifiers and a robust step detector. In this study, two classifiers perform two phases of recognizing five wrist activities during walking. Then, a robust step detection algorithm, which is integrated with an adaptive threshold, peak and valley correction algorithm, is applied to the classified activities to detect the walking steps. In addition, the misclassification activities are fed back to the previous layer. Finally, three adaptive distance estimators, which are based on a non-parametric model of the average walking speed, calculate the length of each strike. The experimental results show that the average classification accuracy is about 99%, and the accuracy of the step detection is 98.7%. The error of the estimated distance is 2.2⁻4.2% depending on the type of wrist activities.

  2. Nonparametric Stochastic Model for Uncertainty Quantifi cation of Short-term Wind Speed Forecasts

    NASA Astrophysics Data System (ADS)

    AL-Shehhi, A. M.; Chaouch, M.; Ouarda, T.

    2014-12-01

    Wind energy is increasing in importance as a renewable energy source due to its potential role in reducing carbon emissions. It is a safe, clean, and inexhaustible source of energy. The amount of wind energy generated by wind turbines is closely related to the wind speed. Wind speed forecasting plays a vital role in the wind energy sector in terms of wind turbine optimal operation, wind energy dispatch and scheduling, efficient energy harvesting etc. It is also considered during planning, design, and assessment of any proposed wind project. Therefore, accurate prediction of wind speed carries a particular importance and plays significant roles in the wind industry. Many methods have been proposed in the literature for short-term wind speed forecasting. These methods are usually based on modeling historical fixed time intervals of the wind speed data and using it for future prediction. The methods mainly include statistical models such as ARMA, ARIMA model, physical models for instance numerical weather prediction and artificial Intelligence techniques for example support vector machine and neural networks. In this paper, we are interested in estimating hourly wind speed measures in United Arab Emirates (UAE). More precisely, we predict hourly wind speed using a nonparametric kernel estimation of the regression and volatility functions pertaining to nonlinear autoregressive model with ARCH model, which includes unknown nonlinear regression function and volatility function already discussed in the literature. The unknown nonlinear regression function describe the dependence between the value of the wind speed at time t and its historical data at time t -1, t - 2, … , t - d. This function plays a key role to predict hourly wind speed process. The volatility function, i.e., the conditional variance given the past, measures the risk associated to this prediction. Since the regression and the volatility functions are supposed to be unknown, they are estimated using nonparametric kernel methods. In addition, to the pointwise hourly wind speed forecasts, a confidence interval is also provided which allows to quantify the uncertainty around the forecasts.

  3. Modeling update for the Thirty Meter Telescope laser guide star dual-conjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent

    2010-07-01

    This paper describes the modeling efforts undertaken in the past couple of years to derive wavefront error (WFE) performance estimates for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility laser guide star (LGS) dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The estimates describe the expected performance of NFIRAOS as a function of seeing on Mauna Kea, zenith angle, and galactic latitude (GL). They have been developed through a combination of integrated AO simulations, side analyses, allocations, lab and lidar experiments.

  4. Estimated spectrum adaptive postfilter and the iterative prepost filtering algirighms

    NASA Technical Reports Server (NTRS)

    Linares, Irving (Inventor)

    2004-01-01

    The invention presents The Estimated Spectrum Adaptive Postfilter (ESAP) and the Iterative Prepost Filter (IPF) algorithms. These algorithms model a number of image-adaptive post-filtering and pre-post filtering methods. They are designed to minimize Discrete Cosine Transform (DCT) blocking distortion caused when images are highly compressed with the Joint Photographic Expert Group (JPEG) standard. The ESAP and the IPF techniques of the present invention minimize the mean square error (MSE) to improve the objective and subjective quality of low-bit-rate JPEG gray-scale images while simultaneously enhancing perceptual visual quality with respect to baseline JPEG images.

  5. Quality assessment and control of finite element solutions

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Babuska, Ivo

    1987-01-01

    Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.

  6. A Monte Carlo Simulation Investigating the Validity and Reliability of Ability Estimation in Item Response Theory with Speeded Computer Adaptive Tests

    ERIC Educational Resources Information Center

    Schmitt, T. A.; Sass, D. A.; Sullivan, J. R.; Walker, C. M.

    2010-01-01

    Imposed time limits on computer adaptive tests (CATs) can result in examinees having difficulty completing all items, thus compromising the validity and reliability of ability estimates. In this study, the effects of speededness were explored in a simulated CAT environment by varying examinee response patterns to end-of-test items. Expectedly,…

  7. Adaptive control of Parkinson's state based on a nonlinear computational model with unknown parameters.

    PubMed

    Su, Fei; Wang, Jiang; Deng, Bin; Wei, Xi-Le; Chen, Ying-Yuan; Liu, Chen; Li, Hui-Yan

    2015-02-01

    The objective here is to explore the use of adaptive input-output feedback linearization method to achieve an improved deep brain stimulation (DBS) algorithm for closed-loop control of Parkinson's state. The control law is based on a highly nonlinear computational model of Parkinson's disease (PD) with unknown parameters. The restoration of thalamic relay reliability is formulated as the desired outcome of the adaptive control methodology, and the DBS waveform is the control input. The control input is adjusted in real time according to estimates of unknown parameters as well as the feedback signal. Simulation results show that the proposed adaptive control algorithm succeeds in restoring the relay reliability of the thalamus, and at the same time achieves accurate estimation of unknown parameters. Our findings point to the potential value of adaptive control approach that could be used to regulate DBS waveform in more effective treatment of PD.

  8. An approach enabling adaptive FEC for OFDM in fiber-VLLC system

    NASA Astrophysics Data System (ADS)

    Wei, Yiran; He, Jing; Deng, Rui; Shi, Jin; Chen, Shenghai; Chen, Lin

    2017-12-01

    In this paper, we propose an orthogonal circulant matrix transform (OCT)-based adaptive frame-level-forward error correction (FEC) scheme for fiber-visible laser light communication (VLLC) system and experimentally demonstrate by Reed-Solomon (RS) Code. In this method, no extra bits are spent for adaptive message, except training sequence (TS), which is simultaneously used for synchronization and channel estimation. Therefore, RS-coding can be adaptively performed frames by frames via the last received codeword-error-rate (CER) feedback estimated by the TSs of the previous few OFDM frames. In addition, the experimental results exhibit that over 20 km standard single-mode fiber (SSMF) and 8 m visible light transmission, the costs of RS codewords are at most 14.12% lower than those of conventional adaptive subcarrier-RS-code based 16-QAM OFDM at bit error rate (BER) of 10-5.

  9. Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.

    PubMed

    Smith, J E

    2012-01-01

    Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes outperform global reward schemes in combinatorial spaces, unlike in continuous spaces. An analysis of evolving meme behaviour is used to explain these findings.

  10. Comparative study of adaptive radiations with an example using parasitic flatworms (Platyhelminthes): Cercomeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, D.R.; McLennan, D.A.

    1993-11-01

    Studies of adaptive radiations require robust phylogenies, estimates of species numbers for monophyletic groups within clades, assessments of the adaptive value of putative key innovations, and estimates of the frequency of speciation modes. Four criteria are necessary to identify an adaptive radiation within the parasitic platyhelminths: (1) a group contains significantly more species than its sister group, (2) species richness is apomorphic, (3) apomorphic traits enhance the potential for adaptively driven modes of speciation (sympatric speciation and speciation by peripheral isolation via host switching), and (4) the frequency of adaptively driven speciation modes is high within the group when comparedmore » with data from free-living groups. Only the species-rich Monogenea fulfill all four criteria. The Digenea and Eucestoda also are more species rich than their sister groups, their species richness is derived, and they possess unique characters that increase the potential for host switching to occur. However, because there is not enough information to determine whether the frequency of adaptive modes of speciation is high for those groups, we cannot yet assert that their radiations have been adaptive. 102 refs., 3 figs., 1 tab.« less

  11. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    PubMed Central

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  12. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  13. Estimating Skin Cancer Risk: Evaluating Mobile Computer-Adaptive Testing.

    PubMed

    Djaja, Ngadiman; Janda, Monika; Olsen, Catherine M; Whiteman, David C; Chien, Tsair-Wei

    2016-01-22

    Response burden is a major detriment to questionnaire completion rates. Computer adaptive testing may offer advantages over non-adaptive testing, including reduction of numbers of items required for precise measurement. Our aim was to compare the efficiency of non-adaptive (NAT) and computer adaptive testing (CAT) facilitated by Partial Credit Model (PCM)-derived calibration to estimate skin cancer risk. We used a random sample from a population-based Australian cohort study of skin cancer risk (N=43,794). All 30 items of the skin cancer risk scale were calibrated with the Rasch PCM. A total of 1000 cases generated following a normal distribution (mean [SD] 0 [1]) were simulated using three Rasch models with three fixed-item (dichotomous, rating scale, and partial credit) scenarios, respectively. We calculated the comparative efficiency and precision of CAT and NAT (shortening of questionnaire length and the count difference number ratio less than 5% using independent t tests). We found that use of CAT led to smaller person standard error of the estimated measure than NAT, with substantially higher efficiency but no loss of precision, reducing response burden by 48%, 66%, and 66% for dichotomous, Rating Scale Model, and PCM models, respectively. CAT-based administrations of the skin cancer risk scale could substantially reduce participant burden without compromising measurement precision. A mobile computer adaptive test was developed to help people efficiently assess their skin cancer risk.

  14. Stochastic Surface Mesh Reconstruction

    NASA Astrophysics Data System (ADS)

    Ozendi, M.; Akca, D.; Topan, H.

    2018-05-01

    A generic and practical methodology is presented for 3D surface mesh reconstruction from the terrestrial laser scanner (TLS) derived point clouds. It has two main steps. The first step deals with developing an anisotropic point error model, which is capable of computing the theoretical precisions of 3D coordinates of each individual point in the point cloud. The magnitude and direction of the errors are represented in the form of error ellipsoids. The following second step is focused on the stochastic surface mesh reconstruction. It exploits the previously determined error ellipsoids by computing a point-wise quality measure, which takes into account the semi-diagonal axis length of the error ellipsoid. The points only with the least errors are used in the surface triangulation. The remaining ones are automatically discarded.

  15. High-Speed Linear Raman Spectroscopy for Instability Analysis of a Bluff Body Flame

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Fischer, David

    2013-01-01

    We report a high-speed laser diagnostics technique based on point-wise linear Raman spectroscopy for measuring the frequency content of a CH4-air premixed flame stabilized behind a circular bluff body. The technique, which primarily employs a Nd:YLF pulsed laser and a fast image-intensified CCD camera, successfully measures the time evolution of scalar parameters (N2, O2, CH4, and H2O) in the vortex-induced flame instability at a data rate of 1 kHz. Oscillation of the V-shaped flame front is quantified through frequency analysis of the combustion species data and their correlations. This technique promises to be a useful diagnostics tool for combustion instability studies.

  16. Discretized energy minimization in a wave guide with point sources

    NASA Technical Reports Server (NTRS)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  17. A Priori Bound on the Velocity in Axially Symmetric Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Lei, Zhen; Navas, Esteban A.; Zhang, Qi S.

    2016-01-01

    Let v be the velocity of Leray-Hopf solutions to the axially symmetric three-dimensional Navier-Stokes equations. Under suitable conditions for initial values, we prove the following a priori bound |v(x, t)| ≤ C |ln r|^{1/2}/r^2, qquad 0 < r ≤ 1/2, where r is the distance from x to the z axis, and C is a constant depending only on the initial value. This provides a pointwise upper bound (worst case scenario) for possible singularities, while the recent papers (Chiun-Chuan et al., Commun PDE 34(1-3):203-232, 2009; Koch et al., Acta Math 203(1):83-105, 2009) gave a lower bound. The gap is polynomial order 1 modulo a half log term.

  18. Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.

    2016-01-01

    The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.

  19. A projection method for coupling two-phase VOF and fluid structure interaction simulations

    NASA Astrophysics Data System (ADS)

    Cerroni, Daniele; Da Vià, Roberto; Manservisi, Sandro

    2018-02-01

    The study of Multiphase Fluid Structure Interaction (MFSI) is becoming of great interest in many engineering applications. In this work we propose a new algorithm for coupling a FSI problem to a multiphase interface advection problem. An unstructured computational grid and a Cartesian mesh are used for the FSI and the VOF problem, respectively. The coupling between these two different grids is obtained by interpolating the velocity field into the Cartesian grid through a projection operator that can take into account the natural movement of the FSI domain. The piecewise color function is interpolated back on the unstructured grid with a Galerkin interpolation to obtain a point-wise function which allows the direct computation of the surface tension forces.

  20. Topological Vulnerability Analysis

    NASA Astrophysics Data System (ADS)

    Jajodia, Sushil; Noel, Steven

    Traditionally, network administrators rely on labor-intensive processes for tracking network configurations and vulnerabilities. This requires a great deal of expertise, and is error prone because of the complexity of networks and associated security data. The interdependencies of network vulnerabilities make traditional point-wise vulnerability analysis inadequate. We describe a Topological Vulnerability Analysis (TVA) approach that analyzes vulnerability dependencies and shows all possible attack paths into a network. From models of the network vulnerabilities and potential attacker exploits, we compute attack graphs that convey the impact of individual and combined vulnerabilities on overall security. TVA finds potential paths of vulnerability through a network, showing exactly how attackers may penetrate a network. From this, we identify key vulnerabilities and provide strategies for protection of critical network assets.

  1. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    NASA Technical Reports Server (NTRS)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  2. Approximation of discrete-time LQG compensators for distributed systems with boundary input and unbounded measurement

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    The approximation of optimal discrete-time linear quadratic Gaussian (LQG) compensators for distributed parameter control systems with boundary input and unbounded measurement is considered. The approach applies to a wide range of problems that can be formulated in a state space on which both the discrete-time input and output operators are continuous. Approximating compensators are obtained via application of the LQG theory and associated approximation results for infinite dimensional discrete-time control systems with bounded input and output. Numerical results for spline and modal based approximation schemes used to compute optimal compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise measurement of temperature are presented and discussed.

  3. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  4. Palatini wormholes and energy conditions from the prism of general relativity.

    PubMed

    Bejarano, Cecilia; Lobo, Francisco S N; Olmo, Gonzalo J; Rubiera-Garcia, Diego

    2017-01-01

    Wormholes are hypothetical shortcuts in spacetime that in general relativity unavoidably violate all of the pointwise energy conditions. In this paper, we consider several wormhole spacetimes that, as opposed to the standard designer procedure frequently employed in the literature, arise directly from gravitational actions including additional terms resulting from contractions of the Ricci tensor with the metric, and which are formulated assuming independence between metric and connection (Palatini approach). We reinterpret such wormhole solutions under the prism of General Relativity and study the matter sources that thread them. We discuss the size of violation of the energy conditions in different cases and how this is related to the same spacetimes when viewed from the modified gravity side.

  5. An Alternate Set of Basis Functions for the Electromagnetic Solution of Arbitrarily-Shaped, Three-Dimensional, Closed, Conducting Bodies Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2008-01-01

    In this work, we present an alternate set of basis functions, each defined over a pair of planar triangular patches, for the method of moments solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped, closed, conducting surfaces. The present basis functions are point-wise orthogonal to the pulse basis functions previously defined. The prime motivation to develop the present set of basis functions is to utilize them for the electromagnetic solution of dielectric bodies using a surface integral equation formulation which involves both electric and magnetic cur- rents. However, in the present work, only the conducting body solution is presented and compared with other data.

  6. Validity of an adaptation of the Framingham cardiovascular risk function: the VERIFICA study

    PubMed Central

    Marrugat, Jaume; Subirana, Isaac; Comín, Eva; Cabezas, Carmen; Vila, Joan; Elosua, Roberto; Nam, Byung‐Ho; Ramos, Rafel; Sala, Joan; Solanas, Pascual; Cordón, Ferran; Gené‐Badia, Joan; D'Agostino, Ralph B

    2007-01-01

    Background To assess the reliability and accuracy of the Framingham coronary heart disease (CHD) risk function adapted by the Registre Gironí del Cor (REGICOR) investigators in Spain. Methods A 5‐year follow‐up study was completed in 5732 participants aged 35–74 years. The adaptation consisted of using in the function the average population risk factor prevalence and the cumulative incidence observed in Spain instead of those from Framingham in a Cox proportional hazards model. Reliability and accuracy in estimating the observed cumulative incidence were tested with the area under the curve comparison and goodness‐of‐fit test, respectively. Results The Kaplan–Meier CHD cumulative incidence during the follow‐up was 4.0% in men and 1.7% in women. The original Framingham function and the REGICOR adapted estimates were 10.4% and 4.8%, and 3.6% and 2.0%, respectively. The REGICOR‐adapted function's estimate did not differ from the observed cumulated incidence (goodness of fit in men, p = 0.078, in women, p = 0.256), whereas all the original Framingham function estimates differed significantly (p<0.001). Reliabilities of the original Framingham function and of the best Cox model fit with the study data were similar in men (area under the receiver operator characteristic curve 0.68 and 0.69, respectively, p = 0.273), whereas the best Cox model fitted better in women (0.73 and 0.81, respectively, p<0.001). Conclusion The Framingham function adapted to local population characteristics accurately and reliably predicted the 5‐year CHD risk for patients aged 35–74 years, in contrast with the original function, which consistently overestimated the actual risk. PMID:17183014

  7. Efficient, adaptive estimation of two-dimensional firing rate surfaces via Gaussian process methods.

    PubMed

    Rad, Kamiar Rahnama; Paninski, Liam

    2010-01-01

    Estimating two-dimensional firing rate maps is a common problem, arising in a number of contexts: the estimation of place fields in hippocampus, the analysis of temporally nonstationary tuning curves in sensory and motor areas, the estimation of firing rates following spike-triggered covariance analyses, etc. Here we introduce methods based on Gaussian process nonparametric Bayesian techniques for estimating these two-dimensional rate maps. These techniques offer a number of advantages: the estimates may be computed efficiently, come equipped with natural errorbars, adapt their smoothness automatically to the local density and informativeness of the observed data, and permit direct fitting of the model hyperparameters (e.g., the prior smoothness of the rate map) via maximum marginal likelihood. We illustrate the method's flexibility and performance on a variety of simulated and real data.

  8. Predicting Loss-of-Control Boundaries Toward a Piloting Aid

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.

  9. An Application of the Rasch Model to Computerized Adaptive Testing.

    ERIC Educational Resources Information Center

    Wisniewski, Dennis R.

    Three questions concerning the Binary Search Method (BSM) of computerized adaptive testing were studied: (1) whether it provided a reliable and valid estimation of examinee ability; (2) its effect on examinee attitudes toward computerized adaptive testing and conventional paper-and-pencil testing; and (3) the relationship between item response…

  10. Longitudinal Examination of Adaptive Behavior in Autism Spectrum Disorders: Influence of Executive Function

    ERIC Educational Resources Information Center

    Pugliese, Cara E.; Anthony, Laura Gutermuth; Strang, John F.; Dudley, Katerina; Wallace, Gregory L.; Naiman, Daniel Q.; Kenworthy, Lauren

    2016-01-01

    This study characterizes longitudinal change in adaptive behavior in 64 children and adolescents with autism spectrum disorder (ASD) without intellectual disability evaluated on multiple occasions, and examines whether prior estimate of executive function (EF) problems predicts future adaptive behavior scores. Compared to standardized estimates…

  11. Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Burken, John; Ishihara, Abraham

    2011-01-01

    This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.

  12. Empirically Estimating the Potential for Farm-Level Adaptation to Climate Change in Western European Agriculture

    NASA Astrophysics Data System (ADS)

    Moore, F. C.; Lobell, D. B.

    2013-12-01

    Agriculture is one of the economic sectors most exposed to climate change and estimating the sensitivity of food production to these changes is critical for determining the severity of climate change impacts and for informing both adaptation and mitigation policy. While climate change might have adverse effects in many areas, it has long been recognized that farmers have a suite of adaptation options at their disposal including, inter alia, changing planting date, varieties, crops, or the mix and quantity of inputs applied. These adaptations may significantly reduce the adverse impacts of climate change but the potential effectiveness of these options and the speed with which farmers will adopt them remain uncertain. We estimate the sensitivity of crop yields and farm profits in western Europe to climate change with and without the adoption of on-farm adaptations. We use cross-sectional variation across farms to define the long-run response function that includes adaptation and inter-annual variation within farms to define the short-run response function without adaptation. The difference between these can be interpreted as the potential for adaptation. We find that future warming will have a large adverse impact on wheat and barley yields and that adaptation will only be able to mitigate a small fraction of this. Maize, oilseed and sugarbeet yields are more modestly affected and adaptation is more effective for these crops. Farm profits could increase slightly under moderate amounts of warming if adaptations are adopted but will decline in the absence of adaptation. A decomposition of variance gives the relative importance of different sources of uncertainty in projections of climate change impacts. We find that in most cases uncertainty over future adaptation pathways (whether farmers will or will not adopt beneficial adaptations) is the most important source of uncertainty in projecting the effect of temperature changes on crop yields and farm profits. This source of uncertainty dominates both uncertainty over temperature projections (climate uncertainty) and uncertainty over how sensitive crops or profits are to changes in temperature (response uncertainty). Therefore, constraining how quickly farmers are likely to adapt will be essential for improving our understanding of how climate change will affect food production over the next few decades.

  13. Methods and Apparatus for Reducing Multipath Signal Error Using Deconvolution

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor); Lau, Kenneth H. (Inventor)

    1999-01-01

    A deconvolution approach to adaptive signal processing has been applied to the elimination of signal multipath errors as embodied in one preferred embodiment in a global positioning system receiver. The method and receiver of the present invention estimates then compensates for multipath effects in a comprehensive manner. Application of deconvolution, along with other adaptive identification and estimation techniques, results in completely novel GPS (Global Positioning System) receiver architecture.

  14. Adaptive noise reduction circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1995-01-01

    A noise reduction circuit for a hearing aid having an adaptive filter for producing a signal which estimates the noise components present in an input signal. The circuit includes a second filter for receiving the noise-estimating signal and modifying it as a function of a user's preference or as a function of an expected noise environment. The circuit also includes a gain control for adjusting the magnitude of the modified noise-estimating signal, thereby allowing for the adjustment of the magnitude of the circuit response. The circuit also includes a signal combiner for combining the input signal with the adjusted noise-estimating signal to produce a noise reduced output signal.

  15. Log-polar mapping-based scale space tracking with adaptive target response

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Wen, Gongjian; Kuai, Yangliu; Zhang, Ximing

    2017-05-01

    Correlation filter-based tracking has exhibited impressive robustness and accuracy in recent years. Standard correlation filter-based trackers are restricted to translation estimation and equipped with fixed target response. These trackers produce an inferior performance when encountered with a significant scale variation or appearance change. We propose a log-polar mapping-based scale space tracker with an adaptive target response. This tracker transforms the scale variation of the target in the Cartesian space into a shift along the logarithmic axis in the log-polar space. A one-dimensional scale correlation filter is learned online to estimate the shift along the logarithmic axis. With the log-polar representation, scale estimation is achieved accurately without a multiresolution pyramid. To achieve an adaptive target response, a variance of the Gaussian function is computed from the response map and updated online with a learning rate parameter. Our log-polar mapping-based scale correlation filter and adaptive target response can be combined with any correlation filter-based trackers. In addition, the scale correlation filter can be extended to a two-dimensional correlation filter to achieve joint estimation of the scale variation and in-plane rotation. Experiments performed on an OTB50 benchmark demonstrate that our tracker achieves superior performance against state-of-the-art trackers.

  16. Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation

    NASA Astrophysics Data System (ADS)

    Khoromskaia, Venera; Khoromskij, Boris N.

    2014-12-01

    Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.

  17. A novel adaptive control method for induction motor based on Backstepping approach using dSpace DS 1104 control board

    NASA Astrophysics Data System (ADS)

    Ben Regaya, Chiheb; Farhani, Fethi; Zaafouri, Abderrahmen; Chaari, Abdelkader

    2018-02-01

    This paper presents a new adaptive Backstepping technique to handle the induction motor (IM) rotor resistance tracking problem. The proposed solution leads to improve the robustness of the control system. Given the presence of static error when estimating the rotor resistance with classical methods, and the sensitivity to the load torque variation at low speed, a new Backstepping observer enhanced with an integral action of the tracking errors is presented, which can be established in two steps. The first one consists to estimate the rotor flux using a Backstepping observer. The second step, defines the adaptation mechanism of the rotor resistance based on the estimated rotor-flux. The asymptotic stability of the observer is proven by Lyapunov theory. To validate the proposed solution, a simulation and experimental benchmarking of a 3 kW induction motor are presented and analyzed. The obtained results show the effectiveness of the proposed solution compared to the model reference adaptive system (MRAS) rotor resistance observer presented in other recent works.

  18. Sector-Based Detection for Hands-Free Speech Enhancement in Cars

    NASA Astrophysics Data System (ADS)

    Lathoud, Guillaume; Bourgeois, Julien; Freudenberger, Jürgen

    2006-12-01

    Adaptation control of beamforming interference cancellation techniques is investigated for in-car speech acquisition. Two efficient adaptation control methods are proposed that avoid target cancellation. The "implicit" method varies the step-size continuously, based on the filtered output signal. The "explicit" method decides in a binary manner whether to adapt or not, based on a novel estimate of target and interference energies. It estimates the average delay-sum power within a volume of space, for the same cost as the classical delay-sum. Experiments on real in-car data validate both methods, including a case with[InlineEquation not available: see fulltext.] km/h background road noise.

  19. On the role of dimensionality and sample size for unstructured and structured covariance matrix estimation

    NASA Technical Reports Server (NTRS)

    Morgera, S. D.; Cooper, D. B.

    1976-01-01

    The experimental observation that a surprisingly small sample size vis-a-vis dimension is needed to achieve good signal-to-interference ratio (SIR) performance with an adaptive predetection filter is explained. The adaptive filter requires estimates as obtained by a recursive stochastic algorithm of the inverse of the filter input data covariance matrix. The SIR performance with sample size is compared for the situations where the covariance matrix estimates are of unstructured (generalized) form and of structured (finite Toeplitz) form; the latter case is consistent with weak stationarity of the input data stochastic process.

  20. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function.

    PubMed

    Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A; Lu, Zhong-Lin; Myung, Jay I

    2016-01-01

    Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias.

  1. An optimization-based framework for anisotropic simplex mesh adaptation

    NASA Astrophysics Data System (ADS)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  2. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    PubMed

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.

  3. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function

    PubMed Central

    Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A.; Lu, Zhong-Lin; Myung, Jay I.

    2016-01-01

    Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias. PMID:27105061

  4. MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.

    PubMed

    Najjar-Khodabakhsh, Abbas; Soltani, Jafar

    2016-03-01

    In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Smoothed Biasing Forces Yield Unbiased Free Energies with the Extended-System Adaptive Biasing Force Method

    PubMed Central

    2016-01-01

    We report a theoretical description and numerical tests of the extended-system adaptive biasing force method (eABF), together with an unbiased estimator of the free energy surface from eABF dynamics. Whereas the original ABF approach uses its running estimate of the free energy gradient as the adaptive biasing force, eABF is built on the idea that the exact free energy gradient is not necessary for efficient exploration, and that it is still possible to recover the exact free energy separately with an appropriate estimator. eABF does not directly bias the collective coordinates of interest, but rather fictitious variables that are harmonically coupled to them; therefore is does not require second derivative estimates, making it easily applicable to a wider range of problems than ABF. Furthermore, the extended variables present a smoother, coarse-grain-like sampling problem on a mollified free energy surface, leading to faster exploration and convergence. We also introduce CZAR, a simple, unbiased free energy estimator from eABF trajectories. eABF/CZAR converges to the physical free energy surface faster than standard ABF for a wide range of parameters. PMID:27959559

  6. Optimized quantum sensing with a single electron spin using real-time adaptive measurements.

    PubMed

    Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  7. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  8. Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy.

    PubMed

    Yin, Xiuxing; Pan, Li

    2018-01-01

    A direct adaptive robust tracking control is proposed for trajectory tracking of 6 DOF industrial robot in the presence of parametric uncertainties, external disturbances and uncertain nonlinearities. The controller is designed based on the dynamic characteristics in the working space of the end-effector of the 6 DOF robot. The controller includes robust control term and model compensation term that is developed directly based on the input reference or desired motion trajectory. A projection-type parametric adaptation law is also designed to compensate for parametric estimation errors for the adaptive robust control. The feasibility and effectiveness of the proposed direct adaptive robust control law and the associated projection-type parametric adaptation law have been comparatively evaluated based on two 6 DOF industrial robots. The test results demonstrate that the proposed control can be employed to better maintain the desired trajectory tracking even in the presence of large parametric uncertainties and external disturbances as compared with PD controller and nonlinear controller. The parametric estimates also eventually converge to the real values along with the convergence of tracking errors, which further validate the effectiveness of the proposed parametric adaption law. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE PAGES

    Butler, Troy; Wildey, Timothy

    2018-01-01

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  10. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Troy; Wildey, Timothy

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  11. Equating Scores from Adaptive to Linear Tests

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2006-01-01

    Two local methods for observed-score equating are applied to the problem of equating an adaptive test to a linear test. In an empirical study, the methods were evaluated against a method based on the test characteristic function (TCF) of the linear test and traditional equipercentile equating applied to the ability estimates on the adaptive test…

  12. Bayesian Item Selection in Constrained Adaptive Testing Using Shadow Tests

    ERIC Educational Resources Information Center

    Veldkamp, Bernard P.

    2010-01-01

    Application of Bayesian item selection criteria in computerized adaptive testing might result in improvement of bias and MSE of the ability estimates. The question remains how to apply Bayesian item selection criteria in the context of constrained adaptive testing, where large numbers of specifications have to be taken into account in the item…

  13. Robustness of Ability Estimation to Multidimensionality in CAST with Implications to Test Assembly

    ERIC Educational Resources Information Center

    Zhang, Yanwei; Nandakumar, Ratna

    2006-01-01

    Computer Adaptive Sequential Testing (CAST) is a test delivery model that combines features of the traditional conventional paper-and-pencil testing and item-based computerized adaptive testing (CAT). The basic structure of CAST is a panel composed of multiple testlets adaptively administered to examinees at different stages. Current applications…

  14. Logs Analysis of Adapted Pedagogical Scenarios Generated by a Simulation Serious Game Architecture

    ERIC Educational Resources Information Center

    Callies, Sophie; Gravel, Mathieu; Beaudry, Eric; Basque, Josianne

    2017-01-01

    This paper presents an architecture designed for simulation serious games, which automatically generates game-based scenarios adapted to learner's learning progression. We present three central modules of the architecture: (1) the learner model, (2) the adaptation module and (3) the logs module. The learner model estimates the progression of the…

  15. Career Adapt-Abilities Scale--Portugal Form: Psychometric Properties and Relationships to Employment Status

    ERIC Educational Resources Information Center

    Duarte, M. Eduarda; Soares, M. C.; Fraga, S.; Rafael, M.; Lima, M. R.; Paredes, I.; Agostinho, R.; Djalo, A.

    2012-01-01

    The Career-Adaptabilities Scale (CAAS)--Portugal Form consists of four scales, each with seven items, which measure concern, control, curiosity, and confidence as psychosocial resources for managing occupational transitions, developmental tasks, and work traumas. Internal consistency estimates for the subscale and total scores ranged from good to…

  16. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance.

    PubMed

    Huang, Yingbo; Na, Jing; Wu, Xing; Liu, Xiaoqin; Guo, Yu

    2015-01-01

    This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Decentralized Estimation and Vision-based Guidance of Fast Autonomous Systems with Guaranteed Performance in Uncertain Environments

    DTIC Science & Technology

    2013-04-22

    Following for Unmanned Aerial Vehicles Using L1 Adaptive Augmentation of Commercial Autopilots, Journal of Guidance, Control, and Dynamics, (3 2010): 0...Naira Hovakimyan. L1 Adaptive Controller for MIMO system with Unmatched Uncertainties using Modi?ed Piecewise Constant Adaptation Law, IEEE 51st...adaptive input nominal input with  Nominal input L1 ‐based control generator  This L1 adaptive control architecture uses data from the reference model

  18. Superresolution restoration of an image sequence: adaptive filtering approach.

    PubMed

    Elad, M; Feuer, A

    1999-01-01

    This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented.

  19. Practical Recommendations for Trait-Level Estimation in the Navy Computer Adaptive Personality Scales (NCAPS)

    DTIC Science & Technology

    2010-11-30

    www.nprst.navy.mil NPRST-TN-11-1 November 2010 Practical Recommendations for -level Estimation in NCAPS Frederick L. Oswald, Ph.D. Rice University...Navy Computer Adaptive Personality Scales ( NCAPS ) Frederick L. Oswald, Ph.D. Rice University Reviewed, Approved, and Released by David M...Personality Scales ( NCAPS ) Frederick P. Oswald, Ph.D. Rice University 6100 Main St., MS25 Houston, TX 77005 Navy Personnel Research, Studies, and

  20. Adaptive Deblurring of Noisy Images

    DTIC Science & Technology

    2007-10-01

    deblurring filter adaptively by estimating energy of the signal and noise of the image to determine the passband and transition-band of the filter...The deblurring filter design criteria are: a) filter magnitude is less than one at the frequencies where the noise is stronger than the desired signal...filter is able to deblur the image by a desired amount based on the estimated or known blurring function while suppressing the noise in the output

  1. Sequential Adaptive Multi-Modality Target Detection and Classification Using Physics Based Models

    DTIC Science & Technology

    2006-09-01

    estimation," R. Raghuram, R. Raich and A.O. Hero, IEEE Intl. Conf. on Acoustics, Speech , and Signal Processing, Toulouse France, June 2006, <http...can then be solved using off-the-shelf classifiers such as radial basis functions, SVM, or kNN classifier structures. When applied to mine detection we...stage waveform selection for adaptive resource constrained state estimation," 2006 IEEE Intl. Conf. on Acoustics, Speech , and Signal Processing

  2. Adaptive tracking of a time-varying field with a quantum sensor

    NASA Astrophysics Data System (ADS)

    Bonato, Cristian; Berry, Dominic W.

    2017-05-01

    Sensors based on single spins can enable magnetic-field detection with very high sensitivity and spatial resolution. Previous work has concentrated on sensing of a constant magnetic field or a periodic signal. Here, we instead investigate the problem of estimating a field with nonperiodic variation described by a Wiener process. We propose and study, by numerical simulations, an adaptive tracking protocol based on Bayesian estimation. The tracking protocol updates the probability distribution for the magnetic field based on measurement outcomes and adapts the choice of sensing time and phase in real time. By taking the statistical properties of the signal into account, our protocol strongly reduces the required measurement time. This leads to a reduction of the error in the estimation of a time-varying signal by up to a factor of four compare with protocols that do not take this information into account.

  3. Channel Simulation in Quantum Metrology

    NASA Astrophysics Data System (ADS)

    Laurenza, Riccardo; Lupo, Cosmo; Spedalieri, Gaetana; Braunstein, Samuel L.; Pirandola, Stefano

    2018-04-01

    In this review we discuss how channel simulation can be used to simplify the most general protocols of quantum parameter estimation, where unlimited entanglement and adaptive joint operations may be employed. Whenever the unknown parameter encoded in a quantum channel is completely transferred in an environmental program state simulating the channel, the optimal adaptive estimation cannot beat the standard quantum limit. In this setting, we elucidate the crucial role of quantum teleportation as a primitive operation which allows one to completely reduce adaptive protocols over suitable teleportation-covariant channels and derive matching upper and lower bounds for parameter estimation. For these channels,wemay express the quantum Cramér Rao bound directly in terms of their Choi matrices. Our review considers both discrete- and continuous-variable systems, also presenting some new results for bosonic Gaussian channels using an alternative sub-optimal simulation. It is an open problem to design simulations for quantum channels that achieve the Heisenberg limit.

  4. Controlling gain one photon at a time

    PubMed Central

    Schwartz, Gregory W; Rieke, Fred

    2013-01-01

    Adaptation is a salient property of sensory processing. All adaptational or gain control mechanisms face the challenge of obtaining a reliable estimate of the property of the input to be adapted to and obtaining this estimate sufficiently rapidly to be useful. Here, we explore how the primate retina balances the need to change gain rapidly and reliably when photons arrive rarely at individual rod photoreceptors. We find that the weakest backgrounds that decrease the gain of the retinal output signals are similar to those that increase human behavioral threshold, and identify a novel site of gain control in the retinal circuitry. Thus, surprisingly, the gain of retinal signals begins to decrease essentially as soon as background lights are detectable; under these conditions, gain control does not rely on a highly averaged estimate of the photon count, but instead signals from individual photon absorptions trigger changes in gain. DOI: http://dx.doi.org/10.7554/eLife.00467.001 PMID:23682314

  5. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  6. Computerized Adaptive Testing: Overview and Introduction.

    ERIC Educational Resources Information Center

    Meijer, Rob R.; Nering, Michael L.

    1999-01-01

    Provides an overview of computerized adaptive testing (CAT) and introduces contributions to this special issue. CAT elements discussed include item selection, estimation of the latent trait, item exposure, measurement precision, and item-bank development. (SLD)

  7. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations

    PubMed Central

    Feischl, Michael; Gantner, Gregor; Praetorius, Dirk

    2015-01-01

    We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698

  8. A Direct Adaptive Control Approach in the Presence of Model Mismatch

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Tao, Gang; Khong, Thuan

    2009-01-01

    This paper considers the problem of direct model reference adaptive control when the plant-model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking, and simultaneous estimation of the plant-model mismatch. Because of the mismatch, the plant can no longer track the state of the original reference model, but may be able to track a new reference model that still provides satisfactory performance. The reference model is updated if the estimated plant-model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The resulting controller is a hybrid direct-indirect adaptive controller that offers asymptotic state tracking in the presence of plant-model mismatch as well as parameter deviations.

  9. Adaptive optics image restoration algorithm based on wavefront reconstruction and adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen

    2016-11-01

    To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.

  10. Transfer of adaptation reveals shared mechanism in grasping and manual estimation.

    PubMed

    Cesanek, Evan; Domini, Fulvio

    2018-06-19

    An influential idea in cognitive neuroscience is that perception and action are highly separable brain functions, implemented in distinct neural systems. In particular, this theory predicts that the functional distinction between grasping, a skilled action, and manual estimation, a type of perceptual report, should be mirrored by a split between their respective control systems. This idea has received support from a variety of dissociations, yet many of these findings have been criticized for failing to pinpoint the source of the dissociation. In this study, we devised a novel approach to this question, first targeting specific grasp control mechanisms through visuomotor adaptation, then testing whether adapted mechanisms were also involved in manual estimation - a response widely characterized as perceptual in function. Participants grasped objects in virtual reality that could appear larger or smaller than the actual physical sizes felt at the end of each grasp. After brief exposure to a size perturbation, manual estimates were biased in the same direction as the maximum grip apertures of grasping movements, indicating that the adapted mechanism is active in both tasks, regardless of the perception-action distinction. Additional experiments showed that the transfer effect generalizes broadly over space (Exp. 1B) and does not appear to arise from a change in visual perception (Exp. 2). We discuss two adaptable mechanisms that could have mediated the observed effect: (a) an afferent proprioceptive mechanism for sensing grip shape; and (b) an efferent visuomotor transformation of size information into a grip-shaping motor command. Copyright © 2018. Published by Elsevier Ltd.

  11. The never ending road: improving, adapting and refining a needs-based model to estimate future general practitioner requirements in two Australian states.

    PubMed

    Laurence, Caroline O; Heywood, Troy; Bell, Janice; Atkinson, Kaye; Karnon, Jonathan

    2018-03-27

    Health workforce planning models have been developed to estimate the future health workforce requirements for a population whom they serve and have been used to inform policy decisions. To adapt and further develop a need-based GP workforce simulation model to incorporate current and estimated geographic distribution of patients and GPs. A need-based simulation model that estimates the supply of GPs and levels of services required in South Australia (SA) was adapted and applied to the Western Australian (WA) workforce. The main outcome measure was the differences in the number of full-time equivalent (FTE) GPs supplied and required from 2013 to 2033. The base scenario estimated a shortage of GPs in WA from 2019 onwards with a shortage of 493 FTE GPs in 2033, while for SA, estimates showed an oversupply over the projection period. The WA urban and rural models estimated an urban shortage of GPs over this period. A reduced international medical graduate recruitment scenario resulted in estimated shortfalls of GPs by 2033 for WA and SA. The WA-specific scenarios of lower population projections and registrar work value resulted in a reduced shortage of FTE GPs in 2033, while unfilled training places increased the shortfall of FTE GPs in 2033. The simulation model incorporates contextual differences to its structure that allows within and cross jurisdictional comparisons of workforce estimations. It also provides greater insights into the drivers of supply and demand and the impact of changes in workforce policy, promoting more informed decision-making.

  12. Shear wave speed estimation by adaptive random sample consensus method.

    PubMed

    Lin, Haoming; Wang, Tianfu; Chen, Siping

    2014-01-01

    This paper describes a new method for shear wave velocity estimation that is capable of extruding outliers automatically without preset threshold. The proposed method is an adaptive random sample consensus (ARANDSAC) and the metric used here is finding the certain percentage of inliers according to the closest distance criterion. To evaluate the method, the simulation and phantom experiment results were compared using linear regression with all points (LRWAP) and radon sum transform (RS) method. The assessment reveals that the relative biases of mean estimation are 20.00%, 4.67% and 5.33% for LRWAP, ARANDSAC and RS respectively for simulation, 23.53%, 4.08% and 1.08% for phantom experiment. The results suggested that the proposed ARANDSAC algorithm is accurate in shear wave speed estimation.

  13. A discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive fields in solid Earth geodynamics

    NASA Astrophysics Data System (ADS)

    He, Ying; Puckett, Elbridge Gerry; Billen, Magali I.

    2017-02-01

    Mineral composition has a strong effect on the properties of rocks and is an essentially non-diffusive property in the context of large-scale mantle convection. Due to the non-diffusive nature and the origin of compositionally distinct regions in the Earth the boundaries between distinct regions can be nearly discontinuous. While there are different methods for tracking rock composition in numerical simulations of mantle convection, one must consider trade-offs between computational cost, accuracy or ease of implementation when choosing an appropriate method. Existing methods can be computationally expensive, cause over-/undershoots, smear sharp boundaries, or are not easily adapted to tracking multiple compositional fields. Here we present a Discontinuous Galerkin method with a bound preserving limiter (abbreviated as DG-BP) using a second order Runge-Kutta, strong stability-preserving time discretization method for the advection of non-diffusive fields. First, we show that the method is bound-preserving for a point-wise divergence free flow (e.g., a prescribed circular flow in a box). However, using standard adaptive mesh refinement (AMR) there is an over-shoot error (2%) because the cell average is not preserved during mesh coarsening. The effectiveness of the algorithm for convection-dominated flows is demonstrated using the falling box problem. We find that the DG-BP method maintains sharper compositional boundaries (3-5 elements) as compared to an artificial entropy-viscosity method (6-15 elements), although the over-/undershoot errors are similar. When used with AMR the DG-BP method results in fewer degrees of freedom due to smaller regions of mesh refinement in the neighborhood of the discontinuity. However, using Taylor-Hood elements and a uniform mesh there is an over-/undershoot error on the order of 0.0001%, but this error increases to 0.01-0.10% when using AMR. Therefore, for research problems in which a continuous field method is desired the DG-BP method can provide improved tracking of sharp compositional boundaries. For applications in which strict bound-preserving behavior is desired, use of an element that provides a divergence-free condition on the weak formulation (e.g., Raviart-Thomas) and an improved mesh coarsening scheme for the AMR are required.

  14. Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-05-29

    Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less

  15. A Hybrid Acoustic and Pronunciation Model Adaptation Approach for Non-native Speech Recognition

    NASA Astrophysics Data System (ADS)

    Oh, Yoo Rhee; Kim, Hong Kook

    In this paper, we propose a hybrid model adaptation approach in which pronunciation and acoustic models are adapted by incorporating the pronunciation and acoustic variabilities of non-native speech in order to improve the performance of non-native automatic speech recognition (ASR). Specifically, the proposed hybrid model adaptation can be performed at either the state-tying or triphone-modeling level, depending at which acoustic model adaptation is performed. In both methods, we first analyze the pronunciation variant rules of non-native speakers and then classify each rule as either a pronunciation variant or an acoustic variant. The state-tying level hybrid method then adapts pronunciation models and acoustic models by accommodating the pronunciation variants in the pronunciation dictionary and by clustering the states of triphone acoustic models using the acoustic variants, respectively. On the other hand, the triphone-modeling level hybrid method initially adapts pronunciation models in the same way as in the state-tying level hybrid method; however, for the acoustic model adaptation, the triphone acoustic models are then re-estimated based on the adapted pronunciation models and the states of the re-estimated triphone acoustic models are clustered using the acoustic variants. From the Korean-spoken English speech recognition experiments, it is shown that ASR systems employing the state-tying and triphone-modeling level adaptation methods can relatively reduce the average word error rates (WERs) by 17.1% and 22.1% for non-native speech, respectively, when compared to a baseline ASR system.

  16. An adaptive detector and channel estimator for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Mukai, R.; Arabshahi, P.; Yan, T. Y.

    2001-01-01

    This paper will discuss the design and testing of both the channel parameter identification system, and the adaptive threshold system, and illustrate their advantages and performance under simulated channel degradation conditions.

  17. Space Object Classification and Characterization Via Multiple Model Adaptive Estimation

    DTIC Science & Technology

    2014-07-14

    BRDF ) which models light distribution scattered from the surface due to the incident light. The BRDF at any point on the surface is a function of two...uu B vu B nu obs I u sun I u I hu (b) Reflection Geometry Fig. 2: Reflection Geometry and Space Object Shape Model of the BRDF is ρdiff(i...Space Object Classification and Characterization Via Multiple Model Adaptive Estimation Richard Linares Director’s Postdoctoral Fellow Space Science

  18. An Item-Driven Adaptive Design for Calibrating Pretest Items. Research Report. ETS RR-14-38

    ERIC Educational Resources Information Center

    Ali, Usama S.; Chang, Hua-Hua

    2014-01-01

    Adaptive testing is advantageous in that it provides more efficient ability estimates with fewer items than linear testing does. Item-driven adaptive pretesting may also offer similar advantages, and verification of such a hypothesis about item calibration was the main objective of this study. A suitability index (SI) was introduced to adaptively…

  19. False Discovery Control in Large-Scale Spatial Multiple Testing

    PubMed Central

    Sun, Wenguang; Reich, Brian J.; Cai, T. Tony; Guindani, Michele; Schwartzman, Armin

    2014-01-01

    Summary This article develops a unified theoretical and computational framework for false discovery control in multiple testing of spatial signals. We consider both point-wise and cluster-wise spatial analyses, and derive oracle procedures which optimally control the false discovery rate, false discovery exceedance and false cluster rate, respectively. A data-driven finite approximation strategy is developed to mimic the oracle procedures on a continuous spatial domain. Our multiple testing procedures are asymptotically valid and can be effectively implemented using Bayesian computational algorithms for analysis of large spatial data sets. Numerical results show that the proposed procedures lead to more accurate error control and better power performance than conventional methods. We demonstrate our methods for analyzing the time trends in tropospheric ozone in eastern US. PMID:25642138

  20. New Basis Functions for the Electromagnetic Solution of Arbitrarily-shaped, Three Dimensional Conducting Bodies Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2007-01-01

    In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.

  1. New Basis Functions for the Electromagnetic Solution of Arbitrarily-shaped, Three Dimensional Conducting Bodies using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2008-01-01

    In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.

  2. A criterion for delimiting active periods within turbulent flows

    NASA Astrophysics Data System (ADS)

    Keylock, C. J.

    2008-06-01

    Delimiting effectively the extent of the major motions in atmospheric, tidal and fluvial turbulent flows is an important task for studies of mixing and particle transport. The most common method for this (quadrant analysis) is closely linked to the turbulent stresses but subdivides active periods in the flow into separate events. A method based on the pointwise Hölder characteristics of the velocity data is introduced in this paper and applied to extract the whole duration of the active periods, within which turbulence intensities and stresses are high for some of the time. The cross-correlation structure of the Hölder series permits a simple threshold to be adopted. The technique is tested on data from a turbulent wake in a wind tunnel and flow over a forest canopy.

  3. Utilization of curve offsets in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Haseltalab, Vahid; Yaman, Ulas; Dolen, Melik

    2018-05-01

    Curve offsets are utilized in different fields of engineering and science. Additive manufacturing, which lately becomes an explicit requirement in manufacturing industry, utilizes curve offsets widely. One of the necessities of offsetting is for scaling which is required if there is shrinkage after the fabrication or if the surface quality of the resulting part is unacceptable. Therefore, some post-processing is indispensable. But the major application of curve offsets in additive manufacturing processes is for generating head trajectories. In a point-wise AM process, a correct tool-path in each layer can reduce lots of costs and increase the surface quality of the fabricated parts. In this study, different curve offset generation algorithms are analyzed to show their capabilities and disadvantages through some test cases and improvements on their drawbacks are suggested.

  4. New experimental results in atlas-based brain morphometry

    NASA Astrophysics Data System (ADS)

    Gee, James C.; Fabella, Brian A.; Fernandes, Siddharth E.; Turetsky, Bruce I.; Gur, Ruben C.; Gur, Raquel E.

    1999-05-01

    In a previous meeting, we described a computational approach to MRI morphometry, in which a spatial warp mapping a reference or atlas image into anatomic alignment with the subject is first inferred. Shape differences with respect to the atlas are then studied by calculating the pointwise Jacobian determinant for the warp, which provides a measure of the change in differential volume about a point in the reference as it transforms to its corresponding position in the subject. In this paper, the method is used to analyze sex differences in the shape and size of the corpus callosum in an ongoing study of a large population of normal controls. The preliminary results of the current analysis support findings in the literature that have observed the splenium to be larger in females than in males.

  5. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  6. Time-Average Measurement of Velocity, Density, Temperature, and Turbulence Using Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Krisie A.; Panda, Jayanta

    2004-01-01

    Measurement of time-averaged velocity, density, temperature, and turbulence in gas flows using a nonintrusive, point-wise measurement technique based on molecular Rayleigh scattering is discussed. Subsonic and supersonic flows in a 25.4-mm diameter free jet facility were studied. The developed instrumentation utilizes a Fabry-Perot interferometer to spectrally resolve molecularly scattered light from a laser beam passed through a gas flow. The spectrum of the scattered light contains information about velocity, density, and temperature of the gas. The technique uses a slow scan, low noise 16-bit depth CCD camera to record images of the fringes formed by Rayleigh scattered light passing through the interferometer. A kinetic theory model of the Rayleigh scattered light is used in a nonlinear least squares fitting routine to estimate the unknown parameters from the fringe images. The ability to extract turbulence information from the fringe image data proved to be a challenge since the fringe is broadened by not only turbulence, but also thermal fluctuations and aperture effects from collecting light over a range of scattering angles. Figure 1 illustrates broadening of a Rayleigh spectrum typical of flow conditions observed in this work due to aperture effects and turbulence for a scattering angle, chi(sub s), of 90 degrees, f/3.67 collection optics, mean flow velocity, u(sub k), of 300 m/s, and turbulent velocity fluctuations, sigma (sub uk), of 55 m/s. The greatest difficulty in processing the image data was decoupling the thermal and turbulence broadening in the spectrum. To aid in this endeavor, it was necessary to seed the ambient air with smoke and dust particulates; taking advantage of the turbulence broadening in the Mie scattering component of the spectrum of the collected light (not shown in the figure). The primary jet flow was not seeded due to the difficulty of the task. For measurement points lacking particles, velocity, density, and temperature information could reliably be recovered, however the turbulence estimates contained significant uncertainty. Resulting flow parameter estimates are presented for surveys of Mach 0.6, 0.95, and 1.4 jet flows. Velocity, density, and temperature were determined with accuracies of 5 m/s, 1.5%, and 1%, respectively, in flows with no particles present, and with accuracies of 5 m/s, 1-4%, and 2% in flows with particles. Comparison with hotwire data for the Mach 0.6 condition demonstrated turbulence estimates with accuracies of about 5 m/s outside the jet core where Mie scattering from dust/smoke particulates aided in the estimation of turbulence. Turbulence estimates could not be recovered with any significant accuracy for measurement points where no particles were present.

  7. Axioms of adaptivity

    PubMed Central

    Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.

    2014-01-01

    This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390

  8. Firefighters' cardiovascular health and fitness: An observation of adaptations that occur during firefighter training academies.

    PubMed

    Gnacinski, Stacy L; Ebersole, Kyle T; Cornell, David J; Mims, Jason; Zamzow, Aaron; Meyer, Barbara B

    2016-03-09

    Firefighters' cardiovascular fitness remains a foremost concern among fire departments and organizations, yet very little research has been conducted to examine the cardiovascular fitness adaptations that occur during firefighter training academies. To describe the cardiovascular adaptations observed among firefighter recruits during firefighter training academies using measures of estimated maximal oxygen uptake (VO2max) and heart rate recovery (ΔHR). Firefighter recruits (n = 41) enrolled in a 16-week firefighter training academy completed a 5-minute step test during the first, eighth, and sixteenth week of training. Repeated measures analysis of variance (RM ANOVA) calculations were conducted to determine changes in estimated VO2max and ΔHR. Results of the RM ANOVA calculations revealed that mean estimated VO2max and mean ΔHR differed significantly between time points: F(2, 80) = 75.525, p < 0.001, and F(2, 80) = 4.368, p = 0.016, respectively. No significant changes were observed in mean estimated VO2max and mean ΔHR beyond the eighth week of training. No significant relationship was identified between estimated VO2max and ΔHR. Although firefighter recruits' estimated VO2max and ΔHR change significantly over the course of the firefighter training academy, the measures may not be equal predictors of cardiovascular fitness.

  9. Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.

    PubMed

    Zheng, Enhao; Manca, Silvia; Yan, Tingfang; Parri, Andrea; Vitiello, Nicola; Wang, Qining

    2017-10-01

    This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AO dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we first evaluated the offline estimation performance by experiments with 12 healthy subjects walking on a treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root-mean-square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects rewore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.

  10. Adaptive Quadrature for Item Response Models. Research Report. ETS RR-06-29

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2006-01-01

    Adaptive quadrature is applied to marginal maximum likelihood estimation for item response models with normal ability distributions. Even in one dimension, significant gains in speed and accuracy of computation may be achieved.

  11. An adaptive threshold detector and channel parameter estimator for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Arabshahi, P.; Mukai, R.; Yan, T. -Y.

    2001-01-01

    This paper presents a method for optimal adaptive setting of ulse-position-modulation pulse detection thresholds, which minimizes the total probability of error for the dynamically fading optical fee space channel.

  12. Cascade and parallel combination (CPC) of adaptive filters for estimating heart rate during intensive physical exercise from photoplethysmographic signal

    PubMed Central

    Islam, Mohammad Tariqul; Tanvir Ahmed, Sk.; Zabir, Ishmam; Shahnaz, Celia

    2018-01-01

    Photoplethysmographic (PPG) signal is getting popularity for monitoring heart rate in wearable devices because of simplicity of construction and low cost of the sensor. The task becomes very difficult due to the presence of various motion artefacts. In this study, an algorithm based on cascade and parallel combination (CPC) of adaptive filters is proposed in order to reduce the effect of motion artefacts. First, preliminary noise reduction is performed by averaging two channel PPG signals. Next in order to reduce the effect of motion artefacts, a cascaded filter structure consisting of three cascaded adaptive filter blocks is developed where three-channel accelerometer signals are used as references to motion artefacts. To further reduce the affect of noise, a scheme based on convex combination of two such cascaded adaptive noise cancelers is introduced, where two widely used adaptive filters namely recursive least squares and least mean squares filters are employed. Heart rates are estimated from the noise reduced PPG signal in spectral domain. Finally, an efficient heart rate tracking algorithm is designed based on the nature of the heart rate variability. The performance of the proposed CPC method is tested on a widely used public database. It is found that the proposed method offers very low estimation error and a smooth heart rate tracking with simple algorithmic approach. PMID:29515812

  13. Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    PubMed Central

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859

  14. Blocking reduction of Landsat Thematic Mapper JPEG browse images using optimal PSNR estimated spectra adaptive postfiltering

    NASA Technical Reports Server (NTRS)

    Linares, Irving; Mersereau, Russell M.; Smith, Mark J. T.

    1994-01-01

    Two representative sample images of Band 4 of the Landsat Thematic Mapper are compressed with the JPEG algorithm at 8:1, 16:1 and 24:1 Compression Ratios for experimental browsing purposes. We then apply the Optimal PSNR Estimated Spectra Adaptive Postfiltering (ESAP) algorithm to reduce the DCT blocking distortion. ESAP reduces the blocking distortion while preserving most of the image's edge information by adaptively postfiltering the decoded image using the block's spectral information already obtainable from each block's DCT coefficients. The algorithm iteratively applied a one dimensional log-sigmoid weighting function to the separable interpolated local block estimated spectra of the decoded image until it converges to the optimal PSNR with respect to the original using a 2-D steepest ascent search. Convergence is obtained in a few iterations for integer parameters. The optimal logsig parameters are transmitted to the decoder as a negligible byte of overhead data. A unique maxima is guaranteed due to the 2-D asymptotic exponential overshoot shape of the surface generated by the algorithm. ESAP is based on a DFT analysis of the DCT basis functions. It is implemented with pixel-by-pixel spatially adaptive separable FIR postfilters. PSNR objective improvements between 0.4 to 0.8 dB are shown together with their corresponding optimal PSNR adaptive postfiltered images.

  15. Efficacy of adaptation measures to future water scarcity on a global scale

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Kanae, S.

    2015-12-01

    Water supply sources for all sector are critically important for agricultural and industrial productivity. The current rapid increase in water use is considered unsustainable and threatens human life. In our previous study (Yoshikawa et al., 2014 in HESS), we estimated the time-varying dependence of water requirements from water supply sources during past and future periods using the global water resources model, H08. The sources of water requirements were specified using four categories: rivers, large reservoirs, medium-size reservoirs, and non-local non-renewable blue water (NNBW). We also estimated ΔNNBW which is defined as an increase in NNBW from the past to the future. From the results, we could require the further development of water supply sources in order to sustain future water use. For coping with water scarcity using ΔNNBW, there is need for adaptation measure. To address adaptation measures, we need to set adaptation options which can be divided between 'Supply enhancement' and 'Demand management'. The supply enhancement includes increased storage, groundwater development, inter-basin transfer, desalination and re-use urban waste water. Demand management is defined as a set of actions controlling water demand by reducing water loss, increasing water productivity, and water re-allocation. In this study, we focus on estimating further future water demand under taking into account of several adaptation measures using H08 model.

  16. An adaptive control scheme for a flexible manipulator

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Yang, J. C. S.; Kudva, P.

    1987-01-01

    The problem of controlling a single link flexible manipulator is considered. A self-tuning adaptive control scheme is proposed which consists of a least squares on-line parameter identification of an equivalent linear model followed by a tuning of the gains of a pole placement controller using the parameter estimates. Since the initial parameter values for this model are assumed unknown, the use of arbitrarily chosen initial parameter estimates in the adaptive controller would result in undesirable transient effects. Hence, the initial stage control is carried out with a PID controller. Once the identified parameters have converged, control is transferred to the adaptive controller. Naturally, the relevant issues in this scheme are tests for parameter convergence and minimization of overshoots during control switch-over. To demonstrate the effectiveness of the proposed scheme, simulation results are presented with an analytical nonlinear dynamic model of a single link flexible manipulator.

  17. Deep neural network-based domain adaptation for classification of remote sensing images

    NASA Astrophysics Data System (ADS)

    Ma, Li; Song, Jiazhen

    2017-10-01

    We investigate the effectiveness of deep neural network for cross-domain classification of remote sensing images in this paper. In the network, class centroid alignment is utilized as a domain adaptation strategy, making the network able to transfer knowledge from the source domain to target domain on a per-class basis. Since predicted labels of target data should be used to estimate the centroid of each class, we use overall centroid alignment as a coarse domain adaptation method to improve the estimation accuracy. In addition, rectified linear unit is used as the activation function to produce sparse features, which may improve the separation capability. The proposed network can provide both aligned features and an adaptive classifier, as well as obtain label-free classification of target domain data. The experimental results using Hyperion, NCALM, and WorldView-2 remote sensing images demonstrated the effectiveness of the proposed approach.

  18. Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay.

    PubMed

    Khazaee, Mostafa; Markazi, Amir H D; Omidi, Ehsan

    2015-11-01

    In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. LMI-based adaptive reliable H∞ static output feedback control against switched actuator failures

    NASA Astrophysics Data System (ADS)

    An, Liwei; Zhai, Ding; Dong, Jiuxiang; Zhang, Qingling

    2017-08-01

    This paper investigates the H∞ static output feedback (SOF) control problem for switched linear system under arbitrary switching, where the actuator failure models are considered to depend on switching signal. An active reliable control scheme is developed by combination of linear matrix inequality (LMI) method and adaptive mechanism. First, by exploiting variable substitution and Finsler's lemma, new LMI conditions are given for designing the SOF controller. Compared to the existing results, the proposed design conditions are more relaxed and can be applied to a wider class of no-fault linear systems. Then a novel adaptive mechanism is established, where the inverses of switched failure scaling factors are estimated online to accommodate the effects of actuator failure on systems. Two main difficulties arise: first is how to design the switched adaptive laws to prevent the missing of estimating information due to switching; second is how to construct a common Lyapunov function based on a switched estimate error term. It is shown that the new method can give less conservative results than that for the traditional control design with fixed gain matrices. Finally, simulation results on the HiMAT aircraft are given to show the effectiveness of the proposed approaches.

  20. Needle Steering in Biological Tissue using Ultrasound-based Online Curvature Estimation

    PubMed Central

    Moreira, Pedro; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2014-01-01

    Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes. Accurate placement of the needle tip is important to the success of many needle procedures. The current needle steering systems depend on needle-tissue-specific data, such as maximum curvature, that is unavailable prior to an interventional procedure. In this paper, we present a novel three-dimensional adaptive steering method for flexible bevel-tipped needles that is capable of performing accurate tip placement without previous knowledge about needle curvature. The method steers the needle by integrating duty-cycled needle steering, online curvature estimation, ultrasound-based needle tracking, and sampling-based motion planning. The needle curvature estimation is performed online and used to adapt the path and duty cycling. We evaluated the method using experiments in a homogenous gelatin phantom, a two-layer gelatin phantom, and a biological tissue phantom composed of a gelatin layer and in vitro chicken tissue. In all experiments, virtual obstacles and targets move in order to represent the disturbances that might occur due to tissue deformation and physiological processes. The average targeting error using our new adaptive method is 40% lower than using the conventional non-adaptive duty-cycled needle steering method. PMID:26229729

  1. Phase-Based Adaptive Estimation of Magnitude-Squared Coherence Between Turbofan Internal Sensors and Far-Field Microphone Signals

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2015-01-01

    A cross-power spectrum phase based adaptive technique is discussed which iteratively determines the time delay between two digitized signals that are coherent. The adaptive delay algorithm belongs to a class of algorithms that identifies a minimum of a pattern matching function. The algorithm uses a gradient technique to find the value of the adaptive delay that minimizes a cost function based in part on the slope of a linear function that fits the measured cross power spectrum phase and in part on the standard error of the curve fit. This procedure is applied to data from a Honeywell TECH977 static-engine test. Data was obtained using a combustor probe, two turbine exit probes, and far-field microphones. Signals from this instrumentation are used estimate the post-combustion residence time in the combustor. Comparison with previous studies of the post-combustion residence time validates this approach. In addition, the procedure removes the bias due to misalignment of signals in the calculation of coherence which is a first step in applying array processing methods to the magnitude squared coherence data. The procedure also provides an estimate of the cross-spectrum phase-offset.

  2. Natural selection on thermal preference, critical thermal maxima and locomotor performance.

    PubMed

    Gilbert, Anthony L; Miles, Donald B

    2017-08-16

    Climate change is resulting in a radical transformation of the thermal quality of habitats across the globe. Whereas species have altered their distributions to cope with changing environments, the evidence for adaptation in response to rising temperatures is limited. However, to determine the potential of adaptation in response to thermal variation, we need estimates of the magnitude and direction of natural selection on traits that are assumed to increase persistence in warmer environments. Most inferences regarding physiological adaptation are based on interspecific analyses, and those of selection on thermal traits are scarce. Here, we estimate natural selection on major thermal traits used to assess the vulnerability of ectothermic organisms to altered thermal niches. We detected significant directional selection favouring lizards with higher thermal preferences and faster sprint performance at their optimal temperature. Our analyses also revealed correlational selection between thermal preference and critical thermal maxima, where individuals that preferred warmer body temperatures with cooler critical thermal maxima were favoured by selection. Recent published estimates of heritability for thermal traits suggest that, in concert with the strong selective pressures we demonstrate here, evolutionary adaptation may promote long-term persistence of ectotherms in altered thermal environments. © 2017 The Author(s).

  3. Adapt-N: A Cloud-Based Computational Tool for Crop Nitrogen Management that Improves Production and Environmental Outcomes

    NASA Astrophysics Data System (ADS)

    van Es, Harold; Sela, Shai; Marjerison, Rebecca; Melkonian, Jeff

    2016-04-01

    Maize production accounts for the largest share of crop land area in the US and is the largest consumer of nitrogen (N) fertilizers, while also having low N use efficiency. Routine application of N fertilizer has led to well-documented environmental problems and social costs. Adapt-N is a computational tool that combines soil, crop and management information with near-real-time weather data to estimate optimum N application rates for maize. Its cloud-based implementation allows for tracking and timely management of the dynamic gains and losses of N in cropping systems. This presentation will provide an overview of the tool and its implementation of farms. We also evaluated Adapt-N tool during five growing seasons (2011-to-2015) using a large dataset of both side-by-side (SBS) strip trials and multi-N rate experiments. The SBS trials consisted of 115 on-farm strip trials in Iowa and New York, each trial including yield results from replicated field-scale plots involving two sidedress N rate treatments: Adapt-N-estimated and Grower-selected (conventional). The Adapt-N rates were on average 53 and 30 kg ha-1 lower than Grower rates for NY and IA, respectively (-34% overall), with no statistically significant difference in yields. On average, Adapt-N rates increased grower profits by 63.9 ha-1 and resulted in an Adapt-N estimated decrease of 28 kg ha-1 (38%) in environmental N losses. A second set of strip trials involved multiple N-rate experiments in Wisconsin, Indiana, Ohio and NY, which allowed for the comparison of Adapt-N and conventional static recommendations to an Economic Optimum N Rate (determined through response model fitting). These trials demonstrated that Adapt-N can achieve the same profitability with greatly reduced average N inputs of 20 lbs N/ac for the Midwest and 65 lbs N/ac for the Northeast, resulting in significantly lower environmental losses. In conclusion, Adapt-N recommendations resulted in both increased growers profits and decreased environmental N losses by accounting for variable site and weather conditions.

  4. An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems: ADAPTIVE GAUSSIAN PROCESS-BASED INVERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiangjiang; Li, Weixuan; Zeng, Lingzao

    Surrogate models are commonly used in Bayesian approaches such as Markov Chain Monte Carlo (MCMC) to avoid repetitive CPU-demanding model evaluations. However, the approximation error of a surrogate may lead to biased estimations of the posterior distribution. This bias can be corrected by constructing a very accurate surrogate or implementing MCMC in a two-stage manner. Since the two-stage MCMC requires extra original model evaluations, the computational cost is still high. If the information of measurement is incorporated, a locally accurate approximation of the original model can be adaptively constructed with low computational cost. Based on this idea, we propose amore » Gaussian process (GP) surrogate-based Bayesian experimental design and parameter estimation approach for groundwater contaminant source identification problems. A major advantage of the GP surrogate is that it provides a convenient estimation of the approximation error, which can be incorporated in the Bayesian formula to avoid over-confident estimation of the posterior distribution. The proposed approach is tested with a numerical case study. Without sacrificing the estimation accuracy, the new approach achieves about 200 times of speed-up compared to our previous work using two-stage MCMC.« less

  5. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  6. Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata

    Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to themore » OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.« less

  7. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  8. New developments of the Extended Quadrature Method of Moments to solve Population Balance Equations

    NASA Astrophysics Data System (ADS)

    Pigou, Maxime; Morchain, Jérôme; Fede, Pascal; Penet, Marie-Isabelle; Laronze, Geoffrey

    2018-07-01

    Population Balance Models have a wide range of applications in many industrial fields as they allow accounting for heterogeneity among properties which are crucial for some system modelling. They actually describe the evolution of a Number Density Function (NDF) using a Population Balance Equation (PBE). For instance, they are applied to gas-liquid columns or stirred reactors, aerosol technology, crystallisation processes, fine particles or biological systems. There is a significant interest for fast, stable and accurate numerical methods in order to solve for PBEs, a class of such methods actually does not solve directly the NDF but resolves their moments. These methods of moments, and in particular quadrature-based methods of moments, have been successfully applied to a variety of systems. Point-wise values of the NDF are sometimes required but are not directly accessible from the moments. To address these issues, the Extended Quadrature Method of Moments (EQMOM) has been developed in the past few years and approximates the NDF, from its moments, as a convex mixture of Kernel Density Functions (KDFs) of the same parametric family. In the present work EQMOM is further developed on two aspects. The main one is a significant improvement of the core iterative procedure of that method, the corresponding reduction of its computational cost is estimated to range from 60% up to 95%. The second aspect is an extension of EQMOM to two new KDFs used for the approximation, the Weibull and the Laplace kernels. All MATLAB source codes used for this article are provided with this article.

  9. Reliable video transmission over fading channels via channel state estimation

    NASA Astrophysics Data System (ADS)

    Kumwilaisak, Wuttipong; Kim, JongWon; Kuo, C.-C. Jay

    2000-04-01

    Transmission of continuous media such as video over time- varying wireless communication channels can benefit from the use of adaptation techniques in both source and channel coding. An adaptive feedback-based wireless video transmission scheme is investigated in this research with special emphasis on feedback-based adaptation. To be more specific, an interactive adaptive transmission scheme is developed by letting the receiver estimate the channel state information and send it back to the transmitter. By utilizing the feedback information, the transmitter is capable of adapting the level of protection by changing the flexible RCPC (rate-compatible punctured convolutional) code ratio depending on the instantaneous channel condition. The wireless channel is modeled as a fading channel, where the long-term and short- term fading effects are modeled as the log-normal fading and the Rayleigh flat fading, respectively. Then, its state (mainly the long term fading portion) is tracked and predicted by using an adaptive LMS (least mean squares) algorithm. By utilizing the delayed feedback on the channel condition, the adaptation performance of the proposed scheme is first evaluated in terms of the error probability and the throughput. It is then extended to incorporate variable size packets of ITU-T H.263+ video with the error resilience option. Finally, the end-to-end performance of wireless video transmission is compared against several non-adaptive protection schemes.

  10. Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.

    PubMed

    Chang, Ge; Lin, Lin; Yan, Hao

    2018-03-01

    Current studies on modulation and detection schemes in molecular communication mainly focus on the scenarios with static transmitters and receivers. However, mobile molecular communication is needed in many envisioned applications, such as target tracking and drug delivery. Until now, investigations about mobile molecular communication have been limited. In this paper, a static transmitter and a mobile bacterium-based receiver performing random walk are considered. In this mobile scenario, the channel impulse response changes due to the dynamic change of the distance between the transmitter and the receiver. Detection schemes based on fixed distance fail in signal detection in such a scenario. Furthermore, the intersymbol interference (ISI) effect becomes more complex due to the dynamic character of the signal which makes the estimation and mitigation of the ISI even more difficult. In this paper, an adaptive ISI mitigation method and two adaptive detection schemes are proposed for this mobile scenario. In the proposed scheme, adaptive ISI mitigation, estimation of dynamic distance, and the corresponding impulse response reconstruction are performed in each symbol interval. Based on the dynamic channel impulse response in each interval, two adaptive detection schemes, concentration-based adaptive threshold detection and peak-time-based adaptive detection, are proposed for signal detection. Simulations demonstrate that the ISI effect is significantly reduced and the adaptive detection schemes are reliable and robust for mobile molecular communication.

  11. Goal-based angular adaptivity applied to a wavelet-based discretisation of the neutral particle transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffin, Mark A., E-mail: mark.a.goffin@gmail.com; Buchan, Andrew G.; Dargaville, Steven

    2015-01-15

    A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specifiedmore » functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.« less

  12. Angular-contact ball-bearing internal load estimation algorithm using runtime adaptive relaxation

    NASA Astrophysics Data System (ADS)

    Medina, H.; Mutu, R.

    2017-07-01

    An algorithm to estimate internal loads for single-row angular contact ball bearings due to externally applied thrust loads and high-operating speeds is presented. A new runtime adaptive relaxation procedure and blending function is proposed which ensures algorithm stability whilst also reducing the number of iterations needed to reach convergence, leading to an average reduction in computation time in excess of approximately 80%. The model is validated based on a 218 angular contact bearing and shows excellent agreement compared to published results.

  13. An Adaptive Nonlinear Aircraft Maneuvering Envelope Estimation Approach for Online Applications

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Lombaerts, Thomas Jan; Acosta, Diana; Wheeler, Kevin; Kaneshige, John

    2014-01-01

    A nonlinear aircraft model is presented and used to develop an overall unified robust and adaptive approach to passive trim and maneuverability envelope estimation with uncertainty quantification. The concept of time scale separation makes this method suitable for the online characterization of altered safe maneuvering limitations after impairment. The results can be used to provide pilot feedback and/or be combined with flight planning, trajectory generation, and guidance algorithms to help maintain safe aircraft operations in both nominal and off-nominal scenarios.

  14. Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors.

    PubMed

    Pezoa, Jorge E; Hayat, Majeed M; Torres, Sergio N; Rahman, Md Saifur

    2006-06-01

    We present an adaptive technique for the estimation of nonuniformity parameters of infrared focal-plane arrays that is robust with respect to changes and uncertainties in scene and sensor characteristics. The proposed algorithm is based on using a bank of Kalman filters in parallel. Each filter independently estimates state variables comprising the gain and the bias matrices of the sensor, according to its own dynamic-model parameters. The supervising component of the algorithm then generates the final estimates of the state variables by forming a weighted superposition of all the estimates rendered by each Kalman filter. The weights are computed and updated iteratively, according to the a posteriori-likelihood principle. The performance of the estimator and its ability to compensate for fixed-pattern noise is tested using both simulated and real data obtained from two cameras operating in the mid- and long-wave infrared regime.

  15. Number of discernible object colors is a conundrum.

    PubMed

    Masaoka, Kenichiro; Berns, Roy S; Fairchild, Mark D; Moghareh Abed, Farhad

    2013-02-01

    Widely varying estimates of the number of discernible object colors have been made by using various methods over the past 100 years. To clarify the source of the discrepancies in the previous, inconsistent estimates, the number of discernible object colors is estimated over a wide range of color temperatures and illuminance levels using several chromatic adaptation models, color spaces, and color difference limens. Efficient and accurate models are used to compute optimal-color solids and count the number of discernible colors. A comprehensive simulation reveals limitations in the ability of current color appearance models to estimate the number of discernible colors even if the color solid is smaller than the optimal-color solid. The estimates depend on the color appearance model, color space, and color difference limen used. The fundamental problem lies in the von Kries-type chromatic adaptation transforms, which have an unknown effect on the ranking of the number of discernible colors at different color temperatures.

  16. Introduction to Fuzzy Set Theory

    NASA Technical Reports Server (NTRS)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  17. Digital adaptive controllers for VTOL vehicles. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.; Pratt, S. G.

    1979-01-01

    The VTOL approach and landing test (VALT) adaptive software is documented. Two self-adaptive algorithms, one based on an implicit model reference design and the other on an explicit parameter estimation technique were evaluated. The organization of the software, user options, and a nominal set of input data are presented along with a flow chart and program listing of each algorithm.

  18. Precision-Based Item Selection for Exposure Control in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Carroll, Ian A.

    2017-01-01

    Item exposure control is, relative to adaptive testing, a nascent concept that has emerged only in the last two to three decades on an academic basis as a practical issue in high-stakes computerized adaptive tests. This study aims to implement a new strategy in item exposure control by incorporating the standard error of the ability estimate into…

  19. How will climate change affect spatial planning in agricultural and natural environments? Examples from three Dutch case study regions

    NASA Astrophysics Data System (ADS)

    Blom-Zandstra, Margaretha; Paulissen, Maurice; Agricola, Herman; Schaap, Ben

    2009-11-01

    Climate change will place increasing pressure on the functioning of agricultural and natural areas in the Netherlands. Strategies to adapt these areas to stress are likely to require changes in landscape structure and management. In densely populated countries such as the Netherlands, the increased pressure of climate change on agricultural and natural areas will inevitably lead, through the necessity of spatial adaptation measures, to spatial conflicts between the sectors of agriculture and nature. An integrated approach to climate change adaptation may therefore be beneficial in limiting such sectoral conflicts. We explored the conflicting and synergistic properties of different climate adaptation strategies for agricultural and natural environments in the Netherlands. To estimate the feasibility and effectiveness of the strategies, we focussed on three case study regions with contrasting landscape structural, natural and agricultural characteristics. For each region, we estimated the expected climate-related threats and associated trade-offs for arable farming and natural areas for 2040. We describe a number of spatial and integrated adaptation strategies to mitigate these threats. Formulating adaptation strategies requires consultation of different stakeholders and deliberation between different interests. We discuss some trade-offs involved in this decision-making.

  20. Adaptive Modeling Procedure Selection by Data Perturbation.

    PubMed

    Zhang, Yongli; Shen, Xiaotong

    2015-10-01

    Many procedures have been developed to deal with the high-dimensional problem that is emerging in various business and economics areas. To evaluate and compare these procedures, modeling uncertainty caused by model selection and parameter estimation has to be assessed and integrated into a modeling process. To do this, a data perturbation method estimates the modeling uncertainty inherited in a selection process by perturbing the data. Critical to data perturbation is the size of perturbation, as the perturbed data should resemble the original dataset. To account for the modeling uncertainty, we derive the optimal size of perturbation, which adapts to the data, the model space, and other relevant factors in the context of linear regression. On this basis, we develop an adaptive data-perturbation method that, unlike its nonadaptive counterpart, performs well in different situations. This leads to a data-adaptive model selection method. Both theoretical and numerical analysis suggest that the data-adaptive model selection method adapts to distinct situations in that it yields consistent model selection and optimal prediction, without knowing which situation exists a priori. The proposed method is applied to real data from the commodity market and outperforms its competitors in terms of price forecasting accuracy.

Top