Zero-truncated negative binomial - Erlang distribution
NASA Astrophysics Data System (ADS)
Bodhisuwan, Winai; Pudprommarat, Chookait; Bodhisuwan, Rujira; Saothayanun, Luckhana
2017-11-01
The zero-truncated negative binomial-Erlang distribution is introduced. It is developed from negative binomial-Erlang distribution. In this work, the probability mass function is derived and some properties are included. The parameters of the zero-truncated negative binomial-Erlang distribution are estimated by using the maximum likelihood estimation. Finally, the proposed distribution is applied to real data, the number of methamphetamine in the Bangkok, Thailand. Based on the results, it shows that the zero-truncated negative binomial-Erlang distribution provided a better fit than the zero-truncated Poisson, zero-truncated negative binomial, zero-truncated generalized negative-binomial and zero-truncated Poisson-Lindley distributions for this data.
Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan
2011-11-01
To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P < 0.0001) based on testing by the Lagrangemultiplier. Therefore, the over-dispersion dispersed data using a modified Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.
Simulation on Poisson and negative binomial models of count road accident modeling
NASA Astrophysics Data System (ADS)
Sapuan, M. S.; Razali, A. M.; Zamzuri, Z. H.; Ibrahim, K.
2016-11-01
Accident count data have often been shown to have overdispersion. On the other hand, the data might contain zero count (excess zeros). The simulation study was conducted to create a scenarios which an accident happen in T-junction with the assumption the dependent variables of generated data follows certain distribution namely Poisson and negative binomial distribution with different sample size of n=30 to n=500. The study objective was accomplished by fitting Poisson regression, negative binomial regression and Hurdle negative binomial model to the simulated data. The model validation was compared and the simulation result shows for each different sample size, not all model fit the data nicely even though the data generated from its own distribution especially when the sample size is larger. Furthermore, the larger sample size indicates that more zeros accident count in the dataset.
Jiang, Honghua; Ni, Xiao; Huster, William; Heilmann, Cory
2015-01-01
Hypoglycemia has long been recognized as a major barrier to achieving normoglycemia with intensive diabetic therapies. It is a common safety concern for the diabetes patients. Therefore, it is important to apply appropriate statistical methods when analyzing hypoglycemia data. Here, we carried out bootstrap simulations to investigate the performance of the four commonly used statistical models (Poisson, negative binomial, analysis of covariance [ANCOVA], and rank ANCOVA) based on the data from a diabetes clinical trial. Zero-inflated Poisson (ZIP) model and zero-inflated negative binomial (ZINB) model were also evaluated. Simulation results showed that Poisson model inflated type I error, while negative binomial model was overly conservative. However, after adjusting for dispersion, both Poisson and negative binomial models yielded slightly inflated type I errors, which were close to the nominal level and reasonable power. Reasonable control of type I error was associated with ANCOVA model. Rank ANCOVA model was associated with the greatest power and with reasonable control of type I error. Inflated type I error was observed with ZIP and ZINB models.
Use of the negative binomial-truncated Poisson distribution in thunderstorm prediction
NASA Technical Reports Server (NTRS)
Cohen, A. C.
1971-01-01
A probability model is presented for the distribution of thunderstorms over a small area given that thunderstorm events (1 or more thunderstorms) are occurring over a larger area. The model incorporates the negative binomial and truncated Poisson distributions. Probability tables for Cape Kennedy for spring, summer, and fall months and seasons are presented. The computer program used to compute these probabilities is appended.
Sileshi, G
2006-10-01
Researchers and regulatory agencies often make statistical inferences from insect count data using modelling approaches that assume homogeneous variance. Such models do not allow for formal appraisal of variability which in its different forms is the subject of interest in ecology. Therefore, the objectives of this paper were to (i) compare models suitable for handling variance heterogeneity and (ii) select optimal models to ensure valid statistical inferences from insect count data. The log-normal, standard Poisson, Poisson corrected for overdispersion, zero-inflated Poisson, the negative binomial distribution and zero-inflated negative binomial models were compared using six count datasets on foliage-dwelling insects and five families of soil-dwelling insects. Akaike's and Schwarz Bayesian information criteria were used for comparing the various models. Over 50% of the counts were zeros even in locally abundant species such as Ootheca bennigseni Weise, Mesoplatys ochroptera Stål and Diaecoderus spp. The Poisson model after correction for overdispersion and the standard negative binomial distribution model provided better description of the probability distribution of seven out of the 11 insects than the log-normal, standard Poisson, zero-inflated Poisson or zero-inflated negative binomial models. It is concluded that excess zeros and variance heterogeneity are common data phenomena in insect counts. If not properly modelled, these properties can invalidate the normal distribution assumptions resulting in biased estimation of ecological effects and jeopardizing the integrity of the scientific inferences. Therefore, it is recommended that statistical models appropriate for handling these data properties be selected using objective criteria to ensure efficient statistical inference.
Poisson and negative binomial item count techniques for surveys with sensitive question.
Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin
2017-04-01
Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.
Marginalized zero-inflated negative binomial regression with application to dental caries
Preisser, John S.; Das, Kalyan; Long, D. Leann; Divaris, Kimon
2015-01-01
The zero-inflated negative binomial regression model (ZINB) is often employed in diverse fields such as dentistry, health care utilization, highway safety, and medicine to examine relationships between exposures of interest and overdispersed count outcomes exhibiting many zeros. The regression coefficients of ZINB have latent class interpretations for a susceptible subpopulation at risk for the disease/condition under study with counts generated from a negative binomial distribution and for a non-susceptible subpopulation that provides only zero counts. The ZINB parameters, however, are not well-suited for estimating overall exposure effects, specifically, in quantifying the effect of an explanatory variable in the overall mixture population. In this paper, a marginalized zero-inflated negative binomial regression (MZINB) model for independent responses is proposed to model the population marginal mean count directly, providing straightforward inference for overall exposure effects based on maximum likelihood estimation. Through simulation studies, the finite sample performance of MZINB is compared to marginalized zero-inflated Poisson, Poisson, and negative binomial regression. The MZINB model is applied in the evaluation of a school-based fluoride mouthrinse program on dental caries in 677 children. PMID:26568034
Library Book Circulation and the Beta-Binomial Distribution.
ERIC Educational Resources Information Center
Gelman, E.; Sichel, H. S.
1987-01-01
Argues that library book circulation is a binomial rather than a Poisson process, and that individual book popularities are continuous beta distributions. Three examples demonstrate the superiority of beta over negative binomial distribution, and it is suggested that a bivariate-binomial process would be helpful in predicting future book…
Distribution-free Inference of Zero-inated Binomial Data for Longitudinal Studies.
He, H; Wang, W J; Hu, J; Gallop, R; Crits-Christoph, P; Xia, Y L
2015-10-01
Count reponses with structural zeros are very common in medical and psychosocial research, especially in alcohol and HIV research, and the zero-inflated poisson (ZIP) and zero-inflated negative binomial (ZINB) models are widely used for modeling such outcomes. However, as alcohol drinking outcomes such as days of drinkings are counts within a given period, their distributions are bounded above by an upper limit (total days in the period) and thus inherently follow a binomial or zero-inflated binomial (ZIB) distribution, rather than a Poisson or zero-inflated Poisson (ZIP) distribution, in the presence of structural zeros. In this paper, we develop a new semiparametric approach for modeling zero-inflated binomial (ZIB)-like count responses for cross-sectional as well as longitudinal data. We illustrate this approach with both simulated and real study data.
Zero adjusted models with applications to analysing helminths count data.
Chipeta, Michael G; Ngwira, Bagrey M; Simoonga, Christopher; Kazembe, Lawrence N
2014-11-27
It is common in public health and epidemiology that the outcome of interest is counts of events occurrence. Analysing these data using classical linear models is mostly inappropriate, even after transformation of outcome variables due to overdispersion. Zero-adjusted mixture count models such as zero-inflated and hurdle count models are applied to count data when over-dispersion and excess zeros exist. Main objective of the current paper is to apply such models to analyse risk factors associated with human helminths (S. haematobium) particularly in a case where there's a high proportion of zero counts. The data were collected during a community-based randomised control trial assessing the impact of mass drug administration (MDA) with praziquantel in Malawi, and a school-based cross sectional epidemiology survey in Zambia. Count data models including traditional (Poisson and negative binomial) models, zero modified models (zero inflated Poisson and zero inflated negative binomial) and hurdle models (Poisson logit hurdle and negative binomial logit hurdle) were fitted and compared. Using Akaike information criteria (AIC), the negative binomial logit hurdle (NBLH) and zero inflated negative binomial (ZINB) showed best performance in both datasets. With regards to zero count capturing, these models performed better than other models. This paper showed that zero modified NBLH and ZINB models are more appropriate methods for the analysis of data with excess zeros. The choice between the hurdle and zero-inflated models should be based on the aim and endpoints of the study.
An examination of sources of sensitivity of consumer surplus estimates in travel cost models.
Blaine, Thomas W; Lichtkoppler, Frank R; Bader, Timothy J; Hartman, Travis J; Lucente, Joseph E
2015-03-15
We examine sensitivity of estimates of recreation demand using the Travel Cost Method (TCM) to four factors. Three of the four have been routinely and widely discussed in the TCM literature: a) Poisson verses negative binomial regression; b) application of Englin correction to account for endogenous stratification; c) truncation of the data set to eliminate outliers. A fourth issue we address has not been widely modeled: the potential effect on recreation demand of the interaction between income and travel cost. We provide a straightforward comparison of all four factors, analyzing the impact of each on regression parameters and consumer surplus estimates. Truncation has a modest effect on estimates obtained from the Poisson models but a radical effect on the estimates obtained by way of the negative binomial. Inclusion of an income-travel cost interaction term generally produces a more conservative but not a statistically significantly different estimate of consumer surplus in both Poisson and negative binomial models. It also generates broader confidence intervals. Application of truncation, the Englin correction and the income-travel cost interaction produced the most conservative estimates of consumer surplus and eliminated the statistical difference between the Poisson and the negative binomial. Use of the income-travel cost interaction term reveals that for visitors who face relatively low travel costs, the relationship between income and travel demand is negative, while it is positive for those who face high travel costs. This provides an explanation of the ambiguities on the findings regarding the role of income widely observed in the TCM literature. Our results suggest that policies that reduce access to publicly owned resources inordinately impact local low income recreationists and are contrary to environmental justice. Copyright © 2014 Elsevier Ltd. All rights reserved.
Identifiability in N-mixture models: a large-scale screening test with bird data.
Kéry, Marc
2018-02-01
Binomial N-mixture models have proven very useful in ecology, conservation, and monitoring: they allow estimation and modeling of abundance separately from detection probability using simple counts. Recently, doubts about parameter identifiability have been voiced. I conducted a large-scale screening test with 137 bird data sets from 2,037 sites. I found virtually no identifiability problems for Poisson and zero-inflated Poisson (ZIP) binomial N-mixture models, but negative-binomial (NB) models had problems in 25% of all data sets. The corresponding multinomial N-mixture models had no problems. Parameter estimates under Poisson and ZIP binomial and multinomial N-mixture models were extremely similar. Identifiability problems became a little more frequent with smaller sample sizes (267 and 50 sites), but were unaffected by whether the models did or did not include covariates. Hence, binomial N-mixture model parameters with Poisson and ZIP mixtures typically appeared identifiable. In contrast, NB mixtures were often unidentifiable, which is worrying since these were often selected by Akaike's information criterion. Identifiability of binomial N-mixture models should always be checked. If problems are found, simpler models, integrated models that combine different observation models or the use of external information via informative priors or penalized likelihoods, may help. © 2017 by the Ecological Society of America.
Modeling number of claims and prediction of total claim amount
NASA Astrophysics Data System (ADS)
Acar, Aslıhan Şentürk; Karabey, Uǧur
2017-07-01
In this study we focus on annual number of claims of a private health insurance data set which belongs to a local insurance company in Turkey. In addition to Poisson model and negative binomial model, zero-inflated Poisson model and zero-inflated negative binomial model are used to model the number of claims in order to take into account excess zeros. To investigate the impact of different distributional assumptions for the number of claims on the prediction of total claim amount, predictive performances of candidate models are compared by using root mean square error (RMSE) and mean absolute error (MAE) criteria.
FluBreaks: early epidemic detection from Google flu trends.
Pervaiz, Fahad; Pervaiz, Mansoor; Abdur Rehman, Nabeel; Saif, Umar
2012-10-04
The Google Flu Trends service was launched in 2008 to track changes in the volume of online search queries related to flu-like symptoms. Over the last few years, the trend data produced by this service has shown a consistent relationship with the actual number of flu reports collected by the US Centers for Disease Control and Prevention (CDC), often identifying increases in flu cases weeks in advance of CDC records. However, contrary to popular belief, Google Flu Trends is not an early epidemic detection system. Instead, it is designed as a baseline indicator of the trend, or changes, in the number of disease cases. To evaluate whether these trends can be used as a basis for an early warning system for epidemics. We present the first detailed algorithmic analysis of how Google Flu Trends can be used as a basis for building a fully automated system for early warning of epidemics in advance of methods used by the CDC. Based on our work, we present a novel early epidemic detection system, called FluBreaks (dritte.org/flubreaks), based on Google Flu Trends data. We compared the accuracy and practicality of three types of algorithms: normal distribution algorithms, Poisson distribution algorithms, and negative binomial distribution algorithms. We explored the relative merits of these methods, and related our findings to changes in Internet penetration and population size for the regions in Google Flu Trends providing data. Across our performance metrics of percentage true-positives (RTP), percentage false-positives (RFP), percentage overlap (OT), and percentage early alarms (EA), Poisson- and negative binomial-based algorithms performed better in all except RFP. Poisson-based algorithms had average values of 99%, 28%, 71%, and 76% for RTP, RFP, OT, and EA, respectively, whereas negative binomial-based algorithms had average values of 97.8%, 17.8%, 60%, and 55% for RTP, RFP, OT, and EA, respectively. Moreover, the EA was also affected by the region's population size. Regions with larger populations (regions 4 and 6) had higher values of EA than region 10 (which had the smallest population) for negative binomial- and Poisson-based algorithms. The difference was 12.5% and 13.5% on average in negative binomial- and Poisson-based algorithms, respectively. We present the first detailed comparative analysis of popular early epidemic detection algorithms on Google Flu Trends data. We note that realizing this opportunity requires moving beyond the cumulative sum and historical limits method-based normal distribution approaches, traditionally employed by the CDC, to negative binomial- and Poisson-based algorithms to deal with potentially noisy search query data from regions with varying population and Internet penetrations. Based on our work, we have developed FluBreaks, an early warning system for flu epidemics using Google Flu Trends.
Justin S. Crotteau; Martin W. Ritchie; J. Morgan Varner
2014-01-01
Many western USA fire regimes are typified by mixed-severity fire, which compounds the variability inherent to natural regeneration densities in associated forests. Tree regeneration data are often discrete and nonnegative; accordingly, we fit a series of Poisson and negative binomial variation models to conifer seedling counts across four distinct burn severities and...
Modeling Zero-Inflated and Overdispersed Count Data: An Empirical Study of School Suspensions
ERIC Educational Resources Information Center
Desjardins, Christopher David
2016-01-01
The purpose of this article is to develop a statistical model that best explains variability in the number of school days suspended. Number of school days suspended is a count variable that may be zero-inflated and overdispersed relative to a Poisson model. Four models were examined: Poisson, negative binomial, Poisson hurdle, and negative…
Lee, J-H; Han, G; Fulp, W J; Giuliano, A R
2012-06-01
The Poisson model can be applied to the count of events occurring within a specific time period. The main feature of the Poisson model is the assumption that the mean and variance of the count data are equal. However, this equal mean-variance relationship rarely occurs in observational data. In most cases, the observed variance is larger than the assumed variance, which is called overdispersion. Further, when the observed data involve excessive zero counts, the problem of overdispersion results in underestimating the variance of the estimated parameter, and thus produces a misleading conclusion. We illustrated the use of four models for overdispersed count data that may be attributed to excessive zeros. These are Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial models. The example data in this article deal with the number of incidents involving human papillomavirus infection. The four models resulted in differing statistical inferences. The Poisson model, which is widely used in epidemiology research, underestimated the standard errors and overstated the significance of some covariates.
Hosseinpour, Mehdi; Yahaya, Ahmad Shukri; Sadullah, Ahmad Farhan
2014-01-01
Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chang, Yu-Wei; Tsong, Yi; Zhao, Zhigen
2017-01-01
Assessing equivalence or similarity has drawn much attention recently as many drug products have lost or will lose their patents in the next few years, especially certain best-selling biologics. To claim equivalence between the test treatment and the reference treatment when assay sensitivity is well established from historical data, one has to demonstrate both superiority of the test treatment over placebo and equivalence between the test treatment and the reference treatment. Thus, there is urgency for practitioners to derive a practical way to calculate sample size for a three-arm equivalence trial. The primary endpoints of a clinical trial may not always be continuous, but may be discrete. In this paper, the authors derive power function and discuss sample size requirement for a three-arm equivalence trial with Poisson and negative binomial clinical endpoints. In addition, the authors examine the effect of the dispersion parameter on the power and the sample size by varying its coefficient from small to large. In extensive numerical studies, the authors demonstrate that required sample size heavily depends on the dispersion parameter. Therefore, misusing a Poisson model for negative binomial data may easily lose power up to 20%, depending on the value of the dispersion parameter.
Martina, R; Kay, R; van Maanen, R; Ridder, A
2015-01-01
Clinical studies in overactive bladder have traditionally used analysis of covariance or nonparametric methods to analyse the number of incontinence episodes and other count data. It is known that if the underlying distributional assumptions of a particular parametric method do not hold, an alternative parametric method may be more efficient than a nonparametric one, which makes no assumptions regarding the underlying distribution of the data. Therefore, there are advantages in using methods based on the Poisson distribution or extensions of that method, which incorporate specific features that provide a modelling framework for count data. One challenge with count data is overdispersion, but methods are available that can account for this through the introduction of random effect terms in the modelling, and it is this modelling framework that leads to the negative binomial distribution. These models can also provide clinicians with a clearer and more appropriate interpretation of treatment effects in terms of rate ratios. In this paper, the previously used parametric and non-parametric approaches are contrasted with those based on Poisson regression and various extensions in trials evaluating solifenacin and mirabegron in patients with overactive bladder. In these applications, negative binomial models are seen to fit the data well. Copyright © 2014 John Wiley & Sons, Ltd.
Hosseinpour, Mehdi; Pour, Mehdi Hossein; Prasetijo, Joewono; Yahaya, Ahmad Shukri; Ghadiri, Seyed Mohammad Reza
2013-01-01
The objective of this study was to examine the effects of various roadway characteristics on the incidence of pedestrian-vehicle crashes by developing a set of crash prediction models on 543 km of Malaysia federal roads over a 4-year time span between 2007 and 2010. Four count models including the Poisson, negative binomial (NB), hurdle Poisson (HP), and hurdle negative binomial (HNB) models were developed and compared to model the number of pedestrian crashes. The results indicated the presence of overdispersion in the pedestrian crashes (PCs) and showed that it is due to excess zero rather than variability in the crash data. To handle the issue, the hurdle Poisson model was found to be the best model among the considered models in terms of comparative measures. Moreover, the variables average daily traffic, heavy vehicle traffic, speed limit, land use, and area type were significantly associated with PCs.
NASA Astrophysics Data System (ADS)
Amaliana, Luthfatul; Sa'adah, Umu; Wayan Surya Wardhani, Ni
2017-12-01
Tetanus Neonatorum is an infectious disease that can be prevented by immunization. The number of Tetanus Neonatorum cases in East Java Province is the highest in Indonesia until 2015. Tetanus Neonatorum data contain over dispersion and big enough proportion of zero-inflation. Negative Binomial (NB) regression is an alternative method when over dispersion happens in Poisson regression. However, the data containing over dispersion and zero-inflation are more appropriately analyzed by using Zero-Inflated Negative Binomial (ZINB) regression. The purpose of this study are: (1) to model Tetanus Neonatorum cases in East Java Province with 71.05 percent proportion of zero-inflation by using NB and ZINB regression, (2) to obtain the best model. The result of this study indicates that ZINB is better than NB regression with smaller AIC.
Selecting a distributional assumption for modelling relative densities of benthic macroinvertebrates
Gray, B.R.
2005-01-01
The selection of a distributional assumption suitable for modelling macroinvertebrate density data is typically challenging. Macroinvertebrate data often exhibit substantially larger variances than expected under a standard count assumption, that of the Poisson distribution. Such overdispersion may derive from multiple sources, including heterogeneity of habitat (historically and spatially), differing life histories for organisms collected within a single collection in space and time, and autocorrelation. Taken to extreme, heterogeneity of habitat may be argued to explain the frequent large proportions of zero observations in macroinvertebrate data. Sampling locations may consist of habitats defined qualitatively as either suitable or unsuitable. The former category may yield random or stochastic zeroes and the latter structural zeroes. Heterogeneity among counts may be accommodated by treating the count mean itself as a random variable, while extra zeroes may be accommodated using zero-modified count assumptions, including zero-inflated and two-stage (or hurdle) approaches. These and linear assumptions (following log- and square root-transformations) were evaluated using 9 years of mayfly density data from a 52 km, ninth-order reach of the Upper Mississippi River (n = 959). The data exhibited substantial overdispersion relative to that expected under a Poisson assumption (i.e. variance:mean ratio = 23 ??? 1), and 43% of the sampling locations yielded zero mayflies. Based on the Akaike Information Criterion (AIC), count models were improved most by treating the count mean as a random variable (via a Poisson-gamma distributional assumption) and secondarily by zero modification (i.e. improvements in AIC values = 9184 units and 47-48 units, respectively). Zeroes were underestimated by the Poisson, log-transform and square root-transform models, slightly by the standard negative binomial model but not by the zero-modified models (61%, 24%, 32%, 7%, and 0%, respectively). However, the zero-modified Poisson models underestimated small counts (1 ??? y ??? 4) and overestimated intermediate counts (7 ??? y ??? 23). Counts greater than zero were estimated well by zero-modified negative binomial models, while counts greater than one were also estimated well by the standard negative binomial model. Based on AIC and percent zero estimation criteria, the two-stage and zero-inflated models performed similarly. The above inferences were largely confirmed when the models were used to predict values from a separate, evaluation data set (n = 110). An exception was that, using the evaluation data set, the standard negative binomial model appeared superior to its zero-modified counterparts using the AIC (but not percent zero criteria). This and other evidence suggest that a negative binomial distributional assumption should be routinely considered when modelling benthic macroinvertebrate data from low flow environments. Whether negative binomial models should themselves be routinely examined for extra zeroes requires, from a statistical perspective, more investigation. However, this question may best be answered by ecological arguments that may be specific to the sampled species and locations. ?? 2004 Elsevier B.V. All rights reserved.
Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.
Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique
2015-05-01
The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. © 2014 Society for Risk Analysis.
Kadam, Shantanu; Vanka, Kumar
2013-02-15
Methods based on the stochastic formulation of chemical kinetics have the potential to accurately reproduce the dynamical behavior of various biochemical systems of interest. However, the computational expense makes them impractical for the study of real systems. Attempts to render these methods practical have led to the development of accelerated methods, where the reaction numbers are modeled by Poisson random numbers. However, for certain systems, such methods give rise to physically unrealistic negative numbers for species populations. The methods which make use of binomial variables, in place of Poisson random numbers, have since become popular, and have been partially successful in addressing this problem. In this manuscript, the development of two new computational methods, based on the representative reaction approach (RRA), has been discussed. The new methods endeavor to solve the problem of negative numbers, by making use of tools like the stochastic simulation algorithm and the binomial method, in conjunction with the RRA. It is found that these newly developed methods perform better than other binomial methods used for stochastic simulations, in resolving the problem of negative populations. Copyright © 2012 Wiley Periodicals, Inc.
Zipkin, Elise F.; Leirness, Jeffery B.; Kinlan, Brian P.; O'Connell, Allan F.; Silverman, Emily D.
2014-01-01
Determining appropriate statistical distributions for modeling animal count data is important for accurate estimation of abundance, distribution, and trends. In the case of sea ducks along the U.S. Atlantic coast, managers want to estimate local and regional abundance to detect and track population declines, to define areas of high and low use, and to predict the impact of future habitat change on populations. In this paper, we used a modified marked point process to model survey data that recorded flock sizes of Common eiders, Long-tailed ducks, and Black, Surf, and White-winged scoters. The data come from an experimental aerial survey, conducted by the United States Fish & Wildlife Service (USFWS) Division of Migratory Bird Management, during which east-west transects were flown along the Atlantic Coast from Maine to Florida during the winters of 2009–2011. To model the number of flocks per transect (the points), we compared the fit of four statistical distributions (zero-inflated Poisson, zero-inflated geometric, zero-inflated negative binomial and negative binomial) to data on the number of species-specific sea duck flocks that were recorded for each transect flown. To model the flock sizes (the marks), we compared the fit of flock size data for each species to seven statistical distributions: positive Poisson, positive negative binomial, positive geometric, logarithmic, discretized lognormal, zeta and Yule–Simon. Akaike’s Information Criterion and Vuong’s closeness tests indicated that the negative binomial and discretized lognormal were the best distributions for all species for the points and marks, respectively. These findings have important implications for estimating sea duck abundances as the discretized lognormal is a more skewed distribution than the Poisson and negative binomial, which are frequently used to model avian counts; the lognormal is also less heavy-tailed than the power law distributions (e.g., zeta and Yule–Simon), which are becoming increasingly popular for group size modeling. Choosing appropriate statistical distributions for modeling flock size data is fundamental to accurately estimating population summaries, determining required survey effort, and assessing and propagating uncertainty through decision-making processes.
Football goal distributions and extremal statistics
NASA Astrophysics Data System (ADS)
Greenhough, J.; Birch, P. C.; Chapman, S. C.; Rowlands, G.
2002-12-01
We analyse the distributions of the number of goals scored by home teams, away teams, and the total scored in the match, in domestic football games from 169 countries between 1999 and 2001. The probability density functions (PDFs) of goals scored are too heavy-tailed to be fitted over their entire ranges by Poisson or negative binomial distributions which would be expected for uncorrelated processes. Log-normal distributions cannot include zero scores and here we find that the PDFs are consistent with those arising from extremal statistics. In addition, we show that it is sufficient to model English top division and FA Cup matches in the seasons of 1970/71-2000/01 on Poisson or negative binomial distributions, as reported in analyses of earlier seasons, and that these are not consistent with extremal statistics.
Binomial leap methods for simulating stochastic chemical kinetics.
Tian, Tianhai; Burrage, Kevin
2004-12-01
This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the tau-leap and midpoint tau-leap methods of Gillespie [D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001)], binomial random variables are used in these leap methods rather than Poisson random variables. The motivation for this approach is to improve the efficiency of the Poisson leap methods by using larger stepsizes. Unlike Poisson random variables whose range of sample values is from zero to infinity, binomial random variables have a finite range of sample values. This probabilistic property has been used to restrict possible reaction numbers and to avoid negative molecular numbers in stochastic simulations when larger stepsize is used. In this approach a binomial random variable is defined for a single reaction channel in order to keep the reaction number of this channel below the numbers of molecules that undergo this reaction channel. A sampling technique is also designed for the total reaction number of a reactant species that undergoes two or more reaction channels. Samples for the total reaction number are not greater than the molecular number of this species. In addition, probability properties of the binomial random variables provide stepsize conditions for restricting reaction numbers in a chosen time interval. These stepsize conditions are important properties of robust leap control strategies. Numerical results indicate that the proposed binomial leap methods can be applied to a wide range of chemical reaction systems with very good accuracy and significant improvement on efficiency over existing approaches. (c) 2004 American Institute of Physics.
Dispersion and sampling of adult Dermacentor andersoni in rangeland in Western North America.
Rochon, K; Scoles, G A; Lysyk, T J
2012-03-01
A fixed precision sampling plan was developed for off-host populations of adult Rocky Mountain wood tick, Dermacentor andersoni (Stiles) based on data collected by dragging at 13 locations in Alberta, Canada; Washington; and Oregon. In total, 222 site-date combinations were sampled. Each site-date combination was considered a sample, and each sample ranged in size from 86 to 250 10 m2 quadrats. Analysis of simulated quadrats ranging in size from 10 to 50 m2 indicated that the most precise sample unit was the 10 m2 quadrat. Samples taken when abundance < 0.04 ticks per 10 m2 were more likely to not depart significantly from statistical randomness than samples taken when abundance was greater. Data were grouped into ten abundance classes and assessed for fit to the Poisson and negative binomial distributions. The Poisson distribution fit only data in abundance classes < 0.02 ticks per 10 m2, while the negative binomial distribution fit data from all abundance classes. A negative binomial distribution with common k = 0.3742 fit data in eight of the 10 abundance classes. Both the Taylor and Iwao mean-variance relationships were fit and used to predict sample sizes for a fixed level of precision. Sample sizes predicted using the Taylor model tended to underestimate actual sample sizes, while sample sizes estimated using the Iwao model tended to overestimate actual sample sizes. Using a negative binomial with common k provided estimates of required sample sizes closest to empirically calculated sample sizes.
Technical and biological variance structure in mRNA-Seq data: life in the real world
2012-01-01
Background mRNA expression data from next generation sequencing platforms is obtained in the form of counts per gene or exon. Counts have classically been assumed to follow a Poisson distribution in which the variance is equal to the mean. The Negative Binomial distribution which allows for over-dispersion, i.e., for the variance to be greater than the mean, is commonly used to model count data as well. Results In mRNA-Seq data from 25 subjects, we found technical variation to generally follow a Poisson distribution as has been reported previously and biological variability was over-dispersed relative to the Poisson model. The mean-variance relationship across all genes was quadratic, in keeping with a Negative Binomial (NB) distribution. Over-dispersed Poisson and NB distributional assumptions demonstrated marked improvements in goodness-of-fit (GOF) over the standard Poisson model assumptions, but with evidence of over-fitting in some genes. Modeling of experimental effects improved GOF for high variance genes but increased the over-fitting problem. Conclusions These conclusions will guide development of analytical strategies for accurate modeling of variance structure in these data and sample size determination which in turn will aid in the identification of true biological signals that inform our understanding of biological systems. PMID:22769017
A Negative Binomial Regression Model for Accuracy Tests
ERIC Educational Resources Information Center
Hung, Lai-Fa
2012-01-01
Rasch used a Poisson model to analyze errors and speed in reading tests. An important property of the Poisson distribution is that the mean and variance are equal. However, in social science research, it is very common for the variance to be greater than the mean (i.e., the data are overdispersed). This study embeds the Rasch model within an…
Negative Binomial Process Count and Mixture Modeling.
Zhou, Mingyuan; Carin, Lawrence
2015-02-01
The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters.
Accident prediction model for public highway-rail grade crossings.
Lu, Pan; Tolliver, Denver
2016-05-01
Considerable research has focused on roadway accident frequency analysis, but relatively little research has examined safety evaluation at highway-rail grade crossings. Highway-rail grade crossings are critical spatial locations of utmost importance for transportation safety because traffic crashes at highway-rail grade crossings are often catastrophic with serious consequences. The Poisson regression model has been employed to analyze vehicle accident frequency as a good starting point for many years. The most commonly applied variations of Poisson including negative binomial, and zero-inflated Poisson. These models are used to deal with common crash data issues such as over-dispersion (sample variance is larger than the sample mean) and preponderance of zeros (low sample mean and small sample size). On rare occasions traffic crash data have been shown to be under-dispersed (sample variance is smaller than the sample mean) and traditional distributions such as Poisson or negative binomial cannot handle under-dispersion well. The objective of this study is to investigate and compare various alternate highway-rail grade crossing accident frequency models that can handle the under-dispersion issue. The contributions of the paper are two-fold: (1) application of probability models to deal with under-dispersion issues and (2) obtain insights regarding to vehicle crashes at public highway-rail grade crossings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Wansu; Shi, Jiaxiao; Qian, Lei; Azen, Stanley P
2014-06-26
To estimate relative risks or risk ratios for common binary outcomes, the most popular model-based methods are the robust (also known as modified) Poisson and the log-binomial regression. Of the two methods, it is believed that the log-binomial regression yields more efficient estimators because it is maximum likelihood based, while the robust Poisson model may be less affected by outliers. Evidence to support the robustness of robust Poisson models in comparison with log-binomial models is very limited. In this study a simulation was conducted to evaluate the performance of the two methods in several scenarios where outliers existed. The findings indicate that for data coming from a population where the relationship between the outcome and the covariate was in a simple form (e.g. log-linear), the two models yielded comparable biases and mean square errors. However, if the true relationship contained a higher order term, the robust Poisson models consistently outperformed the log-binomial models even when the level of contamination is low. The robust Poisson models are more robust (or less sensitive) to outliers compared to the log-binomial models when estimating relative risks or risk ratios for common binary outcomes. Users should be aware of the limitations when choosing appropriate models to estimate relative risks or risk ratios.
Yelland, Lisa N; Salter, Amy B; Ryan, Philip
2011-10-15
Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.
Neelon, Brian; Chang, Howard H; Ling, Qiang; Hastings, Nicole S
2016-12-01
Motivated by a study exploring spatiotemporal trends in emergency department use, we develop a class of two-part hurdle models for the analysis of zero-inflated areal count data. The models consist of two components-one for the probability of any emergency department use and one for the number of emergency department visits given use. Through a hierarchical structure, the models incorporate both patient- and region-level predictors, as well as spatially and temporally correlated random effects for each model component. The random effects are assigned multivariate conditionally autoregressive priors, which induce dependence between the components and provide spatial and temporal smoothing across adjacent spatial units and time periods, resulting in improved inferences. To accommodate potential overdispersion, we consider a range of parametric specifications for the positive counts, including truncated negative binomial and generalized Poisson distributions. We adopt a Bayesian inferential approach, and posterior computation is handled conveniently within standard Bayesian software. Our results indicate that the negative binomial and generalized Poisson hurdle models vastly outperform the Poisson hurdle model, demonstrating that overdispersed hurdle models provide a useful approach to analyzing zero-inflated spatiotemporal data. © The Author(s) 2014.
Li, Jun; Tibshirani, Robert
2015-01-01
We discuss the identification of features that are associated with an outcome in RNA-Sequencing (RNA-Seq) and other sequencing-based comparative genomic experiments. RNA-Seq data takes the form of counts, so models based on the normal distribution are generally unsuitable. The problem is especially challenging because different sequencing experiments may generate quite different total numbers of reads, or ‘sequencing depths’. Existing methods for this problem are based on Poisson or negative binomial models: they are useful but can be heavily influenced by ‘outliers’ in the data. We introduce a simple, nonparametric method with resampling to account for the different sequencing depths. The new method is more robust than parametric methods. It can be applied to data with quantitative, survival, two-class or multiple-class outcomes. We compare our proposed method to Poisson and negative binomial-based methods in simulated and real data sets, and find that our method discovers more consistent patterns than competing methods. PMID:22127579
Analyzing hospitalization data: potential limitations of Poisson regression.
Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R
2015-08-01
Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Yes, the GIGP Really Does Work--And Is Workable!
ERIC Educational Resources Information Center
Burrell, Quentin L.; Fenton, Michael R.
1993-01-01
Discusses the generalized inverse Gaussian-Poisson (GIGP) process for informetric modeling. Negative binomial distribution is discussed, construction of the GIGP process is explained, zero-truncated GIGP is considered, and applications of the process with journals, library circulation statistics, and database index terms are described. (50…
Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.
Hougaard, P; Lee, M L; Whitmore, G A
1997-12-01
Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.
De Spiegelaere, Ward; Malatinkova, Eva; Lynch, Lindsay; Van Nieuwerburgh, Filip; Messiaen, Peter; O'Doherty, Una; Vandekerckhove, Linos
2014-06-01
Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates. © 2014 The American Association for Clinical Chemistry.
The Effectiveness of an Electronic Security Management System in a Privately Owned Apartment Complex
ERIC Educational Resources Information Center
Greenberg, David F.; Roush, Jeffrey B.
2009-01-01
Poisson and negative binomial regression methods are used to analyze the monthly time series data to determine the effects of introducing an integrated security management system including closed-circuit television (CCTV), door alarm monitoring, proximity card access, and emergency call boxes to a large privately-owned complex of apartment…
Estimating safety effects of pavement management factors utilizing Bayesian random effect models.
Jiang, Ximiao; Huang, Baoshan; Zaretzki, Russell L; Richards, Stephen; Yan, Xuedong
2013-01-01
Previous studies of pavement management factors that relate to the occurrence of traffic-related crashes are rare. Traditional research has mostly employed summary statistics of bidirectional pavement quality measurements in extended longitudinal road segments over a long time period, which may cause a loss of important information and result in biased parameter estimates. The research presented in this article focuses on crash risk of roadways with overall fair to good pavement quality. Real-time and location-specific data were employed to estimate the effects of pavement management factors on the occurrence of crashes. This research is based on the crash data and corresponding pavement quality data for the Tennessee state route highways from 2004 to 2009. The potential temporal and spatial correlations among observations caused by unobserved factors were considered. Overall 6 models were built accounting for no correlation, temporal correlation only, and both the temporal and spatial correlations. These models included Poisson, negative binomial (NB), one random effect Poisson and negative binomial (OREP, ORENB), and two random effect Poisson and negative binomial (TREP, TRENB) models. The Bayesian method was employed to construct these models. The inference is based on the posterior distribution from the Markov chain Monte Carlo (MCMC) simulation. These models were compared using the deviance information criterion. Analysis of the posterior distribution of parameter coefficients indicates that the pavement management factors indexed by Present Serviceability Index (PSI) and Pavement Distress Index (PDI) had significant impacts on the occurrence of crashes, whereas the variable rutting depth was not significant. Among other factors, lane width, median width, type of terrain, and posted speed limit were significant in affecting crash frequency. The findings of this study indicate that a reduction in pavement roughness would reduce the likelihood of traffic-related crashes. Hence, maintaining a low level of pavement roughness is strongly suggested. In addition, the results suggested that the temporal correlation among observations was significant and that the ORENB model outperformed all other models.
Lord, Dominique; Washington, Simon P; Ivan, John N
2005-01-01
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states-perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of "excess" zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to "excess" zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed-and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros.
Nakagawa, Shinichi; Johnson, Paul C D; Schielzeth, Holger
2017-09-01
The coefficient of determination R 2 quantifies the proportion of variance explained by a statistical model and is an important summary statistic of biological interest. However, estimating R 2 for generalized linear mixed models (GLMMs) remains challenging. We have previously introduced a version of R 2 that we called [Formula: see text] for Poisson and binomial GLMMs, but not for other distributional families. Similarly, we earlier discussed how to estimate intra-class correlation coefficients (ICCs) using Poisson and binomial GLMMs. In this paper, we generalize our methods to all other non-Gaussian distributions, in particular to negative binomial and gamma distributions that are commonly used for modelling biological data. While expanding our approach, we highlight two useful concepts for biologists, Jensen's inequality and the delta method, both of which help us in understanding the properties of GLMMs. Jensen's inequality has important implications for biologically meaningful interpretation of GLMMs, whereas the delta method allows a general derivation of variance associated with non-Gaussian distributions. We also discuss some special considerations for binomial GLMMs with binary or proportion data. We illustrate the implementation of our extension by worked examples from the field of ecology and evolution in the R environment. However, our method can be used across disciplines and regardless of statistical environments. © 2017 The Author(s).
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.
Data mining of tree-based models to analyze freeway accident frequency.
Chang, Li-Yen; Chen, Wen-Chieh
2005-01-01
Statistical models, such as Poisson or negative binomial regression models, have been employed to analyze vehicle accident frequency for many years. However, these models have their own model assumptions and pre-defined underlying relationship between dependent and independent variables. If these assumptions are violated, the model could lead to erroneous estimation of accident likelihood. Classification and Regression Tree (CART), one of the most widely applied data mining techniques, has been commonly employed in business administration, industry, and engineering. CART does not require any pre-defined underlying relationship between target (dependent) variable and predictors (independent variables) and has been shown to be a powerful tool, particularly for dealing with prediction and classification problems. This study collected the 2001-2002 accident data of National Freeway 1 in Taiwan. A CART model and a negative binomial regression model were developed to establish the empirical relationship between traffic accidents and highway geometric variables, traffic characteristics, and environmental factors. The CART findings indicated that the average daily traffic volume and precipitation variables were the key determinants for freeway accident frequencies. By comparing the prediction performance between the CART and the negative binomial regression models, this study demonstrates that CART is a good alternative method for analyzing freeway accident frequencies. By comparing the prediction performance between the CART and the negative binomial regression models, this study demonstrates that CART is a good alternative method for analyzing freeway accident frequencies.
ERIC Educational Resources Information Center
Liou, Pey-Yan
2009-01-01
The current study examines three regression models: OLS (ordinary least square) linear regression, Poisson regression, and negative binomial regression for analyzing count data. Simulation results show that the OLS regression model performed better than the others, since it did not produce more false statistically significant relationships than…
REJEKI, Dwi Sarwani Sri; NURHAYATI, Nunung; AJI, Budi; MURHANDARWATI, E. Elsa Herdiana; KUSNANTO, Hari
2018-01-01
Background: Climatic and weather factors become important determinants of vector-borne diseases transmission like malaria. This study aimed to prove relationships between weather factors with considering human migration and previous case findings and malaria cases in endemic areas in Purworejo during 2005–2014. Methods: This study employed ecological time series analysis by using monthly data. The independent variables were the maximum temperature, minimum temperature, maximum humidity, minimum humidity, precipitation, human migration, and previous malaria cases, while the dependent variable was positive malaria cases. Three models of count data regression analysis i.e. Poisson model, quasi-Poisson model, and negative binomial model were applied to measure the relationship. The least Akaike Information Criteria (AIC) value was also performed to find the best model. Negative binomial regression analysis was considered as the best model. Results: The model showed that humidity (lag 2), precipitation (lag 3), precipitation (lag 12), migration (lag1) and previous malaria cases (lag 12) had a significant relationship with malaria cases. Conclusion: Weather, migration and previous malaria cases factors need to be considered as prominent indicators for the increase of malaria case projection. PMID:29900134
Assessing historical rate changes in global tsunami occurrence
Geist, E.L.; Parsons, T.
2011-01-01
The global catalogue of tsunami events is examined to determine if transient variations in tsunami rates are consistent with a Poisson process commonly assumed for tsunami hazard assessments. The primary data analyzed are tsunamis with maximum sizes >1m. The record of these tsunamis appears to be complete since approximately 1890. A secondary data set of tsunamis >0.1m is also analyzed that appears to be complete since approximately 1960. Various kernel density estimates used to determine the rate distribution with time indicate a prominent rate change in global tsunamis during the mid-1990s. Less prominent rate changes occur in the early- and mid-20th century. To determine whether these rate fluctuations are anomalous, the distribution of annual event numbers for the tsunami catalogue is compared to Poisson and negative binomial distributions, the latter of which includes the effects of temporal clustering. Compared to a Poisson distribution, the negative binomial distribution model provides a consistent fit to tsunami event numbers for the >1m data set, but the Poisson null hypothesis cannot be falsified for the shorter duration >0.1m data set. Temporal clustering of tsunami sources is also indicated by the distribution of interevent times for both data sets. Tsunami event clusters consist only of two to four events, in contrast to protracted sequences of earthquakes that make up foreshock-main shock-aftershock sequences. From past studies of seismicity, it is likely that there is a physical triggering mechanism responsible for events within the tsunami source 'mini-clusters'. In conclusion, prominent transient rate increases in the occurrence of global tsunamis appear to be caused by temporal grouping of geographically distinct mini-clusters, in addition to the random preferential location of global M >7 earthquakes along offshore fault zones.
Brian S. Cade; Barry R. Noon; Rick D. Scherer; John J. Keane
2017-01-01
Counts of avian fledglings, nestlings, or clutch size that are bounded below by zero and above by some small integer form a discrete random variable distribution that is not approximated well by conventional parametric count distributions such as the Poisson or negative binomial. We developed a logistic quantile regression model to provide estimates of the empirical...
Modelling infant mortality rate in Central Java, Indonesia use generalized poisson regression method
NASA Astrophysics Data System (ADS)
Prahutama, Alan; Sudarno
2018-05-01
The infant mortality rate is the number of deaths under one year of age occurring among the live births in a given geographical area during a given year, per 1,000 live births occurring among the population of the given geographical area during the same year. This problem needs to be addressed because it is an important element of a country’s economic development. High infant mortality rate will disrupt the stability of a country as it relates to the sustainability of the population in the country. One of regression model that can be used to analyze the relationship between dependent variable Y in the form of discrete data and independent variable X is Poisson regression model. Recently The regression modeling used for data with dependent variable is discrete, among others, poisson regression, negative binomial regression and generalized poisson regression. In this research, generalized poisson regression modeling gives better AIC value than poisson regression. The most significant variable is the Number of health facilities (X1), while the variable that gives the most influence to infant mortality rate is the average breastfeeding (X9).
Tang, Wan; Lu, Naiji; Chen, Tian; Wang, Wenjuan; Gunzler, Douglas David; Han, Yu; Tu, Xin M
2015-10-30
Zero-inflated Poisson (ZIP) and negative binomial (ZINB) models are widely used to model zero-inflated count responses. These models extend the Poisson and negative binomial (NB) to address excessive zeros in the count response. By adding a degenerate distribution centered at 0 and interpreting it as describing a non-risk group in the population, the ZIP (ZINB) models a two-component population mixture. As in applications of Poisson and NB, the key difference between ZIP and ZINB is the allowance for overdispersion by the ZINB in its NB component in modeling the count response for the at-risk group. Overdispersion arising in practice too often does not follow the NB, and applications of ZINB to such data yield invalid inference. If sources of overdispersion are known, other parametric models may be used to directly model the overdispersion. Such models too are subject to assumed distributions. Further, this approach may not be applicable if information about the sources of overdispersion is unavailable. In this paper, we propose a distribution-free alternative and compare its performance with these popular parametric models as well as a moment-based approach proposed by Yu et al. [Statistics in Medicine 2013; 32: 2390-2405]. Like the generalized estimating equations, the proposed approach requires no elaborate distribution assumptions. Compared with the approach of Yu et al., it is more robust to overdispersed zero-inflated responses. We illustrate our approach with both simulated and real study data. Copyright © 2015 John Wiley & Sons, Ltd.
Earthquake number forecasts testing
NASA Astrophysics Data System (ADS)
Kagan, Yan Y.
2017-10-01
We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness and kurtosis both tend to zero for large earthquake rates: for the Gaussian law, these values are identically zero. A calculation of the NBD skewness and kurtosis levels based on the values of the first two statistical moments of the distribution, shows rapid increase of these upper moments levels. However, the observed catalogue values of skewness and kurtosis are rising even faster. This means that for small time intervals, the earthquake number distribution is even more heavy-tailed than the NBD predicts. Therefore for small time intervals, we propose using empirical number distributions appropriately smoothed for testing forecasted earthquake numbers.
Relaxed Poisson cure rate models.
Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N
2016-03-01
The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wilkes, E J A; Cowling, A; Woodgate, R G; Hughes, K J
2016-10-15
Faecal egg counts (FEC) are used widely for monitoring of parasite infection in animals, treatment decision-making and estimation of anthelmintic efficacy. When a single count or sample mean is used as a point estimate of the expectation of the egg distribution over some time interval, the variability in the egg density is not accounted for. Although variability, including quantifying sources, of egg count data has been described, the spatiotemporal distribution of nematode eggs in faeces is not well understood. We believe that statistical inference about the mean egg count for treatment decision-making has not been used previously. The aim of this study was to examine the density of Parascaris eggs in solution and faeces and to describe the use of hypothesis testing for decision-making. Faeces from two foals with Parascaris burdens were mixed with magnesium sulphate solution and 30 McMaster chambers were examined to determine the egg distribution in a well-mixed solution. To examine the distribution of eggs in faeces from an individual animal, three faecal piles from a foal with a known Parascaris burden were obtained, from which 81 counts were performed. A single faecal sample was also collected daily from 20 foals on three consecutive days and a FEC was performed on three separate portions of each sample. As appropriate, Poisson or negative binomial confidence intervals for the distribution mean were calculated. Parascaris eggs in a well-mixed solution conformed to a homogeneous Poisson process, while the egg density in faeces was not homogeneous, but aggregated. This study provides an extension from homogeneous to inhomogeneous Poisson processes, leading to an understanding of why Poisson and negative binomial distributions correspondingly provide a good fit for egg count data. The application of one-sided hypothesis tests for decision-making is presented. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajakaruna, Harshana; VandenByllaardt, Julie; Kydd, Jocelyn; Bailey, Sarah
2018-03-01
The International Maritime Organization (IMO) has set limits on allowable plankton concentrations in ballast water discharge to minimize aquatic invasions globally. Previous guidance on ballast water sampling and compliance decision thresholds was based on the assumption that probability distributions of plankton are Poisson when spatially homogenous, or negative binomial when heterogeneous. We propose a hierarchical probability model, which incorporates distributions at the level of particles (i.e., discrete individuals plus colonies per unit volume) and also within particles (i.e., individuals per particle) to estimate the average plankton concentration in ballast water. We examined the performance of the models using data for plankton in the size class ≥ 10 μm and < 50 μm, collected from five different depths of a ballast tank of a commercial ship in three independent surveys. We show that the data fit to the negative binomial and the hierarchical probability models equally well, with both models performing better than the Poisson model at the scale of our sampling. The hierarchical probability model, which accounts for both the individuals and the colonies in a sample, reduces the uncertainty associated with the concentration estimation, and improves the power of rejecting the decision on ship's compliance when a ship does not truly comply with the standard. We show examples of how to test ballast water compliance using the above models.
A big data approach to the development of mixed-effects models for seizure count data.
Tharayil, Joseph J; Chiang, Sharon; Moss, Robert; Stern, John M; Theodore, William H; Goldenholz, Daniel M
2017-05-01
Our objective was to develop a generalized linear mixed model for predicting seizure count that is useful in the design and analysis of clinical trials. This model also may benefit the design and interpretation of seizure-recording paradigms. Most existing seizure count models do not include children, and there is currently no consensus regarding the most suitable model that can be applied to children and adults. Therefore, an additional objective was to develop a model that accounts for both adult and pediatric epilepsy. Using data from SeizureTracker.com, a patient-reported seizure diary tool with >1.2 million recorded seizures across 8 years, we evaluated the appropriateness of Poisson, negative binomial, zero-inflated negative binomial, and modified negative binomial models for seizure count data based on minimization of the Bayesian information criterion. Generalized linear mixed-effects models were used to account for demographic and etiologic covariates and for autocorrelation structure. Holdout cross-validation was used to evaluate predictive accuracy in simulating seizure frequencies. For both adults and children, we found that a negative binomial model with autocorrelation over 1 day was optimal. Using holdout cross-validation, the proposed model was found to provide accurate simulation of seizure counts for patients with up to four seizures per day. The optimal model can be used to generate more realistic simulated patient data with very few input parameters. The availability of a parsimonious, realistic virtual patient model can be of great utility in simulations of phase II/III clinical trials, epilepsy monitoring units, outpatient biosensors, and mobile Health (mHealth) applications. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Bayesian analysis of volcanic eruptions
NASA Astrophysics Data System (ADS)
Ho, Chih-Hsiang
1990-10-01
The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.
Zheng, Han; Kimber, Alan; Goodwin, Victoria A; Pickering, Ruth M
2018-01-01
A common design for a falls prevention trial is to assess falling at baseline, randomize participants into an intervention or control group, and ask them to record the number of falls they experience during a follow-up period of time. This paper addresses how best to include the baseline count in the analysis of the follow-up count of falls in negative binomial (NB) regression. We examine the performance of various approaches in simulated datasets where both counts are generated from a mixed Poisson distribution with shared random subject effect. Including the baseline count after log-transformation as a regressor in NB regression (NB-logged) or as an offset (NB-offset) resulted in greater power than including the untransformed baseline count (NB-unlogged). Cook and Wei's conditional negative binomial (CNB) model replicates the underlying process generating the data. In our motivating dataset, a statistically significant intervention effect resulted from the NB-logged, NB-offset, and CNB models, but not from NB-unlogged, and large, outlying baseline counts were overly influential in NB-unlogged but not in NB-logged. We conclude that there is little to lose by including the log-transformed baseline count in standard NB regression compared to CNB for moderate to larger sized datasets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coe, J.A.; Michael, J.A.; Crovelli, R.A.; Savage, W.Z.; Laprade, W.T.; Nashem, W.D.
2004-01-01
Ninety years of historical landslide records were used as input to the Poisson and binomial probability models. Results from these models show that, for precipitation-triggered landslides, approximately 9 percent of the area of Seattle has annual exceedance probabilities of 1 percent or greater. Application of the Poisson model for estimating the future occurrence of individual landslides results in a worst-case scenario map, with a maximum annual exceedance probability of 25 percent on a hillslope near Duwamish Head in West Seattle. Application of the binomial model for estimating the future occurrence of a year with one or more landslides results in a map with a maximum annual exceedance probability of 17 percent (also near Duwamish Head). Slope and geology both play a role in localizing the occurrence of landslides in Seattle. A positive correlation exists between slope and mean exceedance probability, with probability tending to increase as slope increases. Sixty-four percent of all historical landslide locations are within 150 m (500 ft, horizontal distance) of the Esperance Sand/Lawton Clay contact, but within this zone, no positive or negative correlation exists between exceedance probability and distance to the contact.
Pedroza, Claudia; Truong, Van Thi Thanh
2017-11-02
Analyses of multicenter studies often need to account for center clustering to ensure valid inference. For binary outcomes, it is particularly challenging to properly adjust for center when the number of centers or total sample size is small, or when there are few events per center. Our objective was to evaluate the performance of generalized estimating equation (GEE) log-binomial and Poisson models, generalized linear mixed models (GLMMs) assuming binomial and Poisson distributions, and a Bayesian binomial GLMM to account for center effect in these scenarios. We conducted a simulation study with few centers (≤30) and 50 or fewer subjects per center, using both a randomized controlled trial and an observational study design to estimate relative risk. We compared the GEE and GLMM models with a log-binomial model without adjustment for clustering in terms of bias, root mean square error (RMSE), and coverage. For the Bayesian GLMM, we used informative neutral priors that are skeptical of large treatment effects that are almost never observed in studies of medical interventions. All frequentist methods exhibited little bias, and the RMSE was very similar across the models. The binomial GLMM had poor convergence rates, ranging from 27% to 85%, but performed well otherwise. The results show that both GEE models need to use small sample corrections for robust SEs to achieve proper coverage of 95% CIs. The Bayesian GLMM had similar convergence rates but resulted in slightly more biased estimates for the smallest sample sizes. However, it had the smallest RMSE and good coverage across all scenarios. These results were very similar for both study designs. For the analyses of multicenter studies with a binary outcome and few centers, we recommend adjustment for center with either a GEE log-binomial or Poisson model with appropriate small sample corrections or a Bayesian binomial GLMM with informative priors.
Osche, G R
2000-08-20
Single- and multiple-pulse detection statistics are presented for aperture-averaged direct detection optical receivers operating against partially developed speckle fields. A partially developed speckle field arises when the probability density function of the received intensity does not follow negative exponential statistics. The case of interest here is the target surface that exhibits diffuse as well as specular components in the scattered radiation. An approximate expression is derived for the integrated intensity at the aperture, which leads to single- and multiple-pulse discrete probability density functions for the case of a Poisson signal in Poisson noise with an additive coherent component. In the absence of noise, the single-pulse discrete density function is shown to reduce to a generalized negative binomial distribution. The radar concept of integration loss is discussed in the context of direct detection optical systems where it is shown that, given an appropriate set of system parameters, multiple-pulse processing can be more efficient than single-pulse processing over a finite range of the integration parameter n.
Tobit analysis of vehicle accident rates on interstate highways.
Anastasopoulos, Panagiotis Ch; Tarko, Andrew P; Mannering, Fred L
2008-03-01
There has been an abundance of research that has used Poisson models and its variants (negative binomial and zero-inflated models) to improve our understanding of the factors that affect accident frequencies on roadway segments. This study explores the application of an alternate method, tobit regression, by viewing vehicle accident rates directly (instead of frequencies) as a continuous variable that is left-censored at zero. Using data from vehicle accidents on Indiana interstates, the estimation results show that many factors relating to pavement condition, roadway geometrics and traffic characteristics significantly affect vehicle accident rates.
2013-01-01
Background High-throughput RNA sequencing (RNA-seq) offers unprecedented power to capture the real dynamics of gene expression. Experimental designs with extensive biological replication present a unique opportunity to exploit this feature and distinguish expression profiles with higher resolution. RNA-seq data analysis methods so far have been mostly applied to data sets with few replicates and their default settings try to provide the best performance under this constraint. These methods are based on two well-known count data distributions: the Poisson and the negative binomial. The way to properly calibrate them with large RNA-seq data sets is not trivial for the non-expert bioinformatics user. Results Here we show that expression profiles produced by extensively-replicated RNA-seq experiments lead to a rich diversity of count data distributions beyond the Poisson and the negative binomial, such as Poisson-Inverse Gaussian or Pólya-Aeppli, which can be captured by a more general family of count data distributions called the Poisson-Tweedie. The flexibility of the Poisson-Tweedie family enables a direct fitting of emerging features of large expression profiles, such as heavy-tails or zero-inflation, without the need to alter a single configuration parameter. We provide a software package for R called tweeDEseq implementing a new test for differential expression based on the Poisson-Tweedie family. Using simulations on synthetic and real RNA-seq data we show that tweeDEseq yields P-values that are equally or more accurate than competing methods under different configuration parameters. By surveying the tiny fraction of sex-specific gene expression changes in human lymphoblastoid cell lines, we also show that tweeDEseq accurately detects differentially expressed genes in a real large RNA-seq data set with improved performance and reproducibility over the previously compared methodologies. Finally, we compared the results with those obtained from microarrays in order to check for reproducibility. Conclusions RNA-seq data with many replicates leads to a handful of count data distributions which can be accurately estimated with the statistical model illustrated in this paper. This method provides a better fit to the underlying biological variability; this may be critical when comparing groups of RNA-seq samples with markedly different count data distributions. The tweeDEseq package forms part of the Bioconductor project and it is available for download at http://www.bioconductor.org. PMID:23965047
Extended Poisson process modelling and analysis of grouped binary data.
Faddy, Malcolm J; Smith, David M
2012-05-01
A simple extension of the Poisson process results in binomially distributed counts of events in a time interval. A further extension generalises this to probability distributions under- or over-dispersed relative to the binomial distribution. Substantial levels of under-dispersion are possible with this modelling, but only modest levels of over-dispersion - up to Poisson-like variation. Although simple analytical expressions for the moments of these probability distributions are not available, approximate expressions for the mean and variance are derived, and used to re-parameterise the models. The modelling is applied in the analysis of two published data sets, one showing under-dispersion and the other over-dispersion. More appropriate assessment of the precision of estimated parameters and reliable model checking diagnostics follow from this more general modelling of these data sets. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zero-state Markov switching count-data models: an empirical assessment.
Malyshkina, Nataliya V; Mannering, Fred L
2010-01-01
In this study, a two-state Markov switching count-data model is proposed as an alternative to zero-inflated models to account for the preponderance of zeros sometimes observed in transportation count data, such as the number of accidents occurring on a roadway segment over some period of time. For this accident-frequency case, zero-inflated models assume the existence of two states: one of the states is a zero-accident count state, which has accident probabilities that are so low that they cannot be statistically distinguished from zero, and the other state is a normal-count state, in which counts can be non-negative integers that are generated by some counting process, for example, a Poisson or negative binomial. While zero-inflated models have come under some criticism with regard to accident-frequency applications - one fact is undeniable - in many applications they provide a statistically superior fit to the data. The Markov switching approach we propose seeks to overcome some of the criticism associated with the zero-accident state of the zero-inflated model by allowing individual roadway segments to switch between zero and normal-count states over time. An important advantage of this Markov switching approach is that it allows for the direct statistical estimation of the specific roadway-segment state (i.e., zero-accident or normal-count state) whereas traditional zero-inflated models do not. To demonstrate the applicability of this approach, a two-state Markov switching negative binomial model (estimated with Bayesian inference) and standard zero-inflated negative binomial models are estimated using five-year accident frequencies on Indiana interstate highway segments. It is shown that the Markov switching model is a viable alternative and results in a superior statistical fit relative to the zero-inflated models.
Estimation of the cure rate in Iranian breast cancer patients.
Rahimzadeh, Mitra; Baghestani, Ahmad Reza; Gohari, Mahmood Reza; Pourhoseingholi, Mohamad Amin
2014-01-01
Although the Cox's proportional hazard model is the popular approach for survival analysis to investigate significant risk factors of cancer patient survival, it is not appropriate in the case of log-term disease free survival. Recently, cure rate models have been introduced to distinguish between clinical determinants of cure and variables associated with the time to event of interest. The aim of this study was to use a cure rate model to determine the clinical associated factors for cure rates of patients with breast cancer (BC). This prospective cohort study covered 305 patients with BC, admitted at Shahid Faiazbakhsh Hospital, Tehran, during 2006 to 2008 and followed until April 2012. Cases of patient death were confirmed by telephone contact. For data analysis, a non-mixed cure rate model with Poisson distribution and negative binomial distribution were employed. All analyses were carried out using a developed Macro in WinBugs. Deviance information criteria (DIC) were employed to find the best model. The overall 1-year, 3-year and 5-year relative survival rates were 97%, 89% and 74%. Metastasis and stage of BC were the significant factors, but age was significant only in negative binomial model. The DIC also showed that the negative binomial model had a better fit. This study indicated that, metastasis and stage of BC were identified as the clinical criteria for cure rates. There are limited studies on BC survival which employed these cure rate models to identify the clinical factors associated with cure. These models are better than Cox, in the case of long-term survival.
Lord, Dominique; Guikema, Seth D; Geedipally, Srinivas Reddy
2008-05-01
This paper documents the application of the Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM) for modeling motor vehicle crashes. The COM-Poisson distribution, originally developed in 1962, has recently been re-introduced by statisticians for analyzing count data subjected to over- and under-dispersion. This innovative distribution is an extension of the Poisson distribution. The objectives of this study were to evaluate the application of the COM-Poisson GLM for analyzing motor vehicle crashes and compare the results with the traditional negative binomial (NB) model. The comparison analysis was carried out using the most common functional forms employed by transportation safety analysts, which link crashes to the entering flows at intersections or on segments. To accomplish the objectives of the study, several NB and COM-Poisson GLMs were developed and compared using two datasets. The first dataset contained crash data collected at signalized four-legged intersections in Toronto, Ont. The second dataset included data collected for rural four-lane divided and undivided highways in Texas. Several methods were used to assess the statistical fit and predictive performance of the models. The results of this study show that COM-Poisson GLMs perform as well as NB models in terms of GOF statistics and predictive performance. Given the fact the COM-Poisson distribution can also handle under-dispersed data (while the NB distribution cannot or has difficulties converging), which have sometimes been observed in crash databases, the COM-Poisson GLM offers a better alternative over the NB model for modeling motor vehicle crashes, especially given the important limitations recently documented in the safety literature about the latter type of model.
Dorazio, Robert M.; Martin, Juulien; Edwards, Holly H.
2013-01-01
The class of N-mixture models allows abundance to be estimated from repeated, point count surveys while adjusting for imperfect detection of individuals. We developed an extension of N-mixture models to account for two commonly observed phenomena in point count surveys: rarity and lack of independence induced by unmeasurable sources of variation in the detectability of individuals. Rarity increases the number of locations with zero detections in excess of those expected under simple models of abundance (e.g., Poisson or negative binomial). Correlated behavior of individuals and other phenomena, though difficult to measure, increases the variation in detection probabilities among surveys. Our extension of N-mixture models includes a hurdle model of abundance and a beta-binomial model of detectability that accounts for additional (extra-binomial) sources of variation in detections among surveys. As an illustration, we fit this model to repeated point counts of the West Indian manatee, which was observed in a pilot study using aerial surveys. Our extension of N-mixture models provides increased flexibility. The effects of different sets of covariates may be estimated for the probability of occurrence of a species, for its mean abundance at occupied locations, and for its detectability.
Dorazio, Robert M; Martin, Julien; Edwards, Holly H
2013-07-01
The class of N-mixture models allows abundance to be estimated from repeated, point count surveys while adjusting for imperfect detection of individuals. We developed an extension of N-mixture models to account for two commonly observed phenomena in point count surveys: rarity and lack of independence induced by unmeasurable sources of variation in the detectability of individuals. Rarity increases the number of locations with zero detections in excess of those expected under simple models of abundance (e.g., Poisson or negative binomial). Correlated behavior of individuals and other phenomena, though difficult to measure, increases the variation in detection probabilities among surveys. Our extension of N-mixture models includes a hurdle model of abundance and a beta-binomial model of detectability that accounts for additional (extra-binomial) sources of variation in detections among surveys. As an illustration, we fit this model to repeated point counts of the West Indian manatee, which was observed in a pilot study using aerial surveys. Our extension of N-mixture models provides increased flexibility. The effects of different sets of covariates may be estimated for the probability of occurrence of a species, for its mean abundance at occupied locations, and for its detectability.
A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.
Ferrari, Alberto; Comelli, Mario
2016-12-01
In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.
A Random Variable Transformation Process.
ERIC Educational Resources Information Center
Scheuermann, Larry
1989-01-01
Provides a short BASIC program, RANVAR, which generates random variates for various theoretical probability distributions. The seven variates include: uniform, exponential, normal, binomial, Poisson, Pascal, and triangular. (MVL)
Population heterogeneity in the salience of multiple risk factors for adolescent delinquency.
Lanza, Stephanie T; Cooper, Brittany R; Bray, Bethany C
2014-03-01
To present mixture regression analysis as an alternative to more standard regression analysis for predicting adolescent delinquency. We demonstrate how mixture regression analysis allows for the identification of population subgroups defined by the salience of multiple risk factors. We identified population subgroups (i.e., latent classes) of individuals based on their coefficients in a regression model predicting adolescent delinquency from eight previously established risk indices drawn from the community, school, family, peer, and individual levels. The study included N = 37,763 10th-grade adolescents who participated in the Communities That Care Youth Survey. Standard, zero-inflated, and mixture Poisson and negative binomial regression models were considered. Standard and mixture negative binomial regression models were selected as optimal. The five-class regression model was interpreted based on the class-specific regression coefficients, indicating that risk factors had varying salience across classes of adolescents. Standard regression showed that all risk factors were significantly associated with delinquency. Mixture regression provided more nuanced information, suggesting a unique set of risk factors that were salient for different subgroups of adolescents. Implications for the design of subgroup-specific interventions are discussed. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Mallick, Himel; Tiwari, Hemant K.
2016-01-01
Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice. PMID:27066062
Mallick, Himel; Tiwari, Hemant K
2016-01-01
Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice.
Differential expression analysis for RNAseq using Poisson mixed models
Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny
2017-01-01
Abstract Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. PMID:28369632
NASA Technical Reports Server (NTRS)
Tannenbaum, M. J.
1994-01-01
The concept of "Intermittency" was introduced by Bialas and Peschanski to try to explain the "large" fluctuations of multiplicity in restricted intervals of rapidity or pseudorapidity. A formalism was proposed to to study non-statistical (more precisely, non-Poisson) fluctuations as a function of the size of rapidity interval, and it was further suggested that the "spikes" in the rapidity fluctuations were evidence of fractal or intermittent behavior, in analogy to turbulence in fluid dynamics which is characterized by self-similar fluctuations at all scales-the absence of well defined scale of length.
Flood return level analysis of Peaks over Threshold series under changing climate
NASA Astrophysics Data System (ADS)
Li, L.; Xiong, L.; Hu, T.; Xu, C. Y.; Guo, S.
2016-12-01
Obtaining insights into future flood estimation is of great significance for water planning and management. Traditional flood return level analysis with the stationarity assumption has been challenged by changing environments. A method that takes into consideration the nonstationarity context has been extended to derive flood return levels for Peaks over Threshold (POT) series. With application to POT series, a Poisson distribution is normally assumed to describe the arrival rate of exceedance events, but this distribution assumption has at times been reported as invalid. The Negative Binomial (NB) distribution is therefore proposed as an alternative to the Poisson distribution assumption. Flood return levels were extrapolated in nonstationarity context for the POT series of the Weihe basin, China under future climate scenarios. The results show that the flood return levels estimated under nonstationarity can be different with an assumption of Poisson and NB distribution, respectively. The difference is found to be related to the threshold value of POT series. The study indicates the importance of distribution selection in flood return level analysis under nonstationarity and provides a reference on the impact of climate change on flood estimation in the Weihe basin for the future.
QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.
Nilsen, Vegard; Wyller, John
2016-01-01
Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional "single-hit" dose-response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose-response models in terms of probability generating functions. It is shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single-hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose-response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose-response assessment as well as practical risk characterization are discussed. © 2016 Society for Risk Analysis.
The spatial distribution of fixed mutations within genes coding for proteins
NASA Technical Reports Server (NTRS)
Holmquist, R.; Goodman, M.; Conroy, T.; Czelusniak, J.
1983-01-01
An examination has been conducted of the extensive amino acid sequence data now available for five protein families - the alpha crystallin A chain, myoglobin, alpha and beta hemoglobin, and the cytochromes c - with the goal of estimating the true spatial distribution of base substitutions within genes that code for proteins. In every case the commonly used Poisson density failed to even approximate the experimental pattern of base substitution. For the 87 species of beta hemoglobin examined, for example, the probability that the observed results were from a Poisson process was the minuscule 10 to the -44th. Analogous results were obtained for the other functional families. All the data were reasonably, but not perfectly, described by the negative binomial density. In particular, most of the data were described by one of the very simple limiting forms of this density, the geometric density. The implications of this for evolutionary inference are discussed. It is evident that most estimates of total base substitutions between genes are badly in need of revision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Xianyuan; Aziz, H. M. Abdul; Ukkusuri, Satish V.
Our study investigates the Multivariate Poisson-lognormal (MVPLN) model that jointly models crash frequency and severity accounting for correlations. The ordinary univariate count models analyze crashes of different severity level separately ignoring the correlations among severity levels. The MVPLN model is capable to incorporate the general correlation structure and takes account of the over dispersion in the data that leads to a superior data fitting. But, the traditional estimation approach for MVPLN model is computationally expensive, which often limits the use of MVPLN model in practice. In this work, a parallel sampling scheme is introduced to improve the original Markov Chainmore » Monte Carlo (MCMC) estimation approach of the MVPLN model, which significantly reduces the model estimation time. Two MVPLN models are developed using the pedestrian vehicle crash data collected in New York City from 2002 to 2006, and the highway-injury data from Washington State (5-year data from 1990 to 1994) The Deviance Information Criteria (DIC) is used to evaluate the model fitting. The estimation results show that the MVPLN models provide a superior fit over univariate Poisson-lognormal (PLN), univariate Poisson, and Negative Binomial models. Moreover, the correlations among the latent effects of different severity levels are found significant in both datasets that justifies the importance of jointly modeling crash frequency and severity accounting for correlations.« less
Differential expression analysis for RNAseq using Poisson mixed models.
Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny; Zhou, Xiang
2017-06-20
Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zhan, Xianyuan; Aziz, H. M. Abdul; Ukkusuri, Satish V.
2015-11-19
Our study investigates the Multivariate Poisson-lognormal (MVPLN) model that jointly models crash frequency and severity accounting for correlations. The ordinary univariate count models analyze crashes of different severity level separately ignoring the correlations among severity levels. The MVPLN model is capable to incorporate the general correlation structure and takes account of the over dispersion in the data that leads to a superior data fitting. But, the traditional estimation approach for MVPLN model is computationally expensive, which often limits the use of MVPLN model in practice. In this work, a parallel sampling scheme is introduced to improve the original Markov Chainmore » Monte Carlo (MCMC) estimation approach of the MVPLN model, which significantly reduces the model estimation time. Two MVPLN models are developed using the pedestrian vehicle crash data collected in New York City from 2002 to 2006, and the highway-injury data from Washington State (5-year data from 1990 to 1994) The Deviance Information Criteria (DIC) is used to evaluate the model fitting. The estimation results show that the MVPLN models provide a superior fit over univariate Poisson-lognormal (PLN), univariate Poisson, and Negative Binomial models. Moreover, the correlations among the latent effects of different severity levels are found significant in both datasets that justifies the importance of jointly modeling crash frequency and severity accounting for correlations.« less
Aly, Sharif S; Zhao, Jianyang; Li, Ben; Jiang, Jiming
2014-01-01
The Intraclass Correlation Coefficient (ICC) is commonly used to estimate the similarity between quantitative measures obtained from different sources. Overdispersed data is traditionally transformed so that linear mixed model (LMM) based ICC can be estimated. A common transformation used is the natural logarithm. The reliability of environmental sampling of fecal slurry on freestall pens has been estimated for Mycobacterium avium subsp. paratuberculosis using the natural logarithm transformed culture results. Recently, the negative binomial ICC was defined based on a generalized linear mixed model for negative binomial distributed data. The current study reports on the negative binomial ICC estimate which includes fixed effects using culture results of environmental samples. Simulations using a wide variety of inputs and negative binomial distribution parameters (r; p) showed better performance of the new negative binomial ICC compared to the ICC based on LMM even when negative binomial data was logarithm, and square root transformed. A second comparison that targeted a wider range of ICC values showed that the mean of estimated ICC closely approximated the true ICC.
Statistical procedures for analyzing mental health services data.
Elhai, Jon D; Calhoun, Patrick S; Ford, Julian D
2008-08-15
In mental health services research, analyzing service utilization data often poses serious problems, given the presence of substantially skewed data distributions. This article presents a non-technical introduction to statistical methods specifically designed to handle the complexly distributed datasets that represent mental health service use, including Poisson, negative binomial, zero-inflated, and zero-truncated regression models. A flowchart is provided to assist the investigator in selecting the most appropriate method. Finally, a dataset of mental health service use reported by medical patients is described, and a comparison of results across several different statistical methods is presented. Implications of matching data analytic techniques appropriately with the often complexly distributed datasets of mental health services utilization variables are discussed.
Some considerations for excess zeroes in substance abuse research.
Bandyopadhyay, Dipankar; DeSantis, Stacia M; Korte, Jeffrey E; Brady, Kathleen T
2011-09-01
Count data collected in substance abuse research often come with an excess of "zeroes," which are typically handled using zero-inflated regression models. However, there is a need to consider the design aspects of those studies before using such a statistical model to ascertain the sources of zeroes. We sought to illustrate hurdle models as alternatives to zero-inflated models to validate a two-stage decision-making process in situations of "excess zeroes." We use data from a study of 45 cocaine-dependent subjects where the primary scientific question was to evaluate whether study participation influences drug-seeking behavior. The outcome, "the frequency (count) of cocaine use days per week," is bounded (ranging from 0 to 7). We fit and compare binomial, Poisson, negative binomial, and the hurdle version of these models to study the effect of gender, age, time, and study participation on cocaine use. The hurdle binomial model provides the best fit. Gender and time are not predictive of use. Higher odds of use versus no use are associated with age; however once use is experienced, odds of further use decrease with increase in age. Participation was associated with higher odds of no-cocaine use; once there is use, participation reduced the odds of further use. Age and study participation are significantly predictive of cocaine-use behavior. The two-stage decision process as modeled by a hurdle binomial model (appropriate for bounded count data with excess zeroes) provides interesting insights into the study of covariate effects on count responses of substance use, when all enrolled subjects are believed to be "at-risk" of use.
Moineddin, Rahim; Meaney, Christopher; Agha, Mohammad; Zagorski, Brandon; Glazier, Richard Henry
2011-08-19
Emergency departments are medical treatment facilities, designed to provide episodic care to patients suffering from acute injuries and illnesses as well as patients who are experiencing sporadic flare-ups of underlying chronic medical conditions which require immediate attention. Supply and demand for emergency department services varies across geographic regions and time. Some persons do not rely on the service at all whereas; others use the service on repeated occasions. Issues regarding increased wait times for services and crowding illustrate the need to investigate which factors are associated with increased frequency of emergency department utilization. The evidence from this study can help inform policy makers on the appropriate mix of supply and demand targeted health care policies necessary to ensure that patients receive appropriate health care delivery in an efficient and cost-effective manner. The purpose of this report is to assess those factors resulting in increased demand for emergency department services in Ontario. We assess how utilization rates vary according to the severity of patient presentation in the emergency department. We are specifically interested in the impact that access to primary care physicians has on the demand for emergency department services. Additionally, we wish to investigate these trends using a series of novel regression models for count outcomes which have yet to be employed in the domain of emergency medical research. Data regarding the frequency of emergency department visits for the respondents of Canadian Community Health Survey (CCHS) during our study interval (2003-2005) are obtained from the National Ambulatory Care Reporting System (NACRS). Patients' emergency department utilizations were linked with information from the Canadian Community Health Survey (CCHS) which provides individual level medical, socio-demographic, psychological and behavioral information for investigating predictors of increased emergency department utilization. Six different multiple regression models for count data were fitted to assess the influence of predictors on demand for emergency department services, including: Poisson, Negative Binomial, Zero-Inflated Poisson, Zero-Inflated Negative Binomial, Hurdle Poisson, and Hurdle Negative Binomial. Comparison of competing models was assessed by the Vuong test statistic. The CCHS cycle 2.1 respondents were a roughly equal mix of males (50.4%) and females (49.6%). The majority (86.2%) were young-middle aged adults between the ages of 20-64, living in predominantly urban environments (85.9%), with mid-high household incomes (92.2%) and well-educated, receiving at least a high-school diploma (84.1%). Many participants reported no chronic disease (51.9%), fell into a small number (0-5) of ambulatory diagnostic groups (62.3%), and perceived their health status as good/excellent (88.1%); however, were projected to have high Resource Utilization Band levels of health resource utilization (68.2%). These factors were largely stable for CCHS cycle 3.1 respondents. Factors influencing demand for emergency department services varied according to the severity of triage scores at initial presentation. For example, although a non-significant predictor of the odds of emergency department utilization in high severity cases, access to a primary care physician was a statistically significant predictor of the likelihood of emergency department utilization (OR: 0.69; 95% CI OR: 0.63-0.75) and the rate of emergency department utilization (RR: 0.57; 95% CI RR: 0.50-0.66) in low severity cases. Using a theoretically appropriate hurdle negative binomial regression model this unique study illustrates that access to a primary care physician is an important predictor of both the odds and rate of emergency department utilization in Ontario. Restructuring primary care services, with aims of increasing access to undersupplied populations may result in decreased emergency department utilization rates by approximately 43% for low severity triage level cases.
Seasonal changes in spatial patterns of two annual plants in the Chihuahuan Desert, USA
Yin, Z.-Y.; Guo, Q.; Ren, H.; Peng, S.-L.
2005-01-01
Spatial pattern of a biotic population may change over time as its component individuals grow or die out, but whether this is the case for desert annual plants is largely unknown. Here we examined seasonal changes in spatial patterns of two annuals, Eriogonum abertianum and Haplopappus gracilis, in initial (winter) and final (summer) densities. The density was measured as the number of individuals from 384 permanent quadrats (each 0.5 m × 0.5 m) in the Chihuahuan Desert near Portal, Arizona, USA. We used three probability distributions (binomial, Poisson, and negative binomial or NB) that represent three basic spatial patterns (regular, random, and clumped) to fit the observed frequency distributions of densities of the two annuals. Both species showed clear clumped patterns as characterized by the NB and had similar inverse J-shaped frequency distribution curves in two density categories. Also, both species displayed a reduced degree of aggregation from winter to summer after the spring drought (massive die-off), as indicated by the increased k-parameter of the NB and decreased values of another NB parameter p, variance/mean ratio, Lloyd’s Index of Patchiness, and David and Moore’s Index of Clumping. Further, we hypothesized that while the NB (i.e., Poisson-logarithmic) well fits the distribution of individuals per quadrat, its components, the Poisson and logarithmic, may describe the distributions of clumps per quadrat and of individuals per clump, respectively. We thus obtained the means and variances for (1) individuals per quadrat, (2) clumps per quadrat, and (3) individuals per clump. The results showed that the decrease of the density from winter to summer for each plant resulted from the decrease of individuals per clump, rather than from the decrease of clumps per quadrat. The great similarities between the two annuals indicate that our observed temporal changes in spatial patterns may be common among desert annual plants.
A quantile count model of water depth constraints on Cape Sable seaside sparrows
Cade, B.S.; Dong, Q.
2008-01-01
1. A quantile regression model for counts of breeding Cape Sable seaside sparrows Ammodramus maritimus mirabilis (L.) as a function of water depth and previous year abundance was developed based on extensive surveys, 1992-2005, in the Florida Everglades. The quantile count model extends linear quantile regression methods to discrete response variables, providing a flexible alternative to discrete parametric distributional models, e.g. Poisson, negative binomial and their zero-inflated counterparts. 2. Estimates from our multiplicative model demonstrated that negative effects of increasing water depth in breeding habitat on sparrow numbers were dependent on recent occupation history. Upper 10th percentiles of counts (one to three sparrows) decreased with increasing water depth from 0 to 30 cm when sites were not occupied in previous years. However, upper 40th percentiles of counts (one to six sparrows) decreased with increasing water depth for sites occupied in previous years. 3. Greatest decreases (-50% to -83%) in upper quantiles of sparrow counts occurred as water depths increased from 0 to 15 cm when previous year counts were 1, but a small proportion of sites (5-10%) held at least one sparrow even as water depths increased to 20 or 30 cm. 4. A zero-inflated Poisson regression model provided estimates of conditional means that also decreased with increasing water depth but rates of change were lower and decreased with increasing previous year counts compared to the quantile count model. Quantiles computed for the zero-inflated Poisson model enhanced interpretation of this model but had greater lack-of-fit for water depths > 0 cm and previous year counts 1, conditions where the negative effect of water depths were readily apparent and fitted better with the quantile count model.
Grigolli, J F J; Souza, L A; Fernandes, M G; Busoli, A C
2017-08-01
The cotton boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae) is the main pest in cotton crop around the world, directly affecting cotton production. In order to establish a sequential sampling plan, it is crucial to understand the spatial distribution of the pest population and the damage it causes to the crop through the different developmental stages of cotton plants. Therefore, this study aimed to investigate the spatial distribution of adults in the cultivation area and their oviposition and feeding behavior throughout the development of the cotton plants. The experiment was conducted in Maracaju, Mato Grosso do Sul, Brazil, in the 2012/2013 and 2013/2014 growing seasons, in an area of 10,000 m 2 , planted with the cotton cultivar FM 993. The experimental area was divided into 100 plots of 100 m 2 (10 × 10 m) each, and five plants per plot were sampled weekly throughout the crop cycle. The number of flower buds with feeding and oviposition punctures and of adult A. grandis was recorded throughout the crop cycle in five plants per plot. After determining the aggregation indices (variance/mean ratio, Morisita's index, exponent k of the negative binomial distribution, and Green's coefficient) and adjusting the frequencies observed in the field to the distribution of frequencies (Poisson, negative binomial, and positive binomial) using the chi-squared test, it was observed that flower buds with punctures derived from feeding, oviposition, and feeding + oviposition showed an aggregated distribution in the cultivation area until 85 days after emergence and a random distribution after this stage. The adults of A. grandis presented a random distribution in the cultivation area.
Distinguishing between Binomial, Hypergeometric and Negative Binomial Distributions
ERIC Educational Resources Information Center
Wroughton, Jacqueline; Cole, Tarah
2013-01-01
Recognizing the differences between three discrete distributions (Binomial, Hypergeometric and Negative Binomial) can be challenging for students. We present an activity designed to help students differentiate among these distributions. In addition, we present assessment results in the form of pre- and post-tests that were designed to assess the…
A semi-nonparametric Poisson regression model for analyzing motor vehicle crash data.
Ye, Xin; Wang, Ke; Zou, Yajie; Lord, Dominique
2018-01-01
This paper develops a semi-nonparametric Poisson regression model to analyze motor vehicle crash frequency data collected from rural multilane highway segments in California, US. Motor vehicle crash frequency on rural highway is a topic of interest in the area of transportation safety due to higher driving speeds and the resultant severity level. Unlike the traditional Negative Binomial (NB) model, the semi-nonparametric Poisson regression model can accommodate an unobserved heterogeneity following a highly flexible semi-nonparametric (SNP) distribution. Simulation experiments are conducted to demonstrate that the SNP distribution can well mimic a large family of distributions, including normal distributions, log-gamma distributions, bimodal and trimodal distributions. Empirical estimation results show that such flexibility offered by the SNP distribution can greatly improve model precision and the overall goodness-of-fit. The semi-nonparametric distribution can provide a better understanding of crash data structure through its ability to capture potential multimodality in the distribution of unobserved heterogeneity. When estimated coefficients in empirical models are compared, SNP and NB models are found to have a substantially different coefficient for the dummy variable indicating the lane width. The SNP model with better statistical performance suggests that the NB model overestimates the effect of lane width on crash frequency reduction by 83.1%.
A statistical model to estimate the impact of a hepatitis A vaccination programme.
Oviedo, Manuel; Pilar Muñoz, M; Domínguez, Angela; Borras, Eva; Carmona, Gloria
2008-11-11
A program of routine hepatitis A+B vaccination in preadolescents was introduced in 1998 in Catalonia, a region situated in the northeast of Spain. The objective of this study was to quantify the reduction in the incidence of hepatitis A in order to differentiate the natural reduction of the incidence of hepatitis A from that produced due to the vaccination programme and to predict the evolution of the disease in forthcoming years. A generalized linear model (GLM) using negative binomial regression was used to estimate the incidence rates of hepatitis A in Catalonia by year, age group and vaccination. Introduction of the vaccine reduced cases by 5.5 by year (p-value<0.001), but there was a significant interaction between the year of report and vaccination that smoothed this reduction (p-value<0.001). The reduction was not equal in all age groups, being greater in the 12-18 years age group, which fell from a mean rate of 8.15 per 100,000 person/years in the pre-vaccination period (1992-1998) to 1.4 in the vaccination period (1999-2005). The model predicts the evolution accurately for the group of vaccinated subjects. Negative binomial regression is more appropriate than Poisson regression when observed variance exceeds the observed mean (overdispersed count data), can cause a variable apparently contribute more on the model of what really makes it.
AMP: Assembly Matching Pursuit.
Biswas, S; Jojic, V
2013-01-01
Metagenomics, the study of the total genetic material isolated from a biological host, promises to reveal host-microbe or microbe-microbe interactions that may help to personalize medicine or improve agronomic practice. We introduce a method that discovers metagenomic units (MGUs) relevant for phenotype prediction through sequence-based dictionary learning. The method aggregates patient-specific dictionaries and estimates MGU abundances in order to summarize a whole population and yield universally predictive biomarkers. We analyze the impact of Gaussian, Poisson, and Negative Binomial read count models in guiding dictionary construction by examining classification efficiency on a number of synthetic datasets and a real dataset from Ref. 1. Each outperforms standard methods of dictionary composition, such as random projection and orthogonal matching pursuit. Additionally, the predictive MGUs they recover are biologically relevant.
A review on models for count data with extra zeros
NASA Astrophysics Data System (ADS)
Zamri, Nik Sarah Nik; Zamzuri, Zamira Hasanah
2017-04-01
Typically, the zero inflated models are usually used in modelling count data with excess zeros. The existence of the extra zeros could be structural zeros or random which occur by chance. These types of data are commonly found in various disciplines such as finance, insurance, biomedical, econometrical, ecology, and health sciences. As found in the literature, the most popular zero inflated models used are zero inflated Poisson and zero inflated negative binomial. Recently, more complex models have been developed to account for overdispersion and unobserved heterogeneity. In addition, more extended distributions are also considered in modelling data with this feature. In this paper, we review related literature, provide a recent development and summary on models for count data with extra zeros.
NASA Astrophysics Data System (ADS)
Beach, Shaun E.; Semkow, Thomas M.; Remling, David J.; Bradt, Clayton J.
2017-07-01
We have developed accessible methods to demonstrate fundamental statistics in several phenomena, in the context of teaching electronic signal processing in a physics-based college-level curriculum. A relationship between the exponential time-interval distribution and Poisson counting distribution for a Markov process with constant rate is derived in a novel way and demonstrated using nuclear counting. Negative binomial statistics is demonstrated as a model for overdispersion and justified by the effect of electronic noise in nuclear counting. The statistics of digital packets on a computer network are shown to be compatible with the fractal-point stochastic process leading to a power-law as well as generalized inverse Gaussian density distributions of time intervals between packets.
Singer, Donald A.; Menzie, W.D.; Cheng, Qiuming; Bonham-Carter, G. F.
2005-01-01
Estimating numbers of undiscovered mineral deposits is a fundamental part of assessing mineral resources. Some statistical tools can act as guides to low variance, unbiased estimates of the number of deposits. The primary guide is that the estimates must be consistent with the grade and tonnage models. Another statistical guide is the deposit density (i.e., the number of deposits per unit area of permissive rock in well-explored control areas). Preliminary estimates and confidence limits of the number of undiscovered deposits in a tract of given area may be calculated using linear regression and refined using frequency distributions with appropriate parameters. A Poisson distribution leads to estimates having lower relative variances than the regression estimates and implies a random distribution of deposits. Coefficients of variation are used to compare uncertainties of negative binomial, Poisson, or MARK3 empirical distributions that have the same expected number of deposits as the deposit density. Statistical guides presented here allow simple yet robust estimation of the number of undiscovered deposits in permissive terranes.
Computational Aspects of N-Mixture Models
Dennis, Emily B; Morgan, Byron JT; Ridout, Martin S
2015-01-01
The N-mixture model is widely used to estimate the abundance of a population in the presence of unknown detection probability from only a set of counts subject to spatial and temporal replication (Royle, 2004, Biometrics 60, 105–115). We explain and exploit the equivalence of N-mixture and multivariate Poisson and negative-binomial models, which provides powerful new approaches for fitting these models. We show that particularly when detection probability and the number of sampling occasions are small, infinite estimates of abundance can arise. We propose a sample covariance as a diagnostic for this event, and demonstrate its good performance in the Poisson case. Infinite estimates may be missed in practice, due to numerical optimization procedures terminating at arbitrarily large values. It is shown that the use of a bound, K, for an infinite summation in the N-mixture likelihood can result in underestimation of abundance, so that default values of K in computer packages should be avoided. Instead we propose a simple automatic way to choose K. The methods are illustrated by analysis of data on Hermann's tortoise Testudo hermanni. PMID:25314629
Censored Hurdle Negative Binomial Regression (Case Study: Neonatorum Tetanus Case in Indonesia)
NASA Astrophysics Data System (ADS)
Yuli Rusdiana, Riza; Zain, Ismaini; Wulan Purnami, Santi
2017-06-01
Hurdle negative binomial model regression is a method that can be used for discreate dependent variable, excess zero and under- and overdispersion. It uses two parts approach. The first part estimates zero elements from dependent variable is zero hurdle model and the second part estimates not zero elements (non-negative integer) from dependent variable is called truncated negative binomial models. The discrete dependent variable in such cases is censored for some values. The type of censor that will be studied in this research is right censored. This study aims to obtain the parameter estimator hurdle negative binomial regression for right censored dependent variable. In the assessment of parameter estimation methods used Maximum Likelihood Estimator (MLE). Hurdle negative binomial model regression for right censored dependent variable is applied on the number of neonatorum tetanus cases in Indonesia. The type data is count data which contains zero values in some observations and other variety value. This study also aims to obtain the parameter estimator and test statistic censored hurdle negative binomial model. Based on the regression results, the factors that influence neonatorum tetanus case in Indonesia is the percentage of baby health care coverage and neonatal visits.
HYPERSAMP - HYPERGEOMETRIC ATTRIBUTE SAMPLING SYSTEM BASED ON RISK AND FRACTION DEFECTIVE
NASA Technical Reports Server (NTRS)
De, Salvo L. J.
1994-01-01
HYPERSAMP is a demonstration of an attribute sampling system developed to determine the minimum sample size required for any preselected value for consumer's risk and fraction of nonconforming. This statistical method can be used in place of MIL-STD-105E sampling plans when a minimum sample size is desirable, such as when tests are destructive or expensive. HYPERSAMP utilizes the Hypergeometric Distribution and can be used for any fraction nonconforming. The program employs an iterative technique that circumvents the obstacle presented by the factorial of a non-whole number. HYPERSAMP provides the required Hypergeometric sample size for any equivalent real number of nonconformances in the lot or batch under evaluation. Many currently used sampling systems, such as the MIL-STD-105E, utilize the Binomial or the Poisson equations as an estimate of the Hypergeometric when performing inspection by attributes. However, this is primarily because of the difficulty in calculation of the factorials required by the Hypergeometric. Sampling plans based on the Binomial or Poisson equations will result in the maximum sample size possible with the Hypergeometric. The difference in the sample sizes between the Poisson or Binomial and the Hypergeometric can be significant. For example, a lot size of 400 devices with an error rate of 1.0% and a confidence of 99% would require a sample size of 400 (all units would need to be inspected) for the Binomial sampling plan and only 273 for a Hypergeometric sampling plan. The Hypergeometric results in a savings of 127 units, a significant reduction in the required sample size. HYPERSAMP is a demonstration program and is limited to sampling plans with zero defectives in the sample (acceptance number of zero). Since it is only a demonstration program, the sample size determination is limited to sample sizes of 1500 or less. The Hypergeometric Attribute Sampling System demonstration code is a spreadsheet program written for IBM PC compatible computers running DOS and Lotus 1-2-3 or Quattro Pro. This program is distributed on a 5.25 inch 360K MS-DOS format diskette, and the program price includes documentation. This statistical method was developed in 1992.
Choosing a Transformation in Analyses of Insect Counts from Contagious Distributions with Low Means
W.D. Pepper; S.J. Zarnoch; G.L. DeBarr; P. de Groot; C.D. Tangren
1997-01-01
Guidelines based on computer simulation are suggested for choosing a transformation of insect counts from negative binomial distributions with low mean counts and high levels of contagion. Typical values and ranges of negative binomial model parameters were determined by fitting the model to data from 19 entomological field studies. Random sampling of negative binomial...
On Models for Binomial Data with Random Numbers of Trials
Comulada, W. Scott; Weiss, Robert E.
2010-01-01
Summary A binomial outcome is a count s of the number of successes out of the total number of independent trials n = s + f, where f is a count of the failures. The n are random variables not fixed by design in many studies. Joint modeling of (s, f) can provide additional insight into the science and into the probability π of success that cannot be directly incorporated by the logistic regression model. Observations where n = 0 are excluded from the binomial analysis yet may be important to understanding how π is influenced by covariates. Correlation between s and f may exist and be of direct interest. We propose Bayesian multivariate Poisson models for the bivariate response (s, f), correlated through random effects. We extend our models to the analysis of longitudinal and multivariate longitudinal binomial outcomes. Our methodology was motivated by two disparate examples, one from teratology and one from an HIV tertiary intervention study. PMID:17688514
1976-07-01
PURDUE UNIVERSITY DEPARTMENT OF STATISTICS DIVISION OF MATHEMATICAL SCIENCES ON SUBSET SELECTION PROCEDURES FOR POISSON PROCESSES AND SOME...Mathematical Sciences Mimeograph Series #457, July 1976 This research was supported by the Office of Naval Research under Contract NOOO14-75-C-0455 at Purdue...11 CON PC-111 riFIC-F ,A.F ANO ADDPFS Office of INaval ResearchJu#07 Washington, DC07 36AE 14~~~ rjCr; NF A ’ , A FAA D F 6 - I S it 9 i 1, - ,1 I
Statistical inference involving binomial and negative binomial parameters.
García-Pérez, Miguel A; Núñez-Antón, Vicente
2009-05-01
Statistical inference about two binomial parameters implies that they are both estimated by binomial sampling. There are occasions in which one aims at testing the equality of two binomial parameters before and after the occurrence of the first success along a sequence of Bernoulli trials. In these cases, the binomial parameter before the first success is estimated by negative binomial sampling whereas that after the first success is estimated by binomial sampling, and both estimates are related. This paper derives statistical tools to test two hypotheses, namely, that both binomial parameters equal some specified value and that both parameters are equal though unknown. Simulation studies are used to show that in small samples both tests are accurate in keeping the nominal Type-I error rates, and also to determine sample size requirements to detect large, medium, and small effects with adequate power. Additional simulations also show that the tests are sufficiently robust to certain violations of their assumptions.
2013-01-01
Background Malnutrition is one of the principal causes of child mortality in developing countries including Bangladesh. According to our knowledge, most of the available studies, that addressed the issue of malnutrition among under-five children, considered the categorical (dichotomous/polychotomous) outcome variables and applied logistic regression (binary/multinomial) to find their predictors. In this study malnutrition variable (i.e. outcome) is defined as the number of under-five malnourished children in a family, which is a non-negative count variable. The purposes of the study are (i) to demonstrate the applicability of the generalized Poisson regression (GPR) model as an alternative of other statistical methods and (ii) to find some predictors of this outcome variable. Methods The data is extracted from the Bangladesh Demographic and Health Survey (BDHS) 2007. Briefly, this survey employs a nationally representative sample which is based on a two-stage stratified sample of households. A total of 4,460 under-five children is analysed using various statistical techniques namely Chi-square test and GPR model. Results The GPR model (as compared to the standard Poisson regression and negative Binomial regression) is found to be justified to study the above-mentioned outcome variable because of its under-dispersion (variance < mean) property. Our study also identify several significant predictors of the outcome variable namely mother’s education, father’s education, wealth index, sanitation status, source of drinking water, and total number of children ever born to a woman. Conclusions Consistencies of our findings in light of many other studies suggest that the GPR model is an ideal alternative of other statistical models to analyse the number of under-five malnourished children in a family. Strategies based on significant predictors may improve the nutritional status of children in Bangladesh. PMID:23297699
Tran, Phoebe; Waller, Lance
2015-01-01
Lyme disease has been the subject of many studies due to increasing incidence rates year after year and the severe complications that can arise in later stages of the disease. Negative binomial models have been used to model Lyme disease in the past with some success. However, there has been little focus on the reliability and consistency of these models when they are used to study Lyme disease at multiple spatial scales. This study seeks to explore how sensitive/consistent negative binomial models are when they are used to study Lyme disease at different spatial scales (at the regional and sub-regional levels). The study area includes the thirteen states in the Northeastern United States with the highest Lyme disease incidence during the 2002-2006 period. Lyme disease incidence at county level for the period of 2002-2006 was linked with several previously identified key landscape and climatic variables in a negative binomial regression model for the Northeastern region and two smaller sub-regions (the New England sub-region and the Mid-Atlantic sub-region). This study found that negative binomial models, indeed, were sensitive/inconsistent when used at different spatial scales. We discuss various plausible explanations for such behavior of negative binomial models. Further investigation of the inconsistency and sensitivity of negative binomial models when used at different spatial scales is important for not only future Lyme disease studies and Lyme disease risk assessment/management but any study that requires use of this model type in a spatial context. Copyright © 2014 Elsevier Inc. All rights reserved.
Crash data modeling with a generalized estimator.
Ye, Zhirui; Xu, Yueru; Lord, Dominique
2018-08-01
The investigation of relationships between traffic crashes and relevant factors is important in traffic safety management. Various methods have been developed for modeling crash data. In real world scenarios, crash data often display the characteristics of over-dispersion. However, on occasions, some crash datasets have exhibited under-dispersion, especially in cases where the data are conditioned upon the mean. The commonly used models (such as the Poisson and the NB regression models) have associated limitations to cope with various degrees of dispersion. In light of this, a generalized event count (GEC) model, which can be generally used to handle over-, equi-, and under-dispersed data, is proposed in this study. This model was first applied to case studies using data from Toronto, characterized by over-dispersion, and then to crash data from railway-highway crossings in Korea, characterized with under-dispersion. The results from the GEC model were compared with those from the Negative binomial and the hyper-Poisson models. The cases studies show that the proposed model provides good performance for crash data characterized with over- and under-dispersion. Moreover, the proposed model simplifies the modeling process and the prediction of crash data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marginalized zero-altered models for longitudinal count data.
Tabb, Loni Philip; Tchetgen, Eric J Tchetgen; Wellenius, Greg A; Coull, Brent A
2016-10-01
Count data often exhibit more zeros than predicted by common count distributions like the Poisson or negative binomial. In recent years, there has been considerable interest in methods for analyzing zero-inflated count data in longitudinal or other correlated data settings. A common approach has been to extend zero-inflated Poisson models to include random effects that account for correlation among observations. However, these models have been shown to have a few drawbacks, including interpretability of regression coefficients and numerical instability of fitting algorithms even when the data arise from the assumed model. To address these issues, we propose a model that parameterizes the marginal associations between the count outcome and the covariates as easily interpretable log relative rates, while including random effects to account for correlation among observations. One of the main advantages of this marginal model is that it allows a basis upon which we can directly compare the performance of standard methods that ignore zero inflation with that of a method that explicitly takes zero inflation into account. We present simulations of these various model formulations in terms of bias and variance estimation. Finally, we apply the proposed approach to analyze toxicological data of the effect of emissions on cardiac arrhythmias.
Marginalized zero-altered models for longitudinal count data
Tabb, Loni Philip; Tchetgen, Eric J. Tchetgen; Wellenius, Greg A.; Coull, Brent A.
2015-01-01
Count data often exhibit more zeros than predicted by common count distributions like the Poisson or negative binomial. In recent years, there has been considerable interest in methods for analyzing zero-inflated count data in longitudinal or other correlated data settings. A common approach has been to extend zero-inflated Poisson models to include random effects that account for correlation among observations. However, these models have been shown to have a few drawbacks, including interpretability of regression coefficients and numerical instability of fitting algorithms even when the data arise from the assumed model. To address these issues, we propose a model that parameterizes the marginal associations between the count outcome and the covariates as easily interpretable log relative rates, while including random effects to account for correlation among observations. One of the main advantages of this marginal model is that it allows a basis upon which we can directly compare the performance of standard methods that ignore zero inflation with that of a method that explicitly takes zero inflation into account. We present simulations of these various model formulations in terms of bias and variance estimation. Finally, we apply the proposed approach to analyze toxicological data of the effect of emissions on cardiac arrhythmias. PMID:27867423
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conover, W.J.; Cox, D.D.; Martz, H.F.
1997-12-01
When using parametric empirical Bayes estimation methods for estimating the binomial or Poisson parameter, the validity of the assumed beta or gamma conjugate prior distribution is an important diagnostic consideration. Chi-square goodness-of-fit tests of the beta or gamma prior hypothesis are developed for use when the binomial sample sizes or Poisson exposure times vary. Nine examples illustrate the application of the methods, using real data from such diverse applications as the loss of feedwater flow rates in nuclear power plants, the probability of failure to run on demand and the failure rates of the high pressure coolant injection systems atmore » US commercial boiling water reactors, the probability of failure to run on demand of emergency diesel generators in US commercial nuclear power plants, the rate of failure of aircraft air conditioners, baseball batting averages, the probability of testing positive for toxoplasmosis, and the probability of tumors in rats. The tests are easily applied in practice by means of corresponding Mathematica{reg_sign} computer programs which are provided.« less
A crash-prediction model for multilane roads.
Caliendo, Ciro; Guida, Maurizio; Parisi, Alessandra
2007-07-01
Considerable research has been carried out in recent years to establish relationships between crashes and traffic flow, geometric infrastructure characteristics and environmental factors for two-lane rural roads. Crash-prediction models focused on multilane rural roads, however, have rarely been investigated. In addition, most research has paid but little attention to the safety effects of variables such as stopping sight distance and pavement surface characteristics. Moreover, the statistical approaches have generally included Poisson and Negative Binomial regression models, whilst Negative Multinomial regression model has been used to a lesser extent. Finally, as far as the authors are aware, prediction models involving all the above-mentioned factors have still not been developed in Italy for multilane roads, such as motorways. Thus, in this paper crash-prediction models for a four-lane median-divided Italian motorway were set up on the basis of accident data observed during a 5-year monitoring period extending between 1999 and 2003. The Poisson, Negative Binomial and Negative Multinomial regression models, applied separately to tangents and curves, were used to model the frequency of accident occurrence. Model parameters were estimated by the Maximum Likelihood Method, and the Generalized Likelihood Ratio Test was applied to detect the significant variables to be included in the model equation. Goodness-of-fit was measured by means of both the explained fraction of total variation and the explained fraction of systematic variation. The Cumulative Residuals Method was also used to test the adequacy of a regression model throughout the range of each variable. The candidate set of explanatory variables was: length (L), curvature (1/R), annual average daily traffic (AADT), sight distance (SD), side friction coefficient (SFC), longitudinal slope (LS) and the presence of a junction (J). Separate prediction models for total crashes and for fatal and injury crashes only were considered. For curves it is shown that significant variables are L, 1/R and AADT, whereas for tangents they are L, AADT and junctions. The effect of rain precipitation was analysed on the basis of hourly rainfall data and assumptions about drying time. It is shown that a wet pavement significantly increases the number of crashes. The models developed in this paper for Italian motorways appear to be useful for many applications such as the detection of critical factors, the estimation of accident reduction due to infrastructure and pavement improvement, and the predictions of accidents counts when comparing different design options. Thus this research may represent a point of reference for engineers in adjusting or designing multilane roads.
Cook, Richard J; Wei, Wei
2003-07-01
The design of clinical trials is typically based on marginal comparisons of a primary response under two or more treatments. The considerable gains in efficiency afforded by models conditional on one or more baseline responses has been extensively studied for Gaussian models. The purpose of this article is to present methods for the design and analysis of clinical trials in which the response is a count or a point process, and a corresponding baseline count is available prior to randomization. The methods are based on a conditional negative binomial model for the response given the baseline count and can be used to examine the effect of introducing selection criteria on power and sample size requirements. We show that designs based on this approach are more efficient than those proposed by McMahon et al. (1994).
Xie, Haiyi; Tao, Jill; McHugo, Gregory J; Drake, Robert E
2013-07-01
Count data with skewness and many zeros are common in substance abuse and addiction research. Zero-adjusting models, especially zero-inflated models, have become increasingly popular in analyzing this type of data. This paper reviews and compares five mixed-effects Poisson family models commonly used to analyze count data with a high proportion of zeros by analyzing a longitudinal outcome: number of smoking quit attempts from the New Hampshire Dual Disorders Study. The findings of our study indicated that count data with many zeros do not necessarily require zero-inflated or other zero-adjusting models. For rare event counts or count data with small means, a simpler model such as the negative binomial model may provide a better fit. Copyright © 2013 Elsevier Inc. All rights reserved.
Dorazio, R.M.; Jelks, H.L.; Jordan, F.
2005-01-01
A statistical modeling framework is described for estimating the abundances of spatially distinct subpopulations of animals surveyed using removal sampling. To illustrate this framework, hierarchical models are developed using the Poisson and negative-binomial distributions to model variation in abundance among subpopulations and using the beta distribution to model variation in capture probabilities. These models are fitted to the removal counts observed in a survey of a federally endangered fish species. The resulting estimates of abundance have similar or better precision than those computed using the conventional approach of analyzing the removal counts of each subpopulation separately. Extension of the hierarchical models to include spatial covariates of abundance is straightforward and may be used to identify important features of an animal's habitat or to predict the abundance of animals at unsampled locations.
Modeling avian abundance from replicated counts using binomial mixture models
Kery, Marc; Royle, J. Andrew; Schmid, Hans
2005-01-01
Abundance estimation in ecology is usually accomplished by capture–recapture, removal, or distance sampling methods. These may be hard to implement at large spatial scales. In contrast, binomial mixture models enable abundance estimation without individual identification, based simply on temporally and spatially replicated counts. Here, we evaluate mixture models using data from the national breeding bird monitoring program in Switzerland, where some 250 1-km2 quadrats are surveyed using the territory mapping method three times during each breeding season. We chose eight species with contrasting distribution (wide–narrow), abundance (high–low), and detectability (easy–difficult). Abundance was modeled as a random effect with a Poisson or negative binomial distribution, with mean affected by forest cover, elevation, and route length. Detectability was a logit-linear function of survey date, survey date-by-elevation, and sampling effort (time per transect unit). Resulting covariate effects and parameter estimates were consistent with expectations. Detectability per territory (for three surveys) ranged from 0.66 to 0.94 (mean 0.84) for easy species, and from 0.16 to 0.83 (mean 0.53) for difficult species, depended on survey effort for two easy and all four difficult species, and changed seasonally for three easy and three difficult species. Abundance was positively related to route length in three high-abundance and one low-abundance (one easy and three difficult) species, and increased with forest cover in five forest species, decreased for two nonforest species, and was unaffected for a generalist species. Abundance estimates under the most parsimonious mixture models were between 1.1 and 8.9 (median 1.8) times greater than estimates based on territory mapping; hence, three surveys were insufficient to detect all territories for each species. We conclude that binomial mixture models are an important new approach for estimating abundance corrected for detectability when only repeated-count data are available. Future developments envisioned include estimation of trend, occupancy, and total regional abundance.
Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhaiba, Hassan, E-mail: chhaiba.hassan@gmail.com; Demni, Nizar, E-mail: nizar.demni@univ-rennes1.fr; Mouayn, Zouhair, E-mail: mouayn@fstbm.ac.ma
2016-07-15
To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering themore » total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.« less
ERIC Educational Resources Information Center
Holland, Bart K.
2006-01-01
A generally-educated individual should have some insight into how decisions are made in the very wide range of fields that employ statistical and probabilistic reasoning. Also, students of introductory probability and statistics are often best motivated by specific applications rather than by theory and mathematical development, because most…
Dental Caries and Enamel Defects in Very Low Birth Weight Adolescents
Nelson, S.; Albert, J.M.; Lombardi, G.; Wishnek, S.; Asaad, G.; Kirchner, H.L.; Singer, L.T.
2011-01-01
Objectives The purpose of this study was to examine developmental enamel defects and dental caries in very low birth weight adolescents with high risk (HR-VLBW) and low risk (LR-VLBW) compared to full-term (term) adolescents. Methods The sample consisted of 224 subjects (80 HR-VLBW, 59 LR-VLBW, 85 term adolescents) recruited from an ongoing longitudinal study. Sociodemographic and medical information was available from birth. Dental examination of the adolescent at the 14-year visit included: enamel defects (opacity and hypoplasia); decayed, missing, filled teeth of incisors and molars (DMFT-IM) and of overall permanent teeth (DMFT); Simplified Oral Hygiene Index for debris/calculus on teeth, and sealant presence. A caregiver questionnaire completed simultaneously assessed dental behavior, access, insurance status and prevention factors. Hierarchical analysis utilized the zero-inflated negative binomial model and zero-inflated Poisson model. Results The zero-inflated negative binomial model controlling for sociodemographic variables indicated that the LR-VLBW group had an estimated 75% increase (p < 0.05) in number of demarcated opacities in the incisors and first molar teeth compared to the term group. Hierarchical modeling indicated that demarcated opacities were a significant predictor of DMFT-IM after control for relevant covariates. The term adolescents had significantly increased DMFT-IM and DMFT scores compared to the LR-VLBW adolescents. Conclusion LR-VLBW was a significant risk factor for increased enamel defects in the permanent incisors and first molars. Term children had increased caries compared to the LR-VLBW group. The effect of birth group and enamel defects on caries has to be investigated longitudinally from birth. PMID:20975268
Reis, Matthias; Kromer, Justus A; Klipp, Edda
2018-01-20
Multimodality is a phenomenon which complicates the analysis of statistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equation (CME) for this type of reaction network and thereby extend the class of solvable CME's. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. Generalized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription-translation network and Bateman's model from nuclear physics. For both examples, multimodality was previously not reported.
Lipscomb, Hester J; Schoenfisch, Ashley; Cameron, Wilfrid
2013-07-01
We evaluated work-related injuries involving a hand or fingers and associated costs among a cohort of 24,830 carpenters between 1989 and 2008. Injury rates and rate ratios were calculated by using Poisson regression to explore higher risk on the basis of age, sex, time in the union, predominant work, and calendar time. Negative binomial regression was used to model dollars paid per claim after adjustment for inflation and discounting. Hand injuries accounted for 21.1% of reported injuries and 9.5% of paid lost time injuries. Older carpenters had proportionately more amputations, fractures, and multiple injuries, but their rates of these more severe injuries were not higher. Costs exceeded $21 million, a cost burden of $0.11 per hour worked. Older carpenters' higher proportion of serious injuries in the absence of higher rates likely reflects age-related reporting differences.
Modeling species-abundance relationships in multi-species collections
Peng, S.; Yin, Z.; Ren, H.; Guo, Q.
2003-01-01
Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.
Host nutrition alters the variance in parasite transmission potential
Vale, Pedro F.; Choisy, Marc; Little, Tom J.
2013-01-01
The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts. PMID:23407498
Host nutrition alters the variance in parasite transmission potential.
Vale, Pedro F; Choisy, Marc; Little, Tom J
2013-04-23
The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts.
Saint-Venant end effects for materials with negative Poisson's ratios
NASA Technical Reports Server (NTRS)
Lakes, R. S.
1992-01-01
Results are presented from an analysis of Saint-Venant end effects for materials with negative Poisson's ratio. Examples are presented showing that slow decay of end stress occurs in circular cylinders of negative Poisson's ratio, whereas a sandwich panel containing rigid face sheets and a compliant core exhibits no anomalous effects for negative Poisson's ratio (but exhibits slow stress decay for core Poisson's ratios approaching 0.5). In sand panels with stiff but not perfectly rigid face sheets, a negative Poisson's ratio results in end stress decay, which is faster than it would be otherwise. It is suggested that the slow decay previously predicted for sandwich strips in plane deformation as a result of the geometry can be mitigated by the use of a negative Poisson's ratio material for the core.
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badełek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftáčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jachołkowska, A.; Janata, F.; Jancsó, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettinghale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.
1987-09-01
The multiplicity distributions of charged hadrons produced in the deep inelastic muon-proton scattering at 280 GeV are analysed in various rapidity intervals, as a function of the total hadronic centre of mass energy W ranging from 4 20 GeV. Multiplicity distributions for the backward and forward hemispheres are also analysed separately. The data can be well parameterized by binomial distributions, extending their range of applicability to the case of lepton-proton scattering. The energy and the rapidity dependence of the parameters is presented and a smooth transition from the negative binomial distribution via Poissonian to the ordinary binomial is observed.
Spatial distribution of psychotic disorders in an urban area of France: an ecological study.
Pignon, Baptiste; Schürhoff, Franck; Baudin, Grégoire; Ferchiou, Aziz; Richard, Jean-Romain; Saba, Ghassen; Leboyer, Marion; Kirkbride, James B; Szöke, Andrei
2016-05-18
Previous analyses of neighbourhood variations of non-affective psychotic disorders (NAPD) have focused mainly on incidence. However, prevalence studies provide important insights on factors associated with disease evolution as well as for healthcare resource allocation. This study aimed to investigate the distribution of prevalent NAPD cases in an urban area in France. The number of cases in each neighbourhood was modelled as a function of potential confounders and ecological variables, namely: migrant density, economic deprivation and social fragmentation. This was modelled using statistical models of increasing complexity: frequentist models (using Poisson and negative binomial regressions), and several Bayesian models. For each model, assumptions validity were checked and compared as to how this fitted to the data, in order to test for possible spatial variation in prevalence. Data showed significant overdispersion (invalidating the Poisson regression model) and residual autocorrelation (suggesting the need to use Bayesian models). The best Bayesian model was Leroux's model (i.e. a model with both strong correlation between neighbouring areas and weaker correlation between areas further apart), with economic deprivation as an explanatory variable (OR = 1.13, 95% CI [1.02-1.25]). In comparison with frequentist methods, the Bayesian model showed a better fit. The number of cases showed non-random spatial distribution and was linked to economic deprivation.
Rivera, Berta; Casal, Bruno; Currais, Luis
2016-07-01
Since the mid-1990s, Spain has started to receive a great number of migrant populations. The migration process can have a significantly negative impact on mental health of immigrant population and, consequently, generate implications for the delivery of mental health services. The aim of this article is to provide empirical evidence to demonstrate that the mental health of immigrants in Spain deteriorates the longer they are resident in the country. An empirical approach to this relationship is carried out with data from the National Survey of Health of Spain 2011-2012 and poisson and negative binomial models. Results show that immigrants who reside <10 years in Spain appear to be in a better state of mental health than that observed for the national population. Studying health disparities in the foreign population and its evolution are relevant to ensure the population's access to health services and care. The need for further research is especially true in the case of the immigrant population's mental health in Spain because there is scant evidence available on their situation.
The Difference Calculus and The NEgative Binomial Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Kimiko o; Shenton, LR
2007-01-01
In a previous paper we state the dominant term in the third central moment of the maximum likelihood estimator k of the parameter k in the negative binomial probability function where the probability generating function is (p + 1 - pt){sup -k}. A partial sum of the series {Sigma}1/(k + x){sup 3} is involved, where x is a negative binomial random variate. In expectation this sum can only be found numerically using the computer. Here we give a simple definite integral in (0,1) for the generalized case. This means that now we do have a valid expression for {radical}{beta}{sub 11}(k)more » and {radical}{beta}{sub 11}(p). In addition we use the finite difference operator {Delta}, and E = 1 + {Delta} to set up formulas for low order moments. Other examples of the operators are quoted relating to the orthogonal set of polynomials associated with the negative binomial probability function used as a weight function.« less
Harrison, Xavier A
2015-01-01
Overdispersion is a common feature of models of biological data, but researchers often fail to model the excess variation driving the overdispersion, resulting in biased parameter estimates and standard errors. Quantifying and modeling overdispersion when it is present is therefore critical for robust biological inference. One means to account for overdispersion is to add an observation-level random effect (OLRE) to a model, where each data point receives a unique level of a random effect that can absorb the extra-parametric variation in the data. Although some studies have investigated the utility of OLRE to model overdispersion in Poisson count data, studies doing so for Binomial proportion data are scarce. Here I use a simulation approach to investigate the ability of both OLRE models and Beta-Binomial models to recover unbiased parameter estimates in mixed effects models of Binomial data under various degrees of overdispersion. In addition, as ecologists often fit random intercept terms to models when the random effect sample size is low (<5 levels), I investigate the performance of both model types under a range of random effect sample sizes when overdispersion is present. Simulation results revealed that the efficacy of OLRE depends on the process that generated the overdispersion; OLRE failed to cope with overdispersion generated from a Beta-Binomial mixture model, leading to biased slope and intercept estimates, but performed well for overdispersion generated by adding random noise to the linear predictor. Comparison of parameter estimates from an OLRE model with those from its corresponding Beta-Binomial model readily identified when OLRE were performing poorly due to disagreement between effect sizes, and this strategy should be employed whenever OLRE are used for Binomial data to assess their reliability. Beta-Binomial models performed well across all contexts, but showed a tendency to underestimate effect sizes when modelling non-Beta-Binomial data. Finally, both OLRE and Beta-Binomial models performed poorly when models contained <5 levels of the random intercept term, especially for estimating variance components, and this effect appeared independent of total sample size. These results suggest that OLRE are a useful tool for modelling overdispersion in Binomial data, but that they do not perform well in all circumstances and researchers should take care to verify the robustness of parameter estimates of OLRE models.
Risk factors related to Toxoplasma gondii seroprevalence in indoor-housed Dutch dairy goats.
Deng, Huifang; Dam-Deisz, Cecile; Luttikholt, Saskia; Maas, Miriam; Nielen, Mirjam; Swart, Arno; Vellema, Piet; van der Giessen, Joke; Opsteegh, Marieke
2016-02-01
Toxoplasma gondii can cause disease in goats, but also has impact on human health through food-borne transmission. Our aims were to determine the seroprevalence of T. gondii infection in indoor-housed Dutch dairy goats and to identify the risk factors related to T. gondii seroprevalence. Fifty-two out of ninety approached farmers with indoor-kept goats (58%) participated by answering a standardized questionnaire and contributing 32 goat blood samples each. Serum samples were tested for T. gondii SAG1 antibodies by ELISA and results showed that the frequency distribution of the log10-transformed OD-values fitted well with a binary mixture of a shifted gamma and a shifted reflected gamma distribution. The overall animal seroprevalence was 13.3% (95% CI: 11.7–14.9%), and at least one seropositive animal was found on 61.5% (95% CI: 48.3–74.7%) of the farms. To evaluate potential risk factors on herd level, three modeling strategies (Poisson, negative binomial and zero-inflated) were compared. The negative binomial model fitted the data best with the number of cats (1–4 cats: IR: 2.6, 95% CI: 1.1–6.5; > = 5 cats:IR: 14.2, 95% CI: 3.9–51.1) and mean animal age (IR: 1.5, 95% CI: 1.1–2.1) related to herd positivity. In conclusion, the ELISA test was 100% sensitive and specific based on binary mixture analysis. T. gondii infection is prevalent in indoor housed Dutch dairy goats but at a lower overall animal level seroprevalence than outdoor farmed goats in other European countries, and cat exposure is an important risk factor.
Rogers, Jennifer K; Pocock, Stuart J; McMurray, John J V; Granger, Christopher B; Michelson, Eric L; Östergren, Jan; Pfeffer, Marc A; Solomon, Scott D; Swedberg, Karl; Yusuf, Salim
2014-01-01
Heart failure is characterized by recurrent hospitalizations, but often only the first event is considered in clinical trial reports. In chronic diseases, such as heart failure, analysing all events gives a more complete picture of treatment benefit. We describe methods of analysing repeat hospitalizations, and illustrate their value in one major trial. The Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM)-Preserved study compared candesartan with placebo in 3023 patients with heart failure and preserved systolic function. The heart failure hospitalization rates were 12.5 and 8.9 per 100 patient-years in the placebo and candesartan groups, respectively. The repeat hospitalizations were analysed using the Andersen-Gill, Poisson, and negative binomial methods. Death was incorporated into analyses by treating it as an additional event. The win ratio method and a method that jointly models hospitalizations and mortality were also considered. Using repeat events gave larger treatment benefits than time to first event analysis. The negative binomial method for the composite of recurrent heart failure hospitalizations and cardiovascular death gave a rate ratio of 0.75 [95% confidence interval (CI) 0.62-0.91, P = 0.003], whereas the hazard ratio for time to first heart failure hospitalization or cardiovascular death was 0.86 (95% CI 0.74-1.00, P = 0.050). In patients with preserved EF, candesartan reduces the rate of admissions for worsening heart failure, to a greater extent than apparent from analysing only first hospitalizations. Recurrent events should be routinely incorporated into the analysis of future clinical trials in heart failure. © 2013 The Authors. European Journal of Heart Failure © 2013 European Society of Cardiology.
Clinical and MRI activity as determinants of sample size for pediatric multiple sclerosis trials
Verhey, Leonard H.; Signori, Alessio; Arnold, Douglas L.; Bar-Or, Amit; Sadovnick, A. Dessa; Marrie, Ruth Ann; Banwell, Brenda
2013-01-01
Objective: To estimate sample sizes for pediatric multiple sclerosis (MS) trials using new T2 lesion count, annualized relapse rate (ARR), and time to first relapse (TTFR) endpoints. Methods: Poisson and negative binomial models were fit to new T2 lesion and relapse count data, and negative binomial time-to-event and exponential models were fit to TTFR data of 42 children with MS enrolled in a national prospective cohort study. Simulations were performed by resampling from the best-fitting model of new T2 lesion count, number of relapses, or TTFR, under various assumptions of the effect size, trial duration, and model parameters. Results: Assuming a 50% reduction in new T2 lesions over 6 months, 90 patients/arm are required, whereas 165 patients/arm are required for a 40% treatment effect. Sample sizes for 2-year trials using relapse-related endpoints are lower than that for 1-year trials. For 2-year trials and a conservative assumption of overdispersion (ϑ), sample sizes range from 70 patients/arm (using ARR) to 105 patients/arm (TTFR) for a 50% reduction in relapses, and 230 patients/arm (ARR) to 365 patients/arm (TTFR) for a 30% relapse reduction. Assuming a less conservative ϑ, 2-year trials using ARR require 45 patients/arm (60 patients/arm for TTFR) for a 50% reduction in relapses and 145 patients/arm (200 patients/arm for TTFR) for a 30% reduction. Conclusion: Six-month phase II trials using new T2 lesion count as an endpoint are feasible in the pediatric MS population; however, trials powered on ARR or TTFR will need to be 2 years in duration and will require multicentered collaboration. PMID:23966255
Carter, Evelene M; Potts, Henry W W
2014-04-04
To investigate whether factors can be identified that significantly affect hospital length of stay from those available in an electronic patient record system, using primary total knee replacements as an example. To investigate whether a model can be produced to predict the length of stay based on these factors to help resource planning and patient expectations on their length of stay. Data were extracted from the electronic patient record system for discharges from primary total knee operations from January 2007 to December 2011 (n=2,130) at one UK hospital and analysed for their effect on length of stay using Mann-Whitney and Kruskal-Wallis tests for discrete data and Spearman's correlation coefficient for continuous data. Models for predicting length of stay for primary total knee replacements were tested using the Poisson regression and the negative binomial modelling techniques. Factors found to have a significant effect on length of stay were age, gender, consultant, discharge destination, deprivation and ethnicity. Applying a negative binomial model to these variables was successful. The model predicted the length of stay of those patients who stayed 4-6 days (~50% of admissions) with 75% accuracy within 2 days (model data). Overall, the model predicted the total days stayed over 5 years to be only 88 days more than actual, a 6.9% uplift (test data). Valuable information can be found about length of stay from the analysis of variables easily extracted from an electronic patient record system. Models can be successfully created to help improve resource planning and from which a simple decision support system can be produced to help patient expectation on their length of stay.
Cai, Qing; Lee, Jaeyoung; Eluru, Naveen; Abdel-Aty, Mohamed
2016-08-01
This study attempts to explore the viability of dual-state models (i.e., zero-inflated and hurdle models) for traffic analysis zones (TAZs) based pedestrian and bicycle crash frequency analysis. Additionally, spatial spillover effects are explored in the models by employing exogenous variables from neighboring zones. The dual-state models such as zero-inflated negative binomial and hurdle negative binomial models (with and without spatial effects) are compared with the conventional single-state model (i.e., negative binomial). The model comparison for pedestrian and bicycle crashes revealed that the models that considered observed spatial effects perform better than the models that did not consider the observed spatial effects. Across the models with spatial spillover effects, the dual-state models especially zero-inflated negative binomial model offered better performance compared to single-state models. Moreover, the model results clearly highlighted the importance of various traffic, roadway, and sociodemographic characteristics of the TAZ as well as neighboring TAZs on pedestrian and bicycle crash frequency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating relative risks for common outcome using PROC NLP.
Yu, Binbing; Wang, Zhuoqiao
2008-05-01
In cross-sectional or cohort studies with binary outcomes, it is biologically interpretable and of interest to estimate the relative risk or prevalence ratio, especially when the response rates are not rare. Several methods have been used to estimate the relative risk, among which the log-binomial models yield the maximum likelihood estimate (MLE) of the parameters. Because of restrictions on the parameter space, the log-binomial models often run into convergence problems. Some remedies, e.g., the Poisson and Cox regressions, have been proposed. However, these methods may give out-of-bound predicted response probabilities. In this paper, a new computation method using the SAS Nonlinear Programming (NLP) procedure is proposed to find the MLEs. The proposed NLP method was compared to the COPY method, a modified method to fit the log-binomial model. Issues in the implementation are discussed. For illustration, both methods were applied to data on the prevalence of microalbuminuria (micro-protein leakage into urine) for kidney disease patients from the Diabetes Control and Complications Trial. The sample SAS macro for calculating relative risk is provided in the appendix.
Limitations of Poisson statistics in describing radioactive decay.
Sitek, Arkadiusz; Celler, Anna M
2015-12-01
The assumption that nuclear decays are governed by Poisson statistics is an approximation. This approximation becomes unjustified when data acquisition times longer than or even comparable with the half-lives of the radioisotope in the sample are considered. In this work, the limits of the Poisson-statistics approximation are investigated. The formalism for the statistics of radioactive decay based on binomial distribution is derived. The theoretical factor describing the deviation of variance of the number of decays predicated by the Poisson distribution from the true variance is defined and investigated for several commonly used radiotracers such as (18)F, (15)O, (82)Rb, (13)N, (99m)Tc, (123)I, and (201)Tl. The variance of the number of decays estimated using the Poisson distribution is significantly different than the true variance for a 5-minute observation time of (11)C, (15)O, (13)N, and (82)Rb. Durations of nuclear medicine studies often are relatively long; they may be even a few times longer than the half-lives of some short-lived radiotracers. Our study shows that in such situations the Poisson statistics is unsuitable and should not be applied to describe the statistics of the number of decays in radioactive samples. However, the above statement does not directly apply to counting statistics at the level of event detection. Low sensitivities of detectors which are used in imaging studies make the Poisson approximation near perfect. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Deformation mechanisms in negative Poisson's ratio materials - Structural aspects
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.
Statistical distributions of earthquake numbers: consequence of branching process
NASA Astrophysics Data System (ADS)
Kagan, Yan Y.
2010-03-01
We discuss various statistical distributions of earthquake numbers. Previously, we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic and the negative binomial (NBD). The theoretical model is the `birth and immigration' population process. The first three distributions above can be considered special cases of the NBD. In particular, a point branching process along the magnitude (or log seismic moment) axis with independent events (immigrants) explains the magnitude/moment-frequency relation and the NBD of earthquake counts in large time/space windows, as well as the dependence of the NBD parameters on the magnitude threshold (magnitude of an earthquake catalogue completeness). We discuss applying these distributions, especially the NBD, to approximate event numbers in earthquake catalogues. There are many different representations of the NBD. Most can be traced either to the Pascal distribution or to the mixture of the Poisson distribution with the gamma law. We discuss advantages and drawbacks of both representations for statistical analysis of earthquake catalogues. We also consider applying the NBD to earthquake forecasts and describe the limits of the application for the given equations. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrence, the NBD has two parameters. The second parameter can be used to characterize clustering or overdispersion of a process. We determine the parameter values and their uncertainties for several local and global catalogues, and their subdivisions in various time intervals, magnitude thresholds, spatial windows, and tectonic categories. The theoretical model of how the clustering parameter depends on the corner (maximum) magnitude can be used to predict future earthquake number distribution in regions where very large earthquakes have not yet occurred.
Lord, Dominique
2006-07-01
There has been considerable research conducted on the development of statistical models for predicting crashes on highway facilities. Despite numerous advancements made for improving the estimation tools of statistical models, the most common probabilistic structure used for modeling motor vehicle crashes remains the traditional Poisson and Poisson-gamma (or Negative Binomial) distribution; when crash data exhibit over-dispersion, the Poisson-gamma model is usually the model of choice most favored by transportation safety modelers. Crash data collected for safety studies often have the unusual attributes of being characterized by low sample mean values. Studies have shown that the goodness-of-fit of statistical models produced from such datasets can be significantly affected. This issue has been defined as the "low mean problem" (LMP). Despite recent developments on methods to circumvent the LMP and test the goodness-of-fit of models developed using such datasets, no work has so far examined how the LMP affects the fixed dispersion parameter of Poisson-gamma models used for modeling motor vehicle crashes. The dispersion parameter plays an important role in many types of safety studies and should, therefore, be reliably estimated. The primary objective of this research project was to verify whether the LMP affects the estimation of the dispersion parameter and, if it is, to determine the magnitude of the problem. The secondary objective consisted of determining the effects of an unreliably estimated dispersion parameter on common analyses performed in highway safety studies. To accomplish the objectives of the study, a series of Poisson-gamma distributions were simulated using different values describing the mean, the dispersion parameter, and the sample size. Three estimators commonly used by transportation safety modelers for estimating the dispersion parameter of Poisson-gamma models were evaluated: the method of moments, the weighted regression, and the maximum likelihood method. In an attempt to complement the outcome of the simulation study, Poisson-gamma models were fitted to crash data collected in Toronto, Ont. characterized by a low sample mean and small sample size. The study shows that a low sample mean combined with a small sample size can seriously affect the estimation of the dispersion parameter, no matter which estimator is used within the estimation process. The probability the dispersion parameter becomes unreliably estimated increases significantly as the sample mean and sample size decrease. Consequently, the results show that an unreliably estimated dispersion parameter can significantly undermine empirical Bayes (EB) estimates as well as the estimation of confidence intervals for the gamma mean and predicted response. The paper ends with recommendations about minimizing the likelihood of producing Poisson-gamma models with an unreliable dispersion parameter for modeling motor vehicle crashes.
Farstad, Sarah M; von Ranson, Kristin M; Hodgins, David C; El-Guebaly, Nady; Casey, David M; Schopflocher, Don P
2015-09-01
This study investigated the degree to which facets of impulsiveness predicted future binge eating and problem gambling, 2 theorized forms of behavioral addiction. Participants were 596 women and 406 men from 4 age cohorts randomly recruited from a Canadian province. Participants completed self-report measures of 3 facets of impulsiveness (negative urgency, sensation seeking, lack of persistence), binge-eating frequency, and problem-gambling symptoms. Impulsiveness was assessed at baseline, and assessments of binge eating and problem gambling were followed up after 3 years. Weighted data were analyzed using zero-inflated negative binomial and Poisson regression models. We found evidence of transdiagnostic and disorder-specific predictors of binge eating and problem gambling. Negative urgency emerged as a common predictor of binge eating and problem gambling among women and men. There were disorder-specific personality traits identified among men only: High lack-of-persistence scores predicted binge eating and high sensation-seeking scores predicted problem gambling. Among women, younger age predicted binge eating and older age predicted problem gambling. Thus, there are gender differences in facets of impulsiveness that longitudinally predict binge eating and problem gambling, suggesting that treatments for these behaviors should consider gender-specific personality and demographic traits in addition to the common personality trait of negative urgency. (c) 2015 APA, all rights reserved).
Modeling Polio Data Using the First Order Non-Negative Integer-Valued Autoregressive, INAR(1), Model
NASA Astrophysics Data System (ADS)
Vazifedan, Turaj; Shitan, Mahendran
Time series data may consists of counts, such as the number of road accidents, the number of patients in a certain hospital, the number of customers waiting for service at a certain time and etc. When the value of the observations are large it is usual to use Gaussian Autoregressive Moving Average (ARMA) process to model the time series. However if the observed counts are small, it is not appropriate to use ARMA process to model the observed phenomenon. In such cases we need to model the time series data by using Non-Negative Integer valued Autoregressive (INAR) process. The modeling of counts data is based on the binomial thinning operator. In this paper we illustrate the modeling of counts data using the monthly number of Poliomyelitis data in United States between January 1970 until December 1983. We applied the AR(1), Poisson regression model and INAR(1) model and the suitability of these models were assessed by using the Index of Agreement(I.A.). We found that INAR(1) model is more appropriate in the sense it had a better I.A. and it is natural since the data are counts.
Guillén, Montserrat; Crimmins, Eileen M.
2013-01-01
Differences in health care utilization of immigrants 50 years of age and older relative to the native-born populations in eleven European countries are investigated. Negative binomial and zero-inflated Poisson regression are used to examine differences between immigrants and native-borns in number of doctor visits, visits to general practitioners, and hospital stays using the 2004 Survey of Health, Ageing, and Retirement in Europe database. In the pooled European sample and in some individual countries, older immigrants use from 13 to 20% more health services than native-borns after demographic characteristics are controlled. After controlling for the need for health care, differences between immigrants and native-borns in the use of physicians, but not hospitals, are reduced by about half. These are not changed much with the incorporation of indicators of socioeconomic status and extra insurance coverage. Higher country-level relative expenditures on health, paying physicians a fee-for-service, and physician density are associated with higher usage of physician services among immigrants. PMID:21660564
Morimoto, Tissiani; Costa, Juvenal Soares Dias da
2017-03-01
The goal of this study was to analyze the trend over time of hospitalizations due to conditions susceptible to primary healthcare (HCSPC), and how it relates to healthcare spending and Family Health Strategy (FHS) coverage in the city of São Leopoldo, Rio Grande do Sul State, Brazil, between 2003 and 2012. This is an ecological, time-trend study. We used secondary data available in the Unified Healthcare System Hospital Data System, the Primary Care Department and Public Health Budget Data System. The analysis compared HCSPC using three-year moving averages and Poisson regressions or negative binomials. We found no statistical significance in decreasing HCSPC indicators and primary care spending in the period analyzed. Healthcare spending, per-capita spending and FHS coverage increased significantly, but we found no correlation with HCSPC. The results show that, despite increases in the funds invested and population covered by FHS, they are still insufficient to deliver the level of care the population requires.
Forecast of severe fever with thrombocytopenia syndrome incidence with meteorological factors.
Sun, Ji-Min; Lu, Liang; Liu, Ke-Ke; Yang, Jun; Wu, Hai-Xia; Liu, Qi-Yong
2018-06-01
Severe fever with thrombocytopenia syndrome (SFTS) is emerging and some studies reported that SFTS incidence was associated with meteorological factors, while no report on SFTS forecast models was reported up to date. In this study, we constructed and compared three forecast models using autoregressive integrated moving average (ARIMA) model, negative binomial regression model (NBM), and quasi-Poisson generalized additive model (GAM). The dataset from 2011 to 2015 were used for model construction and the dataset in 2016 were used for external validity assessment. All the three models fitted the SFTS cases reasonably well during the training process and forecast process, while the NBM model forecasted better than other two models. Moreover, we demonstrated that temperature and relative humidity played key roles in explaining the temporal dynamics of SFTS occurrence. Our study contributes to better understanding of SFTS dynamics and provides predictive tools for the control and prevention of SFTS. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Leybold, H. A.
1971-01-01
Random numbers were generated with the aid of a digital computer and transformed such that the probability density function of a discrete random load history composed of these random numbers had one of the following non-Gaussian distributions: Poisson, binomial, log-normal, Weibull, and exponential. The resulting random load histories were analyzed to determine their peak statistics and were compared with cumulative peak maneuver-load distributions for fighter and transport aircraft in flight.
Bianca N.I. Eskelson; Hailemariam Temesgen; Tara M. Barrett
2009-01-01
Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods....
Non-linear properties of metallic cellular materials with a negative Poisson's ratio
NASA Technical Reports Server (NTRS)
Choi, J. B.; Lakes, R. S.
1992-01-01
Negative Poisson's ratio copper foam was prepared and characterized experimentally. The transformation into re-entrant foam was accomplished by applying sequential permanent compressions above the yield point to achieve a triaxial compression. The Poisson's ratio of the re-entrant foam depended on strain and attained a relative minimum at strains near zero. Poisson's ratio as small as -0.8 was achieved. The strain dependence of properties occurred over a narrower range of strain than in the polymer foams studied earlier. Annealing of the foam resulted in a slightly greater magnitude of negative Poisson's ratio and greater toughness at the expense of a decrease in the Young's modulus.
Muñoz, M Pilar; Soldevila, Núria; Martínez, Anna; Carmona, Glòria; Batalla, Joan; Acosta, Lesly M; Domínguez, Angela
2011-07-12
The objective of this work was to study the behaviour of influenza with respect to morbidity and all-cause mortality in Catalonia, and their association with influenza vaccination coverage. The study was carried out over 13 influenza seasons, from epidemiological week 40 of 1994 to week 20 of 2007, and included confirmed cases of influenza and all-cause mortality. Two generalized linear models were fitted: influenza-associated morbidity was modelled by Poisson regression and all-cause mortality by negative binomial regression. The seasonal component was modelled with the periodic function formed by the sum of the sinus and cosines. Expected influenza mortality during periods of influenza virus circulation was estimated by Poisson regression and its confidence intervals using the Bootstrap approach. Vaccination coverage was associated with a reduction in influenza-associated morbidity (p<0.001), but not with a reduction in all-cause mortality (p=0.149). In the case of influenza-associated morbidity, an increase of 5% in vaccination coverage represented a reduction of 3% in the incidence rate of influenza. There was a positive association between influenza-associated morbidity and all-cause mortality. Excess mortality attributable to influenza epidemics was estimated as 34.4 (95% CI: 28.4-40.8) weekly deaths. In conclusion, all-cause mortality is a good indicator of influenza surveillance and vaccination coverage is associated with a reduction in influenza-associated morbidity but not with all-cause mortality. Copyright © 2011 Elsevier Ltd. All rights reserved.
Copy number variants calling for single cell sequencing data by multi-constrained optimization.
Xu, Bo; Cai, Hongmin; Zhang, Changsheng; Yang, Xi; Han, Guoqiang
2016-08-01
Variations in DNA copy number carry important information on genome evolution and regulation of DNA replication in cancer cells. The rapid development of single-cell sequencing technology allows one to explore gene expression heterogeneity among single-cells, thus providing important cancer cell evolution information. Single-cell DNA/RNA sequencing data usually have low genome coverage, which requires an extra step of amplification to accumulate enough samples. However, such amplification will introduce large bias and makes bioinformatics analysis challenging. Accurately modeling the distribution of sequencing data and effectively suppressing the bias influence is the key to success variations analysis. Recent advances demonstrate the technical noises by amplification are more likely to follow negative binomial distribution, a special case of Poisson distribution. Thus, we tackle the problem CNV detection by formulating it into a quadratic optimization problem involving two constraints, in which the underling signals are corrupted by Poisson distributed noises. By imposing the constraints of sparsity and smoothness, the reconstructed read depth signals from single-cell sequencing data are anticipated to fit the CNVs patterns more accurately. An efficient numerical solution based on the classical alternating direction minimization method (ADMM) is tailored to solve the proposed model. We demonstrate the advantages of the proposed method using both synthetic and empirical single-cell sequencing data. Our experimental results demonstrate that the proposed method achieves excellent performance and high promise of success with single-cell sequencing data. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Higher moments of net-proton multiplicity distributions in a heavy-ion event pile-up scenario
NASA Astrophysics Data System (ADS)
Garg, P.; Mishra, D. K.
2017-10-01
High-luminosity modern accelerators, like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and Large Hadron Collider (LHC) at European Organization for Nuclear Research (CERN), inherently have event pile-up scenarios which significantly contribute to physics events as a background. While state-of-the-art tracking algorithms and detector concepts take care of these event pile-up scenarios, several offline analytical techniques are used to remove such events from the physics analysis. It is still difficult to identify the remaining pile-up events in an event sample for physics analysis. Since the fraction of these events is significantly small, it may not be as serious of an issue for other analyses as it would be for an event-by-event analysis. Particularly when the characteristics of the multiplicity distribution are observable, one needs to be very careful. In the present work, we demonstrate how a small fraction of residual pile-up events can change the moments and their ratios of an event-by-event net-proton multiplicity distribution, which are sensitive to the dynamical fluctuations due to the QCD critical point. For this study, we assume that the individual event-by-event proton and antiproton multiplicity distributions follow Poisson, negative binomial, or binomial distributions. We observe a significant effect in cumulants and their ratios of net-proton multiplicity distributions due to pile-up events, particularly at lower energies. It might be crucial to estimate the fraction of pile-up events in the data sample while interpreting the experimental observable for the critical point.
Some characteristics of repeated sickness absence
Ferguson, David
1972-01-01
Ferguson, D. (1972).Brit. J. industr. Med.,29, 420-431. Some characteristics of repeated sickness absence. Several studies have shown that frequency of absence attributed to sickness is not distributed randomly but tends to follow the negative binomial distribution, and this has been taken to support the concept of `proneness' to such absence. Thus, the distribution of sickness absence resembles that of minor injury at work demonstrated over 50 years ago. Because the investigation of proneness to absence does not appear to have been reported by others in Australia, the opportunity was taken, during a wider study of health among telegraphists in a large communications undertaking, to analyse some characteristics of repeated sickness absence. The records of medically certified and uncertified sickness absence of all 769 telegraphists continuously employed in all State capitals over a two-and-a-half-year period were compared with those of 411 clerks and 415 mechanics and, in Sydney, 380 mail sorters and 80 of their supervisors. All telegraphists in Sydney, Melbourne, and Brisbane, and all mail sorters in Sydney, who were available and willing were later medically examined. From their absence pattern repeaters (employees who had had eight or more certified absences in two and a half years) were separated into three types based on a presumptive origin in chance, recurrent disease and symptomatic non-specific disorder. The observed distribution of individual frequency of certified absence over the full two-and-a-half-year period of study followed that expected from the univariate negative binomial, using maximum likelihood estimators, rather than the poisson distribution, in three of the four occupational groups in Sydney. Limited correlational and bivariate analysis supported the interpretation of proneness ascribed to the univariate fit. In the two groups studied, frequency of uncertified absence could not be fitted by the negative binomial, although the numbers of such absences in individuals in successive years were relatively highly correlated. All types of repeater were commoner in Sydney than in the other capital city offices, which differed little from each other. Repeaters were more common among those whose absence was attributed to neurosis, alimentary and upper respiratory tract disorder, and injury. Out of more than 90 health, personal, social, and industrial attributes determined at examination, only two (ethanol habit and adverse attitude to pay) showed any statistically significant association when telegraphist repeaters in Sydney were compared with employees who were rarely absent. Though repeating tended to be associated with chronic or recurrent ill health revealed at examination, one quarter of repeaters had little such ill health and one quarter of rarely absent employees had much. It was concluded that, in the population studied, the fitting of the negative binomial to frequency of certified sickness absence could, in the circumstances of the study, reasonably be given an interpretation of proneness. In that population also repeating varies geographically and occupationally, and is poorly associated with disease and other attributes uncovered at examination, with the exception of the ethanol habit. Repeaters are more often neurotic than employees who are rarely absent but also are more often stable double jobbers. The repeater should be identified for what help may be given him, if needed, otherwise it would seem more profitable to attack those features in work design and organization which influence motivation to come to work. Social factors which predispose to repeated absence are less amenable to modification. PMID:4636662
NASA Astrophysics Data System (ADS)
Lundberg, J.; Conrad, J.; Rolke, W.; Lopez, A.
2010-03-01
A C++ class was written for the calculation of frequentist confidence intervals using the profile likelihood method. Seven combinations of Binomial, Gaussian, Poissonian and Binomial uncertainties are implemented. The package provides routines for the calculation of upper and lower limits, sensitivity and related properties. It also supports hypothesis tests which take uncertainties into account. It can be used in compiled C++ code, in Python or interactively via the ROOT analysis framework. Program summaryProgram title: TRolke version 2.0 Catalogue identifier: AEFT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 3431 No. of bytes in distributed program, including test data, etc.: 21 789 Distribution format: tar.gz Programming language: ISO C++. Computer: Unix, GNU/Linux, Mac. Operating system: Linux 2.6 (Scientific Linux 4 and 5, Ubuntu 8.10), Darwin 9.0 (Mac-OS X 10.5.8). RAM:˜20 MB Classification: 14.13. External routines: ROOT ( http://root.cern.ch/drupal/) Nature of problem: The problem is to calculate a frequentist confidence interval on the parameter of a Poisson process with statistical or systematic uncertainties in signal efficiency or background. Solution method: Profile likelihood method, Analytical Running time:<10 seconds per extracted limit.
NASA Technical Reports Server (NTRS)
Chen, C. P.; Lakes, R. S.
1991-01-01
An experimental study by holographic interferometry is reported of the following material properties of conventional and negative Poisson's ratio copper foams: Young's moduli, Poisson's ratios, yield strengths and characteristic lengths associated with inhomogeneous deformation. The Young's modulus and yield strength of the conventional copper foam were comparable to those predicted by microstructural modeling on the basis of cellular rib bending. The reentrant copper foam exhibited a negative Poisson's ratio, as indicated by the elliptical contour fringes on the specimen surface in the bending tests. Inhomogeneous, non-affine deformation was observed holographically in both foam materials.
Statistical tests to compare motif count exceptionalities
Robin, Stéphane; Schbath, Sophie; Vandewalle, Vincent
2007-01-01
Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use. PMID:17346349
Small area estimation for estimating the number of infant mortality in West Java, Indonesia
NASA Astrophysics Data System (ADS)
Anggreyani, Arie; Indahwati, Kurnia, Anang
2016-02-01
Demographic and Health Survey Indonesia (DHSI) is a national designed survey to provide information regarding birth rate, mortality rate, family planning and health. DHSI was conducted by BPS in cooperation with National Population and Family Planning Institution (BKKBN), Indonesia Ministry of Health (KEMENKES) and USAID. Based on the publication of DHSI 2012, the infant mortality rate for a period of five years before survey conducted is 32 for 1000 birth lives. In this paper, Small Area Estimation (SAE) is used to estimate the number of infant mortality in districts of West Java. SAE is a special model of Generalized Linear Mixed Models (GLMM). In this case, the incidence of infant mortality is a Poisson distribution which has equdispersion assumption. The methods to handle overdispersion are binomial negative and quasi-likelihood model. Based on the results of analysis, quasi-likelihood model is the best model to overcome overdispersion problem. The basic model of the small area estimation used basic area level model. Mean square error (MSE) which based on resampling method is used to measure the accuracy of small area estimates.
Contributory factors to traffic crashes at signalized intersections in Hong Kong.
Wong, S C; Sze, N N; Li, Y C
2007-11-01
Efficient geometric design and signal timing not only improve operational performance at signalized intersections by expanding capacity and reducing traffic delays, but also result in an appreciable reduction in traffic conflicts, and thus better road safety. Information on the incidence of crashes, traffic flow, geometric design, road environment, and traffic control at 262 signalized intersections in Hong Kong during 2002 and 2003 are incorporated into a crash prediction model. Poisson regression and negative binomial regression are used to quantify the influence of possible contributory factors on the incidence of killed and severe injury (KSI) crashes and slight injury crashes, respectively, while possible interventions by traffic flow are controlled. The results for the incidence of slight injury crashes reveal that the road environment, degree of curvature, and presence of tram stops are significant factors, and that traffic volume has a diminishing effect on the crash risk. The presence of tram stops, number of pedestrian streams, road environment, proportion of commercial vehicles, average lane width, and degree of curvature increase the risk of KSI crashes, but the effect of traffic volume is negligible.
Pearl, D L; Louie, M; Chui, L; Doré, K; Grimsrud, K M; Martin, S W; Michel, P; Svenson, L W; McEwen, S A
2009-10-01
Using negative binomial and multi-level Poisson models, the authors determined the statistical significance of agricultural and socio-economic risk factors for rates of reported disease associated with Escherichia coli O157 in census subdivisions (CSDs) in Alberta, Canada, 2000-2002. Variables relating to population stability, aboriginal composition of the CSDs, and the economic relationship between CSDs and urban centres were significant risk factors. The percentage of individuals living in low-income households was not a statistically significant risk factor for rates of disease. The statistical significance of cattle density, recorded at a higher geographical level, depended on the method used to correct for overdispersion, the number of levels included in the multi-level models, and the choice of using all reported cases or only sporadic cases. Our results highlight the importance of local socio-economic risk factors in determining rates of disease associated with E. coli O157, but their relationship with individual risk factors requires further evaluation.
Uber and Metropolitan Traffic Fatalities in the United States.
Brazil, Noli; Kirk, David S
2016-08-01
Uber and similar rideshare services are rapidly dispersing in cities across the United States and beyond. Given the convenience and low cost, Uber has been characterized as a potential countermeasure for reducing the estimated 121 million episodes of drunk driving and the 10,000 resulting traffic fatalities that occur annually in the United States. We exploited differences in the timing of the deployment of Uber in US metropolitan counties from 2005 to 2014 to test the association between the availability of Uber's rideshare services and total, drunk driving-related, and weekend- and holiday-specific traffic fatalities in the 100 most populated metropolitan areas in the United States using negative binomial and Poisson regression models. We found that the deployment of Uber services in a given metropolitan county had no association with the number of subsequent traffic fatalities, whether measured in aggregate or specific to drunk-driving fatalities or fatalities during weekends and holidays. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stamm, John W.; Long, D. Leann; Kincade, Megan E.
2012-01-01
Over the past five to ten years, zero-inflated count regression models have been increasingly applied to the analysis of dental caries indices (e.g., DMFT, dfms, etc). The main reason for that is linked to the broad decline in children’s caries experience, such that dmf and DMF indices more frequently generate low or even zero counts. This article specifically reviews the application of zero-inflated Poisson and zero-inflated negative binomial regression models to dental caries, with emphasis on the description of the models and the interpretation of fitted model results given the study goals. The review finds that interpretations provided in the published caries research are often imprecise or inadvertently misleading, particularly with respect to failing to discriminate between inference for the class of susceptible persons defined by such models and inference for the sampled population in terms of overall exposure effects. Recommendations are provided to enhance the use as well as the interpretation and reporting of results of count regression models when applied to epidemiological studies of dental caries. PMID:22710271
Zero-inflated count models for longitudinal measurements with heterogeneous random effects.
Zhu, Huirong; Luo, Sheng; DeSantis, Stacia M
2017-08-01
Longitudinal zero-inflated count data arise frequently in substance use research when assessing the effects of behavioral and pharmacological interventions. Zero-inflated count models (e.g. zero-inflated Poisson or zero-inflated negative binomial) with random effects have been developed to analyze this type of data. In random effects zero-inflated count models, the random effects covariance matrix is typically assumed to be homogeneous (constant across subjects). However, in many situations this matrix may be heterogeneous (differ by measured covariates). In this paper, we extend zero-inflated count models to account for random effects heterogeneity by modeling their variance as a function of covariates. We show via simulation that ignoring intervention and covariate-specific heterogeneity can produce biased estimates of covariate and random effect estimates. Moreover, those biased estimates can be rectified by correctly modeling the random effects covariance structure. The methodological development is motivated by and applied to the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study, the largest clinical trial of alcohol dependence performed in United States with 1383 individuals.
Logistic regression for dichotomized counts.
Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W
2016-12-01
Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.
Bonate, Peter L; Sung, Crystal; Welch, Karen; Richards, Susan
2009-10-01
Patients that are exposed to biotechnology-derived therapeutics often develop antibodies to the therapeutic, the magnitude of which is assessed by measuring antibody titers. A statistical approach for analyzing antibody titer data conditional on seroconversion is presented. The proposed method is to first transform the antibody titer data based on a geometric series using a common ratio of 2 and a scale factor of 50 and then analyze the exponent using a zero-inflated or hurdle model assuming a Poisson or negative binomial distribution with random effects to account for patient heterogeneity. Patient specific covariates can be used to model the probability of developing an antibody response, i.e., seroconversion, as well as the magnitude of the antibody titer itself. The method was illustrated using antibody titer data from 87 male seroconverted Fabry patients receiving Fabrazyme. Titers from five clinical trials were collected over 276 weeks of therapy with anti-Fabrazyme IgG titers ranging from 100 to 409,600 after exclusion of seronegative patients. The best model to explain seroconversion was a zero-inflated Poisson (ZIP) model where cumulative dose (under a constant dose regimen of dosing every 2 weeks) influenced the probability of seroconversion. There was an 80% chance of seroconversion when the cumulative dose reached 210 mg (90% confidence interval: 194-226 mg). No difference in antibody titers was noted between Japanese or Western patients. Once seroconverted, antibody titers did not remain constant but decreased in an exponential manner from an initial magnitude to a new lower steady-state value. The expected titer after the new steady-state titer had been achieved was 870 (90% CI: 630-1109). The half-life to the new steady-state value after seroconversion was 44 weeks (90% CI: 17-70 weeks). Time to seroconversion did not appear to be correlated with titer at the time of seroconversion. The method can be adequately used to model antibody titer data.
Soft network materials with isotropic negative Poisson's ratios over large strains.
Liu, Jianxing; Zhang, Yihui
2018-01-31
Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.
Numerical solutions for patterns statistics on Markov chains.
Nuel, Gregory
2006-01-01
We propose here a review of the methods available to compute pattern statistics on text generated by a Markov source. Theoretical, but also numerical aspects are detailed for a wide range of techniques (exact, Gaussian, large deviations, binomial and compound Poisson). The SPatt package (Statistics for Pattern, free software available at http://stat.genopole.cnrs.fr/spatt) implementing all these methods is then used to compare all these approaches in terms of computational time and reliability in the most complete pattern statistics benchmark available at the present time.
Ulissi, Zachary W; Govind Rajan, Ananth; Strano, Michael S
2016-08-23
Entropic surfaces represented by fluctuating two-dimensional (2D) membranes are predicted to have desirable mechanical properties when unstressed, including a negative Poisson's ratio ("auxetic" behavior). Herein, we present calculations of the strain-dependent Poisson ratio of self-avoiding 2D membranes demonstrating desirable auxetic properties over a range of mechanical strain. Finite-size membranes with unclamped boundary conditions have positive Poisson's ratio due to spontaneous non-zero mean curvature, which can be suppressed with an explicit bending rigidity in agreement with prior findings. Applying longitudinal strain along a singular axis to this system suppresses this mean curvature and the entropic out-of-plane fluctuations, resulting in a molecular-scale mechanism for realizing a negative Poisson's ratio above a critical strain, with values significantly more negative than the previously observed zero-strain limit for infinite sheets. We find that auxetic behavior persists over surprisingly high strains of more than 20% for the smallest surfaces, with desirable finite-size scaling producing surfaces with negative Poisson's ratio over a wide range of strains. These results promise the design of surfaces and composite materials with tunable Poisson's ratio by prestressing platelet inclusions or controlling the surface rigidity of a matrix of 2D materials.
Janković, Bojan; Marinović-Cincović, Milena; Janković, Marija
2017-09-01
Kinetics of degradation for Aronia melanocarpa fresh fruits in argon and air atmospheres were investigated. The investigation was based on probability distributions of apparent activation energy of counterparts (ε a ). Isoconversional analysis results indicated that the degradation process in an inert atmosphere was governed by decomposition reactions of esterified compounds. Also, based on same kinetics approach, it was assumed that in an air atmosphere, the primary compound in degradation pathways could be anthocyanins, which undergo rapid chemical reactions. A new model of reactivity demonstrated that, under inert atmospheres, expectation values for ε a occured at levels of statistical probability. These values corresponded to decomposition processes in which polyphenolic compounds might be involved. ε a values obeyed laws of binomial distribution. It was established that, for thermo-oxidative degradation, Poisson distribution represented a very successful approximation for ε a values where there was additional mechanistic complexity and the binomial distribution was no longer valid. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oliveira, André; Cabral, António J R; Mendes, Jorge M; Martins, Maria R O; Cabral, Pedro
2015-11-04
Stroke risk has been shown to display varying patterns of geographic distribution amongst countries but also between regions of the same country. Traditionally a disease of older persons, a global 25% increase in incidence instead was noticed between 1990 and 2010 in persons aged 20-≤64 years, particularly in low- and medium-income countries. Understanding spatial disparities in the association between socioeconomic factors and stroke is critical to target public health initiatives aiming to mitigate or prevent this disease, including in younger persons. We aimed to identify socioeconomic determinants of geographic disparities of stroke risk in people <65 years old, in municipalities of mainland Portugal, and the spatiotemporal variation of the association between these determinants and stroke risk during two study periods (1992-1996 and 2002-2006). Poisson and negative binomial global regression models were used to explore determinants of disease risk. Geographically weighted regression (GWR) represents a distinctive approach, allowing estimation of local regression coefficients. Models for both study periods were identified. Significant variables included education attainment, work hours per week and unemployment. Local Poisson GWR models achieved the best fit and evidenced spatially varying regression coefficients. Spatiotemporal inequalities were observed in significant variables, with dissimilarities between men and women. This study contributes to a better understanding of the relationship between stroke and socioeconomic factors in the population <65 years of age, one age group seldom analysed separately. It can thus help to improve the targeting of public health initiatives, even more in a context of economic crisis.
Santra, Kalyan; Smith, Emily A.; Petrich, Jacob W.; ...
2016-12-12
It is often convenient to know the minimum amount of data needed in order to obtain a result of desired accuracy and precision. It is a necessity in the case of subdiffraction-limited microscopies, such as stimulated emission depletion (STED) microscopy, owing to the limited sample volumes and the extreme sensitivity of the samples to photobleaching and photodamage. We present a detailed comparison of probability-based techniques (the maximum likelihood method and methods based on the binomial and the Poisson distributions) with residual minimization-based techniques for retrieving the fluorescence decay parameters for various two-fluorophore mixtures, as a function of the total numbermore » of photon counts, in time-correlated, single-photon counting experiments. The probability-based techniques proved to be the most robust (insensitive to initial values) in retrieving the target parameters and, in fact, performed equivalently to 2-3 significant figures. This is to be expected, as we demonstrate that the three methods are fundamentally related. Furthermore, methods based on the Poisson and binomial distributions have the desirable feature of providing a bin-by-bin analysis of a single fluorescence decay trace, which thus permits statistics to be acquired using only the one trace for not only the mean and median values of the fluorescence decay parameters but also for the associated standard deviations. Lastly, these probability-based methods lend themselves well to the analysis of the sparse data sets that are encountered in subdiffraction-limited microscopies.« less
Maximizing Statistical Power When Verifying Probabilistic Forecasts of Hydrometeorological Events
NASA Astrophysics Data System (ADS)
DeChant, C. M.; Moradkhani, H.
2014-12-01
Hydrometeorological events (i.e. floods, droughts, precipitation) are increasingly being forecasted probabilistically, owing to the uncertainties in the underlying causes of the phenomenon. In these forecasts, the probability of the event, over some lead time, is estimated based on some model simulations or predictive indicators. By issuing probabilistic forecasts, agencies may communicate the uncertainty in the event occurring. Assuming that the assigned probability of the event is correct, which is referred to as a reliable forecast, the end user may perform some risk management based on the potential damages resulting from the event. Alternatively, an unreliable forecast may give false impressions of the actual risk, leading to improper decision making when protecting resources from extreme events. Due to this requisite for reliable forecasts to perform effective risk management, this study takes a renewed look at reliability assessment in event forecasts. Illustrative experiments will be presented, showing deficiencies in the commonly available approaches (Brier Score, Reliability Diagram). Overall, it is shown that the conventional reliability assessment techniques do not maximize the ability to distinguish between a reliable and unreliable forecast. In this regard, a theoretical formulation of the probabilistic event forecast verification framework will be presented. From this analysis, hypothesis testing with the Poisson-Binomial distribution is the most exact model available for the verification framework, and therefore maximizes one's ability to distinguish between a reliable and unreliable forecast. Application of this verification system was also examined within a real forecasting case study, highlighting the additional statistical power provided with the use of the Poisson-Binomial distribution.
Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio
NASA Astrophysics Data System (ADS)
Yeganeh-Haeri, Amir; Weidner, Donald J.; Parise, John B.
1992-07-01
Laser Brillouin spectroscopy was used to determine the adiabatic single-crystal elastic stiffness coefficients of silicon dioxide (SiO_2) in the α-cristobalite structure. This SiO_2 polymorph, unlike other silicas and silicates, exhibits a negative Poisson's ratio; α-cristobalite contracts laterally when compressed and expands laterally when stretched. Tensorial analysis of the elastic coefficients shows that Poisson's ratio reaches a maximum value of -0.5 in some directions, whereas averaged values for the single-phased aggregate yield a Poisson's ratio of -0.16.
Distribution pattern of public transport passenger in Yogyakarta, Indonesia
NASA Astrophysics Data System (ADS)
Narendra, Alfa; Malkhamah, Siti; Sopha, Bertha Maya
2018-03-01
The arrival and departure distribution pattern of Trans Jogja bus passenger is one of the fundamental model for simulation. The purpose of this paper is to build models of passengers flows. This research used passengers data from January to May 2014. There is no policy that change the operation system affecting the nature of this pattern nowadays. The roads, buses, land uses, schedule, and people are relatively still the same. The data then categorized based on the direction, days, and location. Moreover, each category was fitted into some well-known discrete distributions. Those distributions are compared based on its AIC value and BIC. The chosen distribution model has the smallest AIC and BIC value and the negative binomial distribution found has the smallest AIC and BIC value. Probability mass function (PMF) plots of those models were compared to draw generic model from each categorical negative binomial distribution models. The value of accepted generic negative binomial distribution is 0.7064 and 1.4504 of mu. The minimum and maximum passenger vector value of distribution are is 0 and 41.
Bayesian hierarchical modeling for detecting safety signals in clinical trials.
Xia, H Amy; Ma, Haijun; Carlin, Bradley P
2011-09-01
Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.
Modelling parasite aggregation: disentangling statistical and ecological approaches.
Yakob, Laith; Soares Magalhães, Ricardo J; Gray, Darren J; Milinovich, Gabriel; Wardrop, Nicola; Dunning, Rebecca; Barendregt, Jan; Bieri, Franziska; Williams, Gail M; Clements, Archie C A
2014-05-01
The overdispersion in macroparasite infection intensity among host populations is commonly simulated using a constant negative binomial aggregation parameter. We describe an alternative to utilising the negative binomial approach and demonstrate important disparities in intervention efficacy projections that can come about from opting for pattern-fitting models that are not process-explicit. We present model output in the context of the epidemiology and control of soil-transmitted helminths due to the significant public health burden imposed by these parasites, but our methods are applicable to other infections with demonstrable aggregation in parasite numbers among hosts. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Tatlier, Mehmet Seha
Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.
Improved confidence intervals when the sample is counted an integer times longer than the blank.
Potter, William Edward; Strzelczyk, Jadwiga Jodi
2011-05-01
Past computer solutions for confidence intervals in paired counting are extended to the case where the ratio of the sample count time to the blank count time is taken to be an integer, IRR. Previously, confidence intervals have been named Neyman-Pearson confidence intervals; more correctly they should have been named Neyman confidence intervals or simply confidence intervals. The technique utilized mimics a technique used by Pearson and Hartley to tabulate confidence intervals for the expected value of the discrete Poisson and Binomial distributions. The blank count and the contribution of the sample to the gross count are assumed to be Poisson distributed. The expected value of the blank count, in the sample count time, is assumed known. The net count, OC, is taken to be the gross count minus the product of IRR with the blank count. The probability density function (PDF) for the net count can be determined in a straightforward manner.
NASA Astrophysics Data System (ADS)
Dudek, Mirosław R.; Mleczko, Józef
Surprisingly, still very little is known about the mathematical modeling of peaks in the binding affinities distribution function. In general, it is believed that the peaks represent antibodies directed towards single epitopes. In this paper, we refer to fluorescence flow cytometry experiments and show that even monoclonal antibodies can display multi-modal histograms of affinity distribution. This result take place when some obstacles appear in the paratope-epitope reaction such that the process of reaching the specific epitope ceases to be a point Poisson process. A typical example is the large area of cell surface, which could be unreachable by antibodies leading to the heterogeneity of the cell surface repletion. In this case the affinity of cells to bind the antibodies should be described by a more complex process than the pure-Poisson point process. We suggested to use a doubly stochastic Poisson process, where the points are replaced by a binomial point process resulting in the Neyman distribution. The distribution can have a strongly multinomial character, and with the number of modes depending on the concentration of antibodies and epitopes. All this means that there is a possibility to go beyond the simplified theory, one response towards one epitope. As a consequence, our description provides perspectives for describing antigen-antibody reactions, both qualitatively and quantitavely, even in the case when some peaks result from more than one binding mechanism.
The role of ENSO in understanding changes in Colombia's annual malaria burden by region, 1960–2006
Mantilla, Gilma; Oliveros, Hugo; Barnston, Anthony G
2009-01-01
Background Malaria remains a serious problem in Colombia. The number of malaria cases is governed by multiple climatic and non-climatic factors. Malaria control policies, and climate controls such as rainfall and temperature variations associated with the El Niño/Southern Oscillation (ENSO), have been associated with malaria case numbers. Using historical climate data and annual malaria case number data from 1960 to 2006, statistical models are developed to isolate the effects of climate in each of Colombia's five contrasting geographical regions. Methods Because year to year climate variability associated with ENSO causes interannual variability in malaria case numbers, while changes in population and institutional control policy result in more gradual trends, the chosen predictors in the models are annual indices of the ENSO state (sea surface temperature [SST] in the tropical Pacific Ocean) and time reference indices keyed to two major malaria trends during the study period. Two models were used: a Poisson and a Negative Binomial regression model. Two ENSO indices, two time reference indices, and one dummy variable are chosen as candidate predictors. The analysis was conducted using the five geographical regions to match the similar aggregation used by the National Institute of Health for its official reports. Results The Negative Binomial regression model is found better suited to the malaria cases in Colombia. Both the trend variables and the ENSO measures are significant predictors of malaria case numbers in Colombia as a whole, and in two of the five regions. A one degree Celsius change in SST (indicating a weak to moderate ENSO event) is seen to translate to an approximate 20% increase in malaria cases, holding other variables constant. Conclusion Regional differentiation in the role of ENSO in understanding changes in Colombia's annual malaria burden during 1960–2006 was found, constituting a new approach to use ENSO as a significant predictor of the malaria cases in Colombia. These results naturally point to additional needed work: (1) refining the regional and seasonal dependence of climate on the ENSO state, and of malaria on the climate variables; (2) incorporating ENSO-related climate variability into dynamic malaria models. PMID:19133152
Variable selection for distribution-free models for longitudinal zero-inflated count responses.
Chen, Tian; Wu, Pan; Tang, Wan; Zhang, Hui; Feng, Changyong; Kowalski, Jeanne; Tu, Xin M
2016-07-20
Zero-inflated count outcomes arise quite often in research and practice. Parametric models such as the zero-inflated Poisson and zero-inflated negative binomial are widely used to model such responses. Like most parametric models, they are quite sensitive to departures from assumed distributions. Recently, new approaches have been proposed to provide distribution-free, or semi-parametric, alternatives. These methods extend the generalized estimating equations to provide robust inference for population mixtures defined by zero-inflated count outcomes. In this paper, we propose methods to extend smoothly clipped absolute deviation (SCAD)-based variable selection methods to these new models. Variable selection has been gaining popularity in modern clinical research studies, as determining differential treatment effects of interventions for different subgroups has become the norm, rather the exception, in the era of patent-centered outcome research. Such moderation analysis in general creates many explanatory variables in regression analysis, and the advantages of SCAD-based methods over their traditional counterparts render them a great choice for addressing this important and timely issues in clinical research. We illustrate the proposed approach with both simulated and real study data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Designing payment for Collaborative Care for Depression in primary care.
Bao, Yuhua; Casalino, Lawrence P; Ettner, Susan L; Bruce, Martha L; Solberg, Leif I; Unützer, Jürgen
2011-10-01
To design a bundled case rate for Collaborative Care for Depression (CCD) that aligns incentives with evidence-based depression care in primary care. A clinical information system used by all care managers in a randomized controlled trial of CCD for older primary care patients. We conducted an empirical investigation of factors accounting for variation in CCD resource use over time and across patients. CCD resource use at the patient-episode and patient-month levels was measured by number of care manager contacts and direct patient contact time and analyzed with count data (Poisson or negative binomial) models. Episode-level resource use varies substantially with patient's time in the program. Monthly use declines sharply in the first 6 months regardless of treatment response or remission status, but it remains stable afterwards. An adjusted episode or monthly case rate design better matches payment with variation in resource use compared with a fixed design. Our findings lend support to an episode payment adjusted by number of months receiving CCD and a monthly payment adjusted by the ordinal month. Nonpayment tools including program certification and performance evaluation and reward systems are needed to fully align incentives. © Health Research and Educational Trust.
Sellbom, Martin; Smid, Wineke; de Saeger, Hilde; Smit, Naomi; Kamphuis, Jan H
2014-01-01
The Personality Psychopathology Five (PSY-5) model represents 5 broadband dimensional personality domains that align with the originally proposed DSM-5 personality trait system, which was eventually placed in Section III for further study. The main objective of this study was to examine the associations between the PSY-5 model and personality disorder criteria. More specifically, we aimed to determine if the PSY-5 domain scales converged with the alternative DSM-5 Section III model for personality disorders, with a particular emphasis on the personality trait profiles proposed for each of the specific personality disorder types. Two samples from The Netherlands consisting of clinical patients from a personality disorder treatment program (n = 190) and forensic psychiatric hospital (n = 162) were used. All patients had been administered the MMPI-2 (from which MMPI-2-RF PSY-5 scales were scored) and structured clinical interviews to assess personality disorder criteria. Results based on Poisson or negative binomial regression models showed statistically significant and meaningful associations for the hypothesized PSY-5 domains for each of the 6 personality disorders, with a few minor exceptions that are discussed in detail. Implications for these findings are also discussed.
Papini, Paolo; Faustini, Annunziata; Manganello, Rosa; Borzacchi, Giancarlo; Spera, Domenico; Perucci, Carlo A
2005-01-01
To determine the frequency of sampling in small water distribution systems (<5,000 inhabitants) and compare the results according to different hypotheses in bacteria distribution. We carried out two sampling programs to monitor the water distribution system in a town in Central Italy between July and September 1992; the Poisson distribution assumption implied 4 water samples, the assumption of negative binomial distribution implied 21 samples. Coliform organisms were used as indicators of water safety. The network consisted of two pipe rings and two wells fed by the same water source. The number of summer customers varied considerably from 3,000 to 20,000. The mean density was 2.33 coliforms/100 ml (sd= 5.29) for 21 samples and 3 coliforms/100 ml (sd= 6) for four samples. However the hypothesis of homogeneity was rejected (p-value <0.001) and the probability of II type error with the assumption of heterogeneity was higher with 4 samples (beta= 0.24) than with 21 (beta= 0.05). For this small network, determining the samples' size according to heterogeneity hypothesis strengthens the statement that water is drinkable compared with homogeneity assumption.
Goetzel, Ron Z; Gibson, Teresa B; Short, Meghan E; Chu, Bong-Chul; Waddell, Jessica; Bowen, Jennie; Lemon, Stephenie C; Fernandez, Isabel Diana; Ozminkowski, Ronald J; Wilson, Mark G; DeJoy, David M
2010-01-01
The relationships between worker health and productivity are becoming clearer. However, few large scale studies have measured the direct and indirect cost burden of overweight and obesity among employees using actual biometric values. The objective of this study was to quantify the direct medical and indirect (absence and productivity) cost burden of overweight and obesity in workers. A cross-sectional study of 10,026 employees in multiple professions and worksites across the United States was conducted. The main outcomes were five self-reported measures of workers' annual health care use and productivity: doctor visits, emergency department visits, hospitalizations, absenteeism (days absent from work), and presenteeism (percent on-the-job productivity losses). Multivariate count and continuous data models (Poisson, negative binomial, and zero-inflated Poisson) were estimated. After adjusting for covariates, obese employees had 20% higher doctor visits than normal weight employees (confidence interval [CI] 16%, 24%, P < 0.01) and 26% higher emergency department visits (CI 11%, 42%, P < 0.01). Rates of doctor and emergency department visits for overweight employees were no different than those of normal weight employees. Compared to normal weight employees, presenteeism rates were 10% and 12% higher for overweight and obese employees, respectively (CI 5%, 15% and 5%, 19%, all P < 0.01). Taken together, compared to normal weight employees, obese and overweight workers were estimated to cost employers $644 and $201 more per employee per year, respectively. This study provides evidence that employers face a financial burden imposed by obesity. Implementation of effective workplace programs for the prevention and management of excess weight will benefit employers and their workers.
Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.
Zhang, Qiangqiang; Xu, Xiang; Lin, Dong; Chen, Wenli; Xiong, Guoping; Yu, Yikang; Fisher, Timothy S; Li, Hui
2016-03-16
A hyperbolically patterned 3D graphene metamaterial (GM) with negative Poisson's ratio and superelasticity is highlighted. It is synthesized by a modified hydrothermal approach and subsequent oriented freeze-casting strategy. GM presents a tunable Poisson's ratio by adjusting the structural porosity, macroscopic aspect ratio (L/D), and freeze-casting conditions. Such a GM suggests promising applications as soft actuators, sensors, robust shock absorbers, and environmental remediation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holographic study of non-affine deformation in copper foam with a negative Poisson's ratio of -0.8
NASA Technical Reports Server (NTRS)
Chen, C. P.; Lakes, R. S.
1993-01-01
While conventional foams have positive Poisson's ratios (become smaller in cross-section when stretched and larger when compressed), foam materials have recently been defined which possess 'reentrant' cellular architectures; in these, inwardly-protruding cell ribs are responsible for negative Poisson's ratio behavior, yielding greater resilience than conventional foams. Double-exposure holographic interferometry is presently used to examine the microdeformation of a reentrant copper foam. Attention is given to the nonaffine (inhomogeneous) deformation of this foam.
Bayesian inference for disease prevalence using negative binomial group testing
Pritchard, Nicholas A.; Tebbs, Joshua M.
2011-01-01
Group testing, also known as pooled testing, and inverse sampling are both widely used methods of data collection when the goal is to estimate a small proportion. Taking a Bayesian approach, we consider the new problem of estimating disease prevalence from group testing when inverse (negative binomial) sampling is used. Using different distributions to incorporate prior knowledge of disease incidence and different loss functions, we derive closed form expressions for posterior distributions and resulting point and credible interval estimators. We then evaluate our new estimators, on Bayesian and classical grounds, and apply our methods to a West Nile Virus data set. PMID:21259308
Use of negative binomial distribution to describe the presence of Anisakis in Thyrsites atun.
Peña-Rehbein, Patricio; De los Ríos-Escalante, Patricio
2012-01-01
Nematodes of the genus Anisakis have marine fishes as intermediate hosts. One of these hosts is Thyrsites atun, an important fishery resource in Chile between 38 and 41° S. This paper describes the frequency and number of Anisakis nematodes in the internal organs of Thyrsites atun. An analysis based on spatial distribution models showed that the parasites tend to be clustered. The variation in the number of parasites per host could be described by the negative binomial distribution. The maximum observed number of parasites was nine parasites per host. The environmental and zoonotic aspects of the study are also discussed.
Fan, Donglei; Li, Minggang; Qiu, Jian; Xing, Haiping; Jiang, Zhiwei; Tang, Tao
2018-05-31
Auxetic materials are a class of materials possessing negative Poisson's ratio. Here we establish a novel method for preparing auxetic foam from closed-cell polymer foam based on steam penetration and condensation (SPC) process. Using polyethylene (PE) closed-cell foam as an example, the resultant foams treated by SPC process present negative Poisson's ratio during stretching and compression testing. The effect of steam-treated temperature and time on the conversion efficiency of negative Poisson's ratio foam is investigated, and the mechanism of SPC method for forming re-entrant structure is discussed. The results indicate that the presence of enough steam within the cells is a critical factor for the negative Poisson's ratio conversion in the SPC process. The pressure difference caused by steam condensation is the driving force for the conversion from conventional closed-cell foam to the negative Poisson's ratio foam. Furthermore, the applicability of SPC process for fabricating auxetic foam is studied by replacing PE foam by polyvinyl chloride (PVC) foam with closed-cell structure or replacing water steam by ethanol steam. The results verify the universality of SPC process for fabricating auxetic foams from conventional foams with closed-cell structure. In addition, we explored potential application of the obtained auxetic foams by SPC process in the fabrication of shape memory polymer materials.
NASA Astrophysics Data System (ADS)
Wang, Fengwen
2018-05-01
This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.
Distribution pattern of phthirapterans infesting certain common Indian birds.
Saxena, A K; Kumar, Sandeep; Gupta, Nidhi; Mitra, J D; Ali, S A; Srivastava, Roshni
2007-08-01
The prevalence and frequency distribution patterns of 10 phthirapteran species infesting house sparrows, Indian parakeets, common mynas, and white breasted kingfishers were recorded in the district of Rampur, India, during 2004-05. The sample mean abundances, mean intensities, range of infestations, variance to mean ratios, values of the exponent of the negative binomial distribution, and the indices of discrepancy were also computed. Frequency distribution patterns of all phthirapteran species were skewed, but the observed frequencies did not correspond to the negative binomial distribution. Thus, adult-nymph ratios varied in different species from 1:0.53 to 1:1.25. Sex ratios of different phthirapteran species ranged from 1:1.10 to 1:1.65 and were female biased.
Bayesian inference for unidirectional misclassification of a binary response trait.
Xia, Michelle; Gustafson, Paul
2018-03-15
When assessing association between a binary trait and some covariates, the binary response may be subject to unidirectional misclassification. Unidirectional misclassification can occur when revealing a particular level of the trait is associated with a type of cost, such as a social desirability or financial cost. The feasibility of addressing misclassification is commonly obscured by model identification issues. The current paper attempts to study the efficacy of inference when the binary response variable is subject to unidirectional misclassification. From a theoretical perspective, we demonstrate that the key model parameters possess identifiability, except for the case with a single binary covariate. From a practical standpoint, the logistic model with quantitative covariates can be weakly identified, in the sense that the Fisher information matrix may be near singular. This can make learning some parameters difficult under certain parameter settings, even with quite large samples. In other cases, the stronger identification enables the model to provide more effective adjustment for unidirectional misclassification. An extension to the Poisson approximation of the binomial model reveals the identifiability of the Poisson and zero-inflated Poisson models. For fully identified models, the proposed method adjusts for misclassification based on learning from data. For binary models where there is difficulty in identification, the method is useful for sensitivity analyses on the potential impact from unidirectional misclassification. Copyright © 2017 John Wiley & Sons, Ltd.
Shirazi, Mohammadali; Dhavala, Soma Sekhar; Lord, Dominique; Geedipally, Srinivas Reddy
2017-10-01
Safety analysts usually use post-modeling methods, such as the Goodness-of-Fit statistics or the Likelihood Ratio Test, to decide between two or more competitive distributions or models. Such metrics require all competitive distributions to be fitted to the data before any comparisons can be accomplished. Given the continuous growth in introducing new statistical distributions, choosing the best one using such post-modeling methods is not a trivial task, in addition to all theoretical or numerical issues the analyst may face during the analysis. Furthermore, and most importantly, these measures or tests do not provide any intuitions into why a specific distribution (or model) is preferred over another (Goodness-of-Logic). This paper ponders into these issues by proposing a methodology to design heuristics for Model Selection based on the characteristics of data, in terms of descriptive summary statistics, before fitting the models. The proposed methodology employs two analytic tools: (1) Monte-Carlo Simulations and (2) Machine Learning Classifiers, to design easy heuristics to predict the label of the 'most-likely-true' distribution for analyzing data. The proposed methodology was applied to investigate when the recently introduced Negative Binomial Lindley (NB-L) distribution is preferred over the Negative Binomial (NB) distribution. Heuristics were designed to select the 'most-likely-true' distribution between these two distributions, given a set of prescribed summary statistics of data. The proposed heuristics were successfully compared against classical tests for several real or observed datasets. Not only they are easy to use and do not need any post-modeling inputs, but also, using these heuristics, the analyst can attain useful information about why the NB-L is preferred over the NB - or vice versa- when modeling data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Composite laminates with negative through-the-thickness Poisson's ratios
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1984-01-01
A simple analysis using two dimensional lamination theory combined with the appropriate three dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates.
Composite laminates with negative through-the-thickness Poisson's ratios
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1984-01-01
A simple analysis using two-dimensional lamination theory combined with the appropriate three-dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates.
Emperical Tests of Acceptance Sampling Plans
NASA Technical Reports Server (NTRS)
White, K. Preston, Jr.; Johnson, Kenneth L.
2012-01-01
Acceptance sampling is a quality control procedure applied as an alternative to 100% inspection. A random sample of items is drawn from a lot to determine the fraction of items which have a required quality characteristic. Both the number of items to be inspected and the criterion for determining conformance of the lot to the requirement are given by an appropriate sampling plan with specified risks of Type I and Type II sampling errors. In this paper, we present the results of empirical tests of the accuracy of selected sampling plans reported in the literature. These plans are for measureable quality characteristics which are known have either binomial, exponential, normal, gamma, Weibull, inverse Gaussian, or Poisson distributions. In the main, results support the accepted wisdom that variables acceptance plans are superior to attributes (binomial) acceptance plans, in the sense that these provide comparable protection against risks at reduced sampling cost. For the Gaussian and Weibull plans, however, there are ranges of the shape parameters for which the required sample sizes are in fact larger than the corresponding attributes plans, dramatically so for instances of large skew. Tests further confirm that the published inverse-Gaussian (IG) plan is flawed, as reported by White and Johnson (2011).
Moran, John L; Solomon, Patricia J
2012-05-16
For the analysis of length-of-stay (LOS) data, which is characteristically right-skewed, a number of statistical estimators have been proposed as alternatives to the traditional ordinary least squares (OLS) regression with log dependent variable. Using a cohort of patients identified in the Australian and New Zealand Intensive Care Society Adult Patient Database, 2008-2009, 12 different methods were used for estimation of intensive care (ICU) length of stay. These encompassed risk-adjusted regression analysis of firstly: log LOS using OLS, linear mixed model [LMM], treatment effects, skew-normal and skew-t models; and secondly: unmodified (raw) LOS via OLS, generalised linear models [GLMs] with log-link and 4 different distributions [Poisson, gamma, negative binomial and inverse-Gaussian], extended estimating equations [EEE] and a finite mixture model including a gamma distribution. A fixed covariate list and ICU-site clustering with robust variance were utilised for model fitting with split-sample determination (80%) and validation (20%) data sets, and model simulation was undertaken to establish over-fitting (Copas test). Indices of model specification using Bayesian information criterion [BIC: lower values preferred] and residual analysis as well as predictive performance (R2, concordance correlation coefficient (CCC), mean absolute error [MAE]) were established for each estimator. The data-set consisted of 111663 patients from 131 ICUs; with mean(SD) age 60.6(18.8) years, 43.0% were female, 40.7% were mechanically ventilated and ICU mortality was 7.8%. ICU length-of-stay was 3.4(5.1) (median 1.8, range (0.17-60)) days and demonstrated marked kurtosis and right skew (29.4 and 4.4 respectively). BIC showed considerable spread, from a maximum of 509801 (OLS-raw scale) to a minimum of 210286 (LMM). R2 ranged from 0.22 (LMM) to 0.17 and the CCC from 0.334 (LMM) to 0.149, with MAE 2.2-2.4. Superior residual behaviour was established for the log-scale estimators. There was a general tendency for over-prediction (negative residuals) and for over-fitting, the exception being the GLM negative binomial estimator. The mean-variance function was best approximated by a quadratic function, consistent with log-scale estimation; the link function was estimated (EEE) as 0.152(0.019, 0.285), consistent with a fractional-root function. For ICU length of stay, log-scale estimation, in particular the LMM, appeared to be the most consistently performing estimator(s). Neither the GLM variants nor the skew-regression estimators dominated.
Indentability of conventional and negative Poisson's ratio foams
NASA Technical Reports Server (NTRS)
Lakes, R. S.; Elms, K.
1992-01-01
The indentation resistance of foams, both of conventional structure and of reentrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, reentrant foams had higher yield strength and lower stiffness than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for reentrant foam than conventional foam.
Binomial test statistics using Psi functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Kimiko o
2007-01-01
For the negative binomial model (probability generating function (p + 1 - pt){sup -k}) a logarithmic derivative is the Psi function difference {psi}(k + x) - {psi}(k); this and its derivatives lead to a test statistic to decide on the validity of a specified model. The test statistic uses a data base so there exists a comparison available between theory and application. Note that the test function is not dominated by outliers. Applications to (i) Fisher's tick data, (ii) accidents data, (iii) Weldon's dice data are included.
Spatiotemporal and random parameter panel data models of traffic crash fatalities in Vietnam.
Truong, Long T; Kieu, Le-Minh; Vu, Tuan A
2016-09-01
This paper investigates factors associated with traffic crash fatalities in 63 provinces of Vietnam during the period from 2012 to 2014. Random effect negative binomial (RENB) and random parameter negative binomial (RPNB) panel data models are adopted to consider spatial heterogeneity across provinces. In addition, a spatiotemporal model with conditional autoregressive priors (ST-CAR) is utilised to account for spatiotemporal autocorrelation in the data. The statistical comparison indicates the ST-CAR model outperforms the RENB and RPNB models. Estimation results provide several significant findings. For example, traffic crash fatalities tend to be higher in provinces with greater numbers of level crossings. Passenger distance travelled and road lengths are also positively associated with fatalities. However, hospital densities are negatively associated with fatalities. The safety impact of the national highway 1A, the main transport corridor of the country, is also highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wong, Irene O L; Lindner, Michael J; Cowling, Benjamin J; Lau, Eric H Y; Lo, Su-Vui; Leung, Gabriel M
2010-04-01
To evaluate the presence of moral hazard, adjusted for the propensity to have self-purchased insurance policies, employer-based medical benefits, and welfare-associated medical benefits in Hong Kong. Based on 2005 population survey, we used logistic regression and zero-truncated negative binomial/Poisson regressions to assess the presence of moral hazard by comparing inpatient and outpatient utilization between insured and uninsured individuals. We fitted each enabling factor specific to the type of service covered, and adjusted for predisposing socioeconomic and demographic factors. We used a propensity score approach to account for potential adverse selection. Employment-based benefits coverage was associated with increased access and intensity of use for both inpatient and outpatient care, except for public hospital use. Similarly, welfare-based coverage had comparable effect sizes as employment-based schemes, except for the total number of public ambulatory episodes. Self-purchased insurance facilitated access but did not apparently induce greater demand of services among ever users. Nevertheless, there was no evidence of moral hazard in public hospital use. Our findings suggest that employment-based benefits coverage lead to the greatest degree of moral hazard in Hong Kong. Future studies should focus on confirming these observational findings using a randomized design. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Xiao, Yundan; Zhang, Xiongqing; Ji, Ping
2015-01-01
Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence.
Pogorzelska, Monika; Stone, PatriciaW.; Larson, Elaine L.
2012-01-01
Background The study objective is to describe infection control policies aimed at multidrug-resistant organisms (MDRO) in California hospitals and assess the relationship among these policies, structural characteristics, and rates of methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) bloodstream infections and Clostridium difficile infections. Methods Data on infection control policies, structural characteristics, and MDRO rates were collected through a 2010 survey of California infection control departments. Bivariate and multivariable Poisson and negative binomial regressions were conducted. Results One hundred eighty hospitals provided data (response rate, 54%). Targeted MRSA screening upon admission was reported by the majority of hospitals (87%). The majority of hospitals implemented contact precautions for confirmed MDRO and C difficile patients; presumptive isolation/contact precautions for patients with pending screens were less frequently implemented. Few infection control policies were associated with lower MDRO rates. Hospitals with a certified infection control director had significantly lower rates of MRSA bloodstream infections (P < .05). Conclusion Although most California hospitals are involved in activities to decrease MDRO, there is variation in specific activities utilized with the most focus placed on MRSA. This study highlights the importance of certification and its significant impact on infection rates. Additional research is needed to confirm these findings. PMID:22381222
2010-01-01
Background The aim of this study was to examine the distribution of physical activity facilities by area-level deprivation in Scotland, adjusting for differences in urbanicity, and exploring differences between and within the four largest Scottish cities. Methods We obtained a list of all recreational physical activity facilities in Scotland. These were mapped and assigned to datazones. Poisson and negative binomial regression models were used to investigate associations between the number of physical activity facilities relative to population size and quintile of area-level deprivation. Results The results showed that prior to adjustment for urbanicity, the density of all facilities lessened with increasing deprivation from quintiles 2 to 5. After adjustment for urbanicity and local authority, the effect of deprivation remained significant but the pattern altered, with datazones in quintile 3 having the highest estimated mean density of facilities. Within-city associations were identified between the number of physical activity facilities and area-level deprivation in Aberdeen and Dundee, but not in Edinburgh or Glasgow. Conclusions In conclusion, area-level deprivation appears to have a significant association with the density of physical activity facilities and although overall no clear pattern was observed, affluent areas had fewer publicly owned facilities than more deprived areas but a greater number of privately owned facilities. PMID:20955548
Ynalvez, Ruby; Garza-Gongora, Claudia; Ynalvez, Marcus Antonius; Hara, Noriko
2014-01-01
Although doctoral mentors recognize the benefits of providing quality advisement and close guidance, those of sharing project management responsibilities with mentees are still not well recognized. We observed that mentees, who have the opportunity to co-manage projects, generate more written output. Here we examine the link between research productivity, doctoral mentoring practices (DMP), and doctoral research experiences (DRE) of mentees in programs in the non-West. Inspired by previous findings that early career productivity is a strong predictor of later productivity, we examine the research productivity of 210 molecular biology doctoral students in selected programs in Japan, Singapore, and Taiwan. Using principal component (PC) analysis, we derive two sets of PCs: one set from 15 DMP and another set from 16 DRE items. We model research productivity using Poisson and negative-binomial regression models with these sets as predictors. Our findings suggest a need to re-think extant practices and to allocate resources toward professional career development in training future scientists. We contend that doctoral science training must not only be an occasion for future scientists to learn scientific and technical skills, but it must also be the opportunity to experience, to acquire, and to hone research management skills. © 2014 The International Union of Biochemistry and Molecular Biology.
Ji, Ping
2015-01-01
Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence. PMID:25790309
Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard
2016-10-01
In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models. We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.
NASA Astrophysics Data System (ADS)
Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena
2017-04-01
We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.
Drake, D Andrew R; Mandrak, Nicholas E
2014-06-01
Long implicated in the invasion process, live-bait anglers are highly mobile species vectors with frequent overland transport of fishes. To test hypotheses about the role of anglers in propagule transport, we developed a social-ecological model quantifying the opportunity for species transport beyond the invaded range resulting from bycatch during commercial bait operations, incidental transport, and release to lake ecosystems by anglers. We combined a gravity model with a stochastic, agent-based simulation, representing a 1-yr iteration of live-bait angling and the dynamics of propagule transport at fine spatiotemporal scales (i.e., probability of introducing n propagules per lake per year). A baseline scenario involving round goby (Neogobius melanostomus) indicated that most angling trips were benign; irrespective of lake visitation, anglers failed to purchase and transport propagules (benign trips, median probability P = 0.99912). However, given the large number of probability trials (4.2 million live-bait angling events per year), even the rarest sequence of events (uptake, movement, and deposition of propagules) is anticipated to occur. Risky trips (modal P = 0.00088 trips per year; approximately 1 in 1136) were sufficient to introduce a substantial number of propagules (modal values, Poisson model = 3715 propagules among 1288 lakes per year; zero-inflated negative binomial model = 6722 propagules among 1292 lakes per year). Two patterns of lake-specific introduction risk emerged. Large lakes supporting substantial angling activity experienced propagule pressure likely to surpass demographic barriers to establishment (top 2.5% of lakes with modal outcomes of five to 76 propagules per year; 303 high-risk lakes with three or more propagules, per year). Small or remote lakes were less likely to receive propagules; however, most risk distributions were leptokurtic with a long right tail, indicating the rare occurrence of high propagule loads to most waterbodies. Infestation simulations indicated that the number of high-risk waterbodies could be as great as 1318 (zero-inflated negative binomial), whereas a 90% reduction in bycatch from baseline would reduce the modal number of high risk lakes to zero. Results indicate that the combination of invasive bycatch and live-bait anglers warrants management concern as a species vector, but that risk is confined to a subset of individuals and recipient sites that may be effectively managed with targeted strategies.
Computational prediction of new auxetic materials.
Dagdelen, John; Montoya, Joseph; de Jong, Maarten; Persson, Kristin
2017-08-22
Auxetics comprise a rare family of materials that manifest negative Poisson's ratio, which causes an expansion instead of contraction under tension. Most known homogeneously auxetic materials are porous foams or artificial macrostructures and there are few examples of inorganic materials that exhibit this behavior as polycrystalline solids. It is now possible to accelerate the discovery of materials with target properties, such as auxetics, using high-throughput computations, open databases, and efficient search algorithms. Candidates exhibiting features correlating with auxetic behavior were chosen from the set of more than 67 000 materials in the Materials Project database. Poisson's ratios were derived from the calculated elastic tensor of each material in this reduced set of compounds. We report that this strategy results in the prediction of three previously unidentified homogeneously auxetic materials as well as a number of compounds with a near-zero homogeneous Poisson's ratio, which are here denoted "anepirretic materials".There are very few inorganic materials with auxetic homogenous Poisson's ratio in polycrystalline form. Here authors develop an approach to screening materials databases for target properties such as negative Poisson's ratio by using stability and structural motifs to predict new instances of homogenous auxetic behavior as well as a number of materials with near-zero Poisson's ratio.
Gene regulation and noise reduction by coupling of stochastic processes
NASA Astrophysics Data System (ADS)
Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John
2015-02-01
Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.
Gene regulation and noise reduction by coupling of stochastic processes
Hornos, José Eduardo M.; Reinitz, John
2015-01-01
Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447
Gene regulation and noise reduction by coupling of stochastic processes.
Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John
2015-02-01
Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.
Chen, Da; Zheng, Xiaoyu
2018-06-14
Nature has evolved with a recurring strategy to achieve unusual mechanical properties through coupling variable elastic moduli from a few GPa to below KPa within a single tissue. The ability to produce multi-material, three-dimensional (3D) micro-architectures with high fidelity incorporating dissimilar components has been a major challenge in man-made materials. Here we show multi-modulus metamaterials whose architectural element is comprised of encoded elasticity ranging from rigid to soft. We found that, in contrast to ordinary architected materials whose negative Poisson's ratio is dictated by their geometry, these type of metamaterials are capable of displaying Poisson's ratios from extreme negative to zero, independent of their 3D micro-architecture. The resulting low density metamaterials is capable of achieving functionally graded, distributed strain amplification capabilities within the metamaterial with uniform micro-architectures. Simultaneous tuning of Poisson's ratio and moduli within the 3D multi-materials could open up a broad array of material by design applications ranging from flexible armor, artificial muscles, to actuators and bio-mimetic materials.
Indentability of conventional and negative Poisson's ratio foams
NASA Technical Reports Server (NTRS)
Lakes, R. S.; Elms, K.
1992-01-01
The indentation resistance of foams, both of conventional structure and of re-entrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, re-entrant foams had higher yield strengths sigma(sub y) and lower stiffness E than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for re-entrant foam than conventional foam.
Li, Tiantian; Hu, Xiaoyi; Chen, Yanyu; Wang, Lifeng
2017-08-21
Auxetic materials exhibiting a negative Poisson's ratio are of great research interest due to their unusual mechanical responses and a wide range of potential deployment. Efforts have been devoted to exploring novel 2D and 3D auxetic structures through rational design, optimization, and taking inspiration from nature. Here we report a 3D architected lattice system showing a negative Poisson's ratio over a wide range of applied uniaxial stretch. 3D printing, experimental tests, numerical simulation, and analytical modeling are implemented to quantify the evolution of the Poisson's ratio and reveal the underlying mechanisms responsible for this unusual behavior. We further show that the auxetic behavior can be controlled by tailoring the geometric features of the ligaments. The findings reported here provide a new routine to design architected metamaterial systems exhibiting unusual properties and having a wide range of potential applications.
Pricing American Asian options with higher moments in the underlying distribution
NASA Astrophysics Data System (ADS)
Lo, Keng-Hsin; Wang, Kehluh; Hsu, Ming-Feng
2009-01-01
We develop a modified Edgeworth binomial model with higher moment consideration for pricing American Asian options. With lognormal underlying distribution for benchmark comparison, our algorithm is as precise as that of Chalasani et al. [P. Chalasani, S. Jha, F. Egriboyun, A. Varikooty, A refined binomial lattice for pricing American Asian options, Rev. Derivatives Res. 3 (1) (1999) 85-105] if the number of the time steps increases. If the underlying distribution displays negative skewness and leptokurtosis as often observed for stock index returns, our estimates can work better than those in Chalasani et al. [P. Chalasani, S. Jha, F. Egriboyun, A. Varikooty, A refined binomial lattice for pricing American Asian options, Rev. Derivatives Res. 3 (1) (1999) 85-105] and are very similar to the benchmarks in Hull and White [J. Hull, A. White, Efficient procedures for valuing European and American path-dependent options, J. Derivatives 1 (Fall) (1993) 21-31]. The numerical analysis shows that our modified Edgeworth binomial model can value American Asian options with greater accuracy and speed given higher moments in their underlying distribution.
NASA Astrophysics Data System (ADS)
Lowe, Rachel; Bailey, Trevor C.; Stephenson, David B.; Graham, Richard J.; Coelho, Caio A. S.; Sá Carvalho, Marilia; Barcellos, Christovam
2011-03-01
This paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2.5°×2.5° longitude-latitude grid with time lags relevant to dengue transmission, an El Niño Southern Oscillation index and other relevant socio-economic and environmental variables. A negative binomial model formulation is adopted in this model selection to allow for extra-Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil, where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM—generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived, which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil.
Development of enhanced pavement deterioration curves.
DOT National Transportation Integrated Search
2016-10-01
This report describes the research performed by the Center for Sustainable Transportation Infrastructure (CSTI) at the Virginia Tech Transportation Institute (VTTI) to develop a pavement condition prediction model, using (negative binomial) regressio...
Indicators of Terrorism Vulnerability in Africa
2015-03-26
the terror threat and vulnerabilities across Africa. Key words: Terrorism, Africa, Negative Binomial Regression, Classification Tree iv I would like...31 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Log -likelihood...70 viii Page 5.3 Classification Tree Description
Preisser, John S; Long, D Leann; Stamm, John W
2017-01-01
Marginalized zero-inflated count regression models have recently been introduced for the statistical analysis of dental caries indices and other zero-inflated count data as alternatives to traditional zero-inflated and hurdle models. Unlike the standard approaches, the marginalized models directly estimate overall exposure or treatment effects by relating covariates to the marginal mean count. This article discusses model interpretation and model class choice according to the research question being addressed in caries research. Two data sets, one consisting of fictional dmft counts in 2 groups and the other on DMFS among schoolchildren from a randomized clinical trial comparing 3 toothpaste formulations to prevent incident dental caries, are analyzed with negative binomial hurdle, zero-inflated negative binomial, and marginalized zero-inflated negative binomial models. In the first example, estimates of treatment effects vary according to the type of incidence rate ratio (IRR) estimated by the model. Estimates of IRRs in the analysis of the randomized clinical trial were similar despite their distinctive interpretations. The choice of statistical model class should match the study's purpose, while accounting for the broad decline in children's caries experience, such that dmft and DMFS indices more frequently generate zero counts. Marginalized (marginal mean) models for zero-inflated count data should be considered for direct assessment of exposure effects on the marginal mean dental caries count in the presence of high frequencies of zero counts. © 2017 S. Karger AG, Basel.
Preisser, John S.; Long, D. Leann; Stamm, John W.
2017-01-01
Marginalized zero-inflated count regression models have recently been introduced for the statistical analysis of dental caries indices and other zero-inflated count data as alternatives to traditional zero-inflated and hurdle models. Unlike the standard approaches, the marginalized models directly estimate overall exposure or treatment effects by relating covariates to the marginal mean count. This article discusses model interpretation and model class choice according to the research question being addressed in caries research. Two datasets, one consisting of fictional dmft counts in two groups and the other on DMFS among schoolchildren from a randomized clinical trial (RCT) comparing three toothpaste formulations to prevent incident dental caries, are analysed with negative binomial hurdle (NBH), zero-inflated negative binomial (ZINB), and marginalized zero-inflated negative binomial (MZINB) models. In the first example, estimates of treatment effects vary according to the type of incidence rate ratio (IRR) estimated by the model. Estimates of IRRs in the analysis of the RCT were similar despite their distinctive interpretations. Choice of statistical model class should match the study’s purpose, while accounting for the broad decline in children’s caries experience, such that dmft and DMFS indices more frequently generate zero counts. Marginalized (marginal mean) models for zero-inflated count data should be considered for direct assessment of exposure effects on the marginal mean dental caries count in the presence of high frequencies of zero counts. PMID:28291962
Ngom, Roland; Gosselin, Pierre; Blais, Claudia; Rochette, Louis
2016-01-01
This study aimed at determining the role of proximity to specific types of green spaces (GSes) as well as their spatial location in the relationship with the most morbid cardiovascular diseases (CVD) and diabetes. We measured the accessibility to various types of GS and used a cross-sectional approach at census Dissemination Area (DA) levels in the Montreal and Quebec City metropolitan zones for the period 2006–2011. Poisson and negative binomial regression models were fitted to quantify the relationship between distances to specific types of GS and CVD morbidity as well as some risk factors (diabetes and hypertension) while controlling for several social and environmental confounders. GSes that have sports facilities showed a significant relationship to cerebrovascular diseases: the most distant population had an 11% higher prevalence rate ratio (PRR) compared to the nearest, as well as higher diabetes risk (PRR 9%) than the nearest. However, the overall model performance and the understanding of the role of GSes with sport facilities may be substantially achieved with lifestyle factors. Significantly higher prevalence of diabetes and cerebrovascular diseases as well as lower access to GSes equipped with sports facilities were found in suburban areas. GSes can advantageously be used to prevent some CVDs and their risk factors, but there may be a need to reconsider their types and location. PMID:27089356
Tooth loss patterns in older adults with special needs: a Minnesota cohort
Chen, Xi; Clark, Jennifer J
2011-01-01
This study was conducted to detail tooth loss patterns in older adults with special needs. A total of 491 elderly subjects with special needs were retrospectively selected and followed during 10/1999-12/2006. Medical, dental, cognitive, and functional assessments were abstracted from dental records and used to predict risk of tooth loss. Tooth loss events were recorded for subjects during follow-up. Chi-squared tests were used to study the association between tooth loss and the selected risk factors. Logistic, poisson, and negative binomial regressions were developed to study tooth loss patterns. Overall, 27% of the subjects lost at least one tooth during follow-up. Fourteen subjects had tooth loss events per 100 person-years. Tooth loss pattern did not differ significantly among different special-needs subgroups (i.e. community-dwelling vs. long-term care, physically disabled vs. functionally independent). Special-needs subjects with three or more active dental conditions at arrival had more than twice the risk of losing teeth than those without any existing conditions. After adjusting other factors, the number of carious teeth or retained roots at arrival was a significant predictor of tooth loss for older adults with special needs (P=0.001). These findings indicate that appropriately managing active caries and associated conditions is important to prevent tooth loss for older adults with special needs. PMID:21449213
Mental illness in bariatric surgery: A cohort study from the PORTAL network.
Fisher, David; Coleman, Karen J; Arterburn, David E; Fischer, Heidi; Yamamoto, Ayae; Young, Deborah R; Sherwood, Nancy E; Trinacty, Connie Mah; Lewis, Kristina H
2017-05-01
To compare bariatric surgery outcomes according to preoperative mental illness category. Electronic health record data from several US healthcare systems were used to compare outcomes of four groups of patients who underwent bariatric surgery in 2012 and 2013. These included the following: people with (1) no mental illness, (2) mild-to-moderate depression or anxiety, (3) severe depression or anxiety, and (4) bipolar, psychosis, or schizophrenia spectrum disorders. Groups were compared on weight loss trajectory using generalized estimating equations using B-spline bases and on all-cause emergency department visits and hospital days using zero-inflated Poisson and negative binomial regression up to 2 years after surgery. Models were adjusted for demographic and health covariates, including baseline healthcare use. Among 8,192 patients, mean age was 44.3 (10.7) years, 79.9% were female, and 45.6% were white. Fifty-seven percent had preoperative mental illness. There were no differences between groups for weight loss, but patients with preoperative severe depression or anxiety or bipolar, psychosis, or schizophrenia spectrum disorders had higher follow-up levels of emergency department visits and hospital days compared to those with no mental illness. In this multicenter study, mental illness was not associated with differential weight loss after bariatric surgery, but additional research could focus on reducing acute care use among these patients. © 2017 The Obesity Society.
Determinants of The Grade A Embryos in Infertile Women; Zero-Inflated Regression Model.
Almasi-Hashiani, Amir; Ghaheri, Azadeh; Omani Samani, Reza
2017-10-01
In assisted reproductive technology, it is important to choose high quality embryos for embryo transfer. The aim of the present study was to determine the grade A embryo count and factors related to it in infertile women. This historical cohort study included 996 infertile women. The main outcome was the number of grade A embryos. Zero-Inflated Poisson (ZIP) regression and Zero-Inflated Negative Binomial (ZINB) regression were used to model the count data as it contained excessive zeros. Stata software, version 13 (Stata Corp, College Station, TX, USA) was used for all statistical analyses. After adjusting for potential confounders, results from the ZINB model show that for each unit increase in the number 2 pronuclear (2PN) zygotes, we get an increase of 1.45 times as incidence rate ratio (95% confidence interval (CI): 1.23-1.69, P=0.001) in the expected grade A embryo count number, and for each increase in the cleavage day we get a decrease 0.35 times (95% CI: 0.20-0.61, P=0.001) in expected grade A embryo count. There is a significant association between both the number of 2PN zygotes and cleavage day with the number of grade A embryos in both ZINB and ZIP regression models. The estimated coefficients are more plausible than values found in earlier studies using less relevant models. Copyright© by Royan Institute. All rights reserved.
Differential Impact of Personality Traits on Distracted Driving Behaviors in Teens and Older Adults
Parr, Morgan N.; Ross, Lesley A.; McManus, Benjamin; Bishop, Haley J.; Wittig, Shannon M. O.; Stavrinos, Despina
2016-01-01
Objective To determine the impact of personality on distracted driving behaviors. Method Participants included 120 drivers (48 teens, 72 older adults) who completed the 45-item Big Five Personality questionnaire assessing self-reported personality factors and the Questionnaire Assessing Distracted Driving (QUADD) assessing the frequency of distracted driving behaviors. Associations for all five personality traits with each outcome (e.g. number of times texting on the phone, talking on the phone, and interacting with the phone while driving) were analyzed separately for teens and older adults using negative binomial or Poisson regressions that controlled for age, gender and education. Results In teens, higher levels of openness and conscientiousness were predictive of greater reported texting frequency and interacting with a phone while driving, while lower levels of agreeableness was predictive of fewer reported instances of texting and interacting with a phone while driving. In older adults, greater extraversion was predictive of greater reported talking on and interacting with a phone while driving. Other personality factors were not significantly associated with distracted driving behaviors. Conclusions Personality traits may be important predictors of distracted driving behaviors, though specific traits associated with distracted driving may vary across age groups. The relationship between personality and distracted driving behaviors provides a unique opportunity to target drivers who are more likely to engage in distracted driving behavior, thereby increasing the effectiveness of educational campaigns and improving driving safety. PMID:27054484
A new multivariate zero-adjusted Poisson model with applications to biomedicine.
Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen
2018-05-25
Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poisson's Ratio and Auxetic Properties of Natural Rocks
NASA Astrophysics Data System (ADS)
Ji, Shaocheng; Li, Le; Motra, Hem Bahadur; Wuttke, Frank; Sun, Shengsi; Michibayashi, Katsuyoshi; Salisbury, Matthew H.
2018-02-01
Here we provide an appraisal of the Poisson's ratios (υ) for natural elements, common oxides, silicate minerals, and rocks with the purpose of searching for naturally auxetic materials. The Poisson's ratios of equivalently isotropic polycrystalline aggregates were calculated from dynamically measured elastic properties. Alpha-cristobalite is currently the only known naturally occurring mineral that has exclusively negative υ values at 20-1,500°C. Quartz and potentially berlinite (AlPO4) display auxetic behavior in the vicinity of their α-β structure transition. None of the crystalline igneous and metamorphic rocks (e.g., amphibolite, gabbro, granite, peridotite, and schist) display auxetic behavior at pressures of >5 MPa and room temperature. Our experimental measurements showed that quartz-rich sedimentary rocks (i.e., sandstone and siltstone) are most likely to be the only rocks with negative Poisson's ratios at low confining pressures (≤200 MPa) because their main constituent mineral, α-quartz, already has extremely low Poisson's ratio (υ = 0.08) and they contain microcracks, micropores, and secondary minerals. This finding may provide a new explanation for formation of dome-and-basin structures in quartz-rich sedimentary rocks in response to a horizontal compressional stress in the upper crust.
Bilgic, Abdulbaki; Florkowski, Wojciech J
2007-06-01
This paper identifies factors that influence the demand for a bass fishing trip taken in the southeastern United States using a hurdle negative binomial count data model. The probability of fishing for a bass is estimated in the first stage and the fishing trip frequency is estimated in the second stage for individuals reporting bass fishing trips in the Southeast. The applied approach allows the decomposition of the effects of factors responsible for the decision to take a trip and the trip number. Calculated partial and total elasticities indicate a highly inelastic demand for the number of fishing trips as trip costs increase. However, the demand can be expected to increase if anglers experience a success measured by the number of caught fish or their size. Benefit estimates based on alternative estimation methods differ substantially, suggesting the need for testing each modeling approach applied in empirical studies.
Iakovenko, K N; Tarusina, T O
1976-01-01
The study of the distribution law of human peripheral blood cultures for the sensitivity to thiophosphamide was performed. In the first experiment the blood from one person was used, in the second one the blood was used from different persons. "The percent of aberrant cells" and "the number of chromosome breaks per 100 cells" were scored. The distribution law of the cultures in all the experiments was found to be normal. Analysis of the variances on the percent of aberrant cells showed that the distribution law of the cultures received from one donor corresponded to the binomial one, and that of the cultures received from different donors--to the Poisson's one.
Maximally Informative Stimuli and Tuning Curves for Sigmoidal Rate-Coding Neurons and Populations
NASA Astrophysics Data System (ADS)
McDonnell, Mark D.; Stocks, Nigel G.
2008-08-01
A general method for deriving maximally informative sigmoidal tuning curves for neural systems with small normalized variability is presented. The optimal tuning curve is a nonlinear function of the cumulative distribution function of the stimulus and depends on the mean-variance relationship of the neural system. The derivation is based on a known relationship between Shannon’s mutual information and Fisher information, and the optimality of Jeffrey’s prior. It relies on the existence of closed-form solutions to the converse problem of optimizing the stimulus distribution for a given tuning curve. It is shown that maximum mutual information corresponds to constant Fisher information only if the stimulus is uniformly distributed. As an example, the case of sub-Poisson binomial firing statistics is analyzed in detail.
Analyzing crash frequency in freeway tunnels: A correlated random parameters approach.
Hou, Qinzhong; Tarko, Andrew P; Meng, Xianghai
2018-02-01
The majority of past road safety studies focused on open road segments while only a few focused on tunnels. Moreover, the past tunnel studies produced some inconsistent results about the safety effects of the traffic patterns, the tunnel design, and the pavement conditions. The effects of these conditions therefore remain unknown, especially for freeway tunnels in China. The study presented in this paper investigated the safety effects of these various factors utilizing a four-year period (2009-2012) of data as well as three models: 1) a random effects negative binomial model (RENB), 2) an uncorrelated random parameters negative binomial model (URPNB), and 3) a correlated random parameters negative binomial model (CRPNB). Of these three, the results showed that the CRPNB model provided better goodness-of-fit and offered more insights into the factors that contribute to tunnel safety. The CRPNB was not only able to allocate the part of the otherwise unobserved heterogeneity to the individual model parameters but also was able to estimate the cross-correlations between these parameters. Furthermore, the study results showed that traffic volume, tunnel length, proportion of heavy trucks, curvature, and pavement rutting were associated with higher frequencies of traffic crashes, while the distance to the tunnel wall, distance to the adjacent tunnel, distress ratio, International Roughness Index (IRI), and friction coefficient were associated with lower crash frequencies. In addition, the effects of the heterogeneity of the proportion of heavy trucks, the curvature, the rutting depth, and the friction coefficient were identified and their inter-correlations were analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.
2013-01-01
Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.
Evaluation of surrogate measures for pedestrian safety in various road and roadside environments.
DOT National Transportation Integrated Search
2012-10-01
This report presents an investigation of pedestrian conflicts and crash count models to learn which exposure measures and roadway or roadside characteristics significantly influence pedestrian safety at road crossings. Negative binomial models were e...
Jahnke, S M; Redaelli, L R; Diefenbach, L M G; Efrom, C F
2008-11-01
Many species of microhymenopterous parasitoids have been registered on Phyllocnistis citrella, the citrus leafminer. The present study aimed to identify the spatial distribution pattern of the native and introduced parasitoids of P. citrella in two citrus orchards in Montenegro, RS. The new shoots from 24 randomly selected trees in each orchard were inspected at the bottom (0-1.5 m) and top (1.5-2.5 m) stratum and had their position relative to the quadrants (North, South, East and West) registered at every 15 days from July/2002 to June/2003. The leaves with pupae were collected and kept isolated until the emergence of parasitoids or of the leaf miner; so, the sampling was biased towards parasitoids that emerge in the host pupal phase. The horizontal spatial distribution was evaluated testing the fitness of data to the Poisson and negative binomial distributions. In Montenegrina, there was no significant difference in the number of parasitoids and in the mean number of pupae found in the top and bottom strata (chi2 = 0.66; df = 1; P > 0.05) (chi2 = 0.27; df =1; P > 0.05), respectively. In relation to the quadrants, the highest average numbers of the leafminer pupae and of parasitoids were registered at the East quadrant (chi2 = 11.81; df = 3; P < 0.05), (chi2 = 10.36; df = 3; P < 0.05). In the Murcott orchard, a higher number of parasitoids was found at the top stratum (63.5%) (chi2 = 7.24; df =1 P < 0.05), the same occurring with the average number of P. citrella pupae (62.9%) (chi2 = 6.66; df = 1; P < 0.05). The highest number of parasitoids and of miners was registered at the North quadrant (chi2 = 19. 29; df = 3; P < 0.05), (chi2 = 4.39; df = 3; P < 0.05). In both orchards, there was no difference between the numbers of shoots either relative to the strata as well as to the quadrants. As the number of shoots did not varied much relative to the quadrants, it is possible that the higher number of miners and parasitoids in the East and West quadrants would be influenced by the higher solar exposure of these quadrants. The data of the horizontal spatial distribution of the parasitism fit to the negative binomial distribution in all sampling occasions, indicating an aggregated pattern.
A brief history of numbers and statistics with cytometric applications.
Watson, J V
2001-02-15
A brief history of numbers and statistics traces the development of numbers from prehistory to completion of our current system of numeration with the introduction of the decimal fraction by Viete, Stevin, Burgi, and Galileo at the turn of the 16th century. This was followed by the development of what we now know as probability theory by Pascal, Fermat, and Huygens in the mid-17th century which arose in connection with questions in gambling with dice and can be regarded as the origin of statistics. The three main probability distributions on which statistics depend were introduced and/or formalized between the mid-17th and early 19th centuries: the binomial distribution by Pascal; the normal distribution by de Moivre, Gauss, and Laplace, and the Poisson distribution by Poisson. The formal discipline of statistics commenced with the works of Pearson, Yule, and Gosset at the turn of the 19th century when the first statistical tests were introduced. Elementary descriptions of the statistical tests most likely to be used in conjunction with cytometric data are given and it is shown how these can be applied to the analysis of difficult immunofluorescence distributions when there is overlap between the labeled and unlabeled cell populations. Copyright 2001 Wiley-Liss, Inc.
Siddorn, M; Coudert, F-X; Evans, K E; Marmier, A
2015-07-21
Single crystals can commonly have negative Poisson's ratio in a few directions; however more generalised auxeticity is rarer. We propose a typology to distinguish auxetic materials. We characterise numerous single crystals and demonstrate that partial auxeticity occurs for around 37%. We find average auxeticity to be limited to α-cristobalite and no example of complete auxeticity. We simulate two hundreds pure silica zeolites with empirical potentials and quantum chemistry methods, and for the first time identify complete auxeticity in a zeolite network, JST.
Lotka's Law and Institutional Productivity.
ERIC Educational Resources Information Center
Kumar, Suresh; Sharma, Praveen; Garg, K. C.
1998-01-01
Examines the applicability of Lotka's Law, negative binomial distribution, and lognormal distribution for institutional productivity in the same way as it is to authors and their productivity. Results indicate that none of the distributions are applicable for institutional productivity in engineering sciences. (Author/LRW)
NASA Astrophysics Data System (ADS)
Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady
2017-09-01
Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (˜ 80 %) of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks). Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (˜ 45 %) portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.
Auxetic behaviour from rotating rigid units
NASA Astrophysics Data System (ADS)
Grima, J. N.; Alderson, A.; Evans, K. E.
2005-03-01
Auxetic materials exhibit the unexpected feature of becoming fatter when stretched and narrower when compressed, in other words, they exhibit a negative Poisson's ratio. This counter-intuitive behaviour imparts many beneficial effects on the material's macroscopic properties that make auxetics superior to conventional materials in many commercial applications. Recent research suggests that auxetic be-haviour generally results from a cooperative effect between the material's internal structure (geometry setup) and the deformation mechanism it undergoes when submitted to a stress. Auxetic behaviour is also known to be scale-independent, and thus, the same geometry/deformation mechanism may operate at the macro-, micro- and nano- (molecular) level. A considerable amount of research has been focused on the re-entrant honeycomb structure which exhibits auxetic behaviour if deformed through hinging at the joints or flexure of the ribs, and it was proposed that this re-entrant geometry plays an impor- tant role in generating auxetic behaviour in various forms of materials ranging from nanostructured polymers to foams. This paper discusses an alternative mode of deformation involving rotating rigid units which also results in negative Poisson's ratios. In its most ideal form, this mechanism may be construc- ted in two dimensions using rigid polygons connected together through hinges at their vertices. On application of uniaxial loads, these rigid polygons rotate with respect to each other to form a more open structure hence giving rise to a negative Poisson's ratio. This paper also discusses the role that rotating rigid units are thought to have in various classes of materials to give rise to negative Poisson's ratios.
Simulation methods with extended stability for stiff biochemical Kinetics.
Rué, Pau; Villà-Freixa, Jordi; Burrage, Kevin
2010-08-11
With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, tau, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where tau can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called tau-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as tau grows. In this paper we extend Poisson tau-leap methods to a general class of Runge-Kutta (RK) tau-leap methods. We show that with the proper selection of the coefficients, the variance of the extended tau-leap can be well-behaved, leading to significantly larger step sizes. The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original tau-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
A Bayesian method for inferring transmission chains in a partially observed epidemic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef M.; Ray, Jaideep
2008-10-01
We present a Bayesian approach for estimating transmission chains and rates in the Abakaliki smallpox epidemic of 1967. The epidemic affected 30 individuals in a community of 74; only the dates of appearance of symptoms were recorded. Our model assumes stochastic transmission of the infections over a social network. Distinct binomial random graphs model intra- and inter-compound social connections, while disease transmission over each link is treated as a Poisson process. Link probabilities and rate parameters are objects of inference. Dates of infection and recovery comprise the remaining unknowns. Distributions for smallpox incubation and recovery periods are obtained from historicalmore » data. Using Markov chain Monte Carlo, we explore the joint posterior distribution of the scalar parameters and provide an expected connectivity pattern for the social graph and infection pathway.« less
A Methodology for Quantifying Certain Design Requirements During the Design Phase
NASA Technical Reports Server (NTRS)
Adams, Timothy; Rhodes, Russel
2005-01-01
A methodology for developing and balancing quantitative design requirements for safety, reliability, and maintainability has been proposed. Conceived as the basis of a more rational approach to the design of spacecraft, the methodology would also be applicable to the design of automobiles, washing machines, television receivers, or almost any other commercial product. Heretofore, it has been common practice to start by determining the requirements for reliability of elements of a spacecraft or other system to ensure a given design life for the system. Next, safety requirements are determined by assessing the total reliability of the system and adding redundant components and subsystems necessary to attain safety goals. As thus described, common practice leaves the maintainability burden to fall to chance; therefore, there is no control of recurring costs or of the responsiveness of the system. The means that have been used in assessing maintainability have been oriented toward determining the logistical sparing of components so that the components are available when needed. The process established for developing and balancing quantitative requirements for safety (S), reliability (R), and maintainability (M) derives and integrates NASA s top-level safety requirements and the controls needed to obtain program key objectives for safety and recurring cost (see figure). Being quantitative, the process conveniently uses common mathematical models. Even though the process is shown as being worked from the top down, it can also be worked from the bottom up. This process uses three math models: (1) the binomial distribution (greaterthan- or-equal-to case), (2) reliability for a series system, and (3) the Poisson distribution (less-than-or-equal-to case). The zero-fail case for the binomial distribution approximates the commonly known exponential distribution or "constant failure rate" distribution. Either model can be used. The binomial distribution was selected for modeling flexibility because it conveniently addresses both the zero-fail and failure cases. The failure case is typically used for unmanned spacecraft as with missiles.
Liu, Lian; Zhang, Shao-Wu; Huang, Yufei; Meng, Jia
2017-08-31
As a newly emerged research area, RNA epigenetics has drawn increasing attention recently for the participation of RNA methylation and other modifications in a number of crucial biological processes. Thanks to high throughput sequencing techniques, such as, MeRIP-Seq, transcriptome-wide RNA methylation profile is now available in the form of count-based data, with which it is often of interests to study the dynamics at epitranscriptomic layer. However, the sample size of RNA methylation experiment is usually very small due to its costs; and additionally, there usually exist a large number of genes whose methylation level cannot be accurately estimated due to their low expression level, making differential RNA methylation analysis a difficult task. We present QNB, a statistical approach for differential RNA methylation analysis with count-based small-sample sequencing data. Compared with previous approaches such as DRME model based on a statistical test covering the IP samples only with 2 negative binomial distributions, QNB is based on 4 independent negative binomial distributions with their variances and means linked by local regressions, and in the way, the input control samples are also properly taken care of. In addition, different from DRME approach, which relies only the input control sample only for estimating the background, QNB uses a more robust estimator for gene expression by combining information from both input and IP samples, which could largely improve the testing performance for very lowly expressed genes. QNB showed improved performance on both simulated and real MeRIP-Seq datasets when compared with competing algorithms. And the QNB model is also applicable to other datasets related RNA modifications, including but not limited to RNA bisulfite sequencing, m 1 A-Seq, Par-CLIP, RIP-Seq, etc.
An analytical framework for estimating aquatic species density from environmental DNA
Chambert, Thierry; Pilliod, David S.; Goldberg, Caren S.; Doi, Hideyuki; Takahara, Teruhiko
2018-01-01
Environmental DNA (eDNA) analysis of water samples is on the brink of becoming a standard monitoring method for aquatic species. This method has improved detection rates over conventional survey methods and thus has demonstrated effectiveness for estimation of site occupancy and species distribution. The frontier of eDNA applications, however, is to infer species density. Building upon previous studies, we present and assess a modeling approach that aims at inferring animal density from eDNA. The modeling combines eDNA and animal count data from a subset of sites to estimate species density (and associated uncertainties) at other sites where only eDNA data are available. As a proof of concept, we first perform a cross-validation study using experimental data on carp in mesocosms. In these data, fish densities are known without error, which allows us to test the performance of the method with known data. We then evaluate the model using field data from a study on a stream salamander species to assess the potential of this method to work in natural settings, where density can never be known with absolute certainty. Two alternative distributions (Normal and Negative Binomial) to model variability in eDNA concentration data are assessed. Assessment based on the proof of concept data (carp) revealed that the Negative Binomial model provided much more accurate estimates than the model based on a Normal distribution, likely because eDNA data tend to be overdispersed. Greater imprecision was found when we applied the method to the field data, but the Negative Binomial model still provided useful density estimates. We call for further model development in this direction, as well as further research targeted at sampling design optimization. It will be important to assess these approaches on a broad range of study systems.
Lee, JuHee; Park, Chang Gi; Choi, Moonki
2016-05-01
This study was conducted to identify risk factors that influence regular exercise among patients with Parkinson's disease in Korea. Parkinson's disease is prevalent in the elderly, and may lead to a sedentary lifestyle. Exercise can enhance physical and psychological health. However, patients with Parkinson's disease are less likely to exercise than are other populations due to physical disability. A secondary data analysis and cross-sectional descriptive study were conducted. A convenience sample of 106 patients with Parkinson's disease was recruited at an outpatient neurology clinic of a tertiary hospital in Korea. Demographic characteristics, disease-related characteristics (including disease duration and motor symptoms), self-efficacy for exercise, balance, and exercise level were investigated. Negative binomial regression and zero-inflated negative binomial regression for exercise count data were utilized to determine factors involved in exercise. The mean age of participants was 65.85 ± 8.77 years, and the mean duration of Parkinson's disease was 7.23 ± 6.02 years. Most participants indicated that they engaged in regular exercise (80.19%). Approximately half of participants exercised at least 5 days per week for 30 min, as recommended (51.9%). Motor symptoms were a significant predictor of exercise in the count model, and self-efficacy for exercise was a significant predictor of exercise in the zero model. Severity of motor symptoms was related to frequency of exercise. Self-efficacy contributed to the probability of exercise. Symptom management and improvement of self-efficacy for exercise are important to encourage regular exercise in patients with Parkinson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Factors Associated with Hospital Length of Stay among Cancer Patients with Febrile Neutropenia
Rosa, Regis G.; Goldani, Luciano Z.
2014-01-01
Purpose This study sought to evaluate factors associated with hospital length of stay in cancer patients with febrile neutropenia. Methods A prospective cohort study was performed at a single tertiary referral hospital in southern Brazil from October 2009 to August 2011. All adult cancer patients with febrile neutropenia admitted to the hematology ward were evaluated. Stepwise random-effects negative binomial regression was performed to identify risk factors for prolonged length of hospital stay. Results In total, 307 cases of febrile neutropenia were evaluated. The overall median length of hospital stay was 16 days (interquartile range 18 days). According to multiple negative binomial regression analysis, hematologic neoplasms (P = 0.003), high-dose chemotherapy regimens (P<0.001), duration of neutropenia (P<0.001), and bloodstream infection involving Gram-negative multi-drug-resistant bacteria (P = 0.003) were positively associated with prolonged hospital length of stay in patients with febrile neutropenia. The condition index showed no evidence of multi-collinearity effect among the independent variables. Conclusions Hematologic neoplasms, high-dose chemotherapy regimens, prolonged periods of neutropenia, and bloodstream infection with Gram-negative multi-drug-resistant bacteria are predictors of prolonged length hospital of stay among adult cancer patients with febrile neutropenia. PMID:25285790
Klapilová, Kateřina; Cobey, Kelly D; Wells, Timothy; Roberts, S Craig; Weiss, Petr; Havlíček, Jan
2014-01-10
Data from 1155 Czech women (493 using oral contraception, 662 non-users), obtained from the Czech National Survey of Sexual Behavior, were used to investigate evolutionary-based hypotheses concerning the predictive value of current oral contraceptive (OC) use on extra-pair and dyadic (in-pair) sexual behavior of coupled women. Specifically, the aim was to determine whether current OC use was associated with lower extra-pair and higher in-pair sexual interest and behavior, because OC use suppresses cyclical shifts in mating psychology that occur in normally cycling women. Zero-inflated Poisson (ZIP) regression and negative binomial models were used to test associations between OC use and these sexual measures, controlling for other relevant predictors (e.g., age, parity, in-pair sexual satisfaction, relationship length). The overall incidence of having had an extra-pair partner or one-night stand in the previous year was not related to current OC use (the majority of the sample had not). However, among the women who had engaged in extra-pair sexual behavior, OC users had fewer one-night stands than non-users, and tended to have fewer partners, than non-users. OC users also had more frequent dyadic intercourse than non-users, potentially indicating higher commitment to their current relationship. These results suggest that suppression of fertility through OC use may alter important aspects of female sexual behavior, with potential implications for relationship functioning and stability.
Differential impact of personality traits on distracted driving behaviors in teens and older adults.
Parr, Morgan N; Ross, Lesley A; McManus, Benjamin; Bishop, Haley J; Wittig, Shannon M O; Stavrinos, Despina
2016-07-01
To determine the impact of personality on distracted driving behaviors. Participants included 120 drivers (48 teens, 72 older adults) who completed the 45-item Big Five Personality questionnaire assessing self-reported personality factors and the Questionnaire Assessing Distracted Driving (QUADD) assessing the frequency of distracted driving behaviors. Associations for all five personality traits with each outcome (e.g., number of times texting on the phone, talking on the phone, and interacting with the phone while driving) were analyzed separately for teens and older adults using negative binomial or Poisson regressions that controlled for age, gender and education. In teens, higher levels of openness and conscientiousness were predictive of greater reported texting frequency and interacting with a phone while driving, while lower levels of agreeableness was predictive of fewer reported instances of texting and interacting with a phone while driving. In older adults, greater extraversion was predictive of greater reported talking on and interacting with a phone while driving. Other personality factors were not significantly associated with distracted driving behaviors. Personality traits may be important predictors of distracted driving behaviors, though specific traits associated with distracted driving may vary across age groups. The relationship between personality and distracted driving behaviors provides a unique opportunity to target drivers who are more likely to engage in distracted driving behavior, thereby increasing the effectiveness of educational campaigns and improving driving safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Cynthia; Naidoo, Nasheen; Yang, Qian; Hartman, Mikael; Verkooijen, Helena M; Loy, En Yun; Bouchardy, Christine; Chia, Kee Seng; Chia, Sin Eng
2012-06-06
Prostate cancer is the most commonly diagnosed malignancy in men in Sweden and Geneva, and the third most common in men in Singapore. This population-based study describes trends in the incidence and mortality rates of prostate cancer in Singapore, Sweden and Geneva (Switzerland) from 1973 to 2006 and explores possible explanations for these different trends. Data from patients diagnosed with prostate cancer were extracted from national cancer registries in Singapore (n = 5,172), Sweden (n = 188,783) and Geneva (n = 5,755) from 1973 to 2006. Trends of incidence and mortality were reported using the Poisson and negative binomial regression models. The age, period and birth-cohort were tested as predictors of incidence and mortality rates of prostate cancer. Incidence rates of prostate cancer increased over all time periods for all three populations. Based on the age-period-cohort analysis, older age and later period of diagnosis were associated with a higher incidence of prostate cancer, whereas older age and earlier period were associated with higher mortality rates for prostate cancer in all three countries. This study demonstrated an overall increase in incidence rates and decrease in mortality rates in Singapore, Sweden and Geneva. Both incidence and mortality rates were much lower in Singapore. The period effect is a stronger predictor of incidence and mortality of prostate cancer than the birth-cohort effect.
van Draanen, Jenna; Prelip, Michael; Upchurch, Dawn M
2018-06-01
This study investigates the associations between recent consumption of fast foods, sugar-sweetened beverages, and artificially-sweetened beverages on level of allostatic load, a measure of cumulative biological risk, in young adults in the US. Data from Wave IV of the National Longitudinal Study of Adolescent to Adult Health were analyzed. Negative binomial regression models were used to estimate the associations between consumption of fast foods, sugar-sweetened, and artificially-sweetened beverages and allostatic load. Poisson and logistic regression models were used to estimate the associations between these diet parameters and combined biomarkers of physiological subsystems that comprise our measure of allostatic load. All analyses were weighted and findings are representative of young adults in the US, ages 24-34 in 2008 (n = 11,562). Consumption of fast foods, sugar-sweetened, and artificially-sweetened beverages were associated with higher allostatic load at a bivariate level. Accounting for demographics and medication use, only artificially-sweetened beverages remained significantly associated with allostatic load. When all three dietary components were simultaneously included in a model, both sugar- and artificially-sweetened beverage consumption were associated with higher allostatic load. Differences in allostatic load emerge early in the life course and young adults consuming sugar- or artificially-sweetened beverages have higher allostatic load, net of demographics and medication use. Public health messages to young adults may need to include cautions about both sugar- and artificially-sweetened beverages.
SERE: single-parameter quality control and sample comparison for RNA-Seq.
Schulze, Stefan K; Kanwar, Rahul; Gölzenleuchter, Meike; Therneau, Terry M; Beutler, Andreas S
2012-10-03
Assessing the reliability of experimental replicates (or global alterations corresponding to different experimental conditions) is a critical step in analyzing RNA-Seq data. Pearson's correlation coefficient r has been widely used in the RNA-Seq field even though its statistical characteristics may be poorly suited to the task. Here we present a single-parameter test procedure for count data, the Simple Error Ratio Estimate (SERE), that can determine whether two RNA-Seq libraries are faithful replicates or globally different. Benchmarking shows that the interpretation of SERE is unambiguous regardless of the total read count or the range of expression differences among bins (exons or genes), a score of 1 indicating faithful replication (i.e., samples are affected only by Poisson variation of individual counts), a score of 0 indicating data duplication, and scores >1 corresponding to true global differences between RNA-Seq libraries. On the contrary the interpretation of Pearson's r is generally ambiguous and highly dependent on sequencing depth and the range of expression levels inherent to the sample (difference between lowest and highest bin count). Cohen's simple Kappa results are also ambiguous and are highly dependent on the choice of bins. For quantifying global sample differences SERE performs similarly to a measure based on the negative binomial distribution yet is simpler to compute. SERE can therefore serve as a straightforward and reliable statistical procedure for the global assessment of pairs or large groups of RNA-Seq datasets by a single statistical parameter.
Schoenfisch, Ashley L; Lipscomb, Hester J; Pompeii, Lisa A; Myers, Douglas J; Dement, John M
2013-01-01
Using an observational research design and robust surveillance data, we evaluated rates of musculoskeletal (MS) injuries, days away from work, and restricted work days among patient care staff at a medical center and community hospital in the United States over 13 years, during which time a "minimal manual lift" policy and mechanical lift equipment were implemented. Workers' compensation claims data were linked to human resources data to define outcomes of interest and person-time at risk to calculate rates. Poisson and negative binomial regression with lagging were used to compare outcome rates in different windows of time surrounding the intervention. Patterns of MS injuries associated with patient-handling were contrasted to patterns of other MS injuries that would not be affected by the use of mechanical lift equipment. At the medical center, no change in the patient-handling MS injury rate followed the intervention. A 44% decrease was observed at the community hospital. At both hospitals, the rate of days away declined immediately - before it was reasonable for the intervention to have been adopted. Institutional-level changes at the time of the intervention likely influenced observed results with findings only partially consistent with an intervention effect. Observational studies can be useful in assessing effectiveness of safety interventions in complex work environments. Such studies should consider the process of intervention implementation, the time needed for intervention adoption, and the dynamic nature of work environments.
SERE: Single-parameter quality control and sample comparison for RNA-Seq
2012-01-01
Background Assessing the reliability of experimental replicates (or global alterations corresponding to different experimental conditions) is a critical step in analyzing RNA-Seq data. Pearson’s correlation coefficient r has been widely used in the RNA-Seq field even though its statistical characteristics may be poorly suited to the task. Results Here we present a single-parameter test procedure for count data, the Simple Error Ratio Estimate (SERE), that can determine whether two RNA-Seq libraries are faithful replicates or globally different. Benchmarking shows that the interpretation of SERE is unambiguous regardless of the total read count or the range of expression differences among bins (exons or genes), a score of 1 indicating faithful replication (i.e., samples are affected only by Poisson variation of individual counts), a score of 0 indicating data duplication, and scores >1 corresponding to true global differences between RNA-Seq libraries. On the contrary the interpretation of Pearson’s r is generally ambiguous and highly dependent on sequencing depth and the range of expression levels inherent to the sample (difference between lowest and highest bin count). Cohen’s simple Kappa results are also ambiguous and are highly dependent on the choice of bins. For quantifying global sample differences SERE performs similarly to a measure based on the negative binomial distribution yet is simpler to compute. Conclusions SERE can therefore serve as a straightforward and reliable statistical procedure for the global assessment of pairs or large groups of RNA-Seq datasets by a single statistical parameter. PMID:23033915
Intraurban Differences in the Use of Ambulatory Health Services in a Large Brazilian City
Lima-Costa, Maria Fernanda; Proietti, Fernando Augusto; Cesar, Cibele C.; Macinko, James
2010-01-01
A major goal of health systems is to reduce inequities in access to services, that is, to ensure that health care is provided based on health needs rather than social or economic factors. This study aims to identify the determinants of health services utilization among adults in a large Brazilian city and intraurban disparities in health care use. We combine household survey data with census-derived classification of social vulnerability of each household’s census tract. The dependent variable was utilization of physician services in the prior 12 months, and the independent variables included predisposing factors, health needs, enabling factors, and context. Prevalence ratios and 95% confidence intervals were estimated by the Hurdle regression model, which combined Poisson regression analysis of factors associated with any doctor visits (dichotomous variable) and zero-truncated negative binomial regression for the analysis of factors associated with the number of visits among those who had at least one. Results indicate that the use of health services was greater among women and increased with age, and was determined primarily by health needs and whether the individual had a regular doctor, even among those living in areas of the city with the worst socio-environmental indicators. The experience of Belo Horizonte may have implications for other world cities, particularly in the development and use of a comprehensive index to identify populations at risk and in order to guide expansion of primary health care services as a means of enhancing equity in health. PMID:21104332
The IDEA model: A single equation approach to the Ebola forecasting challenge.
Tuite, Ashleigh R; Fisman, David N
2018-03-01
Mathematical modeling is increasingly accepted as a tool that can inform disease control policy in the face of emerging infectious diseases, such as the 2014-2015 West African Ebola epidemic, but little is known about the relative performance of alternate forecasting approaches. The RAPIDD Ebola Forecasting Challenge (REFC) tested the ability of eight mathematical models to generate useful forecasts in the face of simulated Ebola outbreaks. We used a simple, phenomenological single-equation model (the "IDEA" model), which relies only on case counts, in the REFC. Model fits were performed using a maximum likelihood approach. We found that the model performed reasonably well relative to other more complex approaches, with performance metrics ranked on average 4th or 5th among participating models. IDEA appeared better suited to long- than short-term forecasts, and could be fit using nothing but reported case counts. Several limitations were identified, including difficulty in identifying epidemic peak (even retrospectively), unrealistically precise confidence intervals, and difficulty interpolating daily case counts when using a model scaled to epidemic generation time. More realistic confidence intervals were generated when case counts were assumed to follow a negative binomial, rather than Poisson, distribution. Nonetheless, IDEA represents a simple phenomenological model, easily implemented in widely available software packages that could be used by frontline public health personnel to generate forecasts with accuracy that approximates that which is achieved using more complex methodologies. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Braicovich, P E; Ieno, E N; Sáez, M; Despos, J; Timi, J T
2016-11-01
In order to identify the best tools for stock assessment studies using fish parasites as biological indicators, different host traits (size, mass and age and their interaction with sex) were evaluated as descriptors of cumulative patterns of both parasite abundance and infracommunity species richness. The effect of such variables was analysed for a sample of 265 specimens of Percophis brasiliensis caught in the Argentine Sea. The abundances and species richness were modelled using generalized linear mixed models (GLMMs) with negative binomial and Poisson distribution respectively. Due to collinearity, separate models were fitted for each of the three main explanatory variables (length, mass and age) to identify the optimal set of factors determining the parasite burdens. Optimal GLMMs were selected on the basis of the lowest Akaike information criteria, residual information and simulation studies based on 10 000 iterations. Results indicated that the covariates length and sex consistently appeared in the most parsimonious models suggesting that fish length seems to be a slightly better predictor than age or mass. The biological causes of these patterns are discussed. It is recommended to use fish length as a measure of growth and to restrict comparisons with fish of similar length or to incorporate length as covariate when comparing parasite burdens. Host sex should be also taken into account for those species sexually dimorphic in terms of morphology, behaviour or growth rates. © 2016 The Fisheries Society of the British Isles.
School Violence: The Role of Parental and Community Involvement
ERIC Educational Resources Information Center
Lesneskie, Eric; Block, Steven
2017-01-01
This study utilizes the School Survey on Crime and Safety to identify variables that predict lower levels of violence from four domains: school security, school climate, parental involvement, and community involvement. Negative binomial regression was performed and the findings indicate that statistically significant results come from all four…
Predicting Children's Asthma Hospitalizations: Rural and Urban Differences in Texas
ERIC Educational Resources Information Center
Grineski, Sara E.
2009-01-01
Asthma is the number one chronic health condition facing children today; however, little is known about rural-urban inequalities in asthma. This "area effects on health" study examines rural-urban differences in childhood asthma hospitalizations within the state of Texas using negative binomial regression models. Effects associated with…
An Alternate Approach to Alternating Sums: A Method to DIE for
ERIC Educational Resources Information Center
Benjamin, Arthur T.; Quinn, Jennifer J.
2008-01-01
Positive sums count. Alternating sums match. Alternating sums of binomial coefficients, Fibonacci numbers, and other combinatorial quantities are analyzed using sign-reversing involutions. In particular, we describe the quantity being considered, match positive and negative terms through an Involution, and count the Exceptions to the matching rule…
DOT National Transportation Integrated Search
2011-03-01
This report documents the calibration of the Highway Safety Manual (HSM) safety performance function (SPF) : for rural two-lane two-way roadway segments in Utah and the development of new models using negative : binomial and hierarchical Bayesian mod...
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Continuum representations of micromechanical phenomena in structured materials are described, with emphasis on cellular solids. These phenomena are interpreted in light of Cosserat elasticity, a generalized continuum theory which admits degrees of freedom not present in classical elasticity. These are the rotation of points in the material, and a couple per unit area or couple stress. Experimental work in this area is reviewed, and other interpretation schemes are discussed. The applicability of Cosserat elasticity to cellular solids and fibrous composite materials is considered as is the application of related generalized continuum theories. New experimental results are presented for foam materials with negative Poisson's ratios.
Li, Tiantian; Chen, Yanyu; Hu, Xiaoyi; ...
2018-02-03
Auxetic materials exhibiting a negative Poisson's ratio are shown to have better indentation resistance, impact shielding capability, and enhanced toughness. Here, we report a class of high-performance composites in which auxetic lattice structures are used as the reinforcements and the nearly incompressible soft material is employed as the matrix. This coupled geometry and material design concept is enabled by the state-of-the-art additive manufacturing technique. Guided by experimental tests and finite element analyses, we systematically study the compressive behavior of the 3D printed auxetics reinforced composites and achieve a significant enhancement of their stiffness and energy absorption. This improved mechanical performancemore » is due to the negative Poisson's ratio effect of the auxetic reinforcements, which makes the matrix in a state of biaxial compression and hence provides additional support. This mechanism is further supported by the investigation of the effect of auxetic degree on the stiffness and energy absorption capability. The findings reported here pave the way for developing a new class of auxetic composites that significantly expand their design space and possible applications through a combination of rational design and 3D printing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tiantian; Chen, Yanyu; Hu, Xiaoyi
Auxetic materials exhibiting a negative Poisson's ratio are shown to have better indentation resistance, impact shielding capability, and enhanced toughness. Here, we report a class of high-performance composites in which auxetic lattice structures are used as the reinforcements and the nearly incompressible soft material is employed as the matrix. This coupled geometry and material design concept is enabled by the state-of-the-art additive manufacturing technique. Guided by experimental tests and finite element analyses, we systematically study the compressive behavior of the 3D printed auxetics reinforced composites and achieve a significant enhancement of their stiffness and energy absorption. This improved mechanical performancemore » is due to the negative Poisson's ratio effect of the auxetic reinforcements, which makes the matrix in a state of biaxial compression and hence provides additional support. This mechanism is further supported by the investigation of the effect of auxetic degree on the stiffness and energy absorption capability. The findings reported here pave the way for developing a new class of auxetic composites that significantly expand their design space and possible applications through a combination of rational design and 3D printing.« less
Identification of nonclassical properties of light with multiplexing layouts
NASA Astrophysics Data System (ADS)
Sperling, J.; Eckstein, A.; Clements, W. R.; Moore, M.; Renema, J. J.; Kolthammer, W. S.; Nam, S. W.; Lita, A.; Gerrits, T.; Walmsley, I. A.; Agarwal, G. S.; Vogel, W.
2017-07-01
In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017), 10.1103/PhysRevLett.118.163602], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data.
Identification of nonclassical properties of light with multiplexing layouts
Sperling, J.; Eckstein, A.; Clements, W. R.; Moore, M.; Renema, J. J.; Kolthammer, W. S.; Nam, S. W.; Lita, A.; Gerrits, T.; Walmsley, I. A.; Agarwal, G. S.; Vogel, W.
2018-01-01
In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017)], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data. PMID:29670949
This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms--theory and practice.
Harmany, Zachary T; Marcia, Roummel F; Willett, Rebecca M
2012-03-01
Observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f*) from Poisson data (y) cannot be effectively accomplished by minimizing a conventional penalized least-squares objective function. The problem addressed in this paper is the estimation of f* from y in an inverse problem setting, where the number of unknowns may potentially be larger than the number of observations and f* admits sparse approximation. The optimization formulation considered in this paper uses a penalized negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). In particular, the proposed approach incorporates key ideas of using separable quadratic approximations to the objective function at each iteration and penalization terms related to l1 norms of coefficient vectors, total variation seminorms, and partition-based multiscale estimation methods.
General Strain Theory as a Basis for the Design of School Interventions
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry
2013-01-01
The research described in this article applies general strain theory to identify possible points of intervention for reducing delinquency of students in two middle schools. Data were collected from 296 youths, and separate negative binomial regression analyses were used to identify predictors of violent, property, and status delinquency. Emotional…
A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification
ERIC Educational Resources Information Center
Blanchard, Simon J.; DeSarbo, Wayne S.
2013-01-01
We introduce a new statistical procedure for the identification of unobserved categories that vary between individuals and in which objects may span multiple categories. This procedure can be used to analyze data from a proposed sorting task in which individuals may simultaneously assign objects to multiple piles. The results of a synthetic…
Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S; Dale, Pat; McMichael, Anthony J; Tong, Shilu
2009-02-01
To assess the socio-environmental predictors of Barmah forest virus (BFV) transmission in coastal areas, Queensland, Australia. Data on BFV notified cases, climate, tidal levels and socioeconomic index for area (SEIFA) in six coastal cities, Queensland, for the period 1992-2001 were obtained from the relevant government agencies. Negative binomial regression models were used to assess the socio-environmental predictors of BFV transmission. The results show that maximum and minimum temperature, rainfall, relative humidity, high and low tide were statistically significantly associated with BFV incidence at lags 0-2 months. The fitted negative binomial regression models indicate a significant independent association of each of maximum temperature (beta = 0.139, P = 0.000), high tide (beta = 0.005, P = 0.000) and SEIFA index (beta = -0.010, P = 0.000) with BFV transmission after adjustment for confounding variables. The transmission of BFV disease in Queensland coastal areas seemed to be determined by a combination of local social and environmental factors. The model developed in this study may have applications in the control and prevention of BFV disease in these areas.
Mental health status and healthcare utilization among community dwelling older adults.
Adepoju, Omolola; Lin, Szu-Hsuan; Mileski, Michael; Kruse, Clemens Scott; Mask, Andrew
2018-04-27
Shifts in mental health utilization patterns are necessary to allow for meaningful access to care for vulnerable populations. There have been long standing issues in how mental health is provided, which has caused problems in that care being efficacious for those seeking it. To assess the relationship between mental health status and healthcare utilization among adults ≥65 years. A negative binomial regression model was used to assess the relationship between mental health status and healthcare utilization related to office-based physician visits, while a two-part model, consisting of logistic regression and negative binomial regression, was used to separately model emergency visits and inpatient services. The receipt of care in office-based settings were marginally higher for subjects with mental health difficulties. Both probabilities and counts of inpatient hospitalizations were similar across mental health categories. The count of ER visits was similar across mental health categories; however, the probability of having an emergency department visit was marginally higher for older adults who reported mental health difficulties in 2012. These findings are encouraging and lend promise to the recent initiatives on addressing gaps in mental healthcare services.
Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment.
Gierliński, Marek; Cole, Christian; Schofield, Pietà; Schurch, Nicholas J; Sherstnev, Alexander; Singh, Vijender; Wrobel, Nicola; Gharbi, Karim; Simpson, Gordon; Owen-Hughes, Tom; Blaxter, Mark; Barton, Geoffrey J
2015-11-15
High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of 'bad' replicates, which can drastically affect the gene read-count distribution. RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. g.j.barton@dundee.ac.uk. © The Author 2015. Published by Oxford University Press.
Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment
Cole, Christian; Schofield, Pietà; Schurch, Nicholas J.; Sherstnev, Alexander; Singh, Vijender; Wrobel, Nicola; Gharbi, Karim; Simpson, Gordon; Owen-Hughes, Tom; Blaxter, Mark; Barton, Geoffrey J.
2015-01-01
Motivation: High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. Results: A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of ‘bad’ replicates, which can drastically affect the gene read-count distribution. Availability and implementation: RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. Contact: g.j.barton@dundee.ac.uk PMID:26206307
Wang, Zhu; Shuangge, Ma; Wang, Ching-Yun
2017-01-01
In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using an open-source R package mpath. PMID:26059498
Simplified pupal surveys of Aedes aegypti (L.) for entomologic surveillance and dengue control.
Barrera, Roberto
2009-07-01
Pupal surveys of Aedes aegypti (L.) are useful indicators of risk for dengue transmission, although sample sizes for reliable estimations can be large. This study explores two methods for making pupal surveys more practical yet reliable and used data from 10 pupal surveys conducted in Puerto Rico during 2004-2008. The number of pupae per person for each sampling followed a negative binomial distribution, thus showing aggregation. One method found a common aggregation parameter (k) for the negative binomial distribution, a finding that enabled the application of a sequential sampling method requiring few samples to determine whether the number of pupae/person was above a vector density threshold for dengue transmission. A second approach used the finding that the mean number of pupae/person is correlated with the proportion of pupa-infested households and calculated equivalent threshold proportions of pupa-positive households. A sequential sampling program was also developed for this method to determine whether observed proportions of infested households were above threshold levels. These methods can be used to validate entomological thresholds for dengue transmission.
Modeling left-turn crash occurrence at signalized intersections by conflicting patterns.
Wang, Xuesong; Abdel-Aty, Mohamed
2008-01-01
In order to better understand the underlying crash mechanisms, left-turn crashes occurring at 197 four-legged signalized intersections over 6 years were classified into nine patterns based on vehicle maneuvers and then were assigned to intersection approaches. Crash frequency of each pattern was modeled at the approach level by mainly using Generalized Estimating Equations (GEE) with the Negative Binomial as the link function to account for the correlation among the crash data. GEE with a binomial logit link function was also applied for patterns with fewer crashes. The Cumulative Residuals test shows that, for correlated left-turn crashes, GEE models usually outperformed basic Negative Binomial models. The estimation results show that there are obvious differences in the factors that cause the occurrence of different left-turn collision patterns. For example, for each pattern, the traffic flows to which the colliding vehicles belong are identified to be significant. The width of the crossing distance (represented by the number of through lanes on the opposing approach of the left-turning traffic) is associated with more left-turn traffic colliding with opposing through traffic (Pattern 5), but with less left-turning traffic colliding with near-side crossing through traffic (Pattern 8). The safety effectiveness of the left-turning signal is not consistent for different crash patterns; "protected" phasing is correlated with fewer Pattern 5 crashes, but with more Pattern 8 crashes. The study indicates that in order to develop efficient countermeasures for left-turn crashes and improve safety at signalized intersections, left-turn crashes should be considered in different patterns.
Yin, Honglei; Xu, Lin; Shao, Yechang; Li, Liping; Wan, Chengsong
2016-01-01
The objective of this study was to estimate the features of suicide rate and its association with economic development and stock market during the past decade in the People's Republic of China. Official data were gathered and analyzed in the People's Republic of China during the period 2004-2013. Nationwide suicide rate was stratified by four year age-groups, sex, urban/rural areas, and regions (East, Central, and West). Annual economic indexes including gross domestic product (GDP) per capita and rural and urban income per capita were all adjusted for inflation. Variation coefficient of market index (VCMI) was also included as an economic index to measure the fluctuation of the stock market. Negative binomial regression was performed to examine the time trend of region-level suicide rates and effects of sex, age, urban/rural area, region, and economic index on the suicide rates. Suicide rates of each age-group, sex, urban/rural area, and region were generally decreased from 2004 to 2013, while annual GDP per capita and rural and urban income per capita were generally increased by year. VCMI fluctuated largely, which peaked around 2009 and decreased after that time. Negative binomial regression showed that the decreased suicide rate in East and Central rural areas was the main cause of the decrease in suicide rate in the People's Republic of China. Suicide rate in the People's Republic of China for the study period increased with age and was higher in rural than in urban area, higher in males than in females, and the highest in the Central region. When GDP per capita increased by 2,787 RMB, the suicide rate decreased by 0.498 times. VCMI showed no significant relationship with suicide rate in the negative binomial regression. Suicide rate decreased in 2004-2013; varied among different age-groups, sex, urban/rural areas, and regions; and was negatively associated with the economic growth in the People's Republic of China. Stock market showed no relationship with suicide rate, but this finding needs to be verified in a future study.
Yin, Honglei; Xu, Lin; Shao, Yechang; Li, Liping; Wan, Chengsong
2016-01-01
Objectives The objective of this study was to estimate the features of suicide rate and its association with economic development and stock market during the past decade in the People’s Republic of China. Methods Official data were gathered and analyzed in the People’s Republic of China during the period 2004–2013. Nationwide suicide rate was stratified by four year age-groups, sex, urban/rural areas, and regions (East, Central, and West). Annual economic indexes including gross domestic product (GDP) per capita and rural and urban income per capita were all adjusted for inflation. Variation coefficient of market index (VCMI) was also included as an economic index to measure the fluctuation of the stock market. Negative binomial regression was performed to examine the time trend of region-level suicide rates and effects of sex, age, urban/rural area, region, and economic index on the suicide rates. Results Suicide rates of each age-group, sex, urban/rural area, and region were generally decreased from 2004 to 2013, while annual GDP per capita and rural and urban income per capita were generally increased by year. VCMI fluctuated largely, which peaked around 2009 and decreased after that time. Negative binomial regression showed that the decreased suicide rate in East and Central rural areas was the main cause of the decrease in suicide rate in the People’s Republic of China. Suicide rate in the People’s Republic of China for the study period increased with age and was higher in rural than in urban area, higher in males than in females, and the highest in the Central region. When GDP per capita increased by 2,787 RMB, the suicide rate decreased by 0.498 times. VCMI showed no significant relationship with suicide rate in the negative binomial regression. Conclusion Suicide rate decreased in 2004–2013; varied among different age-groups, sex, urban/rural areas, and regions; and was negatively associated with the economic growth in the People’s Republic of China. Stock market showed no relationship with suicide rate, but this finding needs to be verified in a future study. PMID:27994468
Does license disqualification reduce reoffence rates?
Siskind, V
1996-07-01
A review was conducted of the subsequent driving records of over 25,000 Queensland drivers cited for a drink driving offence in 1988 who received at least one subsequent license restriction. The interval of follow-up was at least 3 years, average 3.9 years. Periods of driving disqualification were identified and, for each driver, the total amount of time during restricted and unrestricted driving was computed; the numbers of events, i.e. crashes and traffic offences, recorded during these periods were counted. Rates under disqualification and during legal driving, expressed per thousand person-years were derived by dividing total numbers of events by total time during which they could occur. Three categories of traffic violation were considered: drink driving offences; traffic offences unassociated with drink driving, and any offence involving driving. Since only 12% of the offenders and 9% of the reoffenders were female, detailed analyses are presented for men only; results for women were little different. Statistical inference assumed a Poisson model for crashes and a negative binomial model for offences, and analyses were performed after stratification by number of drink driving offences. Calculated rates during periods of disqualification were about one third of the rates during legal driving for crashes and all three categories of traffic offence, ranging from 25% in the case of unassociated offences to 35% for any driving offence. There were differences, some statistically significant, by age and between metropolitan, provincial city and rural regions of the State, but most were relatively minor. Drivers were apprehended more frequently earlier in the disqualification period than later. It is impossible from these data to distinguish between reduced driving levels and more cautious traffic behaviour during periods of license restriction. It is nonetheless clear that while such penalties are in operation, they substantially reduce the negative impact of convicted drink-drivers on the road. Unfortunately the data do not permit one to say whether or for how long the effect persists.
Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review
Lamb, Karen E.; Thornton, Lukar E.; Cerin, Ester; Ball, Kylie
2015-01-01
Background Inequalities in eating behaviours are often linked to the types of food retailers accessible in neighbourhood environments. Numerous studies have aimed to identify if access to healthy and unhealthy food retailers is socioeconomically patterned across neighbourhoods, and thus a potential risk factor for dietary inequalities. Existing reviews have examined differences between methodologies, particularly focussing on neighbourhood and food outlet access measure definitions. However, no review has informatively discussed the suitability of the statistical methodologies employed; a key issue determining the validity of study findings. Our aim was to examine the suitability of statistical approaches adopted in these analyses. Methods Searches were conducted for articles published from 2000–2014. Eligible studies included objective measures of the neighbourhood food environment and neighbourhood-level socio-economic status, with a statistical analysis of the association between food outlet access and socio-economic status. Results Fifty-four papers were included. Outlet accessibility was typically defined as the distance to the nearest outlet from the neighbourhood centroid, or as the number of food outlets within a neighbourhood (or buffer). To assess if these measures were linked to neighbourhood disadvantage, common statistical methods included ANOVA, correlation, and Poisson or negative binomial regression. Although all studies involved spatial data, few considered spatial analysis techniques or spatial autocorrelation. Conclusions With advances in GIS software, sophisticated measures of neighbourhood outlet accessibility can be considered. However, approaches to statistical analysis often appear less sophisticated. Care should be taken to consider assumptions underlying the analysis and the possibility of spatially correlated residuals which could affect the results. PMID:29546115
Statistical Models for the Analysis of Zero-Inflated Pain Intensity Numeric Rating Scale Data.
Goulet, Joseph L; Buta, Eugenia; Bathulapalli, Harini; Gueorguieva, Ralitza; Brandt, Cynthia A
2017-03-01
Pain intensity is often measured in clinical and research settings using the 0 to 10 numeric rating scale (NRS). NRS scores are recorded as discrete values, and in some samples they may display a high proportion of zeroes and a right-skewed distribution. Despite this, statistical methods for normally distributed data are frequently used in the analysis of NRS data. We present results from an observational cross-sectional study examining the association of NRS scores with patient characteristics using data collected from a large cohort of 18,935 veterans in Department of Veterans Affairs care diagnosed with a potentially painful musculoskeletal disorder. The mean (variance) NRS pain was 3.0 (7.5), and 34% of patients reported no pain (NRS = 0). We compared the following statistical models for analyzing NRS scores: linear regression, generalized linear models (Poisson and negative binomial), zero-inflated and hurdle models for data with an excess of zeroes, and a cumulative logit model for ordinal data. We examined model fit, interpretability of results, and whether conclusions about the predictor effects changed across models. In this study, models that accommodate zero inflation provided a better fit than the other models. These models should be considered for the analysis of NRS data with a large proportion of zeroes. We examined and analyzed pain data from a large cohort of veterans with musculoskeletal disorders. We found that many reported no current pain on the NRS on the diagnosis date. We present several alternative statistical methods for the analysis of pain intensity data with a large proportion of zeroes. Published by Elsevier Inc.
Association of Maternal Depressive Symptoms and Offspring Physical Health in Low-Income Families.
Thompson, Sarah M; Jiang, Lu; Hammen, Constance; Whaley, Shannon E
2018-06-01
Objectives The present study sought to examine the association between maternal depressive symptoms and characteristics of offspring physical health, including health status, health behaviors, and healthcare utilization, among low-income families. Maternal engagement was explored as a mediator of observed effects. Methods Cross-sectional survey data from a community sample of 4589 low-income women and their preschool-age children participating in the WIC program in Los Angeles County were analyzed using logistic, Poisson, and zero-inflated negative binomial regression. Mediation was tested via conditional process analyses. Results After controlling for the effects of demographic characteristics including maternal health insurance coverage, employment status, education, and preferred language, children of depressed women (N = 1025) were significantly more likely than children of non-depressed women (N = 3564) to receive a "poor" or "fair" maternal rating of general health (OR 2.34), eat fewer vegetables (IRR: 0.94) more sweets (IRR: 1.20) and sugary drinks daily (IRR: 1.32), and consume fast food more often (OR 1.21). These children were also less likely to have health insurance (OR 1.59) and more likely to receive medical care from a public medical clinic or hospital emergency room (OR 1.30). Reduced maternal engagement partially mediated associations between maternal depressive symptoms and several child health outcomes including poor diet, health insurance coverage, and use of public medical services. Conclusions for Practice Maternal depressive symptoms are associated with poor health among preschool-age children in low-income families. Prevention, screening, and treatment efforts aimed at reducing the prevalence of maternal depression may positively affect young children's health.
Random parameter models for accident prediction on two-lane undivided highways in India.
Dinu, R R; Veeraragavan, A
2011-02-01
Generalized linear modeling (GLM), with the assumption of Poisson or negative binomial error structure, has been widely employed in road accident modeling. A number of explanatory variables related to traffic, road geometry, and environment that contribute to accident occurrence have been identified and accident prediction models have been proposed. The accident prediction models reported in literature largely employ the fixed parameter modeling approach, where the magnitude of influence of an explanatory variable is considered to be fixed for any observation in the population. Similar models have been proposed for Indian highways too, which include additional variables representing traffic composition. The mixed traffic on Indian highways comes with a lot of variability within, ranging from difference in vehicle types to variability in driver behavior. This could result in variability in the effect of explanatory variables on accidents across locations. Random parameter models, which can capture some of such variability, are expected to be more appropriate for the Indian situation. The present study is an attempt to employ random parameter modeling for accident prediction on two-lane undivided rural highways in India. Three years of accident history, from nearly 200 km of highway segments, is used to calibrate and validate the models. The results of the analysis suggest that the model coefficients for traffic volume, proportion of cars, motorized two-wheelers and trucks in traffic, and driveway density and horizontal and vertical curvatures are randomly distributed across locations. The paper is concluded with a discussion on modeling results and the limitations of the present study. Copyright © 2010 Elsevier Ltd. All rights reserved.
Pringle, Kimberly D; Burke, Rachel M; Steiner, Claudia A; Parashar, Umesh D; Tate, Jacqueline E
2018-01-30
Rotavirus is a common cause of acute gastroenteritis and has also been associated with generalized tonic-clonic afebrile seizures. Since rotavirus vaccine introduction, hospitalizations for treatment of acute gastroenteritis have decreased. We assess whether there has been an associated decrease in seizure-associated hospitalizations. We used discharge codes to abstract data on seizure hospitalizations among children <5 years old from the State Inpatient Databases of the Healthcare Cost and Utilization Project. We compared seizure hospitalization rates before and after vaccine introduction, using Poisson regression, stratifying by age and by month and year of admission. We performed a time-series analysis with negative binomial models, constructed using prevaccine data from 2000 to 2006 and controlling for admission month and year. We examined 962899 seizure hospitalizations among children <5 years old during 2000-2013. Seizure rates after vaccine introduction were lower than those before vaccine introduction by 1%-8%, and rate ratios decreased over time. Time-series analyses demonstrated a decrease in the number of seizure-coded hospitalizations in 2012 and 2013, with notable decreases in children 12-17 months and 18-23 months. Our analysis provides evidence for a decrease in seizure hospitalizations following rotavirus vaccine introduction in the United States, with the greatest impact in age groups with a high rotavirus-associated disease burden and during rotavirus infection season. Published by Oxford University Press for the Infectious Diseases Society of America 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Walter, Frank G; Stolz, Uwe; Shirazi, Farshad; McNally, Jude
2009-08-01
No study has focused on the nationwide epidemiology of severe and fatal rattlesnake bites during the last 25 years. We examined rates and temporal trends of severe and fatal rattlesnake bites across the United States. Our hypothesis was that nationwide annual rates of both severe and fatal outcomes from rattlesnake bites have remained unchanged over time. This study retrospectively analyzed all human rattlesnake bites published in the Annual Reports of the American Association of Poison Control Centers from 1983 through 2007. Annual rates of severe (major) and fatal rattlesnake bites were calculated using the annual number of major outcomes and fatalities as respective numerators and the total annual number of single rattlesnake bites (exposures) as denominators. Negative binomial and Poisson regressions were used to examine trends of severe and fatal rattlesnake bites over time. Annually, from 1985 to 2007, the incidence rate of major outcomes decreased by 2% per year (incidence rate ratio = 0.980; CI = 0.967-0.993), corresponding to an absolute annual rate decrease of two major outcomes per 1,000 bites per year. Annual rates of fatalities showed no statistically significant change from 1983 through 2007. This is the first study to examine rates and trends of published severe and fatal rattlesnake bites across the United States over the past 25 years. Annual rates of severe rattlesnake bites, derived from the published Annual Reports of the American Association of Poison Control Centers, have significantly decreased over time, whereas rates of fatal rattlesnake bites have remained unchanged.
Pollution, Poverty, and Potentially Preventable Childhood Morbidity in Central California.
Lessard, Lauren N; Alcala, Emanuel; Capitman, John A
2016-01-01
To measure ecological relationships between neighborhood pollution burden, poverty, race/ethnicity, and pediatric preventable disease hospitalization rates. Preventable disease hospitalization rates were obtained from the 2012 California Office of Statewide Health Planning and Development database, for 8 Central Valley counties. US Census Data was used to incorporate zip code level factors including racial diversity and poverty rates. The pollution burden score was calculated by the California Office of Environmental Health Hazard Assessment using 11 indicators. Poisson-based negative binomial regression was used for final analysis. Stratification of sample by age, race/ethnicity, and insurance coverage was also incorporated. Children experiencing potentially preventable hospitalizations are disproportionately low income and under the age of 4 years. With every unit increase in pollution burden, preventable disease hospitalizations rates increase between 21% and 32%, depending on racial and age subgroups. Although living in a poor neighborhood was not associated with potentially avoidable hospitalizations, children enrolled in Medi-Cal who live in neighborhoods with lower pollution burden and lower levels of poverty, face 32% lower risk for ambulatory care sensitive condition hospitalization. Children living in primary care shortage areas are at increased risk of preventable hospitalizations. Preventable disease hospitalizations increase for all subgroups, except white/non-Hispanic children, as neighborhoods became more racially diverse. Understanding the geographic distribution of disease and impact of individual and community level factors is essential to expanding access to care and preventive resources to improve the health of children in California's most polluted and underserved region. Copyright © 2016 Elsevier Inc. All rights reserved.
Time series regression model for infectious disease and weather.
Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro
2015-10-01
Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Elmi, Maryam; Mahar, Alyson; Kagedan, Daniel; Law, Calvin H L; Karanicolas, Paul J; Lin, Yulia; Callum, Jeannie; Coburn, Natalie G; Hallet, Julie
2016-09-01
Red blood cell transfusions (RBCT) carry risk of transfusion-related immunodulation that may impact postoperative recovery. This study examined the association between perioperative RBCT and short-term postoperative outcomes following gastrectomy for gastric cancer. Using the American College of Surgeons National Surgical Quality Improvement Program database, we compared outcomes of patients (transfused v. nontransfused) undergoing elective gastrectomy for gastric cancer (2007-2012). Outcomes were 30-day major morbidity, mortality and length of stay. The association between perioperative RBCT and outcomes was estimated using modified Poisson, logistic, or negative binomial regression. Of the 3243 patients in the entire cohort, we included 2884 patients with nonmissing data, of whom 535 (18.6%) received RBCT. Overall 30-day major morbidity and mortality were 20% and 3.5%, respectively. After adjustment for baseline and clinical characteristics, RBCT was independently associated with increased 30-day mortality (relative risk [RR] 3.1, 95% confidence interval [CI] 1.9-5.0), major morbidity (RR 1.4, 95% CI 1.2-1.8), length of stay (RR 1.2, 95% CI 1.1-1.2), infections (RR 1.4, 95% CI 1.1-1.6), cardiac complications (RR 1.8, 95% CI 1.0-3.2) and respiratory failure (RR 2.3, 95% CI 1.6-3.3). Red blood cell transfusions are associated with worse postoperative short-term outcomes in patients with gastric cancer. Blood management strategies are needed to reduce the use of RBCT after gastrectomy for gastric cancer.
The association between current unemployment and clinically determined poor oral health.
Al-Sudani, Fouad Y H; Vehkalahti, Miira M; Suominen, Anna L
2015-08-01
The aim of this study was to assess whether current unemployment was associated with poor oral health and whether there was a difference in oral health according to the duration of the current unemployment. As part of the Health 2000 Survey in Finland (a nationwide comprehensive health examination survey), we used its data based on interviews, questionnaires, and clinical oral examinations of the 30- to 63-year-old respondents (n = 4773). Current employment status was measured in its dichotomous form, employed versus unemployed, and length of current unemployment was classified into four categories. We measured oral health in terms of numbers of missing teeth, of sound teeth, of filled teeth, of decayed teeth, and of teeth with deepened periodontal pockets (≥4 mm, ≥6 mm). Poisson regression models were fitted for all oral health outcomes except number of decayed teeth, for which negative binomial regression model was used. Oral health-related behaviors and sociodemographic and socioeconomic factors were added to the analyses. The unemployed subjects had higher numbers of missing teeth, of decayed teeth, and of teeth with periodontal pockets than the employed ones. The association remained consistent even after adjustments. Oral health-related behaviors seemed to mediate the association. We found no association between unemployment and number of sound teeth. Current long-term unemployment showed stronger association with poor oral health than short-term among women. The unemployed can be considered as a risk group for poor oral health. Oral healthcare should be reoriented toward those who are unemployed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Goyette, Marielle S; Mutiti, Peter M; Bukusi, David; Wamuti, Beatrice M; Otieno, Felix A; Cherutich, Peter; Golden, Matthew R; Spiegel, Hans; Richardson, Barbra A; Ngʼangʼa, Anne; Farquhar, Carey
2018-05-01
HIV assisted partner services (APS) are a notification and testing strategy for sex partners of HIV-infected index patients. This cluster-randomized controlled trial secondary data analysis investigated whether history of intimate partner violence (IPV) modified APS effectiveness and risk of relationship dissolution. Eighteen HIV testing and counseling sites in Kenya randomized to provide immediate APS (intervention) or APS delayed for 6 weeks (control). History of IPV was ascertained at study enrollment and defined as reporting ever experiencing physical or sexual IPV. Those reporting IPV in the month before enrollment were excluded. We tested whether history of IPV modified intervention effectiveness and risk of relationship dissolution using population-averaged Poisson and log-binomial generalized estimating equation models. Exploratory analyses investigated associations between history of IPV and events that occurred after HIV diagnosis using log-binomial generalized estimating equation models. The study enrolled 1119 index participants and 1286 partners. Among index participants, 81 (7%) had history of IPV. History of IPV did not modify APS effectiveness in testing, newly diagnosing, or linking partners to care. History of IPV did not modify the association between receiving immediate APS and relationship dissolution during the study. Among participants who had not experienced IPV in the last month but had experienced IPV in their lifetimes, our results suggest that APS is an effective and safe partner notification strategy in Kenya. As APS is scaled up in different contexts, these data support including those reporting past IPV and closely monitoring adverse events.
Perceived Prevalence of Teasing and Bullying Predicts High School Dropout Rates
ERIC Educational Resources Information Center
Cornell, Dewey; Gregory, Anne; Huang, Francis; Fan, Xitao
2013-01-01
This prospective study of 276 Virginia public high schools found that the prevalence of teasing and bullying (PTB) as perceived by both 9th-grade students and teachers was predictive of dropout rates for this cohort 4 years later. Negative binomial regression indicated that one standard deviation increases in student- and teacher-reported PTB were…
The Influence of Television Advertisements on Promoting Calls to Telephone Quitlines
ERIC Educational Resources Information Center
Farrelly, Matthew; Mann, Nathan; Watson, Kimberly; Pechacek, Terry
2013-01-01
The aim of the study was to assess the relative effectiveness of cessation, secondhand smoke and other tobacco control television advertisements in promoting quitlines in nine states from 2002 through 2005. Quarterly, the number of individuals who used quitlines per 10 000 adult smokers in a media market are measured. Negative binomial regression…
CUMPOIS- CUMULATIVE POISSON DISTRIBUTION PROGRAM
NASA Technical Reports Server (NTRS)
Bowerman, P. N.
1994-01-01
The Cumulative Poisson distribution program, CUMPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), can be used independently of one another. CUMPOIS determines the approximate cumulative binomial distribution, evaluates the cumulative distribution function (cdf) for gamma distributions with integer shape parameters, and evaluates the cdf for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. CUMPOIS calculates the probability that n or less events (ie. cumulative) will occur within any unit when the expected number of events is given as lambda. Normally, this probability is calculated by a direct summation, from i=0 to n, of terms involving the exponential function, lambda, and inverse factorials. This approach, however, eventually fails due to underflow for sufficiently large values of n. Additionally, when the exponential term is moved outside of the summation for simplification purposes, there is a risk that the terms remaining within the summation, and the summation itself, will overflow for certain values of i and lambda. CUMPOIS eliminates these possibilities by multiplying an additional exponential factor into the summation terms and the partial sum whenever overflow/underflow situations threaten. The reciprocal of this term is then multiplied into the completed sum giving the cumulative probability. The CUMPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting lambda and n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 26K. CUMPOIS was developed in 1988.
[Spatial epidemiological study on malaria epidemics in Hainan province].
Wen, Liang; Shi, Run-He; Fang, Li-Qun; Xu, De-Zhong; Li, Cheng-Yi; Wang, Yong; Yuan, Zheng-Quan; Zhang, Hui
2008-06-01
To better understand the characteristics of spatial distribution of malaria epidemics in Hainan province and to explore the relationship between malaria epidemics and environmental factors, as well to develop prediction model on malaria epidemics. Data on Malaria and meteorological factors were collected in all 19 counties in Hainan province from May to Oct., 2000, and the proportion of land use types of these counties in this period were extracted from digital map of land use in Hainan province. Land surface temperatures (LST) were extracted from MODIS images and elevations of these counties were extracted from DEM of Hainan province. The coefficients of correlation of malaria incidences and these environmental factors were then calculated with SPSS 13.0, and negative binomial regression analysis were done using SAS 9.0. The incidence of malaria showed (1) positive correlations to elevation, proportion of forest land area and grassland area; (2) negative correlations to the proportion of cultivated area, urban and rural residents and to industrial enterprise area, LST; (3) no correlations to meteorological factors, proportion of water area, and unemployed land area. The prediction model of malaria which came from negative binomial regression analysis was: I (monthly, unit: 1/1,000,000) = exp (-1.672-0.399xLST). Spatial distribution of malaria epidemics was associated with some environmental factors, and prediction model of malaria epidemic could be developed with indexes which extracted from satellite remote sensing images.
Rusli, Rusdi; Haque, Md Mazharul; King, Mark; Voon, Wong Shaw
2017-05-01
Mountainous highways generally associate with complex driving environment because of constrained road geometries, limited cross-section elements, inappropriate roadside features, and adverse weather conditions. As a result, single-vehicle (SV) crashes are overrepresented along mountainous roads, particularly in developing countries, but little attention is known about the roadway geometric, traffic and weather factors contributing to these SV crashes. As such, the main objective of the present study is to investigate SV crashes using detailed data obtained from a rigorous site survey and existing databases. The final dataset included a total of 56 variables representing road geometries including horizontal and vertical alignment, traffic characteristics, real-time weather condition, cross-sectional elements, roadside features, and spatial characteristics. To account for structured heterogeneities resulting from multiple observations within a site and other unobserved heterogeneities, the study applied a random parameters negative binomial model. Results suggest that rainfall during the crash is positively associated with SV crashes, but real-time visibility is negatively associated. The presence of a road shoulder, particularly a bitumen shoulder or wider shoulders, along mountainous highways is associated with less SV crashes. While speeding along downgrade slopes increases the likelihood of SV crashes, proper delineation decreases the likelihood. Findings of this study have significant implications for designing safer highways in mountainous areas, particularly in the context of a developing country. Copyright © 2017 Elsevier Ltd. All rights reserved.
Smart materials systems through mesoscale patterning
NASA Astrophysics Data System (ADS)
Aksay, Ilhan A.; Groves, John T.; Gruner, Sol M.; Lee, P. C. Y.; Prud'homme, Robert K.; Shih, Wei-Heng; Torquato, Salvatore; Whitesides, George M.
1996-02-01
We report work on the fabrication of smart materials with two unique strategies: (1) self- assembly and (2) laser stereolithography. Both methods are akin to the processes used by biological systems. The first one is ideal for pattern development and the fabrication of miniaturized units in the submicron range and the second one in the 10 micrometer to 1 mm size range. By using these miniaturized units as building blocks, one can also produce smart material systems that can be used at larger length scales such as smart structural components. We have chosen to focus on two novel piezoceramic systems: (1) high-displacement piezoelectric actuators, and (2) piezoceramic hydrophone composites possessing negative Poisson ratio matrices. High-displacement actuators are essential in such applications as linear motors, pumps, switches, loud speakers, variable-focus mirrors, and laser deflectors. Arrays of such units can potentially be used for active vibration control of helicopter rotors as well as the fabrication of adaptive rotors. In the case of piezoceramic hydrophone composites, we utilize matrices having a negative Poisson's ratio in order to produce highly sensitive, miniaturized sensors. We envision such devices having promising new application areas such as the implantation of hydrophones in small blood vessels to monitor blood pressure. Negative Poisson ratio materials have promise as robust shock absorbers, air filters, and fasteners, and hence, can be used in aircraft and land vehicles.
ERIC Educational Resources Information Center
Durkin, Sarah J.; Wakefield, Melanie A.; Spittal, Matthew J.
2011-01-01
To examine the efficacy of different types of mass media ads in driving lower socio-economic smokers (SES) to utilize quitlines. This study collected all 33 719 calls to the Victorian quitline in Australia over a 2-year period. Negative binomial regressions examined the relationship between weekly levels of exposure to different types of…
Gaillard, F O; Boudin, C; Chau, N P; Robert, V; Pichon, G
2003-11-01
Previous experimental gametocyte infections of Anopheles arabiensis on 3 volunteers naturally infected with Plasmodium falciparum were conducted in Senegal. They showed that gametocyte counts in the mosquitoes are, like macroparasite intakes, heterogeneous (overdispersed). They followed a negative binomial distribution, the overdispersion coefficient seeming constant (k = 3.1). To try to explain this heterogeneity, we used an individual-based model (IBM), simulating the behaviour of gametocytes in the human blood circulation and their ingestion by mosquitoes. The hypothesis was that there exists a clustering of the gametocytes in the capillaries. From a series of simulations, in the case of clustering the following results were obtained: (i) the distribution of the gametocytes ingested by the mosquitoes followed a negative binomial, (ii) the k coefficient significantly increased with the density of circulating gametocytes. To validate this model result, 2 more experiments were conducted in Cameroon. Pooled experiments showed a distinct density dependency of the k-values. The simulation results and the experimental results were thus in agreement and suggested that an aggregation process at the microscopic level might produce the density-dependent overdispersion at the macroscopic level. Simulations also suggested that the clustering of gametocytes might facilitate fertilization of gametes.
Effectiveness on Early Childhood Caries of an Oral Health Promotion Program for Medical Providers
Widmer-Racich, Katina; Sevick, Carter; Starzyk, Erin J.; Mauritson, Katya; Hambidge, Simon J.
2017-01-01
Objectives. To assess an oral health promotion (OHP) intervention for medical providers’ impact on early childhood caries (ECC). Methods. We implemented a quasiexperimental OHP intervention in 8 federally qualified health centers that trained medical providers on ECC risk assessment, oral examination and instruction, dental referral, and fluoride varnish applications (FVAs). We measured OHP delivery by FVA count at medical visits. We measured the intervention’s impact on ECC in 3 unique cohorts of children aged 3 to 4 years in 2009 (preintervention; n = 202), 2011 (midintervention; n = 420), and 2015 (≥ 4 FVAs; n = 153). We compared numbers of decayed, missing, and filled tooth surfaces using adjusted zero-inflated negative binomial models. Results. Across 3 unique cohorts, the FVA mean (range) count was 0.0 (0), 1.1 (0–7), and 4.5 (4–7) in 2009, 2011, and 2015, respectively. In adjusted zero-inflated negative binomial models analyses, children in the 2015 cohort had significantly fewer decayed, missing, and filled tooth surfaces than did children in previous cohorts. Conclusions. An OHP intervention targeting medical providers reduced ECC when children received 4 or more FVAs at a medical visit by age 3 years. PMID:28661802
Deus, E. G.; Godoy, W. A. C.; Sousa, M. S. M.; Lopes, G. N.; Jesus-Barros, C. R.; Silva, J. G.; Adaime, R.
2016-01-01
Field infestation and spatial distribution of introduced Bactrocera carambolae Drew and Hancock and native species of Anastrepha in common guavas [Psidium guajava (L.)] were investigated in the eastern Amazon. Fruit sampling was carried out in the municipalities of Calçoene and Oiapoque in the state of Amapá, Brazil. The frequency distribution of larvae in fruit was fitted to the negative binomial distribution. Anastrepha striata was more abundant in both sampled areas in comparison to Anastrepha fraterculus (Wiedemann) and B. carambolae. The frequency distribution analysis of adults revealed an aggregated pattern for B. carambolae as well as for A. fraterculus and Anastrepha striata Schiner, described by the negative binomial distribution. Although the populations of Anastrepha spp. may have suffered some impact due to the presence of B. carambolae, the results are still not robust enough to indicate effective reduction in the abundance of Anastrepha spp. caused by B. carambolae in a general sense. The high degree of aggregation observed for both species suggests interspecific co-occurrence with the simultaneous presence of both species in the analysed fruit. Moreover, a significant fraction of uninfested guavas also indicated absence of competitive displacement. PMID:27638949
Sheu, Mei-Ling; Hu, Teh-Wei; Keeler, Theodore E; Ong, Michael; Sung, Hai-Yen
2004-08-01
The objective of this paper is to determine the price sensitivity of smokers in their consumption of cigarettes, using evidence from a major increase in California cigarette prices due to Proposition 10 and the Tobacco Settlement. The study sample consists of individual survey data from Behavioral Risk Factor Survey (BRFS) and price data from the Bureau of Labor Statistics between 1996 and 1999. A zero-inflated negative binomial (ZINB) regression model was applied for the statistical analysis. The statistical model showed that price did not have an effect on reducing the estimated prevalence of smoking. However, it indicated that among smokers the price elasticity was at the level of -0.46 and statistically significant. Since smoking prevalence is significantly lower than it was a decade ago, price increases are becoming less effective as an inducement for hard-core smokers to quit, although they may respond by decreasing consumption. For those who only smoke occasionally (many of them being young adults) price increases alone may not be an effective inducement to quit smoking. Additional underlying behavioral factors need to be identified so that more effective anti-smoking strategies can be developed.
Wang, Zhu; Ma, Shuangge; Wang, Ching-Yun
2015-09-01
In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD), and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, but also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using the open-source R package mpath. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Damrath, Martin; Korte, Sebastian; Hoeher, Peter Adam
2017-01-01
This paper introduces the equivalent discrete-time channel model (EDTCM) to the area of diffusion-based molecular communication (DBMC). Emphasis is on an absorbing receiver, which is based on the so-called first passage time concept. In the wireless communications community the EDTCM is well known. Therefore, it is anticipated that the EDTCM improves the accessibility of DBMC and supports the adaptation of classical wireless communication algorithms to the area of DBMC. Furthermore, the EDTCM has the capability to provide a remarkable reduction of computational complexity compared to random walk based DBMC simulators. Besides the exact EDTCM, three approximations thereof based on binomial, Gaussian, and Poisson approximation are proposed and analyzed in order to further reduce computational complexity. In addition, the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is adapted to all four channel models. Numerical results show the performance of the exact EDTCM, illustrate the performance of the adapted BCJR algorithm, and demonstrate the accuracy of the approximations.
Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffery J.; Bishop, Andrew A.; Fontaine, Joseph J.
2014-01-01
Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants. PMID:24918779
Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffrey J.; Bishop, Andrew A.; Fontaine, Joseph J.
2014-01-01
Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants.
An INAR(1) Negative Multinomial Regression Model for Longitudinal Count Data.
ERIC Educational Resources Information Center
Bockenholt, Ulf
1999-01-01
Discusses a regression model for the analysis of longitudinal count data in a panel study by adapting an integer-valued first-order autoregressive (INAR(1)) Poisson process to represent time-dependent correlation between counts. Derives a new negative multinomial distribution by combining INAR(1) representation with a random effects approach.…
Impact of early childhood caries on oral health-related quality of life of preschool children.
Li, M Y; Zhi, Q H; Zhou, Y; Qiu, R M; Lin, H C
2015-03-01
Child oral health-related quality of life (COHRQoL) has been assessed in developed areas; however, it remains unstudied in mainland China. Studies on COHRQoL would benefit a large number of children in China suffering from oral health problems such as dental caries. This study explored the relationship between COHRQoL and early childhood caries, adjusted by socioeconomic factors, in 3- to 4-year-old children in a region of southern China. In this study, 1062 children aged 3-4 years were recruited by cluster sampling and their oral health statuses were examined by a trained dentist. The Chinese version of the Early Childhood Oral Health Impact Scale (ECOHIS) and questions about the children's socioeconomic conditions were completed by the children's parents. A negative binomial regression analysis was used to assess the prevalence of early childhood caries among the children and its influence on COHRQoL. The total ECOHIS scores of the returned scale sets ranged from 0 to 31, and their average scores was 3.1±5.1. The negative binomial analysis showed that the dmfs indices were significantly associated with the ECOHIS score and subscale scores (P<0.05). The multivariate adjusted model showed that a higher dmft index was associated with greater negative impact on COHRQoL (RR = 1.10; 95% CI = 1.07, 1.13; P < 0.05). However, demographic and socioeconomic factors were not associated with COHRQoL (P>0.05). The severity of early childhood caries has a negative impact on the oral health-related quality of life of preschool children and their parents.
CUMBIN - CUMULATIVE BINOMIAL PROGRAMS
NASA Technical Reports Server (NTRS)
Bowerman, P. N.
1994-01-01
The cumulative binomial program, CUMBIN, is one of a set of three programs which calculate cumulative binomial probability distributions for arbitrary inputs. The three programs, CUMBIN, NEWTONP (NPO-17556), and CROSSER (NPO-17557), can be used independently of one another. CUMBIN can be used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. The program has been used for reliability/availability calculations. CUMBIN calculates the probability that a system of n components has at least k operating if the probability that any one operating is p and the components are independent. Equivalently, this is the reliability of a k-out-of-n system having independent components with common reliability p. CUMBIN can evaluate the incomplete beta distribution for two positive integer arguments. CUMBIN can also evaluate the cumulative F distribution and the negative binomial distribution, and can determine the sample size in a test design. CUMBIN is designed to work well with all integer values 0 < k <= n. To run the program, the user simply runs the executable version and inputs the information requested by the program. The program is not designed to weed out incorrect inputs, so the user must take care to make sure the inputs are correct. Once all input has been entered, the program calculates and lists the result. The CUMBIN program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly with most C compilers. The program format is interactive. It has been implemented under DOS 3.2 and has a memory requirement of 26K. CUMBIN was developed in 1988.
ERIC Educational Resources Information Center
Sevigny, Eric L.; Zhang, Gary
2018-01-01
This study investigates how barriers to school-based crime prevention programming moderate the effects of situational crime prevention (SCP) policies on levels of violent crime in U.S. public high schools. Using data from the 2008 School Survey on Crime and Safety, we estimate a series of negative binomial regression models with interactions to…
Pieper, Laura; Sorge, Ulrike S; DeVries, Trevor J; Godkin, Ann; Lissemore, Kerry; Kelton, David F
2015-10-01
Johne's disease (JD) is a production-limiting gastrointestinal disease in cattle. To minimize the effects of JD, the Ontario dairy industry launched the Ontario Johne's Education and Management Assistance Program in 2010. As part of the program, trained veterinarians conducted a risk assessment and management plan (RAMP), an on-farm questionnaire where high RAMP scores are associated with high risk of JD transmission. Subsequently, veterinarians recommended farm-specific management practices for JD prevention. Milk or serum ELISA results from the milking herd were used to determine the herd ELISA status (HES) and within-herd prevalence. After 3.5 yr of implementation of the program, the aim of this study was to evaluate the associations among RAMP scores, HES, and recommendations. Data from 2,103 herds were available for the analyses. A zero-inflated negative binomial model for the prediction of the number of ELISA-positive animals per farm was built. The model included individual RAMP questions about purchasing animals in the logistic portion, indicating risks for between-herd transmission, and purchasing bulls, birth of calves outside the designated calving area, colostrum and milk feeding management, and adult cow environmental hygiene in the negative binomial portion, indicating risk factors for within-herd transmission. However, farms which fed low-risk milk compared with milk replacer had fewer seropositive animals. The model additionally included the JD herd history in the negative binomial and the logistic portion, indicating that herds with a JD herd history were more likely to have at least 1 positive animal and to have a higher number of positive animals. Generally, a positive association was noted between RAMP scores and the odds of receiving a recommendation for the respective risk area; however, the relationship was not always linear. For general JD risk and calving area risk, seropositive herds had higher odds of receiving recommendations compared with seronegative herds if the section scores were low. This study suggests that the RAMP is a valuable tool to assess the risk for JD transmission within and between herds and to determine farm-specific recommendations for JD prevention. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Predictive accuracy of particle filtering in dynamic models supporting outbreak projections.
Safarishahrbijari, Anahita; Teyhouee, Aydin; Waldner, Cheryl; Liu, Juxin; Osgood, Nathaniel D
2017-09-26
While a new generation of computational statistics algorithms and availability of data streams raises the potential for recurrently regrounding dynamic models with incoming observations, the effectiveness of such arrangements can be highly subject to specifics of the configuration (e.g., frequency of sampling and representation of behaviour change), and there has been little attempt to identify effective configurations. Combining dynamic models with particle filtering, we explored a solution focusing on creating quickly formulated models regrounded automatically and recurrently as new data becomes available. Given a latent underlying case count, we assumed that observed incident case counts followed a negative binomial distribution. In accordance with the condensation algorithm, each such observation led to updating of particle weights. We evaluated the effectiveness of various particle filtering configurations against each other and against an approach without particle filtering according to the accuracy of the model in predicting future prevalence, given data to a certain point and a norm-based discrepancy metric. We examined the effectiveness of particle filtering under varying times between observations, negative binomial dispersion parameters, and rates with which the contact rate could evolve. We observed that more frequent observations of empirical data yielded super-linearly improved accuracy in model predictions. We further found that for the data studied here, the most favourable assumptions to make regarding the parameters associated with the negative binomial distribution and changes in contact rate were robust across observation frequency and the observation point in the outbreak. Combining dynamic models with particle filtering can perform well in projecting future evolution of an outbreak. Most importantly, the remarkable improvements in predictive accuracy resulting from more frequent sampling suggest that investments to achieve efficient reporting mechanisms may be more than paid back by improved planning capacity. The robustness of the results on particle filter configuration in this case study suggests that it may be possible to formulate effective standard guidelines and regularized approaches for such techniques in particular epidemiological contexts. Most importantly, the work tentatively suggests potential for health decision makers to secure strong guidance when anticipating outbreak evolution for emerging infectious diseases by combining even very rough models with particle filtering method.
Serebrianyĭ, A M; Akleev, A V; Aleshchenko, A V; Antoshchina, M M; Kudriashova, O V; Riabchenko, N I; Semenova, L P; Pelevina, I I
2011-01-01
By micronucleus (MN) assay with cytokinetic cytochalasin B block, the mean frequency of blood lymphocytes with MN has been determined in 76 Moscow inhabitants, 35 people from Obninsk and 122 from Chelyabinsk region. In contrast to the distribution of individuals on spontaneous frequency of cells with aberrations, which was shown to be binomial (Kusnetzov et al., 1980), the distribution of individuals on the spontaneous frequency of cells with MN in all three massif can be acknowledged as log-normal (chi2 test). Distribution of individuals in the joined massifs (Moscow and Obninsk inhabitants) and in the unique massif of all inspected with great reliability must be acknowledged as log-normal (0.70 and 0.86 correspondingly), but it cannot be regarded as Poisson, binomial or normal. Taking into account that log-normal distribution of children by spontaneous frequency of lymphocytes with MN has been observed by the inspection of 473 children from different kindergartens in Moscow we can make the conclusion that log-normal is regularity inherent in this type of damage of lymphocytes genome. On the contrary the distribution of individuals on induced by irradiation in vitro lymphocytes with MN frequency in most cases must be acknowledged as normal. This distribution character points out that damage appearance in the individual (genomic instability) in a single lymphocytes increases the probability of the damage appearance in another lymphocytes. We can propose that damaged stem cells lymphocyte progenitor's exchange by information with undamaged cells--the type of the bystander effect process. It can also be supposed that transmission of damage to daughter cells occurs in the time of stem cells division.
Government capacities and stakeholders: what facilitates ehealth legislation?
2014-01-01
Background Newly established high-technology areas such as eHealth require regulations regarding the interoperability of health information infrastructures and data protection. It is argued that government capacities as well as the extent to which public and private organizations participate in policy-making determine the level of eHealth legislation. Both explanatory factors are influenced by international organizations that provide knowledge transfer and encourage private actor participation. Methods Data analysis is based on the Global Observatory for eHealth - ATLAS eHealth country profiles which summarizes eHealth policies in 114 countries. Data analysis was carried out using two-component hurdle models with a truncated Poisson model for positive counts and a hurdle component model with a binomial distribution for zero or greater counts. Results The analysis reveals that the participation of private organizations such as donors has negative effects on the level of eHealth legislation. The impact of public-private partnerships (PPPs) depends on the degree of government capacities already available and on democratic regimes. Democracies are more responsive to these new regulatory demands than autocracies. Democracies find it easier to transfer knowledge out of PPPs than autocracies. Government capacities increase the knowledge transfer effect of PPPs, thus leading to more eHealth legislation. Conclusions All international regimes – the WHO, the EU, and the OECD – promote PPPs in order to ensure the construction of a national eHealth infrastructure. This paper shows that the development of government capacities in the eHealth domain has to be given a higher priority than the establishment of PPPs, since the existence of some (initial) capacities is the sine qua non of further capacity building. PMID:24410989
Violent Death Rates: The US Compared with Other High-income OECD Countries, 2010.
Grinshteyn, Erin; Hemenway, David
2016-03-01
Violent death is a serious problem in the United States. Previous research showing US rates of violent death compared with other high-income countries used data that are more than a decade old. We examined 2010 mortality data obtained from the World Health Organization for populous, high-income countries (n = 23). Death rates per 100,000 population were calculated for each country and for the aggregation of all non-US countries overall and by age and sex. Tests of significance were performed using Poisson and negative binomial regressions. US homicide rates were 7.0 times higher than in other high-income countries, driven by a gun homicide rate that was 25.2 times higher. For 15- to 24-year-olds, the gun homicide rate in the United States was 49.0 times higher. Firearm-related suicide rates were 8.0 times higher in the United States, but the overall suicide rates were average. Unintentional firearm deaths were 6.2 times higher in the United States. The overall firearm death rate in the United States from all causes was 10.0 times higher. Ninety percent of women, 91% of children aged 0 to 14 years, 92% of youth aged 15 to 24 years, and 82% of all people killed by firearms were from the United States. The United States has an enormous firearm problem compared with other high-income countries, with higher rates of homicide and firearm-related suicide. Compared with 2003 estimates, the US firearm death rate remains unchanged while firearm death rates in other countries decreased. Thus, the already high relative rates of firearm homicide, firearm suicide, and unintentional firearm death in the United States compared with other high-income countries increased between 2003 and 2010. Copyright © 2016 Elsevier Inc. All rights reserved.
Ma, Tracey; Byrne, Patrick A; Haya, Maryam; Elzohairy, Yoassry
2015-12-01
In 1998, Ontario implemented a remedial program called "Back On Track" (BOT) for individuals convicted of alcohol-impaired driving. Drivers convicted before October 2000 were exposed to a single-component program ("Edu BOT"); those convicted after participated in a multi-component program ("Full BOT"). We evaluated the impact of BOT, and the preceding 90-day roadside licence suspension, on drinking and driving recidivism, an outcome yet to be examined, using population-wide driver records. A Chi Square Test was used to compare the three-year cumulative incidence of recidivism between three historically-defined cohorts: No BOT, Edu BOT, and Full BOT. Stratified analyses by completion status and by age were also conducted. Analyses of the roadside suspension were conducted using an interrupted time series approach based on segmented Poisson/negative binomial regression. The roadside suspension was associated with a 65.2% reduction in drinking driving recidivism. In combination with indefinite suspensions for non-completion, the BOT program was also associated with a 21% decrease in drinking and driving recidivism in the three years following a CCC driving prohibition, from 8.5% to 6.7%. This reduction cannot be explained by pre-existing trends in recidivism. Conversion of the BOT program from the single-component version to the multi-component program further reduced the three-year cumulative incidence of recidivism to 5.5% (a total reduction of 35% from pre-BOT). Results provide strong converging evidence that remedial alcohol education/treatment programs in combination with other sanctions can produce substantial increases in road safety. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Cameron, C. M.; Purdie, D. M.; Kliewer, E. V.; McClure, R. J.
2006-01-01
OBJECTIVE: To quantify long-term health service use (HSU) following non-fatal injury in adults. METHODS: A retrospective, population-based, matched cohort study identified an inception cohort (1988-91) of injured people who had been hospitalized (ICD-9-CM 800-995) aged 18-64 years (n = 21 032) and a matched non-injured comparison group (n = 21 032) from linked administrative data from Manitoba, Canada. HSU data (on hospitalizations, cumulative length of stay, physician claims and placements in extended care services) were obtained for the 12 months before and 10 years after the injury. Negative binomial and Poisson regressions were used to quantify associations between injury and long-term HSU. FINDINGS: Statistically significant differences in the rates of HSU existed between the injured and non-injured cohorts for the pre-injury year and every year of the follow-up period. After controlling for pre-injury HSU, the attributable risk percentage indicated that 38.7% of all post-injury hospitalizations (n = 25 183), 68.9% of all years spent in hospital (n = 1031), 21.9% of physician claims (n = 269 318) and 77.1% of the care home placements (n = 189) in the injured cohort could be attributed to being injured. CONCLUSION: Many people who survive the initial period following injury, face long periods of inpatient care (and frequent readmissions), high levels of contact with physicians and an increased risk of premature placement in institutional care. Population estimates of the burden of injury could be refined by including long-term non-fatal health consequences and controlling for the effect of pre-injury comorbidity. PMID:17128360
Vergne, Timothée; Calavas, Didier; Cazeau, Géraldine; Durand, Benoît; Dufour, Barbara; Grosbois, Vladimir
2012-06-01
Capture-recapture (CR) methods are used to study populations that are monitored with imperfect observation processes. They have recently been applied to the monitoring of animal diseases to evaluate the number of infected units that remain undetected by the surveillance system. This paper proposes three bayesian models to estimate the total number of scrapie-infected holdings in France from CR count data obtained from the French classical scrapie surveillance programme. We fitted two zero-truncated Poisson (ZTP) models (with and without holding size as a covariate) and a zero-truncated negative binomial (ZTNB) model to the 2006 national surveillance count dataset. We detected a large amount of heterogeneity in the count data, making the use of the simple ZTP model inappropriate. However, including holding size as a covariate did not bring any significant improvement over the simple ZTP model. The ZTNB model proved to be the best model, giving an estimation of 535 (CI(95%) 401-796) infected and detectable sheep holdings in 2006, although only 141 were effectively detected, resulting in a holding-level prevalence of 4.4‰ (CI(95%) 3.2-6.3) and a sensitivity of holding-level surveillance of 26% (CI(95%) 18-35). The main limitation of the present study was the small amount of data collected during the surveillance programme. It was therefore not possible to build complex models that would allow depicting more accurately the epidemiological and detection processes that generate the surveillance data. We discuss the perspectives of capture-recapture count models in the context of animal disease surveillance. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Sherry T; Graffagino, Cheryl L; Leser, Kendall A; Trombetta, Autumn L; Pirie, Phyllis L
2016-09-01
Objectives The United States Department of Agriculture's Child and Adult Care Food Program (CACFP) provides meals and snacks to low-income children in child care. This study compared nutrition and physical activity practices and policies as well as the overall nutrition and physical activity environments in a sample of CACFP and non-CACFP child care settings. Methods A random stratified sample of 350 child care settings in a large Midwestern city and its suburbs, was mailed a survey on obesity prevention practices and policies concerning menu offerings, feeding practices, nutrition and physical activity education, activity levels, training, and screen time. Completed surveys were obtained from 229 of 309 eligible child care settings (74.1 % response rate). Chi square tests were used to compare practices and policies in CACFP and non-CACFP sites. Poisson and negative binomial regression were used to examine associations between CACFP and total number of practices and policies. Results Sixty-nine percent of child care settings reported CACFP participation. A significantly higher proportion of CACFP sites reported offering whole grain foods daily and that providers always eat the same foods that are offered to the children. CACFP sites had 1.1 times as many supportive nutrition practices as non-CACFP sites. CACFP participation was not associated with written policies or physical activity practices. Conclusions for Practice There is room for improvement across nutrition and physical activity practices and policies. In addition to food reimbursement, CACFP participation may help promote child care environments that support healthy nutrition; however, additional training and education outreach activities may be needed.
Statistical Modeling of Fire Occurrence Using Data from the Tōhoku, Japan Earthquake and Tsunami.
Anderson, Dana; Davidson, Rachel A; Himoto, Keisuke; Scawthorn, Charles
2016-02-01
In this article, we develop statistical models to predict the number and geographic distribution of fires caused by earthquake ground motion and tsunami inundation in Japan. Using new, uniquely large, and consistent data sets from the 2011 Tōhoku earthquake and tsunami, we fitted three types of models-generalized linear models (GLMs), generalized additive models (GAMs), and boosted regression trees (BRTs). This is the first time the latter two have been used in this application. A simple conceptual framework guided identification of candidate covariates. Models were then compared based on their out-of-sample predictive power, goodness of fit to the data, ease of implementation, and relative importance of the framework concepts. For the ground motion data set, we recommend a Poisson GAM; for the tsunami data set, a negative binomial (NB) GLM or NB GAM. The best models generate out-of-sample predictions of the total number of ignitions in the region within one or two. Prefecture-level prediction errors average approximately three. All models demonstrate predictive power far superior to four from the literature that were also tested. A nonlinear relationship is apparent between ignitions and ground motion, so for GLMs, which assume a linear response-covariate relationship, instrumental intensity was the preferred ground motion covariate because it captures part of that nonlinearity. Measures of commercial exposure were preferred over measures of residential exposure for both ground motion and tsunami ignition models. This may vary in other regions, but nevertheless highlights the value of testing alternative measures for each concept. Models with the best predictive power included two or three covariates. © 2015 Society for Risk Analysis.
Epidemiology of enteric disease in C-EnterNet’s pilot site – Waterloo region, Ontario, 1990 to 2004
Keegan, Victoria A; Majowicz, Shannon E; Pearl, David L; Marshall, Barbara J; Sittler, Nancy; Knowles, Lewinda; Wilson, Jeffery B
2009-01-01
OBJECTIVE: The objective of the present study was to describe the epidemiology of reportable enteric illness in Ontario’s Waterloo region, including comparing calculated incidence rates with published rates, and adjusting for under-reporting to determine the number of community cases, where published data were available. METHODS: Descriptive analyses were performed on reportable disease data for 13 enteric diseases collected in the Waterloo region from 1990 to 2004. Poisson and negative binomial regression analyses were used to investigate differences in incidence rates among age, sex, the 15 years of data and seasons. Disease-specific incidence rates were calculated and compared with the literature, where possible. Under-reporting ratios from the literature were applied to estimate the number of cases of campylobacteriosis, nontyphoidal salmonellosis and verotoxigenic Escherichia coli infection at the community level. RESULTS: Over the study period, the average annual age- and sex-adjusted incidence rates per 100,000 population were highest for campylobacteriosis (49.69 cases), followed by giardiasis (31.87 cases) and nontyphoidal salmonellosis (25.97 cases). The incidence of most enteric illnesses peaked in the summer. The highest incidence occurred in young children, followed by adults in their 20s. Diarrhea (85.4%) was the most frequently reported symptom, food (57.4%) was the most commonly reported probable source, and home (41.7%) and travel (37.0%) were the two most frequently reported risk settings. CONCLUSIONS: Enteric illness was a significant health burden in the Waterloo region from 1990 to 2004. Because reportable disease data are subject to under-reporting, it is likely that the true burden is greater than estimated in the present study. PMID:20808465
Sulz, Michael C; Siebert, Uwe; Arvandi, Marjan; Gothe, Raffaella M; Wurm, Johannes; von Känel, Roland; Vavricka, Stephan R; Meyenberger, Christa; Sagmeister, Markus
2013-07-01
Patients with inflammatory bowel disease (IBD) have a high resource consumption, with considerable costs for the healthcare system. In a system with sparse resources, treatment is influenced not only by clinical judgement but also by resource consumption. We aimed to determine the resource consumption of IBD patients and to identify its significant predictors. Data from the prospective Swiss Inflammatory Bowel Disease Cohort Study were analysed for the resource consumption endpoints hospitalization and outpatient consultations at enrolment [1187 patients; 41.1% ulcerative colitis (UC), 58.9% Crohn's disease (CD)] and at 1-year follow-up (794 patients). Predictors of interest were chosen through an expert panel and a review of the relevant literature. Logistic regressions were used for binary endpoints, and negative binomial regressions and zero-inflated Poisson regressions were used for count data. For CD, fistula, use of biologics and disease activity were significant predictors for hospitalization days (all P-values <0.001); age, sex, steroid therapy and biologics were significant predictors for the number of outpatient visits (P=0.0368, 0.023, 0.0002, 0.0003, respectively). For UC, biologics, C-reactive protein, smoke quitters, age and sex were significantly predictive for hospitalization days (P=0.0167, 0.0003, 0.0003, 0.0076 and 0.0175 respectively); disease activity and immunosuppressive therapy predicted the number of outpatient visits (P=0.0009 and 0.0017, respectively). The results of multivariate regressions are shown in detail. Several highly significant clinical predictors for resource consumption in IBD were identified that might be considered in medical decision-making. In terms of resource consumption and its predictors, CD and UC show a different behaviour.
Lee, Jung-Seok
2015-01-01
Background The rise in dengue fever cases and the absence of dengue vaccines will likely cause governments to consider various types of effective means for controlling the disease. Given strong public interests in potential dengue vaccines, it is essential to understand the private economic benefits of dengue vaccines for accelerated introduction of vaccines into the public sector program and private markets of high-risk countries. Methodology/Principal Findings A contingent valuation study for a hypothetical dengue vaccine was administered to 400 households in a multi-country setting: Vietnam, Thailand, and Colombia. All respondents received a description of the hypothetical dengue vaccine scenarios of 70% or 95% effectiveness for 10 or 30 years with a three dose series. Five price points were determined after pilot tests in order to reflect different local situations such as household income levels and general perceptions towards dengue fever. We adopted either Poisson or negative binomial regression models to calculate average willingness-to-pay (WTP), as well as median WTP. We found that there is a significant demand for dengue vaccines. The parametric median WTP is $26.4 ($8.8 per dose) in Vietnam, $70.3 ($23.4 per dose) in Thailand, and $23 ($7.7 per dose) in Colombia. Our study also suggests that respondents place more value on vaccinating young children than school age children and adults. Conclusions/Significance Knowing that dengue vaccines are not yet available, our study provides critical information to both public and private sectors. The study results can be used to ensure broad coverage with an affordable price and incorporated into cost benefit analyses, which can inform prioritization of alternative health interventions at the national level. PMID:26030922
Elahi, Ehsan; Zhang, Liqin; Abid, Muhammad; Javed, Muhammad Tariq; Xinru, Han
2017-03-01
The use of wastewater for rearing domestic animals is a common phenomenon in most of the developing countries like Pakistan that face a serious shortage of freshwater resources. However, most of the literature has only focused on the indirect effects of wastewater use on animal health or productivity, and literature on the direct effects of wastewater use is rare. Therefore, this study aims to investigate the direct and indirect effects of wastewater usage on the prevalence of animal diseases and animal health in Pakistan. The study is based on a household-level survey of 360 domestic water buffalo herds collected from 12 districts of Punjab Province, Pakistan. We tested the prevalence of the animal's diseases, animal's health, and wastewater-use preference with various econometric tools, such as the Poisson, negative binomial, and logistic regressions. The findings of the study show that the majority of the farmers use wastewater for buffalo bathing due to the shortage of freshwater resources. Results explore the prevalence of diseases such as clinical mastitis, tick infestation, and foot and mouth disease at the farm level significantly associated with buffalo bathing in the wastewater. Moreover, bathing in wastewater pre- and post-milking also plays a role in the occurrence of diseases. Particularly, if the buffalo's access to wastewater for bathing is within 60 min after milking, the probability of the animals being exposed to mastitis is higher. Furthermore, on investigation, a number of factors are found, such as the distance to the water source, power shortage, groundwater availability, and the education of farmers that influence farmers' behavior of letting their animals take a bath in wastewater. Moreover, the use of different preventive measures improves the animal's health.
Rinne, Marjo; Garam, Sanna; Häkkinen, Arja; Ylinen, Jari; Kukkonen-Harjula, Katriina; Nikander, Riku
2016-05-01
Cervicogenic headache and migraine are common causes of visits to physicians and physical therapists. Few randomized trials utilizing active physical therapy and progressive therapeutic exercise have been previously published. The existing evidence on active treatment methods supports a moderate effect on cervicogenic headache. The aim of this study is to investigate whether a progressive, group-based therapeutic exercise program decreases the intensity and frequency of chronic headache among women compared with a control group receiving a sham dose of transcutaneous electrical nerve stimulation (TENS) and stretching exercises. A randomized controlled trial with 6-month intervention and follow-up was developed. The participants were randomly assigned to either a treatment group or a control group. The study is being conducted at 2 study centers. The participants are women aged 18 to 60 years with chronic cervicogenic headache or migraine. The treatment group's exercise program consisted of 6 progressive therapeutic exercise modules, including proprioceptive low-load progressive craniocervical and cervical exercises and high-load exercises for the neck muscles. The participants in the control group received 6 individually performed sham TENS treatment sessions. The primary outcome is the intensity of headache. The secondary outcomes are changes in frequency and duration of headache, neck muscle strength, neck and shoulder flexibility, impact of headache on daily life, neck disability, fear-avoidance beliefs, work ability, and quality of life. Between-group differences will be analyzed separately at 6, 12, and 24 months with generalized linear mixed models. In the case of count data (eg, frequency of headache), Poisson or negative binomial regression will be used. The therapists are not blinded. The effects of specific therapeutic exercises on frequency, intensity, and duration of chronic headache and migraine will be reported. © 2016 American Physical Therapy Association.
Comparing the Incidence of Falls/Fractures in Parkinson's Disease Patients in the US Population.
Kalilani, Linda; Asgharnejad, Mahnaz; Palokangas, Tuire; Durgin, Tracy
2016-01-01
Patients with Parkinson's disease (PD) may experience falls and/or fractures as a result of disease symptoms. There are limited data available from long-term studies estimating the incidence of falls/fractures in patients with PD. The objective was to compare the incidence rate of falls/fractures in PD patients with non-PD patients in a US population. This was a retrospective study using a US-based claims database (Truven Health MarketScan®) that compared the incidence rate of falls/fractures in PD subjects with non-PD subjects. The study period included the 12 months prior to index date (defined as earliest PD diagnosis [International Classification of Diseases, Ninth Revision, Clinical Modification code 332.0]) and a postindex period to the end of data availability. Fractures were defined by inpatient/outpatient claims as a principal or secondary diagnosis and accompanying procedure codes during the postindex period. Incidence rates and 95% CIs for falls/fractures were calculated as the number of events per 10,000 person-years of follow-up using negative binomial or Poisson regression models. Twenty-eight thousand two hundred and eighty PD subjects were matched to non-PD subjects for the analysis (mean [SD] age, 71.4 [11.8] years; 53% male). A higher incidence rate (adjusted for comorbidities and medications) of all fall/fracture cases and by fall and fracture types was observed for PD subjects versus non-PD subjects; the overall adjusted incidence rate ratio comparing PD to non-PD subjects was 2.05; 95% CI, 1.88-2.24. The incidence rate of falls/fractures was significantly higher in subjects with PD compared with non-PD subjects in a US population.
Lee, Jung-Seok; Mogasale, Vittal; Lim, Jacqueline K; Carabali, Mabel; Sirivichayakul, Chukiat; Anh, Dang Duc; Lee, Kang-Sung; Thiem, Vu Dinh; Limkittikul, Kriengsak; Tho, Le Huu; Velez, Ivan D; Osorio, Jorge E; Chanthavanich, Pornthep; da Silva, Luiz J; Maskery, Brian A
2015-01-01
The rise in dengue fever cases and the absence of dengue vaccines will likely cause governments to consider various types of effective means for controlling the disease. Given strong public interests in potential dengue vaccines, it is essential to understand the private economic benefits of dengue vaccines for accelerated introduction of vaccines into the public sector program and private markets of high-risk countries. A contingent valuation study for a hypothetical dengue vaccine was administered to 400 households in a multi-country setting: Vietnam, Thailand, and Colombia. All respondents received a description of the hypothetical dengue vaccine scenarios of 70% or 95% effectiveness for 10 or 30 years with a three dose series. Five price points were determined after pilot tests in order to reflect different local situations such as household income levels and general perceptions towards dengue fever. We adopted either Poisson or negative binomial regression models to calculate average willingness-to-pay (WTP), as well as median WTP. We found that there is a significant demand for dengue vaccines. The parametric median WTP is $26.4 ($8.8 per dose) in Vietnam, $70.3 ($23.4 per dose) in Thailand, and $23 ($7.7 per dose) in Colombia. Our study also suggests that respondents place more value on vaccinating young children than school age children and adults. Knowing that dengue vaccines are not yet available, our study provides critical information to both public and private sectors. The study results can be used to ensure broad coverage with an affordable price and incorporated into cost benefit analyses, which can inform prioritization of alternative health interventions at the national level.
Food and Waterborne Disease in the Greater New York City Area Following Hurricane Sandy in 2012.
Bloom, Michael S; Palumbo, Jillian; Saiyed, Nazia; Lauper, Ursula; Lin, Shao
2016-06-01
We aimed to evaluate residence in evacuation areas (storm areas) as a risk factor for food and waterborne disease (FWBD) associated with Hurricane Sandy flooding. We captured 9601 incident outpatient and inpatient FWBD hospital discharge diagnoses for residents of the greater New York City area. We used Poisson or negative binomial regression models to compare the covariate-adjusted risk for a FWBD diagnosis, pre-Sandy (10/28-11/09, 2001-2011) vs. post-Sandy (10/28-11/09, 2012), for residents of "storm" and "non-storm" areas. Outpatient FWBD risk was lower for storm area residents after Hurricane Sandy (risk ratio [RR]=0.58, 95% confidence interval [CI]: 0.46-0.74), and varied by age, sex, and county. However, storm area residents 65 years of age or older experienced higher risk after Hurricane Sandy (RR=2.16, 95% CI: 1.11-4.19), albeit based on few cases. Inpatient FWBD risk was lower for non-storm area residents after Hurricane Sandy (RR=0.79, 95% CI: 0.66-0.95), and varied by age, race, and county, although there was no significant change for storm area residents (RR=0.86, 95% CI: 0.69-1.08). Those ≥65 years of age were also at lower risk for inpatient FWBD diagnosis, yet the effect was weaker for storm area (RR=0.89, 95% CI: 0.67-1.18) than for non-storm area residents (RR=0.68, 95% CI: 0.52-0.89). Hurricane preparation, mitigation, and response activities in the greater New York City area may have led to "protective" effects for FWBD. (Disaster Med Public Health Preparedness. 2016;10:503-511).
Hüls, Anke; Frömke, Cornelia; Ickstadt, Katja; Hille, Katja; Hering, Johanna; von Münchhausen, Christiane; Hartmann, Maria; Kreienbrock, Lothar
2017-01-01
Antimicrobial resistance in livestock is a matter of general concern. To develop hygiene measures and methods for resistance prevention and control, epidemiological studies on a population level are needed to detect factors associated with antimicrobial resistance in livestock holdings. In general, regression models are used to describe these relationships between environmental factors and resistance outcome. Besides the study design, the correlation structures of the different outcomes of antibiotic resistance and structural zero measurements on the resistance outcome as well as on the exposure side are challenges for the epidemiological model building process. The use of appropriate regression models that acknowledge these complexities is essential to assure valid epidemiological interpretations. The aims of this paper are (i) to explain the model building process comparing several competing models for count data (negative binomial model, quasi-Poisson model, zero-inflated model, and hurdle model) and (ii) to compare these models using data from a cross-sectional study on antibiotic resistance in animal husbandry. These goals are essential to evaluate which model is most suitable to identify potential prevention measures. The dataset used as an example in our analyses was generated initially to study the prevalence and associated factors for the appearance of cefotaxime-resistant Escherichia coli in 48 German fattening pig farms. For each farm, the outcome was the count of samples with resistant bacteria. There was almost no overdispersion and only moderate evidence of excess zeros in the data. Our analyses show that it is essential to evaluate regression models in studies analyzing the relationship between environmental factors and antibiotic resistances in livestock. After model comparison based on evaluation of model predictions, Akaike information criterion, and Pearson residuals, here the hurdle model was judged to be the most appropriate model. PMID:28620609
Niedhammer, Isabelle; Lesuffleur, Thomas; Memmi, Sarah; Chastang, Jean-François
2017-12-01
Explanations of social inequalities in sickness absence are lacking in the literature. Our objectives were to evaluate the contribution of various occupational exposures in explaining these inequalities in a national representative sample of employees. The study was based on the cross-sectional sample of the SUMER 2010 survey that included 46 962 employees, 26 883 men and 20 079 women. Both sickness absence spells and days within the last 12 months, as health indicators, were studied. Occupation was used as a marker of social position. The study included both psychosocial work factors (variables related to the classical job strain model, psychological demands, decision latitude, social support and understudied variables related to reward, job insecurity, job promotion, esteem, working time/hours and workplace violence) and occupational exposures of chemical, biological, physical and biomechanical nature. Weighted age-adjusted Poisson and negative binomial regression analyses were performed. Strong occupational differences were found for sickness absence spells and days and for exposure to most work factors. Psychosocial work factors contributed to explain occupational differences in sickness absence spells, and the contributing factors were: decision latitude, social support, reward, shift work and workplace violence. Physical exposure, particularly noise, and biomechanical exposure were also found to be contributing factors. Almost no work factor was found to contribute to occupational differences in sickness absence days. Preventive measures at the workplace oriented towards low-skilled occupational groups and both psychosocial work factors and other occupational exposures may be beneficial to reduce sickness absence spells and occupational differences in this outcome. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Predicting stem borer density in maize using RapidEye data and generalized linear models
NASA Astrophysics Data System (ADS)
Abdel-Rahman, Elfatih M.; Landmann, Tobias; Kyalo, Richard; Ong'amo, George; Mwalusepo, Sizah; Sulieman, Saad; Ru, Bruno Le
2017-05-01
Average maize yield in eastern Africa is 2.03 t ha-1 as compared to global average of 6.06 t ha-1 due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In eastern Africa, maize yield losses due to stem borers are currently estimated between 12% and 21% of the total production. The objective of the present study was to explore the possibility of RapidEye spectral data to assess stem borer larva densities in maize fields in two study sites in Kenya. RapidEye images were acquired for the Bomet (western Kenya) test site on the 9th of December 2014 and on 27th of January 2015, and for Machakos (eastern Kenya) a RapidEye image was acquired on the 3rd of January 2015. Five RapidEye spectral bands as well as 30 spectral vegetation indices (SVIs) were utilized to predict per field maize stem borer larva densities using generalized linear models (GLMs), assuming Poisson ('Po') and negative binomial ('NB') distributions. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were used to assess the models performance using a leave-one-out cross-validation approach. The Zero-inflated NB ('ZINB') models outperformed the 'NB' models and stem borer larva densities could only be predicted during the mid growing season in December and early January in both study sites, respectively (RMSE = 0.69-1.06 and RPD = 8.25-19.57). Overall, all models performed similar when all the 30 SVIs (non-nested) and only the significant (nested) SVIs were used. The models developed could improve decision making regarding controlling maize stem borers within integrated pest management (IPM) interventions.
Auxetics in smart systems and structures 2013
NASA Astrophysics Data System (ADS)
Scarpa, Fabrizio; Ruzzene, Massimo; Alderson, Andrew; Wojciechowski, Krzysztof W.
2013-08-01
Auxetics comes from the Greek (auxetikos), meaning 'that which tends to expand'. The term indicates specifically materials and structures with negative Poisson's ratio (NPR). Although the Poisson's ratio is a mechanical property, auxetic solids have shown evidence of multifunctional characteristics, ranging from increased stiffness and indentation resistance, to energy absorption under static and dynamic loading, soundproofing qualities and dielectric tangent loss. NPR solids and structures have also been used in the past as material platforms to build smart structural systems. Auxetics in general can be considered also a part of the 'negative materials' field, which includes solids and structures exhibiting negative thermal expansion, negative stiffness and compressibility. All these unusual deformation characteristics have the potential to provide a significant contribution to the area of smart materials systems and structures. In this focus issue, we are pleased to present some examples of novel multifunctional behaviors provided by auxetic, negative stiffness and negative compressibility in smart systems and structures. Particular emphasis has been placed upon the multidisciplinary and systems approach provided by auxetics and negative materials, also with examples applied to energy absorption, vibration damping, structural health monitoring and active deployment aspects. Three papers in this focus issue provide significant new clarifications on the role of auxeticity in the mechanical behavior of shear deformation in plates (Lim), stress wave characteristics (Lim again), and thermoelastic damping (Maruszewski et al ). Kochmann and Venturini describe the performance of auxetic composites in finite strain elasticity. New types of microstructures for auxetic systems are depicted for the first time in three works by Ge et al , Zhang et al , and Kim and co-workers. Tubular auxetic structures and their mechanical performance are also analyzed by Karnessis and Burriesci. Foams with negative Poisson's ratio constitute one of the main examples of auxetic materials available. The focus issue presents two papers on this topic, one on a novel microstructure numerical modeling technique (Pozniak et al ), the other on experimental and model identification results of linear and nonlinear vibration behavior (Bianchi and Scarpa). Nonlinearity (now in wave propagation for SHM applications) is also investigated by Klepka and co-workers, this time in auxetic chiral sandwich structures. Vibration damping and nonlinear behavior is also a key feature of the auxetic structural damper with metal rubber particles proposed by Ma et al . Papers on negative material properties are introduced by the negative stiffness and high-frequency damper concept proposed by Kalathur and Lakes. A cellular structure exhibiting a zero Poisson's ratio, together with zero and negative stiffness, is presented in the work of Virk and co-workers. Negative compressibility is examined by Grima et al in truss-type structures with constrained angle stretching. Finally, Grima and co-workers propose a concept of tunable auxetic metamaterial with magnetic inclusions for multifunctional applications. Acknowledgments We would like to thank all the authors for their high quality contributions. Special thanks go also to the Smart Materials and Structures Editorial Board and the IOP Publishing team, with particular mention to Natasha Leeper and Bethan Davies for their continued support in arranging this focus issue in Smart Materials and Structures .
Meng, Lingbiao; Zhang, Yingjuan; Zhou, Minjie; Zhang, Jicheng; Zhou, Xiuwen; Ni, Shuang; Wu, Weidong
2018-02-19
Designing new materials with reduced dimensionality and distinguished properties has continuously attracted intense interest for materials innovation. Here we report a novel two-dimensional (2D) Zn 2 C monolayer nanomaterial with exceptional structure and properties by means of first-principles calculations. This new Zn 2 C monolayer is composed of quasi-tetrahedral tetracoordinate carbon and quasi-linear bicoordinate zinc, featuring a peculiar zigzag-shaped buckling configuration. The unique coordinate topology endows this natural 2D semiconducting monolayer with strongly strain tunable band gap and unusual negative Poisson ratios. The monolayer has good dynamic and thermal stabilities and is also the lowest-energy structure of 2D space indicated by the particle-swarm optimization (PSO) method, implying its synthetic feasibility. With these intriguing properties the material may find applications in nanoelectronics and micromechanics.
Furr-Holden, C Debra M; Milam, Adam J; Nesoff, Elizabeth D; Johnson, Renee M; Fakunle, David O; Jennings, Jacky M; Thorpe, Roland J
2016-01-01
This research examined whether publicly funded drug treatment centers (DTCs) were associated with violent crime in excess of the violence happening around other commercial businesses. Violent crime data and locations of community entities were geocoded and mapped. DTCs and other retail outlets were matched based on a Neighborhood Disadvantage score at the census tract level. Street network buffers ranging from 100 to 1,400 feet were placed around each location. Negative binomial regression models were used to estimate the relationship between the count of violent crimes and the distance from each business type. Compared with the mean count of violent crime around drug treatment centers, the mean count of violent crime (M = 2.87) was significantly higher around liquor stores (M = 3.98; t test; p < .01) and corner stores (M = 3.78; t test; p < .01), and there was no statistically significant difference between the count around convenience stores (M = 2.65; t test; p = .32). In the adjusted negative binomial regression models, there was a negative and significant relationship between the count of violent crime and the distance from drug treatment centers (β = -.069, p < .01), liquor stores (β = -.081, p < .01), corner stores (β = -.116, p < .01), and convenience stores (β = -.154, p < .01). Violent crime associated with drug treatment centers is similar to that associated with liquor stores and is less frequent than that associated with convenience stores and corner stores.
Harold R. Offord
1966-01-01
Sequential sampling based on a negative binomial distribution of ribes populations required less than half the time taken by regular systematic line transect sampling in a comparison test. It gave the same control decision as the regular method in 9 of 13 field trials. A computer program that permits sequential plans to be built readily for other white pine regions is...
Oral health of schoolchildren in Western Australia.
Arrow, P
2016-09-01
The West Australian School Dental Service (SDS) provides free, statewide, primary dental care to schoolchildren aged 5-17 years. This study reports on an evaluation of the oral health of children examined during the 2014 calendar year. Children were sampled, based on their date of birth, and SDS clinicians collected the clinical information. Weighted mean values of caries experience were presented. Negative binomial regression modelling was undertaken to test for factors of significance in the rate of caries occurrence. Data from children aged 5-15 years were used (girls = 4616, boys = 4900). Mean dmft (5-10-year-olds), 1.42 SE 0.03; mean DMFT (6-15-year-olds), 0.51 SE 0.01. Negative binomial regression model of permanent tooth caries found higher rates of caries in children who were from non-fluoridated areas (RR 2.1); Aboriginal (RR 2.4); had gingival inflammation (RR 1.5); lower ICSEA level (RR 1.4); and recalled at more than 24-month interval (RR 1.8). The study highlighted poor dental health associated with living in non-fluoridated areas, Aboriginal identity, poor oral hygiene, lower socioeconomic level and having extended intervals between dental checkups. Timely assessments and preventive measures targeted at groups, including extending community water fluoridation, may assist in further improving the oral health of children in Western Australia. © 2015 Australian Dental Association.
Rocheleau, J P; Michel, P; Lindsay, L R; Drebot, M; Dibernardo, A; Ogden, N H; Fortin, A; Arsenault, J
2017-10-01
The identification of specific environments sustaining emerging arbovirus amplification and transmission to humans is a key component of public health intervention planning. This study aimed at identifying environmental factors associated with West Nile virus (WNV) infections in southern Quebec, Canada, by modelling and jointly interpreting aggregated clinical data in humans and serological data in pet dogs. Environmental risk factors were estimated in humans by negative binomial regression based on a dataset of 191 human WNV clinical cases reported in the study area between 2011 and 2014. Risk factors for infection in dogs were evaluated by logistic and negative binomial models based on a dataset including WNV serological results from 1442 dogs sampled from the same geographical area in 2013. Forested lands were identified as low-risk environments in humans. Agricultural lands represented higher risk environments for dogs. Environments identified as impacting risk in the current study were somewhat different from those identified in other studies conducted in north-eastern USA, which reported higher risk in suburban environments. In the context of the current study, combining human and animal data allowed a more comprehensive and possibly a more accurate view of environmental WNV risk factors to be obtained than by studying aggregated human data alone.
Community covariates of malnutrition based mortality among older adults.
Lee, Matthew R; Berthelot, Emily R
2010-05-01
The purpose of this study was to identify community level covariates of malnutrition-based mortality among older adults. A community level framework was delineated which explains rates of malnutrition-related mortality among older adults as a function of community levels of socioeconomic disadvantage, disability, and social isolation among members of this group. County level data on malnutrition mortality of people 65 years of age and older for the period 2000-2003 were drawn from the CDC WONDER system databases. County level measures of older adult socioeconomic disadvantage, disability, and social isolation were derived from the 2000 US Census of Population and Housing. Negative binomial regression models adjusting for the size of the population at risk, racial composition, urbanism, and region were estimated to assess the relationships among these indicators. Results from negative binomial regression analysis yielded the following: a standard deviation increase in socioeconomic/physical disadvantage was associated with a 12% increase in the rate of malnutrition mortality among older adults (p < 0.001), whereas a standard deviation increase in social isolation was associated with a 5% increase in malnutrition mortality among older adults (p < 0.05). Community patterns of malnutrition based mortality among older adults are partly a function of levels of socioeconomic and physical disadvantage and social isolation among older adults. 2010 Elsevier Inc. All rights reserved.
Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.
Mi, Gu; Di, Yanming; Schafer, Daniel W
2015-01-01
This work is about assessing model adequacy for negative binomial (NB) regression, particularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq) data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.
Forecasting asthma-related hospital admissions in London using negative binomial models.
Soyiri, Ireneous N; Reidpath, Daniel D; Sarran, Christophe
2013-05-01
Health forecasting can improve health service provision and individual patient outcomes. Environmental factors are known to impact chronic respiratory conditions such as asthma, but little is known about the extent to which these factors can be used for forecasting. Using weather, air quality and hospital asthma admissions, in London (2005-2006), two related negative binomial models were developed and compared with a naive seasonal model. In the first approach, predictive forecasting models were fitted with 7-day averages of each potential predictor, and then a subsequent multivariable model is constructed. In the second strategy, an exhaustive search of the best fitting models between possible combinations of lags (0-14 days) of all the environmental effects on asthma admission was conducted. Three models were considered: a base model (seasonal effects), contrasted with a 7-day average model and a selected lags model (weather and air quality effects). Season is the best predictor of asthma admissions. The 7-day average and seasonal models were trivial to implement. The selected lags model was computationally intensive, but of no real value over much more easily implemented models. Seasonal factors can predict daily hospital asthma admissions in London, and there is a little evidence that additional weather and air quality information would add to forecast accuracy.
Austin, Shamly; Qu, Haiyan; Shewchuk, Richard M
2012-10-01
To examine the association between adherence to physical activity guidelines and health-related quality of life (HRQOL) among individuals with arthritis. A cross-sectional sample with 33,071 US adults, 45 years or older with physician-diagnosed arthritis was obtained from 2007 Behavioral Risk Factor Surveillance System survey. We conducted negative binomial regression analysis to examine HRQOL as a function of adherence to physical activity guidelines controlling for physicians' recommendations for physical activity, age, sex, race, education, marital status, employment, annual income, health insurance, personal physician, emotional support, body mass index, activity limitations, health status, and co-morbidities based on Behavioral Model of Health Services Utilization. Descriptive statistics showed that 60% adults with arthritis did not adhere to physical activity guidelines, mean physically and mentally unhealthy days were 7.7 and 4.4 days, respectively. Results from negative binomial regression indicated that individuals who did not adhere to physical activity guidelines had 1.14 days more physically unhealthy days and 1.12 days more mentally unhealthy days than those who adhered controlling for covariates. Adherence to physical activity is important to improve HRQOL for individuals with arthritis. However, adherence is low among this population. Interventions are required to engage individuals with arthritis in physical activity.
Design and analysis of three-arm trials with negative binomially distributed endpoints.
Mütze, Tobias; Munk, Axel; Friede, Tim
2016-02-20
A three-arm clinical trial design with an experimental treatment, an active control, and a placebo control, commonly referred to as the gold standard design, enables testing of non-inferiority or superiority of the experimental treatment compared with the active control. In this paper, we propose methods for designing and analyzing three-arm trials with negative binomially distributed endpoints. In particular, we develop a Wald-type test with a restricted maximum-likelihood variance estimator for testing non-inferiority or superiority. For this test, sample size and power formulas as well as optimal sample size allocations will be derived. The performance of the proposed test will be assessed in an extensive simulation study with regard to type I error rate, power, sample size, and sample size allocation. For the purpose of comparison, Wald-type statistics with a sample variance estimator and an unrestricted maximum-likelihood estimator are included in the simulation study. We found that the proposed Wald-type test with a restricted variance estimator performed well across the considered scenarios and is therefore recommended for application in clinical trials. The methods proposed are motivated and illustrated by a recent clinical trial in multiple sclerosis. The R package ThreeArmedTrials, which implements the methods discussed in this paper, is available on CRAN. Copyright © 2015 John Wiley & Sons, Ltd.
Martin, Julien; Royle, J. Andrew; MacKenzie, Darryl I.; Edwards, Holly H.; Kery, Marc; Gardner, Beth
2011-01-01
Summary 1. Binomial mixture models use repeated count data to estimate abundance. They are becoming increasingly popular because they provide a simple and cost-effective way to account for imperfect detection. However, these models assume that individuals are detected independently of each other. This assumption may often be violated in the field. For instance, manatees (Trichechus manatus latirostris) may surface in turbid water (i.e. become available for detection during aerial surveys) in a correlated manner (i.e. in groups). However, correlated behaviour, affecting the non-independence of individual detections, may also be relevant in other systems (e.g. correlated patterns of singing in birds and amphibians). 2. We extend binomial mixture models to account for correlated behaviour and therefore to account for non-independent detection of individuals. We simulated correlated behaviour using beta-binomial random variables. Our approach can be used to simultaneously estimate abundance, detection probability and a correlation parameter. 3. Fitting binomial mixture models to data that followed a beta-binomial distribution resulted in an overestimation of abundance even for moderate levels of correlation. In contrast, the beta-binomial mixture model performed considerably better in our simulation scenarios. We also present a goodness-of-fit procedure to evaluate the fit of beta-binomial mixture models. 4. We illustrate our approach by fitting both binomial and beta-binomial mixture models to aerial survey data of manatees in Florida. We found that the binomial mixture model did not fit the data, whereas there was no evidence of lack of fit for the beta-binomial mixture model. This example helps illustrate the importance of using simulations and assessing goodness-of-fit when analysing ecological data with N-mixture models. Indeed, both the simulations and the goodness-of-fit procedure highlighted the limitations of the standard binomial mixture model for aerial manatee surveys. 5. Overestimation of abundance by binomial mixture models owing to non-independent detections is problematic for ecological studies, but also for conservation. For example, in the case of endangered species, it could lead to inappropriate management decisions, such as downlisting. These issues will be increasingly relevant as more ecologists apply flexible N-mixture models to ecological data.
Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach
Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao
2018-01-01
When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach, and has several attractive features compared to the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, since the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration. PMID:26303591
Jacob, Benjamin G; Muturi, Ephantus J; Caamano, Erick X; Gunter, James T; Mpanga, Enoch; Ayine, Robert; Okelloonen, Joseph; Nyeko, Jack Pen-Mogi; Shililu, Josephat I; Githure, John I; Regens, James L; Novak, Robert J; Kakoma, Ibulaimu
2008-03-14
The aim of this study was to determine if remotely sensed data and Digital Elevation Model (DEM) can test relationships between Culex quinquefasciatus and Anopheles gambiae s.l. larval habitats and environmental parameters within Internally Displaced People (IDP) campgrounds in Gulu, Uganda. A total of 65 georeferenced aquatic habitats in various IDP camps were studied to compare the larval abundance of Cx. quinquefasciatus and An. gambiae s.l. The aquatic habitat dataset were overlaid onto Land Use Land Cover (LULC) maps retrieved from Landsat imagery with 150 m x 150 m grid cells stratified by levels of drainage. The LULC change was estimated over a period of 14 years. Poisson regression analyses and Moran's I statistics were used to model relationships between larval abundance and environmental predictors. Individual larval habitat data were further evaluated in terms of their covariations with spatial autocorrelation by regressing them on candidate spatial filter eigenvectors. Multispectral QuickBird imagery classification and DEM-based GIS methods were generated to evaluate stream flow direction and accumulation for identification of immature Cx. quinquefasciatus and An. gambiae s.l. and abundance. The main LULC change in urban Gulu IDP camps was non-urban to urban, which included about 71.5 % of the land cover. The regression models indicate that counts of An. gambiae s.l. larvae were associated with shade while Cx. quinquefasciatus were associated with floating vegetation. Moran's I and the General G statistics for mosquito density by species and instars, identified significant clusters of high densities of Anopheles; larvae, however, Culex are not consistently clustered. A stepwise negative binomial regression decomposed the immature An. gambiae s.l. data into empirical orthogonal bases. The data suggest the presence of roughly 11% to 28 % redundant information in the larval count samples. The DEM suggest a positive correlation for Culex (0.24) while for Anopheles there was a negative correlation (-0.23) for a local model distance to stream. These data demonstrate that optical remote sensing; geostatistics and DEMs can be used to identify parameters associated with Culex and Anopheles aquatic habitats.
Jacob, Benjamin G; Muturi, Ephantus J; Caamano, Erick X; Gunter, James T; Mpanga, Enoch; Ayine, Robert; Okelloonen, Joseph; Nyeko, Jack Pen-Mogi; Shililu, Josephat I; Githure, John I; Regens, James L; Novak, Robert J; Kakoma, Ibulaimu
2008-01-01
Background The aim of this study was to determine if remotely sensed data and Digital Elevation Model (DEM) can test relationships between Culex quinquefasciatus and Anopheles gambiae s.l. larval habitats and environmental parameters within Internally Displaced People (IDP) campgrounds in Gulu, Uganda. A total of 65 georeferenced aquatic habitats in various IDP camps were studied to compare the larval abundance of Cx. quinquefasciatus and An. gambiae s.l. The aquatic habitat dataset were overlaid onto Land Use Land Cover (LULC) maps retrieved from Landsat imagery with 150 m × 150 m grid cells stratified by levels of drainage. The LULC change was estimated over a period of 14 years. Poisson regression analyses and Moran's I statistics were used to model relationships between larval abundance and environmental predictors. Individual larval habitat data were further evaluated in terms of their covariations with spatial autocorrelation by regressing them on candidate spatial filter eigenvectors. Multispectral QuickBird imagery classification and DEM-based GIS methods were generated to evaluate stream flow direction and accumulation for identification of immature Cx. quinquefasciatus and An. gambiae s.l. and abundance. Results The main LULC change in urban Gulu IDP camps was non-urban to urban, which included about 71.5 % of the land cover. The regression models indicate that counts of An. gambiae s.l. larvae were associated with shade while Cx. quinquefasciatus were associated with floating vegetation. Moran's I and the General G statistics for mosquito density by species and instars, identified significant clusters of high densities of Anopheles; larvae, however, Culex are not consistently clustered. A stepwise negative binomial regression decomposed the immature An. gambiae s.l. data into empirical orthogonal bases. The data suggest the presence of roughly 11% to 28 % redundant information in the larval count samples. The DEM suggest a positive correlation for Culex (0.24) while for Anopheles there was a negative correlation (-0.23) for a local model distance to stream. Conclusion These data demonstrate that optical remote sensing; geostatistics and DEMs can be used to identify parameters associated with Culex and Anopheles aquatic habitats. PMID:18341699
Measured iron-gallium alloy tensile properties under magnetic fields
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyeong; Flatau, Alison B.
2004-07-01
Tension testing is used to identify Galfenol material properties under low level DC magnetic bias fields. Dog bone shaped specimens of single crystal Fe100-xGax, where 17<=x<=33, underwent tensile testing along two crystalographic axis orientations, [110] and [100]. The material properties being investigated and calculated from measured quantities are: Young's modulus and Poisson's ratio. Data are presented that demonstrate the dependence of these material properties on applied magnetic field levels and provide a preliminary assessment of the trends in material properties for performance under varied operating conditions. The elastic properties of Fe-Ga alloys were observed to be increasingly anisotropic with rising Ga content for the stoichiometries examined. The largest elastic anisotropies were manifested in [110] Poisson's ratios of as low as -0.63 in one specimen. This negative Poisson's ratio creates a significant in-plane auxetic behavior that could be exploited in applications that capitalize on unique area effects produced under uniaxial loading.
A Note on a Family of Alternating Sums of Products of Binomial Numbers
ERIC Educational Resources Information Center
Gauthier, N.
2013-01-01
We study the following family of integral-valued alternating sums, where -infinity equal to or less than m equal to or less than infinity and n equal to or greater than 0 are integers [equation omitted]. We first consider h[subscript m](n) for m and n non-negative integers and show that it is of the form 2[superscript n + 2m] - P[subscript m](n),…
[Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].
Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L
2017-03-10
To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.
Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach.
Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao
2016-01-15
When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach and has several attractive features compared with the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, because the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration. Copyright © 2015 John Wiley & Sons, Ltd.
Furr-Holden, C. Debra M.; Milam, Adam J.; Nesoff, Elizabeth D.; Johnson, Renee M.; Fakunle, David O.; Jennings, Jacky M.; Thorpe, Roland J.
2016-01-01
Objective: This research examined whether publicly funded drug treatment centers (DTCs) were associated with violent crime in excess of the violence happening around other commercial businesses. Method: Violent crime data and locations of community entities were geocoded and mapped. DTCs and other retail outlets were matched based on a Neighborhood Disadvantage score at the census tract level. Street network buffers ranging from 100 to 1,400 feet were placed around each location. Negative binomial regression models were used to estimate the relationship between the count of violent crimes and the distance from each business type. Results: Compared with the mean count of violent crime around drug treatment centers, the mean count of violent crime (M = 2.87) was significantly higher around liquor stores (M = 3.98; t test; p < .01) and corner stores (M = 3.78; t test; p < .01), and there was no statistically significant difference between the count around convenience stores (M = 2.65; t test; p = .32). In the adjusted negative binomial regression models, there was a negative and significant relationship between the count of violent crime and the distance from drug treatment centers (β = -.069, p < .01), liquor stores (β = -.081, p < .01), corner stores (β = -.116, p < .01), and convenience stores (β = -.154, p < .01). Conclusions: Violent crime associated with drug treatment centers is similar to that associated with liquor stores and is less frequent than that associated with convenience stores and corner stores. PMID:26751351
Blind beam-hardening correction from Poisson measurements
NASA Astrophysics Data System (ADS)
Gu, Renliang; Dogandžić, Aleksandar
2016-02-01
We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.
Holsclaw, Tracy; Hallgren, Kevin A; Steyvers, Mark; Smyth, Padhraic; Atkins, David C
2015-12-01
Behavioral coding is increasingly used for studying mechanisms of change in psychosocial treatments for substance use disorders (SUDs). However, behavioral coding data typically include features that can be problematic in regression analyses, including measurement error in independent variables, non normal distributions of count outcome variables, and conflation of predictor and outcome variables with third variables, such as session length. Methodological research in econometrics has shown that these issues can lead to biased parameter estimates, inaccurate standard errors, and increased Type I and Type II error rates, yet these statistical issues are not widely known within SUD treatment research, or more generally, within psychotherapy coding research. Using minimally technical language intended for a broad audience of SUD treatment researchers, the present paper illustrates the nature in which these data issues are problematic. We draw on real-world data and simulation-based examples to illustrate how these data features can bias estimation of parameters and interpretation of models. A weighted negative binomial regression is introduced as an alternative to ordinary linear regression that appropriately addresses the data characteristics common to SUD treatment behavioral coding data. We conclude by demonstrating how to use and interpret these models with data from a study of motivational interviewing. SPSS and R syntax for weighted negative binomial regression models is included in online supplemental materials. (c) 2016 APA, all rights reserved).
Holsclaw, Tracy; Hallgren, Kevin A.; Steyvers, Mark; Smyth, Padhraic; Atkins, David C.
2015-01-01
Behavioral coding is increasingly used for studying mechanisms of change in psychosocial treatments for substance use disorders (SUDs). However, behavioral coding data typically include features that can be problematic in regression analyses, including measurement error in independent variables, non-normal distributions of count outcome variables, and conflation of predictor and outcome variables with third variables, such as session length. Methodological research in econometrics has shown that these issues can lead to biased parameter estimates, inaccurate standard errors, and increased type-I and type-II error rates, yet these statistical issues are not widely known within SUD treatment research, or more generally, within psychotherapy coding research. Using minimally-technical language intended for a broad audience of SUD treatment researchers, the present paper illustrates the nature in which these data issues are problematic. We draw on real-world data and simulation-based examples to illustrate how these data features can bias estimation of parameters and interpretation of models. A weighted negative binomial regression is introduced as an alternative to ordinary linear regression that appropriately addresses the data characteristics common to SUD treatment behavioral coding data. We conclude by demonstrating how to use and interpret these models with data from a study of motivational interviewing. SPSS and R syntax for weighted negative binomial regression models is included in supplementary materials. PMID:26098126
Grennan, J Troy; Loutfy, Mona R; Su, DeSheng; Harrigan, P Richard; Cooper, Curtis; Klein, Marina; Machouf, Nima; Montaner, Julio S G; Rourke, Sean; Tsoukas, Christos; Hogg, Bob; Raboud, Janet
2012-04-15
The importance of human immunodeficiency virus (HIV) blip magnitude on virologic rebound has been raised in clinical guidelines relating to viral load assays. Antiretroviral-naive individuals initiating combination antiretroviral therapy (cART) after 1 January 2000 and achieving virologic suppression were studied. Negative binomial models were used to identify blip correlates. Recurrent event models were used to determine the association between blips and rebound by incorporating multiple periods of virologic suppression per individual. 3550 participants (82% male; median age, 40 years) were included. In a multivariable negative binomial regression model, the Amplicor assay was associated with a lower blip rate than branched DNA (rate ratio, 0.69; P < .01), controlling for age, sex, region, baseline HIV-1 RNA and CD4 count, AIDS-defining illnesses, year of cART initiation, cART type, and HIV-1 RNA testing frequency. In a multivariable recurrent event model controlling for age, sex, intravenous drug use, cART start year, cART type, assay type, and HIV-1 RNA testing frequency, blips of 500-999 copies/mL were associated with virologic rebound (hazard ratio, 2.70; P = .002), whereas blips of 50-499 were not. HIV-1 RNA assay was an important determinant of blip rates and should be considered in clinical guidelines. Blips ≥500 copies/mL were associated with increased rebound risk.
Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie
2016-03-01
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Park, Byung-Jung; Lord, Dominique; Wu, Lingtao
2016-10-28
This study aimed to investigate the relative performance of two models (negative binomial (NB) model and two-component finite mixture of negative binomial models (FMNB-2)) in terms of developing crash modification factors (CMFs). Crash data on rural multilane divided highways in California and Texas were modeled with the two models, and crash modification functions (CMFunctions) were derived. The resultant CMFunction estimated from the FMNB-2 model showed several good properties over that from the NB model. First, the safety effect of a covariate was better reflected by the CMFunction developed using the FMNB-2 model, since the model takes into account the differential responsiveness of crash frequency to the covariate. Second, the CMFunction derived from the FMNB-2 model is able to capture nonlinear relationships between covariate and safety. Finally, following the same concept as those for NB models, the combined CMFs of multiple treatments were estimated using the FMNB-2 model. The results indicated that they are not the simple multiplicative of single ones (i.e., their safety effects are not independent under FMNB-2 models). Adjustment Factors (AFs) were then developed. It is revealed that current Highway Safety Manual's method could over- or under-estimate the combined CMFs under particular combination of covariates. Safety analysts are encouraged to consider using the FMNB-2 models for developing CMFs and AFs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Changsheng; Cai, Hongmin; Huang, Jingying; Song, Yan
2016-09-17
Variations in DNA copy number have an important contribution to the development of several diseases, including autism, schizophrenia and cancer. Single-cell sequencing technology allows the dissection of genomic heterogeneity at the single-cell level, thereby providing important evolutionary information about cancer cells. In contrast to traditional bulk sequencing, single-cell sequencing requires the amplification of the whole genome of a single cell to accumulate enough samples for sequencing. However, the amplification process inevitably introduces amplification bias, resulting in an over-dispersing portion of the sequencing data. Recent study has manifested that the over-dispersed portion of the single-cell sequencing data could be well modelled by negative binomial distributions. We developed a read-depth based method, nbCNV to detect the copy number variants (CNVs). The nbCNV method uses two constraints-sparsity and smoothness to fit the CNV patterns under the assumption that the read signals are negatively binomially distributed. The problem of CNV detection was formulated as a quadratic optimization problem, and was solved by an efficient numerical solution based on the classical alternating direction minimization method. Extensive experiments to compare nbCNV with existing benchmark models were conducted on both simulated data and empirical single-cell sequencing data. The results of those experiments demonstrate that nbCNV achieves superior performance and high robustness for the detection of CNVs in single-cell sequencing data.
M-Bonomial Coefficients and Their Identities
ERIC Educational Resources Information Center
Asiru, Muniru A.
2010-01-01
In this note, we introduce M-bonomial coefficients or (M-bonacci binomial coefficients). These are similar to the binomial and the Fibonomial (or Fibonacci-binomial) coefficients and can be displayed in a triangle similar to Pascal's triangle from which some identities become obvious.
Topographical variation of the elastic properties of articular cartilage in the canine knee.
Jurvelin, J S; Arokoski, J P; Hunziker, E B; Helminen, H J
2000-06-01
Equilibrium response of articular cartilage to indentation loading is controlled by the thickness (h) and elastic properties (shear modulus, mu, and Poisson's ratio, nu) of the tissue. In this study, we characterized topographical variation of Poisson's ratio of the articular cartilage in the canine knee joint (N=6). Poisson's ratio was measured using a microscopic technique. In this technique, the shape change of the cartilage disk was visualized while the cartilage was immersed in physiological solution and compressed in unconfined geometry. After a constant 5% axial strain, the lateral strain was measured during stress relaxation. At equilibrium, the lateral-to-axial strain ratio indicates the Poisson's ratio of the tissue. Indentation (equilibrium) data from our prior study (Arokoski et al., 1994. International Journal of Sports Medicine 15, 254-260) was re-analyzed using the Poisson's ratio results at the test site to derive values for shear and aggregate moduli. The lowest Poisson's ratio (0.070+/-0.016) located at the patellar surface of femur (FPI) and the highest (0.236+/-0.026) at the medial tibial plateau (TMI). The stiffest cartilage was found at the patellar groove of femur (micro=0.964+/-0.189MPa, H(a)=2.084+/-0. 409MPa) and the softest at the tibial plateaus (micro=0.385+/-0. 062MPa, H(a)=1.113+/-0.141MPa). Comparison of the mechanical results and the biochemical composition of the tissue (Jurvelin et al., 1988. Engineering in Medicine 17, 157-162) at the matched sites of the canine knee joint indicated a negative correlation between the Poisson's ratio and collagen-to-PG content ratio. This is in harmony with our previous findings which suggested that, in unconfined compression, the degree of lateral expansion in different tissue zones is related to collagen-to-PG ratio of the zone.
Adams, Rachel Sayko; Larson, Mary Jo; Corrigan, John D.; Ritter, Grant A.; Williams, Thomas V.
2013-01-01
This study used the 2008 Department of Defense Survey of Health Related Behaviors among Active Duty Military Personnel to determine whether traumatic brain injury (TBI) is associated with past year drinking-related consequences. The study sample included currently-drinking personnel who had a combat deployment in the past year and were home for ≥6 months (N = 3,350). Negative binomial regression models were used to assess the incidence rate ratios of consequences, by TBI-level. Experiencing a TBI with a loss of consciousness >20 minutes was significantly associated with consequences independent of demographics, combat exposure, posttraumatic stress disorder, and binge drinking. The study’s limitations are noted. PMID:23869456
Performance and structure of single-mode bosonic codes
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Noh, Kyungjoo; Duivenvoorden, Kasper; Young, Dylan J.; Brierley, R. T.; Reinhold, Philip; Vuillot, Christophe; Li, Linshu; Shen, Chao; Girvin, S. M.; Terhal, Barbara M.; Jiang, Liang
2018-03-01
The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently been followed by cat- and binomial-code proposals. Numerically optimized codes have also been proposed, and we introduce codes of this type here. These codes have yet to be compared using the same error model; we provide such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication rates of the combined encoding-error-recovery channel by calculating the channel's hashing bound for each code. Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence of the cat-binomial-GKP order of performance occurring at small loss rates, we analytically evaluate the quantum error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and discrete-variable systems. First, we characterize one- and two-mode binomial as well as multiqubit permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of spin-coherent states, extending our characterization to qudit binomial codes and yielding a multiqudit code.
Wang, Yu; Li, Feng; Li, Yafei; Chen, Zhongfang
2016-05-03
Designing new materials with novel topological properties and reduced dimensionality is always desirable for material innovation. Here we report the design of a two-dimensional material, namely Be5C2 monolayer on the basis of density functional theory computations. In Be5C2 monolayer, each carbon atom binds with five beryllium atoms in almost the same plane, forming a quasi-planar pentacoordinate carbon moiety. Be5C2 monolayer appears to have good stability as revealed by its moderate cohesive energy, positive phonon modes and high melting point. It is the lowest-energy structure with the Be5C2 stoichiometry in two-dimensional space and therefore holds some promise to be realized experimentally. Be5C2 monolayer is a gapless semiconductor with a Dirac-like point in the band structure and also has an unusual negative Poisson's ratio. If synthesized, Be5C2 monolayer may find applications in electronics and mechanics.
Diwan, Sadhna; Jonnalagadda, Satya S; Balaswamy, Shantha
2004-10-01
Using the life stress model of psychological well-being, in this study we examined risks and resources predicting the occurrence of both positive and negative affect among older Asian Indian immigrants who experienced stressful life events. We collected data through a telephone survey of 226 respondents (aged 50 years and older) in the Southeastern United States. We used hierarchical, negative binomial regression analyses to examine correlates of positive and negative affect. Different coping resources influenced positive and negative affect when stressful life events were controlled for. Being female was a common risk factor for poorer positive and increased negative affect. Satisfaction with friendships and a cultural or ethnic identity that is either bicultural or more American were predictive of greater positive affect. Greater religiosity and increased mastery were resources predicting less negative affect. Cognitive and structural interventions that increase opportunities for social integration, increasing mastery, and addressing spiritual concerns are discussed as ways of coping with stress to improve the well-being of individuals in this immigrant community.
Distribution of chewing lice upon the polygynous peacock Pavo cristatus.
Stewart, I R; Clark, F; Petrie, M
1996-04-01
An opportunistic survey of louse distribution upon the peacock Pavo cristatus was undertaken following a cull of 23 birds from an English zoo. After complete skin and feather dissolution, 2 species of lice were retrieved, Goniodes pavonis and Amyrsidea minuta. The distribution of both louse species could be described by a negative binomial model. The significance of this is discussed in relation to transmission dynamics of lice in the atypical avian mating system found in the peacock, which involves no male parental care.
Trend estimation in populations with imperfect detection
Kery, Marc; Dorazio, Robert M.; Soldaat, Leo; Van Strien, Arco; Zuiderwijk, Annie; Royle, J. Andrew
2009-01-01
1. Trends of animal populations are of great interest in ecology but cannot be directly observed owing to imperfect detection. Binomial mixture models use replicated counts to estimate abundance, corrected for detection, in demographically closed populations. Here, we extend these models to open populations and illustrate them using sand lizard Lacerta agilis counts from the national Dutch reptile monitoring scheme. 2. Our model requires replicated counts from multiple sites in each of several periods, within which population closure is assumed. Counts are described by a hierarchical generalized linear model, where the state model deals with spatio-temporal patterns in true abundance and the observation model with imperfect counts, given that true state. We used WinBUGS to fit the model to lizard counts from 208 transects with 1–10 (mean 3) replicate surveys during each spring 1994–2005. 3. Our state model for abundance contained two independent log-linear Poisson regressions on year for coastal and inland sites, and random site effects to account for unexplained heterogeneity. The observation model for detection of an individual lizard contained effects of region, survey date, temperature, observer experience and random survey effects. 4. Lizard populations increased in both regions but more steeply on the coast. Detectability increased over the first few years of the study, was greater on the coast and for the most experienced observers, and highest around 1 June. Interestingly, the population increase inland was not detectable when the observed counts were analysed without account of detectability. The proportional increase between 1994 and 2005 in total lizard abundance across all sites was estimated at 86% (95% CRI 35–151). 5. Synthesis and applications. Open-population binomial mixture models are attractive for studying true population dynamics while explicitly accounting for the observation process, i.e. imperfect detection. We emphasize the important conceptual benefit provided by temporal replicate observations in terms of the interpretability of animal counts.
Problems on Divisibility of Binomial Coefficients
ERIC Educational Resources Information Center
Osler, Thomas J.; Smoak, James
2004-01-01
Twelve unusual problems involving divisibility of the binomial coefficients are represented in this article. The problems are listed in "The Problems" section. All twelve problems have short solutions which are listed in "The Solutions" section. These problems could be assigned to students in any course in which the binomial theorem and Pascal's…
Application of binomial-edited CPMG to shale characterization
Washburn, Kathryn E.; Birdwell, Justin E.
2014-01-01
Unconventional shale resources may contain a significant amount of hydrogen in organic solids such as kerogen, but it is not possible to directly detect these solids with many NMR systems. Binomial-edited pulse sequences capitalize on magnetization transfer between solids, semi-solids, and liquids to provide an indirect method of detecting solid organic materials in shales. When the organic solids can be directly measured, binomial-editing helps distinguish between different phases. We applied a binomial-edited CPMG pulse sequence to a range of natural and experimentally-altered shale samples. The most substantial signal loss is seen in shales rich in organic solids while fluids associated with inorganic pores seem essentially unaffected. This suggests that binomial-editing is a potential method for determining fluid locations, solid organic content, and kerogen–bitumen discrimination.
Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors.
Jiang, Ying; Liu, Zhiyuan; Matsuhisa, Naoji; Qi, Dianpeng; Leow, Wan Ru; Yang, Hui; Yu, Jiancan; Chen, Geng; Liu, Yaqing; Wan, Changjin; Liu, Zhuangjian; Chen, Xiaodong
2018-03-01
Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of Linear Finite-Difference Poisson-Boltzmann Solvers
Wang, Jun; Luo, Ray
2009-01-01
CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. PMID:20063271
Poisson's ratio over two centuries: challenging hypotheses
Greaves, G. Neville
2013-01-01
This article explores Poisson's ratio, starting with the controversy concerning its magnitude and uniqueness in the context of the molecular and continuum hypotheses competing in the development of elasticity theory in the nineteenth century, moving on to its place in the development of materials science and engineering in the twentieth century, and concluding with its recent re-emergence as a universal metric for the mechanical performance of materials on any length scale. During these episodes France lost its scientific pre-eminence as paradigms switched from mathematical to observational, and accurate experiments became the prerequisite for scientific advance. The emergence of the engineering of metals followed, and subsequently the invention of composites—both somewhat separated from the discovery of quantum mechanics and crystallography, and illustrating the bifurcation of technology and science. Nowadays disciplines are reconnecting in the face of new scientific demands. During the past two centuries, though, the shape versus volume concept embedded in Poisson's ratio has remained invariant, but its application has exploded from its origins in describing the elastic response of solids and liquids, into areas such as materials with negative Poisson's ratio, brittleness, glass formation, and a re-evaluation of traditional materials. Moreover, the two contentious hypotheses have been reconciled in their complementarity within the hierarchical structure of materials and through computational modelling. PMID:24687094
A Hybrid Algorithm for Non-negative Matrix Factorization Based on Symmetric Information Divergence
Devarajan, Karthik; Ebrahimi, Nader; Soofi, Ehsan
2017-01-01
The objective of this paper is to provide a hybrid algorithm for non-negative matrix factorization based on a symmetric version of Kullback-Leibler divergence, known as intrinsic information. The convergence of the proposed algorithm is shown for several members of the exponential family such as the Gaussian, Poisson, gamma and inverse Gaussian models. The speed of this algorithm is examined and its usefulness is illustrated through some applied problems. PMID:28868206
A Three-Parameter Generalisation of the Beta-Binomial Distribution with Applications
1987-07-01
York. Rust, R.T. and Klompmaker, J.E. (1981). Improving the estimation procedure for the beta binomial t.v. exposure model. Journal of Marketing ... Research . 18, 442-448. Sabavala, D.J. and Morrison, D.G. (1977). Television show loyalty: a beta- binomial model using recall data. Journal of Advertiuing
NASA Astrophysics Data System (ADS)
Brenner, Tom; Chen, Johnny; Stait-Gardner, Tim; Zheng, Gang; Matsukawa, Shingo; Price, William S.
2018-03-01
A new family of binomial-like inversion sequences, named jump-and-return sandwiches (JRS), has been developed by inserting a binomial-like sequence into a standard jump-and-return sequence, discovered through use of a stochastic Genetic Algorithm optimisation. Compared to currently used binomial-like inversion sequences (e.g., 3-9-19 and W5), the new sequences afford wider inversion bands and narrower non-inversion bands with an equal number of pulses. As an example, two jump-and-return sandwich 10-pulse sequences achieved 95% inversion at offsets corresponding to 9.4% and 10.3% of the non-inversion band spacing, compared to 14.7% for the binomial-like W5 inversion sequence, i.e., they afforded non-inversion bands about two thirds the width of the W5 non-inversion band.
Counihan, Timothy D.; Chapman, Colin G.
2018-01-01
The goals were to (i) determine if river discharge and water temperature during various early life history stages were predictors of age‐0 White Sturgeon, Acipenser transmontanus, recruitment, and (ii) provide an example of how over‐dispersed catch data, including data with many zero observations, can be used to better understand the effects of regulated rivers on the productivity of depressed sturgeon populations. An information theoretic approach was used to develop and select negative binomial and zero‐inflated negative binomial models that model the relation of age‐0 White Sturgeon survey data from three contiguous Columbia River reservoirs to river discharge and water temperature during spawning, egg incubation, larval, and post‐larval phases. Age‐0 White Sturgeon were collected with small mesh gill nets in The Dalles and John Day reservoirs from 1997 to 2014 and a bottom trawl in Bonneville Reservoir from 1989 to 2006. Results suggest that seasonal river discharge was positively correlated with age‐0 recruitment; notably that discharge, 16 June–31 July was positively correlated to age‐0 recruitment in all three reservoirs. The best approximating models for two of the three reservoirs also suggest that seasonal water temperature may be a determinant of age‐0 recruitment. Our research demonstrates how over‐dispersed catch data can be used to better understand the effects of environmental conditions on sturgeon populations caused by the construction and operation of dams.
[Epidemiology of scrub typhus and influencing factors in Yunnan province, 2006-2013].
Sun, Y; Shi, C; Li, X L; Fang, L Q; Cao, W C
2018-01-10
Objective: To understand the epidemiological characteristics of scrub typhu s and influencing factors in Yunnan province, and provide further information for the prevention and control of scrub typhus. Methods: Based on the incidence data of scrub typhus reported in Yunnan from 2006 to 2013, the epidemiological characteristics of scrub typhus were analyzed and related environmental factors were identified with panel negative binomial regression model. Results: A total of 8 980 scrub typhus cases were reported during 2006-2013 in Yunnan. The average annual incidence was 2.46/100 000, with an uptrend observed. Natural focus expansion was found, affecting 71.3% of the counties in 2013. The epidemic mainly occurred in summer and autumn with the incidence peak during July-October. The annual incidence was higher in females than in males. More cases occurred in children and farmers, the proportions of cases in farmers and pre-school aged children showed an obvious increase. Panel negative binomial regression model indicated that the transmission risk of scrub typhus was positive associated with monthly temperature and monthly relative humidity. Furthermore, an "U" pattern between the risk and the increased coverage of cropland and grassland as well as an "inverted-U" pattern between the risk and increased coverage of shrub were observed. Conclusion: It is necessary to strengthen the scrub typhus surveillance in warm and moist areas as well as the areas with high coverage of cropland and grassland in Yunnan, and the health education in children and farmers who are at high risk.
Kakudate, Naoki; Yokoyama, Yoko; Sumida, Futoshi; Matsumoto, Yuki; Gordan, Valeria V; Gilbert, Gregg H
2017-02-01
The objectives of this study were to: (1) examine differences in the use of dental clinical practice guidelines among Japanese dentists, and (2) identify characteristics associated with the number of guidelines used by participating dentists. We conducted a cross-sectional study consisting of a questionnaire survey in Japan between July 2014 and May 2015. The study queried dentists working in outpatient dental practices who are affiliated with the Dental Practice-Based Research Network Japan (n = 148). They were asked whether they have used each of 15 Japanese dental clinical guidelines. Associations between the number of guidelines used by participants and specific characteristics were analysed via negative binomial regression analysis. The mean number of guidelines used by participating dentists was 2.5 ± 2.9 [standard deviation (SD)]. Rate of use of guidelines showed substantial variation, from 5% to 34% among dentists. The proportion of dentists that used guidelines was the highest among oral medicine specialists, who had the highest proportion for 10 of 15 guidelines. Negative binomial regression analysis identified three factors significantly associated with the number of guidelines used: 'years since graduation from dental school', 'specialty practice' and 'practice busyness'. These results suggest that the use of clinical practice guidelines by Japanese dentists may still be inadequate. Training in the use of the guidelines could be given to dental students as undergraduate education and to young clinicians as continuing education. © 2016 John Wiley & Sons, Ltd.
A preliminary investigation of the relationships between historical crash and naturalistic driving.
Pande, Anurag; Chand, Sai; Saxena, Neeraj; Dixit, Vinayak; Loy, James; Wolshon, Brian; Kent, Joshua D
2017-04-01
This paper describes a project that was undertaken using naturalistic driving data collected via Global Positioning System (GPS) devices to demonstrate a proof-of-concept for proactive safety assessments of crash-prone locations. The main hypothesis for the study is that the segments where drivers have to apply hard braking (higher jerks) more frequently might be the "unsafe" segments with more crashes over a long-term. The linear referencing methodology in ArcMap was used to link the GPS data with roadway characteristic data of US Highway 101 northbound (NB) and southbound (SB) in San Luis Obispo, California. The process used to merge GPS data with quarter-mile freeway segments for traditional crash frequency analysis is also discussed in the paper. A negative binomial regression analyses showed that proportion of high magnitude jerks while decelerating on freeway segments (from the driving data) was significantly related with the long-term crash frequency of those segments. A random parameter negative binomial model with uniformly distributed parameter for ADT and a fixed parameter for jerk provided a statistically significant estimate for quarter-mile segments. The results also indicated that roadway curvature and the presence of auxiliary lane are not significantly related with crash frequency for the highway segments under consideration. The results from this exploration are promising since the data used to derive the explanatory variable(s) can be collected using most off-the-shelf GPS devices, including many smartphones. Copyright © 2017 Elsevier Ltd. All rights reserved.
Di, Yanming; Schafer, Daniel W.; Wilhelm, Larry J.; Fox, Samuel E.; Sullivan, Christopher M.; Curzon, Aron D.; Carrington, James C.; Mockler, Todd C.; Chang, Jeff H.
2011-01-01
GENE-counter is a complete Perl-based computational pipeline for analyzing RNA-Sequencing (RNA-Seq) data for differential gene expression. In addition to its use in studying transcriptomes of eukaryotic model organisms, GENE-counter is applicable for prokaryotes and non-model organisms without an available genome reference sequence. For alignments, GENE-counter is configured for CASHX, Bowtie, and BWA, but an end user can use any Sequence Alignment/Map (SAM)-compliant program of preference. To analyze data for differential gene expression, GENE-counter can be run with any one of three statistics packages that are based on variations of the negative binomial distribution. The default method is a new and simple statistical test we developed based on an over-parameterized version of the negative binomial distribution. GENE-counter also includes three different methods for assessing differentially expressed features for enriched gene ontology (GO) terms. Results are transparent and data are systematically stored in a MySQL relational database to facilitate additional analyses as well as quality assessment. We used next generation sequencing to generate a small-scale RNA-Seq dataset derived from the heavily studied defense response of Arabidopsis thaliana and used GENE-counter to process the data. Collectively, the support from analysis of microarrays as well as the observed and substantial overlap in results from each of the three statistics packages demonstrates that GENE-counter is well suited for handling the unique characteristics of small sample sizes and high variability in gene counts. PMID:21998647
Transition from AdS universe to DS universe in the BPP model
NASA Astrophysics Data System (ADS)
Kim, Wontae; Yoon, Myungseok
2007-04-01
It can be shown that in the BPP model the smooth phase transition from the asymptotically decelerated AdS universe to the asymptotically accelerated DS universe is possible by solving the modified semiclassical equations of motion. This transition comes from noncommutative Poisson algebra, which gives the constant curvature scalars asymptotically. The decelerated expansion of the early universe is due to the negative energy density with the negative pressure induced by quantum back reaction, and the accelerated late-time universe comes from the positive energy and the negative pressure which behave like dark energy source in recent cosmological models.
Kumar, Rajesh; Srivastava, Subodh; Srivastava, Rajeev
2017-07-01
For cancer detection from microscopic biopsy images, image segmentation step used for segmentation of cells and nuclei play an important role. Accuracy of segmentation approach dominate the final results. Also the microscopic biopsy images have intrinsic Poisson noise and if it is present in the image the segmentation results may not be accurate. The objective is to propose an efficient fuzzy c-means based segmentation approach which can also handle the noise present in the image during the segmentation process itself i.e. noise removal and segmentation is combined in one step. To address the above issues, in this paper a fourth order partial differential equation (FPDE) based nonlinear filter adapted to Poisson noise with fuzzy c-means segmentation method is proposed. This approach is capable of effectively handling the segmentation problem of blocky artifacts while achieving good tradeoff between Poisson noise removals and edge preservation of the microscopic biopsy images during segmentation process for cancer detection from cells. The proposed approach is tested on breast cancer microscopic biopsy data set with region of interest (ROI) segmented ground truth images. The microscopic biopsy data set contains 31 benign and 27 malignant images of size 896 × 768. The region of interest selected ground truth of all 58 images are also available for this data set. Finally, the result obtained from proposed approach is compared with the results of popular segmentation algorithms; fuzzy c-means, color k-means, texture based segmentation, and total variation fuzzy c-means approaches. The experimental results shows that proposed approach is providing better results in terms of various performance measures such as Jaccard coefficient, dice index, Tanimoto coefficient, area under curve, accuracy, true positive rate, true negative rate, false positive rate, false negative rate, random index, global consistency error, and variance of information as compared to other segmentation approaches used for cancer detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Milner, Allison; Morrell, Stephen; LaMontagne, Anthony D
2014-10-01
Suicide is higher among economically inactive and unemployed persons than employed persons. This paper investigates differences in this relationship by sex and age over the period 2001 to 2010 in Australia. It also examines changes in suicide among employed, unemployed and economically inactive persons during the recession of 2007-09. Suicide data from the National Coroners Information System were utilised for this retrospective study. Negative binomial and Poisson regression was used to estimate the association between suicide and employment status and to investigate differences in suicide rates over the period of the recession (2007-09) compared with the year before the recession (2006). Results suggest that during 2001-10 economically inactive/unemployed males had a suicide rate ratio (RR) of 4.62 [95% confidence interval (CI) 4.10, 5.19; P<0.001] compared with employed males (RR=1.00), whereas economically inactive/unemployed females had a suicide RR of 8.44 compared with employed females (95% CI 7.38, 9.67; P<0.001). There was an increase in suicide among both employed (7% rise in 2007, P=0.003) and economically inactive/unemployed males during the GFC (22% in 2008, P<0.001). Suicide also increased among economically inactive/unemployed females (12% in 2007, P=0.03; 19% in 2008, P=0.001) but not among employed females. These results suggest the need for adequate policy and social welfare responses to ameliorate the effects of the economic recession on the working age population. Particularly, these should target unemployed and economically inactive men and women in Australia, who may be at higher risk of suicide than previously thought. © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Sequential Sampling Plan of Anthonomus grandis (Coleoptera: Curculionidae) in Cotton Plants.
Grigolli, J F J; Souza, L A; Mota, T A; Fernandes, M G; Busoli, A C
2017-04-01
The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is one of the most important pests of cotton production worldwide. The objective of this work was to develop a sequential sampling plan for the boll weevil. The studies were conducted in Maracaju, MS, Brazil, in two seasons with cotton cultivar FM 993. A 10,000-m2 area of cotton was subdivided into 100 of 10- by 10-m plots, and five plants per plot were evaluated weekly, recording the number of squares with feeding + oviposition punctures of A. grandis in each plant. A sequential sampling plan by the maximum likelihood ratio test was developed, using a 10% threshold level of squares attacked. A 5% security level was adopted for the elaboration of the sequential sampling plan. The type I and type II error used was 0.05, recommended for studies with insects. The adjustment of the frequency distributions used were divided into two phases, so that the model that best fit to the data was the negative binomial distribution up to 85 DAE (Phase I), and from there the best fit was Poisson distribution (Phase II). The equations that define the decision-making for Phase I are S0 = -5.1743 + 0.5730N and S1 = 5.1743 + 0.5730N, and for the Phase II are S0 = -4.2479 + 0.5771N and S1 = 4.2479 + 0.5771N. The sequential sampling plan developed indicated the maximum number of sample units expected for decision-making is ∼39 and 31 samples for Phases I and II, respectively. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Waverijn, Geeke; Groenewegen, Peter P; de Klerk, Mirjam
2017-03-01
Differential provision of local services and amenities has been proposed as a mechanism behind the relationship between social capital and health. The aim of this study was to investigate whether social capital and collective efficacy are related to the provision of social support services and amenities in Dutch municipalities, against a background of decentralisation of long-term care to municipalities. We used data on neighbourhood social capital, collective efficacy (the extent to which people are willing to work for the common good), and the provision of services and amenities in 2012. We included the services municipalities provide to support informal caregivers (e.g. respite care), individual services and support (e.g. domiciliary help), and general and collective services and amenities (e.g. lending point for wheelchairs). Data for social capital were collected between May 2011 and September 2012. Social capital was measured by focusing on contacts between neighbours. A social capital measure was estimated for 414 municipalities with ecometric measurements. A measure of collective efficacy was constructed based on information about the experienced responsibility for the liveability of the neighbourhood by residents in 2012, average charity collection returns in municipalities in 2012, voter turnout at the municipal elections in 2010 and the percentage of blood donors in 2012. We conducted Poisson regression and negative binomial regression to test our hypotheses. We found no relationship between social capital and the provision of services and amenities in municipalities. We found an interaction effect (coefficient = 3.11, 95% CI = 0.72-5.51, P = 0.011) of social capital and collective efficacy on the provision of support services for informal caregivers in rural municipalities. To gain more insight in the relationship between social capital and health, it will be important to study the relationship between social capital and differential provision of services and amenities more extensively and in different contexts. © 2016 John Wiley & Sons Ltd.
Warner, Erica T; Carapinha, René; Weber, Griffin M; Hill, Emorcia V; Reede, Joan Y
2016-01-01
Business literature has demonstrated the importance of networking and connections in career advancement. This is a little-studied area in academic medicine. To examine predictors of intra-organizational connections, as measured by network reach (the number of first- and second-degree coauthors), and their association with probability of promotion and attrition. Prospective cohort study between 2008 and 2012. Academic medical center. A total of 5787 Harvard Medical School (HMS) faculty with a rank of assistant professor or full-time instructor as of January 1, 2008. Using negative binomial models, multivariable-adjusted predictors of continuous network reach were assessed according to rank. Poisson regression was used to compute relative risk (RR) and 95 % confidence intervals (CI) for the association between network reach (in four categories) and two outcomes: promotion or attrition. Models were adjusted for demographic, professional and productivity metrics. Network reach was positively associated with number of first-, last- and middle-author publications and h-index. Among assistant professors, men and whites had greater network reach than women and underrepresented minorities (p < 0.001). Compared to those in the lowest category of network reach in 2008, instructors in the highest category were three times as likely to have been promoted to assistant professor by 2012 (RR: 3.16, 95 % CI: 2.60, 3.86; p-trend <0.001) after adjustment for covariates. Network reach was positively associated with promotion from assistant to associate professor (RR: 1.82, 95 % CI: 1.32, 2.50; p-trend <0.001). Those in the highest category of network reach in 2008 were 17 % less likely to have left HMS by 2012 (RR: 0.83, 95 % CI 0.70, 0.98) compared to those in the lowest category. These results demonstrate that coauthor network metrics can provide useful information for understanding faculty advancement and retention in academic medicine. They can and should be investigated at other institutions.
Parks, Michael J; Kingsbury, John H; Boyle, Raymond G; Evered, Sharrilyn
2018-01-01
This study addresses the dearth of population-based research on how comprehensive household smoke-free rules (ie, in the home and car) relate to tobacco use and secondhand smoke (SHS) exposure among adolescents. Analysis of 2014 Minnesota Youth Tobacco Survey. Representative sample of Minnesota youth. A total of 1287 youth who lived with a smoker. Measures included household smoke-free rules (no rules, partial rules-home or car, but not both-and comprehensive rules), lifetime and 30-day cigarette use, 30-day cigarette and other product use, and SHS exposure in past 7 days in home and car. Weighted multivariate logistic, zero-inflated Poisson, and zero-inflated negative binomial regressions were used. Compared to comprehensive rules, partial and no smoke-free rules were significantly and positively related to lifetime cigarette use (respectively, adjusted odds ratio [AOR] = 1.80, 95% confidence interval [CI] = 1.24-2.61; AOR = 2.87, 95% CI = 1.93-4.25), and a similar significant pattern was found for 30-day cigarette use (respectively, AOR = 2.20, 95% CI = 1.21-4.02; AOR = 2.45, 95% CI = 1.34-4.50). No smoke-free rules significantly predicted using cigarettes and other tobacco products compared to comprehensive rules. In both descriptive and regression analyses, we found SHS exposure rates in both the home and car were significantly lower among youth whose household implemented comprehensive smoke-free rules. Comprehensive smoke-free rules protect youth from the harms of caregiver tobacco use. Relative to both partial and no smoke-free rules, comprehensive smoke-free rules have a marked impact on tobacco use and SHS exposure among youth who live with a smoker. Health promotion efforts should promote comprehensive smoke-free rules among all households and particularly households with children and adolescents.
Expanding Paramedicine in the Community (EPIC): study protocol for a randomized controlled trial.
Drennan, Ian R; Dainty, Katie N; Hoogeveen, Paul; Atzema, Clare L; Barrette, Norm; Hawker, Gillian; Hoch, Jeffrey S; Isaranuwatchai, Wanrudee; Philpott, Jane; Spearen, Chris; Tavares, Walter; Turner, Linda; Farrell, Melissa; Filosa, Tom; Kane, Jennifer; Kiss, Alex; Morrison, Laurie J
2014-12-02
The incidence of chronic diseases, including diabetes mellitus (DM), heart failure (HF) and chronic obstructive pulmonary disease (COPD) is on the rise. The existing health care system must evolve to meet the growing needs of patients with these chronic diseases and reduce the strain on both acute care and hospital-based health care resources. Paramedics are an allied health care resource consisting of highly-trained practitioners who are comfortable working independently and in collaboration with other resources in the out-of-hospital setting. Expanding the paramedic's scope of practice to include community-based care may decrease the utilization of acute care and hospital-based health care resources by patients with chronic disease. This will be a pragmatic, randomized controlled trial comparing a community paramedic intervention to standard of care for patients with one of three chronic diseases. The objective of the trial is to determine whether community paramedics conducting regular home visits, including health assessments and evidence-based treatments, in partnership with primary care physicians and other community based resources, will decrease the rate of hospitalization and emergency department use for patients with DM, HF and COPD. The primary outcome measure will be the rate of hospitalization at one year. Secondary outcomes will include measures of health system utilization, overall health status, and cost-effectiveness of the intervention over the same time period. Outcome measures will be assessed using both Poisson regression and negative binomial regression analyses to assess the primary outcome. The results of this study will be used to inform decisions around the implementation of community paramedic programs. If successful in preventing hospitalizations, it has the ability to be scaled up to other regions, both nationally and internationally. The methods described in this paper will serve as a basis for future work related to this study. ClinicalTrials.gov: NCT02034045. Date: 9 January 2014.
Return periods of losses associated with European windstorm series in a changing climate
NASA Astrophysics Data System (ADS)
Karremann, Melanie K.; Pinto, Joaquim G.; Reyers, Mark; Klawa, Matthias
2015-04-01
During the last decades, several windstorm series hit Europe leading to large aggregated losses. Such storm series are examples of serial clustering of extreme cyclones, presenting a considerable risk for the insurance industry. Clustering of events and return periods of storm series affecting Europe are quantified based on potential losses using empirical models. Moreover, possible future changes of clustering and return periods of European storm series with high potential losses are quantified. Historical storm series are identified using 40 winters of NCEP reanalysis data (1973/1974 - 2012/2013). Time series of top events (1, 2 or 5 year return levels) are used to assess return periods of storm series both empirically and theoretically. Return periods of historical storm series are estimated based on the Poisson and the negative binomial distributions. Additionally, 800 winters of ECHAM5/MPI-OM1 general circulation model simulations for present (SRES scenario 20C: years 1960- 2000) and future (SRES scenario A1B: years 2060- 2100) climate conditions are investigated. Clustering is identified for most countries in Europe, and estimated return periods are similar for reanalysis and present day simulations. Future changes of return periods are estimated for fixed return levels and fixed loss index thresholds. For the former, shorter return periods are found for Western Europe, but changes are small and spatially heterogeneous. For the latter, which combines the effects of clustering and event ranking shifts, shorter return periods are found everywhere except for Mediterranean countries. These changes are generally not statistically significant between recent and future climate. However, the return periods for the fixed loss index approach are mostly beyond the range of preindustrial natural climate variability. This is not true for fixed return levels. The quantification of losses associated with storm series permits a more adequate windstorm risk assessment in a changing climate.
A comprehensive simulation study on classification of RNA-Seq data.
Zararsız, Gökmen; Goksuluk, Dincer; Korkmaz, Selcuk; Eldem, Vahap; Zararsiz, Gozde Erturk; Duru, Izzet Parug; Ozturk, Ahmet
2017-01-01
RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption. Hence, these methods cannot be directly applied to RNA-Seq data since they violate both data structure and distributional assumptions. However, it is possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way is to develop count-based classifiers, such as Poisson linear discriminant analysis and negative binomial linear discriminant analysis. Another way is to bring the data closer to microarrays and apply microarray-based classifiers. In this study, we compared several classifiers including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF). We also examined the effect of several parameters such as overdispersion, sample size, number of genes, number of classes, differential-expression rate, and the transformation method on model performances. A comprehensive simulation study is conducted and the results are compared with the results of two miRNA and two mRNA experimental datasets. The results revealed that increasing the sample size, differential-expression rate and decreasing the dispersion parameter and number of groups lead to an increase in classification accuracy. Similar with differential-expression studies, the classification of RNA-Seq data requires careful attention when handling data overdispersion. We conclude that, as a count-based classifier, the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed RF and SVM classifiers may be a good choice for classification. An R/BIOCONDUCTOR package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html.
Is "Safety-in-numbers" theory applies to the pattern of pedestrian accidents in Seoul, South Korea.
NASA Astrophysics Data System (ADS)
Choi, Y.; Yoon, H.
2016-12-01
Every year, about 1.25 million people die of vehicle-related accidents, among which half are pedestrians with higher vulnerability: pedestrian, cyclists and motorcyclist (World Health Organization, 2016). This urges city governments in the world to strive for pedestrian safety and to apply diverse theories to transportation planning and design. The common belief is that the number of pedestrian accidents is directly and positively associated with the volume of pedestrian, however, another hypothesis, called "safety-in-numbers" effect, tells an opposite story in that accident rates declines with increase of the volume of pedestrian. In this study, we examine first, whether the safety-in-numbers theory applies to the pattern of pedestrian accidents in Seoul, and second, further investigate environmental factors that are associated with the pedestrian safety. On the first count, we use geospatial statistical analyses of the multi-year pedestrian accident data collected by Korea Road Traffic Authority (KoRoad) and the pedestrian volume data collected by SK Telecom (SKT). With Kernel Density Estimation and Bivariate Local Moran's I, we identify spatial clustering of pedestrian accidents in the city, and examine whether those locations match with concentrations of pedestrian volume. On the second count, we use statistical analysis, tobit, poisson and negative binomial regression to investigate relationships between pedestrian volume and number of pedestrian accident for the two types of geographic areas by the results of the aforementioned analysis; Area 1- locations of high volume of pedestrian with high number of accident, Area 2- locations of high volume of pedestrian with low number of accident. For environmental factors potentially explaining pedestrian accidents, we include land use composition, number of traffic lanes, crosswalk presence, pedestrian signal, traffic island and sidewalk width in our analysis. This research will be valuable in city governments' decision making with planning guidelines and political protocols for making safer pedestrian environment.
Mayne, Stephanie L; Auchincloss, Amy H; Moore, Kari A; Michael, Yvonne L; Tabb, Loni Philip; Echeverria, Sandra E; Diez Roux, Ana V
2017-04-01
Social features of neighbourhood environments may influence smoking by creating a stressful environment or by buffering stress through social cohesion. However, the association of the overall neighbourhood social environment (NSE) with smoking, and the association of specific neighbourhood social factors with change in smoking behaviour over time, has rarely been examined. This study included 5856 adults aged 45-84 years from the Multi-Ethnic Study of Atherosclerosis (2000-2012, average follow-up: 7.8 years). Outcomes included current smoking status and smoking intensity (average number of cigarettes smoked per day among baseline smokers). NSE was assessed as a composite score composed of aesthetic quality, safety and social cohesion scales (derived from neighbourhood surveys). Generalised linear mixed models evaluated the association of baseline NSE (composite score and individual scales) with current smoking (modified Poisson models) and smoking intensity (negative binomial models) cross-sectionally and longitudinally. Each SD increase in baseline NSE composite score was associated with 13% lower prevalence of smoking at baseline (adjusted prevalence ratio (aPR) 0.87 (95% CI 0.78 to 0.98). Neighbourhood safety and aesthetic quality were similarly associated with lower smoking prevalence (aPR 0.87 (0.78 to 0.97) and aPR 0.87 (0.77 to 0.99), respectively) but the association with social cohesion was weaker or null. No significant associations were observed for smoking intensity among baseline smokers. Baseline NSE was not associated with changes in smoking risk or intensity over time. Results suggest that neighbourhood social context influences whether older adults smoke, but does not promote smoking cessation or reduction over time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
2012-01-01
Background The Hepatitis B virus (HBV) infection is a major cause of liver disease and liver cancer worldwide according to the World Health Organization. Following acute HBV infection, 1-5% of infected healthy adults and up to 90% of infected infants become chronic carriers and have an increased risk of cirrhosis and primary hepatocellular carcinoma. The aim of this study was to investigate the relationship between the reduction in acute hepatitis B incidence and the universal vaccination programme in preadolescents in Catalonia (Spain), taking population changes into account, and to construct a model to forecast the future incidence of cases that permits the best preventive strategy to be adopted. Methods Reported acute hepatitis B incidence in Catalonia according to age, gender, vaccination coverage, percentage of immigrants and the year of report of cases was analysed. A statistical analysis was made using three models: generalized linear models (GLM) with Poisson or negative binomial distribution and a generalized additive model (GAM). Results The higher the vaccination coverage, the lower the reported incidence of hepatitis B (p <0.01). In groups with vaccination coverage > 70%, the reduction in incidence was 2-fold higher than in groups with a coverage <70% (p <0.01). The increase in incidence was significantly-higher in groups with a high percentage of immigrants and more than 15% (p <0.01) in immigrant males of working age (19-49 years). Conclusions The results of the adjusted models in this study confirm that the global incidence of hepatitis B has declined in Catalonia after the introduction of the universal preadolescent vaccination programme, but the incidence increased in male immigrants of working age. Given the potential severity of hepatitis B for the health of individuals and for the community, universal vaccination programmes should continue and programmes in risk groups, especially immigrants, should be strengthened. PMID:22867276
Decline in Child Marriage and Changes in Its Effect on Reproductive Outcomes in Bangladesh
2012-01-01
This paper explores the decline in child marriage and changes in its effect on reproductive outcomes of Bangladeshi women, using the 2007 Bangladesh Demographic and Health Survey data. Chi-square tests, negative binomial Poisson regression and binary logistic regression were performed in analyzing the data. Overall, 82% of women aged 20-49 years were married-off before 18 years of age, and 63% of the marriages took place before 16 years of age. The incidence of child marriage was significantly less among the young women aged 20-24 years compared to their older counterparts. Among others, women's education appeared as the most significant single determinant of child marriage as well as decline in child marriage. Findings revealed that, after being adjusted for sociodemographic factors, child marriage compared to adult marriage appeared to be significantly associated with lower age at first birth (OR=0.81, 95% CI=76-0.86), higher fertility (IRR=1.45, 95% WCI=1.35-1.55), increased risk of child mortality (IRR=1.64, 95% WCI=1.44-1.87), decreased risk of contraceptive-use before any childbirths (OR=0.56, 95% CI=0.50-0.63), higher risk of giving three or more childbirth (OR=3.94, 95% CI=3.38-4.58), elevated risk of unplanned pregnancies (OR=1.21, 95% CI=1.02-1.45), increased risk of pregnancy termination (OR=1.16, 95% CI=1.00-1.34), and higher risk of the use of any current contraceptive method (OR=1.20, 95% CI=1.06-1.35). Increased enforcement of existing policies is crucial for the prevention of child marriage. Special programmes should be undertaken to keep girls in school for longer period to raise the age of females at first marriage in Bangladesh and thereby reduce the adverse reproductive outcomes. PMID:23082634
Ruef, M; Mendel, P; Scott, W R
1998-02-01
To draw together insights from three perspectives (health economics, organizational ecology, and institutional theory) in order to clarify the factors that influence entries of providers into healthcare markets. A model centered on the concept of an organizational field is advanced as the level of analysis best suited to examining the assortment and interdependence of organizational populations and the institutional forces that shape this co-evolution. In particular, the model argues that: (1) different populations of healthcare providers partition fiscal, geographic, and demographic resource environments in order to ameliorate competition and introduce service complementarities; and (2) competitive barriers to entry within populations of providers vary systematically with regulatory regimens. County-level entries of hospitals and home health agencies in the San Francisco Bay Area using data from the American Hospital Association (1945-1991) and California's Office of Statewide Health Planning and Development (1976-1991). Characteristics of the resource environment are derived from the Area Resource File (ARF) and selected government censuses. A comparative design is applied to contrast influences on hospital and home health agency entries during the post-World War II period. Empirical estimates are obtained using Poisson and negative binomial regression models. Hospital and HHA markets are partitioned primarily by the age and education of consumers and, to a lesser extent, by urbanization levels and public funding expenditures. Such resource partitioning allows independent HHAs to exist comfortably in concentrated hospital markets. For both hospitals and HHAs, the barriers to entry once generated by oligopolistic concentration have declined noticeably with the market-oriented reforms of the past 15 years. A field-level perspective demonstrates that characteristics of local resource environments interact with interdependencies of provider populations and broader regulatory regimes to affect significantly the types of provider organizations likely to enter a given healthcare market.
Ruef, M; Mendel, P; Scott, W R
1998-01-01
OBJECTIVE: To draw together insights from three perspectives (health economics, organizational ecology, and institutional theory) in order to clarify the factors that influence entries of providers into healthcare markets. A model centered on the concept of an organizational field is advanced as the level of analysis best suited to examining the assortment and interdependence of organizational populations and the institutional forces that shape this co-evolution. In particular, the model argues that: (1) different populations of healthcare providers partition fiscal, geographic, and demographic resource environments in order to ameliorate competition and introduce service complementarities; and (2) competitive barriers to entry within populations of providers vary systematically with regulatory regimens. DATA SOURCES: County-level entries of hospitals and home health agencies in the San Francisco Bay Area using data from the American Hospital Association (1945-1991) and California's Office of Statewide Health Planning and Development (1976-1991). Characteristics of the resource environment are derived from the Area Resource File (ARF) and selected government censuses. METHODS OF ANALYSIS: A comparative design is applied to contrast influences on hospital and home health agency entries during the post-World War II period. Empirical estimates are obtained using Poisson and negative binomial regression models. RESULTS: Hospital and HHA markets are partitioned primarily by the age and education of consumers and, to a lesser extent, by urbanization levels and public funding expenditures. Such resource partitioning allows independent HHAs to exist comfortably in concentrated hospital markets. For both hospitals and HHAs, the barriers to entry once generated by oligopolistic concentration have declined noticeably with the market-oriented reforms of the past 15 years. CONCLUSION: A field-level perspective demonstrates that characteristics of local resource environments interact with interdependencies of provider populations and broader regulatory regimes to affect significantly the types of provider organizations likely to enter a given healthcare market. PMID:9460486
Sinclair, Michael; Ghermandi, Andrea; Sheela, Albert M
2018-06-12
Online social media represent an extensive, opportunistic source of behavioral data and revealed preferences for ecosystem services (ES) analysis. Such data may allow to advance the approach, scale and timespan to which ES are assessed, mapping and valued. This is especially relevant in the context of developing regions whose decision support tools are often limited by a lack of resources and funding. This research presents an economic valuation tool for recreational ES, suitable at wide spatial scales, relying on crowdsourced metadata from social media with a proof of concept tested on an Indian tropical Ramsar wetland. We demonstrate how geotagged photographs from Flickr can be used in the context of a developing country to (i) map nature-based recreation patterns, (ii) value recreational ecosystem services, and (iii) investigate how recreational benefits are affected by changes in ecosystem quality. The case-study application is the Vembanad Lake in Kerala, India, and the adjacent backwaters. Geographic Information Systems are implemented to extract 4328 Flickr photographs that are used to map hot spots of recreation and infer the home location of wetland visitors from within Kerala state with good accuracy. An individual, single-site travel cost demand function is generated and estimated using both Poisson and Negative Binomial regressions, which results in mean consumer surplus estimates between Rs. 2227-3953 ($34-$62) per visit and annual domestic recreation benefits of Rs. 7.53-13.37 billion ($115.5-$205 million) in the investigated wetlands. Improvement in water quality to a level that supports wildlife and fisheries is projected to result in a Rs. 260 million ($4 million) annual increase in recreational benefits, while restoring previously encroached lake area would result in almost Rs. 50 million ($760,000) in yearly value increase. Copyright © 2018. Published by Elsevier B.V.
Switchenko, Jeffrey M; Bulka, Catherine; Ward, Kevin; Koff, Jean L; Bayakly, A Rana; Ryan, P Barry; Waller, Lance A; Flowers, Christopher R
2016-04-01
Benzene is a known occupational carcinogen associated with increased risk of hematologic cancers, but the relationships between quantity of passive benzene exposure through residential proximity to toxic release sites, duration of exposure, lag time from exposure to cancer development, and lymphoma risk remain unclear. We collected release data through the Environmental Protection Agency's Toxics Release Inventory (TRI) from 1989 to 2003, which included location of benzene release sites, years when release occurred, and amount of release. We also collected data on incident cases of non-Hodgkin lymphoma (NHL) from the Georgia Comprehensive Cancer Registry (GCCR) for the years 1999-2008. We constructed distance-decay surrogate exposure metrics and Poisson and negative binomial regression models of NHL incidence to quantify associations between passive exposure to benzene and NHL risk and examined the impact of amount, duration of exposure, and lag time on cancer development. Akaike's information criteria (AIC) were used to determine the scaling factors for benzene dispersion and exposure periods that best predicted NHL risk. Using a range of scaling factors and exposure periods, we found that increased levels of passive benzene exposure were associated with higher risk of NHL. The best fitting model, with a scaling factor of 4 kilometers (km) and exposure period of 1989-1993, showed that higher exposure levels were associated with increased NHL risk (Level 4 (1.1-160kilograms (kg)) vs. Level 1: risk ratio 1.56 [1.44-1.68], Level 5 (>160kg) vs. Level 1: 1.60 [1.48-1.74]). Higher levels of passive benzene exposure are associated with increased NHL risk across various lag periods. Additional epidemiological studies are needed to refine these models and better quantify the expected total passive benzene exposure in areas surrounding release sites. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Iqbal, Shahed; Li, Rongxia; Gargiullo, Paul; Vellozzi, Claudia
2015-04-21
Some studies reported an increased risk of Guillain-Barré syndrome (GBS) within six weeks of influenza vaccination. It has also been suggested that this finding could have been confounded by influenza illnesses. We explored the complex relationship between influenza illness, influenza vaccination, and GBS, from an ecologic perspective using nationally representative data. We also studied seasonal patterns for GBS hospitalizations. Monthly hospitalization data (2000-2009) for GBS, and pneumonia and influenza (P&I) in the Nationwide Inpatient Sample were included. Seasonal influenza vaccination coverage for 2004-2005 through the 2008-2009 influenza seasons (August-May) was estimated from the National Health Interview Survey data. GBS seasonality was determined using Poisson regression. GBS and P&I temporal clusters were identified using scan statistics. The association between P&I and GBS hospitalizations in the same month (concurrent) or in the following month (lagged) were determined using negative binomial regression. Vaccine coverage increased over the years (from 19.7% during 2004-2005 to 35.5% during 2008-2009 season) but GBS hospitalization did not follow a similar pattern. Overall, a significant correlation between monthly P&I and GBS hospitalizations was observed (Spearman's correlation coefficient=0.7016, p<0.0001). A significant (p=0.001) cluster of P&I hospitalizations during December 2004-March 2005 overlapped a significant (p=0.001) cluster of GBS hospitalizations during January 2005-February 2005. After accounting for effects of monthly vaccine coverage and age, P&I hospitalization was significantly associated (p<0.0001) with GBS hospitalization in the concurrent month but not with GBS hospitalization in the following month. Monthly vaccine coverage was not associated with GBS hospitalization in adjusted models (both concurrent and lagged). GBS hospitalizations demonstrated a seasonal pattern with winter months having higher rates compared to the month of June. P&I hospitalization rates were significantly correlated with hospitalization rates for GBS. Vaccine coverage did not significantly affect the rates of GBS hospitalization at the population level. Published by Elsevier Ltd.
Karra, Vijia K
2005-01-01
Mining injury surveillance data are used as the basis for assessing the severity of injuries among operator and contractor employees in the underground and surface mining of various minerals. Injury rates during 1983-2002 derived from Mine Safety and Health Administration (MSHA) database are analyzed using the negative binomial regression model. The logarithmic mean injury rate is expressed as a linear function of seven indicator variables representing Non-Coal Contractor, Metal Operator, Non Metal Operator, Stone Operator, Sand and Gravel Operator, Coal Contractor, and Work Location, and a continuous variable, RelYear, representing the relative year starting with 1983 as the base year. Based on the model, the mean injury rate declined at a 1.69% annual rate, and the mean injury rate for work on the surface is 52.53% lower compared to the rate for work in the underground. With reference to the Coal Operator mean injury rate: the Non-Coal Contractor rate is 30.34% lower, the Metal Operator rate is 27.18% lower, the Non-Metal Operator rate is 37.51% lower, the Stone Operator rate is 23.44% lower, the Sand and Gravel Operator rate is 16.45% lower, and the Coal Contractor rate is 1.41% lower. Fatality rates during the same 20 year period are analyzed similarly using Poisson regression model. Based on this model, the mean fatality rate declined at a 3.17% annual rate, and the rate for work on the surface is 64.3% lower compared to the rate for work in the underground. With reference to the Coal Operator mean fatality rate: the Non-Coal Contractor rate is 234.81% higher, the Metal Operator rate is 5.79% lower, the Non-Metal Operator rate is 47.36% lower, the Stone Operator rate is 8.29% higher, the Sand and Gravel Operator rate is 60.32% higher, and the Coal Contractor rate is 129.54% higher.
Bacterial meningitis in Finland, 1995–2014: a population-based observational study
Polkowska, Aleksandra; Toropainen, Maija; Ollgren, Jukka; Lyytikäinen, Outi; Nuorti, J. Pekka
2017-01-01
Objectives Bacterial meningitis remains an important cause of morbidity and mortality worldwide. Its epidemiological characteristics, however, are changing due to new vaccines and secular trends. Conjugate vaccines against Haemophilus influenzae type b and Streptococcus pneumoniae (10-valent) were introduced in 1986 and 2010 in Finland. We assessed the disease burden and long-term trends of five common causes of bacterial meningitis in a population-based observational study. Methods A case was defined as isolation of S. pneumoniae, Neisseria meningitidis, Streptococcus agalactiae, Listeria monocytogenes or H. influenzae from cerebrospinal fluid and reported to national, population-based laboratory surveillance system during 1995–2014. We evaluated changes in incidence rates (Poisson or negative binomial regression), case fatality proportions (χ2) and age distribution of cases (Wilcoxon rank-sum). Results During 1995–2014, S. pneumoniae and N. meningitidis accounted for 78% of the total 1361 reported bacterial meningitis cases. H. influenzae accounted for 4% of cases (92% of isolates were non-type b). During the study period, the overall rate of bacterial meningitis per 1 00 000 person-years decreased from 1.88 cases in 1995 to 0.70 cases in 2014 (4% annual decline (95% CI 3% to 5%). This was primarily due to a 9% annual reduction in rates of N. meningitidis (95% CI 7% to 10%) and 2% decrease in S. pneumoniae (95% CI 1% to 4%). The median age of cases increased from 31 years in 1995–2004 to 43 years in 2005–2014 (p=0.0004). Overall case fatality proportion (10%) did not change from 2004 to 2009 to 2010–2014. Conclusions Substantial decreases in bacterial meningitis were associated with infant conjugate vaccination against pneumococcal meningitis and secular trend in meningococcal meningitis in the absence of vaccination programme. Ongoing epidemiological surveillance is needed to identify trends, evaluate serotype distribution, assess vaccine impact and develop future vaccination strategies. PMID:28592578
Metcalfe, Amy; Lix, Lisa M; Johnson, Jo-Ann; Bernier, François; Currie, Gillian; Lyon, Andrew W; Tough, Suzanne C
2013-05-01
The recommendation by the Society of Obstetricians and Gynaecologists of Canada that prenatal screening for fetal aneuploidy be offered to all pregnant women is an important change in clinical obstetrics. However, it is unknown how this recommendation might affect the use of other health resources during pregnancy. Twelve clinical and administrative databases were linked, and care paths outlining typical service use in pregnancy were created based on the type of prenatal screening accessed (first trimester screening [FTS], maternal serum screening [MSS], invasive testing only, or no screening and/or diagnosis). Logistic, Poisson, and negative binomial models were applied to the data to examine the association between use of prenatal screening/diagnosis and other health services during pregnancy. Women who accessed prenatal screening/diagnosis were significantly more likely to have a consultation with a medical geneticist (FTS OR 2.42; 95% CI 1.75 to 3.33; MSS OR 4.84; 95% CI 2.92 to 8.03; and invasive testing OR 8.58; 95% CI 5.28 to 13.94), and women who accessed FTS had more prenatal visits (FTS incidence rate ratio 1.03; 95% CI 1.01 to 1.05) than women who did not access prenatal screening/diagnosis. Uptake of invasive tests did not differ between women who accessed FTS and those who accessed MSS. Use of prenatal screening/diagnosis was not significantly associated with use of most other health resources In a publicly funded health care system, understanding the impact of recommendations to increase access to a specific service on other services is important. Recommendations to increase access to prenatal screening services may have some unanticipated downstream effects on the use of other services during pregnancy. However, most aspects of health resource use in pregnancy do not appear to be influenced by the use of prenatal screening services.
Effects of Clostridium difficile infection in patients with alcoholic hepatitis.
Sundaram, Vinay; May, Folasade P; Manne, Vignan; Saab, Sammy
2014-10-01
Infection increases mortality in patients with alcoholic hepatitis (AH). Little is known about the association between Clostridium difficile infection (CDI) and AH. We examined the prevalence and effects of CDI in patients with AH, compared with those of other infections. We performed a cross-sectional analysis using data collected from the Nationwide Inpatient Sample, from 2008 through 2011. International Classification of Diseases, 9th revision, Clinical Modification codes were used to identify patients with AH. We used multivariable logistic regression to determine risk factors that affect mortality, negative binomial regression to evaluate the effects of CDI on predicted length of stay (LOS), and Poisson regression to determine the effects of CDI on predicted hospital charges. Chi-square and Wilcoxon rank-sum analyses were used to compare mortality, LOS, and hospital charges associated with CDI with those associated with urinary tract infection (UTI) and spontaneous bacterial peritonitis (SBP). Of 10,939 patients with AH, 177 had CDI (1.62%). Patients with AH and CDI had increased odds of inpatient mortality (adjusted odds ratio, 1.75; P = .04), a longer predicted LOS (10.63 vs 5.75 d; P < .001), and greater predicted hospital charges ($36,924.30 vs $29,136.58; P < .001), compared with those without CDI. Compared with UTI, CDI was associated with similar mortality but greater LOS (9 vs 6 d; P < .001) and hospital charges ($45,607 vs $32,087; P < .001). SBP was associated with higher mortality than CDI (17.3% vs 10.1%; P = .045), but similar LOS and hospital charges. In patients with AH, CDI is associated with greater mortality and health care use. These effects appear similar to those for UTI and SBP. We propose further studies to determine the cost effectiveness of screening for CDI among patients with AH. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Revealing Word Order: Using Serial Position in Binomials to Predict Properties of the Speaker
ERIC Educational Resources Information Center
Iliev, Rumen; Smirnova, Anastasia
2016-01-01
Three studies test the link between word order in binomials and psychological and demographic characteristics of a speaker. While linguists have already suggested that psychological, cultural and societal factors are important in choosing word order in binomials, the vast majority of relevant research was focused on general factors and on broadly…
Brenner, Tom; Chen, Johnny; Stait-Gardner, Tim; Zheng, Gang; Matsukawa, Shingo; Price, William S
2018-03-01
A new family of binomial-like inversion sequences, named jump-and-return sandwiches (JRS), has been developed by inserting a binomial-like sequence into a standard jump-and-return sequence, discovered through use of a stochastic Genetic Algorithm optimisation. Compared to currently used binomial-like inversion sequences (e.g., 3-9-19 and W5), the new sequences afford wider inversion bands and narrower non-inversion bands with an equal number of pulses. As an example, two jump-and-return sandwich 10-pulse sequences achieved 95% inversion at offsets corresponding to 9.4% and 10.3% of the non-inversion band spacing, compared to 14.7% for the binomial-like W5 inversion sequence, i.e., they afforded non-inversion bands about two thirds the width of the W5 non-inversion band. Copyright © 2018 Elsevier Inc. All rights reserved.
Negative Urgency, Distress Tolerance, and Substance Abuse Among College Students
Kaiser, Alison J.; Milich, Richard; Lynam, Donald R.; Charnigo, Richard J.
2012-01-01
Objective Negative affect has been consistently linked with substance use/problems in prior research. The present study sought to build upon these findings by exploring how an individual’s characteristic responding to negative affect impacts substance abuse risk. Trait negative affect was examined in relation to substance abuse outcomes along with two variables tapping into response to negative affect: Distress Tolerance, an individual’s perceived ability to tolerate negative affect, and Negative Urgency, the tendency to act rashly while experiencing distress. Method Participants were 525 first-year college students (48.1% male, 81.1% Caucasian), who completed self-report measures assessing personality traits and alcohol-related problems, and a structured interview assessing past and current substance use. Relations were tested using Zero-Inflated Negative Binomial regression models, and each of the personality variables was tested in a model on its own, and in a model where all three traits were accounted for. Results Negative Urgency emerged as the best predictor, relating to every one of the substance use outcome variables even when trait negative affect and Distress Tolerance were accounted for. Conclusions These findings suggest that Negative Urgency is an important factor to consider in developing prevention and intervention efforts aimed at reducing substance use and problems. PMID:22698894
Gould, A Lawrence; Wang, William B
2017-01-15
The development of drugs and biologicals whose mechanisms of action may extend beyond their target indications has led to a need to identify unexpected potential toxicities promptly even while blinded clinical trials are under way. One component of recently issued FDA rules regarding safety reporting requirements raises the possibility of breaking the blind for pre-identified serious adverse events that are not the clinical endpoints of a blinded study. Concern has been expressed that unblinding individual cases of frequently occurring adverse events could compromise the overall validity of the study. However, if external information is available about adverse event rates among patients not receiving the test product in populations similar to the study population, then it may be possible to address the potential for elevated risk without unblinding the trial. This article describes a Bayesian approach for determining the likelihood of elevated risk suitable binomial or Poisson likelihoods that applies regardless of the metric used to express the difference. The method appears to be particularly appropriate for routine monitoring of safety information for project development programs that include large blinded trials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Cyclical absenteeism among private sector, public sector and self-employed workers.
Pfeifer, Christian
2013-03-01
This research note analyzes differences in the number of absent working days and doctor visits and in their cyclicality between private sector, public sector and self-employed workers. For this purpose, I used large-scale German survey data for the years 1995 to 2007 to estimate random effects negative binomial (count data) models. The main findings are as follows. (i) Public sector workers have on average more absent working days than private sector and self-employed workers. Self-employed workers have fewer absent working days and doctor visits than dependent employed workers. (ii) The regional unemployment rate is on average negatively correlated with the number of absent working days among private and public sector workers as well as among self-employed men. The correlations between regional unemployment rate and doctor visits are only significantly negative among private sector workers. Copyright © 2012 John Wiley & Sons, Ltd.
Adjusted Wald Confidence Interval for a Difference of Binomial Proportions Based on Paired Data
ERIC Educational Resources Information Center
Bonett, Douglas G.; Price, Robert M.
2012-01-01
Adjusted Wald intervals for binomial proportions in one-sample and two-sample designs have been shown to perform about as well as the best available methods. The adjusted Wald intervals are easy to compute and have been incorporated into introductory statistics courses. An adjusted Wald interval for paired binomial proportions is proposed here and…
NASA Astrophysics Data System (ADS)
Raghunath, Ganesh
Iron-Gallium alloy (Galfenol) is a magnetostrictive smart material (lambdasat ˜400 ppm) with potential for robust transduction owing to good magneto-mechanical coupling and useful mechanical properties. In addition, Galfenol exhibits a highly negative Poisson's ratio (denoted by nu) along the crystallographic directions on {100} planes with nu values of as low as -0.7 under tensile loads. Consequently, their samples become wider when elongated and narrower when compressed (aka auxeticity). This is an anisotropic, in-plane and volume conserving phenomenon with compensating contractions and expansions in the third (out of plane) direction. Since there is good magneto-elastic coupling in Galfenol, a negative Poisson's ratio is expected to be observed under application of magnetic fields even under zero stress conditions. This work deals with systematically studying the magneto-elastic contributions in Galfenol samples between 12 and 33 atomic percent Ga as a non-synthetic (no artificial linkages, unlike foams) 'structural auxetic' material, capable of bearing loads. This investigation addresses the profound gap in understanding this atypical behavior using empirical data supported by analytical modeling from first principles to predict the Poisson's ratio at magnetic saturation, multi-physics finite element simulations to determine the trends in the strains along the {100} directions and magnetic domain imaging to explain the mechanical response from a magnetic domain perspective. The outcome of this effort will help comprehend the association between anisotropic magnetic and mechanical energies and hence the magnetic contributions to the atomic level interactions that are the origins of this magneto-auxetic characteristic. Also, it is well established that a number of mechanical properties such as shear resistance and toughness depend on the value of Poisson's ratio. There is a slight increase in these mechanical properties with non-zero nu values, but as we enter the highly auxetic regime (nu<-0.5), these values increase by magnitudes. Hence, the possibility of nu values approaching -1.0 under applied magnetic fields at zero stress is extremely intriguing, as these properties can be much larger than is possible in conventional materials. This has potential for several novel applications where the value of Poisson's ratio can be magnetically tuned to keep it near -1 under applied stresses.
Analytical solutions for avalanche-breakdown voltages of single-diffused Gaussian junctions
NASA Astrophysics Data System (ADS)
Shenai, K.; Lin, H. C.
1983-03-01
Closed-form solutions of the potential difference between the two edges of the depletion layer of a single diffused Gaussian p-n junction are obtained by integrating Poisson's equation and equating the magnitudes of the positive and negative charges in the depletion layer. By using the closed form solution of the static Poisson's equation and Fulop's average ionization coefficient, the ionization integral in the depletion layer is computed, which yields the correct values of avalanche breakdown voltage, depletion layer thickness at breakdown, and the peak electric field as a function of junction depth. Newton's method is used for rapid convergence. A flowchart to perform the calculations with a programmable hand-held calculator, such as the TI-59, is shown.
On the p, q-binomial distribution and the Ising model
NASA Astrophysics Data System (ADS)
Lundow, P. H.; Rosengren, A.
2010-08-01
We employ p, q-binomial coefficients, a generalisation of the binomial coefficients, to describe the magnetisation distributions of the Ising model. For the complete graph this distribution corresponds exactly to the limit case p = q. We apply our investigation to the simple d-dimensional lattices for d = 1, 2, 3, 4, 5 and fit p, q-binomial distributions to our data, some of which are exact but most are sampled. For d = 1 and d = 5, the magnetisation distributions are remarkably well-fitted by p,q-binomial distributions. For d = 4 we are only slightly less successful, while for d = 2, 3 we see some deviations (with exceptions!) between the p, q-binomial and the Ising distribution. However, at certain temperatures near T c the statistical moments of the fitted distribution agree with the moments of the sampled data within the precision of sampling. We begin the paper by giving results of the behaviour of the p, q-distribution and its moment growth exponents given a certain parameterisation of p, q. Since the moment exponents are known for the Ising model (or at least approximately for d = 3) we can predict how p, q should behave and compare this to our measured p, q. The results speak in favour of the p, q-binomial distribution's correctness regarding its general behaviour in comparison to the Ising model. The full extent to which they correctly model the Ising distribution, however, is not settled.
Inouye, David I.; Ravikumar, Pradeep; Dhillon, Inderjit S.
2016-01-01
We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York—modeled as an exponential distribution—is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix—a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times. PMID:27563373
Assessment of some important factors affecting the singing-ground survey
Tautin, J.
1982-01-01
A brief history of the procedures used to analyze singing-ground survey data is outlined. Some weaknesses associated with the analytical procedures are discussed, and preliminary results of efforts to improve the procedures are presented. The most significant finding to date is that counts made by new observers need not be omitted when calculating an index of the woodcock population. Also, the distribution of woodcock heard singing, with respect to time after sunset, affirms the appropriateness of recommended starting times for counting woodcock. Woodcock count data fit the negative binomial probability distribution.
Ahmad, Aftab; Khan, Vikram; Badola, Smita; Arya, Gaurav; Bansal, Nayanci; Saxena, A. K.
2010-01-01
The prevalence, intensities of infestation, range of infestation and population composition of two phthirapteran species, Ardeicola expallidus Blagoveshtchensky (Phthiraptera: Philopteridae) and Ciconiphilus decimfasciatus Boisduval and Lacordaire (Menoponidae) on seventy cattle egrets were recorded during August 2004 to March 2005, in India. The frequency distribution patterns of both the species were skewed but did not correspond to the negative binomial model. The oviposition sites, egg laying patterns and the nature of the eggs of the two species were markedly different. PMID:21067416
Lord, Dominique; Park, Peter Young-Jin
2008-07-01
Traditionally, transportation safety analysts have used the empirical Bayes (EB) method to improve the estimate of the long-term mean of individual sites; to correct for the regression-to-the-mean (RTM) bias in before-after studies; and to identify hotspots or high risk locations. The EB method combines two different sources of information: (1) the expected number of crashes estimated via crash prediction models, and (2) the observed number of crashes at individual sites. Crash prediction models have traditionally been estimated using a negative binomial (NB) (or Poisson-gamma) modeling framework due to the over-dispersion commonly found in crash data. A weight factor is used to assign the relative influence of each source of information on the EB estimate. This factor is estimated using the mean and variance functions of the NB model. With recent trends that illustrated the dispersion parameter to be dependent upon the covariates of NB models, especially for traffic flow-only models, as well as varying as a function of different time-periods, there is a need to determine how these models may affect EB estimates. The objectives of this study are to examine how commonly used functional forms as well as fixed and time-varying dispersion parameters affect the EB estimates. To accomplish the study objectives, several traffic flow-only crash prediction models were estimated using a sample of rural three-legged intersections located in California. Two types of aggregated and time-specific models were produced: (1) the traditional NB model with a fixed dispersion parameter and (2) the generalized NB model (GNB) with a time-varying dispersion parameter, which is also dependent upon the covariates of the model. Several statistical methods were used to compare the fitting performance of the various functional forms. The results of the study show that the selection of the functional form of NB models has an important effect on EB estimates both in terms of estimated values, weight factors, and dispersion parameters. Time-specific models with a varying dispersion parameter provide better statistical performance in terms of goodness-of-fit (GOF) than aggregated multi-year models. Furthermore, the identification of hazardous sites, using the EB method, can be significantly affected when a GNB model with a time-varying dispersion parameter is used. Thus, erroneously selecting a functional form may lead to select the wrong sites for treatment. The study concludes that transportation safety analysts should not automatically use an existing functional form for modeling motor vehicle crashes without conducting rigorous analyses to estimate the most appropriate functional form linking crashes with traffic flow.
Perchoux, Camille; Nazare, Julie-Anne; Benmarhnia, Tarik; Salze, Paul; Feuillet, Thierry; Hercberg, Serge; Hess, Franck; Menai, Mehdi; Weber, Christiane; Charreire, Hélène; Enaux, Christophe; Oppert, Jean-Michel; Simon, Chantal
2017-06-12
Active transportation has been associated with favorable health outcomes. Previous research highlighted the influence of neighborhood educational level on active transportation. However, little is known regarding the effect of commuting distance on social disparities in active commuting. In this regard, women have been poorly studied. The objective of this paper was to evaluate the relationship between neighborhood educational level and active commuting, and to assess whether the commuting distance modifies this relationship in adult women. This cross-sectional study is based on a subsample of women from the Nutrinet-Santé web-cohort (N = 1169). Binomial, log-binomial and negative binomial regressions were used to assess the associations between neighborhood education level and (i) the likelihood of reporting any active commuting time, and (ii) the share of commuting time made by active transportation modes. Potential effect measure modification of distance to work on the previous associations was assessed both on the additive and the multiplicative scales. Neighborhood education level was positively associated with the probability of reporting any active commuting time (relative risk = 1.774; p < 0.05) and the share of commuting time spent active (relative risk = 1.423; p < 0.05). The impact of neighborhood education was greater at long distances to work for both outcomes. Our results suggest that neighborhood educational disparities in active commuting tend to increase with commuting distance among women. Further research is needed to provide geographically driven guidance for health promotion intervention aiming at reducing disparities in active transportation among socioeconomic groups.
C-5A Cargo Deck Low-Frequency Vibration Environment
1975-02-01
SAMPLE VIBRATION CALCULATIONS 13 1. Normal Distribution 13 2. Binomial Distribution 15 IV CONCLUSIONS 17 -! V REFERENCES 18 t: FEiCENDIJJ PAGS 2LANKNOT...Calculation for Binomial Distribution 108 (Vertical Acceleration, Right Rear Cargo Deck) xi I. INTRODUCTION The availability of large transport...the end of taxi. These peaks could then be used directly to compile the probability of occurrence of specific values of acceleration using the binomial
Impact of cigarette smoking on utilization of nursing home services.
Warner, Kenneth E; McCammon, Ryan J; Fries, Brant E; Langa, Kenneth M
2013-11-01
Few studies have examined the effects of smoking on nursing home utilization, generally using poor data on smoking status. No previous study has distinguished utilization for recent from long-term quitters. Using the Health and Retirement Study, we assessed nursing home utilization by never-smokers, long-term quitters (quit >3 years), recent quitters (quit ≤3 years), and current smokers. We used logistic regression to evaluate the likelihood of a nursing home admission. For those with an admission, we used negative binomial regression on the number of nursing home nights. Finally, we employed zero-inflated negative binomial regression to estimate nights for the full sample. Controlling for other variables, compared with never-smokers, long-term quitters have an odds ratio (OR) for nursing home admission of 1.18 (95% CI: 1.07-1.2), current smokers 1.39 (1.23-1.57), and recent quitters 1.55 (1.29-1.87). The probability of admission rises rapidly with age and is lower for African Americans and Hispanics, more affluent respondents, respondents with a spouse present in the home, and respondents with a living child. Given admission, smoking status is not associated with length of stay (LOS). LOS is longer for older respondents and women and shorter for more affluent respondents and those with spouses present. Compared with otherwise identical never-smokers, former and current smokers have a significantly increased risk of nursing home admission. That recent quitters are at greatest risk of admission is consistent with evidence that many stop smoking because they are sick, often due to smoking.
Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.
Sun, Xiaoxiao; Dalpiaz, David; Wu, Di; S Liu, Jun; Zhong, Wenxuan; Ma, Ping
2016-08-26
Accurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat gene expressions at different time points as replicates and test the significance of the mean expression difference between treatments or conditions irrespective of time. They thus fail to identify many DE genes with different profiles across time. In this article, we propose a negative binomial mixed-effect model (NBMM) to identify DE genes in time course RNA-Seq data. In the NBMM, mean gene expression is characterized by a fixed effect, and time dependency is described by random effects. The NBMM is very flexible and can be fitted to both unreplicated and replicated time course RNA-Seq data via a penalized likelihood method. By comparing gene expression profiles over time, we further classify the DE genes into two subtypes to enhance the understanding of expression dynamics. A significance test for detecting DE genes is derived using a Kullback-Leibler distance ratio. Additionally, a significance test for gene sets is developed using a gene set score. Simulation analysis shows that the NBMM outperforms currently available methods for detecting DE genes and gene sets. Moreover, our real data analysis of fruit fly developmental time course RNA-Seq data demonstrates the NBMM identifies biologically relevant genes which are well justified by gene ontology analysis. The proposed method is powerful and efficient to detect biologically relevant DE genes and gene sets in time course RNA-Seq data.
Robust inference in the negative binomial regression model with an application to falls data.
Aeberhard, William H; Cantoni, Eva; Heritier, Stephane
2014-12-01
A popular way to model overdispersed count data, such as the number of falls reported during intervention studies, is by means of the negative binomial (NB) distribution. Classical estimating methods are well-known to be sensitive to model misspecifications, taking the form of patients falling much more than expected in such intervention studies where the NB regression model is used. We extend in this article two approaches for building robust M-estimators of the regression parameters in the class of generalized linear models to the NB distribution. The first approach achieves robustness in the response by applying a bounded function on the Pearson residuals arising in the maximum likelihood estimating equations, while the second approach achieves robustness by bounding the unscaled deviance components. For both approaches, we explore different choices for the bounding functions. Through a unified notation, we show how close these approaches may actually be as long as the bounding functions are chosen and tuned appropriately, and provide the asymptotic distributions of the resulting estimators. Moreover, we introduce a robust weighted maximum likelihood estimator for the overdispersion parameter, specific to the NB distribution. Simulations under various settings show that redescending bounding functions yield estimates with smaller biases under contamination while keeping high efficiency at the assumed model, and this for both approaches. We present an application to a recent randomized controlled trial measuring the effectiveness of an exercise program at reducing the number of falls among people suffering from Parkinsons disease to illustrate the diagnostic use of such robust procedures and their need for reliable inference. © 2014, The International Biometric Society.
Association between month of birth and melanoma risk: fact or fiction?
Fiessler, Cornelia; Pfahlberg, Annette B; Keller, Andrea K; Radespiel-Tröger, Martin; Uter, Wolfgang; Gefeller, Olaf
2017-04-01
Evidence on the effect of ultraviolet radiation (UVR) exposure in infancy on melanoma risk in later life is scarce. Three recent studies suggest that people born in spring carry a higher melanoma risk. Our study aimed at verifying whether such a seasonal pattern of melanoma risk actually exists. Data from the population-based Cancer Registry Bavaria (CRB) on the birth months of 28 374 incident melanoma cases between 2002 and 2012 were analysed and compared with data from the Bavarian State Office for Statistics and Data Processing on the birth month distribution in the Bavarian population. Crude and adjusted analyses using negative binomial regression models were performed in the total study group and supplemented by several subgroup analyses. In the crude analysis, the birth months March-May were over-represented among melanoma cases. Negative binomial regression models adjusted only for sex and birth year revealed a seasonal association between melanoma risk and birth month with 13-21% higher relative incidence rates for March, April and May compared with the reference December. However, after additionally adjusting for the birth month distribution of the Bavarian population, these risk estimates decreased markedly and no association with the birth month was observed any more. Similar results emerged in all subgroup analyses. Our large registry-based study provides no evidence that people born in spring carry a higher risk for developing melanoma in later life and thus lends no support to the hypothesis of higher UVR susceptibility during the first months of life. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association
Hopelessness as a Predictor of Suicide Ideation in Depressed Male and Female Adolescent Youth.
Wolfe, Kristin L; Nakonezny, Paul A; Owen, Victoria J; Rial, Katherine V; Moorehead, Alexandra P; Kennard, Beth D; Emslie, Graham J
2017-12-21
We examined hopelessness as a predictor of suicide ideation in depressed youth after acute medication treatment. A total of 158 depressed adolescents were administered the Children's Depression Rating Scale-Revised (CDRS-R) and Columbia Suicide Severity Rating Scale (C-SSRS) as part of a larger battery at baseline and at weekly visits across 6 weeks of acute fluoxetine treatment. The Beck Hopelessness Scale (BHS) was administered at baseline and week 6. A negative binomial regression model via a generalized estimating equation analysis of repeated measures was used to estimate suicide ideation over the 6 weeks of acute treatment from baseline measure of hopelessness. Depression severity and gender were included as covariates in the model. The negative binomial analysis was also conducted separately for the sample of males and females (in a gender-stratified analysis). Mean CDRS-R total scores were 60.30 ± 8.93 at baseline and 34.65 ± 10.41 at week 6. Mean baseline and week 6 BHS scores were 9.57 ± 5.51 and 5.59 ± 5.38, respectively. Per the C-SSRS, 43.04% and 83.54% reported having no suicide ideation at baseline and at week 6, respectively. The analyses revealed that baseline hopelessness was positively related to suicide ideation over treatment (p = .0027), independent of changes in depression severity. This significant finding persisted only for females (p = .0024). These results indicate the importance of early identification of hopelessness. © 2017 The American Association of Suicidology.
Kim, Dae-Hwan; Ramjan, Lucie M; Mak, Kwok-Kei
2016-01-01
Traffic safety is a significant public health challenge, and vehicle crashes account for the majority of injuries. This study aims to identify whether drivers' characteristics and past traffic violations may predict vehicle crashes in Korea. A total of 500,000 drivers were randomly selected from the 11.6 million driver records of the Ministry of Land, Transport and Maritime Affairs in Korea. Records of traffic crashes were obtained from the archives of the Korea Insurance Development Institute. After matching the past violation history for the period 2004-2005 with the number of crashes in year 2006, a total of 488,139 observations were used for the analysis. Zero-inflated negative binomial model was used to determine the incident risk ratio (IRR) of vehicle crashes by past violations of individual drivers. The included covariates were driver's age, gender, district of residence, vehicle choice, and driving experience. Drivers violating (1) a hit-and-run or drunk driving regulation at least once and (2) a signal, central line, or speed regulation more than once had a higher risk of a vehicle crash with respective IRRs of 1.06 and 1.15. Furthermore, female gender, a younger age, fewer years of driving experience, and middle-sized vehicles were all significantly associated with a higher likelihood of vehicle crashes. Drivers' demographic characteristics and past traffic violations could predict vehicle crashes in Korea. Greater resources should be assigned to the provision of traffic safety education programs for the high-risk driver groups.
Wall, Stephen P; Lee, David C; Frangos, Spiros G; Sethi, Monica; Heyer, Jessica H; Ayoung-Chee, Patricia; DiMaggio, Charles J
2016-01-01
We conducted individual and ecologic analyses of prospectively collected data from 839 injured bicyclists who collided with motorized vehicles and presented to Bellevue Hospital, an urban Level-1 trauma center in New York City, from December 2008 to August 2014. Variables included demographics, scene information, rider behaviors, bicycle route availability, and whether the collision occurred before the road segment was converted to a bicycle route. We used negative binomial modeling to assess the risk of injury occurrence following bicycle path or lane implementation. We dichotomized U.S. National Trauma Data Bank Injury Severity Scores (ISS) into none/mild (0-8) versus moderate, severe, or critical (>8) and used adjusted multivariable logistic regression to model the association of ISS with collision proximity to sharrows (i.e., bicycle lanes designated for sharing with cars), painted bicycle lanes, or physically protected paths. Negative binomial modeling of monthly counts, while adjusting for pedestrian activity, revealed that physically protected paths were associated with 23% fewer injuries. Painted bicycle lanes reduced injury risk by nearly 90% (IDR 0.09, 95% CI 0.02-0.33). Holding all else equal, compared to no bicycle route, a bicycle injury nearby sharrows was nearly twice as likely to be moderate, severe, or critical (adjusted odds ratio 1.94; 95% confidence interval (CI) 0.91-4.15). Painted bicycle lanes and physically protected paths were 1.52 (95% CI 0.85-2.71) and 1.66 (95% CI 0.85-3.22) times as likely to be associated with more than mild injury respectively.
Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope
2013-01-01
With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.
Bisseleua, D H B; Vidal, Stefan
2011-02-01
The spatio-temporal distribution of Sahlbergella singularis Haglung, a major pest of cacao trees (Theobroma cacao) (Malvaceae), was studied for 2 yr in traditional cacao forest gardens in the humid forest area of southern Cameroon. The first objective was to analyze the dispersion of this insect on cacao trees. The second objective was to develop sampling plans based on fixed levels of precision for estimating S. singularis populations. The following models were used to analyze the data: Taylor's power law, Iwao's patchiness regression, the Nachman model, and the negative binomial distribution. Our results document that Taylor's power law was a better fit for the data than the Iwao and Nachman models. Taylor's b and Iwao's β were both significantly >1, indicating that S. singularis aggregated on specific trees. This result was further supported by the calculated common k of 1.75444. Iwao's α was significantly <0, indicating that the basic distribution component of S. singularis was the individual insect. Comparison of negative binomial (NBD) and Nachman models indicated that the NBD model was appropriate for studying S. singularis distribution. Optimal sample sizes for fixed precision levels of 0.10, 0.15, and 0.25 were estimated with Taylor's regression coefficients. Required sample sizes increased dramatically with increasing levels of precision. This is the first study on S. singularis dispersion in cacao plantations. Sampling plans, presented here, should be a tool for research on population dynamics and pest management decisions of mirid bugs on cacao. © 2011 Entomological Society of America
Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope
2013-01-01
Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448
Gaston, Symielle A; Volaufova, Julia; Peters, Edward S; Ferguson, Tekeda F; Robinson, William T; Nugent, Nicole; Trapido, Edward J; Rung, Ariane L
2017-09-01
The severity of the stress response to experiencing disaster depends on individual exposure and background stress prior to the event. To date, there is limited research on the interaction between neighborhood environmental stress and experiencing an oil spill, and their effects on depression. The objective of the current study was to assess if the association between exposure to the Deepwater Horizon Oil Spill (DHOS) and depressive symptoms varied by neighborhood characteristics. US Census data (2010) and longitudinal data collected in two waves (2012-2014 and 2014-2016) from female residents [N = 889 (Wave I), 737 (Wave II)] of an area highly affected by the DHOS were analyzed. Multilevel and individual-level negative binomial regressions were performed to estimate associations with depressive symptoms in both waves. An interaction term was included to estimate effect modification of the association between DHOS exposure and depressive symptoms by neighborhood characteristics. Generalized estimating equations were applied to the negative binomial regression testing longitudinal associations. Census tract-level neighborhood characteristics were not associated with depressive symptoms. Exposure to the DHOS and neighborhood physical disorder were associated with depressive symptoms cross-sectionally. There was no evidence of effect modification; however, physical/environmental exposure to the DHOS was associated with increased depressive symptoms only among women living in areas with physical disorder. Exposure to the DHOS remained associated with depressive symptoms over time. Findings support the enduring consequences of disaster exposure on depressive symptoms in women and identify potential targets for post-disaster intervention based on residential characteristics.
Poulin, Robert; Lagrue, Clément
2017-01-01
The spatial distribution of individuals of any species is a basic concern of ecology. The spatial distribution of parasites matters to control and conservation of parasites that affect human and nonhuman populations. This paper develops a quantitative theory to predict the spatial distribution of parasites based on the distribution of parasites in hosts and the spatial distribution of hosts. Four models are tested against observations of metazoan hosts and their parasites in littoral zones of four lakes in Otago, New Zealand. These models differ in two dichotomous assumptions, constituting a 2 × 2 theoretical design. One assumption specifies whether the variance function of the number of parasites per host individual is described by Taylor's law (TL) or the negative binomial distribution (NBD). The other assumption specifies whether the numbers of parasite individuals within each host in a square meter of habitat are independent or perfectly correlated among host individuals. We find empirically that the variance–mean relationship of the numbers of parasites per square meter is very well described by TL but is not well described by NBD. Two models that posit perfect correlation of the parasite loads of hosts in a square meter of habitat approximate observations much better than two models that posit independence of parasite loads of hosts in a square meter, regardless of whether the variance–mean relationship of parasites per host individual obeys TL or NBD. We infer that high local interhost correlations in parasite load strongly influence the spatial distribution of parasites. Local hotspots could influence control and conservation of parasites. PMID:27994156
Milner, Allison; Butterworth, Peter; Bentley, Rebecca; Kavanagh, Anne M; LaMontagne, Anthony D
2015-05-15
Sickness absence is associated with adverse health, organizational, and societal outcomes. Using data from a longitudinal cohort study of working Australians (the Household, Income and Labour Dynamics in Australia (HILDA) Survey), we examined the relationship between changes in individuals' overall psychosocial job quality and variation in sickness absence. The outcome variables were paid sickness absence (yes/no) and number of days of paid sickness absence in the past year (2005-2012). The main exposure variable was psychosocial job quality, measured using a psychosocial job quality index (levels of job control, demands and complexity, insecurity, and perceptions of unfair pay). Analysis was conducted using longitudinal fixed-effects logistic regression models and negative binomial regression models. There was a dose-response relationship between the number of psychosocial job stressors reported by an individual and the odds of paid sickness absence (1 adversity: odds ratio (OR) = 1.26, 95% confidence interval (CI): 1.09, 1.45 (P = 0.002); 2 adversities: OR = 1.28, 95% CI: 1.09, 1.51 (P = 0.002); ≥3 adversities: OR = 1.58, 95% CI: 1.29, 1.94 (P < 0.001)). The negative binomial regression models also indicated that respondents reported a greater number of days of sickness absence in response to worsening psychosocial job quality. These results suggest that workplace interventions aiming to improve the quality of work could help reduce sickness absence. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Levin, Eugene M.
1981-01-01
Student access to programmable calculators and computer terminals, coupled with a familiarity with baseball, provides opportunities to enhance their understanding of the binomial distribution and other aspects of analysis. (MP)
Equilibrium structures of carbon diamond-like clusters and their elastic properties
NASA Astrophysics Data System (ADS)
Lisovenko, D. S.; Baimova, Yu. A.; Rysaeva, L. Kh.; Gorodtsov, V. A.; Dmitriev, S. V.
2017-04-01
Three-dimensional carbon diamond-like phases consisting of sp 3-hybridized atoms, obtained by linking of carcasses of fullerene-like molecules, are studied by methods of molecular dynamics modeling. For eight cubic and one hexagonal diamond-like phases on the basis of four types of fullerene-like molecules, equilibrium configurations are found and the elastic constants are calculated. The results obtained by the method of molecular dynamics are used for analytical calculations of the elastic characteristics of the diamond- like phases with the cubic and hexagonal anisotropy. It is found that, for a certain choice of the dilatation axis, three of these phases have negative Poisson's ratio, i.e., are partial auxetics. The variability of the engineering elasticity coefficients (Young's modulus, Poisson's ratio, shear modulus, and bulk modulus) is analyzed.
New Class of Quantum Error-Correcting Codes for a Bosonic Mode
NASA Astrophysics Data System (ADS)
Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M.
2016-07-01
We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous for applications in quantum memories, communication, and scalable computation. These "binomial quantum codes" are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the time step between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to "cat codes" based on superpositions of the coherent states but offer several advantages such as smaller mean boson number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology, and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.
Quantifying the safety effects of horizontal curves on two-way, two-lane rural roads.
Gooch, Jeffrey P; Gayah, Vikash V; Donnell, Eric T
2016-07-01
The objective of this study is to quantify the safety performance of horizontal curves on two-way, two-lane rural roads relative to tangent segments. Past research is limited by small samples sizes, outdated statistical evaluation methods, and unreported standard errors. This study overcomes these drawbacks by using the propensity scores-potential outcomes framework. The impact of adjacent curves on horizontal curve safety is also explored using a cross-sectional regression model of only horizontal curves. The models estimated in the present study used eight years of crash data (2005-2012) obtained from over 10,000 miles of state-owned two-lane rural roads in Pennsylvania. These data included information on roadway geometry (e.g., horizontal curvature, lane width, and shoulder width), traffic volume, roadside hazard rating, and the presence of various low-cost safety countermeasures (e.g., centerline and shoulder rumble strips, curve and intersection warning pavement markings, and aggressive driving pavement dots). Crash prediction is performed by means of mixed effects negative binomial regression using the explanatory variables noted previously, as well as attributes of adjacent horizontal curves. The results indicate that both the presence of a horizontal curve and its degree of curvature must be considered when predicting the frequency of total crashes on horizontal curves. Both are associated with an increase in crash frequency, which is consistent with previous findings in the literature. Mixed effects negative binomial regression models for total crash frequency on horizontal curves indicate that the distance to adjacent curves is not statistically significant. However, the degree of curvature of adjacent curves in close proximity (within 0.75 miles) was found to be statistically significant and negatively correlated with crash frequency on the subject curve. This is logical, as drivers exiting a sharp curve are likely to be driving slower and with more awareness as they approach the next horizontal curve. Copyright © 2016 Elsevier Ltd. All rights reserved.
Speech-discrimination scores modeled as a binomial variable.
Thornton, A R; Raffin, M J
1978-09-01
Many studies have reported variability data for tests of speech discrimination, and the disparate results of these studies have not been given a simple explanation. Arguments over the relative merits of 25- vs 50-word tests have ignored the basic mathematical properties inherent in the use of percentage scores. The present study models performance on clinical tests of speech discrimination as a binomial variable. A binomial model was developed, and some of its characteristics were tested against data from 4120 scores obtained on the CID Auditory Test W-22. A table for determining significant deviations between scores was generated and compared to observed differences in half-list scores for the W-22 tests. Good agreement was found between predicted and observed values. Implications of the binomial characteristics of speech-discrimination scores are discussed.
Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Postler, Thomas S.; Clawson, Anna N.; Amarasinghe, Gaya K.
Botanical, mycological, zoological, and prokaryotic species names follow the Linnaean format, consisting of an italicized Latinized binomen with a capitalized genus name and a lower case species epithet (e.g., Homo sapiens). Virus species names, however, do not follow a uniform format, and, even when binomial, are not Linnaean in style. In this thought exercise, we attempted to convert all currently official names of species included in the virus family Arenaviridae and the virus order Mononegavirales to Linnaean binomials, and to identify and address associated challenges and concerns. Surprisingly, this endeavor was not as complicated or time-consuming as even the authorsmore » of this article expected when conceiving the experiment. [Arenaviridae; binomials; ICTV; International Committee on Taxonomy of Viruses; Mononegavirales; virus nomenclature; virus taxonomy.]« less
Stability amidst turmoil: Grit buffers the effects of negative life events on suicidal ideation.
Blalock, Dan V; Young, Kevin C; Kleiman, Evan M
2015-08-30
The goal of the current study is to examine the role of grit as a resilience factor that reduces the risk for suicidal ideation conferred by negative life events. Participants (N=209) completed measures of negative life events and grit at baseline and a measure of suicidal ideation at follow-up four weeks later. Poisson regression analyses found that higher levels of grit buffered the relationship between negative life events and suicidal ideation such that negative life events only predicted suicidal ideation if grit was low. These results suggest that high grit can abate the increased suicidal ideation associated with negative life events. Aside from absolute levels of suicidal ideation, being able to predict or buffer dramatic shifts in suicidal ideation can be a useful diagnostic tool during interventions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Charged particle multiplicities in deep inelastic scattering at HERA
NASA Astrophysics Data System (ADS)
Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; de Roeck, A.; de Wolf, E. A.; Dirkmann, M.; Dixon, P.; di Nezza, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Hadig, T.; Haidt, D.; Hajduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Müller, M.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; Zurnedden, M.
1996-12-01
Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic e + p scattering have been measured over a large kinematical region. The evolution with W and Q 2 of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, e + e - annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the Negative Binomial and Lognormal distributions are presented.
Crawford, Natalie D; Borrell, Luisa N; Galea, Sandro; Ford, Chandra; Latkin, Carl; Fuller, Crystal M
2013-04-01
Social discrimination may isolate drug users into higher risk relationships, particularly in disadvantaged neighborhood environments where drug trade occurs. We used negative binomial regression accounting for clustering of individuals within their recruitment neighborhood to investigate the relationship between high-risk drug ties with various forms of social discrimination, neighborhood minority composition, poverty and education. Results show that experiencing discrimination due to drug use is significantly associated with more drug ties in neighborhoods with fewer blacks. Future social network and discrimination research should assess the role of neighborhood social cohesion.
NASA Astrophysics Data System (ADS)
Lim, Hongki; Dewaraja, Yuni K.; Fessler, Jeffrey A.
2018-02-01
Most existing PET image reconstruction methods impose a nonnegativity constraint in the image domain that is natural physically, but can lead to biased reconstructions. This bias is particularly problematic for Y-90 PET because of the low probability positron production and high random coincidence fraction. This paper investigates a new PET reconstruction formulation that enforces nonnegativity of the projections instead of the voxel values. This formulation allows some negative voxel values, thereby potentially reducing bias. Unlike the previously reported NEG-ML approach that modifies the Poisson log-likelihood to allow negative values, the new formulation retains the classical Poisson statistical model. To relax the non-negativity constraint embedded in the standard methods for PET reconstruction, we used an alternating direction method of multipliers (ADMM). Because choice of ADMM parameters can greatly influence convergence rate, we applied an automatic parameter selection method to improve the convergence speed. We investigated the methods using lung to liver slices of XCAT phantom. We simulated low true coincidence count-rates with high random fractions corresponding to the typical values from patient imaging in Y-90 microsphere radioembolization. We compared our new methods with standard reconstruction algorithms and NEG-ML and a regularized version thereof. Both our new method and NEG-ML allow more accurate quantification in all volumes of interest while yielding lower noise than the standard method. The performance of NEG-ML can degrade when its user-defined parameter is tuned poorly, while the proposed algorithm is robust to any count level without requiring parameter tuning.
NASA Astrophysics Data System (ADS)
Cator, E.; Van Mieghem, P.
2014-05-01
By invoking the famous Fortuin, Kasteleyn, and Ginibre (FKG) inequality, we prove the conjecture that the correlation of infection at the same time between any pair of nodes in a network cannot be negative for (exact) Markovian susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on networks. The truth of the conjecture establishes that the N-intertwined mean-field approximation (NIMFA) upper bounds the infection probability in any graph so that network design based on NIMFA always leads to safe protections against malware spread. However, when the infection or/and curing are not Poisson processes, the infection correlation between two nodes can be negative.
Cator, E; Van Mieghem, P
2014-05-01
By invoking the famous Fortuin, Kasteleyn, and Ginibre (FKG) inequality, we prove the conjecture that the correlation of infection at the same time between any pair of nodes in a network cannot be negative for (exact) Markovian susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on networks. The truth of the conjecture establishes that the N-intertwined mean-field approximation (NIMFA) upper bounds the infection probability in any graph so that network design based on NIMFA always leads to safe protections against malware spread. However, when the infection or/and curing are not Poisson processes, the infection correlation between two nodes can be negative.
Snowden, Aleksandra J
2016-01-01
This study examined the role that race/ethnicity and social disorganization play in alcohol availability in Milwaukee, Wisconsin, census block groups. This study estimated negative binomial regression models to examine separately the relationship between neighborhood racial/ethnic composition and social disorganization levels for (1) total, (2) on-premise, and (3) off-premise alcohol outlets. Results of this study suggest that proportion Hispanic was positively associated with total and with off-premise alcohol outlets. Second, proportion African American was negatively associated with on-premise alcohol outlets and positively associated with off-premise alcohol outlets. Proportion Asian was not associated with total, on-premise, or off-premise alcohol outlets. However, the effects of race/ethnicity on alcohol availability were either unrelated or negatively related to alcohol outlet availability once neighborhood social disorganization levels were taken into account, and social disorganization was positively and significantly associated with all alcohol outlet types. Neighborhood characteristics contribute to alcohol availability and must be considered in any efforts aimed toward prevention of alcohol-related negative health and social outcomes.
The five-factor model of impulsivity-like traits and emotional lability in aggressive behavior.
Dvorak, Robert D; Pearson, Matthew R; Kuvaas, Nicholas J
2013-01-01
Factors that increase automatic psychological processes may result in impulsive action and, consequently, aggressive behavior. The current cross-sectional study examined the association between the five-factor model of impulsivity-like traits (negative urgency, positive urgency, premeditation, perseverance, and sensation seeking), emotional lability, and physically aggressive behaviors among college students (n = 481) in a negative binomial hurdle model. In the logistic portion of the model, emotional lability was related to a higher likelihood of engaging in aggressive acts in the past 6 months. The association between emotional lability and the likelihood of aggressive behavior was moderated by two impulsivity-like traits: negative urgency and positive urgency. Specifically, emotional lability was related to engaging in aggressive acts among those with high negative urgency, and among those with low positive urgency. In the count portion of the model, emotional lability was uniquely related to the number of aggressive acts in the past 6 months. Our results indicate that emotional lability and facets of impulsivity interactively relate to engagement in aggressive behavior, suggesting that these variables be integrated into models of aggression. © 2013 Wiley Periodicals, Inc.
A Monte Carlo Risk Analysis of Life Cycle Cost Prediction.
1975-09-01
process which occurs with each FLU failure. With this in mind there is no alternative other than the binomial distribution. 24 GOR/SM/75D-6 With all of...Weibull distribution of failures as selected by user. For each failure of the ith FLU, the model then samples from the binomial distribution to deter- mine...which is sampled from the binomial . Neither of the two conditions for normality are met, i.e., that RTS Ie close to .5 and the number of samples close
Statistical methods for the beta-binomial model in teratology.
Yamamoto, E; Yanagimoto, T
1994-01-01
The beta-binomial model is widely used for analyzing teratological data involving littermates. Recent developments in statistical analyses of teratological data are briefly reviewed with emphasis on the model. For statistical inference of the parameters in the beta-binomial distribution, separation of the likelihood introduces an likelihood inference. This leads to reducing biases of estimators and also to improving accuracy of empirical significance levels of tests. Separate inference of the parameters can be conducted in a unified way. PMID:8187716
Association between large strongyle genera in larval cultures--using rare-event poisson regression.
Cao, X; Vidyashankar, A N; Nielsen, M K
2013-09-01
Decades of intensive anthelmintic treatment has caused equine large strongyles to become quite rare, while the cyathostomins have developed resistance to several drug classes. The larval culture has been associated with low to moderate negative predictive values for detecting Strongylus vulgaris infection. It is unknown whether detection of other large strongyle species can be statistically associated with presence of S. vulgaris. This remains a statistical challenge because of the rare occurrence of large strongyle species. This study used a modified Poisson regression to analyse a dataset for associations between S. vulgaris infection and simultaneous occurrence of Strongylus edentatus and Triodontophorus spp. In 663 horses on 42 Danish farms, the individual prevalences of S. vulgaris, S. edentatus and Triodontophorus spp. were 12%, 3% and 12%, respectively. Both S. edentatus and Triodontophorus spp. were significantly associated with S. vulgaris infection with relative risks above 1. Further, S. edentatus was associated with use of selective therapy on the farms, as well as negatively associated with anthelmintic treatment carried out within 6 months prior to the study. The findings illustrate that occurrence of S. vulgaris in larval cultures can be interpreted as indicative of other large strongyles being likely to be present.
Lamm, Steven H; Robbins, Shayhan A; Zhou, Chao; Lu, Jun; Chen, Rusan; Feinleib, Manning
2013-02-01
To examine the analytic role of arsenic exposure on cancer mortality among the low-dose (well water arsenic level <150 μg/L) villages in the Blackfoot-disease (BFD) endemic area of southwest Taiwan and with respect to the southwest regional data. Poisson analyses of the bladder and lung cancer deaths with respect to arsenic exposure (μg/kg/day) for the low-dose (<150 μg/L) villages with exposure defined by the village median, mean, or maximum and with or without regional data. Use of the village median well water arsenic level as the exposure metric introduced misclassification bias by including villages with levels >500 μg/L, but use of the village mean or the maximum did not. Poisson analyses using mean or maximum arsenic levels showed significant negative cancer slope factors for models of bladder cancers and of bladder and lung cancers combined. Inclusion of the southwest Taiwan regional data did not change the findings when the model contained an explanatory variable for non-arsenic differences. A positive slope could only be generated by including the comparison population as a separate data point with the assumption of zero arsenic exposure from drinking water and eliminating the variable for non-arsenic risk factors. The cancer rates are higher among the low-dose (<150 μg/L) villages in the BFD area than in the southwest Taiwan region. However, among the low-dose villages in the BFD area, cancer risks suggest a negative association with well water arsenic levels. Positive differences from regional data seem attributable to non-arsenic ecological factors. Copyright © 2012 Elsevier Inc. All rights reserved.
A novel slithering locomotion mechanism for a snake-like soft robot
NASA Astrophysics Data System (ADS)
Cao, Yunteng; Liu, Yilun; Chen, Youlong; Zhu, Liangliang; Yan, Yuan; Chen, Xi
2017-02-01
A novel mechanism for slithering locomotion of a snake-like soft robot is presented. A rectangular beam with an isotropic coefficient of friction of its contact surface with the flat ground can move forward or backward when actuated by a periodic traveling sinusoidal wave. The Poisson's ratio of the beam plays an important role in the slithering locomotion speed and direction, particularly when it is negative. A theoretical model is proposed to elucidate the slithering locomotion mechanism, which is analogous to the rolling of a wheel on ground. There are two key factors of slithering locomotion: a rotational velocity field and a corresponding local contact region between the beam and ground. During wriggling motion of the rectangular beam, a rotational velocity field is observed near the maximum curvature point of the beam. If the beam has a negative Poisson's ratio, the axial tension will cause a lateral expansion so that the contact region between the beam and ground is located at the outer edge of the maximum curvature (the largest lateral expansion point). The direction of the beam's velocity at this outer edge is usually opposite to the traveling wave direction, so the friction force propels the beam in the direction of the traveling wave. A similar scenario is found for the relatively large amplitude of wriggling motion when the beam's Poisson's ratio is positive. Finite element method (FEM) simulation was conducted to verify the slithering locomotion mechanism, and good agreement was found between the FEM simulation results and theoretical predictions. The insights obtained here present a simple, novel and straightforward mechanism for slithering locomotion and are helpful for future designs of snake-like soft robots.
Rant, Darja; Rijavec, Tatjana; Pavko-Čuden, Alenka
2013-01-01
Common materials have Poisson's ratio values ranging from 0.0 to 0.5. Auxetic materials exhibit negative Poisson's ratio. They expand laterally when stretched longitudinally and contract laterally when compressed. In recent years the use of textile technology to fabricate auxetic materials has attracted more and more attention. It is reflected in the extent of available research work exploring the auxetic potential of various textile structures and subsequent increase in the number of research papers published. Generally there are two approaches to producing auxetic textiles. The first one includes the use of auxetic fibers to produce an auxetic textile structure, whereas the other utilizes conventional fibres to produce a textile structure with auxetic properties. This review deals with auxetic materials in general and in the specific context of auxetic polymers, auxetic fibers, and auxetic textile structures made from conventional fibers and knitted structures with auxetic potential.
Whale, Alexandra S; Huggett, Jim F; Cowen, Simon; Speirs, Valerie; Shaw, Jacqui; Ellison, Stephen; Foy, Carole A; Scott, Daniel J
2012-06-01
One of the benefits of Digital PCR (dPCR) is the potential for unparalleled precision enabling smaller fold change measurements. An example of an assessment that could benefit from such improved precision is the measurement of tumour-associated copy number variation (CNV) in the cell free DNA (cfDNA) fraction of patient blood plasma. To investigate the potential precision of dPCR and compare it with the established technique of quantitative PCR (qPCR), we used breast cancer cell lines to investigate HER2 gene amplification and modelled a range of different CNVs. We showed that, with equal experimental replication, dPCR could measure a smaller CNV than qPCR. As dPCR precision is directly dependent upon both the number of replicate measurements and the template concentration, we also developed a method to assist the design of dPCR experiments for measuring CNV. Using an existing model (based on Poisson and binomial distributions) to derive an expression for the variance inherent in dPCR, we produced a power calculation to define the experimental size required to reliably detect a given fold change at a given template concentration. This work will facilitate any future translation of dPCR to key diagnostic applications, such as cancer diagnostics and analysis of cfDNA.
Two-sample discrimination of Poisson means
NASA Technical Reports Server (NTRS)
Lampton, M.
1994-01-01
This paper presents a statistical test for detecting significant differences between two random count accumulations. The null hypothesis is that the two samples share a common random arrival process with a mean count proportional to each sample's exposure. The model represents the partition of N total events into two counts, A and B, as a sequence of N independent Bernoulli trials whose partition fraction, f, is determined by the ratio of the exposures of A and B. The detection of a significant difference is claimed when the background (null) hypothesis is rejected, which occurs when the observed sample falls in a critical region of (A, B) space. The critical region depends on f and the desired significance level, alpha. The model correctly takes into account the fluctuations in both the signals and the background data, including the important case of small numbers of counts in the signal, the background, or both. The significance can be exactly determined from the cumulative binomial distribution, which in turn can be inverted to determine the critical A(B) or B(A) contour. This paper gives efficient implementations of these tests, based on lookup tables. Applications include the detection of clustering of astronomical objects, the detection of faint emission or absorption lines in photon-limited spectroscopy, the detection of faint emitters or absorbers in photon-limited imaging, and dosimetry.
MSeq-CNV: accurate detection of Copy Number Variation from Sequencing of Multiple samples.
Malekpour, Seyed Amir; Pezeshk, Hamid; Sadeghi, Mehdi
2018-03-05
Currently a few tools are capable of detecting genome-wide Copy Number Variations (CNVs) based on sequencing of multiple samples. Although aberrations in mate pair insertion sizes provide additional hints for the CNV detection based on multiple samples, the majority of the current tools rely only on the depth of coverage. Here, we propose a new algorithm (MSeq-CNV) which allows detecting common CNVs across multiple samples. MSeq-CNV applies a mixture density for modeling aberrations in depth of coverage and abnormalities in the mate pair insertion sizes. Each component in this mixture density applies a Binomial distribution for modeling the number of mate pairs with aberration in the insertion size and also a Poisson distribution for emitting the read counts, in each genomic position. MSeq-CNV is applied on simulated data and also on real data of six HapMap individuals with high-coverage sequencing, in 1000 Genomes Project. These individuals include a CEU trio of European ancestry and a YRI trio of Nigerian ethnicity. Ancestry of these individuals is studied by clustering the identified CNVs. MSeq-CNV is also applied for detecting CNVs in two samples with low-coverage sequencing in 1000 Genomes Project and six samples form the Simons Genome Diversity Project.
Motoda, Saori; Shiraki, Nobuhiko; Ishihara, Takuma; Sakaguchi, Hirokazu; Kabata, Daijiro; Takahara, Mitsuyoshi; Kimura, Takekazu; Kozawa, Junji; Imagawa, Akihisa; Nishida, Kohji; Shintani, Ayumi; Iwahashi, Hiromi; Shimomura, Iichiro
2017-12-19
To clarify the association between perioperative variables and postoperative bleeding in pars plana vitrectomy for vitreous hemorrhage in diabetic retinopathy. The present retrospective study enrolled 72 eyes of 64 patients who were admitted to Osaka University Hospital between April 2010 and March 2014, and underwent vitrectomy for vitreous hemorrhage as a result of diabetic retinopathy. Postoperative bleeding developed in 12 eyes. Using binomial logistic regression analysis, we found that the duration of operation was the only significant variable associated with postoperative bleeding within 12 weeks after vitrectomy. Furthermore, Poisson regression analysis identified fasting blood glucose just before vitrectomy, no treatment with antiplatelet drugs and treatment with antihypertensive drugs, as well as duration of operation, to be significantly associated with the frequency of bleeding within 52 weeks after vitrectomy. Long duration of operation can be used to predict bleeding within both 12 and 52 weeks after vitrectomy. In addition, fasting blood glucose just before vitrectomy, no treatment with antiplatelet drugs and treatment with antihypertensive drugs might be risk factors for postoperative bleeding up to 1 year after vitrectomy. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
Gould, A Lawrence
2016-12-30
Conventional practice monitors accumulating information about drug safety in terms of the numbers of adverse events reported from trials in a drug development program. Estimates of between-treatment adverse event risk differences can be obtained readily from unblinded trials with adjustment for differences among trials using conventional statistical methods. Recent regulatory guidelines require monitoring the cumulative frequency of adverse event reports to identify possible between-treatment adverse event risk differences without unblinding ongoing trials. Conventional statistical methods for assessing between-treatment adverse event risks cannot be applied when the trials are blinded. However, CUSUM charts can be used to monitor the accumulation of adverse event occurrences. CUSUM charts for monitoring adverse event occurrence in a Bayesian paradigm are based on assumptions about the process generating the adverse event counts in a trial as expressed by informative prior distributions. This article describes the construction of control charts for monitoring adverse event occurrence based on statistical models for the processes, characterizes their statistical properties, and describes how to construct useful prior distributions. Application of the approach to two adverse events of interest in a real trial gave nearly identical results for binomial and Poisson observed event count likelihoods. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Leas, Eric C; Myers, Mark G; Strong, David R; Hofstetter, C Richard; Al-Delaimy, Wael K
2015-02-01
We assessed whether an anti-tobacco television advertisement called "Stages," which depicted a woman giving a brief emotional narrative of her experiences with tobacco use, would be recalled more often and have a greater effect on smoking cessation than 3 other advertisements with different intended themes. Our data were derived from a sample of 2596 California adult smokers. We used multivariable log-binomial and modified Poisson regression models to calculate respondents' probability of quitting as a result of advertisement recall. More respondents recalled the "Stages" ad (58.5%) than the 3 other ads (23.1%, 23.4%, and 25.6%; P<.001). Respondents who recalled "Stages" at baseline had a higher probability than those who did not recall the ad of making a quit attempt between baseline and follow-up (adjusted risk ratio [RR]=1.18; 95% confidence interval [CI]=1.03, 1.34) and a higher probability of being in a period of smoking abstinence for at least a month at follow-up (adjusted RR=1.55; 95% CI=1.02, 2.37). Anti-tobacco television advertisements that depict visceral and personal messages may be recalled by a larger percentage of smokers and may have a greater impact on smoking cessation than other types of advertisements.
The Binomial Distribution in Shooting
ERIC Educational Resources Information Center
Chalikias, Miltiadis S.
2009-01-01
The binomial distribution is used to predict the winner of the 49th International Shooting Sport Federation World Championship in double trap shooting held in 2006 in Zagreb, Croatia. The outcome of the competition was definitely unexpected.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals
NASA Astrophysics Data System (ADS)
Frejlich, Pedro; Mărcuț, Ioan
2018-03-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.
Frejlich, Pedro; Mărcuț, Ioan
2018-01-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Stocks, S Jill; McNamee, Roseanne; van der Molen, Henk F; Paris, Christophe; Urban, Pavel; Campo, Giuseppe; Sauni, Riitta; Martínez Jarreta, Begoña; Valenty, Madeleine; Godderis, Lode; Miedinger, David; Jacquetin, Pascal; Gravseth, Hans M; Bonneterre, Vincent; Telle-Lamberton, Maylis; Bensefa-Colas, Lynda; Faye, Serge; Mylle, Godewina; Wannag, Axel; Samant, Yogindra; Pal, Teake; Scholz-Odermatt, Stefan; Papale, Adriano; Schouteden, Martijn; Colosio, Claudio; Mattioli, Stefano; Agius, Raymond
2015-04-01
The European Union (EU) strategy for health and safety at work underlines the need to reduce the incidence of occupational diseases (OD), but European statistics to evaluate this common goal are scarce. We aim to estimate and compare changes in incidence over time for occupational asthma, contact dermatitis, noise-induced hearing loss (NIHL), carpal tunnel syndrome (CTS) and upper limb musculoskeletal disorders across 10 European countries. OD surveillance systems that potentially reflected nationally representative trends in incidence within Belgium, the Czech Republic, Finland, France, Italy, the Netherlands, Norway, Spain, Switzerland and the UK provided data. Case counts were analysed using a negative binomial regression model with year as the main covariate. Many systems collected data from networks of 'centres', requiring the use of a multilevel negative binomial model. Some models made allowance for changes in compensation or reporting rules. Reports of contact dermatitis and asthma, conditions with shorter time between exposure to causal substances and OD, were consistently declining with only a few exceptions. For OD with physical causal exposures there was more variation between countries. Reported NIHL was increasing in Belgium, Spain, Switzerland and the Netherlands and decreasing elsewhere. Trends in CTS and upper limb musculoskeletal disorders varied widely within and between countries. This is the first direct comparison of trends in OD within Europe and is consistent with a positive impact of European initiatives addressing exposures relevant to asthma and contact dermatitis. Taking a more flexible approach allowed comparisons of surveillance data between and within countries without harmonisation of data collection methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Dental enamel defects, caries experience and oral health-related quality of life: a cohort study.
Arrow, P
2017-06-01
The impact of enamel defects of the first permanent molars on caries experience and child oral health-related quality of life was evaluated in a cohort study. Children who participated in a study of enamel defects of the first permanent molars 8 years earlier were invited for a follow-up assessment. Consenting children completed the Child Perception Questionnaire and the faces Modified Child Dental Anxiety Scale, and were examined by two calibrated examiners. ANOVA, Kruskal-Wallis, negative binomial and logistic regression were used for data analyses. One hundred and eleven children returned a completed questionnaire and 91 were clinically examined. Negative binomial regression found that oral health impacts were associated with gender (boys, risk ratio (RR) = 0.73, P = 0.03) and decayed, missing or filled permanent teeth (DMFT) (RR = 1.1, P = 0.04). The mean DMFT of children were sound (0.9, standard deviation (SD) = 1.4), diffuse defects (0.8, SD = 1.7), demarcated defects (1.5, SD = 1.4) and pit defects (1.3, SD = 2.3) (Kruskal-Wallis, P = 0.05). Logistic regression of first permanent molar caries found higher odds of caries experience with baseline primary tooth caries experience (odds ratio (OR) = 1.5, P = 0.01), the number of teeth affected by enamel defects (OR = 1.9, P = 0.05) and lower odds with the presence of diffuse enamel defects (OR = 0.1, P = 0.04). The presence of diffuse enamel defects was associated with lower odds of caries experience. © 2016 Australian Dental Association.
del Socorro Herrera, Miriam; Medina-Solis, Carlo Eduardo; Minaya-Sánchez, Mirna; Pontigo-Loyola, América Patricia; Villalobos-Rodelo, Juan José; Islas-Granillo, Horacio; de la Rosa-Santillana, Rubén; Maupomé, Gerardo
2013-01-01
Background Our study aimed to evaluate the effect of various risk indicators for dental caries on primary teeth of Nicaraguan children (from Leon, Nicaragua) ages 6 to 9, using the negative binomial regression model. Material/Methods A cross-sectional study was carried out to collect clinical, demographic, socioeconomic, and behavioral data from 794 schoolchildren ages 6 to 9 years, randomly selected from 25 schools in the city of León, Nicaragua. Clinical examinations for dental caries (dmft index) were performed by 2 trained and standardized examiners. Socio-demographic, socioeconomic, and behavioral data were self-reported using questionnaires. Multivariate negative binomial regression (NBR) analysis was used. Results Mean age was 7.49±1.12 years. Boys accounted for 50.1% of the sample. Mean dmft was 3.54±3.13 and caries prevalence (dmft >0) was 77.6%. In the NBR multivariate model (p<0.05), for each year of age, the expected mean dmft decreased by 7.5%. Brushing teeth at least once a day and having received preventive dental care in the last year before data collection were associated with declines in the expected mean dmft by 19.5% and 69.6%, respectively. Presence of dental plaque increased the expected mean dmft by 395.5%. Conclusions The proportion of students with caries in this sample was high. We found associations between dental caries in the primary dentition and dental plaque, brushing teeth at least once a day, and having received preventive dental care. To improve oral health, school programs and/or age-appropriate interventions need to be developed based on the specific profile of caries experience and the associated risk indicators. PMID:24247119
Frequency distribution of Echinococcus multilocularis and other helminths of foxes in Kyrgyzstan
I., Ziadinov; P., Deplazes; A., Mathis; B., Mutunova; K., Abdykerimov; R., Nurgaziev; P.R, Torgerson
2010-01-01
Echinococcosis is a major emerging zoonosis in central Asia. A study of the helminth fauna of foxes from Naryn Oblast in central Kyrgyzstan was undertaken to investigate the abundance of Echinococcus multilocularis in a district where a high prevalence of this parasite had previously been detected in dogs. A total of 151 foxes (Vulpes vulpes) were investigated in a necropsy study. Of these 96 (64%) were infected with E. multilocularis with a mean abundance of 8669 parasites per fox. This indicates that red foxes are a major definitive host of E. multilocularis in this country. This also demonstrates that the abundance and prevalence of E. multilocularis in the natural definitive host are likely to be high in geographical regions where there is a concomitant high prevalence in alternative definitive hosts such as dogs. In addition Mesocestoides spp., Dipylidium caninum, Taenia spp., Toxocara canis, Toxascaris leonina, Capillaria and Acanthocephala spp. were found in 99 (66%), 50 (33%), 48 (32%), 46 (30%), 9 (6%), 34 (23%) and 2 (1%) of foxes, respectively. The prevalence but not the abundance of E. multilocularis decreased with age. The abundance of Dipylidium caninum also decreased with age. The frequency distribution of E. multilocularis and Mesocestoides spp. followed a zero inflated negative binomial distribution, whilst all other helminths had a negative binomial distribution. This demonstrates that the frequency distribution of positive counts and not just the frequency of zeros in the data set can determine if a zero inflated or non-zero inflated model is more appropriate. This is because the prevalences of E. multolocularis and Mesocestoides spp. were the highest (and hence had fewest zero counts) yet the parasite distribution nevertheless gave a better fit to the zero inflated models. PMID:20434845
Tellier, Stéphanie; Dallocchio, Aymeric; Guigonis, Vincent; Saint-Marcoux, Frank; Llanas, Brigitte; Ichay, Lydia; Bandin, Flavio; Godron, Astrid; Morin, Denis; Brochard, Karine; Gandia, Peggy; Bouchet, Stéphane; Marquet, Pierre; Decramer, Stéphane
2016-01-01
Background and objectives Therapeutic drug monitoring of mycophenolic acid can improve clinical outcome in organ transplantation and lupus, but data are scarce in idiopathic nephrotic syndrome. The aim of our study was to investigate whether mycophenolic acid pharmacokinetics are associated with disease control in children receiving mycophenolate mofetil for the treatment of steroid–dependent nephrotic syndrome. Design, setting, participants, & measurements This was a retrospective multicenter study including 95 children with steroid–dependent nephrotic syndrome treated with mycophenolate mofetil with or without steroids. Area under the concentration-time curve of mycophenolic acid was determined in all children on the basis of sampling times at 20, 60, and 180 minutes postdose, using Bayesian estimation. The association between a threshold value of the area under the concentration-time curve of mycophenolic acid and the relapse rate was assessed using a negative binomial model. Results In total, 140 areas under the concentration-time curve of mycophenolic acid were analyzed. The findings indicate individual dose adaptation in 53 patients (38%) to achieve an area under the concentration-time curve target of 30–60 mg·h/L. In a multivariable negative binomial model including sex, age at disease onset, time to start of mycophenolate mofetil, previous immunomodulatory treatment, and concomitant prednisone dose, a level of area under the concentration-time curve of mycophenolic acid >45 mg·h/L was significantly associated with a lower relapse rate (rate ratio, 0.65; 95% confidence interval, 0.46 to 0.89; P=0.01). Conclusions Therapeutic drug monitoring leading to individualized dosing may improve the efficacy of mycophenolate mofetil in steroid–dependent nephrotic syndrome. Additional prospective studies are warranted to determine the optimal target for area under the concentration-time curve of mycophenolic acid in this population. PMID:27445161
Tellier, Stéphanie; Dallocchio, Aymeric; Guigonis, Vincent; Saint-Marcoux, Frank; Llanas, Brigitte; Ichay, Lydia; Bandin, Flavio; Godron, Astrid; Morin, Denis; Brochard, Karine; Gandia, Peggy; Bouchet, Stéphane; Marquet, Pierre; Decramer, Stéphane; Harambat, Jérôme
2016-10-07
Therapeutic drug monitoring of mycophenolic acid can improve clinical outcome in organ transplantation and lupus, but data are scarce in idiopathic nephrotic syndrome. The aim of our study was to investigate whether mycophenolic acid pharmacokinetics are associated with disease control in children receiving mycophenolate mofetil for the treatment of steroid-dependent nephrotic syndrome. This was a retrospective multicenter study including 95 children with steroid-dependent nephrotic syndrome treated with mycophenolate mofetil with or without steroids. Area under the concentration-time curve of mycophenolic acid was determined in all children on the basis of sampling times at 20, 60, and 180 minutes postdose, using Bayesian estimation. The association between a threshold value of the area under the concentration-time curve of mycophenolic acid and the relapse rate was assessed using a negative binomial model. In total, 140 areas under the concentration-time curve of mycophenolic acid were analyzed. The findings indicate individual dose adaptation in 53 patients (38%) to achieve an area under the concentration-time curve target of 30-60 mg·h/L. In a multivariable negative binomial model including sex, age at disease onset, time to start of mycophenolate mofetil, previous immunomodulatory treatment, and concomitant prednisone dose, a level of area under the concentration-time curve of mycophenolic acid >45 mg·h/L was significantly associated with a lower relapse rate (rate ratio, 0.65; 95% confidence interval, 0.46 to 0.89; P =0.01). Therapeutic drug monitoring leading to individualized dosing may improve the efficacy of mycophenolate mofetil in steroid-dependent nephrotic syndrome. Additional prospective studies are warranted to determine the optimal target for area under the concentration-time curve of mycophenolic acid in this population. Copyright © 2016 by the American Society of Nephrology.
Dong, Chunjiao; Clarke, David B; Yan, Xuedong; Khattak, Asad; Huang, Baoshan
2014-09-01
Crash data are collected through police reports and integrated with road inventory data for further analysis. Integrated police reports and inventory data yield correlated multivariate data for roadway entities (e.g., segments or intersections). Analysis of such data reveals important relationships that can help focus on high-risk situations and coming up with safety countermeasures. To understand relationships between crash frequencies and associated variables, while taking full advantage of the available data, multivariate random-parameters models are appropriate since they can simultaneously consider the correlation among the specific crash types and account for unobserved heterogeneity. However, a key issue that arises with correlated multivariate data is the number of crash-free samples increases, as crash counts have many categories. In this paper, we describe a multivariate random-parameters zero-inflated negative binomial (MRZINB) regression model for jointly modeling crash counts. The full Bayesian method is employed to estimate the model parameters. Crash frequencies at urban signalized intersections in Tennessee are analyzed. The paper investigates the performance of MZINB and MRZINB regression models in establishing the relationship between crash frequencies, pavement conditions, traffic factors, and geometric design features of roadway intersections. Compared to the MZINB model, the MRZINB model identifies additional statistically significant factors and provides better goodness of fit in developing the relationships. The empirical results show that MRZINB model possesses most of the desirable statistical properties in terms of its ability to accommodate unobserved heterogeneity and excess zero counts in correlated data. Notably, in the random-parameters MZINB model, the estimated parameters vary significantly across intersections for different crash types. Copyright © 2014 Elsevier Ltd. All rights reserved.
Minaya-Sánchez, Mirna; Medina-Solís, Carlo E.; Vallejos-Sánchez, Ana A.; Marquez-Corona, Maria L.; Pontigo-Loyola, América P.; Islas-Granillo, Horacio; Maupomé, Gerardo
2012-01-01
Background: Diverse variables are implicated in the pathogenesis of gingival recession; more detailed knowledge about the relationship between the clinical presentation of gingival recession and assorted risk indicators may lead to improved patient monitoring, early intervention, and subsequent prevention. The objective was to evaluate clinically gingival recession in a homogeneous Mexican adult male population and to determine the strength of association with related factors. Method: A cross-sectional study was carried out in a largely homogeneous group in terms of ethnic background, socioeconomic status, gender, occupation, and medical/dental insurance, in Campeche, Mexico. Periodontal examinations were undertaken to determine diverse clinical dental variables. All periodontal clinical examinations were assessed using the Florida Probe System, a dental chair and one examiner. Questionnaires were used to collect diverse risk indicators. Statistical analyses were undertaken with negative binomial regression models. Results: The mean number of sites with gingival recession per subject was 6.73±5.81; the prevalence was 87.6%. In the negative binomial regression model we observed that for (i) each year of age, and (ii) each percentage unit of increase in sites with plaque, and (iii) with suppuration, mean sites with gingival recession increased 2.9%, 1.0% and 13.0%, respectively. Having a spouse was associated with gingival recession. Conclusions: We observed association between gingival recession, and sociodemographic and clinical parameters. Patients need to be educated about risk indicators for gingival recession as well as the preventive maneuvers that may be implemented to minimize its occurrence. The potential of improved oral self-care to prevent a largely benign condition such as gingival recession is important, given the associated disorders that may ensue root exposure, such as root caries and root hypersensitivity. Key words:Oral health, periodontal health, gingival recession, adults, Mexico. PMID:22549678
Stringer, Barbara; van Meijel, Berno; Eikelenboom, Merijn; Koekkoek, Bauke; Licht, Carmilla M M; Kerkhof, Ad J F M; Penninx, Brenda W J H; Beekman, Aartjan T F
2013-10-01
The presence of a comorbid borderline personality disorder (BPD) may be associated with an increase of suicidal behaviors in patients with depressive and anxiety disorders. The aim of this study is to examine the role of borderline personality traits on recurrent suicide attempts. The Netherlands Study on Depression and Anxiety included 1838 respondents with lifetime depressive and/or anxiety disorders, of whom 309 reported at least one previous suicide attempt. A univariable negative binomial regression analysis was performed to examine the association between comorbid borderline personality traits and suicide attempts. Univariable and multivariable negative binomial regression analyses were performed to identify risk factors for the number of recurrent suicide attempts in four clusters (type and severity of axis-I disorders, BPD traits, determinants of suicide attempts and socio-demographics). In the total sample the suicide attempt rate ratio increased with 33% for every unit increase in BPD traits. A lifetime diagnosis of dysthymia and comorbid BPD traits, especially the symptoms anger and fights, were independently and significantly associated with recurrent suicide attempts in the final model (n=309). The screening of personality disorders was added to the NESDA assessments at the 4-year follow-up for the first time. Therefore we were not able to examine the influence of comorbid BPD traits on suicide attempts over time. Persons with a lifetime diagnosis of dysthymia combined with borderline personality traits especially difficulties in coping with anger seemed to be at high risk for recurrent suicide attempts. For clinical practice, it is recommended to screen for comorbid borderline personality traits and to strengthen the patient's coping skills with regard to anger. © 2013 Elsevier B.V. All rights reserved.
Heidar, Z; Bakhtiyari, M; Mirzamoradi, M; Zadehmodarres, S; Sarfjoo, F S; Mansournia, M A
2015-09-01
The purpose of this study was to predict the poor and excessive ovarian response using anti-Müllerian hormone (AMH) levels following a long agonist protocol in IVF candidates. Through a prospective cohort study, the type of relationship and appropriate scale for AMH were determined using the fractional polynomial regression. To determine the effect of AMH on the outcomes of ovarian stimulation and different ovarian responses, the multi-nominal and negative binomial regression models were fitted using backward stepwise method. The ovarian response of study subject who entered a standard long-term treatment cycle with GnRH agonist was evaluated using prediction model, separately and in combined models with (ROC) curves. The use of standard long-term treatments with GnRH agonist led to positive pregnancy test results in 30% of treated patients. With each unit increase in the log of AMH, the odds ratio of having poor response compared to normal response decreases by 64% (OR 0.36, 95% CI 0.19-0.68). Also the results of negative binomial regression model indicated that for one unit increase in the log of AMH blood levels, the odds of releasing an oocyte increased 24% (OR 1.24, 95% CI 1.14-1.35). The optimal cut-off points of AMH for predicting excessive and poor ovarian responses were 3.4 and 1.2 ng/ml, respectively, with area under curves of 0.69 (0.60-0.77) and 0.76 (0.66-0.86), respectively. By considering the age of the patient undergoing infertility treatment as a variable affecting ovulation, use of AMH levels showed to be a good test to discriminate between different ovarian responses.
Choi, Seung Hoan; Labadorf, Adam T; Myers, Richard H; Lunetta, Kathryn L; Dupuis, Josée; DeStefano, Anita L
2017-02-06
Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.
Mendez, Bomar Rojas
2017-01-01
Background Improving access to delivery services does not guarantee access to quality obstetric care and better survival, and therefore, concerns for quality of maternal and newborn care in low- and middle-income countries have been raised. Our study explored characteristics associated with the quality of initial assessment, intrapartum, and immediate postpartum and newborn care, and further assessed the relationships along the continuum of care. Methods The 2010 Service Provision Assessment data of Kenya for 627 routine deliveries of women aged 15–49 were used. Quality of care measures were assessed using recently validated quality of care measures during initial assessment, intrapartum, and postpartum periods. Data were analyzed with negative binomial regression and structural equation modeling technique. Results The negative binomial regression results identified a number of determinants of quality, such as the level of health facilities, managing authority, presence of delivery fee, central electricity supply and clinical guideline for maternal and neonatal care. Our structural equation modeling (SEM) further demonstrated that facility characteristics were important determinants of quality for initial assessment and postpartum care, while characteristics at the provider level became more important in shaping the quality of intrapartum care. Furthermore we also noted that quality of initial assessment had a positive association with quality of intrapartum care (β = 0.71, p < 0.001), which in turn was positively associated with the quality of newborn and immediate postpartum care (β = 1.29, p = 0.004). Conclusions A continued focus on quality of care along the continuum of maternity care is important not only to mothers but also their newborns. Policymakers should therefore ensure that required resources, as well as adequate supervision and emphasis on the quality of obstetric care, are available. PMID:28520771
Factors Associated with Dental Caries in a Group of American Indian Children at age 36 Months
Warren, John J.; Blanchette, Derek; Dawson, Deborah V.; Marshall, Teresa A.; Phipps, Kathy R.; Starr, Delores; Drake, David R.
2015-01-01
Objectives Early childhood caries (ECC) is rampant among American Indian children, but there has been relatively little study of this problem. This paper reports on risk factors for caries for a group of American Indian children at age 36 months as part of a longitudinal study. Methods Pregnant women from a Northern Plains Tribal community were recruited to participate in a longitudinal study of caries and caries risk factors. Standardized dental examinations were completed on children and questionnaires were completed by mothers at baseline and when children were 4, 8, 12, 16, 22, 28 and 36 months of age. Examinations were surface-specific for dental caries, and the questionnaires collected data on demographic, dietary and behavioral factors. Non-parametric bivariate tests and logistic regression models were used to identify risk factors for caries at 36 months, and negative binomial regression was used to identify factors related to caries severity (dmf counts). Results Among the 232 children, and caries prevalence for cavitated lesions was 80%, with an additional 15% having only non-cavitated lesions. The mean dmfs was 9.6, and of the total dmfs, nearly 62% of affected surfaces were decayed, 31% were missing, and 7% were filled. Logistic regression identified higher added sugar beverage consumption, younger maternal age at baseline, higher maternal DMFS at baseline, and greater number of people in the household as significant (p<0.05) risk factors. Negative binomial regression found that only maternal DMFS was associated with child dmf counts. Conclusions By the age of 36 months, dental caries is nearly universal in this population of American Indian children. Caries risk factors included sugared beverage consumption, greater household size and maternal factors, but further analyses are needed to better understand caries in this population. PMID:26544674
Suryawanshi, Pramilesh; Raikwar, Akash; Arif, Mohammad; Richardus, Jan Hendrik
2018-01-01
Background Leprosy is a major public health problem in many low and middle income countries, especially in India, and contributes considerably to the global burden of the disease. Leprosy and poverty are closely associated, and therefore the economic burden of leprosy is a concern. However, evidence on patient’s expenditure is scarce. In this study, we estimate the expenditure in primary care (outpatient) by leprosy households in two different public health settings. Methodology/Principal findings We performed a cross-sectional study, comparing the Union Territory of Dadra and Nagar Haveli with the Umbergaon block of Valsad, Gujrat, India. A household (HH) survey was conducted between May and October, 2016. We calculated direct and indirect expenditure by zero inflated negative binomial and negative binomial regression. The sampled households were comparable on socioeconomic indicators. The mean direct expenditure was USD 6.5 (95% CI: 2.4–17.9) in Dadra and Nagar Haveli and USD 5.4 (95% CI: 3.8–7.9) per visit in Umbergaon. The mean indirect expenditure was USD 8.7 (95% CI: 7.2–10.6) in Dadra and Nagar Haveli and USD 12.4 (95% CI: 7.0–21.9) in Umbergaon. The age of the leprosy patients and type of health facilities were the major predictors of total expenditure on leprosy primary care. The higher the age, the higher the expenditure at both sites. The private facilities are more expensive than the government facilities at both sites. If the public health system is enhanced, government facilities are the first preference for patients. Conclusions/Significance An enhanced public health system reduces the patient’s expenditure and improves the health seeking behaviour. We recommend investing in health system strengthening to reduce the economic burden of leprosy. PMID:29300747
Homicide mortality rates in Canada, 2000-2009: Youth at increased risk.
Basham, C Andrew; Snider, Carolyn
2016-10-20
To estimate and compare Canadian homicide mortality rates (HMRs) and trends in HMRs across age groups, with a focus on trends for youth. Data for the period of 2000 to 2009 were collected from Statistics Canada's CANSIM (Canadian Statistical Information Management) Table 102-0540 with the following ICD-10-CA coded external causes of death: X85 to Y09 (assault) and Y87.1 (sequelae of assault). Annual population counts from 2000 to 2009 were obtained from Statistics Canada's CANSIM Table 051-0001. Both death and population counts were organized into five-year age groups. A random effects negative binomial regression analysis was conducted to estimate age group-specific rates, rate ratios, and trends in homicide mortality. There were 9,878 homicide deaths in Canada during the study period. The increase in the overall homicide mortality rate (HMR) of 0.3% per year was not statistically significant (95% CI: -1.1% to +1.8%). Canadians aged 15-19 years and 20-24 years had the highest HMRs during the study period, and experienced statistically significant annual increases in their HMRs of 3% and 4% respectively (p < 0.05). A general, though not statistically significant, decrease in the HMR was observed for all age groups 50+ years. A fixed effects negative binomial regression model showed that the HMR for males was higher than for females over the study period [RRfemale/male = 0.473 (95% CI: 0.361, 0.621)], but no significant difference in sex-specific trends in the HMR was found. An increasing risk of homicide mortality was identified among Canadian youth, ages 15-24, over the 10-year study period. Research that seeks to understand the reasons for the increased homicide risk facing Canada's youth, and public policy responses to reduce this risk, are warranted.
Herrera, Miriam del Socorro; Medina-Solís, Carlo Eduardo; Minaya-Sánchez, Mirna; Pontigo-Loyola, América Patricia; Villalobos-Rodelo, Juan José; Islas-Granillo, Horacio; de la Rosa-Santillana, Rubén; Maupomé, Gerardo
2013-11-19
Our study aimed to evaluate the effect of various risk indicators for dental caries on primary teeth of Nicaraguan children (from Leon, Nicaragua) ages 6 to 9, using the negative binomial regression model. A cross-sectional study was carried out to collect clinical, demographic, socioeconomic, and behavioral data from 794 schoolchildren ages 6 to 9 years, randomly selected from 25 schools in the city of León, Nicaragua. Clinical examinations for dental caries (dmft index) were performed by 2 trained and standardized examiners. Socio-demographic, socioeconomic, and behavioral data were self-reported using questionnaires. Multivariate negative binomial regression (NBR) analysis was used. Mean age was 7.49 ± 1.12 years. Boys accounted for 50.1% of the sample. Mean dmft was 3.54 ± 3.13 and caries prevalence (dmft >0) was 77.6%. In the NBR multivariate model (p<0.05), for each year of age, the expected mean dmft decreased by 7.5%. Brushing teeth at least once a day and having received preventive dental care in the last year before data collection were associated with declines in the expected mean dmft by 19.5% and 69.6%, respectively. Presence of dental plaque increased the expected mean dmft by 395.5%. The proportion of students with caries in this sample was high. We found associations between dental caries in the primary dentition and dental plaque, brushing teeth at least once a day, and having received preventive dental care. To improve oral health, school programs and/or age-appropriate interventions need to be developed based on the specific profile of caries experience and the associated risk indicators.
The magnetisation distribution of the Ising model - a new approach
NASA Astrophysics Data System (ADS)
Hakan Lundow, Per; Rosengren, Anders
2010-03-01
A completely new approach to the Ising model in 1 to 5 dimensions is developed. We employ a generalisation of the binomial coefficients to describe the magnetisation distributions of the Ising model. For the complete graph this distribution is exact. For simple lattices of dimensions d=1 and d=5 the magnetisation distributions are remarkably well-fitted by the generalized binomial distributions. For d=4 we are only slightly less successful, while for d=2,3 we see some deviations (with exceptions!) between the generalized binomial and the Ising distribution. The results speak in favour of the generalized binomial distribution's correctness regarding their general behaviour in comparison to the Ising model. A theoretical analysis of the distribution's moments also lends support their being correct asymptotically, including the logarithmic corrections in d=4. The full extent to which they correctly model the Ising distribution, and for which graph families, is not settled though.
Phase transition and information cascade in a voting model
NASA Astrophysics Data System (ADS)
Hisakado, M.; Mori, S.
2010-08-01
In this paper, we introduce a voting model that is similar to a Keynesian beauty contest and analyse it from a mathematical point of view. There are two types of voters—copycat and independent—and two candidates. Our voting model is a binomial distribution (independent voters) doped in a beta binomial distribution (copycat voters). We find that the phase transition in this system is at the upper limit of t, where t is the time (or the number of the votes). Our model contains three phases. If copycats constitute a majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of voters, the voting rate converges at the same rate as it would in a binomial distribution. We also study why it is difficult to estimate the conclusion of a Keynesian beauty contest when there is an information cascade.
Abstract knowledge versus direct experience in processing of binomial expressions
Morgan, Emily; Levy, Roger
2016-01-01
We ask whether word order preferences for binomial expressions of the form A and B (e.g. bread and butter) are driven by abstract linguistic knowledge of ordering constraints referencing the semantic, phonological, and lexical properties of the constituent words, or by prior direct experience with the specific items in questions. Using forced-choice and self-paced reading tasks, we demonstrate that online processing of never-before-seen binomials is influenced by abstract knowledge of ordering constraints, which we estimate with a probabilistic model. In contrast, online processing of highly frequent binomials is primarily driven by direct experience, which we estimate from corpus frequency counts. We propose a trade-off wherein processing of novel expressions relies upon abstract knowledge, while reliance upon direct experience increases with increased exposure to an expression. Our findings support theories of language processing in which both compositional generation and direct, holistic reuse of multi-word expressions play crucial roles. PMID:27776281
Yang, Tse-Chuan; Shoff, Carla; Matthews, Stephen A
2013-01-01
Based on ecological studies, second demographic transition (SDT) theorists concluded that some areas in the US were in vanguard of the SDT compared to others, implying spatial nonstationarity may be inherent in the SDT process. Linking the SDT to the infant mortality literature, we sought out to answer two related questions: Are the main components of the SDT, specifically marriage postponement, cohabitation, and divorce, associated with infant mortality? If yes, do these associations vary across the US? We applied global Poisson and geographically weighted Poisson regression (GWPR) models, a place-specific analytic approach, to county-level data in the contiguous US. After accounting for the racial/ethnic and socioeconomic compositions of counties and prenatal care utilization, we found (1) marriage postponement was negatively related to infant mortality in the southwestern states, but positively associated with infant mortality in parts of Indiana, Kentucky, and Tennessee, (2) cohabitation rates were positively related to infant mortality, and this relationship was stronger in California, coastal Virginia, and the Carolinas than other areas, and (3) a positive association between divorce rates and infant mortality in southwestern and northeastern areas of the US. These spatial patterns suggested that the associations between the SDT and infant mortality were stronger in the areas in vanguard of the SDT than in others. The comparison between global Poisson and GWPR results indicated that a place-specific spatial analysis not only fit the data better, but also provided insights into understanding the non-stationarity of the associations between the SDT and infant mortality.
Garrido-Balsells, José María; Jurado-Navas, Antonio; Paris, José Francisco; Castillo-Vazquez, Miguel; Puerta-Notario, Antonio
2015-03-09
In this paper, a novel and deeper physical interpretation on the recently published Málaga or ℳ statistical distribution is provided. This distribution, which is having a wide acceptance by the scientific community, models the optical irradiance scintillation induced by the atmospheric turbulence. Here, the analytical expressions previously published are modified in order to express them by a mixture of the known Generalized-K and discrete Binomial and Negative Binomial distributions. In particular, the probability density function (pdf) of the ℳ model is now obtained as a linear combination of these Generalized-K pdf, in which the coefficients depend directly on the parameters of the ℳ distribution. In this way, the Málaga model can be physically interpreted as a superposition of different optical sub-channels each of them described by the corresponding Generalized-K fading model and weighted by the ℳ dependent coefficients. The expressions here proposed are simpler than the equations of the original ℳ model and are validated by means of numerical simulations by generating ℳ -distributed random sequences and their associated histogram. This novel interpretation of the Málaga statistical distribution provides a valuable tool for analyzing the performance of atmospheric optical channels for every turbulence condition.
Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
NASA Astrophysics Data System (ADS)
Martínez-Torres, David; Miranda, Eva
2018-01-01
We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.
Tensile properties of helical auxetic structures: A numerical study
NASA Astrophysics Data System (ADS)
Wright, J. R.; Sloan, M. R.; Evans, K. E.
2010-08-01
This paper discusses a helical auxetic structure which has a diverse range of practical applications. The mechanical properties of the system can be determined by particular combinations of geometry and component material properties; finite element analysis is used to investigate the static behavior of these structures under tension. Modeling criteria are determined and design issues are discussed. A description of the different strain-dependent mechanical phases is provided. It is shown that the stiffnesses of the component fibers and the initial helical wrap angle are critical design parameters, and that strain-dependent changes in cross-section must be taken into consideration: we observe that the structures exhibit nonlinear behavior due to nonzero component Poisson's ratios. Negative Poisson's ratios for the helical structures as low as -5 are shown. While we focus here on the structure as a yarn our findings are, in principle, scaleable.
Wang, Wansheng; Chen, Long; Zhou, Jie
2015-01-01
A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures. PMID:27110063
A new class of sonic composites
NASA Astrophysics Data System (ADS)
Munteanu, Ligia; Chiroiu, Veturia; Donescu, Ştefania; Brişan, Cornel
2014-03-01
Transformation acoustics opens a new avenue towards the architecture, modeling and simulation of a new class of sonic composites with scatterers made of various materials and having various shapes embedded in an epoxy matrix. The design of acoustic scatterers is based on the property of Helmholtz equations to be invariant under a coordinate transformation, i.e., a specific spatial compression is equivalent to a new material in a new space. In this paper, the noise suppression for a wide full band-gap of frequencies is discussed for spherical shell scatterers made of auxetic materials (materials with negative Poisson's ratio). The original domain consists of spheres made from conventional foams with positive Poisson's ratio. The spatial compression is controlled by the coordinate transformation, and leads to an equivalent domain filled with an auxetic material. The coordinate transformation is strongly supported by the manufacturing of auxetics which is based on the pore size reduction through radial compression molds.
Study of the Anisotropic Elastoplastic Properties of β-Ga2O3 Films Synthesized on SiC/Si Substrates
NASA Astrophysics Data System (ADS)
Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipov, A. V.; Osipova, E. V.; Soshnikov, I. P.
2018-05-01
The structural and mechanical properties of gallium oxide films grown on silicon crystallographic planes (001), (011), and (111) with a buffer layer of silicon carbide are investigated. Nanoindentation was used to study the elastoplastic properties of gallium oxide and also to determine the elastic recovery parameter of the films under study. The tensile strength, hardness, elasticity tensor, compliance tensor, Young's modulus, Poisson's ratio, and other characteristics of gallium oxide were calculated using quantum chemistry methods. It was found that the gallium oxide crystal is auxetic because, for some stretching directions, the Poisson's ratio takes on negative values. The calculated values correspond quantitatively to the experimental data. It is concluded that the elastoplastic properties of gallium oxide films approximately correspond to the properties of bulk crystals and that a change in the orientation of the silicon surface leads to a significant change in the orientation of gallium oxide.
NASA Astrophysics Data System (ADS)
Ding, Yaoyu; Kovacevic, Radovan
2016-07-01
Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.
On the Magnetic Shield for a Vlasov-Poisson Plasma
NASA Astrophysics Data System (ADS)
Caprino, Silvia; Cavallaro, Guido; Marchioro, Carlo
2017-12-01
We study the screening of a bounded body Γ against the effect of a wind of charged particles, by means of a shield produced by a magnetic field which becomes infinite on the border of Γ . The charged wind is modeled by a Vlasov-Poisson plasma, the bounded body by a torus, and the external magnetic field is taken close to the border of Γ . We study two models: a plasma composed by different species with positive or negative charges, and finite total mass of each species, and another made of many species of the same sign, each having infinite mass. We investigate the time evolution of both systems, showing in particular that the plasma particles cannot reach the body. Finally we discuss possible extensions to more general initial data. We show also that when the magnetic lines are straight lines, (that imposes an unbounded body), the previous results can be improved.
Referent group proximity, social norms, and context: alcohol use in a low-use environment.
Cox, Jared M; Bates, Scott C
2011-01-01
The purpose of this study was to investigate the relationship between perceived normative use of alcohol and reported consumption in an environment where relatively little alcohol use occurs. A total of 585 undergraduate students completed an online survey on alcohol use in March 2006. Participants reported personal alcohol use and perceptions of use by "friends," "the average student," and "the average student who drinks." Due to the large number of students reporting zero alcohol use, zero-inflated negative binomial regression was used to analyze the data. Results showed that perceptions of use and beliefs about the acceptability of use by proximal groups were strongly and positively correlated with personal alcohol use. Perceptions of distal groups were either not correlated or were correlated negatively with personal use. These findings suggest that the use of distal referent groups for a social norms campaign in a low-use environment may have paradoxical effects.
Narrow log-periodic modulations in non-Markovian random walks
NASA Astrophysics Data System (ADS)
Diniz, R. M. B.; Cressoni, J. C.; da Silva, M. A. A.; Mariz, A. M.; de Araújo, J. M.
2017-12-01
What are the necessary ingredients for log-periodicity to appear in the dynamics of a random walk model? Can they be subtle enough to be overlooked? Previous studies suggest that long-range damaged memory and negative feedback together are necessary conditions for the emergence of log-periodic oscillations. The role of negative feedback would then be crucial, forcing the system to change direction. In this paper we show that small-amplitude log-periodic oscillations can emerge when the system is driven by positive feedback. Due to their very small amplitude, these oscillations can easily be mistaken for numerical finite-size effects. The models we use consist of discrete-time random walks with strong memory correlations where the decision process is taken from memory profiles based either on a binomial distribution or on a delta distribution. Anomalous superdiffusive behavior and log-periodic modulations are shown to arise in the large time limit for convenient choices of the models parameters.
Identity Conflict and Sexual Risk for Black and Latino YMSM.
Corsbie-Massay, Charisse L'Pree; Miller, Lynn C; Christensen, John L; Appleby, Paul R; Godoy, Carlos; Read, Stephen J
2017-06-01
Young (aged 18-30) Black and Latino men who have sex with men are at a higher risk of contracting HIV than their White counterparts. In order to better understand the unique nature of sexual risk-taking, we examined the extent to which ethnic group, ethnic identity, and sexual pride predicted condomless anal sex with casual partners among 161 young men who have sex with men (YMSM) who identify as Black or Latino. Negative binomial regressions were conducted using a cross-sectional design. Sexual pride was a negative predictor of condomless anal sex across all participants, but this effect was moderated by ethnic exploration and ethnic group; the relationship between sexual pride and condomless anal sex was strengthened by greater ethnic exploration among Latino YMSM, and weakened by greater ethnic exploration among Black YMSM. Implications for intersectional identity, identity conflict, and HIV prevention among young gay men of color are discussed.
Wang, Xin; Maynard, Leigh J; Butler, J S; Goddard, Ellen W
2011-01-01
Household-level Canadian meat purchases from 2002 to 2008 and a Food Opinions Survey conducted in 2008 were used to explore consumer responses to bovine spongiform encephalopathy (BSE) at the national level in Canada. Consumption in terms of the number of unit purchases was analyzed with a random-effects negative binomial model. In this study, household heterogeneity in meat purchases was partially explained using data from a self-reported food opinions survey. Of special interest was the hypothesis that consumers responded consistently to BSE in a one-time survey and in actual meat purchase behavior spanning years. Regional differences appeared, with consumers in eastern Canada reacting most negatively to BSE. Consumers responded more to the perception that food decision makers are honest about food safety than to the perception that they are knowledgeable, in maintaining beef purchases during BSE events.
Factors related to the number of fast food meals obtained by college meal plan students.
Dingman, Deirdre A; Schulz, Mark R; Wyrick, David L; Bibeau, Daniel L; Gupta, Sat N
2014-01-01
This study tested whether days on campus, financial access through a meal plan, and health consciousness were associated with number of meals that college students obtained from fast food restaurants. In April 2013, all students currently enrolled in a meal plan were invited to participate in an online survey (N = 1,246). Students were asked to report the total number of meals eaten in the past week and where they obtained them. Negative binomial regression was used, and it was found that the number of meals obtained from fast food restaurants was positively associated with financial access and negatively associated with health consciousness. An association between days on campus and the number of meals obtained from fast food restaurants was not found. Increasing levels of health consciousness and reducing access to fast food restaurants through flex plans may reduce college students' consumption of fast food.
He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao
2006-05-01
Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.
[Nursing: the meaning of this profession to nurses. A first approach].
Luchesi, Luciana Barizon; Santos, Claudia Benedita dos
2005-01-01
In an attempt to understand, tell and, why not, participate a little in the history of Nursing, we proposed to study the prejudices and negative stereotypes that have permeated this profession over time. This is a before-after experimental type of study in a population of adolescents regularly enrolled in the eleventh grade of a Brazilian public school. The intervention took the form of a lecture about the profession and a questionnaire with closed questions which was applied before and after the lecture. Conclusions were based on the results of binomial and McNemar's non-parametric tests for the significance of changes. Although the statistically significant presence of prejudice and negatives stereotypes was not found, the results of the intervention were in line with expectations, since the changes(or tendency towards changes) took place exactly in those subgroups that showed a greater frequency of stereotypes.
A new zero-inflated negative binomial methodology for latent category identification.
Blanchard, Simon J; DeSarbo, Wayne S
2013-04-01
We introduce a new statistical procedure for the identification of unobserved categories that vary between individuals and in which objects may span multiple categories. This procedure can be used to analyze data from a proposed sorting task in which individuals may simultaneously assign objects to multiple piles. The results of a synthetic example and a consumer psychology study involving categories of restaurant brands illustrate how the application of the proposed methodology to the new sorting task can account for a variety of categorization phenomena including multiple category memberships and for heterogeneity through individual differences in the saliency of latent category structures.
Probing the statistics of primordial fluctuations and their evolution
NASA Technical Reports Server (NTRS)
Gaztanaga, Enrique; Yokoyama, Jun'ichi
1993-01-01
The statistical distribution of fluctuations on various scales is analyzed in terms of the counts in cells of smoothed density fields, using volume-limited samples of galaxy redshift catalogs. It is shown that the distribution on large scales, with volume average of the two-point correlation function of the smoothed field less than about 0.05, is consistent with Gaussian. Statistics are shown to agree remarkably well with the negative binomial distribution, which has hierarchial correlations and a Gaussian behavior at large scales. If these observed properties correspond to the matter distribution, they suggest that our universe started with Gaussian fluctuations and evolved keeping hierarchial form.
Definite Integrals, Some Involving Residue Theory Evaluated by Maple Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Kimiko o
2010-01-01
The calculus of residue is applied to evaluate certain integrals in the range (-{infinity} to {infinity}) using the Maple symbolic code. These integrals are of the form {integral}{sub -{infinity}}{sup {infinity}} cos(x)/[(x{sup 2} + a{sup 2})(x{sup 2} + b{sup 2}) (x{sup 2} + c{sup 2})]dx and similar extensions. The Maple code is also applied to expressions in maximum likelihood estimator moments when sampling from the negative binomial distribution. In general the Maple code approach to the integrals gives correct answers to specified decimal places, but the symbolic result may be extremely long and complex.
On extinction time of a generalized endemic chain-binomial model.
Aydogmus, Ozgur
2016-09-01
We considered a chain-binomial epidemic model not conferring immunity after infection. Mean field dynamics of the model has been analyzed and conditions for the existence of a stable endemic equilibrium are determined. The behavior of the chain-binomial process is probabilistically linked to the mean field equation. As a result of this link, we were able to show that the mean extinction time of the epidemic increases at least exponentially as the population size grows. We also present simulation results for the process to validate our analytical findings. Copyright © 2016 Elsevier Inc. All rights reserved.
Solar San Diego: The Impact of Binomial Rate Structures on Real PV Systems; Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanGeet, O.; Brown, E.; Blair, T.
2008-05-01
There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savingsmore » that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rate structures is presented. The data revealed that actual demand and energy use benefits of binomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007.« less
Bondy, Susan J; Russell, Margaret L; Laflèche, Julie Ml; Rea, Elizabeth
2009-12-24
Community quarantine is controversial, and the decision to use and prepare for it should be informed by specific quantitative evidence of benefit. Case-study reports on 2002-2004 SARS outbreaks have discussed the role of quarantine in the community in transmission. However, this literature has not yielded quantitative estimates of the reduction in secondary cases attributable to quarantine as would be seen in other areas of health policy and cost-effectiveness analysis. Using data from the 2003 Ontario, Canada, SARS outbreak, two novel expressions for the impact of quarantine are presented. Secondary Case Count Difference (SCCD) reflects reduction in the average number of transmissions arising from a SARS case in quarantine, relative to not in quarantine, at onset of symptoms. SCCD was estimated using Poisson and negative binomial regression models (with identity link function) comparing the number of secondary cases to each index case for quarantine relative to non-quarantined index cases. The inverse of this statistic is proposed as the number needed to quarantine (NNQ) to prevent one additional secondary transmission. Our estimated SCCD was 0.133 fewer secondary cases per quarantined versus non-quarantined index case; and a NNQ of 7.5 exposed individuals to be placed in community quarantine to prevent one additional case of transmission in the community. This analysis suggests quarantine can be an effective preventive measure, although these estimates lack statistical precision. Relative to other health policy areas, literature on quarantine tends to lack in quantitative expressions of effectiveness, or agreement on how best to report differences in outcomes attributable to control measure. We hope to further this discussion through presentation of means to calculate and express the impact of population control measures. The study of quarantine effectiveness presents several methodological and statistical challenges. Further research and discussion are needed to understand the costs and benefits of enacting quarantine, and this includes a discussion of how quantitative benefit should be communicated to decision-makers and the public, and evaluated.