On the fractal characterization of Paretian Poisson processes
NASA Astrophysics Data System (ADS)
Eliazar, Iddo I.; Sokolov, Igor M.
2012-06-01
Paretian Poisson processes are Poisson processes which are defined on the positive half-line, have maximal points, and are quantified by power-law intensities. Paretian Poisson processes are elemental in statistical physics, and are the bedrock of a host of power-law statistics ranging from Pareto's law to anomalous diffusion. In this paper we establish evenness-based fractal characterizations of Paretian Poisson processes. Considering an array of socioeconomic evenness-based measures of statistical heterogeneity, we show that: amongst the realm of Poisson processes which are defined on the positive half-line, and have maximal points, Paretian Poisson processes are the unique class of 'fractal processes' exhibiting scale-invariance. The results established in this paper are diametric to previous results asserting that the scale-invariance of Poisson processes-with respect to physical randomness-based measures of statistical heterogeneity-is characterized by exponential Poissonian intensities.
Wigner surmises and the two-dimensional homogeneous Poisson point process.
Sakhr, Jamal; Nieminen, John M
2006-04-01
We derive a set of identities that relate the higher-order interpoint spacing statistics of the two-dimensional homogeneous Poisson point process to the Wigner surmises for the higher-order spacing distributions of eigenvalues from the three classical random matrix ensembles. We also report a remarkable identity that equates the second-nearest-neighbor spacing statistics of the points of the Poisson process and the nearest-neighbor spacing statistics of complex eigenvalues from Ginibre's ensemble of 2 x 2 complex non-Hermitian random matrices.
Poisson point process modeling for polyphonic music transcription.
Peeling, Paul; Li, Chung-fai; Godsill, Simon
2007-04-01
Peaks detected in the frequency domain spectrum of a musical chord are modeled as realizations of a nonhomogeneous Poisson point process. When several notes are superimposed to make a chord, the processes for individual notes combine to give another Poisson process, whose likelihood is easily computable. This avoids a data association step linking individual harmonics explicitly with detected peaks in the spectrum. The likelihood function is ideal for Bayesian inference about the unknown note frequencies in a chord. Here, maximum likelihood estimation of fundamental frequencies shows very promising performance on real polyphonic piano music recordings.
NASA Technical Reports Server (NTRS)
Saleh, B. E. A.; Tavolacci, J. T.; Teich, M. C.
1981-01-01
Ways in which dead time can be used to constructively enhance or diminish the effects of point processes that display bunching in the shot-noise-driven doubly stochastic Poisson point process (SNDP) are discussed. Interrelations between photocount bunching arising in the SNDP and the antibunching character arising from dead-time effects are investigated. It is demonstrated that the dead-time-modified count mean and variance for an arbitrary doubly stochastic Poisson point process can be obtained from the Laplace transform of the single-fold and joint-moment-generating functions for the driving rate process. The theory is in good agreement with experimental values for radioluminescence radiation in fused silica, quartz, and glass, and the process has many applications in pulse, particle, and photon detection.
General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.
Marmarelis, V Z; Berger, T W
2005-07-01
This paper presents a general methodological framework for the practical modeling of neural systems with point-process inputs (sequences of action potentials or, more broadly, identical events) based on the Volterra and Wiener theories of functional expansions and system identification. The paper clarifies the distinctions between Volterra and Wiener kernels obtained from Poisson point-process inputs. It shows that only the Wiener kernels can be estimated via cross-correlation, but must be defined as zero along the diagonals. The Volterra kernels can be estimated far more accurately (and from shorter data-records) by use of the Laguerre expansion technique adapted to point-process inputs, and they are independent of the mean rate of stimulation (unlike their P-W counterparts that depend on it). The Volterra kernels can also be estimated for broadband point-process inputs that are not Poisson. Useful applications of this modeling approach include cases where we seek to determine (model) the transfer characteristics between one neuronal axon (a point-process 'input') and another axon (a point-process 'output') or some other measure of neuronal activity (a continuous 'output', such as population activity) with which a causal link exists.
Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology.
Renner, Ian W; Warton, David I
2013-03-01
Modeling the spatial distribution of a species is a fundamental problem in ecology. A number of modeling methods have been developed, an extremely popular one being MAXENT, a maximum entropy modeling approach. In this article, we show that MAXENT is equivalent to a Poisson regression model and hence is related to a Poisson point process model, differing only in the intercept term, which is scale-dependent in MAXENT. We illustrate a number of improvements to MAXENT that follow from these relations. In particular, a point process model approach facilitates methods for choosing the appropriate spatial resolution, assessing model adequacy, and choosing the LASSO penalty parameter, all currently unavailable to MAXENT. The equivalence result represents a significant step in the unification of the species distribution modeling literature. Copyright © 2013, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Klafter, Joseph
2008-05-01
Many random populations can be modeled as a countable set of points scattered randomly on the positive half-line. The points may represent magnitudes of earthquakes and tornados, masses of stars, market values of public companies, etc. In this article we explore a specific class of random such populations we coin ` Paretian Poisson processes'. This class is elemental in statistical physics—connecting together, in a deep and fundamental way, diverse issues including: the Poisson distribution of the Law of Small Numbers; Paretian tail statistics; the Fréchet distribution of Extreme Value Theory; the one-sided Lévy distribution of the Central Limit Theorem; scale-invariance, renormalization and fractality; resilience to random perturbations.
NASA Astrophysics Data System (ADS)
Dudek, Mirosław R.; Mleczko, Józef
Surprisingly, still very little is known about the mathematical modeling of peaks in the binding affinities distribution function. In general, it is believed that the peaks represent antibodies directed towards single epitopes. In this paper, we refer to fluorescence flow cytometry experiments and show that even monoclonal antibodies can display multi-modal histograms of affinity distribution. This result take place when some obstacles appear in the paratope-epitope reaction such that the process of reaching the specific epitope ceases to be a point Poisson process. A typical example is the large area of cell surface, which could be unreachable by antibodies leading to the heterogeneity of the cell surface repletion. In this case the affinity of cells to bind the antibodies should be described by a more complex process than the pure-Poisson point process. We suggested to use a doubly stochastic Poisson process, where the points are replaced by a binomial point process resulting in the Neyman distribution. The distribution can have a strongly multinomial character, and with the number of modes depending on the concentration of antibodies and epitopes. All this means that there is a possibility to go beyond the simplified theory, one response towards one epitope. As a consequence, our description provides perspectives for describing antigen-antibody reactions, both qualitatively and quantitavely, even in the case when some peaks result from more than one binding mechanism.
Filtering with Marked Point Process Observations via Poisson Chaos Expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei, E-mail: wsun@mathstat.concordia.ca; Zeng Yong, E-mail: zengy@umkc.edu; Zhang Shu, E-mail: zhangshuisme@hotmail.com
2013-06-15
We study a general filtering problem with marked point process observations. The motivation comes from modeling financial ultra-high frequency data. First, we rigorously derive the unnormalized filtering equation with marked point process observations under mild assumptions, especially relaxing the bounded condition of stochastic intensity. Then, we derive the Poisson chaos expansion for the unnormalized filter. Based on the chaos expansion, we establish the uniqueness of solutions of the unnormalized filtering equation. Moreover, we derive the Poisson chaos expansion for the unnormalized filter density under additional conditions. To explore the computational advantage, we further construct a new consistent recursive numerical schememore » based on the truncation of the chaos density expansion for a simple case. The new algorithm divides the computations into those containing solely system coefficients and those including the observations, and assign the former off-line.« less
Orientational analysis of planar fibre systems observed as a Poisson shot-noise process.
Kärkkäinen, Salme; Lantuéjoul, Christian
2007-10-01
We consider two-dimensional fibrous materials observed as a digital greyscale image. The problem addressed is to estimate the orientation distribution of unobservable thin fibres from a greyscale image modelled by a planar Poisson shot-noise process. The classical stereological approach is not straightforward, because the point intensities of thin fibres along sampling lines may not be observable. For such cases, Kärkkäinen et al. (2001) suggested the use of scaled variograms determined from grey values along sampling lines in several directions. Their method is based on the assumption that the proportion between the scaled variograms and point intensities in all directions of sampling lines is constant. This assumption is proved to be valid asymptotically for Boolean models and dead leaves models, under some regularity conditions. In this work, we derive the scaled variogram and its approximations for a planar Poisson shot-noise process using the modified Bessel function. In the case of reasonable high resolution of the observed image, the scaled variogram has an approximate functional relation to the point intensity, and in the case of high resolution the relation is proportional. As the obtained relations are approximative, they are tested on simulations. The existing orientation analysis method based on the proportional relation is further experimented on images with different resolutions. The new result, the asymptotic proportionality between the scaled variograms and the point intensities for a Poisson shot-noise process, completes the earlier results for the Boolean models and for the dead leaves models.
The Use of Crow-AMSAA Plots to Assess Mishap Trends
NASA Technical Reports Server (NTRS)
Dawson, Jeffrey W.
2011-01-01
Crow-AMSAA (CA) plots are used to model reliability growth. Use of CA plots has expanded into other areas, such as tracking events of interest to management, maintenance problems, and safety mishaps. Safety mishaps can often be successfully modeled using a Poisson probability distribution. CA plots show a Poisson process in log-log space. If the safety mishaps are a stable homogenous Poisson process, a linear fit to the points in a CA plot will have a slope of one. Slopes of greater than one indicate a nonhomogenous Poisson process, with increasing occurrence. Slopes of less than one indicate a nonhomogenous Poisson process, with decreasing occurrence. Changes in slope, known as "cusps," indicate a change in process, which could be an improvement or a degradation. After presenting the CA conceptual framework, examples are given of trending slips, trips and falls, and ergonomic incidents at NASA (from Agency-level data). Crow-AMSAA plotting is a robust tool for trending safety mishaps that can provide insight into safety performance over time.
Doubly stochastic Poisson process models for precipitation at fine time-scales
NASA Astrophysics Data System (ADS)
Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao
2012-09-01
This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.
Pattern analysis of community health center location in Surabaya using spatial Poisson point process
NASA Astrophysics Data System (ADS)
Kusumaningrum, Choriah Margareta; Iriawan, Nur; Winahju, Wiwiek Setya
2017-11-01
Community health center (puskesmas) is one of the closest health service facilities for the community, which provide healthcare for population on sub-district level as one of the government-mandated community health clinics located across Indonesia. The increasing number of this puskesmas does not directly comply the fulfillment of basic health services needed in such region. Ideally, a puskesmas has to cover up to maximum 30,000 people. The number of puskesmas in Surabaya indicates an unbalance spread in all of the area. This research aims to analyze the spread of puskesmas in Surabaya using spatial Poisson point process model in order to get the effective location of Surabaya's puskesmas which based on their location. The results of the analysis showed that the distribution pattern of puskesmas in Surabaya is non-homogeneous Poisson process and is approched by mixture Poisson model. Based on the estimated model obtained by using Bayesian mixture model couple with MCMC process, some characteristics of each puskesmas have no significant influence as factors to decide the addition of health center in such location. Some factors related to the areas of sub-districts have to be considered as covariate to make a decision adding the puskesmas in Surabaya.
Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.
Ding, Mingtao; He, Lihan; Dunson, David; Carin, Lawrence
2012-12-01
A nonparametric Bayesian model is proposed for segmenting time-evolving multivariate spatial point process data. An inhomogeneous Poisson process is assumed, with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments, and infers the number of segments based on the observed data. The temporal dynamics of the segmentation and of the Poisson intensities are modeled with exponential correlation in time, implemented in the form of a first-order autoregressive model for uniformly sampled discrete data, and via a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare two different inference techniques: a Markov chain Monte Carlo sampler, which has relatively high computational complexity; and an approximate and efficient variational Bayesian analysis. The model is demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, Ohio, USA.
Statistical properties of several models of fractional random point processes
NASA Astrophysics Data System (ADS)
Bendjaballah, C.
2011-08-01
Statistical properties of several models of fractional random point processes have been analyzed from the counting and time interval statistics points of view. Based on the criterion of the reduced variance, it is seen that such processes exhibit nonclassical properties. The conditions for these processes to be treated as conditional Poisson processes are examined. Numerical simulations illustrate part of the theoretical calculations.
Neustifter, Benjamin; Rathbun, Stephen L; Shiffman, Saul
2012-01-01
Ecological Momentary Assessment is an emerging method of data collection in behavioral research that may be used to capture the times of repeated behavioral events on electronic devices, and information on subjects' psychological states through the electronic administration of questionnaires at times selected from a probability-based design as well as the event times. A method for fitting a mixed Poisson point process model is proposed for the impact of partially-observed, time-varying covariates on the timing of repeated behavioral events. A random frailty is included in the point-process intensity to describe variation among subjects in baseline rates of event occurrence. Covariate coefficients are estimated using estimating equations constructed by replacing the integrated intensity in the Poisson score equations with a design-unbiased estimator. An estimator is also proposed for the variance of the random frailties. Our estimators are robust in the sense that no model assumptions are made regarding the distribution of the time-varying covariates or the distribution of the random effects. However, subject effects are estimated under gamma frailties using an approximate hierarchical likelihood. The proposed approach is illustrated using smoking data.
NASA Astrophysics Data System (ADS)
Rusakov, Oleg; Laskin, Michael
2017-06-01
We consider a stochastic model of changes of prices in real estate markets. We suppose that in a book of prices the changes happen in points of jumps of a Poisson process with a random intensity, i.e. moments of changes sequently follow to a random process of the Cox process type. We calculate cumulative mathematical expectations and variances for the random intensity of this point process. In the case that the process of random intensity is a martingale the cumulative variance has a linear grows. We statistically process a number of observations of real estate prices and accept hypotheses of a linear grows for estimations as well for cumulative average, as for cumulative variance both for input and output prises that are writing in the book of prises.
Statistical properties of superimposed stationary spike trains.
Deger, Moritz; Helias, Moritz; Boucsein, Clemens; Rotter, Stefan
2012-06-01
The Poisson process is an often employed model for the activity of neuronal populations. It is known, though, that superpositions of realistic, non- Poisson spike trains are not in general Poisson processes, not even for large numbers of superimposed processes. Here we construct superimposed spike trains from intracellular in vivo recordings from rat neocortex neurons and compare their statistics to specific point process models. The constructed superimposed spike trains reveal strong deviations from the Poisson model. We find that superpositions of model spike trains that take the effective refractoriness of the neurons into account yield a much better description. A minimal model of this kind is the Poisson process with dead-time (PPD). For this process, and for superpositions thereof, we obtain analytical expressions for some second-order statistical quantities-like the count variability, inter-spike interval (ISI) variability and ISI correlations-and demonstrate the match with the in vivo data. We conclude that effective refractoriness is the key property that shapes the statistical properties of the superposition spike trains. We present new, efficient algorithms to generate superpositions of PPDs and of gamma processes that can be used to provide more realistic background input in simulations of networks of spiking neurons. Using these generators, we show in simulations that neurons which receive superimposed spike trains as input are highly sensitive for the statistical effects induced by neuronal refractoriness.
Li, Xian-Ying; Hu, Shi-Min
2013-02-01
Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.
Poisson mixture model for measurements using counting.
Miller, Guthrie; Justus, Alan; Vostrotin, Vadim; Dry, Donald; Bertelli, Luiz
2010-03-01
Starting with the basic Poisson statistical model of a counting measurement process, 'extraPoisson' variance or 'overdispersion' are included by assuming that the Poisson parameter representing the mean number of counts itself comes from another distribution. The Poisson parameter is assumed to be given by the quantity of interest in the inference process multiplied by a lognormally distributed normalising coefficient plus an additional lognormal background that might be correlated with the normalising coefficient (shared uncertainty). The example of lognormal environmental background in uranium urine data is discussed. An additional uncorrelated background is also included. The uncorrelated background is estimated from a background count measurement using Bayesian arguments. The rather complex formulas are validated using Monte Carlo. An analytical expression is obtained for the probability distribution of gross counts coming from the uncorrelated background, which allows straightforward calculation of a classical decision level in the form of a gross-count alarm point with a desired false-positive rate. The main purpose of this paper is to derive formulas for exact likelihood calculations in the case of various kinds of backgrounds.
Lin, I-Chun; Xing, Dajun; Shapley, Robert
2014-01-01
One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes. PMID:22684587
Lin, I-Chun; Xing, Dajun; Shapley, Robert
2012-12-01
One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.
DISCRETE COMPOUND POISSON PROCESSES AND TABLES OF THE GEOMETRIC POISSON DISTRIBUTION.
A concise summary of the salient properties of discrete Poisson processes , with emphasis on comparing the geometric and logarithmic Poisson processes . The...the geometric Poisson process are given for 176 sets of parameter values. New discrete compound Poisson processes are also introduced. These...processes have properties that are particularly relevant when the summation of several different Poisson processes is to be analyzed. This study provides the
NASA Astrophysics Data System (ADS)
Stallone, A.; Marzocchi, W.
2017-12-01
Earthquake occurrence may be approximated by a multidimensional Poisson clustering process, where each point of the Poisson process is replaced by a cluster of points, the latter corresponding to the well-known aftershock sequence (triggered events). Earthquake clusters and their parents are assumed to occur according to a Poisson process at a constant temporal rate proportional to the tectonic strain rate, while events within a cluster are modeled as generations of dependent events reproduced by a branching process. Although the occurrence of such space-time clusters is a general feature in different tectonic settings, seismic sequences seem to have marked differences from region to region: one example, among many others, is that seismic sequences of moderate magnitude in Italian Apennines seem to last longer than similar seismic sequences in California. In this work we investigate on the existence of possible differences in the earthquake clustering process in these two areas. At first, we separate the triggered and background components of seismicity in the Italian and Southern California seismic catalog. Then we study the space-time domain of the triggered earthquakes with the aim to identify possible variations in the triggering properties across the two regions. In the second part of the work we focus our attention on the characteristics of the background seismicity in both seismic catalogs. The assumption of time stationarity of the background seismicity (which includes both cluster parents and isolated events) is still under debate. Some authors suggest that the independent component of seismicity could undergo transient perturbations at various time scales due to different physical mechanisms, such as, for example, viscoelastic relaxation, presence of fluids, non-stationary plate motion, etc, whose impact may depend on the tectonic setting. Here we test if the background seismicity in the two regions can be satisfactorily described by the time-homogeneous Poisson process, and, in case, we characterize quantitatively possible discrepancies with this reference process, and the differences between the two regions.
Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso
2016-01-01
ABSTRACT Despite effective inactivation procedures, small numbers of bacterial cells may still remain in food samples. The risk that bacteria will survive these procedures has not been estimated precisely because deterministic models cannot be used to describe the uncertain behavior of bacterial populations. We used the Poisson distribution as a representative probability distribution to estimate the variability in bacterial numbers during the inactivation process. Strains of four serotypes of Salmonella enterica, three serotypes of enterohemorrhagic Escherichia coli, and one serotype of Listeria monocytogenes were evaluated for survival. We prepared bacterial cell numbers following a Poisson distribution (indicated by the parameter λ, which was equal to 2) and plated the cells in 96-well microplates, which were stored in a desiccated environment at 10% to 20% relative humidity and at 5, 15, and 25°C. The survival or death of the bacterial cells in each well was confirmed by adding tryptic soy broth as an enrichment culture. Changes in the Poisson distribution parameter during the inactivation process, which represent the variability in the numbers of surviving bacteria, were described by nonlinear regression with an exponential function based on a Weibull distribution. We also examined random changes in the number of surviving bacteria using a random number generator and computer simulations to determine whether the number of surviving bacteria followed a Poisson distribution during the bacterial death process by use of the Poisson process. For small initial cell numbers, more than 80% of the simulated distributions (λ = 2 or 10) followed a Poisson distribution. The results demonstrate that variability in the number of surviving bacteria can be described as a Poisson distribution by use of the model developed by use of the Poisson process. IMPORTANCE We developed a model to enable the quantitative assessment of bacterial survivors of inactivation procedures because the presence of even one bacterium can cause foodborne disease. The results demonstrate that the variability in the numbers of surviving bacteria was described as a Poisson distribution by use of the model developed by use of the Poisson process. Description of the number of surviving bacteria as a probability distribution rather than as the point estimates used in a deterministic approach can provide a more realistic estimation of risk. The probability model should be useful for estimating the quantitative risk of bacterial survival during inactivation. PMID:27940547
Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu
2017-02-15
Despite effective inactivation procedures, small numbers of bacterial cells may still remain in food samples. The risk that bacteria will survive these procedures has not been estimated precisely because deterministic models cannot be used to describe the uncertain behavior of bacterial populations. We used the Poisson distribution as a representative probability distribution to estimate the variability in bacterial numbers during the inactivation process. Strains of four serotypes of Salmonella enterica, three serotypes of enterohemorrhagic Escherichia coli, and one serotype of Listeria monocytogenes were evaluated for survival. We prepared bacterial cell numbers following a Poisson distribution (indicated by the parameter λ, which was equal to 2) and plated the cells in 96-well microplates, which were stored in a desiccated environment at 10% to 20% relative humidity and at 5, 15, and 25°C. The survival or death of the bacterial cells in each well was confirmed by adding tryptic soy broth as an enrichment culture. Changes in the Poisson distribution parameter during the inactivation process, which represent the variability in the numbers of surviving bacteria, were described by nonlinear regression with an exponential function based on a Weibull distribution. We also examined random changes in the number of surviving bacteria using a random number generator and computer simulations to determine whether the number of surviving bacteria followed a Poisson distribution during the bacterial death process by use of the Poisson process. For small initial cell numbers, more than 80% of the simulated distributions (λ = 2 or 10) followed a Poisson distribution. The results demonstrate that variability in the number of surviving bacteria can be described as a Poisson distribution by use of the model developed by use of the Poisson process. We developed a model to enable the quantitative assessment of bacterial survivors of inactivation procedures because the presence of even one bacterium can cause foodborne disease. The results demonstrate that the variability in the numbers of surviving bacteria was described as a Poisson distribution by use of the model developed by use of the Poisson process. Description of the number of surviving bacteria as a probability distribution rather than as the point estimates used in a deterministic approach can provide a more realistic estimation of risk. The probability model should be useful for estimating the quantitative risk of bacterial survival during inactivation. Copyright © 2017 Koyama et al.
Properties of the Bivariate Delayed Poisson Process
1974-07-01
and Lewis (1972) in their Berkeley Symposium paper and here their analysis of the bivariate Poisson processes (without Poisson noise) is carried... Poisson processes . They cannot, however, be independent Poisson processes because their events are associated in pairs by the displace- ment centres...process because its marginal processes for events of each type are themselves (univariate) Poisson processes . Cox and Lewis (1972) assumed a
Pareto genealogies arising from a Poisson branching evolution model with selection.
Huillet, Thierry E
2014-02-01
We study a class of coalescents derived from a sampling procedure out of N i.i.d. Pareto(α) random variables, normalized by their sum, including β-size-biasing on total length effects (β < α). Depending on the range of α we derive the large N limit coalescents structure, leading either to a discrete-time Poisson-Dirichlet (α, -β) Ξ-coalescent (α ε[0, 1)), or to a family of continuous-time Beta (2 - α, α - β)Λ-coalescents (α ε[1, 2)), or to the Kingman coalescent (α ≥ 2). We indicate that this class of coalescent processes (and their scaling limits) may be viewed as the genealogical processes of some forward in time evolving branching population models including selection effects. In such constant-size population models, the reproduction step, which is based on a fitness-dependent Poisson Point Process with scaling power-law(α) intensity, is coupled to a selection step consisting of sorting out the N fittest individuals issued from the reproduction step.
Determining the Uncertainty of X-Ray Absorption Measurements
Wojcik, Gary S.
2004-01-01
X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627
ACHCAR, J. A.; MARTINEZ, E. Z.; RUFFINO-NETTO, A.; PAULINO, C. D.; SOARES, P.
2008-01-01
SUMMARY We considered a Bayesian analysis for the prevalence of tuberculosis cases in New York City from 1970 to 2000. This counting dataset presented two change-points during this period. We modelled this counting dataset considering non-homogeneous Poisson processes in the presence of the two-change points. A Bayesian analysis for the data is considered using Markov chain Monte Carlo methods. Simulated Gibbs samples for the parameters of interest were obtained using WinBugs software. PMID:18346287
Park, Taeyoung; Krafty, Robert T; Sánchez, Alvaro I
2012-07-27
A Poisson regression model with an offset assumes a constant baseline rate after accounting for measured covariates, which may lead to biased estimates of coefficients in an inhomogeneous Poisson process. To correctly estimate the effect of time-dependent covariates, we propose a Poisson change-point regression model with an offset that allows a time-varying baseline rate. When the nonconstant pattern of a log baseline rate is modeled with a nonparametric step function, the resulting semi-parametric model involves a model component of varying dimension and thus requires a sophisticated varying-dimensional inference to obtain correct estimates of model parameters of fixed dimension. To fit the proposed varying-dimensional model, we devise a state-of-the-art MCMC-type algorithm based on partial collapse. The proposed model and methods are used to investigate an association between daily homicide rates in Cali, Colombia and policies that restrict the hours during which the legal sale of alcoholic beverages is permitted. While simultaneously identifying the latent changes in the baseline homicide rate which correspond to the incidence of sociopolitical events, we explore the effect of policies governing the sale of alcohol on homicide rates and seek a policy that balances the economic and cultural dependencies on alcohol sales to the health of the public.
Jackson, B Scott
2004-10-01
Many different types of integrate-and-fire models have been designed in order to explain how it is possible for a cortical neuron to integrate over many independent inputs while still producing highly variable spike trains. Within this context, the variability of spike trains has been almost exclusively measured using the coefficient of variation of interspike intervals. However, another important statistical property that has been found in cortical spike trains and is closely associated with their high firing variability is long-range dependence. We investigate the conditions, if any, under which such models produce output spike trains with both interspike-interval variability and long-range dependence similar to those that have previously been measured from actual cortical neurons. We first show analytically that a large class of high-variability integrate-and-fire models is incapable of producing such outputs based on the fact that their output spike trains are always mathematically equivalent to renewal processes. This class of models subsumes a majority of previously published models, including those that use excitation-inhibition balance, correlated inputs, partial reset, or nonlinear leakage to produce outputs with high variability. Next, we study integrate-and-fire models that have (nonPoissonian) renewal point process inputs instead of the Poisson point process inputs used in the preceding class of models. The confluence of our analytical and simulation results implies that the renewal-input model is capable of producing high variability and long-range dependence comparable to that seen in spike trains recorded from cortical neurons, but only if the interspike intervals of the inputs have infinite variance, a physiologically unrealistic condition. Finally, we suggest a new integrate-and-fire model that does not suffer any of the previously mentioned shortcomings. By analyzing simulation results for this model, we show that it is capable of producing output spike trains with interspike-interval variability and long-range dependence that match empirical data from cortical spike trains. This model is similar to the other models in this study, except that its inputs are fractional-gaussian-noise-driven Poisson processes rather than renewal point processes. In addition to this model's success in producing realistic output spike trains, its inputs have long-range dependence similar to that found in most subcortical neurons in sensory pathways, including the inputs to cortex. Analysis of output spike trains from simulations of this model also shows that a tight balance between the amounts of excitation and inhibition at the inputs to cortical neurons is not necessary for high interspike-interval variability at their outputs. Furthermore, in our analysis of this model, we show that the superposition of many fractional-gaussian-noise-driven Poisson processes does not approximate a Poisson process, which challenges the common assumption that the total effect of a large number of inputs on a neuron is well represented by a Poisson process.
Characterization of Nonhomogeneous Poisson Processes Via Moment Conditions.
1986-08-01
Poisson processes play an important role in many fields. The Poisson process is one of the simplest counting processes and is a building block for...place of independent increments. This provides a somewhat different viewpoint for examining Poisson processes . In addition, new characterizations for
Ohtaki, Megu; Tonda, Tetsuji; Aihara, Kazuyuki
2015-10-01
We consider a two-phase Poisson process model where only early successive transitions are assumed to be sensitive to exposure. In the case where intensity transitions are low, we derive analytically an approximate formula for the distribution of time to event for the excess hazard ratio (EHR) due to a single point exposure. The formula for EHR is a polynomial in exposure dose. Since the formula for EHR contains no unknown parameters except for the number of total stages, number of exposure-sensitive stages, and a coefficient of exposure effect, it is applicable easily under a variety of situations where there exists a possible latency time from a single point exposure to occurrence of event. Based on the multistage hypothesis of cancer, we formulate a radiation carcinogenesis model in which only some early consecutive stages of the process are sensitive to exposure, whereas later stages are not affected. An illustrative analysis using the proposed model is given for cancer mortality among A-bomb survivors. Copyright © 2015 Elsevier Inc. All rights reserved.
2018-01-12
sequential representations, a method is required for deter- mining which to use for the application at hand and, once a representation is selected, for...DISTRIBUTION UNLIMITED Methods , Assumptions, and Procedures 3.1 Background 3.1.1 CRMs and truncation Consider a Poisson point process on R+ := [0...the heart of the study of truncated CRMs. They provide an itera- tive method that can be terminated at any point to yield a finite approximation to the
Fractional Poisson Fields and Martingales
NASA Astrophysics Data System (ADS)
Aletti, Giacomo; Leonenko, Nikolai; Merzbach, Ely
2018-02-01
We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.
A Martingale Characterization of Mixed Poisson Processes.
1985-10-01
03LA A 11. TITLE (Inciuae Security Clanafication, ",A martingale characterization of mixed Poisson processes " ________________ 12. PERSONAL AUTHOR... POISSON PROCESSES Jostification .......... . ... . . Di.;t ib,,jtion by Availability Codes Dietmar Pfeifer* Technical University Aachen Dist Special and...Mixed Poisson processes play an important role in many branches of applied probability, for instance in insurance mathematics and physics (see Albrecht
Cappell, M S; Spray, D C; Bennett, M V
1988-06-28
Protractor muscles in the gastropod mollusc Navanax inermis exhibit typical spontaneous miniature end plate potentials with mean amplitude 1.71 +/- 1.19 (standard deviation) mV. The evoked end plate potential is quantized, with a quantum equal to the miniature end plate potential amplitude. When their rate is stationary, occurrence of miniature end plate potentials is a random, Poisson process. When non-stationary, spontaneous miniature end plate potential occurrence is a non-stationary Poisson process, a Poisson process with the mean frequency changing with time. This extends the random Poisson model for miniature end plate potentials to the frequently observed non-stationary occurrence. Reported deviations from a Poisson process can sometimes be accounted for by the non-stationary Poisson process and more complex models, such as clustered release, are not always needed.
Compound Poisson Law for Hitting Times to Periodic Orbits in Two-Dimensional Hyperbolic Systems
NASA Astrophysics Data System (ADS)
Carney, Meagan; Nicol, Matthew; Zhang, Hong-Kun
2017-11-01
We show that a compound Poisson distribution holds for scaled exceedances of observables φ uniquely maximized at a periodic point ζ in a variety of two-dimensional hyperbolic dynamical systems with singularities (M,T,μ ), including the billiard maps of Sinai dispersing billiards in both the finite and infinite horizon case. The observable we consider is of form φ (z)=-ln d(z,ζ ) where d is a metric defined in terms of the stable and unstable foliation. The compound Poisson process we obtain is a Pólya-Aeppli distibution of index θ . We calculate θ in terms of the derivative of the map T. Furthermore if we define M_n=\\max {φ ,\\ldots ,φ circ T^n} and u_n (τ ) by \\lim _{n→ ∞} nμ (φ >u_n (τ ) )=τ the maximal process satisfies an extreme value law of form μ (M_n ≤ u_n)=e^{-θ τ }. These results generalize to a broader class of functions maximized at ζ , though the formulas regarding the parameters in the distribution need to be modified.
Probabilistic Estimation of Rare Random Collisions in 3 Space
2009-03-01
extended Poisson process as a feature of probability theory. With the bulk of research in extended Poisson processes going into parame- ter estimation, the...application of extended Poisson processes to spatial processes is largely untouched. Faddy performed a short study of spatial data, but overtly...the theory of extended Poisson processes . To date, the processes are limited in that the rates only depend on the number of arrivals at some time
1978-12-01
Poisson processes . The method is valid for Poisson processes with any given intensity function. The basic thinning algorithm is modified to exploit several refinements which reduce computer execution time by approximately one-third. The basic and modified thinning programs are compared with the Poisson decomposition and gap-statistics algorithm, which is easily implemented for Poisson processes with intensity functions of the form exp(a sub 0 + a sub 1t + a sub 2 t-squared. The thinning programs are competitive in both execution
Non-Poisson Processes: Regression to Equilibrium Versus Equilibrium Correlation Functions
2004-07-07
ARTICLE IN PRESSPhysica A 347 (2005) 268–2880378-4371/$ - doi:10.1016/j Correspo E-mail adwww.elsevier.com/locate/physaNon- Poisson processes : regression...05.40.a; 89.75.k; 02.50.Ey Keywords: Stochastic processes; Non- Poisson processes ; Liouville and Liouville-like equations; Correlation function...which is not legitimate with renewal non- Poisson processes , is a correct property if the deviation from the exponential relaxation is obtained by time
Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes
NASA Astrophysics Data System (ADS)
Orsingher, Enzo; Polito, Federico
2012-08-01
In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.
Alternative Derivations for the Poisson Integral Formula
ERIC Educational Resources Information Center
Chen, J. T.; Wu, C. S.
2006-01-01
Poisson integral formula is revisited. The kernel in the Poisson integral formula can be derived in a series form through the direct BEM free of the concept of image point by using the null-field integral equation in conjunction with the degenerate kernels. The degenerate kernels for the closed-form Green's function and the series form of Poisson…
Development and evaluation of spatial point process models for epidermal nerve fibers.
Olsbo, Viktor; Myllymäki, Mari; Waller, Lance A; Särkkä, Aila
2013-06-01
We propose two spatial point process models for the spatial structure of epidermal nerve fibers (ENFs) across human skin. The models derive from two point processes, Φb and Φe, describing the locations of the base and end points of the fibers. Each point of Φe (the end point process) is connected to a unique point in Φb (the base point process). In the first model, both Φe and Φb are Poisson processes, yielding a null model of uniform coverage of the skin by end points and general baseline results and reference values for moments of key physiologic indicators. The second model provides a mechanistic model to generate end points for each base, and we model the branching structure more directly by defining Φe as a cluster process conditioned on the realization of Φb as its parent points. In both cases, we derive distributional properties for observable quantities of direct interest to neurologists such as the number of fibers per base, and the direction and range of fibers on the skin. We contrast both models by fitting them to data from skin blister biopsy images of ENFs and provide inference regarding physiological properties of ENFs. Copyright © 2013 Elsevier Inc. All rights reserved.
Poisson's ratio of fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Christiansson, Henrik; Helsing, Johan
1996-05-01
Poisson's ratio flow diagrams, that is, the Poisson's ratio versus the fiber fraction, are obtained numerically for hexagonal arrays of elastic circular fibers in an elastic matrix. High numerical accuracy is achieved through the use of an interface integral equation method. Questions concerning fixed point theorems and the validity of existing asymptotic relations are investigated and partially resolved. Our findings for the transverse effective Poisson's ratio, together with earlier results for random systems by other authors, make it possible to formulate a general statement for Poisson's ratio flow diagrams: For composites with circular fibers and where the phase Poisson's ratios are equal to 1/3, the system with the lowest stiffness ratio has the highest Poisson's ratio. For other choices of the elastic moduli for the phases, no simple statement can be made.
Modeling fixation locations using spatial point processes.
Barthelmé, Simon; Trukenbrod, Hans; Engbert, Ralf; Wichmann, Felix
2013-10-01
Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.
Graphic Simulations of the Poisson Process.
1982-10-01
RANDOM NUMBERS AND TRANSFORMATIONS..o......... 11 Go THE RANDOM NUMBERGENERATOR....... .oo..... 15 III. POISSON PROCESSES USER GUIDE....oo.ooo ......... o...again. In the superimposed mode, two Poisson processes are active, each with a different rate parameter, (call them Type I and Type II with respective...occur. The value ’p’ is generated by the following equation where ’Li’ and ’L2’ are the rates of the two Poisson processes ; p = Li / (Li + L2) The value
Analyzing hospitalization data: potential limitations of Poisson regression.
Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R
2015-08-01
Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Simulation Methods for Poisson Processes in Nonstationary Systems.
1978-08-01
for simulation of nonhomogeneous Poisson processes is stated with log-linear rate function. The method is based on an identity relating the...and relatively efficient new method for simulation of one-dimensional and two-dimensional nonhomogeneous Poisson processes is described. The method is
Identification of a Class of Filtered Poisson Processes.
1981-01-01
LD-A135 371 IDENTIFICATION OF A CLASS OF FILERED POISSON PROCESSES I AU) NORTH CAROLINA UNIV AT CHAPEL HIL DEPT 0F STATISTICS D DE RRUC ET AL 1981...STNO&IO$ !tt ~ 4.s " . , ".7" -L N ~ TITLE :IDENTIFICATION OF A CLASS OF FILTERED POISSON PROCESSES Authors : DE BRUCQ Denis - GUALTIEROTTI Antonio...filtered Poisson processes is intro- duced : the amplitude has a law which is spherically invariant and the filter is real, linear and causal. It is shown
Non-linear properties of metallic cellular materials with a negative Poisson's ratio
NASA Technical Reports Server (NTRS)
Choi, J. B.; Lakes, R. S.
1992-01-01
Negative Poisson's ratio copper foam was prepared and characterized experimentally. The transformation into re-entrant foam was accomplished by applying sequential permanent compressions above the yield point to achieve a triaxial compression. The Poisson's ratio of the re-entrant foam depended on strain and attained a relative minimum at strains near zero. Poisson's ratio as small as -0.8 was achieved. The strain dependence of properties occurred over a narrower range of strain than in the polymer foams studied earlier. Annealing of the foam resulted in a slightly greater magnitude of negative Poisson's ratio and greater toughness at the expense of a decrease in the Young's modulus.
Framework for adaptive multiscale analysis of nonhomogeneous point processes.
Helgason, Hannes; Bartroff, Jay; Abry, Patrice
2011-01-01
We develop the methodology for hypothesis testing and model selection in nonhomogeneous Poisson processes, with an eye toward the application of modeling and variability detection in heart beat data. Modeling the process' non-constant rate function using templates of simple basis functions, we develop the generalized likelihood ratio statistic for a given template and a multiple testing scheme to model-select from a family of templates. A dynamic programming algorithm inspired by network flows is used to compute the maximum likelihood template in a multiscale manner. In a numerical example, the proposed procedure is nearly as powerful as the super-optimal procedures that know the true template size and true partition, respectively. Extensions to general history-dependent point processes is discussed.
Deterministic multidimensional nonuniform gap sampling.
Worley, Bradley; Powers, Robert
2015-12-01
Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities. Copyright © 2015 Elsevier Inc. All rights reserved.
A new computer code for discrete fracture network modelling
NASA Astrophysics Data System (ADS)
Xu, Chaoshui; Dowd, Peter
2010-03-01
The authors describe a comprehensive software package for two- and three-dimensional stochastic rock fracture simulation using marked point processes. Fracture locations can be modelled by a Poisson, a non-homogeneous, a cluster or a Cox point process; fracture geometries and properties are modelled by their respective probability distributions. Virtual sampling tools such as plane, window and scanline sampling are included in the software together with a comprehensive set of statistical tools including histogram analysis, probability plots, rose diagrams and hemispherical projections. The paper describes in detail the theoretical basis of the implementation and provides a case study in rock fracture modelling to demonstrate the application of the software.
State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.
1978-12-01
The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared
Poplová, Michaela; Sovka, Pavel; Cifra, Michal
2017-01-01
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.
Poplová, Michaela; Sovka, Pavel
2017-01-01
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal. PMID:29216207
Modeling laser velocimeter signals as triply stochastic Poisson processes
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.
1976-01-01
Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.
NASA Astrophysics Data System (ADS)
Gronz, Oliver; Seeger, Manuel; Klaes, Björn; Casper, Markus C.; Ries, Johannes B.
2015-04-01
Accurate and dense 3D models of soil surfaces can be used in various ways: They can be used as initial shapes for erosion models. They can be used as benchmark shapes for erosion model outputs. They can be used to derive metrics, such as random roughness... One easy and low-cost method to produce these models is structure from motion (SfM). Using this method, two questions arise: Does the soil moisture, which changes the colour, albedo and reflectivity of the soil, influence the model quality? How can the model quality be evaluated? To answer these questions, a suitable data set has been produced: soil has been placed on a tray and areas with different roughness structures have been formed. For different moisture states - dry, medium, saturated - and two different lighting conditions - direct and indirect - sets of high-resolution images at the same camera positions have been taken. From the six image sets, 3D point clouds have been produced using VisualSfM. The visual inspection of the 3D models showed that all models have different areas, where holes of different sizes occur. But it is obviously a subjective task to determine the model's quality by visual inspection. One typical approach to evaluate model quality objectively is to estimate the point density on a regular, two-dimensional grid: the number of 3D points in each grid cell projected on a plane is calculated. This works well for surfaces that do not show vertical structures. Along vertical structures, many points will be projected on the same grid cell and thus the point density rather depends on the shape of the surface but less on the quality of the model. Another approach has been applied by using the points resulting from Poisson Surface Reconstructions. One of this algorithm's properties is the filling of holes: new points are interpolated inside the holes. Using the original 3D point cloud and the interpolated Poisson point set, two analyses have been performed: For all Poisson points, the distance to the closest original point cloud member has been calculated. For the resulting set of distances, histograms have been produced that show the distribution of point distances. As the Poisson points also make up a connected mesh, the size and distribution of single holes can also be estimated by labeling Poisson points that belong to the same hole: each hole gets a specific number. Afterwards, the area of the mesh formed by each set of Poisson hole points can be calculated. The result is a set of distinctive holes and their sizes. The two approaches showed that the hole-ness of the point cloud depends on the soil moisture respectively the reflectivity: the distance distribution of the model of the saturated soil shows the smallest number of large distances. The histogram of the medium state shows more large distances and the dry model shows the largest distances. Models resulting from indirect lighting are better than the models resulting from direct light for all moisture states.
Palacios, Julia A; Minin, Vladimir N
2013-03-01
Changes in population size influence genetic diversity of the population and, as a result, leave a signature of these changes in individual genomes in the population. We are interested in the inverse problem of reconstructing past population dynamics from genomic data. We start with a standard framework based on the coalescent, a stochastic process that generates genealogies connecting randomly sampled individuals from the population of interest. These genealogies serve as a glue between the population demographic history and genomic sequences. It turns out that only the times of genealogical lineage coalescences contain information about population size dynamics. Viewing these coalescent times as a point process, estimating population size trajectories is equivalent to estimating a conditional intensity of this point process. Therefore, our inverse problem is similar to estimating an inhomogeneous Poisson process intensity function. We demonstrate how recent advances in Gaussian process-based nonparametric inference for Poisson processes can be extended to Bayesian nonparametric estimation of population size dynamics under the coalescent. We compare our Gaussian process (GP) approach to one of the state-of-the-art Gaussian Markov random field (GMRF) methods for estimating population trajectories. Using simulated data, we demonstrate that our method has better accuracy and precision. Next, we analyze two genealogies reconstructed from real sequences of hepatitis C and human Influenza A viruses. In both cases, we recover more believed aspects of the viral demographic histories than the GMRF approach. We also find that our GP method produces more reasonable uncertainty estimates than the GMRF method. Copyright © 2013, The International Biometric Society.
Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Moision, Bruce E.
2010-01-01
Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.
Velázquez, Eduardo; Escudero, Adrián; de la Cruz, Marcelino
2018-01-01
We assessed the relative importance of dispersal limitation, environmental heterogeneity and their joint effects as determinants of the spatial patterns of 229 species in the moist tropical forest of Barro Colorado Island (Panama). We differentiated five types of species according to their dispersal syndrome; autochorous, anemochorous, and zoochorous species with small, medium-size and large fruits. We characterized the spatial patterns of each species and we checked whether they were best fitted by Inhomogeneous Poisson (IPP), Homogeneous Poisson cluster (HPCP) and Inhomogeneous Poisson cluster processes (IPCP) by means of the Akaike Information Criterion. We also assessed the influence of species’ dispersal mode in the average cluster size. We found that 63% of the species were best fitted by IPCP regardless of their dispersal syndrome, although anemochorous species were best described by HPCP. Our results indicate that spatial patterns of tree species in this forest cannot be explained only by dispersal limitation, but by the joint effects of dispersal limitation and environmental heterogeneity. The absence of relationships between dispersal mode and degree of clustering suggests that several processes modify the original spatial pattern generated by seed dispersal. These findings emphasize the importance of fitting point process models with a different biological meaning when studying the main determinants of spatial structure in plant communities. PMID:29451871
Information transmission using non-poisson regular firing.
Koyama, Shinsuke; Omi, Takahiro; Kass, Robert E; Shinomoto, Shigeru
2013-04-01
In many cortical areas, neural spike trains do not follow a Poisson process. In this study, we investigate a possible benefit of non-Poisson spiking for information transmission by studying the minimal rate fluctuation that can be detected by a Bayesian estimator. The idea is that an inhomogeneous Poisson process may make it difficult for downstream decoders to resolve subtle changes in rate fluctuation, but by using a more regular non-Poisson process, the nervous system can make rate fluctuations easier to detect. We evaluate the degree to which regular firing reduces the rate fluctuation detection threshold. We find that the threshold for detection is reduced in proportion to the coefficient of variation of interspike intervals.
1983-05-20
Poisson processes is introduced: the amplitude has a law which is spherically invariant and the filter is real, linear and causal. It is shown how such a model can be identified from experimental data. (Author)
From Loss of Memory to Poisson.
ERIC Educational Resources Information Center
Johnson, Bruce R.
1983-01-01
A way of presenting the Poisson process and deriving the Poisson distribution for upper-division courses in probability or mathematical statistics is presented. The main feature of the approach lies in the formulation of Poisson postulates with immediate intuitive appeal. (MNS)
Inverse Jacobi multiplier as a link between conservative systems and Poisson structures
NASA Astrophysics Data System (ADS)
García, Isaac A.; Hernández-Bermejo, Benito
2017-08-01
Some aspects of the relationship between conservativeness of a dynamical system (namely the preservation of a finite measure) and the existence of a Poisson structure for that system are analyzed. From the local point of view, due to the flow-box theorem we restrict ourselves to neighborhoods of singularities. In this sense, we characterize Poisson structures around the typical zero-Hopf singularity in dimension 3 under the assumption of having a local analytic first integral with non-vanishing first jet by connecting with the classical Poincaré center problem. From the global point of view, we connect the property of being strictly conservative (the invariant measure must be positive) with the existence of a Poisson structure depending on the phase space dimension. Finally, weak conservativeness in dimension two is introduced by the extension of inverse Jacobi multipliers as weak solutions of its defining partial differential equation and some of its applications are developed. Examples including Lotka-Volterra systems, quadratic isochronous centers, and non-smooth oscillators are provided.
Network based approaches reveal clustering in protein point patterns
NASA Astrophysics Data System (ADS)
Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang
2014-03-01
Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.
Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events.
Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon
2016-01-01
Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate.
Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events
Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon
2016-01-01
Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate. PMID:28066225
Stability of Poisson Equilibria and Hamiltonian Relative Equilibria by Energy Methods
NASA Astrophysics Data System (ADS)
Patrick, George W.; Roberts, Mark; Wulff, Claudia
2004-12-01
We develop a general stability theory for equilibrium points of Poisson dynamical systems and relative equilibria of Hamiltonian systems with symmetries, including several generalisations of the Energy-Casimir and Energy-Momentum Methods. Using a topological generalisation of Lyapunov’s result that an extremal critical point of a conserved quantity is stable, we show that a Poisson equilibrium is stable if it is an isolated point in the intersection of a level set of a conserved function with a subset of the phase space that is related to the topology of the symplectic leaf space at that point. This criterion is applied to generalise the energy-momentum method to Hamiltonian systems which are invariant under non-compact symmetry groups for which the coadjoint orbit space is not Hausdorff. We also show that a G-stable relative equilibrium satisfies the stronger condition of being A-stable, where A is a specific group-theoretically defined subset of G which contains the momentum isotropy subgroup of the relative equilibrium. The results are illustrated by an application to the stability of a rigid body in an ideal irrotational fluid.
Impact Damage on a Thin Glass Plate with a Thin Polycarbonate Backing
2013-07-13
fixed and equals 0.25 in 3D (close to the soda-lime glass Poisson ratio of 0.22), and 1/3 in 2D, since the assumption is that material points interact...only through a pair-potential. The Poisson ratio limitation is removed in the state-based formulation of peridynamics (see Ref. [26]), however, here...we use the bond-based for simplicity. We note that, in dynamic fracture problems of the type considered in this work, the Poisson ratio value does not
Super-stable Poissonian structures
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2012-10-01
In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics.
NASA Technical Reports Server (NTRS)
Hepner, T. E.; Meyers, J. F. (Inventor)
1985-01-01
A laser velocimeter covariance processor which calculates the auto covariance and cross covariance functions for a turbulent flow field based on Poisson sampled measurements in time from a laser velocimeter is described. The device will process a block of data that is up to 4096 data points in length and return a 512 point covariance function with 48-bit resolution along with a 512 point histogram of the interarrival times which is used to normalize the covariance function. The device is designed to interface and be controlled by a minicomputer from which the data is received and the results returned. A typical 4096 point computation takes approximately 1.5 seconds to receive the data, compute the covariance function, and return the results to the computer.
NASA Astrophysics Data System (ADS)
Cartier, Pierre; DeWitt-Morette, Cecile
2006-11-01
Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Cartier, Pierre; DeWitt-Morette, Cecile
2010-06-01
Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.
Elliptic Euler-Poisson-Darboux equation, critical points and integrable systems
NASA Astrophysics Data System (ADS)
Konopelchenko, B. G.; Ortenzi, G.
2013-12-01
The structure and properties of families of critical points for classes of functions W(z,{\\overline{z}}) obeying the elliptic Euler-Poisson-Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(\\beta ,{\\overline{\\beta }};1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed.
Effect of non-Poisson samples on turbulence spectra from laser velocimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sree, D.; Kjelgaard, S.O.; Sellers, W.L. III
1994-12-01
Spectral estimations from LV data are typically based on the assumption of a Poisson sampling process. It is demonstrated here that the sampling distribution must be considered before spectral estimates are used to infer turbulence scales. A non-Poisson sampling process can occur if there is nonhomogeneous distribution of particles in the flow. Based on the study of a simulated first-order spectrum, it has been shown that a non-Poisson sampling process causes the estimated spectrum to deviate from the true spectrum. Also, in this case the prefiltering techniques do not improve the spectral estimates at higher frequencies. 4 refs.
Pervasive randomness in physics: an introduction to its modelling and spectral characterisation
NASA Astrophysics Data System (ADS)
Howard, Roy
2017-10-01
An introduction to the modelling and spectral characterisation of random phenomena is detailed at a level consistent with a first exposure to the subject at an undergraduate level. A signal framework for defining a random process is provided and this underpins an introduction to common random processes including the Poisson point process, the random walk, the random telegraph signal, shot noise, information signalling random processes, jittered pulse trains, birth-death random processes and Markov chains. An introduction to the spectral characterisation of signals and random processes, via either an energy spectral density or a power spectral density, is detailed. The important case of defining a white noise random process concludes the paper.
Evolutionary inference via the Poisson Indel Process.
Bouchard-Côté, Alexandre; Jordan, Michael I
2013-01-22
We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments.
Evolutionary inference via the Poisson Indel Process
Bouchard-Côté, Alexandre; Jordan, Michael I.
2013-01-01
We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114–124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments. PMID:23275296
1977-09-01
process with an event streaa intensity (rate) function that is of degree-two exponential pclyncaial foru. (The use of exponential pclynoaials is...4 \\v 01 ^3 C \\ \\ •r- S_ \\ \\ O \\ \\ a \\ \\ V IA C 4-> \\ \\ •«- c \\ 1 <— 3 • o \\ \\ Ol (J \\ \\ O U —1 <o \\ I...would serve as a good initial approxiaation t* , f-r the Newton-Raphson aethod. However, for the purpose of this implementation, the end point which
External Theory for Stochastic Processes.
1985-11-01
1.2 1.4 1.8 11111125 11.I6 MICROCOP RESOLUTION TEST CHART M.. MW’ PAPI ~ W W ’W IV AV a a W 4 * S6 _ ~.. r dV . Unclassif’ DA 7 4 9JT FILE COPY...intensity measure has the Laplace : <-f Transform L (f)=exp(-x (l-e - f ) whereas a Compound Poisson Process has Laplace Transform (2.3.1) L (f...see Example 2.2.4 as an illustration of this). The result is a clustering of exceedances, leading to a compounding of events in the limiting point
Kerry, Ruth; Goovaerts, Pierre; Smit, Izak P.J.; Ingram, Ben R.
2015-01-01
Kruger National Park (KNP), South Africa, provides protected habitats for the unique animals of the African savannah. For the past 40 years, annual aerial surveys of herbivores have been conducted to aid management decisions based on (1) the spatial distribution of species throughout the park and (2) total species populations in a year. The surveys are extremely time consuming and costly. For many years, the whole park was surveyed, but in 1998 a transect survey approach was adopted. This is cheaper and less time consuming but leaves gaps in the data spatially. Also the distance method currently employed by the park only gives estimates of total species populations but not their spatial distribution. We compare the ability of multiple indicator kriging and area-to-point Poisson kriging to accurately map species distribution in the park. A leave-one-out cross-validation approach indicates that multiple indicator kriging makes poor estimates of the number of animals, particularly the few large counts, as the indicator variograms for such high thresholds are pure nugget. Poisson kriging was applied to the prediction of two types of abundance data: spatial density and proportion of a given species. Both Poisson approaches had standardized mean absolute errors (St. MAEs) of animal counts at least an order of magnitude lower than multiple indicator kriging. The spatial density, Poisson approach (1), gave the lowest St. MAEs for the most abundant species and the proportion, Poisson approach (2), did for the least abundant species. Incorporating environmental data into Poisson approach (2) further reduced St. MAEs. PMID:25729318
Kerry, Ruth; Goovaerts, Pierre; Smit, Izak P J; Ingram, Ben R
Kruger National Park (KNP), South Africa, provides protected habitats for the unique animals of the African savannah. For the past 40 years, annual aerial surveys of herbivores have been conducted to aid management decisions based on (1) the spatial distribution of species throughout the park and (2) total species populations in a year. The surveys are extremely time consuming and costly. For many years, the whole park was surveyed, but in 1998 a transect survey approach was adopted. This is cheaper and less time consuming but leaves gaps in the data spatially. Also the distance method currently employed by the park only gives estimates of total species populations but not their spatial distribution. We compare the ability of multiple indicator kriging and area-to-point Poisson kriging to accurately map species distribution in the park. A leave-one-out cross-validation approach indicates that multiple indicator kriging makes poor estimates of the number of animals, particularly the few large counts, as the indicator variograms for such high thresholds are pure nugget. Poisson kriging was applied to the prediction of two types of abundance data: spatial density and proportion of a given species. Both Poisson approaches had standardized mean absolute errors (St. MAEs) of animal counts at least an order of magnitude lower than multiple indicator kriging. The spatial density, Poisson approach (1), gave the lowest St. MAEs for the most abundant species and the proportion, Poisson approach (2), did for the least abundant species. Incorporating environmental data into Poisson approach (2) further reduced St. MAEs.
Monitoring Poisson observations using combined applications of Shewhart and EWMA charts
NASA Astrophysics Data System (ADS)
Abujiya, Mu'azu Ramat
2017-11-01
The Shewhart and exponentially weighted moving average (EWMA) charts for nonconformities are the most widely used procedures of choice for monitoring Poisson observations in modern industries. Individually, the Shewhart EWMA charts are only sensitive to large and small shifts, respectively. To enhance the detection abilities of the two schemes in monitoring all kinds of shifts in Poisson count data, this study examines the performance of combined applications of the Shewhart, and EWMA Poisson control charts. Furthermore, the study proposes modifications based on well-structured statistical data collection technique, ranked set sampling (RSS), to detect shifts in the mean of a Poisson process more quickly. The relative performance of the proposed Shewhart-EWMA Poisson location charts is evaluated in terms of the average run length (ARL), standard deviation of the run length (SDRL), median run length (MRL), average ratio ARL (ARARL), average extra quadratic loss (AEQL) and performance comparison index (PCI). Consequently, all the new Poisson control charts based on RSS method are generally more superior than most of the existing schemes for monitoring Poisson processes. The use of these combined Shewhart-EWMA Poisson charts is illustrated with an example to demonstrate the practical implementation of the design procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonis, Antonios; Zhang, Xiaoguang
2012-01-01
This is a comment on the paper by Aftab Alam, Brian G. Wilson, and D. D. Johnson [1], proposing the solution of the near-field corrections (NFC s) problem for the Poisson equation for extended, e.g., space filling, charge densities. We point out that the problem considered by the authors can be simply avoided by means of performing certain integrals in a particular order, while their method does not address the genuine problem of NFC s that arises when the solution of the Poisson equation is attempted within multiple scattering theory. We also point out a flaw in their line ofmore » reasoning leading to the expression for the potential inside the bounding sphere of a cell that makes it inapplicable to certain geometries.« less
NASA Astrophysics Data System (ADS)
Gonis, A.; Zhang, X.-G.
2012-09-01
This is a Comment on the paper by Alam, Wilson, and Johnson [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.205106 84, 205106 (2011)], proposing the solution of the near-field corrections (NFCs) problem for the Poisson equation for extended, e.g., space-filling charge densities. We point out that the problem considered by the authors can be simply avoided by means of performing certain integrals in a particular order, whereas, their method does not address the genuine problem of NFCs that arises when the solution of the Poisson equation is attempted within multiple-scattering theory. We also point out a flaw in their line of reasoning, leading to the expression for the potential inside the bounding sphere of a cell that makes it inapplicable for certain geometries.
Calculation of the Poisson cumulative distribution function
NASA Technical Reports Server (NTRS)
Bowerman, Paul N.; Nolty, Robert G.; Scheuer, Ernest M.
1990-01-01
A method for calculating the Poisson cdf (cumulative distribution function) is presented. The method avoids computer underflow and overflow during the process. The computer program uses this technique to calculate the Poisson cdf for arbitrary inputs. An algorithm that determines the Poisson parameter required to yield a specified value of the cdf is presented.
Poisson process stimulation of an excitable membrane cable model.
Goldfinger, M D
1986-01-01
The convergence of multiple inputs within a single-neuronal substrate is a common design feature of both peripheral and central nervous systems. Typically, the result of such convergence impinges upon an intracellularly contiguous axon, where it is encoded into a train of action potentials. The simplest representation of the result of convergence of multiple inputs is a Poisson process; a general representation of axonal excitability is the Hodgkin-Huxley/cable theory formalism. The present work addressed multiple input convergence upon an axon by applying Poisson process stimulation to the Hodgkin-Huxley axonal cable. The results showed that both absolute and relative refractory periods yielded in the axonal output a random but non-Poisson process. While smaller amplitude stimuli elicited a type of short-interval conditioning, larger amplitude stimuli elicited impulse trains approaching Poisson criteria except for the effects of refractoriness. These results were obtained for stimulus trains consisting of pulses of constant amplitude and constant or variable durations. By contrast, with or without stimulus pulse shape variability, the post-impulse conditional probability for impulse initiation in the steady-state was a Poisson-like process. For stimulus variability consisting of randomly smaller amplitudes or randomly longer durations, mean impulse frequency was attenuated or potentiated, respectively. Limitations and implications of these computations are discussed. PMID:3730505
A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, D., E-mail: Daniel.Brinkman@asu.edu; School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287; Heitzinger, C., E-mail: Clemens.Heitzinger@asu.edu
2014-01-15
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.
Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.
Hougaard, P; Lee, M L; Whitmore, G A
1997-12-01
Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.
Universal Poisson Statistics of mRNAs with Complex Decay Pathways.
Thattai, Mukund
2016-01-19
Messenger RNA (mRNA) dynamics in single cells are often modeled as a memoryless birth-death process with a constant probability per unit time that an mRNA molecule is synthesized or degraded. This predicts a Poisson steady-state distribution of mRNA number, in close agreement with experiments. This is surprising, since mRNA decay is known to be a complex process. The paradox is resolved by realizing that the Poisson steady state generalizes to arbitrary mRNA lifetime distributions. A mapping between mRNA dynamics and queueing theory highlights an identifiability problem: a measured Poisson steady state is consistent with a large variety of microscopic models. Here, I provide a rigorous and intuitive explanation for the universality of the Poisson steady state. I show that the mRNA birth-death process and its complex decay variants all take the form of the familiar Poisson law of rare events, under a nonlinear rescaling of time. As a corollary, not only steady-states but also transients are Poisson distributed. Deviations from the Poisson form occur only under two conditions, promoter fluctuations leading to transcriptional bursts or nonindependent degradation of mRNA molecules. These results place severe limits on the power of single-cell experiments to probe microscopic mechanisms, and they highlight the need for single-molecule measurements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Modeling spiking behavior of neurons with time-dependent Poisson processes.
Shinomoto, S; Tsubo, Y
2001-10-01
Three kinds of interval statistics, as represented by the coefficient of variation, the skewness coefficient, and the correlation coefficient of consecutive intervals, are evaluated for three kinds of time-dependent Poisson processes: pulse regulated, sinusoidally regulated, and doubly stochastic. Among these three processes, the sinusoidally regulated and doubly stochastic Poisson processes, in the case when the spike rate varies slowly compared with the mean interval between spikes, are found to be consistent with the three statistical coefficients exhibited by data recorded from neurons in the prefrontal cortex of monkeys.
Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation
ERIC Educational Resources Information Center
Prentice, J. S. C.
2012-01-01
An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…
Limiting Distributions of Functionals of Markov Chains.
1984-08-01
limiting distributions; periodic * nonhomoger.,!ous Poisson processes . 19 ANS? MACY IConuui oe nonoe’ee if necorglooy and edern thty by block numbers...homogeneous Poisson processes is of interest in itself. The problem considered in this paper is of interest in the theory of partially observable...where we obtain the limiting distribution of the interevent times. Key Words: Markov Chains, Limiting Distributions, Periodic Nonhomogeneous Poisson
Zipkin, Elise F.; Leirness, Jeffery B.; Kinlan, Brian P.; O'Connell, Allan F.; Silverman, Emily D.
2014-01-01
Determining appropriate statistical distributions for modeling animal count data is important for accurate estimation of abundance, distribution, and trends. In the case of sea ducks along the U.S. Atlantic coast, managers want to estimate local and regional abundance to detect and track population declines, to define areas of high and low use, and to predict the impact of future habitat change on populations. In this paper, we used a modified marked point process to model survey data that recorded flock sizes of Common eiders, Long-tailed ducks, and Black, Surf, and White-winged scoters. The data come from an experimental aerial survey, conducted by the United States Fish & Wildlife Service (USFWS) Division of Migratory Bird Management, during which east-west transects were flown along the Atlantic Coast from Maine to Florida during the winters of 2009–2011. To model the number of flocks per transect (the points), we compared the fit of four statistical distributions (zero-inflated Poisson, zero-inflated geometric, zero-inflated negative binomial and negative binomial) to data on the number of species-specific sea duck flocks that were recorded for each transect flown. To model the flock sizes (the marks), we compared the fit of flock size data for each species to seven statistical distributions: positive Poisson, positive negative binomial, positive geometric, logarithmic, discretized lognormal, zeta and Yule–Simon. Akaike’s Information Criterion and Vuong’s closeness tests indicated that the negative binomial and discretized lognormal were the best distributions for all species for the points and marks, respectively. These findings have important implications for estimating sea duck abundances as the discretized lognormal is a more skewed distribution than the Poisson and negative binomial, which are frequently used to model avian counts; the lognormal is also less heavy-tailed than the power law distributions (e.g., zeta and Yule–Simon), which are becoming increasingly popular for group size modeling. Choosing appropriate statistical distributions for modeling flock size data is fundamental to accurately estimating population summaries, determining required survey effort, and assessing and propagating uncertainty through decision-making processes.
Gambling scores for earthquake predictions and forecasts
NASA Astrophysics Data System (ADS)
Zhuang, Jiancang
2010-04-01
This paper presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points betted by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.
Poisson equation for the three-loop ladder diagram in string theory at genus one
NASA Astrophysics Data System (ADS)
Basu, Anirban
2016-11-01
The three-loop ladder diagram is a graph with six links and four cubic vertices that contributes to the D12ℛ4 amplitude at genus one in type II string theory. The vertices represent the insertion points of vertex operators on the toroidal worldsheet and the links represent scalar Green functions connecting them. By using the properties of the Green function and manipulating the various expressions, we obtain a modular invariant Poisson equation satisfied by this diagram, with source terms involving one-, two- and three-loop diagrams. Unlike the source terms in the Poisson equations for diagrams at lower orders in the momentum expansion or the Mercedes diagram, a particular source term involves a five-point function containing a holomorphic and a antiholomorphic worldsheet derivative acting on different Green functions. We also obtain simple equalities between topologically distinct diagrams, and consider some elementary examples.
Doubly stochastic Poisson processes in artificial neural learning.
Card, H C
1998-01-01
This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.
Statistical distributions of earthquake numbers: consequence of branching process
NASA Astrophysics Data System (ADS)
Kagan, Yan Y.
2010-03-01
We discuss various statistical distributions of earthquake numbers. Previously, we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic and the negative binomial (NBD). The theoretical model is the `birth and immigration' population process. The first three distributions above can be considered special cases of the NBD. In particular, a point branching process along the magnitude (or log seismic moment) axis with independent events (immigrants) explains the magnitude/moment-frequency relation and the NBD of earthquake counts in large time/space windows, as well as the dependence of the NBD parameters on the magnitude threshold (magnitude of an earthquake catalogue completeness). We discuss applying these distributions, especially the NBD, to approximate event numbers in earthquake catalogues. There are many different representations of the NBD. Most can be traced either to the Pascal distribution or to the mixture of the Poisson distribution with the gamma law. We discuss advantages and drawbacks of both representations for statistical analysis of earthquake catalogues. We also consider applying the NBD to earthquake forecasts and describe the limits of the application for the given equations. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrence, the NBD has two parameters. The second parameter can be used to characterize clustering or overdispersion of a process. We determine the parameter values and their uncertainties for several local and global catalogues, and their subdivisions in various time intervals, magnitude thresholds, spatial windows, and tectonic categories. The theoretical model of how the clustering parameter depends on the corner (maximum) magnitude can be used to predict future earthquake number distribution in regions where very large earthquakes have not yet occurred.
Noisy cooperative intermittent processes: From blinking quantum dots to human consciousness
NASA Astrophysics Data System (ADS)
Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Bedini, Remo; Gemignani, Angelo; Fronzoni, Leone
2011-07-01
We study the superposition of a non-Poisson renewal process with the presence of a superimposed Poisson noise. The non-Poisson renewals mark the passage between meta-stable states in system with self-organization. We propose methods to measure the amount of information due to the two independent processes independently, and we see that a superficial study based on the survival probabilities yield stretched-exponential relaxations. Our method is in fact able to unravel the inverse-power law relaxation of the isolated non-Poisson processes, even when noise is present. We provide examples of this behavior in system of diverse nature, from blinking nano-crystals to weak turbulence. Finally we focus our discussion on events extracted from human electroencephalograms, and we discuss their connection with emerging properties of integrated neural dynamics, i.e. consciousness.
Markov modulated Poisson process models incorporating covariates for rainfall intensity.
Thayakaran, R; Ramesh, N I
2013-01-01
Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.
Applying the compound Poisson process model to the reporting of injury-related mortality rates.
Kegler, Scott R
2007-02-16
Injury-related mortality rate estimates are often analyzed under the assumption that case counts follow a Poisson distribution. Certain types of injury incidents occasionally involve multiple fatalities, however, resulting in dependencies between cases that are not reflected in the simple Poisson model and which can affect even basic statistical analyses. This paper explores the compound Poisson process model as an alternative, emphasizing adjustments to some commonly used interval estimators for population-based rates and rate ratios. The adjusted estimators involve relatively simple closed-form computations, which in the absence of multiple-case incidents reduce to familiar estimators based on the simpler Poisson model. Summary data from the National Violent Death Reporting System are referenced in several examples demonstrating application of the proposed methodology.
A bayesian analysis for identifying DNA copy number variations using a compound poisson process.
Chen, Jie; Yiğiter, Ayten; Wang, Yu-Ping; Deng, Hong-Wen
2010-01-01
To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker) positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability.
Complete synchronization of the global coupled dynamical network induced by Poisson noises.
Guo, Qing; Wan, Fangyi
2017-01-01
The different Poisson noise-induced complete synchronization of the global coupled dynamical network is investigated. Based on the stability theory of stochastic differential equations driven by Poisson process, we can prove that Poisson noises can induce synchronization and sufficient conditions are established to achieve complete synchronization with probability 1. Furthermore, numerical examples are provided to show the agreement between theoretical and numerical analysis.
Fast, adaptive summation of point forces in the two-dimensional Poisson equation
NASA Technical Reports Server (NTRS)
Van Dommelen, Leon; Rundensteiner, Elke A.
1989-01-01
A comparatively simple procedure is presented for the direct summation of the velocity field introduced by point vortices which significantly reduces the required number of operations by replacing selected partial sums by asymptotic series. Tables are presented which demonstrate the speed of this algorithm in terms of the mere doubling of computational time in dealing with a doubling of the number of vortices; current methods involve a computational time extension by a factor of 4. This procedure need not be restricted to the solution of the Poisson equation, and may be applied to other problems involving groups of points in which the interaction between elements of different groups can be simplified when the distance between groups is sufficiently great.
? filtering for stochastic systems driven by Poisson processes
NASA Astrophysics Data System (ADS)
Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya
2015-01-01
This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.
Intertime jump statistics of state-dependent Poisson processes.
Daly, Edoardo; Porporato, Amilcare
2007-01-01
A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.
NASA Astrophysics Data System (ADS)
Tóth, B.; Lillo, F.; Farmer, J. D.
2010-11-01
We introduce an algorithm for the segmentation of a class of regime switching processes. The segmentation algorithm is a non parametric statistical method able to identify the regimes (patches) of a time series. The process is composed of consecutive patches of variable length. In each patch the process is described by a stationary compound Poisson process, i.e. a Poisson process where each count is associated with a fluctuating signal. The parameters of the process are different in each patch and therefore the time series is non-stationary. Our method is a generalization of the algorithm introduced by Bernaola-Galván, et al. [Phys. Rev. Lett. 87, 168105 (2001)]. We show that the new algorithm outperforms the original one for regime switching models of compound Poisson processes. As an application we use the algorithm to segment the time series of the inventory of market members of the London Stock Exchange and we observe that our method finds almost three times more patches than the original one.
Dependent Neyman type A processes based on common shock Poisson approach
NASA Astrophysics Data System (ADS)
Kadilar, Gamze Özel; Kadilar, Cem
2016-04-01
The Neyman type A process is used for describing clustered data since the Poisson process is insufficient for clustering of events. In a multivariate setting, there may be dependencies between multivarite Neyman type A processes. In this study, dependent form of the Neyman type A process is considered under common shock approach. Then, the joint probability function are derived for the dependent Neyman type A Poisson processes. Then, an application based on forest fires in Turkey are given. The results show that the joint probability function of the dependent Neyman type A processes, which is obtained in this study, can be a good tool for the probabilistic fitness for the total number of burned trees in Turkey.
Poisson Noise Removal in Spherical Multichannel Images: Application to Fermi data
NASA Astrophysics Data System (ADS)
Schmitt, Jérémy; Starck, Jean-Luc; Fadili, Jalal; Digel, Seth
2012-03-01
The Fermi Gamma-ray Space Telescope, which was launched by NASA in June 2008, is a powerful space observatory which studies the high-energy gamma-ray sky [5]. Fermi's main instrument, the Large Area Telescope (LAT), detects photons in an energy range between 20MeV and >300 GeV. The LAT is much more sensitive than its predecessor, the energetic gamma ray experiment telescope (EGRET) telescope on the Compton Gamma-ray Observatory, and is expected to find several thousand gamma-ray point sources, which is an order of magnitude more than its predecessor EGRET [13]. Even with its relatively large acceptance (∼2m2 sr), the number of photons detected by the LAT outside the Galactic plane and away from intense sources is relatively low and the sky overall has a diffuse glow from cosmic-ray interactions with interstellar gas and low energy photons that makes a background against which point sources need to be detected. In addition, the per-photon angular resolution of the LAT is relatively poor and strongly energy dependent, ranging from>10° at 20MeV to ∼0.1° above 100 GeV. Consequently, the spherical photon count images obtained by Fermi are degraded by the fluctuations on the number of detected photons. This kind of noise is strongly signal dependent : on the brightest parts of the image like the galactic plane or the brightest sources, we have a lot of photons per pixel, and so the photon noise is low. Outside the galactic plane, the number of photons per pixel is low, which means that the photon noise is high. Such a signal-dependent noise cannot be accurately modeled by a Gaussian distribution. The basic photon-imaging model assumes that the number of detected photons at each pixel location is Poisson distributed. More specifically, the image is considered as a realization of an inhomogeneous Poisson process. This statistical noise makes the source detection more difficult, consequently it is highly desirable to have an efficient denoising method for spherical Poisson data. Several techniques have been proposed in the literature to estimate Poisson intensity in 2-dimensional (2D). A major class of methods adopt a multiscale Bayesian framework specifically tailored for Poisson data [18], independently initiated by Timmerman and Nowak [23] and Kolaczyk [14]. Lefkimmiaits et al. [15] proposed an improved Bayesian framework for analyzing Poisson processes, based on a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities in adjacent scales are modeled as mixtures of conjugate parametric distributions. Another approach includes preprocessing the count data by a variance stabilizing transform(VST) such as theAnscombe [4] and the Fisz [10] transforms, applied respectively in the spatial [8] or in the wavelet domain [11]. The transform reforms the data so that the noise approximately becomes Gaussian with a constant variance. Standard techniques for independent identically distributed Gaussian noise are then used for denoising. Zhang et al. [25] proposed a powerful method called multiscale (MS-VST). It consists in combining a VST with a multiscale transform (wavelets, ridgelets, or curvelets), yielding asymptotically normally distributed coefficients with known variances. The interest of using a multiscale method is to exploit the sparsity properties of the data : the data are transformed into a domain in which it is sparse, and, as the noise is not sparse in any transform domain, it is easy to separate it from the signal. When the noise is Gaussian of known variance, it is easy to remove it with a high thresholding in the wavelet domain. The choice of the multiscale transform depends on the morphology of the data. Wavelets represent more efficiently regular structures and isotropic singularities, whereas ridgelets are designed to represent global lines in an image, and curvelets represent efficiently curvilinear contours. Significant coefficients are then detected with binary hypothesis testing, and the final estimate is reconstructed with an iterative scheme. In Ref
Algorithm Calculates Cumulative Poisson Distribution
NASA Technical Reports Server (NTRS)
Bowerman, Paul N.; Nolty, Robert C.; Scheuer, Ernest M.
1992-01-01
Algorithm calculates accurate values of cumulative Poisson distribution under conditions where other algorithms fail because numbers are so small (underflow) or so large (overflow) that computer cannot process them. Factors inserted temporarily to prevent underflow and overflow. Implemented in CUMPOIS computer program described in "Cumulative Poisson Distribution Program" (NPO-17714).
On the validity of the Poisson assumption in sampling nanometer-sized aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damit, Brian E; Wu, Dr. Chang-Yu; Cheng, Mengdawn
2014-01-01
A Poisson process is traditionally believed to apply to the sampling of aerosols. For a constant aerosol concentration, it is assumed that a Poisson process describes the fluctuation in the measured concentration because aerosols are stochastically distributed in space. Recent studies, however, have shown that sampling of micrometer-sized aerosols has non-Poissonian behavior with positive correlations. The validity of the Poisson assumption for nanometer-sized aerosols has not been examined and thus was tested in this study. Its validity was tested for four particle sizes - 10 nm, 25 nm, 50 nm and 100 nm - by sampling from indoor air withmore » a DMA- CPC setup to obtain a time series of particle counts. Five metrics were calculated from the data: pair-correlation function (PCF), time-averaged PCF, coefficient of variation, probability of measuring a concentration at least 25% greater than average, and posterior distributions from Bayesian inference. To identify departures from Poissonian behavior, these metrics were also calculated for 1,000 computer-generated Poisson time series with the same mean as the experimental data. For nearly all comparisons, the experimental data fell within the range of 80% of the Poisson-simulation values. Essentially, the metrics for the experimental data were indistinguishable from a simulated Poisson process. The greater influence of Brownian motion for nanometer-sized aerosols may explain the Poissonian behavior observed for smaller aerosols. Although the Poisson assumption was found to be valid in this study, it must be carefully applied as the results here do not definitively prove applicability in all sampling situations.« less
Fan, Donglei; Li, Minggang; Qiu, Jian; Xing, Haiping; Jiang, Zhiwei; Tang, Tao
2018-05-31
Auxetic materials are a class of materials possessing negative Poisson's ratio. Here we establish a novel method for preparing auxetic foam from closed-cell polymer foam based on steam penetration and condensation (SPC) process. Using polyethylene (PE) closed-cell foam as an example, the resultant foams treated by SPC process present negative Poisson's ratio during stretching and compression testing. The effect of steam-treated temperature and time on the conversion efficiency of negative Poisson's ratio foam is investigated, and the mechanism of SPC method for forming re-entrant structure is discussed. The results indicate that the presence of enough steam within the cells is a critical factor for the negative Poisson's ratio conversion in the SPC process. The pressure difference caused by steam condensation is the driving force for the conversion from conventional closed-cell foam to the negative Poisson's ratio foam. Furthermore, the applicability of SPC process for fabricating auxetic foam is studied by replacing PE foam by polyvinyl chloride (PVC) foam with closed-cell structure or replacing water steam by ethanol steam. The results verify the universality of SPC process for fabricating auxetic foams from conventional foams with closed-cell structure. In addition, we explored potential application of the obtained auxetic foams by SPC process in the fabrication of shape memory polymer materials.
A more general system for Poisson series manipulation.
NASA Technical Reports Server (NTRS)
Cherniack, J. R.
1973-01-01
The design of a working Poisson series processor system is described that is more general than those currently in use. This system is the result of a series of compromises among efficiency, generality, ease of programing, and ease of use. The most general form of coefficients that can be multiplied efficiently is pointed out, and the place of general-purpose algebraic systems in celestial mechanics is discussed.
Linear and quadratic models of point process systems: contributions of patterned input to output.
Lindsay, K A; Rosenberg, J R
2012-08-01
In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George
2009-08-01
We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.
The Validity of Poisson Assumptions in a Combined Loglinear/MDS Mapping Model.
ERIC Educational Resources Information Center
Everett, James E.
1993-01-01
Addresses objections to the validity of assuming a Poisson loglinear model as the generating process for citations from one journal into another. Fluctuations in citation rate, serial dependence on citations, impossibility of distinguishing between rate changes and serial dependence, evidence for changes in Poisson rate, and transitivity…
A Family of Poisson Processes for Use in Stochastic Models of Precipitation
NASA Astrophysics Data System (ADS)
Penland, C.
2013-12-01
Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2017-05-01
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their 'public relations' for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford's law, and 1/f noise.
Negative Binomial Process Count and Mixture Modeling.
Zhou, Mingyuan; Carin, Lawrence
2015-02-01
The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters.
Fractal analysis of multiscale spatial autocorrelation among point data
De Cola, L.
1991-01-01
The analysis of spatial autocorrelation among point-data quadrats is a well-developed technique that has made limited but intriguing use of the multiscale aspects of pattern. In this paper are presented theoretical and algorithmic approaches to the analysis of aggregations of quadrats at or above a given density, in which these sets are treated as multifractal regions whose fractal dimension, D, may vary with phenomenon intensity, scale, and location. The technique is illustrated with Matui's quadrat house-count data, which yield measurements consistent with a nonautocorrelated simulated Poisson process but not with an orthogonal unit-step random walk. The paper concludes with a discussion of the implications of such analysis for multiscale geographic analysis systems. -Author
Statistical methods for investigating quiescence and other temporal seismicity patterns
Matthews, M.V.; Reasenberg, P.A.
1988-01-01
We propose a statistical model and a technique for objective recognition of one of the most commonly cited seismicity patterns:microearthquake quiescence. We use a Poisson process model for seismicity and define a process with quiescence as one with a particular type of piece-wise constant intensity function. From this model, we derive a statistic for testing stationarity against a 'quiescence' alternative. The large-sample null distribution of this statistic is approximated from simulated distributions of appropriate functionals applied to Brownian bridge processes. We point out the restrictiveness of the particular model we propose and of the quiescence idea in general. The fact that there are many point processes which have neither constant nor quiescent rate functions underscores the need to test for and describe nonuniformity thoroughly. We advocate the use of the quiescence test in conjunction with various other tests for nonuniformity and with graphical methods such as density estimation. ideally these methods may promote accurate description of temporal seismicity distributions and useful characterizations of interesting patterns. ?? 1988 Birkha??user Verlag.
Poisson denoising on the sphere: application to the Fermi gamma ray space telescope
NASA Astrophysics Data System (ADS)
Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.; Grenier, I.
2010-07-01
The Large Area Telescope (LAT), the main instrument of the Fermi gamma-ray Space telescope, detects high energy gamma rays with energies from 20 MeV to more than 300 GeV. The two main scientific objectives, the study of the Milky Way diffuse background and the detection of point sources, are complicated by the lack of photons. That is why we need a powerful Poisson noise removal method on the sphere which is efficient on low count Poisson data. This paper presents a new multiscale decomposition on the sphere for data with Poisson noise, called multi-scale variance stabilizing transform on the sphere (MS-VSTS). This method is based on a variance stabilizing transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has a quasi constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. MS-VSTS consists of decomposing the data into a sparse multi-scale dictionary like wavelets or curvelets, and then applying a VST on the coefficients in order to get almost Gaussian stabilized coefficients. In this work, we use the isotropic undecimated wavelet transform (IUWT) and the curvelet transform as spherical multi-scale transforms. Then, binary hypothesis testing is carried out to detect significant coefficients, and the denoised image is reconstructed with an iterative algorithm based on hybrid steepest descent (HSD). To detect point sources, we have to extract the Galactic diffuse background: an extension of the method to background separation is then proposed. In contrary, to study the Milky Way diffuse background, we remove point sources with a binary mask. The gaps have to be interpolated: an extension to inpainting is then proposed. The method, applied on simulated Fermi LAT data, proves to be adaptive, fast and easy to implement.
Matrix decomposition graphics processing unit solver for Poisson image editing
NASA Astrophysics Data System (ADS)
Lei, Zhao; Wei, Li
2012-10-01
In recent years, gradient-domain methods have been widely discussed in the image processing field, including seamless cloning and image stitching. These algorithms are commonly carried out by solving a large sparse linear system: the Poisson equation. However, solving the Poisson equation is a computational and memory intensive task which makes it not suitable for real-time image editing. A new matrix decomposition graphics processing unit (GPU) solver (MDGS) is proposed to settle the problem. A matrix decomposition method is used to distribute the work among GPU threads, so that MDGS will take full advantage of the computing power of current GPUs. Additionally, MDGS is a hybrid solver (combines both the direct and iterative techniques) and has two-level architecture. These enable MDGS to generate identical solutions with those of the common Poisson methods and achieve high convergence rate in most cases. This approach is advantageous in terms of parallelizability, enabling real-time image processing, low memory-taken and extensive applications.
Exact solution for the Poisson field in a semi-infinite strip.
Cohen, Yossi; Rothman, Daniel H
2017-04-01
The Poisson equation is associated with many physical processes. Yet exact analytic solutions for the two-dimensional Poisson field are scarce. Here we derive an analytic solution for the Poisson equation with constant forcing in a semi-infinite strip. We provide a method that can be used to solve the field in other intricate geometries. We show that the Poisson flux reveals an inverse square-root singularity at a tip of a slit, and identify a characteristic length scale in which a small perturbation, in a form of a new slit, is screened by the field. We suggest that this length scale expresses itself as a characteristic spacing between tips in real Poisson networks that grow in response to fluxes at tips.
An absolute interval scale of order for point patterns
Protonotarios, Emmanouil D.; Baum, Buzz; Johnston, Alan; Hunter, Ginger L.; Griffin, Lewis D.
2014-01-01
Human observers readily make judgements about the degree of order in planar arrangements of points (point patterns). Here, based on pairwise ranking of 20 point patterns by degree of order, we have been able to show that judgements of order are highly consistent across individuals and the dimension of order has an interval scale structure spanning roughly 10 just-notable-differences (jnd) between disorder and order. We describe a geometric algorithm that estimates order to an accuracy of half a jnd by quantifying the variability of the size and shape of spaces between points. The algorithm is 70% more accurate than the best available measures. By anchoring the output of the algorithm so that Poisson point processes score on average 0, perfect lattices score 10 and unit steps correspond closely to jnds, we construct an absolute interval scale of order. We demonstrate its utility in biology by using this scale to quantify order during the development of the pattern of bristles on the dorsal thorax of the fruit fly. PMID:25079866
Wilkes, E J A; Cowling, A; Woodgate, R G; Hughes, K J
2016-10-15
Faecal egg counts (FEC) are used widely for monitoring of parasite infection in animals, treatment decision-making and estimation of anthelmintic efficacy. When a single count or sample mean is used as a point estimate of the expectation of the egg distribution over some time interval, the variability in the egg density is not accounted for. Although variability, including quantifying sources, of egg count data has been described, the spatiotemporal distribution of nematode eggs in faeces is not well understood. We believe that statistical inference about the mean egg count for treatment decision-making has not been used previously. The aim of this study was to examine the density of Parascaris eggs in solution and faeces and to describe the use of hypothesis testing for decision-making. Faeces from two foals with Parascaris burdens were mixed with magnesium sulphate solution and 30 McMaster chambers were examined to determine the egg distribution in a well-mixed solution. To examine the distribution of eggs in faeces from an individual animal, three faecal piles from a foal with a known Parascaris burden were obtained, from which 81 counts were performed. A single faecal sample was also collected daily from 20 foals on three consecutive days and a FEC was performed on three separate portions of each sample. As appropriate, Poisson or negative binomial confidence intervals for the distribution mean were calculated. Parascaris eggs in a well-mixed solution conformed to a homogeneous Poisson process, while the egg density in faeces was not homogeneous, but aggregated. This study provides an extension from homogeneous to inhomogeneous Poisson processes, leading to an understanding of why Poisson and negative binomial distributions correspondingly provide a good fit for egg count data. The application of one-sided hypothesis tests for decision-making is presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Minimum risk wavelet shrinkage operator for Poisson image denoising.
Cheng, Wu; Hirakawa, Keigo
2015-05-01
The pixel values of images taken by an image sensor are said to be corrupted by Poisson noise. To date, multiscale Poisson image denoising techniques have processed Haar frame and wavelet coefficients--the modeling of coefficients is enabled by the Skellam distribution analysis. We extend these results by solving for shrinkage operators for Skellam that minimizes the risk functional in the multiscale Poisson image denoising setting. The minimum risk shrinkage operator of this kind effectively produces denoised wavelet coefficients with minimum attainable L2 error.
NASA Astrophysics Data System (ADS)
Wayan Mangku, I.
2017-10-01
In this paper we survey some results on estimation of the intensity function of a cyclic Poisson process in the presence of additive and multiplicative linear trend. We do not assume any parametric form for the cyclic component of the intensity function, except that it is periodic. Moreover, we consider the case when there is only a single realization of the Poisson process is observed in a bounded interval. The considered estimators are weakly and strongly consistent when the size of the observation interval indefinitely expands. Asymptotic approximations to the bias and variance of those estimators are presented.
Electrostatic forces in the Poisson-Boltzmann systems
NASA Astrophysics Data System (ADS)
Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2013-09-01
Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.
A spectral Poisson solver for kinetic plasma simulation
NASA Astrophysics Data System (ADS)
Szeremley, Daniel; Obberath, Jens; Brinkmann, Ralf
2011-10-01
Plasma resonance spectroscopy is a well established plasma diagnostic method, realized in several designs. One of these designs is the multipole resonance probe (MRP). In its idealized - geometrically simplified - version it consists of two dielectrically shielded, hemispherical electrodes to which an RF signal is applied. A numerical tool is under development which is capable of simulating the dynamics of the plasma surrounding the MRP in electrostatic approximation. In this contribution we concentrate on the specialized Poisson solver for that tool. The plasma is represented by an ensemble of point charges. By expanding both the charge density and the potential into spherical harmonics, a largely analytical solution of the Poisson problem can be employed. For a practical implementation, the expansion must be appropriately truncated. With this spectral solver we are able to efficiently solve the Poisson equation in a kinetic plasma simulation without the need of introducing a spatial discretization.
Gene regulation and noise reduction by coupling of stochastic processes
NASA Astrophysics Data System (ADS)
Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John
2015-02-01
Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.
Gene regulation and noise reduction by coupling of stochastic processes
Hornos, José Eduardo M.; Reinitz, John
2015-01-01
Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447
Gene regulation and noise reduction by coupling of stochastic processes.
Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John
2015-02-01
Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.
Background stratified Poisson regression analysis of cohort data.
Richardson, David B; Langholz, Bryan
2012-03-01
Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.
NASA Technical Reports Server (NTRS)
Hawk, Kelly Lynn; Eagleson, Peter S.
1992-01-01
The parameters of two stochastic models of point rainfall, the Bartlett-Lewis model and the Poisson rectangular pulses model, are estimated for each month of the year from the historical records of hourly precipitation at more than seventy first-order stations in the continental United States. The parameters are presented both in tabular form and as isopleths on maps. The Poisson rectangular pulses parameters are useful in implementing models of the land surface water balance. The Bartlett-Lewis parameters are useful in disaggregating precipitation to a time period shorter than that of existing observations. Information is also included on a floppy disk.
Application of the sine-Poisson equation in solar magnetostatics
NASA Technical Reports Server (NTRS)
Webb, G. M.; Zank, G. P.
1990-01-01
Solutions of the sine-Poisson equations are used to construct a class of isothermal magnetostatic atmospheres, with one ignorable coordinate corresponding to a uniform gravitational field in a plane geometry. The distributed current in the model (j) is directed along the x-axis, where x is the horizontal ignorable coordinate; (j) varies as the sine of the magnetostatic potential and falls off exponentially with distance vertical to the base with an e-folding distance equal to the gravitational scale height. Solutions for the magnetostatic potential A corresponding to the one-soliton, two-soliton, and breather solutions of the sine-Gordon equation are studied. Depending on the values of the free parameters in the soliton solutions, horizontally periodic magnetostatic structures are obtained possessing either a single X-type neutral point, multiple neural X-points, or solutions without X-points.
Rakitzis, Athanasios C; Castagliola, Philippe; Maravelakis, Petros E
2018-02-01
In this work, we study upper-sided cumulative sum control charts that are suitable for monitoring geometrically inflated Poisson processes. We assume that a process is properly described by a two-parameter extension of the zero-inflated Poisson distribution, which can be used for modeling count data with an excessive number of zero and non-zero values. Two different upper-sided cumulative sum-type schemes are considered, both suitable for the detection of increasing shifts in the average of the process. Aspects of their statistical design are discussed and their performance is compared under various out-of-control situations. Changes in both parameters of the process are considered. Finally, the monitoring of the monthly cases of poliomyelitis in the USA is given as an illustrative example.
The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability
Reich, Steven
2014-01-01
Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data. PMID:23354693
Renewal processes based on generalized Mittag-Leffler waiting times
NASA Astrophysics Data System (ADS)
Cahoy, Dexter O.; Polito, Federico
2013-03-01
The fractional Poisson process has recently attracted experts from several fields of study. Its natural generalization of the ordinary Poisson process made the model more appealing for real-world applications. In this paper, we generalized the standard and fractional Poisson processes through the waiting time distribution, and showed their relations to an integral operator with a generalized Mittag-Leffler function in the kernel. The waiting times of the proposed renewal processes have the generalized Mittag-Leffler and stretched-squashed Mittag-Leffler distributions. Note that the generalizations naturally provide greater flexibility in modeling real-life renewal processes. Algorithms to simulate sample paths and to estimate the model parameters are derived. Note also that these procedures are necessary to make these models more usable in practice. State probabilities and other qualitative or quantitative features of the models are also discussed.
A new scoring method for evaluating the performance of earthquake forecasts and predictions
NASA Astrophysics Data System (ADS)
Zhuang, J.
2009-12-01
This study presents a new method, namely the gambling score, for scoring the performance of earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. A fair scoring scheme should reward the success in a way that is compatible with the risk taken. Suppose that we have the reference model, usually the Poisson model for usual cases or Omori-Utsu formula for the case of forecasting aftershocks, which gives probability p0 that at least 1 event occurs in a given space-time-magnitude window. The forecaster, similar to a gambler, who starts with a certain number of reputation points, bets 1 reputation point on ``Yes'' or ``No'' according to his forecast, or bets nothing if he performs a NA-prediction. If the forecaster bets 1 reputation point of his reputations on ``Yes" and loses, the number of his reputation points is reduced by 1; if his forecasts is successful, he should be rewarded (1-p0)/p0 reputation points. The quantity (1-p0)/p0 is the return (reward/bet) ratio for bets on ``Yes''. In this way, if the reference model is correct, the expected return that he gains from this bet is 0. This rule also applies to probability forecasts. Suppose that p is the occurrence probability of an earthquake given by the forecaster. We can regard the forecaster as splitting 1 reputation point by betting p on ``Yes'' and 1-p on ``No''. In this way, the forecaster's expected pay-off based on the reference model is still 0. From the viewpoints of both the reference model and the forecaster, the rule for rewarding and punishment is fair. This method is also extended to the continuous case of point process models, where the reputation points bet by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.
Fiore, Lorenzo; Lorenzetti, Walter; Ratti, Giovannino
2005-11-30
A procedure is proposed to compare single-unit spiking activity elicited in repetitive cycles with an inhomogeneous Poisson process (IPP). Each spike sequence in a cycle is discretized and represented as a point process on a circle. The interspike interval probability density predicted for an IPP is computed on the basis of the experimental firing probability density; differences from the experimental interval distribution are assessed. This procedure was applied to spike trains which were repetitively induced by opening-closing movements of the distal article of a lobster leg. As expected, the density of short interspike intervals, less than 20-40 ms in length, was found to lie greatly below the level predicted for an IPP, reflecting the occurrence of the refractory period. Conversely, longer intervals, ranging from 20-40 to 100-120 ms, were markedly more abundant than expected; this provided evidence for a time window of increased tendency to fire again after a spike. Less consistently, a weak depression of spike generation was observed for longer intervals. A Monte Carlo procedure, implemented for comparison, produced quite similar results, but was slightly less precise and more demanding as concerns computation time.
A poisson process model for hip fracture risk.
Schechner, Zvi; Luo, Gangming; Kaufman, Jonathan J; Siffert, Robert S
2010-08-01
The primary method for assessing fracture risk in osteoporosis relies primarily on measurement of bone mass. Estimation of fracture risk is most often evaluated using logistic or proportional hazards models. Notwithstanding the success of these models, there is still much uncertainty as to who will or will not suffer a fracture. This has led to a search for other components besides mass that affect bone strength. The purpose of this paper is to introduce a new mechanistic stochastic model that characterizes the risk of hip fracture in an individual. A Poisson process is used to model the occurrence of falls, which are assumed to occur at a rate, lambda. The load induced by a fall is assumed to be a random variable that has a Weibull probability distribution. The combination of falls together with loads leads to a compound Poisson process. By retaining only those occurrences of the compound Poisson process that result in a hip fracture, a thinned Poisson process is defined that itself is a Poisson process. The fall rate is modeled as an affine function of age, and hip strength is modeled as a power law function of bone mineral density (BMD). The risk of hip fracture can then be computed as a function of age and BMD. By extending the analysis to a Bayesian framework, the conditional densities of BMD given a prior fracture and no prior fracture can be computed and shown to be consistent with clinical observations. In addition, the conditional probabilities of fracture given a prior fracture and no prior fracture can also be computed, and also demonstrate results similar to clinical data. The model elucidates the fact that the hip fracture process is inherently random and improvements in hip strength estimation over and above that provided by BMD operate in a highly "noisy" environment and may therefore have little ability to impact clinical practice.
Birth and Death Process Modeling Leads to the Poisson Distribution: A Journey Worth Taking
ERIC Educational Resources Information Center
Rash, Agnes M.; Winkel, Brian J.
2009-01-01
This paper describes details of development of the general birth and death process from which we can extract the Poisson process as a special case. This general process is appropriate for a number of courses and units in courses and can enrich the study of mathematics for students as it touches and uses a diverse set of mathematical topics, e.g.,…
Change-point detection of induced and natural seismicity
NASA Astrophysics Data System (ADS)
Fiedler, B.; Holschneider, M.; Zoeller, G.; Hainzl, S.
2016-12-01
Earthquake rates are influenced by tectonic stress buildup, earthquake-induced stress changes, and transient aseismic sources. While the first two sources can be well modeled due to the fact that the source is known, transient aseismic processes are more difficult to detect. However, the detection of the associated changes of the earthquake activity is of great interest, because it might help to identify natural aseismic deformation patterns (such as slow slip events) and the occurrence of induced seismicity related to human activities. We develop a Bayesian approach to detect change-points in seismicity data which are modeled by Poisson processes. By means of a Likelihood-Ratio-Test, we proof the significance of the change of the intensity. The model is also extended to spatiotemporal data to detect the area of the transient changes. The method is firstly tested for synthetic data and then applied to observational data from central US and the Bardarbunga volcano in Iceland.
Turcott, R G; Lowen, S B; Li, E; Johnson, D H; Tsuchitani, C; Teich, M C
1994-01-01
The behavior of lateral-superior-olive (LSO) auditory neurons over large time scales was investigated. Of particular interest was the determination as to whether LSO neurons exhibit the same type of fractal behavior as that observed in primary VIII-nerve auditory neurons. It has been suggested that this fractal behavior, apparent on long time scales, may play a role in optimally coding natural sounds. We found that a nonfractal model, the nonstationary dead-time-modified Poisson point process (DTMP), describes the LSO firing patterns well for time scales greater than a few tens of milliseconds, a region where the specific details of refractoriness are unimportant. The rate is given by the sum of two decaying exponential functions. The process is completely specified by the initial values and time constants of the two exponentials and by the dead-time relation. Specific measures of the firing patterns investigated were the interspike-interval (ISI) histogram, the Fano-factor time curve (FFC), and the serial count correlation coefficient (SCC) with the number of action potentials in successive counting times serving as the random variable. For all the data sets we examined, the latter portion of the recording was well approximated by a single exponential rate function since the initial exponential portion rapidly decreases to a negligible value. Analytical expressions available for the statistics of a DTMP with a single exponential rate function can therefore be used for this portion of the data. Good agreement was obtained among the analytical results, the computer simulation, and the experimental data on time scales where the details of refractoriness are insignificant.(ABSTRACT TRUNCATED AT 250 WORDS)
Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in; Chandrasekar, P.; Chandramohan, P.
2012-11-15
In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal themore » presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.« less
Diversity of Poissonian populations.
Eliazar, Iddo I; Sokolov, Igor M
2010-01-01
Populations represented by collections of points scattered randomly on the real line are ubiquitous in science and engineering. The statistical modeling of such populations leads naturally to Poissonian populations-Poisson processes on the real line with a distinguished maximal point. Poissonian populations are infinite objects underlying key issues in statistical physics, probability theory, and random fractals. Due to their infiniteness, measuring the diversity of Poissonian populations depends on the lower-bound cut-off applied. This research characterizes the classes of Poissonian populations whose diversities are invariant with respect to the cut-off level applied and establishes an elemental connection between these classes and extreme-value theory. The measures of diversity considered are variance and dispersion, Simpson's index and inverse participation ratio, Shannon's entropy and Rényi's entropy, and Gini's index.
NASA Astrophysics Data System (ADS)
Beach, Shaun E.; Semkow, Thomas M.; Remling, David J.; Bradt, Clayton J.
2017-07-01
We have developed accessible methods to demonstrate fundamental statistics in several phenomena, in the context of teaching electronic signal processing in a physics-based college-level curriculum. A relationship between the exponential time-interval distribution and Poisson counting distribution for a Markov process with constant rate is derived in a novel way and demonstrated using nuclear counting. Negative binomial statistics is demonstrated as a model for overdispersion and justified by the effect of electronic noise in nuclear counting. The statistics of digital packets on a computer network are shown to be compatible with the fractal-point stochastic process leading to a power-law as well as generalized inverse Gaussian density distributions of time intervals between packets.
Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.
Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng
2018-06-01
The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.
Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions
NASA Astrophysics Data System (ADS)
Netz, R. R.; Orland, H.
2000-02-01
We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.
Lord, Dominique; Washington, Simon P; Ivan, John N
2005-01-01
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states-perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of "excess" zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to "excess" zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed-and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros.
Sample size calculations for comparative clinical trials with over-dispersed Poisson process data.
Matsui, Shigeyuki
2005-05-15
This paper develops a new formula for sample size calculations for comparative clinical trials with Poisson or over-dispersed Poisson process data. The criteria for sample size calculations is developed on the basis of asymptotic approximations for a two-sample non-parametric test to compare the empirical event rate function between treatment groups. This formula can accommodate time heterogeneity, inter-patient heterogeneity in event rate, and also, time-varying treatment effects. An application of the formula to a trial for chronic granulomatous disease is provided. Copyright 2004 John Wiley & Sons, Ltd.
Wan, Wai-Yin; Chan, Jennifer S K
2009-08-01
For time series of count data, correlated measurements, clustering as well as excessive zeros occur simultaneously in biomedical applications. Ignoring such effects might contribute to misleading treatment outcomes. A generalized mixture Poisson geometric process (GMPGP) model and a zero-altered mixture Poisson geometric process (ZMPGP) model are developed from the geometric process model, which was originally developed for modelling positive continuous data and was extended to handle count data. These models are motivated by evaluating the trend development of new tumour counts for bladder cancer patients as well as by identifying useful covariates which affect the count level. The models are implemented using Bayesian method with Markov chain Monte Carlo (MCMC) algorithms and are assessed using deviance information criterion (DIC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of thismore » object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.« less
Reference manual for the POISSON/SUPERFISH Group of Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
The POISSON/SUPERFISH Group codes were set up to solve two separate problems: the design of magnets and the design of rf cavities in a two-dimensional geometry. The first stage of either problem is to describe the layout of the magnet or cavity in a way that can be used as input to solve the generalized Poisson equation for magnets or the Helmholtz equations for cavities. The computer codes require that the problems be discretized by replacing the differentials (dx,dy) by finite differences ({delta}X,{delta}Y). Instead of defining the function everywhere in a plane, the function is defined only at a finitemore » number of points on a mesh in the plane.« less
NASA Astrophysics Data System (ADS)
Sakuraba, Takao
The approach to quantum physics via current algebra and unitary representations of the diffeomorphism group is established. This thesis studies possible infinite Bose gas systems using this approach. Systems of locally finite configurations and systems of configurations with accumulation points are considered, with the main emphasis on the latter. In Chapter 2, canonical quantization, quantization via current algebra and unitary representations of the diffeomorphism group are reviewed. In Chapter 3, a new definition of the space of configurations is proposed and an axiom for general configuration spaces is abstracted. Various subsets of the configuration space, including those specifying the number of points in a Borel set and those specifying the number of accumulation points in a Borel set are proved to be measurable using this axiom. In Chapter 4, known results on the space of locally finite configurations and Poisson measure are reviewed in the light of the approach developed in Chapter 3, including the approach to current algebra in the Poisson space by Albeverio, Kondratiev, and Rockner. Goldin and Moschella considered unitary representations of the group of diffeomorphisms of the line based on self-similar random processes, which may describe infinite quantum gas systems with clusters. In Chapter 5, the Goldin-Moschella theory is developed further. Their construction of measures quasi-invariant under diffeomorphisms is reviewed, and a rigorous proof of their conjectures is given. It is proved that their measures with distinct correlation parameters are mutually singular. A quasi-invariant measure constructed by Ismagilov on the space of configurations with accumulation points on the circle is proved to be singular with respect to the Goldin-Moschella measures. Finally a generalization of the Goldin-Moschella measures to the higher-dimensional case is studied, where the notion of covariance matrix and the notion of condition number play important roles. A rigorous construction of measures quasi-invariant under the group of diffeomorphisms of d-dimensional space stabilizing a point is given.
Poissonian renormalizations, exponentials, and power laws.
Eliazar, Iddo
2013-05-01
This paper presents a comprehensive "renormalization study" of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to "white noise" and to "1/f noise." Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.
Goovaerts, Pierre
2006-01-01
Background Geostatistical techniques that account for spatially varying population sizes and spatial patterns in the filtering of choropleth maps of cancer mortality were recently developed. Their implementation was facilitated by the initial assumption that all geographical units are the same size and shape, which allowed the use of geographic centroids in semivariogram estimation and kriging. Another implicit assumption was that the population at risk is uniformly distributed within each unit. This paper presents a generalization of Poisson kriging whereby the size and shape of administrative units, as well as the population density, is incorporated into the filtering of noisy mortality rates and the creation of isopleth risk maps. An innovative procedure to infer the point-support semivariogram of the risk from aggregated rates (i.e. areal data) is also proposed. Results The novel methodology is applied to age-adjusted lung and cervix cancer mortality rates recorded for white females in two contrasted county geographies: 1) state of Indiana that consists of 92 counties of fairly similar size and shape, and 2) four states in the Western US (Arizona, California, Nevada and Utah) forming a set of 118 counties that are vastly different geographical units. Area-to-point (ATP) Poisson kriging produces risk surfaces that are less smooth than the maps created by a naïve point kriging of empirical Bayesian smoothed rates. The coherence constraint of ATP kriging also ensures that the population-weighted average of risk estimates within each geographical unit equals the areal data for this unit. Simulation studies showed that the new approach yields more accurate predictions and confidence intervals than point kriging of areal data where all counties are simply collapsed into their respective polygon centroids. Its benefit over point kriging increases as the county geography becomes more heterogeneous. Conclusion A major limitation of choropleth maps is the common biased visual perception that larger rural and sparsely populated areas are of greater importance. The approach presented in this paper allows the continuous mapping of mortality risk, while accounting locally for population density and areal data through the coherence constraint. This form of Poisson kriging will facilitate the analysis of relationships between health data and putative covariates that are typically measured over different spatial supports. PMID:17137504
A generalized Poisson solver for first-principles device simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch; Brück, Sascha
2016-01-28
Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative methodmore » in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.« less
Relaxed Poisson cure rate models.
Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N
2016-03-01
The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Fock space representation for the quantum Lorentz gas
NASA Astrophysics Data System (ADS)
Maassen, H.; Tip, A.
1995-02-01
A Fock space representation is given for the quantum Lorentz gas, i.e., for random Schrödinger operators of the form H(ω)=p2+Vω=p2+∑ φ(x-xj(ω)), acting in H=L2(Rd), with Poisson distributed xjs. An operator H is defined in K=H⊗P=H⊗L2(Ω,P(dω))=L2(Ω,P(dω);H) by the action of H(ω) on its fibers in a direct integral decomposition. The stationarity of the Poisson process allows a unitarily equivalent description in terms of a new family {H(k)||k∈Rd}, where each H(k) acts in P [A. Tip, J. Math. Phys. 35, 113 (1994)]. The space P is then unitarily mapped upon the symmetric Fock space over L2(Rd,ρdx), with ρ the intensity of the Poisson process (the average number of points xj per unit volume; the scatterer density), and the equivalent of H(k) is determined. Averages now become vacuum expectation values and a further unitary transformation (removing ρ in ρdx) is made which leaves the former invariant. The resulting operator HF(k) has an interesting structure: On the nth Fock layer we encounter a single particle moving in the field of n scatterers and the randomness now appears in the coefficient √ρ in a coupling term connecting neighboring Fock layers. We also give a simple direct self-adjointness proof for HF(k), based upon Nelson's commutator theorem. Restriction to a finite number of layers (a kind of low scatterer density approximation) still gives nontrivial results, as is demonstrated by considering an example.
Time distributions of solar energetic particle events: Are SEPEs really random?
NASA Astrophysics Data System (ADS)
Jiggens, P. T. A.; Gabriel, S. B.
2009-10-01
Solar energetic particle events (SEPEs) can exhibit flux increases of several orders of magnitude over background levels and have always been considered to be random in nature in statistical models with no dependence of any one event on the occurrence of previous events. We examine whether this assumption of randomness in time is correct. Engineering modeling of SEPEs is important to enable reliable and efficient design of both Earth-orbiting and interplanetary spacecraft and future manned missions to Mars and the Moon. All existing engineering models assume that the frequency of SEPEs follows a Poisson process. We present analysis of the event waiting times using alternative distributions described by Lévy and time-dependent Poisson processes and compared these with the usual Poisson distribution. The results show significant deviation from a Poisson process and indicate that the underlying physical processes might be more closely related to a Lévy-type process, suggesting that there is some inherent “memory” in the system. Inherent Poisson assumptions of stationarity and event independence are investigated, and it appears that they do not hold and can be dependent upon the event definition used. SEPEs appear to have some memory indicating that events are not completely random with activity levels varying even during solar active periods and are characterized by clusters of events. This could have significant ramifications for engineering models of the SEP environment, and it is recommended that current statistical engineering models of the SEP environment should be modified to incorporate long-term event dependency and short-term system memory.
Cross-correlation of point series using a new method
NASA Technical Reports Server (NTRS)
Strothers, Richard B.
1994-01-01
Traditional methods of cross-correlation of two time series do not apply to point time series. Here, a new method, devised specifically for point series, utilizes a correlation measure that is based in the rms difference (or, alternatively, the median absolute difference) between nearest neightbors in overlapped segments of the two series. Error estimates for the observed locations of the points, as well as a systematic shift of one series with respect to the other to accommodate a constant, but unknown, lead or lag, are easily incorporated into the analysis using Monte Carlo techniques. A methodological restriction adopted here is that one series be treated as a template series against which the other, called the target series, is cross-correlated. To estimate a significance level for the correlation measure, the adopted alternative (null) hypothesis is that the target series arises from a homogeneous Poisson process. The new method is applied to cross-correlating the times of the greatest geomagnetic storms with the times of maximum in the undecennial solar activity cycle.
The contribution of simple random sampling to observed variations in faecal egg counts.
Torgerson, Paul R; Paul, Michaela; Lewis, Fraser I
2012-09-10
It has been over 100 years since the classical paper published by Gosset in 1907, under the pseudonym "Student", demonstrated that yeast cells suspended in a fluid and measured by a haemocytometer conformed to a Poisson process. Similarly parasite eggs in a faecal suspension also conform to a Poisson process. Despite this there are common misconceptions how to analyse or interpret observations from the McMaster or similar quantitative parasitic diagnostic techniques, widely used for evaluating parasite eggs in faeces. The McMaster technique can easily be shown from a theoretical perspective to give variable results that inevitably arise from the random distribution of parasite eggs in a well mixed faecal sample. The Poisson processes that lead to this variability are described and illustrative examples of the potentially large confidence intervals that can arise from observed faecal eggs counts that are calculated from the observations on a McMaster slide. Attempts to modify the McMaster technique, or indeed other quantitative techniques, to ensure uniform egg counts are doomed to failure and belie ignorance of Poisson processes. A simple method to immediately identify excess variation/poor sampling from replicate counts is provided. Copyright © 2012 Elsevier B.V. All rights reserved.
Improved central confidence intervals for the ratio of Poisson means
NASA Astrophysics Data System (ADS)
Cousins, R. D.
The problem of confidence intervals for the ratio of two unknown Poisson means was "solved" decades ago, but a closer examination reveals that the standard solution is far from optimal from the frequentist point of view. We construct a more powerful set of central confidence intervals, each of which is a (typically proper) subinterval of the corresponding standard interval. They also provide upper and lower confidence limits which are more restrictive than the standard limits. The construction follows Neyman's original prescription, though discreteness of the Poisson distribution and the presence of a nuisance parameter (one of the unknown means) lead to slightly conservative intervals. Philosophically, the issue of the appropriateness of the construction method is similar to the issue of conditioning on the margins in 2×2 contingency tables. From a frequentist point of view, the new set maintains (over) coverage of the unknown true value of the ratio of means at each stated confidence level, even though the new intervals are shorter than the old intervals by any measure (except for two cases where they are identical). As an example, when the number 2 is drawn from each Poisson population, the 90% CL central confidence interval on the ratio of means is (0.169, 5.196), rather than (0.108, 9.245). In the cited literature, such confidence intervals have applications in numerous branches of pure and applied science, including agriculture, wildlife studies, manufacturing, medicine, reliability theory, and elementary particle physics.
Smooth invariant densities for random switching on the torus
NASA Astrophysics Data System (ADS)
Bakhtin, Yuri; Hurth, Tobias; Lawley, Sean D.; Mattingly, Jonathan C.
2018-04-01
We consider a random dynamical system obtained by switching between the flows generated by two smooth vector fields on the 2d-torus, with the random switchings happening according to a Poisson process. Assuming that the driving vector fields are transversal to each other at all points of the torus and that each of them allows for a smooth invariant density and no periodic orbits, we prove that the switched system also has a smooth invariant density, for every switching rate. Our approach is based on an integration by parts formula inspired by techniques from Malliavin calculus.
Itô and Stratonovich integrals on compound renewal processes: the normal/Poisson case
NASA Astrophysics Data System (ADS)
Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L.
2010-06-01
Continuous-time random walks, or compound renewal processes, are pure-jump stochastic processes with several applications in insurance, finance, economics and physics. Based on heuristic considerations, a definition is given for stochastic integrals driven by continuous-time random walks, which includes the Itô and Stratonovich cases. It is then shown how the definition can be used to compute these two stochastic integrals by means of Monte Carlo simulations. Our example is based on the normal compound Poisson process, which in the diffusive limit converges to the Wiener process.
Poissonian renormalizations, exponentials, and power laws
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2013-05-01
This paper presents a comprehensive “renormalization study” of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to “white noise” and to “1/f noise.” Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.
Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process
NASA Astrophysics Data System (ADS)
Konno, Hidetoshi; Tamura, Yoshiyasu
2018-01-01
In neural spike counting experiments, it is known that there are two main features: (i) the counting number has a fractional power-law growth with time and (ii) the waiting time (i.e., the inter-spike-interval) distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs) is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii) can be modeled by the method of SSPPs. Namely, the first one (i) associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP).
Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm
NASA Astrophysics Data System (ADS)
Gubernatis, James
2014-03-01
A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.
NASA Technical Reports Server (NTRS)
Gutierrez-Lemini, Danton; McCool, Alex (Technical Monitor)
2001-01-01
A method is developed to establish the J-resistance function for an isotropic linear viscoelastic solid of constant Poisson's ratio using the single-specimen technique with constant-rate test data. The method is based on the fact that, for a test specimen of fixed crack size under constant rate, the initiation J-integral may be established from the crack size itself, the actual external load and load-point displacement at growth initiation, and the relaxation modulus of the viscoelastic solid, without knowledge of the complete test record. Since crack size alone, of the required data, would be unknown at each point of the load-vs-load-point displacement curve of a single-specimen test, an expression is derived to estimate it. With it, the physical J-integral at each point of the test record may be established. Because of its basis on single-specimen testing, not only does the method not require the use of multiple specimens with differing initial crack sizes, but avoids the need for tracking crack growth as well.
Bayesian Computation for Log-Gaussian Cox Processes: A Comparative Analysis of Methods
Teng, Ming; Nathoo, Farouk S.; Johnson, Timothy D.
2017-01-01
The Log-Gaussian Cox Process is a commonly used model for the analysis of spatial point pattern data. Fitting this model is difficult because of its doubly-stochastic property, i.e., it is an hierarchical combination of a Poisson process at the first level and a Gaussian Process at the second level. Various methods have been proposed to estimate such a process, including traditional likelihood-based approaches as well as Bayesian methods. We focus here on Bayesian methods and several approaches that have been considered for model fitting within this framework, including Hamiltonian Monte Carlo, the Integrated nested Laplace approximation, and Variational Bayes. We consider these approaches and make comparisons with respect to statistical and computational efficiency. These comparisons are made through several simulation studies as well as through two applications, the first examining ecological data and the second involving neuroimaging data. PMID:29200537
Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.
Sahin, Buyukdagli; Ralf, Blossey
2014-07-16
We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.
Adaptation to Variance of Stimuli in Drosophila Larva Navigation
NASA Astrophysics Data System (ADS)
Wolk, Jason; Gepner, Ruben; Gershow, Marc
In order to respond to stimuli that vary over orders of magnitude while also being capable of sensing very small changes, neural systems must be capable of rapidly adapting to the variance of stimuli. We study this adaptation in Drosophila larvae responding to varying visual signals and optogenetically induced fictitious odors using an infrared illuminated arena and custom computer vision software. Larval navigational decisions (when to turn) are modeled as the output a linear-nonlinear Poisson process. The development of the nonlinear turn rate in response to changes in variance is tracked using an adaptive point process filter determining the rate of adaptation to different stimulus profiles. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.
DOT National Transportation Integrated Search
2010-11-01
The resilient modulus and Poissons ratio of base and sublayers in highway use are : important parameters in design and quality control process. The currently used techniques : include CBR (California Bearing Ratio) test, resilient modulus test,...
Theory of earthquakes interevent times applied to financial markets
NASA Astrophysics Data System (ADS)
Jagielski, Maciej; Kutner, Ryszard; Sornette, Didier
2017-10-01
We analyze the probability density function (PDF) of waiting times between financial loss exceedances. The empirical PDFs are fitted with the self-excited Hawkes conditional Poisson process with a long power law memory kernel. The Hawkes process is the simplest extension of the Poisson process that takes into account how past events influence the occurrence of future events. By analyzing the empirical data for 15 different financial assets, we show that the formalism of the Hawkes process used for earthquakes can successfully model the PDF of interevent times between successive market losses.
Does the U.S. exercise contagion on Italy? A theoretical model and empirical evidence
NASA Astrophysics Data System (ADS)
Cerqueti, Roy; Fenga, Livio; Ventura, Marco
2018-06-01
This paper deals with the theme of contagion in financial markets. At this aim, we develop a model based on Mixed Poisson Processes to describe the abnormal returns of financial markets of two considered countries. In so doing, the article defines the theoretical conditions to be satisfied in order to state that one of them - the so-called leader - exercises contagion on the others - the followers. Specifically, we employ an invariant probabilistic result stating that a suitable transformation of a Mixed Poisson Process is still a Mixed Poisson Process. The theoretical claim is validated by implementing an extensive simulation analysis grounded on empirical data. The countries considered are the U.S. (as the leader) and Italy (as the follower) and the period under scrutiny is very large, ranging from 1970 to 2014.
Seasonally adjusted birth frequencies follow the Poisson distribution.
Barra, Mathias; Lindstrøm, Jonas C; Adams, Samantha S; Augestad, Liv A
2015-12-15
Variations in birth frequencies have an impact on activity planning in maternity wards. Previous studies of this phenomenon have commonly included elective births. A Danish study of spontaneous births found that birth frequencies were well modelled by a Poisson process. Somewhat unexpectedly, there were also weekly variations in the frequency of spontaneous births. Another study claimed that birth frequencies follow the Benford distribution. Our objective was to test these results. We analysed 50,017 spontaneous births at Akershus University Hospital in the period 1999-2014. To investigate the Poisson distribution of these births, we plotted their variance over a sliding average. We specified various Poisson regression models, with the number of births on a given day as the outcome variable. The explanatory variables included various combinations of years, months, days of the week and the digit sum of the date. The relationship between the variance and the average fits well with an underlying Poisson process. A Benford distribution was disproved by a goodness-of-fit test (p < 0.01). The fundamental model with year and month as explanatory variables is significantly improved (p < 0.001) by adding day of the week as an explanatory variable. Altogether 7.5% more children are born on Tuesdays than on Sundays. The digit sum of the date is non-significant as an explanatory variable (p = 0.23), nor does it increase the explained variance. INERPRETATION: Spontaneous births are well modelled by a time-dependent Poisson process when monthly and day-of-the-week variation is included. The frequency is highest in summer towards June and July, Friday and Tuesday stand out as particularly busy days, and the activity level is at its lowest during weekends.
Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoneking, M.R.; Den Hartog, D.J.
1996-06-01
The fitting of data by {chi}{sup 2}-minimization is valid only when the uncertainties in the data are normally distributed. When analyzing spectroscopic or particle counting data at very low signal level (e.g., a Thomson scattering diagnostic), the uncertainties are distributed with a Poisson distribution. The authors have developed a maximum-likelihood method for fitting data that correctly treats the Poisson statistical character of the uncertainties. This method maximizes the total probability that the observed data are drawn from the assumed fit function using the Poisson probability function to determine the probability for each data point. The algorithm also returns uncertainty estimatesmore » for the fit parameters. They compare this method with a {chi}{sup 2}-minimization routine applied to both simulated and real data. Differences in the returned fits are greater at low signal level (less than {approximately}20 counts per measurement). the maximum-likelihood method is found to be more accurate and robust, returning a narrower distribution of values for the fit parameters with fewer outliers.« less
The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chiun-Chang, E-mail: chlee@mail.nhcue.edu.tw
2014-05-15
The present article is concerned with the charge conserving Poisson-Boltzmann (CCPB) equation in high-dimensional bounded smooth domains. The CCPB equation is a Poisson-Boltzmann type of equation with nonlocal coefficients. First, under the Robin boundary condition, we get the existence of weak solutions to this equation. The main approach is variational, based on minimization of a logarithm-type energy functional. To deal with the regularity of weak solutions, we establish a maximum modulus estimate for the standard Poisson-Boltzmann (PB) equation to show that weak solutions of the CCPB equation are essentially bounded. Then the classical solutions follow from the elliptic regularity theorem.more » Second, a maximum principle for the CCPB equation is established. In particular, we show that in the case of global electroneutrality, the solution achieves both its maximum and minimum values at the boundary. However, in the case of global non-electroneutrality, the solution may attain its maximum value at an interior point. In addition, under certain conditions on the boundary, we show that the global non-electroneutrality implies pointwise non-electroneutrality.« less
Noise parameter estimation for poisson corrupted images using variance stabilization transforms.
Jin, Xiaodan; Xu, Zhenyu; Hirakawa, Keigo
2014-03-01
Noise is present in all images captured by real-world image sensors. Poisson distribution is said to model the stochastic nature of the photon arrival process and agrees with the distribution of measured pixel values. We propose a method for estimating unknown noise parameters from Poisson corrupted images using properties of variance stabilization. With a significantly lower computational complexity and improved stability, the proposed estimation technique yields noise parameters that are comparable in accuracy to the state-of-art methods.
NON-HOMOGENEOUS POISSON PROCESS MODEL FOR GENETIC CROSSOVER INTERFERENCE.
Leu, Szu-Yun; Sen, Pranab K
2014-01-01
The genetic crossover interference is usually modeled with a stationary renewal process to construct the genetic map. We propose two non-homogeneous, also dependent, Poisson process models applied to the known physical map. The crossover process is assumed to start from an origin and to occur sequentially along the chromosome. The increment rate depends on the position of the markers and the number of crossover events occurring between the origin and the markers. We show how to obtain parameter estimates for the process and use simulation studies and real Drosophila data to examine the performance of the proposed models.
Irreversible thermodynamics of Poisson processes with reaction.
Méndez, V; Fort, J
1999-11-01
A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.
A Hands-on Activity for Teaching the Poisson Distribution Using the Stock Market
ERIC Educational Resources Information Center
Dunlap, Mickey; Studstill, Sharyn
2014-01-01
The number of increases a particular stock makes over a fixed period follows a Poisson distribution. This article discusses using this easily-found data as an opportunity to let students become involved in the data collection and analysis process.
NASA Astrophysics Data System (ADS)
Kacem, S.; Eichwald, O.; Ducasse, O.; Renon, N.; Yousfi, M.; Charrada, K.
2012-01-01
Streamers dynamics are characterized by the fast propagation of ionized shock waves at the nanosecond scale under very sharp space charge variations. The streamer dynamics modelling needs the solution of charged particle transport equations coupled to the elliptic Poisson's equation. The latter has to be solved at each time step of the streamers evolution in order to follow the propagation of the resulting space charge electric field. In the present paper, a full multi grid (FMG) and a multi grid (MG) methods have been adapted to solve Poisson's equation for streamer discharge simulations between asymmetric electrodes. The validity of the FMG method for the computation of the potential field is first shown by performing direct comparisons with analytic solution of the Laplacian potential in the case of a point-to-plane geometry. The efficiency of the method is also compared with the classical successive over relaxation method (SOR) and MUltifrontal massively parallel solver (MUMPS). MG method is then applied in the case of the simulation of positive streamer propagation and its efficiency is evaluated from comparisons to SOR and MUMPS methods in the chosen point-to-plane configuration. Very good agreements are obtained between the three methods for all electro-hydrodynamics characteristics of the streamer during its propagation in the inter-electrode gap. However in the case of MG method, the computational time to solve the Poisson's equation is at least 2 times faster in our simulation conditions.
Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory
NASA Astrophysics Data System (ADS)
Torquato, Salvatore; Scardicchio, A.; Zachary, Chase E.
2008-11-01
It is well known that one can map certain properties of random matrices, fermionic gases, and zeros of the Riemann zeta function to a unique point process on the real line \\mathbb {R} . Here we analytically provide exact generalizations of such a point process in d-dimensional Euclidean space \\mathbb {R}^d for any d, which are special cases of determinantal processes. In particular, we obtain the n-particle correlation functions for any n, which completely specify the point processes in \\mathbb {R}^d . We also demonstrate that spin-polarized fermionic systems in \\mathbb {R}^d have these same n-particle correlation functions in each dimension. The point processes for any d are shown to be hyperuniform, i.e., infinite wavelength density fluctuations vanish, and the structure factor (or power spectrum) S(k) has a non-analytic behavior at the origin given by S(k)~|k| (k \\rightarrow 0 ). The latter result implies that the pair correlation function g2(r) tends to unity for large pair distances with a decay rate that is controlled by the power law 1/rd+1, which is a well-known property of bosonic ground states and more recently has been shown to characterize maximally random jammed sphere packings. We graphically display one-and two-dimensional realizations of the point processes in order to vividly reveal their 'repulsive' nature. Indeed, we show that the point processes can be characterized by an effective 'hard core' diameter that grows like the square root of d. The nearest-neighbor distribution functions for these point processes are also evaluated and rigorously bounded. Among other results, this analysis reveals that the probability of finding a large spherical cavity of radius r in dimension d behaves like a Poisson point process but in dimension d+1, i.e., this probability is given by exp[-κ(d)rd+1] for large r and finite d, where κ(d) is a positive d-dependent constant. We also show that as d increases, the point process behaves effectively like a sphere packing with a coverage fraction of space that is no denser than 1/2d. This coverage fraction has a special significance in the study of sphere packings in high-dimensional Euclidean spaces.
Modeling environmental noise exceedances using non-homogeneous Poisson processes.
Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R
2014-10-01
In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.
An adaptive grid scheme using the boundary element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munipalli, R.; Anderson, D.A.
1996-09-01
A technique to solve the Poisson grid generation equations by Green`s function related methods has been proposed, with the source terms being purely position dependent. The use of distributed singularities in the flow domain coupled with the boundary element method (BEM) formulation is presented in this paper as a natural extension of the Green`s function method. This scheme greatly simplifies the adaption process. The BEM reduces the dimensionality of the given problem by one. Internal grid-point placement can be achieved for a given boundary distribution by adding continuous and discrete source terms in the BEM formulation. A distribution of vortexmore » doublets is suggested as a means of controlling grid-point placement and grid-line orientation. Examples for sample adaption problems are presented and discussed. 15 refs., 20 figs.« less
Simple and Hierarchical Models for Stochastic Test Misgrading.
ERIC Educational Resources Information Center
Wang, Jianjun
1993-01-01
Test misgrading is treated as a stochastic process. The expected number of misgradings, inter-occurrence time of misgradings, and waiting time for the "n"th misgrading are discussed based on a simple Poisson model and a hierarchical Beta-Poisson model. Examples of model construction are given. (SLD)
Le Bihan, Nicolas; Margerin, Ludovic
2009-07-01
In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.
NASA Astrophysics Data System (ADS)
Li, Jiqing; Huang, Jing; Li, Jianchang
2018-06-01
The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.
Reference analysis of the signal + background model in counting experiments
NASA Astrophysics Data System (ADS)
Casadei, D.
2012-01-01
The model representing two independent Poisson processes, labelled as ``signal'' and ``background'' and both contributing additively to the total number of counted events, is considered from a Bayesian point of view. This is a widely used model for the searches of rare or exotic events in presence of a background source, as for example in the searches performed by high-energy physics experiments. In the assumption of prior knowledge about the background yield, a reference prior is obtained for the signal alone and its properties are studied. Finally, the properties of the full solution, the marginal reference posterior, are illustrated with few examples.
Using the Gamma-Poisson Model to Predict Library Circulations.
ERIC Educational Resources Information Center
Burrell, Quentin L.
1990-01-01
Argues that the gamma mixture of Poisson processes, for all its perceived defects, can be used to make predictions regarding future library book circulations of a quality adequate for general management requirements. The use of the model is extensively illustrated with data from two academic libraries. (Nine references) (CLB)
Questionable Validity of Poisson Assumptions in a Combined Loglinear/MDS Mapping Model.
ERIC Educational Resources Information Center
Gleason, John M.
1993-01-01
This response to an earlier article on a combined log-linear/MDS model for mapping journals by citation analysis discusses the underlying assumptions of the Poisson model with respect to characteristics of the citation process. The importance of empirical data analysis is also addressed. (nine references) (LRW)
Extensions of Rasch's Multiplicative Poisson Model.
ERIC Educational Resources Information Center
Jansen, Margo G. H.; van Duijn, Marijtje A. J.
1992-01-01
A model developed by G. Rasch that assumes scores on some attainment tests can be realizations of a Poisson process is explained and expanded by assuming a prior distribution, with fixed but unknown parameters, for the subject parameters. How additional between-subject and within-subject factors can be incorporated is discussed. (SLD)
Transport of Multivalent Electrolyte Mixtures in Micro- and Nanochannels
2013-11-08
equations for this process are the unsteady Navier-Stokes equations along with continuity and the Poisson- Nernst -Planck system for the electro- static part...about five times the Debye screening length D (the 1/e lengthscale for the potential from the solution of the linearized Poisson- Boltzmann equation
New method for blowup of the Euler-Poisson system
NASA Astrophysics Data System (ADS)
Kwong, Man Kam; Yuen, Manwai
2016-08-01
In this paper, we provide a new method for establishing the blowup of C2 solutions for the pressureless Euler-Poisson system with attractive forces for RN (N ≥ 2) with ρ(0, x0) > 0 and Ω 0 i j ( x 0 ) = /1 2 [" separators=" ∂ i u j ( 0 , x 0 ) - ∂ j u i ( 0 , x 0 ) ] = 0 at some point x0 ∈ RN. By applying the generalized Hubble transformation div u ( t , x 0 ( t ) ) = /N a ˙ ( t ) a ( t ) to a reduced Riccati differential inequality derived from the system, we simplify the inequality into the Emden equation a ̈ ( t ) = - /λ a ( t ) N - 1 , a ( 0 ) = 1 , a ˙ ( 0 ) = /div u ( 0 , x 0 ) N . Known results on its blowup set allow us to easily obtain the blowup conditions of the Euler-Poisson system.
NASA Technical Reports Server (NTRS)
Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.
1986-01-01
A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.
NASA Astrophysics Data System (ADS)
Ofek, Eran O.; Zackay, Barak
2018-04-01
Detection of templates (e.g., sources) embedded in low-number count Poisson noise is a common problem in astrophysics. Examples include source detection in X-ray images, γ-rays, UV, neutrinos, and search for clusters of galaxies and stellar streams. However, the solutions in the X-ray-related literature are sub-optimal in some cases by considerable factors. Using the lemma of Neyman–Pearson, we derive the optimal statistics for template detection in the presence of Poisson noise. We demonstrate that, for known template shape (e.g., point sources), this method provides higher completeness, for a fixed false-alarm probability value, compared with filtering the image with the point-spread function (PSF). In turn, we find that filtering by the PSF is better than filtering the image using the Mexican-hat wavelet (used by wavdetect). For some background levels, our method improves the sensitivity of source detection by more than a factor of two over the popular Mexican-hat wavelet filtering. This filtering technique can also be used for fast PSF photometry and flare detection; it is efficient and straightforward to implement. We provide an implementation in MATLAB. The development of a complete code that works on real data, including the complexities of background subtraction and PSF variations, is deferred for future publication.
Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu
2016-12-01
We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.
The distribution of catchment coverage by stationary rainstorms
NASA Technical Reports Server (NTRS)
Eagleson, P. S.
1984-01-01
The occurrence of wetted rainstorm area within a catchment is modeled as a Poisson arrival process in which each storm is composed of stationary, nonoverlapping, independent random cell clusters whose centers are Poisson-distributed in space and whose areas are fractals. The two Poisson parameters and hence the first two moments of the wetted fraction are derived in terms of catchment average characteristics of the (observable) station precipitation. The model is used to estimate spatial properties of tropical air mass thunderstorms on six tropical catchments in the Sudan.
Tailoring point counts for inference about avian density: dealing with nondetection and availability
Johnson, Fred A.; Dorazio, Robert M.; Castellón, Traci D.; Martin, Julien; Garcia, Jay O.; Nichols, James D.
2014-01-01
Point counts are commonly used for bird surveys, but interpretation is ambiguous unless there is an accounting for the imperfect detection of individuals. We show how repeated point counts, supplemented by observation distances, can account for two aspects of the counting process: (1) detection of birds conditional on being available for observation and (2) the availability of birds for detection given presence. We propose a hierarchical model that permits the radius in which birds are available for detection to vary with forest stand age (or other relevant habitat features), so that the number of birds available at each location is described by a Poisson-gamma mixture. Conditional on availability, the number of birds detected at each location is modeled by a beta-binomial distribution. We fit this model to repeated point count data of Florida scrub-jays and found evidence that the area in which birds were available for detection decreased with increasing stand age. Estimated density was 0.083 (95%CI: 0.060–0.113) scrub-jays/ha. Point counts of birds have a number of appealing features. Based on our findings, however, an accounting for both components of the counting process may be necessary to ensure that abundance estimates are comparable across time and space. Our approach could easily be adapted to other species and habitats.
Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M
2006-01-01
This article presents an analysis of the information transmission of periodic sub-threshold spike trains in a hippocampal CA1 neuron model in the presence of a homogeneous Poisson shot noise. In the computer simulation, periodic sub-threshold spike trains were presented repeatedly to the midpoint of the main apical branch, while the homogeneous Poisson shot noise was applied to the mid-point of a basal dendrite in the CA1 neuron model consisting of the soma with one sodium, one calcium, and five potassium channels. From spike firing times recorded at the soma, the inter spike intervals were generated and then the probability, p(T), of the inter-spike interval histogram corresponding to the spike interval, r, of the periodic input spike trains was estimated to obtain an index of information transmission. In the present article, it is shown that at a specific amplitude of the homogeneous Poisson shot noise, p(T) was found to be maximized, as well as the possibility to encode the periodic sub-threshold spike trains became greater. It was implied that setting the amplitude of the homogeneous Poisson shot noise to the specific values which maximize the information transmission might contribute to efficiently encoding the periodic sub-threshold spike trains by utilizing the stochastic resonance.
Hyperuniformity Length in Experimental Foam and Simulated Point Patterns
NASA Astrophysics Data System (ADS)
Chieco, Anthony; Roth, Adam; Dreyfus, Remi; Torquato, Salvatore; Durian, Douglas
2015-03-01
Systems without long-wavelength number density fluctuations are called hyperuniform (HU). The degree to which a point pattern is HU may be tested in terms of the variance in the number of points inside randomly placed boxes of side length L. If HU then the variance is due solely to fluctuations near the boundary rather than throughout the entire volume of the box. To make this concrete we introduce a hyperuniformity length h, equal to the width of the boundary where number fluctuations occur. Thus h helps characterize the disorder. We show how to deduce h from the number variance, and we do so for Poisson and Einstein patterns plus those made by the vertices and bubble centroids in 2d foams. A Poisson pattern is one where points are totally random. These are not HU and h equals L/2. We coin ``Einstein patterns'' to be where points in a lattice are independently displaced from their site by a normally distributed amount. These are HU and h equals the RMS displacement from the lattice sites. Bubble centroids and vertices are both HU. For these, h is less than L/2 and increases slower than linear in L. The centroids are more HU than the vertices, in that h that increases more slowly.
The evolving interaction of low-frequency earthquakes during transient slip.
Frank, William B; Shapiro, Nikolaï M; Husker, Allen L; Kostoglodov, Vladimir; Gusev, Alexander A; Campillo, Michel
2016-04-01
Observed along the roots of seismogenic faults where the locked interface transitions to a stably sliding one, low-frequency earthquakes (LFEs) primarily occur as event bursts during slow slip. Using an event catalog from Guerrero, Mexico, we employ a statistical analysis to consider the sequence of LFEs at a single asperity as a point process, and deduce the level of time clustering from the shape of its autocorrelation function. We show that while the plate interface remains locked, LFEs behave as a simple Poisson process, whereas they become strongly clustered in time during even the smallest slow slip, consistent with interaction between different LFE sources. Our results demonstrate that bursts of LFEs can result from the collective behavior of asperities whose interaction depends on the state of the fault interface.
Rayleigh-Sommerfield Diffraction vs Fresnel-Kirchhoff, Fourier Propagation and Poisson's Spot
NASA Technical Reports Server (NTRS)
Lucke, Robert L.
2004-01-01
The boundary conditions imposed on the diffraction problem in order to obtain the Fresnel-Kirchhoff (FK) solution are well-known to be mathematically inconsistent and to be violated by the solution when the observation point is close to the diffracting screen 1-3. These problems are absent in the Rayleigh-Sommerfeld (RS) solution. The difference between RS and FK is in the inclination factor and is usually immaterial because the inclination factor is approximated by unity. But when this approximation is not valid, FK can lead to unacceptable answers. Calculating the on-axis intensity of Poisson s spot provides a critical test, a test passed by RS and failed by FK. FK fails because (a) convergence of the integral depends on how it is evaluated and (b) when the convergence problem is xed, the predicted amplitude at points near the obscuring disk is not consistent with the assumed boundary conditions.
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2016-04-01
We introduce a new class of stochastic processes in
Applying the Anderson-Darling test to suicide clusters: evidence of contagion at U. S. universities?
MacKenzie, Donald W
2013-01-01
Suicide clusters at Cornell University and the Massachusetts Institute of Technology (MIT) prompted popular and expert speculation of suicide contagion. However, some clustering is to be expected in any random process. This work tested whether suicide clusters at these two universities differed significantly from those expected under a homogeneous Poisson process, in which suicides occur randomly and independently of one another. Suicide dates were collected for MIT and Cornell for 1990-2012. The Anderson-Darling statistic was used to test the goodness-of-fit of the intervals between suicides to distribution expected under the Poisson process. Suicides at MIT were consistent with the homogeneous Poisson process, while those at Cornell showed clustering inconsistent with such a process (p = .05). The Anderson-Darling test provides a statistically powerful means to identify suicide clustering in small samples. Practitioners can use this method to test for clustering in relevant communities. The difference in clustering behavior between the two institutions suggests that more institutions should be studied to determine the prevalence of suicide clustering in universities and its causes.
Naya, Hugo; Urioste, Jorge I; Chang, Yu-Mei; Rodrigues-Motta, Mariana; Kremer, Roberto; Gianola, Daniel
2008-01-01
Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP) models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep. PMID:18558072
An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces.
Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying
2013-09-01
Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IR(n). To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.
Conesa, D; Martínez-Beneito, M A; Amorós, R; López-Quílez, A
2015-04-01
Considerable effort has been devoted to the development of statistical algorithms for the automated monitoring of influenza surveillance data. In this article, we introduce a framework of models for the early detection of the onset of an influenza epidemic which is applicable to different kinds of surveillance data. In particular, the process of the observed cases is modelled via a Bayesian Hierarchical Poisson model in which the intensity parameter is a function of the incidence rate. The key point is to consider this incidence rate as a normal distribution in which both parameters (mean and variance) are modelled differently, depending on whether the system is in an epidemic or non-epidemic phase. To do so, we propose a hidden Markov model in which the transition between both phases is modelled as a function of the epidemic state of the previous week. Different options for modelling the rates are described, including the option of modelling the mean at each phase as autoregressive processes of order 0, 1 or 2. Bayesian inference is carried out to provide the probability of being in an epidemic state at any given moment. The methodology is applied to various influenza data sets. The results indicate that our methods outperform previous approaches in terms of sensitivity, specificity and timeliness. © The Author(s) 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Pine invasions in treeless environments: dispersal overruns microsite heterogeneity.
Pauchard, Aníbal; Escudero, Adrián; García, Rafael A; de la Cruz, Marcelino; Langdon, Bárbara; Cavieres, Lohengrin A; Esquivel, Jocelyn
2016-01-01
Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one-hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30'S and 71° 42'W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the "dispersal" models, "local ground heterogeneity" models, and "combined" models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground-cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground-cover conditions.
Anomaly Detection in Dynamic Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turcotte, Melissa
2014-10-14
Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. Amore » second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the communication counts. In a sequential analysis, anomalous behavior is then identified from outlying behavior with respect to the fitted predictive probability models. Seasonality is again incorporated into the model and is treated as a changepoint model on the transition probabilities of a discrete time Markov process. Second stage analytics are then developed which combine anomalous edges to identify anomalous substructures in the network.« less
NASA Astrophysics Data System (ADS)
Basin, M.; Maldonado, J. J.; Zendejo, O.
2016-07-01
This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.
A theorem about Hamiltonian systems.
Case, K M
1984-09-01
A simple theorem in Hamiltonian mechanics is pointed out. One consequence is a generalization of the classical result that symmetries are generated by Poisson brackets of conserved functionals. General applications are discussed. Special emphasis is given to the Kadomtsev-Petviashvili equation.
An unbiased risk estimator for image denoising in the presence of mixed poisson-gaussian noise.
Le Montagner, Yoann; Angelini, Elsa D; Olivo-Marin, Jean-Christophe
2014-03-01
The behavior and performance of denoising algorithms are governed by one or several parameters, whose optimal settings depend on the content of the processed image and the characteristics of the noise, and are generally designed to minimize the mean squared error (MSE) between the denoised image returned by the algorithm and a virtual ground truth. In this paper, we introduce a new Poisson-Gaussian unbiased risk estimator (PG-URE) of the MSE applicable to a mixed Poisson-Gaussian noise model that unifies the widely used Gaussian and Poisson noise models in fluorescence bioimaging applications. We propose a stochastic methodology to evaluate this estimator in the case when little is known about the internal machinery of the considered denoising algorithm, and we analyze both theoretically and empirically the characteristics of the PG-URE estimator. Finally, we evaluate the PG-URE-driven parametrization for three standard denoising algorithms, with and without variance stabilizing transforms, and different characteristics of the Poisson-Gaussian noise mixture.
NASA Technical Reports Server (NTRS)
Wheeler, J. T.
1990-01-01
The Weibull process, identified as the inhomogeneous Poisson process with the Weibull intensity function, is used to model the reliability growth assessment of the space shuttle main engine test and flight failure data. Additional tables of percentage-point probabilities for several different values of the confidence coefficient have been generated for setting (1-alpha)100-percent two sided confidence interval estimates on the mean time between failures. The tabled data pertain to two cases: (1) time-terminated testing, and (2) failure-terminated testing. The critical values of the three test statistics, namely Cramer-von Mises, Kolmogorov-Smirnov, and chi-square, were calculated and tabled for use in the goodness of fit tests for the engine reliability data. Numerical results are presented for five different groupings of the engine data that reflect the actual response to the failures.
Statistical error in simulations of Poisson processes: Example of diffusion in solids
NASA Astrophysics Data System (ADS)
Nilsson, Johan O.; Leetmaa, Mikael; Vekilova, Olga Yu.; Simak, Sergei I.; Skorodumova, Natalia V.
2016-08-01
Simulations of diffusion in solids often produce poor statistics of diffusion events. We present an analytical expression for the statistical error in ion conductivity obtained in such simulations. The error expression is not restricted to any computational method in particular, but valid in the context of simulation of Poisson processes in general. This analytical error expression is verified numerically for the case of Gd-doped ceria by running a large number of kinetic Monte Carlo calculations.
Fractional Brownian motion and long term clinical trial recruitment
Zhang, Qiang; Lai, Dejian
2015-01-01
Prediction of recruitment in clinical trials has been a challenging task. Many methods have been studied, including models based on Poisson process and its large sample approximation by Brownian motion (BM), however, when the independent incremental structure is violated for BM model, we could use fractional Brownian motion to model and approximate the underlying Poisson processes with random rates. In this paper, fractional Brownian motion (FBM) is considered for such conditions and compared to BM model with illustrated examples from different trials and simulations. PMID:26347306
Fractional Brownian motion and long term clinical trial recruitment.
Zhang, Qiang; Lai, Dejian
2011-05-01
Prediction of recruitment in clinical trials has been a challenging task. Many methods have been studied, including models based on Poisson process and its large sample approximation by Brownian motion (BM), however, when the independent incremental structure is violated for BM model, we could use fractional Brownian motion to model and approximate the underlying Poisson processes with random rates. In this paper, fractional Brownian motion (FBM) is considered for such conditions and compared to BM model with illustrated examples from different trials and simulations.
Kathryn L. Purcell; Sylvia R. Mori; Mary K. Chase
2005-01-01
We used data from two oak-woodland sites in California to develop guidelines for the design of bird monitoring programs using point counts. We used power analysis to determine sample size adequacy when varying the number of visits, count stations, and years for examining trends in abundance. We assumed an overdispersed Poisson distribution for count data, with...
An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces.
Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying
2013-03-08
Poisson disk sampling plays an important role in a variety of visual computing, due to its useful statistical property in distribution and the absence of aliasing artifacts. While many effective techniques have been proposed to generate Poisson disk distribution in Euclidean space, relatively few work has been reported to the surface counterpart. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. We propose a new technique for parallelizing the dart throwing. Rather than the conventional approaches that explicitly partition the spatial domain to generate the samples in parallel, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. It is worth noting that our algorithm is accurate as the generated Poisson disks are uniformly and randomly distributed without bias. Our method is intrinsic in that all the computations are based on the intrinsic metric and are independent of the embedding space. This intrinsic feature allows us to generate Poisson disk distributions on arbitrary surfaces. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.
Bayesian analysis of volcanic eruptions
NASA Astrophysics Data System (ADS)
Ho, Chih-Hsiang
1990-10-01
The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.
Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.
Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai
2011-01-01
Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.
An empirical Bayesian and Buhlmann approach with non-homogenous Poisson process
NASA Astrophysics Data System (ADS)
Noviyanti, Lienda
2015-12-01
All general insurance companies in Indonesia have to adjust their current premium rates according to maximum and minimum limit rates in the new regulation established by the Financial Services Authority (Otoritas Jasa Keuangan / OJK). In this research, we estimated premium rate by means of the Bayesian and the Buhlmann approach using historical claim frequency and claim severity in a five-group risk. We assumed a Poisson distributed claim frequency and a Normal distributed claim severity. Particularly, we used a non-homogenous Poisson process for estimating the parameters of claim frequency. We found that estimated premium rates are higher than the actual current rate. Regarding to the OJK upper and lower limit rates, the estimates among the five-group risk are varied; some are in the interval and some are out of the interval.
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Continuum representations of micromechanical phenomena in structured materials are described, with emphasis on cellular solids. These phenomena are interpreted in light of Cosserat elasticity, a generalized continuum theory which admits degrees of freedom not present in classical elasticity. These are the rotation of points in the material, and a couple per unit area or couple stress. Experimental work in this area is reviewed, and other interpretation schemes are discussed. The applicability of Cosserat elasticity to cellular solids and fibrous composite materials is considered as is the application of related generalized continuum theories. New experimental results are presented for foam materials with negative Poisson's ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianjun
2014-03-15
We consider the Schrödinger-Poisson system: −ε{sup 2}Δu + V(x)u + ϕ(x)u = f(u),−Δϕ = u{sup 2} in R{sup 3}, where the nonlinear term f is of critical growth. In this paper, we construct a solution (u{sub ε}, ϕ{sub ε}) of the above elliptic system, which concentrates at an isolated component of positive locally minimum points of V as ε → 0 under certain conditions on f. In particular, the monotonicity of (f(s))/(s{sup 3}) and the so-called Ambrosetti-Rabinowitz condition are not required.
Poisson equation for the Mercedes diagram in string theory at genus one
NASA Astrophysics Data System (ADS)
Basu, Anirban
2016-03-01
The Mercedes diagram has four trivalent vertices which are connected by six links such that they form the edges of a tetrahedron. This three-loop Feynman diagram contributes to the {D}12{{ R }}4 amplitude at genus one in type II string theory, where the vertices are the points of insertion of the graviton vertex operators, and the links are the scalar propagators on the toroidal worldsheet. We obtain a modular invariant Poisson equation satisfied by the Mercedes diagram, where the source terms involve one- and two-loop Feynman diagrams. We calculate its contribution to the {D}12{{ R }}4 amplitude.
Continuous Modeling of Calcium Transport Through Biological Membranes
NASA Astrophysics Data System (ADS)
Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.
2016-08-01
In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).
NASA Technical Reports Server (NTRS)
Liu, J. J. F.; Fitzpatrick, P. M.
1975-01-01
A mathematical model is developed for studying the effects of gravity gradient torque on the attitude stability of a tumbling triaxial rigid satellite. Poisson equations are used to investigate the rotation of the satellite (which is in elliptical orbit about an attracting point mass) about its center of mass. An averaging method is employed to obtain an intermediate set of differential equations for the nonresonant, secular behavior of the osculating elements which describe the rotational motions of the satellite, and the averaged equations are then integrated to obtain long-term secular solutions for the osculating elements.
Three-dimensional zonal grids about arbitrary shapes by Poisson's equation
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.
1988-01-01
A method for generating 3-D finite difference grids about or within arbitrary shapes is presented. The 3-D Poisson equations are solved numerically, with values for the inhomogeneous terms found automatically by the algorithm. Those inhomogeneous terms have the effect near boundaries of reducing cell skewness and imposing arbitrary cell height. The method allows the region of interest to be divided into zones (blocks), allowing the method to be applicable to almost any physical domain. A FORTRAN program called 3DGRAPE has been written to implement the algorithm. Lastly, a method for redistributing grid points along lines normal to boundaries will be described.
The Dependent Poisson Race Model and Modeling Dependence in Conjoint Choice Experiments
ERIC Educational Resources Information Center
Ruan, Shiling; MacEachern, Steven N.; Otter, Thomas; Dean, Angela M.
2008-01-01
Conjoint choice experiments are used widely in marketing to study consumer preferences amongst alternative products. We develop a class of choice models, belonging to the class of Poisson race models, that describe a "random utility" which lends itself to a process-based description of choice. The models incorporate a dependence structure which…
Time fluctuation analysis of forest fire sequences
NASA Astrophysics Data System (ADS)
Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.
2013-04-01
Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value depends on the threshold which helps to understand the time pattern of the studied events. Our findings detected the presence of overdensity of events in particular time periods and showed that the forest fire sequences in Portugal can be considered as a multifractal process with a degree of time-clustering of the events. Key words: time sequences, Morisita index, fractals, multifractals, box-counting, Ripley's K-function, Allan Factor, variography, forest fires, point process. Acknowledgements This work was partly supported by the SNFS Project No. 200021-140658, "Analysis and Modelling of Space-Time Patterns in Complex Regions". References - Kanevski M. (Editor). 2008. Advanced Mapping of Environmental Data: Geostatistics, Machine Learning and Bayesian Maximum Entropy. London / Hoboken: iSTE / Wiley. - Telesca L. and Pereira M.G. 2010. Time-clustering investigation of fire temporal fluctuations in Portugal, Nat. Hazards Earth Syst. Sci., vol. 10(4): 661-666. - Vega Orozco C., Tonini M., Conedera M., Kanevski M. (2012) Cluster recognition in spatial-temporal sequences: the case of forest fires, Geoinformatica, vol. 16(4): 653-673.
A theorem about Hamiltonian systems
Case, K. M.
1984-01-01
A simple theorem in Hamiltonian mechanics is pointed out. One consequence is a generalization of the classical result that symmetries are generated by Poisson brackets of conserved functionals. General applications are discussed. Special emphasis is given to the Kadomtsev-Petviashvili equation. PMID:16593515
Generalized master equations for non-Poisson dynamics on networks.
Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Generalized master equations for non-Poisson dynamics on networks
NASA Astrophysics Data System (ADS)
Hoffmann, Till; Porter, Mason A.; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Weber's law implies neural discharge more regular than a Poisson process.
Kang, Jing; Wu, Jianhua; Smerieri, Anteo; Feng, Jianfeng
2010-03-01
Weber's law is one of the basic laws in psychophysics, but the link between this psychophysical behavior and the neuronal response has not yet been established. In this paper, we carried out an analysis on the spike train statistics when Weber's law holds, and found that the efferent spike train of a single neuron is less variable than a Poisson process. For population neurons, Weber's law is satisfied only when the population size is small (< 10 neurons). However, if the population neurons share a weak correlation in their discharges and individual neuronal spike train is more regular than a Poisson process, Weber's law is true without any restriction on the population size. Biased competition attractor network also demonstrates that the coefficient of variation of interspike interval in the winning pool should be less than one for the validity of Weber's law. Our work links Weber's law with neural firing property quantitatively, shedding light on the relation between psychophysical behavior and neuronal responses.
Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.
Gomez, Christophe; Hartung, Niklas
2018-01-01
Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.
Nielsen, J D; Dean, C B
2008-09-01
A flexible semiparametric model for analyzing longitudinal panel count data arising from mixtures is presented. Panel count data refers here to count data on recurrent events collected as the number of events that have occurred within specific follow-up periods. The model assumes that the counts for each subject are generated by mixtures of nonhomogeneous Poisson processes with smooth intensity functions modeled with penalized splines. Time-dependent covariate effects are also incorporated into the process intensity using splines. Discrete mixtures of these nonhomogeneous Poisson process spline models extract functional information from underlying clusters representing hidden subpopulations. The motivating application is an experiment to test the effectiveness of pheromones in disrupting the mating pattern of the cherry bark tortrix moth. Mature moths arise from hidden, but distinct, subpopulations and monitoring the subpopulation responses was of interest. Within-cluster random effects are used to account for correlation structures and heterogeneity common to this type of data. An estimating equation approach to inference requiring only low moment assumptions is developed and the finite sample properties of the proposed estimating functions are investigated empirically by simulation.
NASA Astrophysics Data System (ADS)
Zeng, Yayun; Wang, Jun; Xu, Kaixuan
2017-04-01
A new financial agent-based time series model is developed and investigated by multiscale-continuum percolation system, which can be viewed as an extended version of continuum percolation system. In this financial model, for different parameters of proportion and density, two Poisson point processes (where the radii of points represent the ability of receiving or transmitting information among investors) are applied to model a random stock price process, in an attempt to investigate the fluctuation dynamics of the financial market. To validate its effectiveness and rationality, we compare the statistical behaviors and the multifractal behaviors of the simulated data derived from the proposed model with those of the real stock markets. Further, the multiscale sample entropy analysis is employed to study the complexity of the returns, and the cross-sample entropy analysis is applied to measure the degree of asynchrony of return autocorrelation time series. The empirical results indicate that the proposed financial model can simulate and reproduce some significant characteristics of the real stock markets to a certain extent.
Energy flow in non-equilibrium conformal field theory
NASA Astrophysics Data System (ADS)
Bernard, Denis; Doyon, Benjamin
2012-09-01
We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.
The effect of model uncertainty on some optimal routing problems
NASA Technical Reports Server (NTRS)
Mohanty, Bibhu; Cassandras, Christos G.
1991-01-01
The effect of model uncertainties on optimal routing in a system of parallel queues is examined. The uncertainty arises in modeling the service time distribution for the customers (jobs, packets) to be served. For a Poisson arrival process and Bernoulli routing, the optimal mean system delay generally depends on the variance of this distribution. However, as the input traffic load approaches the system capacity the optimal routing assignment and corresponding mean system delay are shown to converge to a variance-invariant point. The implications of these results are examined in the context of gradient-based routing algorithms. An example of a model-independent algorithm using online gradient estimation is also included.
Brain, music, and non-Poisson renewal processes
NASA Astrophysics Data System (ADS)
Bianco, Simone; Ignaccolo, Massimiliano; Rider, Mark S.; Ross, Mary J.; Winsor, Phil; Grigolini, Paolo
2007-06-01
In this paper we show that both music composition and brain function, as revealed by the electroencephalogram (EEG) analysis, are renewal non-Poisson processes living in the nonergodic dominion. To reach this important conclusion we process the data with the minimum spanning tree method, so as to detect significant events, thereby building a sequence of times, which is the time series to analyze. Then we show that in both cases, EEG and music composition, these significant events are the signature of a non-Poisson renewal process. This conclusion is reached using a technique of statistical analysis recently developed by our group, the aging experiment (AE). First, we find that in both cases the distances between two consecutive events are described by nonexponential histograms, thereby proving the non-Poisson nature of these processes. The corresponding survival probabilities Ψ(t) are well fitted by stretched exponentials [ Ψ(t)∝exp (-(γt)α) , with 0.5<α<1 .] The second step rests on the adoption of AE, which shows that these are renewal processes. We show that the stretched exponential, due to its renewal character, is the emerging tip of an iceberg, whose underwater part has slow tails with an inverse power law structure with power index μ=1+α . Adopting the AE procedure we find that both EEG and music composition yield μ<2 . On the basis of the recently discovered complexity matching effect, according to which a complex system S with μS<2 responds only to a complex driving signal P with μP⩽μS , we conclude that the results of our analysis may explain the influence of music on the human brain.
Analysis of single-molecule fluorescence spectroscopic data with a Markov-modulated Poisson process.
Jäger, Mark; Kiel, Alexander; Herten, Dirk-Peter; Hamprecht, Fred A
2009-10-05
We present a photon-by-photon analysis framework for the evaluation of data from single-molecule fluorescence spectroscopy (SMFS) experiments using a Markov-modulated Poisson process (MMPP). A MMPP combines a discrete (and hidden) Markov process with an additional Poisson process reflecting the observation of individual photons. The algorithmic framework is used to automatically analyze the dynamics of the complex formation and dissociation of Cu2+ ions with the bidentate ligand 2,2'-bipyridine-4,4'dicarboxylic acid in aqueous media. The process of association and dissociation of Cu2+ ions is monitored with SMFS. The dcbpy-DNA conjugate can exist in two or more distinct states which influence the photon emission rates. The advantage of a photon-by-photon analysis is that no information is lost in preprocessing steps. Different model complexities are investigated in order to best describe the recorded data and to determine transition rates on a photon-by-photon basis. The main strength of the method is that it allows to detect intermittent phenomena which are masked by binning and that are difficult to find using correlation techniques when they are short-lived.
Gustafsson, Leif; Sternad, Mikael
2007-10-01
Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.
Morphology and linear-elastic moduli of random network solids.
Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E
2011-06-17
The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cook, Richard J; Wei, Wei
2003-07-01
The design of clinical trials is typically based on marginal comparisons of a primary response under two or more treatments. The considerable gains in efficiency afforded by models conditional on one or more baseline responses has been extensively studied for Gaussian models. The purpose of this article is to present methods for the design and analysis of clinical trials in which the response is a count or a point process, and a corresponding baseline count is available prior to randomization. The methods are based on a conditional negative binomial model for the response given the baseline count and can be used to examine the effect of introducing selection criteria on power and sample size requirements. We show that designs based on this approach are more efficient than those proposed by McMahon et al. (1994).
On the connection between multigrid and cyclic reduction
NASA Technical Reports Server (NTRS)
Merriam, M. L.
1984-01-01
A technique is shown whereby it is possible to relate a particular multigrid process to cyclic reduction using purely mathematical arguments. This technique suggest methods for solving Poisson's equation in 1-, 2-, or 3-dimensions with Dirichlet or Neumann boundary conditions. In one dimension the method is exact and, in fact, reduces to cyclic reduction. This provides a valuable reference point for understanding multigrid techniques. The particular multigrid process analyzed is referred to here as Approximate Cyclic Reduction (ACR) and is one of a class known as Multigrid Reduction methods in the literature. It involves one approximation with a known error term. It is possible to relate the error term in this approximation with certain eigenvector components of the error. These are sharply reduced in amplitude by classical relaxation techniques. The approximation can thus be made a very good one.
Noncommutative Line Bundles and Gerbes
NASA Astrophysics Data System (ADS)
Jurčo, B.
We introduce noncommutative line bundles and gerbes within the framework of deformation quantization. The Seiberg-Witten map is used to construct the corresponding noncommutative Čech cocycles. Morita equivalence of star products and quantization of twisted Poisson structures are discussed from this point of view.
A random-censoring Poisson model for underreported data.
de Oliveira, Guilherme Lopes; Loschi, Rosangela Helena; Assunção, Renato Martins
2017-12-30
A major challenge when monitoring risks in socially deprived areas of under developed countries is that economic, epidemiological, and social data are typically underreported. Thus, statistical models that do not take the data quality into account will produce biased estimates. To deal with this problem, counts in suspected regions are usually approached as censored information. The censored Poisson model can be considered, but all censored regions must be precisely known a priori, which is not a reasonable assumption in most practical situations. We introduce the random-censoring Poisson model (RCPM) which accounts for the uncertainty about both the count and the data reporting processes. Consequently, for each region, we will be able to estimate the relative risk for the event of interest as well as the censoring probability. To facilitate the posterior sampling process, we propose a Markov chain Monte Carlo scheme based on the data augmentation technique. We run a simulation study comparing the proposed RCPM with 2 competitive models. Different scenarios are considered. RCPM and censored Poisson model are applied to account for potential underreporting of early neonatal mortality counts in regions of Minas Gerais State, Brazil, where data quality is known to be poor. Copyright © 2017 John Wiley & Sons, Ltd.
1976-07-01
PURDUE UNIVERSITY DEPARTMENT OF STATISTICS DIVISION OF MATHEMATICAL SCIENCES ON SUBSET SELECTION PROCEDURES FOR POISSON PROCESSES AND SOME...Mathematical Sciences Mimeograph Series #457, July 1976 This research was supported by the Office of Naval Research under Contract NOOO14-75-C-0455 at Purdue...11 CON PC-111 riFIC-F ,A.F ANO ADDPFS Office of INaval ResearchJu#07 Washington, DC07 36AE 14~~~ rjCr; NF A ’ , A FAA D F 6 - I S it 9 i 1, - ,1 I
Filipponi, A; Di Cicco, A; Principi, E
2012-12-01
A Bayesian data-analysis approach to data sets of maximum undercooling temperatures recorded in repeated melting-cooling cycles of high-purity samples is proposed. The crystallization phenomenon is described in terms of a nonhomogeneous Poisson process driven by a temperature-dependent sample nucleation rate J(T). The method was extensively tested by computer simulations and applied to real data for undercooled liquid Ge. It proved to be particularly useful in the case of scarce data sets where the usage of binned data would degrade the available experimental information.
Extended Poisson process modelling and analysis of grouped binary data.
Faddy, Malcolm J; Smith, David M
2012-05-01
A simple extension of the Poisson process results in binomially distributed counts of events in a time interval. A further extension generalises this to probability distributions under- or over-dispersed relative to the binomial distribution. Substantial levels of under-dispersion are possible with this modelling, but only modest levels of over-dispersion - up to Poisson-like variation. Although simple analytical expressions for the moments of these probability distributions are not available, approximate expressions for the mean and variance are derived, and used to re-parameterise the models. The modelling is applied in the analysis of two published data sets, one showing under-dispersion and the other over-dispersion. More appropriate assessment of the precision of estimated parameters and reliable model checking diagnostics follow from this more general modelling of these data sets. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adiabatic elimination for systems with inertia driven by compound Poisson colored noise.
Li, Tiejun; Min, Bin; Wang, Zhiming
2014-02-01
We consider the dynamics of systems driven by compound Poisson colored noise in the presence of inertia. We study the limit when the frictional relaxation time and the noise autocorrelation time both tend to zero. We show that the Itô and Marcus stochastic calculuses naturally arise depending on these two time scales, and an extra intermediate type occurs when the two time scales are comparable. This leads to three different limiting regimes which are supported by numerical simulations. Furthermore, we establish that when the resulting compound Poisson process tends to the Wiener process in the frequent jump limit the Itô and Marcus calculuses, respectively, tend to the classical Itô and Stratonovich calculuses for Gaussian white noise, and the crossover type calculus tends to a crossover between the Itô and Stratonovich calculuses. Our results would be very helpful for understanding relevant experiments when jump type noise is involved.
Measurement of Poisson's ratio of nonmetallic materials by laser holographic interferometry
NASA Astrophysics Data System (ADS)
Zhu, Jian T.
1991-12-01
By means of the off-axis collimated plane wave coherent light arrangement and a loading device by pure bending, Poisson's ratio values of CFRP (carbon fiber-reinforced plactics plates, lay-up 0 degree(s), 90 degree(s)), GFRP (glass fiber-reinforced plactics plates, radial direction) and PMMA (polymethyl methacrylate, x, y direction) have been measured. In virtue of this study, the ministry standard for the Ministry of Aeronautical Industry (Testing method for the measurement of Poisson's ratio of non-metallic by laser holographic interferometry) has been published. The measurement process is fast and simple. The measuring results are reliable and accurate.
Accident prediction model for public highway-rail grade crossings.
Lu, Pan; Tolliver, Denver
2016-05-01
Considerable research has focused on roadway accident frequency analysis, but relatively little research has examined safety evaluation at highway-rail grade crossings. Highway-rail grade crossings are critical spatial locations of utmost importance for transportation safety because traffic crashes at highway-rail grade crossings are often catastrophic with serious consequences. The Poisson regression model has been employed to analyze vehicle accident frequency as a good starting point for many years. The most commonly applied variations of Poisson including negative binomial, and zero-inflated Poisson. These models are used to deal with common crash data issues such as over-dispersion (sample variance is larger than the sample mean) and preponderance of zeros (low sample mean and small sample size). On rare occasions traffic crash data have been shown to be under-dispersed (sample variance is smaller than the sample mean) and traditional distributions such as Poisson or negative binomial cannot handle under-dispersion well. The objective of this study is to investigate and compare various alternate highway-rail grade crossing accident frequency models that can handle the under-dispersion issue. The contributions of the paper are two-fold: (1) application of probability models to deal with under-dispersion issues and (2) obtain insights regarding to vehicle crashes at public highway-rail grade crossings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y
2012-01-01
A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.
Obstructions for twist star products
NASA Astrophysics Data System (ADS)
Bieliavsky, Pierre; Esposito, Chiara; Waldmann, Stefan; Weber, Thomas
2018-05-01
In this short note, we point out that not every star product is induced by a Drinfel'd twist by showing that not every Poisson structure is induced by a classical r-matrix. Examples include the higher genus symplectic Pretzel surfaces and the symplectic sphere S^2.
Wang, Yu; Li, Feng; Li, Yafei; Chen, Zhongfang
2016-05-03
Designing new materials with novel topological properties and reduced dimensionality is always desirable for material innovation. Here we report the design of a two-dimensional material, namely Be5C2 monolayer on the basis of density functional theory computations. In Be5C2 monolayer, each carbon atom binds with five beryllium atoms in almost the same plane, forming a quasi-planar pentacoordinate carbon moiety. Be5C2 monolayer appears to have good stability as revealed by its moderate cohesive energy, positive phonon modes and high melting point. It is the lowest-energy structure with the Be5C2 stoichiometry in two-dimensional space and therefore holds some promise to be realized experimentally. Be5C2 monolayer is a gapless semiconductor with a Dirac-like point in the band structure and also has an unusual negative Poisson's ratio. If synthesized, Be5C2 monolayer may find applications in electronics and mechanics.
NASA Astrophysics Data System (ADS)
Sun, Deyu; Rettmann, Maryam E.; Holmes, David R.; Linte, Cristian A.; Packer, Douglas; Robb, Richard A.
2014-03-01
In this work, we propose a method for intraoperative reconstruction of a left atrial surface model for the application of cardiac ablation therapy. In this approach, the intraoperative point cloud is acquired by a tracked, 2D freehand intra-cardiac echocardiography device, which is registered and merged with a preoperative, high resolution left atrial surface model built from computed tomography data. For the surface reconstruction, we introduce a novel method to estimate the normal vector of the point cloud from the preoperative left atrial model, which is required for the Poisson Equation Reconstruction algorithm. In the current work, the algorithm is evaluated using a preoperative surface model from patient computed tomography data and simulated intraoperative ultrasound data. Factors such as intraoperative deformation of the left atrium, proportion of the left atrial surface sampled by the ultrasound, sampling resolution, sampling noise, and registration error were considered through a series of simulation experiments.
Approximations to camera sensor noise
NASA Astrophysics Data System (ADS)
Jin, Xiaodan; Hirakawa, Keigo
2013-02-01
Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.
Image denoising in mixed Poisson-Gaussian noise.
Luisier, Florian; Blu, Thierry; Unser, Michael
2011-03-01
We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on a purely data-adaptive unbiased estimate of the mean-squared error (MSE), derived in a non-Bayesian framework (PURE: Poisson-Gaussian unbiased risk estimate). We provide a practical approximation of this theoretical MSE estimate for the tractable optimization of arbitrary transform-domain thresholding. We then propose a pointwise estimator for undecimated filterbank transforms, which consists of subband-adaptive thresholding functions with signal-dependent thresholds that are globally optimized in the image domain. We finally demonstrate the potential of the proposed approach through extensive comparisons with state-of-the-art techniques that are specifically tailored to the estimation of Poisson intensities. We also present denoising results obtained on real images of low-count fluorescence microscopy.
Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis
2014-01-01
When dealing with classical spike train analysis, the practitioner often performs goodness-of-fit tests to test whether the observed process is a Poisson process, for instance, or if it obeys another type of probabilistic model (Yana et al. in Biophys. J. 46(3):323–330, 1984; Brown et al. in Neural Comput. 14(2):325–346, 2002; Pouzat and Chaffiol in Technical report, http://arxiv.org/abs/arXiv:0909.2785, 2009). In doing so, there is a fundamental plug-in step, where the parameters of the supposed underlying model are estimated. The aim of this article is to show that plug-in has sometimes very undesirable effects. We propose a new method based on subsampling to deal with those plug-in issues in the case of the Kolmogorov–Smirnov test of uniformity. The method relies on the plug-in of good estimates of the underlying model that have to be consistent with a controlled rate of convergence. Some nonparametric estimates satisfying those constraints in the Poisson or in the Hawkes framework are highlighted. Moreover, they share adaptive properties that are useful from a practical point of view. We show the performance of those methods on simulated data. We also provide a complete analysis with these tools on single unit activity recorded on a monkey during a sensory-motor task. Electronic Supplementary Material The online version of this article (doi:10.1186/2190-8567-4-3) contains supplementary material. PMID:24742008
Statistical modeling of storm-level Kp occurrences
Remick, K.J.; Love, J.J.
2006-01-01
We consider the statistical modeling of the occurrence in time of large Kp magnetic storms as a Poisson process, testing whether or not relatively rare, large Kp events can be considered to arise from a stochastic, sequential, and memoryless process. For a Poisson process, the wait times between successive events occur statistically with an exponential density function. Fitting an exponential function to the durations between successive large Kp events forms the basis of our analysis. Defining these wait times by calculating the differences between times when Kp exceeds a certain value, such as Kp ??? 5, we find the wait-time distribution is not exponential. Because large storms often have several periods with large Kp values, their occurrence in time is not memoryless; short duration wait times are not independent of each other and are often clumped together in time. If we remove same-storm large Kp occurrences, the resulting wait times are very nearly exponentially distributed and the storm arrival process can be characterized as Poisson. Fittings are performed on wait time data for Kp ??? 5, 6, 7, and 8. The mean wait times between storms exceeding such Kp thresholds are 7.12, 16.55, 42.22, and 121.40 days respectively.
Evolving Scale-Free Networks by Poisson Process: Modeling and Degree Distribution.
Feng, Minyu; Qu, Hong; Yi, Zhang; Xie, Xiurui; Kurths, Jurgen
2016-05-01
Since the great mathematician Leonhard Euler initiated the study of graph theory, the network has been one of the most significant research subject in multidisciplinary. In recent years, the proposition of the small-world and scale-free properties of complex networks in statistical physics made the network science intriguing again for many researchers. One of the challenges of the network science is to propose rational models for complex networks. In this paper, in order to reveal the influence of the vertex generating mechanism of complex networks, we propose three novel models based on the homogeneous Poisson, nonhomogeneous Poisson and birth death process, respectively, which can be regarded as typical scale-free networks and utilized to simulate practical networks. The degree distribution and exponent are analyzed and explained in mathematics by different approaches. In the simulation, we display the modeling process, the degree distribution of empirical data by statistical methods, and reliability of proposed networks, results show our models follow the features of typical complex networks. Finally, some future challenges for complex systems are discussed.
Nonparametric Inference of Doubly Stochastic Poisson Process Data via the Kernel Method
Zhang, Tingting; Kou, S. C.
2010-01-01
Doubly stochastic Poisson processes, also known as the Cox processes, frequently occur in various scientific fields. In this article, motivated primarily by analyzing Cox process data in biophysics, we propose a nonparametric kernel-based inference method. We conduct a detailed study, including an asymptotic analysis, of the proposed method, and provide guidelines for its practical use, introducing a fast and stable regression method for bandwidth selection. We apply our method to real photon arrival data from recent single-molecule biophysical experiments, investigating proteins' conformational dynamics. Our result shows that conformational fluctuation is widely present in protein systems, and that the fluctuation covers a broad range of time scales, highlighting the dynamic and complex nature of proteins' structure. PMID:21258615
Nonparametric Inference of Doubly Stochastic Poisson Process Data via the Kernel Method.
Zhang, Tingting; Kou, S C
2010-01-01
Doubly stochastic Poisson processes, also known as the Cox processes, frequently occur in various scientific fields. In this article, motivated primarily by analyzing Cox process data in biophysics, we propose a nonparametric kernel-based inference method. We conduct a detailed study, including an asymptotic analysis, of the proposed method, and provide guidelines for its practical use, introducing a fast and stable regression method for bandwidth selection. We apply our method to real photon arrival data from recent single-molecule biophysical experiments, investigating proteins' conformational dynamics. Our result shows that conformational fluctuation is widely present in protein systems, and that the fluctuation covers a broad range of time scales, highlighting the dynamic and complex nature of proteins' structure.
Poisson Regression Analysis of Illness and Injury Surveillance Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frome E.L., Watkins J.P., Ellis E.D.
2012-12-12
The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences duemore » to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson variation. The R open source software environment for statistical computing and graphics is used for analysis. Additional details about R and the data that were used in this report are provided in an Appendix. Information on how to obtain R and utility functions that can be used to duplicate results in this report are provided.« less
Anisotropic mechanical properties of zircon and the effect of radiation damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beirau, Tobias; Nix, William D.; Bismayer, Ulrich
2016-06-02
Our study provides new insights into the relationship between radiation-dose-dependent structural damage, due to natural U and Th impurities, and the anisotropic mechanical properties (Poisson s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. 1991) and synthetic samples, covering a dose range of zero up to 6.8 x 10 18 -decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by zkan (1976), revealed a general radiation-induced decrease in stiffness (~ 54 %) and hardness (~ 48 %) and an increasemore » of the Poisson s ratio (~ 54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Rios et al. 2000a; Farnan and Salje 2001; Zhang and Salje 2001). This agreement, revealed by the different methods, indicates a huge influence of structural and even local phenomena on the macroscopic mechanical properties.« less
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-04-06
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.
Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Tchoreloff, Pierre
2012-06-01
The elastic properties of pharmaceutical powders play an important role during the compaction process. The elastic behavior can be represented by Young's modulus (E) and Poisson's ratio (v). However, during the compaction, the density of the powder bed changes and the moduli must be determined as a function of the porosity. This study proposes a new methodology to determine E and v as a function of the porosity using double compaction in an instrumented compaction simulator. Precompression is used to form the compact, and the elastic properties are measured during the beginning of the main compaction. By measuring the axial and radial pressure and the powder bed thickness, E and v can be determined as a function of the porosity. Two excipients were studied, microcrystalline cellulose (MCC) and anhydrous calcium phosphate (aCP). The values of E measured are comparable to those obtained using the classical three-point bending test. Poisson's ratio was found to be close to 0.24 for aCP with only small variations with the porosity, and to increase with a decreasing porosity for MCC (0.23-0.38). The classical approximation of a value of 0.3 for ν of pharmaceutical powders should therefore be taken with caution. Copyright © 2012 Wiley Periodicals, Inc.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-01-01
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503
Fast immersed interface Poisson solver for 3D unbounded problems around arbitrary geometries
NASA Astrophysics Data System (ADS)
Gillis, T.; Winckelmans, G.; Chatelain, P.
2018-02-01
We present a fast and efficient Fourier-based solver for the Poisson problem around an arbitrary geometry in an unbounded 3D domain. This solver merges two rewarding approaches, the lattice Green's function method and the immersed interface method, using the Sherman-Morrison-Woodbury decomposition formula. The method is intended to be second order up to the boundary. This is verified on two potential flow benchmarks. We also further analyse the iterative process and the convergence behavior of the proposed algorithm. The method is applicable to a wide range of problems involving a Poisson equation around inner bodies, which goes well beyond the present validation on potential flows.
NASA Astrophysics Data System (ADS)
Moreto, Jose; Liu, Xiaofeng
2017-11-01
The accuracy of the Rotating Parallel Ray omnidirectional integration for pressure reconstruction from the measured pressure gradient (Liu et al., AIAA paper 2016-1049) is evaluated against both the Circular Virtual Boundary omnidirectional integration (Liu and Katz, 2006 and 2013) and the conventional Poisson equation approach. Dirichlet condition at one boundary point and Neumann condition at all other boundary points are applied to the Poisson solver. A direct numerical simulation database of isotropic turbulence flow (JHTDB), with a homogeneously distributed random noise added to the entire field of DNS pressure gradient, is used to assess the performance of the methods. The random noise, generated by the Matlab function Rand, has a magnitude varying randomly within the range of +/-40% of the maximum DNS pressure gradient. To account for the effect of the noise distribution pattern on the reconstructed pressure accuracy, a total of 1000 different noise distributions achieved by using different random number seeds are involved in the evaluation. Final results after averaging the 1000 realizations show that the error of the reconstructed pressure normalized by the DNS pressure variation range is 0.15 +/-0.07 for the Poisson equation approach, 0.028 +/-0.003 for the Circular Virtual Boundary method and 0.027 +/-0.003 for the Rotating Parallel Ray method, indicating the robustness of the Rotating Parallel Ray method in pressure reconstruction. Sponsor: The San Diego State University UGP program.
Bramness, Jørgen G; Walby, Fredrik A; Morken, Gunnar; Røislien, Jo
2015-08-01
Seasonal variation in the number of suicides has long been acknowledged. It has been suggested that this seasonality has declined in recent years, but studies have generally used statistical methods incapable of confirming this. We examined all suicides occurring in Norway during 1969-2007 (more than 20,000 suicides in total) to establish whether seasonality decreased over time. Fitting of additive Fourier Poisson time-series regression models allowed for formal testing of a possible linear decrease in seasonality, or a reduction at a specific point in time, while adjusting for a possible smooth nonlinear long-term change without having to categorize time into discrete yearly units. The models were compared using Akaike's Information Criterion and analysis of variance. A model with a seasonal pattern was significantly superior to a model without one. There was a reduction in seasonality during the period. Both the model assuming a linear decrease in seasonality and the model assuming a change at a specific point in time were both superior to a model assuming constant seasonality, thus confirming by formal statistical testing that the magnitude of the seasonality in suicides has diminished. The additive Fourier Poisson time-series regression model would also be useful for studying other temporal phenomena with seasonal components. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Rotondi, Renata; Varini, Elisa
2016-04-01
The long-term recurrence of strong earthquakes is often modelled by the stationary Poisson process for the sake of simplicity, although renewal and self-correcting point processes (with non-decreasing hazard functions) are more appropriate. Short-term models mainly fit earthquake clusters due to the tendency of an earthquake to trigger other earthquakes; in this case, self-exciting point processes with non-increasing hazard are especially suitable. In order to provide a unified framework for analyzing earthquake catalogs, Schoenberg and Bolt proposed the SELC (Short-term Exciting Long-term Correcting) model (BSSA, 2000) and Varini employed a state-space model for estimating the different phases of a seismic cycle (PhD Thesis, 2005). Both attempts are combinations of long- and short-term models, but results are not completely satisfactory, due to the different scales at which these models appear to operate. In this study, we split a seismic sequence in two groups: the leader events, whose magnitude exceeds a threshold magnitude, and the remaining ones considered as subordinate events. The leader events are assumed to follow a well-known self-correcting point process named stress release model (Vere-Jones, J. Phys. Earth, 1978; Bebbington & Harte, GJI, 2003, Varini & Rotondi, Env. Ecol. Stat., 2015). In the interval between two subsequent leader events, subordinate events are expected to cluster at the beginning (aftershocks) and at the end (foreshocks) of that interval; hence, they are modeled by a failure processes that allows bathtub-shaped hazard function. In particular, we have examined the generalized Weibull distributions, a large family that contains distributions with different bathtub-shaped hazard as well as the standard Weibull distribution (Lai, Springer, 2014). The model is fitted to a dataset of Italian historical earthquakes and the results of Bayesian inference are shown.
Waiting-time distributions of magnetic discontinuities: clustering or Poisson process?
Greco, A; Matthaeus, W H; Servidio, S; Dmitruk, P
2009-10-01
Using solar wind data from the Advanced Composition Explorer spacecraft, with the support of Hall magnetohydrodynamic simulations, the waiting-time distributions of magnetic discontinuities have been analyzed. A possible phenomenon of clusterization of these discontinuities is studied in detail. We perform a local Poisson's analysis in order to establish if these intermittent events are randomly distributed or not. Possible implications about the nature of solar wind discontinuities are discussed.
ERIC Educational Resources Information Center
Wilde, Carroll O.
The Poisson probability distribution is seen to provide a mathematical model from which useful information can be obtained in practical applications. The distribution and some situations to which it applies are studied, and ways to find answers to practical questions are noted. The unit includes exercises and a model exam, and provides answers to…
Waiting-time distributions of magnetic discontinuities: Clustering or Poisson process?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greco, A.; Matthaeus, W. H.; Servidio, S.
2009-10-15
Using solar wind data from the Advanced Composition Explorer spacecraft, with the support of Hall magnetohydrodynamic simulations, the waiting-time distributions of magnetic discontinuities have been analyzed. A possible phenomenon of clusterization of these discontinuities is studied in detail. We perform a local Poisson's analysis in order to establish if these intermittent events are randomly distributed or not. Possible implications about the nature of solar wind discontinuities are discussed.
The electrostatic interaction between interfacial colloidal particles
NASA Astrophysics Data System (ADS)
Hurd, A. J.
1985-11-01
The electrostatic interaction between charged, colloidal particles trapped at an air-water interface is considered using linearised Poisson-Boltzmann results for point particles. In addition to the expected screened-Coulomb contribution, which decays exponentially, an algebraic dipole-dipole interaction occurs that may account for long-range interactions in interfacial colloidal systems.
GRAPE- TWO-DIMENSIONAL GRIDS ABOUT AIRFOILS AND OTHER SHAPES BY THE USE OF POISSON'S EQUATION
NASA Technical Reports Server (NTRS)
Sorenson, R. L.
1994-01-01
The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids, including those about airfoils. In a grid used for computing aerodynamic flow over an airfoil, or any other body shape, the surface of the body is usually treated as an inner boundary and often cannot be easily represented as an analytic function. The GRAPE computer program was developed to incorporate a method for generating two-dimensional finite-difference grids about airfoils and other shapes by the use of the Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including a limited number of sharp corners. The GRAPE program has been developed to be numerically stable and computationally fast. GRAPE can provide the aerodynamic analyst with an efficient and consistent means of grid generation. The GRAPE procedure generates a grid between an inner and an outer boundary by utilizing an iterative procedure to solve the Poisson differential equation subject to geometrical restraints. In this method, the inhomogeneous terms of the equation are automatically chosen such that two important effects are imposed on the grid. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. Along with the iterative solution to Poisson's equation, a technique of coarse-fine sequencing is employed to accelerate numerical convergence. GRAPE program control cards and input data are entered via the NAMELIST feature. Each variable has a default value such that user supplied data is kept to a minimum. Basic input data consists of the boundary specification, mesh point spacings on the boundaries, and mesh line angles at the boundaries. Output consists of a dataset containing the grid data and, if requested, a plot of the generated mesh. The GRAPE program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 135K (octal) of 60 bit words. For plotted output the commercially available DISSPLA graphics software package is required. The GRAPE program was developed in 1980.
Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S
2014-09-01
Effect of solid distribution between edges and vertices of three-dimensional cellular solid with an open-cell structure was investigated both numerically and experimentally. Finite element analysis (FEA) with continuum elements and appropriate periodic boundary condition was employed to calculate the elastic properties of cellular solids using tetrakaidecahedral (Kelvin) unit cell. Relative densities between 0.01 and 0.1 and various values of solid fractions were considered. In order to validate the numerical model, three scaffolds with the relative density of 0.08, but different amounts of solid in vertices, were fabricated via 3-D printing technique. Good agreement was observed between numerical simulation and experimental results. Results of numerical simulation showed that, at low relative densities (<0.03), Young׳s modulus increased by shifting materials away from edges to vertices at first and then decreased after reaching a critical point. However, for the high values of relative density, Young׳s modulus increased monotonically. Mechanisms of such a behavior were discussed in detail. Results also indicated that Poisson׳s ratio decreased by increasing relative density and solid fraction in vertices. By fitting a curve to the data obtained from the numerical simulation and considering the relative density and solid fraction in vertices, empirical relations were derived for Young׳s modulus and Poisson׳s ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.
Receiver design for SPAD-based VLC systems under Poisson-Gaussian mixed noise model.
Mao, Tianqi; Wang, Zhaocheng; Wang, Qi
2017-01-23
Single-photon avalanche diode (SPAD) is a promising photosensor because of its high sensitivity to optical signals in weak illuminance environment. Recently, it has drawn much attention from researchers in visible light communications (VLC). However, existing literature only deals with the simplified channel model, which only considers the effects of Poisson noise introduced by SPAD, but neglects other noise sources. Specifically, when an analog SPAD detector is applied, there exists Gaussian thermal noise generated by the transimpedance amplifier (TIA) and the digital-to-analog converter (D/A). Therefore, in this paper, we propose an SPAD-based VLC system with pulse-amplitude-modulation (PAM) under Poisson-Gaussian mixed noise model, where Gaussian-distributed thermal noise at the receiver is also investigated. The closed-form conditional likelihood of received signals is derived using the Laplace transform and the saddle-point approximation method, and the corresponding quasi-maximum-likelihood (quasi-ML) detector is proposed. Furthermore, the Poisson-Gaussian-distributed signals are converted to Gaussian variables with the aid of the generalized Anscombe transform (GAT), leading to an equivalent additive white Gaussian noise (AWGN) channel, and a hard-decision-based detector is invoked. Simulation results demonstrate that, the proposed GAT-based detector can reduce the computational complexity with marginal performance loss compared with the proposed quasi-ML detector, and both detectors are capable of accurately demodulating the SPAD-based PAM signals.
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Steger, J. L.
1980-01-01
A method for generating boundary-fitted, curvilinear, two dimensional grids by the use of the Poisson equations is presented. Grids of C-type and O-type were made about airfoils and other shapes, with circular, rectangular, cascade-type, and other outer boundary shapes. Both viscous and inviscid spacings were used. In all cases, two important types of grid control can be exercised at both inner and outer boundaries. First is arbitrary control of the distances between the boundaries and the adjacent lines of the same coordinate family, i.e., stand-off distances. Second is arbitrary control of the angles with which lines of the opposite coordinate family intersect the boundaries. Thus, both grid cell size (or aspect ratio) and grid cell skewness are controlled at boundaries. Reasonable cell size and shape are ensured even in cases wherein extreme boundary shapes would tend to cause skewness or poorly controlled grid spacing. An inherent feature of the Poisson equations is that lines in the interior of the grid smoothly connect the boundary points (the grid mapping functions are second order differentiable).
Wavelets, ridgelets, and curvelets for Poisson noise removal.
Zhang, Bo; Fadili, Jalal M; Starck, Jean-Luc
2008-07-01
In order to denoise Poisson count data, we introduce a variance stabilizing transform (VST) applied on a filtered discrete Poisson process, yielding a near Gaussian process with asymptotic constant variance. This new transform, which can be deemed as an extension of the Anscombe transform to filtered data, is simple, fast, and efficient in (very) low-count situations. We combine this VST with the filter banks of wavelets, ridgelets and curvelets, leading to multiscale VSTs (MS-VSTs) and nonlinear decomposition schemes. By doing so, the noise-contaminated coefficients of these MS-VST-modified transforms are asymptotically normally distributed with known variances. A classical hypothesis-testing framework is adopted to detect the significant coefficients, and a sparsity-driven iterative scheme reconstructs properly the final estimate. A range of examples show the power of this MS-VST approach for recovering important structures of various morphologies in (very) low-count images. These results also demonstrate that the MS-VST approach is competitive relative to many existing denoising methods.
Clinical characterization of 2D pressure field in human left ventricles
NASA Astrophysics Data System (ADS)
Borja, Maria; Rossini, Lorenzo; Martinez-Legazpi, Pablo; Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Perez Del Villar, Candelas; Gonzalez-Mansilla, Ana; Barrio, Alicia; Fernandez-Aviles, Francisco; Bermejo, Javier; Khan, Andrew; Del Alamo, Juan Carlos
2014-11-01
The evaluation of left ventricle (LV) function in the clinical setting remains a challenge. Pressure gradient is a reliable and reproducible indicator of the LV function. We obtain 2D relative pressure field in the LV using in-vivo measurements obtained by processing Doppler-echocardiography images of healthy and dilated hearts. Exploiting mass conservation, we solve the Poisson pressure equation (PPE) dropping the time derivatives and viscous terms. The flow acceleration appears only in the boundary conditions, making our method weakly sensible to the time resolution of in-vivo acquisitions. To ensure continuity with respect to the discrete operator and grid used, a potential flow correction is applied beforehand, which gives another Poisson equation. The new incompressible velocity field ensures that the compatibility equation for the PPE is satisfied. Both Poisson equations are efficiently solved on a Cartesian grid using a multi-grid method and immersed boundary for the LV wall. The whole process is computationally inexpensive and could play a diagnostic role in the clinical assessment of LV function.
NASA Technical Reports Server (NTRS)
Sorenson, R. L.
1980-01-01
A method for generating two dimensional finite difference grids about airfoils and other shapes by the use of the Poisson differential equation is developed. The inhomogeneous terms are automatically chosen such that two important effects are imposed on the grid at both the inner and outer boundaries. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. A FORTRAN computer program has been written to use this method. A description of the program, a discussion of the control parameters, and a set of sample cases are included.
Eruption patterns of the chilean volcanoes Villarrica, Llaima, and Tupungatito
NASA Astrophysics Data System (ADS)
Muñoz, Miguel
1983-09-01
The historical eruption records of three Chilean volcanoes have been subjected to many statistical tests, and none have been found to differ significantly from random, or Poissonian, behaviour. The statistical analysis shows rough conformity with the descriptions determined from the eruption rate functions. It is possible that a constant eruption rate describes the activity of Villarrica; Llaima and Tupungatito present complex eruption rate patterns that appear, however, to have no statistical significance. Questions related to loading and extinction processes and to the existence of shallow secondary magma chambers to which magma is supplied from a deeper system are also addressed. The analysis and the computation of the serial correlation coefficients indicate that the three series may be regarded as stationary renewal processes. None of the test statistics indicates rejection of the Poisson hypothesis at a level less than 5%, but the coefficient of variation for the eruption series at Llaima is significantly different from the value expected for a Poisson process. Also, the estimates of the normalized spectrum of the counting process for the three series suggest a departure from the random model, but the deviations are not found to be significant at the 5% level. Kolmogorov-Smirnov and chi-squared test statistics, applied directly to ascertaining to which probability P the random Poisson model fits the data, indicate that there is significant agreement in the case of Villarrica ( P=0.59) and Tupungatito ( P=0.3). Even though the P-value for Llaima is a marginally significant 0.1 (which is equivalent to rejecting the Poisson model at the 90% confidence level), the series suggests that nonrandom features are possibly present in the eruptive activity of this volcano.
Filling of a Poisson trap by a population of random intermittent searchers.
Bressloff, Paul C; Newby, Jay M
2012-03-01
We extend the continuum theory of random intermittent search processes to the case of N independent searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite track. Each searcher randomly switches between a stationary state and either a leftward or rightward constant velocity state. We assume that all of the particles start at one end of the track and realize sample trajectories independently generated from the same underlying stochastic process. The hidden target is treated as a partially absorbing trap in which a particle can only detect the target and deliver its cargo if it is stationary and within range of the target; the particle is removed from the system after delivering its cargo. As a further generalization of previous models, we assume that up to n successive particles can find the target and deliver its cargo. Assuming that the rate of target detection scales as 1/N, we show that there exists a well-defined mean-field limit N→∞, in which the stochastic model reduces to a deterministic system of linear reaction-hyperbolic equations for the concentrations of particles in each of the internal states. These equations decouple from the stochastic process associated with filling the target with cargo. The latter can be modeled as a Poisson process in which the time-dependent rate of filling λ(t) depends on the concentration of stationary particles within the target domain. Hence, we refer to the target as a Poisson trap. We analyze the efficiency of filling the Poisson trap with n particles in terms of the waiting time density f(n)(t). The latter is determined by the integrated Poisson rate μ(t)=∫(0)(t)λ(s)ds, which in turn depends on the solution to the reaction-hyperbolic equations. We obtain an approximate solution for the particle concentrations by reducing the system of reaction-hyperbolic equations to a scalar advection-diffusion equation using a quasisteady-state analysis. We compare our analytical results for the mean-field model with Monte Carlo simulations for finite N. We thus determine how the mean first passage time (MFPT) for filling the target depends on N and n.
ERIC Educational Resources Information Center
Needham, Scott
A guide, in French, to raising fish for food and profit is designed to instruct and encourage Gabonese natives to establish family fisheries. It describes and illustrates in story form the process used to plan the fishery, clear the land, seek help from an agricultural agent, create a dam, make compost, plan and build the pond, feed the fish,…
A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.
Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi
2016-10-01
Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν<1) or under-dispersion (ν>1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Goychuk, I
2001-08-01
Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.
A Poisson process approximation for generalized K-5 confidence regions
NASA Technical Reports Server (NTRS)
Arsham, H.; Miller, D. R.
1982-01-01
One-sided confidence regions for continuous cumulative distribution functions are constructed using empirical cumulative distribution functions and the generalized Kolmogorov-Smirnov distance. The band width of such regions becomes narrower in the right or left tail of the distribution. To avoid tedious computation of confidence levels and critical values, an approximation based on the Poisson process is introduced. This aproximation provides a conservative confidence region; moreover, the approximation error decreases monotonically to 0 as sample size increases. Critical values necessary for implementation are given. Applications are made to the areas of risk analysis, investment modeling, reliability assessment, and analysis of fault tolerant systems.
NASA Astrophysics Data System (ADS)
Tatlier, Mehmet Seha
Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.
NASA Astrophysics Data System (ADS)
Privault, Nicolas
2016-05-01
We construct differential forms of all orders and a covariant derivative together with its adjoint on the probability space of a standard Poisson process, using derivation operators. In this framewok we derive a de Rham-Hodge-Kodaira decomposition as well as Weitzenböck and Clark-Ocone formulas for random differential forms. As in the Wiener space setting, this construction provides two distinct approaches to the vanishing of harmonic differential forms.
NASA Astrophysics Data System (ADS)
Suyama, Shoko; Itoh, Yoshiyasu; Tsuno, Katsuhiko; Ohno, Kazuhiko
2005-08-01
Silicon carbide (SiC) is the most advantageous as the material of various telescope mirrors, because of high stiffness, low density, low coefficient of thermal expansion, high thermal conductivity and thermal stability. Newly developed high-strength reaction-sintered silicon carbide (NTSIC), which has two times higher strength than sintered SiC, is one of the most promising candidates for lightweight optical mirror substrate, because of fully dense, lightweight, small sintering shrinkage (+/-1 %), good shape capability and low processing temperature. In this study, 650mm in diameter mirror substrate of NTSIC was developed for space telescope applications. Three developed points describe below. The first point was to realize the lightweight to thin the thickness of green bodies. Ribs down to 3mm thickness can be obtained by strengthen the green body. The second point was to enlarge the mirror size. 650mm in diameter of mirror substrate can be fabricated with enlarging the diameter in order. The final point was to realize the homogeneity of mirror substrate. Some properties, such as density, bending strength, coefficient of thermal expansion, Young's modulus, Poisson's ratio, fracture toughness, were measured by the test pieces cutting from the fabricated mirror substrates.
Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry
NASA Technical Reports Server (NTRS)
Hong, Yie-Ming
1973-01-01
Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.
Generic Schemes for Single-Molecule Kinetics. 2: Information Content of the Poisson Indicator.
Avila, Thomas R; Piephoff, D Evan; Cao, Jianshu
2017-08-24
Recently, we described a pathway analysis technique (paper 1) for analyzing generic schemes for single-molecule kinetics based upon the first-passage time distribution. Here, we employ this method to derive expressions for the Poisson indicator, a normalized measure of stochastic variation (essentially equivalent to the Fano factor and Mandel's Q parameter), for various renewal (i.e., memoryless) enzymatic reactions. We examine its dependence on substrate concentration, without assuming all steps follow Poissonian kinetics. Based upon fitting to the functional forms of the first two waiting time moments, we show that, to second order, the non-Poissonian kinetics are generally underdetermined but can be specified in certain scenarios. For an enzymatic reaction with an arbitrary intermediate topology, we identify a generic minimum of the Poisson indicator as a function of substrate concentration, which can be used to tune substrate concentration to the stochastic fluctuations and to estimate the largest number of underlying consecutive links in a turnover cycle. We identify a local maximum of the Poisson indicator (with respect to substrate concentration) for a renewal process as a signature of competitive binding, either between a substrate and an inhibitor or between multiple substrates. Our analysis explores the rich connections between Poisson indicator measurements and microscopic kinetic mechanisms.
The Poisson model limits in NBA basketball: Complexity in team sports
NASA Astrophysics Data System (ADS)
Martín-González, Juan Manuel; de Saá Guerra, Yves; García-Manso, Juan Manuel; Arriaza, Enrique; Valverde-Estévez, Teresa
2016-12-01
Team sports are frequently studied by researchers. There is presumption that scoring in basketball is a random process and that can be described using the Poisson Model. Basketball is a collaboration-opposition sport, where the non-linear local interactions among players are reflected in the evolution of the score that ultimately determines the winner. In the NBA, the outcomes of close games are often decided in the last minute, where fouls play a main role. We examined 6130 NBA games in order to analyze the time intervals between baskets and scoring dynamics. Most numbers of baskets (n) over a time interval (ΔT) follow a Poisson distribution, but some (e.g., ΔT = 10 s, n > 3) behave as a Power Law. The Poisson distribution includes most baskets in any game, in most game situations, but in close games in the last minute, the numbers of events are distributed following a Power Law. The number of events can be adjusted by a mixture of two distributions. In close games, both teams try to maintain their advantage solely in order to reach the last minute: a completely different game. For this reason, we propose to use the Poisson model as a reference. The complex dynamics will emerge from the limits of this model.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals
NASA Astrophysics Data System (ADS)
Frejlich, Pedro; Mărcuț, Ioan
2018-03-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.
Frejlich, Pedro; Mărcuț, Ioan
2018-01-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Detection limit for rate fluctuations in inhomogeneous Poisson processes
NASA Astrophysics Data System (ADS)
Shintani, Toshiaki; Shinomoto, Shigeru
2012-04-01
Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.
Detection limit for rate fluctuations in inhomogeneous Poisson processes.
Shintani, Toshiaki; Shinomoto, Shigeru
2012-04-01
Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.
NASA Technical Reports Server (NTRS)
Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.
1992-01-01
The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.
NASA Astrophysics Data System (ADS)
Shaochuan, Lu; Vere-Jones, David
2011-10-01
The paper studies the statistical properties of deep earthquakes around North Island, New Zealand. We first evaluate the catalogue coverage and completeness of deep events according to cusum (cumulative sum) statistics and earlier literature. The epicentral, depth, and magnitude distributions of deep earthquakes are then discussed. It is worth noting that strong grouping effects are observed in the epicentral distribution of these deep earthquakes. Also, although the spatial distribution of deep earthquakes does not change, their occurrence frequencies vary from time to time, active in one period, relatively quiescent in another. The depth distribution of deep earthquakes also hardly changes except for events with focal depth less than 100 km. On the basis of spatial concentration we partition deep earthquakes into several groups—the Taupo-Bay of Plenty group, the Taranaki group, and the Cook Strait group. Second-order moment analysis via the two-point correlation function reveals only very small-scale clustering of deep earthquakes, presumably limited to some hot spots only. We also suggest that some models usually used for shallow earthquakes fit deep earthquakes unsatisfactorily. Instead, we propose a switching Poisson model for the occurrence patterns of deep earthquakes. The goodness-of-fit test suggests that the time-varying activity is well characterized by a switching Poisson model. Furthermore, detailed analysis carried out on each deep group by use of switching Poisson models reveals similar time-varying behavior in occurrence frequencies in each group.
3DGRAPE - THREE DIMENSIONAL GRIDS ABOUT ANYTHING BY POISSON'S EQUATION
NASA Technical Reports Server (NTRS)
Sorenson, R. L.
1994-01-01
The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids. 3DGRAPE is designed to make computational grids in or about almost any shape. These grids are generated by the solution of Poisson's differential equations in three dimensions. The program automatically finds its own values for inhomogeneous terms which give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas. 3DGRAPE uses zones to solve the problem of warping one cube into the physical domain in real-world computational fluid dynamics problems. In a zonal approach, a physical domain is divided into regions, each of which maps into its own computational cube. It is believed that even the most complicated physical region can be divided into zones, and since it is possible to warp a cube into each zone, a grid generator which is oriented to zones and allows communication across zonal boundaries (where appropriate) solves the problem of topological complexity. 3DGRAPE expects to read in already-distributed x,y,z coordinates on the bodies of interest, coordinates which will remain fixed during the entire grid-generation process. The 3DGRAPE code makes no attempt to fit given body shapes and redistribute points thereon. Body-fitting is a formidable problem in itself. The user must either be working with some simple analytical body shape, upon which a simple analytical distribution can be easily effected, or must have available some sophisticated stand-alone body-fitting software. 3DGRAPE does not require the user to supply the block-to-block boundaries nor the shapes of the distribution of points. 3DGRAPE will typically supply those block-to-block boundaries simply as surfaces in the elliptic grid. Thus at block-to-block boundaries the following conditions are obtained: (1) grids lines will match up as they approach the block-to-block boundary from either side, (2) grid lines will cross the boundary with no slope discontinuity, (3) the spacing of points along the line piercing the boundary will be continuous, (4) the shape of the boundary will be consistent with the surrounding grid, and (5) the distribution of points on the boundary will be reasonable in view of the surrounding grid. 3DGRAPE offers a powerful building-block approach to complex 3-D grid generation, but is a low-level tool. Users may build each face of each block as they wish, from a wide variety of resources. 3DGRAPE uses point-successive-over-relaxation (point-SOR) to solve the Poisson equations. This method is slow, although it does vectorize nicely. Any number of sophisticated graphics programs may be used on the stored output file of 3DGRAPE though it lacks interactive graphics. Versatility was a prominent consideration in developing the code. The block structure allows a great latitude in the problems it can treat. As the acronym implies, this program should be able to handle just about any physical region into which a computational cube or cubes can be warped. 3DGRAPE was written in FORTRAN 77 and should be machine independent. It was originally developed on a Cray under COS and tested on a MicroVAX 3200 under VMS 5.1.
A minimally-resolved immersed boundary model for reaction-diffusion problems
NASA Astrophysics Data System (ADS)
Pal Singh Bhalla, Amneet; Griffith, Boyce E.; Patankar, Neelesh A.; Donev, Aleksandar
2013-12-01
We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blob model can provide an accurate representation at low to moderate packing densities of the reactive particles, at a cost not much larger than solving a Poisson equation in the same domain. Unlike multipole expansion methods, our method does not require analytically computed Green's functions, but rather, computes regularized discrete Green's functions on the fly by using a standard grid-based discretization of the Poisson equation. This allows for great flexibility in implementing different boundary conditions, coupling to fluid flow or thermal transport, and the inclusion of other effects such as temporal evolution and even nonlinearities. We develop multigrid-based preconditioners for solving the linear systems that arise when using implicit temporal discretizations or studying steady states. In the diffusion-limited case the resulting linear system is a saddle-point problem, the efficient solution of which remains a challenge for suspensions of many particles. We validate our method by comparing to published results on reaction-diffusion in ordered and disordered suspensions of reactive spheres.
Probabilistic reasoning in data analysis.
Sirovich, Lawrence
2011-09-20
This Teaching Resource provides lecture notes, slides, and a student assignment for a lecture on probabilistic reasoning in the analysis of biological data. General probabilistic frameworks are introduced, and a number of standard probability distributions are described using simple intuitive ideas. Particular attention is focused on random arrivals that are independent of prior history (Markovian events), with an emphasis on waiting times, Poisson processes, and Poisson probability distributions. The use of these various probability distributions is applied to biomedical problems, including several classic experimental studies.
Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
NASA Astrophysics Data System (ADS)
Martínez-Torres, David; Miranda, Eva
2018-01-01
We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.
Two-Dimensional Grids About Airfoils and Other Shapes
NASA Technical Reports Server (NTRS)
Sorenson, R.
1982-01-01
GRAPE computer program generates two-dimensional finite-difference grids about airfoils and other shapes by use of Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including limited number of sharp corners. Numerically stable and computationally fast, GRAPE provides aerodynamic analyst with efficient and consistant means of grid generation.
Hartl, Daniel L.
2008-01-01
Simple models of molecular evolution assume that sequences evolve by a Poisson process in which nucleotide or amino acid substitutions occur as rare independent events. In these models, the expected ratio of the variance to the mean of substitution counts equals 1, and substitution processes with a ratio greater than 1 are called overdispersed. Comparing the genomes of 10 closely related species of Drosophila, we extend earlier evidence for overdispersion in amino acid replacements as well as in four-fold synonymous substitutions. The observed deviation from the Poisson expectation can be described as a linear function of the rate at which substitutions occur on a phylogeny, which implies that deviations from the Poisson expectation arise from gene-specific temporal variation in substitution rates. Amino acid sequences show greater temporal variation in substitution rates than do four-fold synonymous sequences. Our findings provide a general phenomenological framework for understanding overdispersion in the molecular clock. Also, the presence of substantial variation in gene-specific substitution rates has broad implications for work in phylogeny reconstruction and evolutionary rate estimation. PMID:18480070
Quantum point contact displacement transducer for a mechanical resonator at sub-Kelvin temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji
Highly sensitive displacement transduction of a 1.67 MHz mechanical resonator with a quantum point contact (QPC) formed in a GaAs heterostructure is demonstrated. By positioning the QPC at the point of maximum mechanical strain on the resonator and operating at 80 mK, a displacement responsivity of 3.81 A/m is measured, which represents a two order of magnitude improvement on the previous QPC based devices. By further analyzing the QPC transport characteristics, a sub-Poisson-noise-limited displacement sensitivity of 25 fm/Hz{sup 1/2} is determined which corresponds to a position resolution that is 23 times the standard quantum limit.
Computation of solar perturbations with Poisson series
NASA Technical Reports Server (NTRS)
Broucke, R.
1974-01-01
Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.
Lindley frailty model for a class of compound Poisson processes
NASA Astrophysics Data System (ADS)
Kadilar, Gamze Özel; Ata, Nihal
2013-10-01
The Lindley distribution gain importance in survival analysis for the similarity of exponential distribution and allowance for the different shapes of hazard function. Frailty models provide an alternative to proportional hazards model where misspecified or omitted covariates are described by an unobservable random variable. Despite of the distribution of the frailty is generally assumed to be continuous, it is appropriate to consider discrete frailty distributions In some circumstances. In this paper, frailty models with discrete compound Poisson process for the Lindley distributed failure time are introduced. Survival functions are derived and maximum likelihood estimation procedures for the parameters are studied. Then, the fit of the models to the earthquake data set of Turkey are examined.
Application of spatial Poisson process models to air mass thunderstorm rainfall
NASA Technical Reports Server (NTRS)
Eagleson, P. S.; Fennessy, N. M.; Wang, Qinliang; Rodriguez-Iturbe, I.
1987-01-01
Eight years of summer storm rainfall observations from 93 stations in and around the 154 sq km Walnut Gulch catchment of the Agricultural Research Service, U.S. Department of Agriculture, in Arizona are processed to yield the total station depths of 428 storms. Statistical analysis of these random fields yields the first two moments, the spatial correlation and variance functions, and the spatial distribution of total rainfall for each storm. The absolute and relative worth of three Poisson models are evaluated by comparing their prediction of the spatial distribution of storm rainfall with observations from the second half of the sample. The effect of interstorm parameter variation is examined.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph
2018-07-01
To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also slightly outperformed the other MRC models with respect to the intensity-frequency relationship. To assess the performance of the coupled Poisson rectangular pulse and constrained cascade model, precipitation events were stochastically generated by the Poisson rectangular pulse model and then disaggregated by the constrained cascade model. We found that the coupled model performs satisfactorily in terms of the temporal pattern of the precipitation time series, event characteristics and the intensity-frequency relationship.
A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, C. Kristopher; Hauck, Cory D.
In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Da; Zheng, Bin; Lin, Guang
2014-08-29
We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is themore » number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.« less
Yu, Pei; Li, Zi-Yuan; Xu, Hong-Ya; Huang, Liang; Dietz, Barbara; Grebogi, Celso; Lai, Ying-Cheng
2016-12-01
A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics, whereas those of time-reversal symmetric, classically chaotic systems coincide with those of random matrices from the Gaussian orthogonal ensemble (GOE). Does this result hold for two-dimensional Dirac material systems? To address this fundamental question, we investigate the spectral properties in a representative class of graphene billiards with shapes of classically integrable circular-sector billiards. Naively one may expect to observe Poisson statistics, which is indeed true for energies close to the band edges where the quasiparticle obeys the Schrödinger equation. However, for energies near the Dirac point, where the quasiparticles behave like massless Dirac fermions, Poisson statistics is extremely rare in the sense that it emerges only under quite strict symmetry constraints on the straight boundary parts of the sector. An arbitrarily small amount of imperfection of the boundary results in GOE statistics. This implies that, for circular-sector confinements with arbitrary angle, the spectral properties will generically be GOE. These results are corroborated by extensive numerical computation. Furthermore, we provide a physical understanding for our results.
NASA Astrophysics Data System (ADS)
Yu, Pei; Li, Zi-Yuan; Xu, Hong-Ya; Huang, Liang; Dietz, Barbara; Grebogi, Celso; Lai, Ying-Cheng
2016-12-01
A crucial result in quantum chaos, which has been established for a long time, is that the spectral properties of classically integrable systems generically are described by Poisson statistics, whereas those of time-reversal symmetric, classically chaotic systems coincide with those of random matrices from the Gaussian orthogonal ensemble (GOE). Does this result hold for two-dimensional Dirac material systems? To address this fundamental question, we investigate the spectral properties in a representative class of graphene billiards with shapes of classically integrable circular-sector billiards. Naively one may expect to observe Poisson statistics, which is indeed true for energies close to the band edges where the quasiparticle obeys the Schrödinger equation. However, for energies near the Dirac point, where the quasiparticles behave like massless Dirac fermions, Poisson statistics is extremely rare in the sense that it emerges only under quite strict symmetry constraints on the straight boundary parts of the sector. An arbitrarily small amount of imperfection of the boundary results in GOE statistics. This implies that, for circular-sector confinements with arbitrary angle, the spectral properties will generically be GOE. These results are corroborated by extensive numerical computation. Furthermore, we provide a physical understanding for our results.
A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework
Garrett, C. Kristopher; Hauck, Cory D.
2018-04-05
In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taddei, Laura; Martinelli, Matteo; Amendola, Luca, E-mail: taddei@thphys.uni-heidelberg.de, E-mail: martinelli@lorentz.leidenuniv.nl, E-mail: amendola@thphys.uni-heidelberg.de
2016-12-01
The aim of this paper is to constrain modified gravity with redshift space distortion observations and supernovae measurements. Compared with a standard ΛCDM analysis, we include three additional free parameters, namely the initial conditions of the matter perturbations, the overall perturbation normalization, and a scale-dependent modified gravity parameter modifying the Poisson equation, in an attempt to perform a more model-independent analysis. First, we constrain the Poisson parameter Y (also called G {sub eff}) by using currently available f σ{sub 8} data and the recent SN catalog JLA. We find that the inclusion of the additional free parameters makes the constraintsmore » significantly weaker than when fixing them to the standard cosmological value. Second, we forecast future constraints on Y by using the predicted growth-rate data for Euclid and SKA missions. Here again we point out the weakening of the constraints when the additional parameters are included. Finally, we adopt as modified gravity Poisson parameter the specific Horndeski form, and use scale-dependent forecasts to build an exclusion plot for the Yukawa potential akin to the ones realized in laboratory experiments, both for the Euclid and the SKA surveys.« less
Efficient three-dimensional Poisson solvers in open rectangular conducting pipe
NASA Astrophysics Data System (ADS)
Qiang, Ji
2016-06-01
Three-dimensional (3D) Poisson solver plays an important role in the study of space-charge effects on charged particle beam dynamics in particle accelerators. In this paper, we propose three new 3D Poisson solvers for a charged particle beam in an open rectangular conducting pipe. These three solvers include a spectral integrated Green function (IGF) solver, a 3D spectral solver, and a 3D integrated Green function solver. These solvers effectively handle the longitudinal open boundary condition using a finite computational domain that contains the beam itself. This saves the computational cost of using an extra larger longitudinal domain in order to set up an appropriate finite boundary condition. Using an integrated Green function also avoids the need to resolve rapid variation of the Green function inside the beam. The numerical operational cost of the spectral IGF solver and the 3D IGF solver scales as O(N log(N)) , where N is the number of grid points. The cost of the 3D spectral solver scales as O(Nn N) , where Nn is the maximum longitudinal mode number. We compare these three solvers using several numerical examples and discuss the advantageous regime of each solver in the physical application.
Weak convergence to isotropic complex [Formula: see text] random measure.
Wang, Jun; Li, Yunmeng; Sang, Liheng
2017-01-01
In this paper, we prove that an isotropic complex symmetric α -stable random measure ([Formula: see text]) can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.
Mino, H
2007-01-01
To estimate the parameters, the impulse response (IR) functions of some linear time-invariant systems generating intensity processes, in Shot-Noise-Driven Doubly Stochastic Poisson Process (SND-DSPP) in which multivariate presynaptic spike trains and postsynaptic spike trains can be assumed to be modeled by the SND-DSPPs. An explicit formula for estimating the IR functions from observations of multivariate input processes of the linear systems and the corresponding counting process (output process) is derived utilizing the expectation maximization (EM) algorithm. The validity of the estimation formula was verified through Monte Carlo simulations in which two presynaptic spike trains and one postsynaptic spike train were assumed to be observable. The IR functions estimated on the basis of the proposed identification method were close to the true IR functions. The proposed method will play an important role in identifying the input-output relationship of pre- and postsynaptic neural spike trains in practical situations.
Travelling Randomly on the Poincaré Half-Plane with a Pythagorean Compass
NASA Astrophysics Data System (ADS)
Cammarota, V.; Orsingher, E.
2008-02-01
A random motion on the Poincaré half-plane is studied. A particle runs on the geodesic lines changing direction at Poisson-paced times. The hyperbolic distance is analyzed, also in the case where returns to the starting point are admitted. The main results concern the mean hyperbolic distance (and also the conditional mean distance) in all versions of the motion envisaged. Also an analogous motion on orthogonal circles of the sphere is examined and the evolution of the mean distance from the starting point is investigated.
Robust non-parametric one-sample tests for the analysis of recurrent events.
Rebora, Paola; Galimberti, Stefania; Valsecchi, Maria Grazia
2010-12-30
One-sample non-parametric tests are proposed here for inference on recurring events. The focus is on the marginal mean function of events and the basis for inference is the standardized distance between the observed and the expected number of events under a specified reference rate. Different weights are considered in order to account for various types of alternative hypotheses on the mean function of the recurrent events process. A robust version and a stratified version of the test are also proposed. The performance of these tests was investigated through simulation studies under various underlying event generation processes, such as homogeneous and nonhomogeneous Poisson processes, autoregressive and renewal processes, with and without frailty effects. The robust versions of the test have been shown to be suitable in a wide variety of event generating processes. The motivating context is a study on gene therapy in a very rare immunodeficiency in children, where a major end-point is the recurrence of severe infections. Robust non-parametric one-sample tests for recurrent events can be useful to assess efficacy and especially safety in non-randomized studies or in epidemiological studies for comparison with a standard population. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2001-01-01
Since 1750, the number of cataclysmic volcanic eruptions (volcanic explosivity index (VEI)>=4) per decade spans 2-11, with 96 percent located in the tropics and extra-tropical Northern Hemisphere. A two-point moving average of the volcanic time series has higher values since the 1860's than before, being 8.00 in the 1910's (the highest value) and 6.50 in the 1980's, the highest since the 1910's peak. Because of the usual behavior of the first difference of the two-point moving averages, one infers that its value for the 1990's will measure approximately 6.50 +/- 1, implying that approximately 7 +/- 4 cataclysmic volcanic eruptions should be expected during the present decade (2000-2009). Because cataclysmic volcanic eruptions (especially those having VEI>=5) nearly always have been associated with short-term episodes of global cooling, the occurrence of even one might confuse our ability to assess the effects of global warming. Poisson probability distributions reveal that the probability of one or more events with a VEI>=4 within the next ten years is >99 percent. It is approximately 49 percent for an event with a VEI>=5, and 18 percent for an event with a VEI>=6. Hence, the likelihood that a climatically significant volcanic eruption will occur within the next ten years appears reasonably high.
A dictionary learning approach for Poisson image deblurring.
Ma, Liyan; Moisan, Lionel; Yu, Jian; Zeng, Tieyong
2013-07-01
The restoration of images corrupted by blur and Poisson noise is a key issue in medical and biological image processing. While most existing methods are based on variational models, generally derived from a maximum a posteriori (MAP) formulation, recently sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, we propose in this paper a model containing three terms: a patch-based sparse representation prior over a learned dictionary, the pixel-based total variation regularization term and a data-fidelity term capturing the statistics of Poisson noise. The resulting optimization problem can be solved by an alternating minimization technique combined with variable splitting. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio value and the method noise, the proposed algorithm outperforms state-of-the-art methods.
Space-time-modulated stochastic processes
NASA Astrophysics Data System (ADS)
Giona, Massimiliano
2017-10-01
Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.
NASA Astrophysics Data System (ADS)
Donges, J. F.; Schleussner, C.-F.; Siegmund, J. F.; Donner, R. V.
2016-05-01
Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a framework for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origin of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the framework to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.
Bayesian dynamic modeling of time series of dengue disease case counts.
Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander
2017-07-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.
A novel slithering locomotion mechanism for a snake-like soft robot
NASA Astrophysics Data System (ADS)
Cao, Yunteng; Liu, Yilun; Chen, Youlong; Zhu, Liangliang; Yan, Yuan; Chen, Xi
2017-02-01
A novel mechanism for slithering locomotion of a snake-like soft robot is presented. A rectangular beam with an isotropic coefficient of friction of its contact surface with the flat ground can move forward or backward when actuated by a periodic traveling sinusoidal wave. The Poisson's ratio of the beam plays an important role in the slithering locomotion speed and direction, particularly when it is negative. A theoretical model is proposed to elucidate the slithering locomotion mechanism, which is analogous to the rolling of a wheel on ground. There are two key factors of slithering locomotion: a rotational velocity field and a corresponding local contact region between the beam and ground. During wriggling motion of the rectangular beam, a rotational velocity field is observed near the maximum curvature point of the beam. If the beam has a negative Poisson's ratio, the axial tension will cause a lateral expansion so that the contact region between the beam and ground is located at the outer edge of the maximum curvature (the largest lateral expansion point). The direction of the beam's velocity at this outer edge is usually opposite to the traveling wave direction, so the friction force propels the beam in the direction of the traveling wave. A similar scenario is found for the relatively large amplitude of wriggling motion when the beam's Poisson's ratio is positive. Finite element method (FEM) simulation was conducted to verify the slithering locomotion mechanism, and good agreement was found between the FEM simulation results and theoretical predictions. The insights obtained here present a simple, novel and straightforward mechanism for slithering locomotion and are helpful for future designs of snake-like soft robots.
Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data
Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D.; Nichols, Thomas E.
2017-01-01
Summary Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the paper are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to 1) identify areas of consistent activation; and 2) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterised as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. PMID:28498564
Yes, the GIGP Really Does Work--And Is Workable!
ERIC Educational Resources Information Center
Burrell, Quentin L.; Fenton, Michael R.
1993-01-01
Discusses the generalized inverse Gaussian-Poisson (GIGP) process for informetric modeling. Negative binomial distribution is discussed, construction of the GIGP process is explained, zero-truncated GIGP is considered, and applications of the process with journals, library circulation statistics, and database index terms are described. (50…
Exploring the evolutionary mechanism of complex supply chain systems using evolving hypergraphs
NASA Astrophysics Data System (ADS)
Suo, Qi; Guo, Jin-Li; Sun, Shiwei; Liu, Han
2018-01-01
A new evolutionary model is proposed to describe the characteristics and evolution pattern of supply chain systems using evolving hypergraphs, in which nodes represent enterprise entities while hyperedges represent the relationships among diverse trades. The nodes arrive at the system in accordance with a Poisson process, with the evolving process incorporating the addition of new nodes, linking of old nodes, and rewiring of links. Grounded in the Poisson process theory and continuum theory, the stationary average hyperdegree distribution is shown to follow a shifted power law (SPL), and the theoretical predictions are consistent with the results of numerical simulations. Testing the impact of parameters on the model yields a positive correlation between hyperdegree and degree. The model also uncovers macro characteristics of the relationships among enterprises due to the microscopic interactions among individuals.
Study of photon correlation techniques for processing of laser velocimeter signals
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.
1977-01-01
The objective was to provide the theory and a system design for a new type of photon counting processor for low level dual scatter laser velocimeter (LV) signals which would be capable of both the first order measurements of mean flow and turbulence intensity and also the second order time statistics: cross correlation auto correlation, and related spectra. A general Poisson process model for low level LV signals and noise which is valid from the photon-resolved regime all the way to the limiting case of nonstationary Gaussian noise was used. Computer simulation algorithms and higher order statistical moment analysis of Poisson processes were derived and applied to the analysis of photon correlation techniques. A system design using a unique dual correlate and subtract frequency discriminator technique is postulated and analyzed. Expectation analysis indicates that the objective measurements are feasible.
Quasi-Hamiltonian structure and Hojman construction
NASA Astrophysics Data System (ADS)
Carinena, Jose F.; Guha, Partha; Ranada, Manuel F.
2007-08-01
Given a smooth vector field [Gamma] and assuming the knowledge of an infinitesimal symmetry X, Hojman [S. Hojman, The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system, J. Phys. A Math. Gen. 29 (1996) 667-674] proposed a method for finding both a Poisson tensor and a function H such that [Gamma] is the corresponding Hamiltonian system. In this paper, we approach the problem from geometrical point of view. The geometrization leads to the clarification of several concepts and methods used in Hojman's paper. In particular, the relationship between the nonstandard Hamiltonian structure proposed by Hojman and the degenerate quasi-Hamiltonian structures introduced by Crampin and Sarlet [M. Crampin, W. Sarlet, Bi-quasi-Hamiltonian systems, J. Math. Phys. 43 (2002) 2505-2517] is unveiled in this paper. We also provide some applications of our construction.
Inhomogeneous Poisson process rate function inference from dead-time limited observations.
Verma, Gunjan; Drost, Robert J
2017-05-01
The estimation of an inhomogeneous Poisson process (IHPP) rate function from a set of process observations is an important problem arising in optical communications and a variety of other applications. However, because of practical limitations of detector technology, one is often only able to observe a corrupted version of the original process. In this paper, we consider how inference of the rate function is affected by dead time, a period of time after the detection of an event during which a sensor is insensitive to subsequent IHPP events. We propose a flexible nonparametric Bayesian approach to infer an IHPP rate function given dead-time limited process realizations. Simulation results illustrate the effectiveness of our inference approach and suggest its ability to extend the utility of existing sensor technology by permitting more accurate inference on signals whose observations are dead-time limited. We apply our inference algorithm to experimentally collected optical communications data, demonstrating the practical utility of our approach in the context of channel modeling and validation.
The Wigner distribution and 2D classical maps
NASA Astrophysics Data System (ADS)
Sakhr, Jamal
2017-07-01
The Wigner spacing distribution has a long and illustrious history in nuclear physics and in the quantum mechanics of classically chaotic systems. In this paper, a novel connection between the Wigner distribution and 2D classical mechanics is introduced. Based on a well-known correspondence between the Wigner distribution and the 2D Poisson point process, the hypothesis that typical pseudo-trajectories of a 2D ergodic map have a Wignerian nearest-neighbor spacing distribution (NNSD) is put forward and numerically tested. The standard Euclidean metric is used to compute the interpoint spacings. In all test cases, the hypothesis is upheld, and the range of validity of the hypothesis appears to be robust in the sense that it is not affected by the presence or absence of: (i) mixing; (ii) time-reversal symmetry; and/or (iii) dissipation.
NASA Astrophysics Data System (ADS)
von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo
2014-06-01
Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process
Chen, Yang; Zhang, Michael Q.
2018-01-01
Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. PMID:29440282
Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation
NASA Astrophysics Data System (ADS)
Nur Rachmawati, Ro'fah; Irene; Budiharto, Widodo
2014-03-01
Option is one of derivative instruments that can help investors improve their expected return and minimize the risks. However, the Black-Scholes formula is generally used in determining the price of the option does not involve skewness factor and it is difficult to apply in computing process because it produces oscillation for the skewness values close to zero. In this paper, we construct option pricing formula that involve skewness by modified Black-Scholes formula using Shifted Poisson model and transformed it into the form of a Linear Approximation in the complete market to reduce the oscillation. The results are Linear Approximation formula can predict the price of an option with very accurate and successfully reduce the oscillations in the calculation processes.
Replication of Cancellation Orders Using First-Passage Time Theory in Foreign Currency Market
NASA Astrophysics Data System (ADS)
Boilard, Jean-François; Kanazawa, Kiyoshi; Takayasu, Hideki; Takayasu, Misako
Our research focuses on the annihilation dynamics of limit orders in a spot foreign currency market for various currency pairs. We analyze the cancellation order distribution conditioned on the normalized distance from the mid-price; where the normalized distance is defined as the final distance divided by the initial distance. To reproduce real data, we introduce two simple models that assume the market price moves randomly and cancellation occurs either after fixed time t or following the Poisson process. Results of our model qualitatively reproduce basic statistical properties of cancellation orders of the data when limit orders are cancelled according to the Poisson process. We briefly discuss implication of our findings in the construction of more detailed microscopic models.
NASA Astrophysics Data System (ADS)
Radev, Dimitar; Lokshina, Izabella
2010-11-01
The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.
Quasi-neutral limit of Euler–Poisson system of compressible fluids coupled to a magnetic field
NASA Astrophysics Data System (ADS)
Yang, Jianwei
2018-06-01
In this paper, we consider the quasi-neutral limit of a three-dimensional Euler-Poisson system of compressible fluids coupled to a magnetic field. We prove that, as Debye length tends to zero, periodic initial-value problems of the model have unique smooth solutions existing in the time interval where the ideal incompressible magnetohydrodynamic equations has smooth solution. Meanwhile, it is proved that smooth solutions converge to solutions of incompressible magnetohydrodynamic equations with a sharp convergence rate in the process of quasi-neutral limit.
Effect of non-Poisson samples on turbulence spectra from laser velocimetry
NASA Technical Reports Server (NTRS)
Sree, Dave; Kjelgaard, Scott O.; Sellers, William L., III
1994-01-01
Spectral analysis of laser velocimetry (LV) data plays an important role in characterizing a turbulent flow and in estimating the associated turbulence scales, which can be helpful in validating theoretical and numerical turbulence models. The determination of turbulence scales is critically dependent on the accuracy of the spectral estimates. Spectral estimations from 'individual realization' laser velocimetry data are typically based on the assumption of a Poisson sampling process. What this Note has demonstrated is that the sampling distribution must be considered before spectral estimates are used to infer turbulence scales.
Fission meter and neutron detection using poisson distribution comparison
Rowland, Mark S; Snyderman, Neal J
2014-11-18
A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.
Method for resonant measurement
Rhodes, G.W.; Migliori, A.; Dixon, R.D.
1996-03-05
A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.
Formulation of the Multi-Hit Model With a Non-Poisson Distribution of Hits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassiliev, Oleg N., E-mail: Oleg.Vassiliev@albertahealthservices.ca
2012-07-15
Purpose: We proposed a formulation of the multi-hit single-target model in which the Poisson distribution of hits was replaced by a combination of two distributions: one for the number of particles entering the target and one for the number of hits a particle entering the target produces. Such an approach reflects the fact that radiation damage is a result of two different random processes: particle emission by a radiation source and interaction of particles with matter inside the target. Methods and Materials: Poisson distribution is well justified for the first of the two processes. The second distribution depends on howmore » a hit is defined. To test our approach, we assumed that the second distribution was also a Poisson distribution. The two distributions combined resulted in a non-Poisson distribution. We tested the proposed model by comparing it with previously reported data for DNA single- and double-strand breaks induced by protons and electrons, for survival of a range of cell lines, and variation of the initial slopes of survival curves with radiation quality for heavy-ion beams. Results: Analysis of cell survival equations for this new model showed that they had realistic properties overall, such as the initial and high-dose slopes of survival curves, the shoulder, and relative biological effectiveness (RBE) In most cases tested, a better fit of survival curves was achieved with the new model than with the linear-quadratic model. The results also suggested that the proposed approach may extend the multi-hit model beyond its traditional role in analysis of survival curves to predicting effects of radiation quality and analysis of DNA strand breaks. Conclusions: Our model, although conceptually simple, performed well in all tests. The model was able to consistently fit data for both cell survival and DNA single- and double-strand breaks. It correctly predicted the dependence of radiation effects on parameters of radiation quality.« less
A Random Variable Transformation Process.
ERIC Educational Resources Information Center
Scheuermann, Larry
1989-01-01
Provides a short BASIC program, RANVAR, which generates random variates for various theoretical probability distributions. The seven variates include: uniform, exponential, normal, binomial, Poisson, Pascal, and triangular. (MVL)
Neti, Prasad V.S.V.; Howell, Roger W.
2010-01-01
Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086
Neti, Prasad V.S.V.; Howell, Roger W.
2008-01-01
Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log normal distribution function (J Nucl Med 47, 6 (2006) 1049-1058) with the aid of an autoradiographic approach. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analyses of these data. Methods The measured distributions of alpha particle tracks per cell were subjected to statistical tests with Poisson (P), log normal (LN), and Poisson – log normal (P – LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL 210Po-citrate. When cells were exposed to 67 kBq/mL, the P – LN distribution function gave a better fit, however, the underlying activity distribution remained log normal. Conclusions The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:16741316
Yang, Sejung; Lee, Byung-Uk
2015-01-01
In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138
NASA Astrophysics Data System (ADS)
Orlov, Timofey; Sadkov, Sergey; Panchenko, Evgeniy; Zverev, Andrey
2017-04-01
Peatlands occupy a significant share of the cryolithozone area. They are currently experiencing an intense affection by oil and gas field development, as well as by the construction of infrastructure. That poses the importance of the peatland studies, including those dealing with the forecast of peatland evolution. Earlier we conducted a similar probabilistic modelling for the areas of thermokarst development. Principle points of that were: 1. Appearance of a thermokarst depression within an area given is the random event which probability is directly proportional to the size of the area ( Δs). For small sites the probability of one thermokarst depression to appear is much greater than that for several ones, i.e. p1 = γ Δs + o (Δs) pk = o (Δs) \\quad k=2,3 ... 2. Growth of a new thermokarst depression is a random variable independent on other depressions' growth. It happens due to thermoabrasion and, hence, is directly proportional to the amount of heat in the lake and is inversely proportional to the lateral surface area of the lake depression. By using this model, we are able to get analytically two main laws of the morphological pattern for lake thermokarst plains. First, the distribution of a number of thermokarst depressions (centers) at a random plot obey the Poisson law: P(k,s) = (γ s)^k/k! e-γ s. where γ is an average number of depressions per area unit, s is a square of a trial sites. Second, lognormal distribution of diameters of thermokarst lakes is true at any time, i.e. density distribution is given by the equation: fd (x,t)=1/√{2πσ x √{t}} e-
Lambert, Amaury
2011-07-01
We consider a general, neutral, dynamical model of biodiversity. Individuals have i.i.d. lifetime durations, which are not necessarily exponentially distributed, and each individual gives birth independently at constant rate λ. Thus, the population size is a homogeneous, binary Crump-Mode-Jagers process (which is not necessarily a Markov process). We assume that types are clonally inherited. We consider two classes of speciation models in this setting. In the immigration model, new individuals of an entirely new species singly enter the population at constant rate μ (e.g., from the mainland into the island). In the mutation model, each individual independently experiences point mutations in its germ line, at constant rate θ. We are interested in the species abundance distribution, i.e., in the numbers, denoted I(n)(k) in the immigration model and A(n)(k) in the mutation model, of species represented by k individuals, k = 1, 2, . . . , n, when there are n individuals in the total population. In the immigration model, we prove that the numbers (I(t)(k); k ≥ 1) of species represented by k individuals at time t, are independent Poisson variables with parameters as in Fisher's log-series. When conditioning on the total size of the population to equal n, this results in species abundance distributions given by Ewens' sampling formula. In particular, I(n)(k) converges as n → ∞ to a Poisson r.v. with mean γ/k, where γ : = μ/λ. In the mutation model, as n → ∞, we obtain the almost sure convergence of n (-1) A(n)(k) to a nonrandom explicit constant. In the case of a critical, linear birth-death process, this constant is given by Fisher's log-series, namely n(-1) A(n)(k) converges to α(k)/k, where α : = λ/(λ + θ). In both models, the abundances of the most abundant species are briefly discussed.
Lyashevska, Olga; Brus, Dick J; van der Meer, Jaap
2016-01-01
The objective of the study was to provide a general procedure for mapping species abundance when data are zero-inflated and spatially correlated counts. The bivalve species Macoma balthica was observed on a 500×500 m grid in the Dutch part of the Wadden Sea. In total, 66% of the 3451 counts were zeros. A zero-inflated Poisson mixture model was used to relate counts to environmental covariates. Two models were considered, one with relatively fewer covariates (model "small") than the other (model "large"). The models contained two processes: a Bernoulli (species prevalence) and a Poisson (species intensity, when the Bernoulli process predicts presence). The model was used to make predictions for sites where only environmental data are available. Predicted prevalences and intensities show that the model "small" predicts lower mean prevalence and higher mean intensity, than the model "large". Yet, the product of prevalence and intensity, which might be called the unconditional intensity, is very similar. Cross-validation showed that the model "small" performed slightly better, but the difference was small. The proposed methodology might be generally applicable, but is computer intensive.
Derivation of kinetic equations from non-Wiener stochastic differential equations
NASA Astrophysics Data System (ADS)
Basharov, A. M.
2013-12-01
Kinetic differential-difference equations containing terms with fractional derivatives and describing α -stable Levy processes with 0 < α < 1 have been derived in a unified manner in terms of one-dimensional stochastic differential equations controlled merely by the Poisson processes.
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
Pereira, N F; Sitek, A
2011-01-01
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated. PMID:20736496
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
NASA Astrophysics Data System (ADS)
Pereira, N. F.; Sitek, A.
2010-09-01
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.
Sojourning with the Homogeneous Poisson Process.
Liu, Piaomu; Peña, Edsel A
2016-01-01
In this pedagogical article, distributional properties, some surprising, pertaining to the homogeneous Poisson process (HPP), when observed over a possibly random window, are presented. Properties of the gap-time that covered the termination time and the correlations among gap-times of the observed events are obtained. Inference procedures, such as estimation and model validation, based on event occurrence data over the observation window, are also presented. We envision that through the results in this paper, a better appreciation of the subtleties involved in the modeling and analysis of recurrent events data will ensue, since the HPP is arguably one of the simplest among recurrent event models. In addition, the use of the theorem of total probability, Bayes theorem, the iterated rules of expectation, variance and covariance, and the renewal equation could be illustrative when teaching distribution theory, mathematical statistics, and stochastic processes at both the undergraduate and graduate levels. This article is targeted towards both instructors and students.
Lu, Benzhuo; Zhou, Y.C.
2011-01-01
The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations. PMID:21575582
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Beeson, Harold; Fernandez-Pello, A. Carlos
2014-01-01
Repeated Test 1 extinction tests near the upward flammability limit are expected to follow a Poisson process trend. This Poisson process trend suggests that rather than define a ULOI and MOC (which requires two limits to be determined), it might be better to define a single upward limit as being where 1/e (where e (approx. equal to 2.7183) is the characteristic time of the normalized Poisson process) of the materials burn, or, rounding, where approximately 1/3 of the samples fail the test (and burn). Recognizing that spacecraft atmospheres will not bound the entire oxygen-pressure parameter space, but actually lie along the normoxic atmosphere control band, we can focus the materials flammability testing along this normoxic band. A Normoxic Upward Limiting Pressure (NULP) is defined that determines the minimum safe total pressure for a material within the constant partial pressure control band. Then, increasing this pressure limit by a factor of safety, we can define the material as being safe to use at the NULP + SF (where SF is on the order of 10 kilopascal, based on existing flammability data). It is recommended that the thickest material to be tested with the current Test 1 igniter should be 3 mm thick (1/8 inches) to avoid the problem of differentiating between an ignition limit and a true flammability limit.
A heuristic for the distribution of point counts for random curves over a finite field.
Achter, Jeffrey D; Erman, Daniel; Kedlaya, Kiran S; Wood, Melanie Matchett; Zureick-Brown, David
2015-04-28
How many rational points are there on a random algebraic curve of large genus g over a given finite field Fq? We propose a heuristic for this question motivated by a (now proven) conjecture of Mumford on the cohomology of moduli spaces of curves; this heuristic suggests a Poisson distribution with mean q+1+1/(q-1). We prove a weaker version of this statement in which g and q tend to infinity, with q much larger than g. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
77 FR 13691 - Qualification of Drivers; Exemption Applications; Vision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
..., ocular hypertension, retinal detachment, cataracts and corneal scaring. In most cases, their eye... Application of Multiple Regression Analysis of a Poisson Process,'' Journal of American Statistical...
Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures
NASA Astrophysics Data System (ADS)
Dettmann, Carl P.
2018-05-01
Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments.
A GPU accelerated and error-controlled solver for the unbounded Poisson equation in three dimensions
NASA Astrophysics Data System (ADS)
Exl, Lukas
2017-12-01
An efficient solver for the three dimensional free-space Poisson equation is presented. The underlying numerical method is based on finite Fourier series approximation. While the error of all involved approximations can be fully controlled, the overall computation error is driven by the convergence of the finite Fourier series of the density. For smooth and fast-decaying densities the proposed method will be spectrally accurate. The method scales with O(N log N) operations, where N is the total number of discretization points in the Cartesian grid. The majority of the computational costs come from fast Fourier transforms (FFT), which makes it ideal for GPU computation. Several numerical computations on CPU and GPU validate the method and show efficiency and convergence behavior. Tests are performed using the Vienna Scientific Cluster 3 (VSC3). A free MATLAB implementation for CPU and GPU is provided to the interested community.
NASA Astrophysics Data System (ADS)
Muslih, M. Refai; Sumirat, I.; Sairun; Purwanta
2008-03-01
The distribution of residual stress of SUS304 samples that were undergone TIG welding process with four different electric currents has been measured. The welding has been done in the middle part of the samples that was previously grooved by milling machine. Before they were welded the samples were annealed at 650 degree Celsius for one hour. The annealing process was done to eliminate residual stress generated by grooving process so that the residual stress within the samples was merely produced from welding process. The calculation of distribution of residual stress was carried out by measuring the strains within crystal planes of Fe(220) SUS304. Strain, Young modulus, and Poisson ratio of Fe(220) SUS304 were measured using DN1-M neutron diffractometer. Young modulus and Poisson ratio of Fe(220) SUS304 sample were measured in-situ. The result of calculations showed that distribution of residual stress of SUS304 in the vicinity of welded area is influenced both by treatments given at the samples-making process and by the electric current used during welding process.
The Evolution of Hyperedge Cardinalities and Bose-Einstein Condensation in Hypernetworks.
Guo, Jin-Li; Suo, Qi; Shen, Ai-Zhong; Forrest, Jeffrey
2016-09-27
To depict the complex relationship among nodes and the evolving process of a complex system, a Bose-Einstein hypernetwork is proposed in this paper. Based on two basic evolutionary mechanisms, growth and preference jumping, the distribution of hyperedge cardinalities is studied. The Poisson process theory is used to describe the arrival process of new node batches. And, by using the Poisson process theory and a continuity technique, the hypernetwork is analyzed and the characteristic equation of hyperedge cardinalities is obtained. Additionally, an analytical expression for the stationary average hyperedge cardinality distribution is derived by employing the characteristic equation, from which Bose-Einstein condensation in the hypernetwork is obtained. The theoretical analyses in this paper agree with the conducted numerical simulations. This is the first study on the hyperedge cardinality in hypernetworks, where Bose-Einstein condensation can be regarded as a special case of hypernetworks. Moreover, a condensation degree is also discussed with which Bose-Einstein condensation can be classified.
Analytically Solvable Model of Spreading Dynamics with Non-Poissonian Processes
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János
2014-01-01
Non-Poissonian bursty processes are ubiquitous in natural and social phenomena, yet little is known about their effects on the large-scale spreading dynamics. In order to characterize these effects, we devise an analytically solvable model of susceptible-infected spreading dynamics in infinite systems for arbitrary inter-event time distributions and for the whole time range. Our model is stationary from the beginning, and the role of the lower bound of inter-event times is explicitly considered. The exact solution shows that for early and intermediate times, the burstiness accelerates the spreading as compared to a Poisson-like process with the same mean and same lower bound of inter-event times. Such behavior is opposite for late-time dynamics in finite systems, where the power-law distribution of inter-event times results in a slower and algebraic convergence to a fully infected state in contrast to the exponential decay of the Poisson-like process. We also provide an intuitive argument for the exponent characterizing algebraic convergence.
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process.
Djekidel, Mohamed Nadhir; Chen, Yang; Zhang, Michael Q
2018-02-12
Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. © 2018 Djekidel et al.; Published by Cold Spring Harbor Laboratory Press.
Simulation of diffuse-charge capacitance in electric double layer capacitors
NASA Astrophysics Data System (ADS)
Sun, Ning; Gersappe, Dilip
2017-01-01
We use a Lattice Boltzmann Model (LBM) in order to simulate diffuse-charge dynamics in Electric Double Layer Capacitors (EDLCs). Simulations are carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). The steric effect of concentrated solutions is considered by using a Modified Poisson-Nernst-Planck (MPNP) equations and compared with regular Poisson-Nernst-Planck (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. Our studies show how electrode morphology can be used to tailor the properties of supercapacitors.
Martínez Steele, Eurídice; Baraldi, Larissa Galastri; Louzada, Maria Laura da Costa; Moubarac, Jean-Claude; Mozaffarian, Dariush; Monteiro, Carlos Augusto
2016-01-01
Objectives To investigate the contribution of ultra-processed foods to the intake of added sugars in the USA. Ultra-processed foods were defined as industrial formulations which, besides salt, sugar, oils and fats, include substances not used in culinary preparations, in particular additives used to imitate sensorial qualities of minimally processed foods and their culinary preparations. Design Cross-sectional study. Setting National Health and Nutrition Examination Survey 2009–2010. Participants We evaluated 9317 participants aged 1+ years with at least one 24 h dietary recall. Main outcome measures Average dietary content of added sugars and proportion of individuals consuming more than 10% of total energy from added sugars. Data analysis Gaussian and Poisson regressions estimated the association between consumption of ultra-processed foods and intake of added sugars. All models incorporated survey sample weights and adjusted for age, sex, race/ethnicity, family income and educational attainment. Results Ultra-processed foods comprised 57.9% of energy intake, and contributed 89.7% of the energy intake from added sugars. The content of added sugars in ultra-processed foods (21.1% of calories) was eightfold higher than in processed foods (2.4%) and fivefold higher than in unprocessed or minimally processed foods and processed culinary ingredients grouped together (3.7%). Both in unadjusted and adjusted models, each increase of 5 percentage points in proportional energy intake from ultra-processed foods increased the proportional energy intake from added sugars by 1 percentage point. Consumption of added sugars increased linearly across quintiles of ultra-processed food consumption: from 7.5% of total energy in the lowest quintile to 19.5% in the highest. A total of 82.1% of Americans in the highest quintile exceeded the recommended limit of 10% energy from added sugars, compared with 26.4% in the lowest. Conclusions Decreasing the consumption of ultra-processed foods could be an effective way of reducing the excessive intake of added sugars in the USA. PMID:26962035
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph
2017-04-01
Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30
The probability density function (PDF) of Lagrangian Turbulence
NASA Astrophysics Data System (ADS)
Birnir, B.
2012-12-01
The statistical theory of Lagrangian turbulence is derived from the stochastic Navier-Stokes equation. Assuming that the noise in fully-developed turbulence is a generic noise determined by the general theorems in probability, the central limit theorem and the large deviation principle, we are able to formulate and solve the Kolmogorov-Hopf equation for the invariant measure of the stochastic Navier-Stokes equations. The intermittency corrections to the scaling exponents of the structure functions require a multiplicative (multipling the fluid velocity) noise in the stochastic Navier-Stokes equation. We let this multiplicative noise, in the equation, consists of a simple (Poisson) jump process and then show how the Feynmann-Kac formula produces the log-Poissonian processes, found by She and Leveque, Waymire and Dubrulle. These log-Poissonian processes give the intermittency corrections that agree with modern direct Navier-Stokes simulations (DNS) and experiments. The probability density function (PDF) plays a key role when direct Navier-Stokes simulations or experimental results are compared to theory. The statistical theory of turbulence is determined, including the scaling of the structure functions of turbulence, by the invariant measure of the Navier-Stokes equation and the PDFs for the various statistics (one-point, two-point, N-point) can be obtained by taking the trace of the corresponding invariant measures. Hopf derived in 1952 a functional equation for the characteristic function (Fourier transform) of the invariant measure. In distinction to the nonlinear Navier-Stokes equation, this is a linear functional differential equation. The PDFs obtained from the invariant measures for the velocity differences (two-point statistics) are shown to be the four parameter generalized hyperbolic distributions, found by Barndorff-Nilsen. These PDF have heavy tails and a convex peak at the origin. A suitable projection of the Kolmogorov-Hopf equations is the differential equation determining the generalized hyperbolic distributions. Then we compare these PDFs with DNS results and experimental data.
On a Poisson homogeneous space of bilinear forms with a Poisson-Lie action
NASA Astrophysics Data System (ADS)
Chekhov, L. O.; Mazzocco, M.
2017-12-01
Let \\mathscr A be the space of bilinear forms on C^N with defining matrices A endowed with a quadratic Poisson structure of reflection equation type. The paper begins with a short description of previous studies of the structure, and then this structure is extended to systems of bilinear forms whose dynamics is governed by the natural action A\\mapsto B ABT} of the {GL}_N Poisson-Lie group on \\mathscr A. A classification is given of all possible quadratic brackets on (B, A)\\in {GL}_N× \\mathscr A preserving the Poisson property of the action, thus endowing \\mathscr A with the structure of a Poisson homogeneous space. Besides the product Poisson structure on {GL}_N× \\mathscr A, there are two other (mutually dual) structures, which (unlike the product Poisson structure) admit reductions by the Dirac procedure to a space of bilinear forms with block upper triangular defining matrices. Further generalisations of this construction are considered, to triples (B,C, A)\\in {GL}_N× {GL}_N× \\mathscr A with the Poisson action A\\mapsto B ACT}, and it is shown that \\mathscr A then acquires the structure of a Poisson symmetric space. Generalisations to chains of transformations and to the quantum and quantum affine algebras are investigated, as well as the relations between constructions of Poisson symmetric spaces and the Poisson groupoid. Bibliography: 30 titles.
A multiscale filter for noise reduction of low-dose cone beam projections.
Yao, Weiguang; Farr, Jonathan B
2015-08-21
The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024 × 768 pixels.
Poisson-event-based analysis of cell proliferation.
Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul
2015-05-01
A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture. © 2015 International Society for Advancement of Cytometry.
Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals.
Qin, Hongbo; Luan, Xinghe; Feng, Chuang; Yang, Daoguo; Zhang, Guoqi
2017-12-12
For the limitation of experimental methods in crystal characterization, in this study, the mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende GaN crystals were investigated by first-principles calculations based on density functional theory. Firstly, bulk moduli, shear moduli, elastic moduli and Poisson's ratios of the two GaN polycrystals were calculated using Voigt and Hill approximations, and the results show wurtzite GaN has larger shear and elastic moduli and exhibits more obvious brittleness. Moreover, both wurtzite and zinc-blende GaN monocrystals present obvious mechanical anisotropic behavior. For wurtzite GaN monocrystal, the maximum and minimum elastic moduli are located at orientations [001] and <111>, respectively, while they are in the orientations <111> and <100> for zinc-blende GaN monocrystal, respectively. Compared to the elastic modulus, the shear moduli of the two GaN monocrystals have completely opposite direction dependences. However, different from elastic and shear moduli, the bulk moduli of the two monocrystals are nearly isotropic, especially for the zinc-blende GaN. Besides, in the wurtzite GaN, Poisson's ratios at the planes containing [001] axis are anisotropic, and the maximum value is 0.31 which is located at the directions vertical to [001] axis. For zinc-blende GaN, Poisson's ratios at planes (100) and (111) are isotropic, while the Poisson's ratio at plane (110) exhibits dramatically anisotropic phenomenon. Additionally, the calculated Debye temperatures of wurtzite and zinc-blende GaN are 641.8 and 620.2 K, respectively. At 300 K, the calculated heat capacities of wurtzite and zinc-blende are 33.6 and 33.5 J mol -1 K -1 , respectively. Finally, the band gap is located at the G point for the two crystals, and the band gaps of wurtzite and zinc-blende GaN are 3.62 eV and 3.06 eV, respectively. At the G point, the lowest energy of conduction band in the wurtzite GaN is larger, resulting in a wider band gap. Densities of states in the orbital hybridization between Ga and N atoms of wurtzite GaN are much higher, indicating more electrons participate in forming Ga-N ionic bonds in the wurtzite GaN.
A Gibbs point field model for the spatial pattern of coronary capillaries
NASA Astrophysics Data System (ADS)
Karch, R.; Neumann, M.; Neumann, F.; Ullrich, R.; Neumüller, J.; Schreiner, W.
2006-09-01
We propose a Gibbs point field model for the pattern of coronary capillaries in transverse histologic sections from human hearts, based on the physiology of oxygen supply from capillaries to tissue. To specify the potential energy function of the Gibbs point field, we draw on an analogy between the equation of steady-state oxygen diffusion from an array of parallel capillaries to the surrounding tissue and Poisson's equation for the electrostatic potential of a two-dimensional distribution of identical point charges. The influence of factors other than diffusion is treated as a thermal disturbance. On this basis, we arrive at the well-known two-dimensional one-component plasma, a system of identical point charges exhibiting a weak (logarithmic) repulsive interaction that is completely characterized by a single dimensionless parameter. By variation of this parameter, the model is able to reproduce many characteristics of real capillary patterns.
(Where) Is Functional Decline Isolating? Disordered Environments and the Onset of Disability.
Schafer, Markus H
2018-03-01
The onset of disability is believed to undermine social connectedness and raise the risk of social isolation, yet spatial environments are seldom considered in this process. This study examines whether unruly home and neighborhood conditions intensify the association between disability onset and several dimensions of social connectedness. I incorporate longitudinal data from the National Social Life, Health, and Aging Project, which contains environmental evaluations conducted by trained observers ( N = 1,558). Results from Poisson, ordinal logistic, and linear regression models reveal heterogeneous consequences of disablement: disability onset was associated with reduced core network size, fewer friends, lower likelihood of social interaction, and less overall social connectedness-though mainly when accompanied by higher levels of household disorder. There was limited evidence that neighborhood disorder moderated consequences of disability. Findings point to the importance of the home as an environmental resource and underscore important contextual contingencies in the isolating consequences of disability.
Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.
Feng, Jianyuan; Feng, Zhiyong
2017-09-11
Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.
Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
Krumin, Michael; Shoham, Shy
2010-01-01
Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705
NASA Astrophysics Data System (ADS)
Meerson, Baruch
2015-05-01
Suppose that a point-like steady source at x = 0 injects particles into a half-infinite line. The particles diffuse and die. At long times a non-equilibrium steady state sets in, and we assume that it involves many particles. If the particles are non-interacting, their total number N in the steady state is Poisson-distributed with mean \\bar{N} predicted from a deterministic reaction-diffusion equation. Here we determine the most likely density history of this driven system conditional on observing a given N. We also consider two prototypical examples of interacting diffusing particles: (i) a family of mortal diffusive lattice gases with constant diffusivity (as illustrated by the simple symmetric exclusion process with mortal particles), and (ii) random walkers that can annihilate in pairs. In both examples we calculate the variances of the (non-Poissonian) stationary distributions of N.
On the Singularity of the Vlasov-Poisson System
DOE Office of Scientific and Technical Information (OSTI.GOV)
and Hong Qin, Jian Zheng
2013-04-26
The Vlasov-Poisson system can be viewed as the collisionless limit of the corresponding Fokker- Planck-Poisson system. It is reasonable to expect that the result of Landau damping can also be obtained from the Fokker-Planck-Poisson system when the collision frequency v approaches zero. However, we show that the colllisionless Vlasov-Poisson system is a singular limit of the collisional Fokker-Planck-Poisson system, and Landau's result can be recovered only as the approaching zero from the positive side.
On the singularity of the Vlasov-Poisson system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jian; Qin, Hong; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08550
2013-09-15
The Vlasov-Poisson system can be viewed as the collisionless limit of the corresponding Fokker-Planck-Poisson system. It is reasonable to expect that the result of Landau damping can also be obtained from the Fokker-Planck-Poisson system when the collision frequency ν approaches zero. However, we show that the collisionless Vlasov-Poisson system is a singular limit of the collisional Fokker-Planck-Poisson system, and Landau's result can be recovered only as the ν approaches zero from the positive side.
Some functional limit theorems for compound Cox processes
NASA Astrophysics Data System (ADS)
Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.
2016-06-01
An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.
Some functional limit theorems for compound Cox processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, Victor Yu.; Institute of Informatics Problems FRC CSC RAS; Chertok, A. V.
2016-06-08
An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.
Stochastic Processes as True-Score Models for Highly Speeded Mental Tests.
ERIC Educational Resources Information Center
Moore, William E.
The previous theoretical development of the Poisson process as a strong model for the true-score theory of mental tests is discussed, and additional theoretical properties of the model from the standpoint of individual examinees are developed. The paper introduces the Erlang process as a family of test theory models and shows in the context of…
Murga Oporto, L; Menéndez-de León, C; Bauzano Poley, E; Núñez-Castaín, M J
Among the differents techniques for motor unit number estimation (MUNE) there is the statistical one (Poisson), in which the activation of motor units is carried out by electrical stimulation and the estimation performed by means of a statistical analysis based on the Poisson s distribution. The study was undertaken in order to realize an approximation to the MUNE Poisson technique showing a coprehensible view of its methodology and also to obtain normal results in the extensor digitorum brevis muscle (EDB) from a healthy population. One hundred fourteen normal volunteers with age ranging from 10 to 88 years were studied using the MUNE software contained in a Viking IV system. The normal subjects were divided into two age groups (10 59 and 60 88 years). The EDB MUNE from all them was 184 49. Both, the MUNE and the amplitude of the compound muscle action potential (CMAP) were significantly lower in the older age group (p< 0.0001), showing the MUNE a better correlation with age than CMAP amplitude ( 0.5002 and 0.4142, respectively p< 0.0001). Statistical MUNE method is an important way for the assessment to the phisiology of the motor unit. The value of MUNE correlates better with the neuromuscular aging process than CMAP amplitude does.
Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei; Olson, Luke N.
2013-01-01
The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton's method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes. To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current. PMID:24363784
Sensible and latent heat forced divergent circulations in the West African Monsoon System
NASA Astrophysics Data System (ADS)
Hagos, S.; Zhang, C.
2008-12-01
Field properties of divergent circulation are utilized to identify the roles of various diabatic processes in forcing moisture transport in the dynamics of the West African Monsoon and its seasonal cycle. In this analysis, the divergence field is treated as a set of point sources and is partitioned into two sub-sets corresponding to latent heat release and surface sensible heat flux at each respective point. The divergent circulation associated with each set is then calculated from the Poisson's equation using Gauss-Seidel iteration. Moisture transport by each set of divergent circulation is subsequently estimated. The results show different roles of the divergent circulations forced by surface sensible and latent heating in the monsoon dynamics. Surface sensible heating drives a shallow meridional circulation, which transports moisture deep into the continent at the polar side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation during the monsoon onset season. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence is within the region of precipitation. Latent heating also induces dry air advection from the north. Neither effect promotes the seasonal northward migration of precipitation. The relative contributions of the processes associated with latent and sensible heating to the net moisture convergence, and hence the seasonal evolution of monsoon precipitation, depend on the background moisture.
Fractional models of seismoacoustic and electromagnetic activity
NASA Astrophysics Data System (ADS)
Shevtsov, Boris; Sheremetyeva, Olga
2017-10-01
Statistical models of the seismoacoustic and electromagnetic activity caused by deformation disturbances are considered on the basis of compound Poisson process and its fractional generalizations. Wave representations of these processes are used too. It is discussed five regimes of deformation activity and their role in understanding of the earthquakes precursors nature.
Library Book Circulation and the Beta-Binomial Distribution.
ERIC Educational Resources Information Center
Gelman, E.; Sichel, H. S.
1987-01-01
Argues that library book circulation is a binomial rather than a Poisson process, and that individual book popularities are continuous beta distributions. Three examples demonstrate the superiority of beta over negative binomial distribution, and it is suggested that a bivariate-binomial process would be helpful in predicting future book…
Adiabatic reduction of a model of stochastic gene expression with jump Markov process.
Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C
2014-04-01
This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.
Atomic clocks and the continuous-time random-walk
NASA Astrophysics Data System (ADS)
Formichella, Valerio; Camparo, James; Tavella, Patrizia
2017-11-01
Atomic clocks play a fundamental role in many fields, most notably they generate Universal Coordinated Time and are at the heart of all global navigation satellite systems. Notwithstanding their excellent timekeeping performance, their output frequency does vary: it can display deterministic frequency drift; diverse continuous noise processes result in nonstationary clock noise (e.g., random-walk frequency noise, modelled as a Wiener process), and the clock frequency may display sudden changes (i.e., "jumps"). Typically, the clock's frequency instability is evaluated by the Allan or Hadamard variances, whose functional forms can identify the different operative noise processes. Here, we show that the Allan and Hadamard variances of a particular continuous-time random-walk, the compound Poisson process, have the same functional form as for a Wiener process with drift. The compound Poisson process, introduced as a model for observed frequency jumps, is an alternative to the Wiener process for modelling random walk frequency noise. This alternate model fits well the behavior of the rubidium clocks flying on GPS Block-IIR satellites. Further, starting from jump statistics, the model can be improved by considering a more general form of continuous-time random-walk, and this could bring new insights into the physics of atomic clocks.
A Generalized QMRA Beta-Poisson Dose-Response Model.
Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie
2016-10-01
Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter; Vysoký, Jan
2014-06-01
We generalize noncommutative gauge theory using Nambu-Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg-Witten map. We construct a covariant Nambu-Poisson gauge theory action, give its first order expansion in the Nambu-Poisson tensor and relate it to a Nambu-Poisson matrix model.
STDP allows fast rate-modulated coding with Poisson-like spike trains.
Gilson, Matthieu; Masquelier, Timothée; Hugues, Etienne
2011-10-01
Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (~10-20 ms) for sufficiently many inputs (~100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks.
A modified Poisson-Boltzmann equation applied to protein adsorption.
Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto
2018-01-05
Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.
STDP Allows Fast Rate-Modulated Coding with Poisson-Like Spike Trains
Hugues, Etienne
2011-01-01
Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (∼10–20 ms) for sufficiently many inputs (∼100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks. PMID:22046113
Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.
Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D; Nichols, Thomas E
2018-03-01
Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. © 2017, The International Biometric Society.
Minois, Nathan; Savy, Stéphanie; Lauwers-Cances, Valérie; Andrieu, Sandrine; Savy, Nicolas
2017-03-01
Recruiting patients is a crucial step of a clinical trial. Estimation of the trial duration is a question of paramount interest. Most techniques are based on deterministic models and various ad hoc methods neglecting the variability in the recruitment process. To overpass this difficulty the so-called Poisson-gamma model has been introduced involving, for each centre, a recruitment process modelled by a Poisson process whose rate is assumed constant in time and gamma-distributed. The relevancy of this model has been widely investigated. In practice, rates are rarely constant in time, there are breaks in recruitment (for instance week-ends or holidays). Such information can be collected and included in a model considering piecewise constant rate functions yielding to an inhomogeneous Cox model. The estimation of the trial duration is much more difficult. Three strategies of computation of the expected trial duration are proposed considering all the breaks, considering only large breaks and without considering breaks. The bias of these estimations procedure are assessed by means of simulation studies considering three scenarios of breaks simulation. These strategies yield to estimations with a very small bias. Moreover, the strategy with the best performances in terms of prediction and with the smallest bias is the one which does not take into account of breaks. This result is important as, in practice, collecting breaks data is pretty hard to manage.
Sparsity-based Poisson denoising with dictionary learning.
Giryes, Raja; Elad, Michael
2014-12-01
The problem of Poisson denoising appears in various imaging applications, such as low-light photography, medical imaging, and microscopy. In cases of high SNR, several transformations exist so as to convert the Poisson noise into an additive-independent identically distributed. Gaussian noise, for which many effective algorithms are available. However, in a low-SNR regime, these transformations are significantly less accurate, and a strategy that relies directly on the true noise statistics is required. Salmon et al took this route, proposing a patch-based exponential image representation model based on Gaussian mixture model, leading to state-of-the-art results. In this paper, we propose to harness sparse-representation modeling to the image patches, adopting the same exponential idea. Our scheme uses a greedy pursuit with boot-strapping-based stopping condition and dictionary learning within the denoising process. The reconstruction performance of the proposed scheme is competitive with leading methods in high SNR and achieving state-of-the-art results in cases of low SNR.
Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai
2016-06-10
Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.
Poisson property of the occurrence of flip-flops in a model membrane.
Arai, Noriyoshi; Akimoto, Takuma; Yamamoto, Eiji; Yasui, Masato; Yasuoka, Kenji
2014-02-14
How do lipid molecules in membranes perform a flip-flop? The flip-flops of lipid molecules play a crucial role in the formation and flexibility of membranes. However, little has been determined about the behavior of flip-flops, either experimentally, or in molecular dynamics simulations. Here, we provide numerical results of the flip-flops of model lipid molecules in a model membrane and investigate the statistical properties, using millisecond-order coarse-grained molecular simulations (dissipative particle dynamics). We find that there are three different ways of flip-flops, which can be clearly characterized by their paths on the free energy surface. Furthermore, we found that the probability of the number of the flip-flops is well fitted by the Poisson distribution, and the probability density function for the inter-occurrence times of flip-flops coincides with that of the forward recurrence times. These results indicate that the occurrence of flip-flops is a Poisson process, which will play an important role in the flexibilities of membranes.
Lord, Dominique
2006-07-01
There has been considerable research conducted on the development of statistical models for predicting crashes on highway facilities. Despite numerous advancements made for improving the estimation tools of statistical models, the most common probabilistic structure used for modeling motor vehicle crashes remains the traditional Poisson and Poisson-gamma (or Negative Binomial) distribution; when crash data exhibit over-dispersion, the Poisson-gamma model is usually the model of choice most favored by transportation safety modelers. Crash data collected for safety studies often have the unusual attributes of being characterized by low sample mean values. Studies have shown that the goodness-of-fit of statistical models produced from such datasets can be significantly affected. This issue has been defined as the "low mean problem" (LMP). Despite recent developments on methods to circumvent the LMP and test the goodness-of-fit of models developed using such datasets, no work has so far examined how the LMP affects the fixed dispersion parameter of Poisson-gamma models used for modeling motor vehicle crashes. The dispersion parameter plays an important role in many types of safety studies and should, therefore, be reliably estimated. The primary objective of this research project was to verify whether the LMP affects the estimation of the dispersion parameter and, if it is, to determine the magnitude of the problem. The secondary objective consisted of determining the effects of an unreliably estimated dispersion parameter on common analyses performed in highway safety studies. To accomplish the objectives of the study, a series of Poisson-gamma distributions were simulated using different values describing the mean, the dispersion parameter, and the sample size. Three estimators commonly used by transportation safety modelers for estimating the dispersion parameter of Poisson-gamma models were evaluated: the method of moments, the weighted regression, and the maximum likelihood method. In an attempt to complement the outcome of the simulation study, Poisson-gamma models were fitted to crash data collected in Toronto, Ont. characterized by a low sample mean and small sample size. The study shows that a low sample mean combined with a small sample size can seriously affect the estimation of the dispersion parameter, no matter which estimator is used within the estimation process. The probability the dispersion parameter becomes unreliably estimated increases significantly as the sample mean and sample size decrease. Consequently, the results show that an unreliably estimated dispersion parameter can significantly undermine empirical Bayes (EB) estimates as well as the estimation of confidence intervals for the gamma mean and predicted response. The paper ends with recommendations about minimizing the likelihood of producing Poisson-gamma models with an unreliable dispersion parameter for modeling motor vehicle crashes.
Micro-topography, rock surface modelling and minerology of notches in Mount Carmel
NASA Astrophysics Data System (ADS)
Brook, Anna; Ben-Binyamin, Atzmon; Shtober-Zisu, Nurit
2016-04-01
Notches are defined as horizontal concaved indentations developed on slopes or cliffs in a basic "C" shape regardless of their location or formation process. Many studies have proclaimed that notches are associated with coastal processes where rocky shore faces are back carved, parallel to sea level by a combination of physical and biological abrasion, and by chemical and biological dissolution. The notches morphologies are various and depend on the lithology, climate, and environment history. These changes involve complex volumetric effects such as weathering and surface mineral dissolution. The main impetus for the present paper is to advance the modeling and the 3D complex pattern reconstruction of notch's cavity surface and detailed shapes and to assess the association between the morphological structures observed upon the notch parts and the fine scale mineralogical composition of the rock. The reconstruction of 3D surfaces using point clouds scanned data is a known problem in computer graphics. Several approaches are based on combinatorial structures, such as Delaunay triangulations, alpha shapes, or Voronoi diagrams. These schemes typically create a triangle mesh that interpolates all or most of the points. In the presence of noisy data, resulting surface is often jagged, and is therefore smoothed or refit to the points in subsequent processing. Fast Fourier Transform (FFT) is a common technique for solving dense, periodic Poisson systems. However, the FFT requires longer time and larger space, quickly becoming prohibitive for fine resolutions. The Poisson approach's key element is the observation that inward normal field of the boundary can be inferred as the gradient of a three dimensional solid indicator function. Thus, the generation of a watertight mesh can be obtained by: (1) transforming the oriented point samples into a continuous vector field referred to as the relationship between the gradient of the indicator function and an integral of surface normals. The computation of the indicator function is reduced to (2) finding a scalar function whose gradients best match the vector field. Point cloud input gives enough information for the approximation of the surface integral with discrete summation. A set of points used for the portioning of the whole scene into distinct patches and also for the surface integral scaled by the patch's area. (3) Extracting the appropriate iso-surface. The roughness spatial variation was calculated according to: 1) removal of the regional slope effect is a pre-step for the surface roughness indices calculation (regression surface is reduced from the original iso-surface model to produce residuals features, surface roughness, from which it possible to calculate the variogram of the residuals), 2) Semivariogram is used to determine the optimal window size for image texture analysis. Mineral composition and structure of the different patches and components define its solubility implying thus upon the micro-morphological differences. Spectral measurements taken in the field and in the lab will be constructed to spectral libraries representing the notch's visor, cavity and floor. The VIS-NIR, SWIR and MIR reflectance data measured by the different types of spectrometers will not be mixed for future evaluation of mineral identification. The constructed spectral libraries was analyzed and processed for the characterization of spectral features of samples. The spectral features were compared with various well characterized resampled mineral spectral libraries for identification of the forming minerals. The mineral composition is defined by spectroscopy and used to capture the areas corresponding to different patterns of micro roughness along the notch's surface. The suggested roughness and 3D surface reconstruction employ real data acquired by the Terrestrial Light and Range Detection (t-LiDAR) scanner. The project stresses an interdisciplinary approach to map the mineral variations along the notch's different components corresponding to the roughness surface changes.
Free Fermions and the Classical Compact Groups
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil
2018-06-01
There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishakov, K. S., E-mail: ksgrishakov@yahoo.com; Elesin, V. F.
A numerical solution to the problem of transient processes in a resonant tunneling diode featuring a current–voltage characteristic with hysteresis is found for the first time in the context of a coherent model (based on the coupled Schrödinger and Poisson equations) taking into account the Fermi distribution of electrons. The transitions from the high-current to the low-current state and vice versa, which result from the existence of hysteresis and are of great practical importance for ultrafast switches based on resonant tunneling diodes, are studied in detail. It is shown that the transition times for such processes initiated by the applicationmore » of a small voltage can significantly exceed the characteristic time ℏ/Γ (where G is the width of the resonance level). It is established for the first time that the transition time can be reduced and made as short as the characteristic time ℏ/Γ by applying a sufficiently high voltage. For the parameters of the resonant-tunnelingdiode structure considered in this study, the required voltage is about 0.01 V.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuz’menko, A. P., E-mail: apkuzm@gmail.com; Saburov, S. V., E-mail: saburov58@yandex.ru
2016-07-15
The paper puts forward a method for processing data from detailed seismic assessments of HPP dams (dynamic tests). A detailed assessment (hundreds of observation points in dam galleries) is performed with consideration of operating dam equipment and the microseismic noise. It is shown that dynamic oscillation characteristics (natural oscillation frequencies and modes in the main dam axes, the velocities of propagation of elastic waves with given polarization, and so on.) can be determined with sufficient accuracy by using complex transfer functions and pulse characteristics. Monitoring data is processed using data from a detailed assessment, taking account of identified natural oscillationmore » modes and determined ranges of natural frequencies. The spectra of characteristic frequencies thus obtained are used to choose substitution models and estimate the elastic characteristics of the “dam – rock bed” construction system, viz., the modulus of elasticity (the Young modulus), the Poisson ratio, the dam section stiffness with respect to shear, tension and compression and the elastic characteristics of the rock foundation.« less
A Three-dimensional Polymer Scaffolding Material Exhibiting a Zero Poisson's Ratio.
Soman, Pranav; Fozdar, David Y; Lee, Jin Woo; Phadke, Ameya; Varghese, Shyni; Chen, Shaochen
2012-05-14
Poisson's ratio describes the degree to which a material contracts (expands) transversally when axially strained. A material with a zero Poisson's ratio does not transversally deform in response to an axial strain (stretching). In tissue engineering applications, scaffolding having a zero Poisson's ratio (ZPR) may be more suitable for emulating the behavior of native tissues and accommodating and transmitting forces to the host tissue site during wound healing (or tissue regrowth). For example, scaffolding with a zero Poisson's ratio may be beneficial in the engineering of cartilage, ligament, corneal, and brain tissues, which are known to possess Poisson's ratios of nearly zero. Here, we report a 3D biomaterial constructed from polyethylene glycol (PEG) exhibiting in-plane Poisson's ratios of zero for large values of axial strain. We use digital micro-mirror device projection printing (DMD-PP) to create single- and double-layer scaffolds composed of semi re-entrant pores whose arrangement and deformation mechanisms contribute the zero Poisson's ratio. Strain experiments prove the zero Poisson's behavior of the scaffolds and that the addition of layers does not change the Poisson's ratio. Human mesenchymal stem cells (hMSCs) cultured on biomaterials with zero Poisson's ratio demonstrate the feasibility of utilizing these novel materials for biological applications which require little to no transverse deformations resulting from axial strains. Techniques used in this work allow Poisson's ratio to be both scale-independent and independent of the choice of strut material for strains in the elastic regime, and therefore ZPR behavior can be imparted to a variety of photocurable biomaterial.
Bayesian dynamic modeling of time series of dengue disease case counts
López-Quílez, Antonio; Torres-Prieto, Alexander
2017-01-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health. PMID:28671941
Hosseinpour, Mehdi; Yahaya, Ahmad Shukri; Sadullah, Ahmad Farhan
2014-01-01
Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Research in Stochastic Processes.
1983-10-01
increases. A more detailed investigation for the exceedances themselves (rather than Just the cluster centers) was undertaken, together with J. HUsler and...J. HUsler and M.R. Leadbetter, Compoung Poisson limit theorems for high level exceedances by stationary sequences, Center for Stochastic Processes...stability by a random linear operator. C.D. Hardin, General (asymmetric) stable variables and processes. T. Hsing, J. HUsler and M.R. Leadbetter, Compound
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Nonlinear Poisson Equation for Heterogeneous Media
Hu, Langhua; Wei, Guo-Wei
2012-01-01
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. PMID:22947937
Physical properties of biophotons and their biological functions.
Chang, Jiin-Ju
2008-05-01
Biophotons (BPHs) are weak photons within or emitted from living organisms. The intensities of BPHs range from a few to several hundred photons s(-1) x cm(-2). BPH emission originates from a de-localized coherent electromagnetic field within the living organisms and is regulated by the field. In this paper based on the experimental results of Poisson and sub-Poisson distributions of photocount statistics, the coherent properties of BPHs and their functions in cell communication are described. Discussions are made on functions which BPHs may play in DNA and proteins functioning including the process of DNA replication, protein synthesis and cell signalling and in oxidative phosporylation and photosynthesis.
Control of Structure in Turbulent Flows: Bifurcating and Blooming Jets.
1987-10-10
injected through computational boundaries. (2) to satisfy no- slip boundary conditions or (3) during ’ grid " refinement when one element may be split...use of fast Poisson solvers on a mesh of M grid points, the operation count for this step can approach 0(M log M). Additional required steps are (1...consider s- three-dimensionai perturbations to the uart vortices. The linear stability calculations ot Pierrehumbert & Widnadl [101 are available for
Saint-Venant end effects for materials with negative Poisson's ratios
NASA Technical Reports Server (NTRS)
Lakes, R. S.
1992-01-01
Results are presented from an analysis of Saint-Venant end effects for materials with negative Poisson's ratio. Examples are presented showing that slow decay of end stress occurs in circular cylinders of negative Poisson's ratio, whereas a sandwich panel containing rigid face sheets and a compliant core exhibits no anomalous effects for negative Poisson's ratio (but exhibits slow stress decay for core Poisson's ratios approaching 0.5). In sand panels with stiff but not perfectly rigid face sheets, a negative Poisson's ratio results in end stress decay, which is faster than it would be otherwise. It is suggested that the slow decay previously predicted for sandwich strips in plane deformation as a result of the geometry can be mitigated by the use of a negative Poisson's ratio material for the core.
NASA Astrophysics Data System (ADS)
Theodorsen, A.; E Garcia, O.; Rypdal, M.
2017-05-01
Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type.
Poisson Mixture Regression Models for Heart Disease Prediction.
Mufudza, Chipo; Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
Constructions and classifications of projective Poisson varieties.
Pym, Brent
2018-01-01
This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.
Poisson Mixture Regression Models for Heart Disease Prediction
Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611
Constructions and classifications of projective Poisson varieties
NASA Astrophysics Data System (ADS)
Pym, Brent
2018-03-01
This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.
Anisotropic mechanical properties of zircon and the effect of radiation damage
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; Boatner, Lynn A.; Isaacson, Scott G.; Ewing, Rodney C.
2016-10-01
This study provides new insights into the relationship between radiation-dose-dependent structural damage due to natural U and Th impurities and the anisotropic mechanical properties (Poisson's ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. in Am Mineral 76:1510-1532, 1991) and synthetic samples, covering a dose range of zero up to 6.8 × 1018 α-decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by Özkan (J Appl Phys 47:4772-4779, 1976), revealed a general radiation-induced decrease in stiffness (~54 %) and hardness (~48 %) and an increase in the Poisson's ratio (~54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Ríos et al. in J Phys Condens Matter 12:2401-2412, 2000a; Farnan and Salje in J Appl Phys 89:2084-2090, 2001; Zhang and Salje in J Phys Condens Matter 13:3057-3071, 2001). The excellent agreement, revealed by the different methods, indicates a large influence of structural and even local phenomena on the macroscopic mechanical properties. Therefore, this study indicates the importance of acquiring better knowledge about the mechanical long-term stability of radiation-damaged materials.
Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'.
de Nijs, Robin
2015-07-21
In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties, also in the case of rounding off of the images.
NASA Astrophysics Data System (ADS)
Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang
2018-06-01
The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure conform to the variation law of the exponential function.
NASA Astrophysics Data System (ADS)
Wang, Fengwen
2018-05-01
This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.
Nonlinear Poisson equation for heterogeneous media.
Hu, Langhua; Wei, Guo-Wei
2012-08-22
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Photon statistics in scintillation crystals
NASA Astrophysics Data System (ADS)
Bora, Vaibhav Joga Singh
Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP:Ce and CsI:Na. We also found an empirical relationship between the Fano factor and the covariance as a function of time between two detectors looking at the same scintillation pulse. This empirical model was used to estimate the Fano factor of LaBr3:Ce and YAP:Ce using the experimentally measured timing-covariance. The estimates of the Fano factor from the time-covariance results were consistent with the estimates of the correlation between the integral signals. We found scintillation light from some scintillators to be sub-Poisson. For the same mean number of total scintillation photons, sub-Poisson light has lower noise. We then conducted a simulation study to investigate whether this low-noise sub-Poisson light can be used to improve spatial resolution. We calculated the Cramer-Rao bound for dierent detector geometries, position of interactions and Fano factors. The Cramer-Rao calculations were veried by generating simulated data and estimating the variance of the maximum likelihood estimator. We found that the Fano factor has no impact on the spatial resolution in gamma-ray imaging systems.
Earthquake number forecasts testing
NASA Astrophysics Data System (ADS)
Kagan, Yan Y.
2017-10-01
We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness and kurtosis both tend to zero for large earthquake rates: for the Gaussian law, these values are identically zero. A calculation of the NBD skewness and kurtosis levels based on the values of the first two statistical moments of the distribution, shows rapid increase of these upper moments levels. However, the observed catalogue values of skewness and kurtosis are rising even faster. This means that for small time intervals, the earthquake number distribution is even more heavy-tailed than the NBD predicts. Therefore for small time intervals, we propose using empirical number distributions appropriately smoothed for testing forecasted earthquake numbers.
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
On the statistical properties of viral misinformation in online social media
NASA Astrophysics Data System (ADS)
Bessi, Alessandro
2017-03-01
The massive diffusion of online social media allows for the rapid and uncontrolled spreading of conspiracy theories, hoaxes, unsubstantiated claims, and false news. Such an impressive amount of misinformation can influence policy preferences and encourage behaviors strongly divergent from recommended practices. In this paper, we study the statistical properties of viral misinformation in online social media. By means of methods belonging to Extreme Value Theory, we show that the number of extremely viral posts over time follows a homogeneous Poisson process, and that the interarrival times between such posts are independent and identically distributed, following an exponential distribution. Moreover, we characterize the uncertainty around the rate parameter of the Poisson process through Bayesian methods. Finally, we are able to derive the predictive posterior probability distribution of the number of posts exceeding a certain threshold of shares over a finite interval of time.
Gongadze, E.; van Rienen, U.; Kralj-Iglič, V.; Iglič, A.
2012-01-01
Contact between a charged metal surface and an electrolyte implies a particular ion distribution near the charged surface, i.e. the electrical double layer. In this mini review, different mean-field models of relative (effective) permittivity are described within a simple lattice model, where the orientational ordering of water dipoles in the saturation regime is taken into account. The Langevin-Poisson-Boltzmann (LPB) model of spatial variation of the relative permittivity for point-like ions is described and compared to a more general Langevin-Bikerman (LB) model of spatial variation of permittivity for finite-sized ions. The Bikerman model and the Poisson-Boltzmann model are derived as limiting cases. It is shown that near the charged surface, the relative permittivity decreases due to depletion of water molecules (volume-excluded effect) and orientational ordering of water dipoles (saturation effect). At the end, the LPB and LB models are generalised by also taking into account the cavity field. PMID:22263808
Application of the Hotelling and ideal observers to detection and localization of exoplanets.
Caucci, Luca; Barrett, Harrison H; Devaney, Nicholas; Rodríguez, Jeffrey J
2007-12-01
The ideal linear discriminant or Hotelling observer is widely used for detection tasks and image-quality assessment in medical imaging, but it has had little application in other imaging fields. We apply it to detection of planets outside of our solar system with long-exposure images obtained from ground-based or space-based telescopes. The statistical limitations in this problem include Poisson noise arising mainly from the host star, electronic noise in the image detector, randomness or uncertainty in the point-spread function (PSF) of the telescope, and possibly a random background. PSF randomness is reduced but not eliminated by the use of adaptive optics. We concentrate here on the effects of Poisson and electronic noise, but we also show how to extend the calculation to include a random PSF. For the case where the PSF is known exactly, we compare the Hotelling observer to other observers commonly used for planet detection; comparison is based on receiver operating characteristic (ROC) and localization ROC (LROC) curves.
Application of the Hotelling and ideal observers to detection and localization of exoplanets
Caucci, Luca; Barrett, Harrison H.; Devaney, Nicholas; Rodríguez, Jeffrey J.
2008-01-01
The ideal linear discriminant or Hotelling observer is widely used for detection tasks and image-quality assessment in medical imaging, but it has had little application in other imaging fields. We apply it to detection of planets outside of our solar system with long-exposure images obtained from ground-based or space-based telescopes. The statistical limitations in this problem include Poisson noise arising mainly from the host star, electronic noise in the image detector, randomness or uncertainty in the point-spread function (PSF) of the telescope, and possibly a random background. PSF randomness is reduced but not eliminated by the use of adaptive optics. We concentrate here on the effects of Poisson and electronic noise, but we also show how to extend the calculation to include a random PSF. For the case where the PSF is known exactly, we compare the Hotelling observer to other observers commonly used for planet detection; comparison is based on receiver operating characteristic (ROC) and localization ROC (LROC) curves. PMID:18059905
NASA Astrophysics Data System (ADS)
Chekhov, Leonid; Mazzocco, Marta
2010-11-01
In this communication, by using Teichmüller theory of a sphere with four holes/orbifold points, we obtain a system of flat coordinates on the general affine cubic surface having a D4 singularity at the origin. We show that the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere coincides with the Etingof-Ginzburg Poisson bracket on the affine D4 cubic. We prove that this bracket is the image under the Riemann-Hilbert map of the Poisson-Lie bracket on \\oplus _{1}^3\\mathfrak {sl}^\\ast (2,{{\\bb C}}) . We realize the action of the mapping class group by the action of the braid group on the geodesic functions. This action coincides with the procedure of analytic continuation of solutions of the sixth Painlevé equation. Finally, we produce the explicit quantization of the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere and of the braid group action.
The electric double layer at a metal electrode in pure water
NASA Astrophysics Data System (ADS)
Brüesch, Peter; Christen, Thomas
2004-03-01
Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-Mendez, J; Faddegon, B; Perl, J
2015-06-15
Purpose: To develop and verify an extension to TOPAS for calculation of dose response models (TCP/NTCP). TOPAS wraps and extends Geant4. Methods: The TOPAS DICOM interface was extended to include structure contours, for subsequent calculation of DVH’s and TCP/NTCP. The following dose response models were implemented: Lyman-Kutcher-Burman (LKB), critical element (CE), population based critical volume (CV), parallel-serials, a sigmoid-based model of Niemierko for NTCP and TCP, and a Poisson-based model for TCP. For verification, results for the parallel-serial and Poisson models, with 6 MV x-ray dose distributions calculated with TOPAS and Pinnacle v9.2, were compared to data from the benchmarkmore » configuration of the AAPM Task Group 166 (TG166). We provide a benchmark configuration suitable for proton therapy along with results for the implementation of the Niemierko, CV and CE models. Results: The maximum difference in DVH calculated with Pinnacle and TOPAS was 2%. Differences between TG166 data and Monte Carlo calculations of up to 4.2%±6.1% were found for the parallel-serial model and up to 1.0%±0.7% for the Poisson model (including the uncertainty due to lack of knowledge of the point spacing in TG166). For CE, CV and Niemierko models, the discrepancies between the Pinnacle and TOPAS results are 74.5%, 34.8% and 52.1% when using 29.7 cGy point spacing, the differences being highly sensitive to dose spacing. On the other hand, with our proposed benchmark configuration, the largest differences were 12.05%±0.38%, 3.74%±1.6%, 1.57%±4.9% and 1.97%±4.6% for the CE, CV, Niemierko and LKB models, respectively. Conclusion: Several dose response models were successfully implemented with the extension module. Reference data was calculated for future benchmarking. Dose response calculated for the different models varied much more widely for the TG166 benchmark than for the proposed benchmark, which had much lower sensitivity to the choice of DVH dose points. This work was supported by National Cancer Institute Grant R01CA140735.« less
Unimodularity criteria for Poisson structures on foliated manifolds
NASA Astrophysics Data System (ADS)
Pedroza, Andrés; Velasco-Barreras, Eduardo; Vorobiev, Yury
2018-03-01
We study the behavior of the modular class of an orientable Poisson manifold and formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf. Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a Poisson foliation and its relationship with the Reeb class.
A test of inflated zeros for Poisson regression models.
He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan
2017-01-01
Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.
Variance to mean ratio, R(t), for poisson processes on phylogenetic trees.
Goldman, N
1994-09-01
The ratio of expected variance to mean, R(t), of numbers of DNA base substitutions for contemporary sequences related by a "star" phylogeny is widely seen as a measure of the adherence of the sequences' evolution to a Poisson process with a molecular clock, as predicted by the "neutral theory" of molecular evolution under certain conditions. A number of estimators of R(t) have been proposed, all predicted to have mean 1 and distributions based on the chi 2. Various genes have previously been analyzed and found to have values of R(t) far in excess of 1, calling into question important aspects of the neutral theory. In this paper, I use Monte Carlo simulation to show that the previously suggested means and distributions of estimators of R(t) are highly inaccurate. The analysis is applied to star phylogenies and to general phylogenetic trees, and well-known gene sequences are reanalyzed. For star phylogenies the results show that Kimura's estimators ("The Neutral Theory of Molecular Evolution," Cambridge Univ. Press, Cambridge, 1983) are unsatisfactory for statistical testing of R(t), but confirm the accuracy of Bulmer's correction factor (Genetics 123: 615-619, 1989). For all three nonstar phylogenies studied, attained values of all three estimators of R(t), although larger than 1, are within their true confidence limits under simple Poisson process models. This shows that lineage effects can be responsible for high estimates of R(t), restoring some limited confidence in the molecular clock and showing that the distinction between lineage and molecular clock effects is vital.(ABSTRACT TRUNCATED AT 250 WORDS)
Borchers, D L; Langrock, R
2015-12-01
We develop maximum likelihood methods for line transect surveys in which animals go undetected at distance zero, either because they are stochastically unavailable while within view or because they are missed when they are available. These incorporate a Markov-modulated Poisson process model for animal availability, allowing more clustered availability events than is possible with Poisson availability models. They include a mark-recapture component arising from the independent-observer survey, leading to more accurate estimation of detection probability given availability. We develop models for situations in which (a) multiple detections of the same individual are possible and (b) some or all of the availability process parameters are estimated from the line transect survey itself, rather than from independent data. We investigate estimator performance by simulation, and compare the multiple-detection estimators with estimators that use only initial detections of individuals, and with a single-observer estimator. Simultaneous estimation of detection function parameters and availability model parameters is shown to be feasible from the line transect survey alone with multiple detections and double-observer data but not with single-observer data. Recording multiple detections of individuals improves estimator precision substantially when estimating the availability model parameters from survey data, and we recommend that these data be gathered. We apply the methods to estimate detection probability from a double-observer survey of North Atlantic minke whales, and find that double-observer data greatly improve estimator precision here too. © 2015 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
de Carvalho, Sidney Jurado; Fenley, Márcia O; da Silva, Fernando Luís Barroso
2008-12-25
Electrostatic interactions are one of the key driving forces for protein-ligands complexation. Different levels for the theoretical modeling of such processes are available on the literature. Most of the studies on the Molecular Biology field are performed within numerical solutions of the Poisson-Boltzmann Equation and the dielectric continuum models framework. In such dielectric continuum models, there are two pivotal questions: (a) how the protein dielectric medium should be modeled, and (b) what protocol should be used when solving this effective Hamiltonian. By means of Monte Carlo (MC) and Poisson-Boltzmann (PB) calculations, we define the applicability of the PB approach with linear and nonlinear responses for macromolecular electrostatic interactions in electrolyte solution, revealing some physical mechanisms and limitations behind it especially due the raise of both macromolecular charge and concentration out of the strong coupling regime. A discrepancy between PB and MC for binding constant shifts is shown and explained in terms of the manner PB approximates the excess chemical potentials of the ligand, and not as a consequence of the nonlinear thermal treatment and/or explicit ion-ion interactions as it could be argued. Our findings also show that the nonlinear PB predictions with a low dielectric response well reproduce the pK shifts calculations carried out with an uniform dielectric model. This confirms and completes previous results obtained by both MC and linear PB calculations.
Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading
Sanborn, Brett; Song, Bo
2018-06-03
Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less
Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanborn, Brett; Song, Bo
Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less
Piezoelectric and Electrostrictive Materials for Transducer Applications.
1984-05-01
the stress is applied to sample using a simple lever arm to provide high load at the center point of a piston of hardened steel. To avoid poisson ratio...relatively simple ’screening test’ for PZT powders, powder samples were prepared from six different PZT transducer formulations supplied by the Navy...to 6000C showed the largest broadening. Heat treatment of this sample to 1.1000C reduced the broadening markedly indicating that simple chemical co
Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process
NASA Astrophysics Data System (ADS)
Yan, Wei; Chang, Yuwen
2016-12-01
Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.
A multiscale filter for noise reduction of low-dose cone beam projections
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Farr, Jonathan B.
2015-08-01
The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, \\text{exp}≤ft(-{{x}2}/2σ f2\\right) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of {σf} , which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ f2 is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024 × 768 pixels.
Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.
Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique
2015-05-01
The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. © 2014 Society for Risk Analysis.
Stochastic Geometry and Quantum Gravity: Some Rigorous Results
NASA Astrophysics Data System (ADS)
Zessin, H.
The aim of these lectures is a short introduction into some recent developments in stochastic geometry which have one of its origins in simplicial gravity theory (see Regge Nuovo Cimento 19: 558-571, 1961). The aim is to define and construct rigorously point processes on spaces of Euclidean simplices in such a way that the configurations of these simplices are simplicial complexes. The main interest then is concentrated on their curvature properties. We illustrate certain basic ideas from a mathematical point of view. An excellent representation of this area can be found in Schneider and Weil (Stochastic and Integral Geometry, Springer, Berlin, 2008. German edition: Stochastische Geometrie, Teubner, 2000). In Ambjørn et al. (Quantum Geometry Cambridge University Press, Cambridge, 1997) you find a beautiful account from the physical point of view. More recent developments in this direction can be found in Ambjørn et al. ("Quantum gravity as sum over spacetimes", Lect. Notes Phys. 807. Springer, Heidelberg, 2010). After an informal axiomatic introduction into the conceptual foundations of Regge's approach the first lecture recalls the concepts and notations used. It presents the fundamental zero-infinity law of stochastic geometry and the construction of cluster processes based on it. The second lecture presents the main mathematical object, i.e. Poisson-Delaunay surfaces possessing an intrinsic random metric structure. The third and fourth lectures discuss their ergodic behaviour and present the two-dimensional Regge model of pure simplicial quantum gravity. We terminate with the formulation of basic open problems. Proofs are given in detail only in a few cases. In general the main ideas are developed. Sufficiently complete references are given.
MODEL FOR INSTANTANEOUS RESIDENTIAL WATER DEMANDS
Residential wateer use is visualized as a customer-server interaction often encountered in queueing theory. Individual customers are assumed to arrive according to a nonhomogeneous Poisson process, then engage water servers for random lengths of time. Busy servers are assumed t...
Classical and quantum aspects of Yang-Baxter Wess-Zumino models
NASA Astrophysics Data System (ADS)
Demulder, Saskia; Driezen, Sibylle; Sevrin, Alexander; Thompson, Daniel C.
2018-03-01
We investigate the integrable Yang-Baxter deformation of the 2d Principal Chiral Model with a Wess-Zumino term. For arbitrary groups, the one-loop β-functions are calculated and display a surprising connection between classical and quantum physics: the classical integrability condition is necessary to prevent new couplings being generated by renormalisation. We show these theories admit an elegant realisation of Poisson-Lie T-duality acting as a simple inversion of coupling constants. The self-dual point corresponds to the Wess-Zumino-Witten model and is the IR fixed point under RG. We address the possibility of having supersymmetric extensions of these models showing that extended supersymmetry is not possible in general.
The Ciliate Paramecium Shows Higher Motility in Non-Uniform Chemical Landscapes
Giuffre, Carl; Hinow, Peter; Vogel, Ryan; Ahmed, Tanvir; Stocker, Roman; Consi, Thomas R.; Strickler, J. Rudi
2011-01-01
We study the motility behavior of the unicellular protozoan Paramecium tetraurelia in a microfluidic device that can be prepared with a landscape of attracting or repelling chemicals. We investigate the spatial distribution of the positions of the individuals at different time points with methods from spatial statistics and Poisson random point fields. This makes quantitative the informal notion of “uniform distribution” (or lack thereof). Our device is characterized by the absence of large systematic biases due to gravitation and fluid flow. It has the potential to be applied to the study of other aquatic chemosensitive organisms as well. This may result in better diagnostic devices for environmental pollutants. PMID:21494596
Baker, John [Walnut Creek, CA; Archer, Daniel E [Knoxville, TN; Luke, Stanley John [Pleasanton, CA; Decman, Daniel J [Livermore, CA; White, Gregory K [Livermore, CA
2009-06-23
A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.
Deformation mechanisms in negative Poisson's ratio materials - Structural aspects
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.
Botello-Smith, Wesley M.; Luo, Ray
2016-01-01
Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membrane into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multi-grid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations. PMID:26389966
Martínez Steele, Eurídice; Baraldi, Larissa Galastri; Louzada, Maria Laura da Costa; Moubarac, Jean-Claude; Mozaffarian, Dariush; Monteiro, Carlos Augusto
2016-03-09
To investigate the contribution of ultra-processed foods to the intake of added sugars in the USA. Ultra-processed foods were defined as industrial formulations which, besides salt, sugar, oils and fats, include substances not used in culinary preparations, in particular additives used to imitate sensorial qualities of minimally processed foods and their culinary preparations. Cross-sectional study. National Health and Nutrition Examination Survey 2009-2010. We evaluated 9317 participants aged 1+ years with at least one 24 h dietary recall. Average dietary content of added sugars and proportion of individuals consuming more than 10% of total energy from added sugars. Gaussian and Poisson regressions estimated the association between consumption of ultra-processed foods and intake of added sugars. All models incorporated survey sample weights and adjusted for age, sex, race/ethnicity, family income and educational attainment. Ultra-processed foods comprised 57.9% of energy intake, and contributed 89.7% of the energy intake from added sugars. The content of added sugars in ultra-processed foods (21.1% of calories) was eightfold higher than in processed foods (2.4%) and fivefold higher than in unprocessed or minimally processed foods and processed culinary ingredients grouped together (3.7%). Both in unadjusted and adjusted models, each increase of 5 percentage points in proportional energy intake from ultra-processed foods increased the proportional energy intake from added sugars by 1 percentage point. Consumption of added sugars increased linearly across quintiles of ultra-processed food consumption: from 7.5% of total energy in the lowest quintile to 19.5% in the highest. A total of 82.1% of Americans in the highest quintile exceeded the recommended limit of 10% energy from added sugars, compared with 26.4% in the lowest. Decreasing the consumption of ultra-processed foods could be an effective way of reducing the excessive intake of added sugars in the USA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Use of speckle for determining the response characteristics of Doppler imaging radars
NASA Technical Reports Server (NTRS)
Tilley, D. G.
1986-01-01
An optical model is developed for imaging optical radars such as the SAR on Seasat and the Shuttle Imaging Radar (SIR-B) by analyzing the Doppler shift of individual speckles in the image. The signal received at the spacecraft is treated in terms of a Fresnel-Kirchhoff integration over all backscattered radiation within a Huygen aperture at the earth. Account is taken of the movement of the spacecraft along the orbital path between emission and reception. The individual points are described by integration of the point source amplitude with a Green's function scattering kernel. Doppler data at each point furnishes the coordinates for visual representations. A Rayleigh-Poisson model of the surface scattering characteristics is used with Monte Carlo methods to generate simulations of Doppler radar speckle that compare well with Seasat SAR data SIR-B data.
Higher Moments of Net-Kaon Multiplicity Distributions at STAR
NASA Astrophysics Data System (ADS)
Xu, Ji;
2017-01-01
Fluctuations of conserved quantities such as baryon number (B), electric charge number (Q), and strangeness number (S), are sensitive to the correlation length and can be used to probe non-gaussian fluctuations near the critical point. Experimentally, higher moments of the multiplicity distributions have been used to search for the QCD critical point in heavy-ion collisions. In this paper, we report the efficiency-corrected cumulants and their ratios of mid-rapidity (|y| < 0.5) net-kaon multiplicity distributions in Au+Au collisions at = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV collected in 2010, 2011, and 2014 with STAR at RHIC. The centrality and energy dependence of the cumulants and their ratios, are presented. Furthermore, the comparisons with baseline calculations (Poisson) and non-critical-point models (UrQMD) are also discussed.
Slow diffusion by Markov random flights
NASA Astrophysics Data System (ADS)
Kolesnik, Alexander D.
2018-06-01
We present a conception of the slow diffusion processes in the Euclidean spaces Rm , m ≥ 1, based on the theory of random flights with small constant speed that are driven by a homogeneous Poisson process of small rate. The slow diffusion condition that, on long time intervals, leads to the stationary distributions, is given. The stationary distributions of slow diffusion processes in some Euclidean spaces of low dimensions, are presented.
Classifying next-generation sequencing data using a zero-inflated Poisson model.
Zhou, Yan; Wan, Xiang; Zhang, Baoxue; Tong, Tiejun
2018-04-15
With the development of high-throughput techniques, RNA-sequencing (RNA-seq) is becoming increasingly popular as an alternative for gene expression analysis, such as RNAs profiling and classification. Identifying which type of diseases a new patient belongs to with RNA-seq data has been recognized as a vital problem in medical research. As RNA-seq data are discrete, statistical methods developed for classifying microarray data cannot be readily applied for RNA-seq data classification. Witten proposed a Poisson linear discriminant analysis (PLDA) to classify the RNA-seq data in 2011. Note, however, that the count datasets are frequently characterized by excess zeros in real RNA-seq or microRNA sequence data (i.e. when the sequence depth is not enough or small RNAs with the length of 18-30 nucleotides). Therefore, it is desired to develop a new model to analyze RNA-seq data with an excess of zeros. In this paper, we propose a Zero-Inflated Poisson Logistic Discriminant Analysis (ZIPLDA) for RNA-seq data with an excess of zeros. The new method assumes that the data are from a mixture of two distributions: one is a point mass at zero, and the other follows a Poisson distribution. We then consider a logistic relation between the probability of observing zeros and the mean of the genes and the sequencing depth in the model. Simulation studies show that the proposed method performs better than, or at least as well as, the existing methods in a wide range of settings. Two real datasets including a breast cancer RNA-seq dataset and a microRNA-seq dataset are also analyzed, and they coincide with the simulation results that our proposed method outperforms the existing competitors. The software is available at http://www.math.hkbu.edu.hk/∼tongt. xwan@comp.hkbu.edu.hk or tongt@hkbu.edu.hk. Supplementary data are available at Bioinformatics online.
Long-term statistics of extreme tsunami height at Crescent City
NASA Astrophysics Data System (ADS)
Dong, Sheng; Zhai, Jinjin; Tao, Shanshan
2017-06-01
Historically, Crescent City is one of the most vulnerable communities impacted by tsunamis along the west coast of the United States, largely attributed to its offshore geography. Trans-ocean tsunamis usually produce large wave runup at Crescent Harbor resulting in catastrophic damages, property loss and human death. How to determine the return values of tsunami height using relatively short-term observation data is of great significance to assess the tsunami hazards and improve engineering design along the coast of Crescent City. In the present study, the extreme tsunami heights observed along the coast of Crescent City from 1938 to 2015 are fitted using six different probabilistic distributions, namely, the Gumbel distribution, the Weibull distribution, the maximum entropy distribution, the lognormal distribution, the generalized extreme value distribution and the generalized Pareto distribution. The maximum likelihood method is applied to estimate the parameters of all above distributions. Both Kolmogorov-Smirnov test and root mean square error method are utilized for goodness-of-fit test and the better fitting distribution is selected. Assuming that the occurrence frequency of tsunami in each year follows the Poisson distribution, the Poisson compound extreme value distribution can be used to fit the annual maximum tsunami amplitude, and then the point and interval estimations of return tsunami heights are calculated for structural design. The results show that the Poisson compound extreme value distribution fits tsunami heights very well and is suitable to determine the return tsunami heights for coastal disaster prevention.
Fuzzy classifier based support vector regression framework for Poisson ratio determination
NASA Astrophysics Data System (ADS)
Asoodeh, Mojtaba; Bagheripour, Parisa
2013-09-01
Poisson ratio is considered as one of the most important rock mechanical properties of hydrocarbon reservoirs. Determination of this parameter through laboratory measurement is time, cost, and labor intensive. Furthermore, laboratory measurements do not provide continuous data along the reservoir intervals. Hence, a fast, accurate, and inexpensive way of determining Poisson ratio which produces continuous data over the whole reservoir interval is desirable. For this purpose, support vector regression (SVR) method based on statistical learning theory (SLT) was employed as a supervised learning algorithm to estimate Poisson ratio from conventional well log data. SVR is capable of accurately extracting the implicit knowledge contained in conventional well logs and converting the gained knowledge into Poisson ratio data. Structural risk minimization (SRM) principle which is embedded in the SVR structure in addition to empirical risk minimization (EMR) principle provides a robust model for finding quantitative formulation between conventional well log data and Poisson ratio. Although satisfying results were obtained from an individual SVR model, it had flaws of overestimation in low Poisson ratios and underestimation in high Poisson ratios. These errors were eliminated through implementation of fuzzy classifier based SVR (FCBSVR). The FCBSVR significantly improved accuracy of the final prediction. This strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. Results indicated that SVR predicted Poisson ratio values are in good agreement with measured values.
Yelland, Lisa N; Salter, Amy B; Ryan, Philip
2011-10-15
Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.
Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution.
Inouye, David; Yang, Eunho; Allen, Genevera; Ravikumar, Pradeep
2017-01-01
The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section.
Application of zero-inflated poisson mixed models in prognostic factors of hepatitis C.
Akbarzadeh Baghban, Alireza; Pourhoseingholi, Asma; Zayeri, Farid; Jafari, Ali Akbar; Alavian, Seyed Moayed
2013-01-01
In recent years, hepatitis C virus (HCV) infection represents a major public health problem. Evaluation of risk factors is one of the solutions which help protect people from the infection. This study aims to employ zero-inflated Poisson mixed models to evaluate prognostic factors of hepatitis C. The data was collected from a longitudinal study during 2005-2010. First, mixed Poisson regression (PR) model was fitted to the data. Then, a mixed zero-inflated Poisson model was fitted with compound Poisson random effects. For evaluating the performance of the proposed mixed model, standard errors of estimators were compared. The results obtained from mixed PR showed that genotype 3 and treatment protocol were statistically significant. Results of zero-inflated Poisson mixed model showed that age, sex, genotypes 2 and 3, the treatment protocol, and having risk factors had significant effects on viral load of HCV patients. Of these two models, the estimators of zero-inflated Poisson mixed model had the minimum standard errors. The results showed that a mixed zero-inflated Poisson model was the almost best fit. The proposed model can capture serial dependence, additional overdispersion, and excess zeros in the longitudinal count data.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S.; Genovese, L.
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and themore » linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.« less
Longitudinal modelling of respiratory symptoms in children
NASA Astrophysics Data System (ADS)
Schlink, Uwe; Fritz, Gisela; Herbarth, Olf; Richter, Matthias
2002-08-01
A panel of 277 children, aged 3-7 years, was used to study the association between air pollution (O3, SO2, NO2, and total suspended particles), meteorological factors (global radiation, maximum daytime temperature, daily averages of vapour pressure and air humidity) and respiratory symptoms. For 759 days the symptoms were recorded in a diary and modelling was based on a modification of the method proposed by Korn and Whittemore (Biometrics 35: 795-798, 1979). This approach (1) comprises an extension using environmental parameters at different time scales, (2) addresses the suitability of using the daily fraction of symptomatic individuals to account for inter-individual interactions and (3) enables the most significant weather effects to be identified. The resulting model consisted of (1) an individual specific intercept that takes account of the population's heterogeneity, (2) the individual's health status the day before, (3) a long-term meteorological effect, which may be either the squared temperature or global radiation in interaction with temperature, (4) the short-term effect of sulfur dioxide, and (5) the short-term effect of an 8-h ozone concentration above 60 µg/m3. Using the estimated parameters as input to a simulation study, we checked the quality of the model and demonstrate that the annual cycle of the prevalence of respiratory symptoms is associated to atmospheric covariates. Individuals suffering from allergy have been identified as a group of a particular susceptibility to ozone. The duration of respiratory symptoms appears to be free of scale and follows an exponential distribution function, which confirms that the symptom record of each individual follows a Poisson point-process. This supports the assumption that not only respiratory diseases, but also respiratory symptoms can be considered an independent measure for the health status of a population sample. Since a point process is described by only one parameter (namely the intensity of the point process), it is appropriate for records of respiratory symptoms to identify only one model which covers both the occurrence and duration of symptoms.
NASA Astrophysics Data System (ADS)
Cao, Lu; Verbeek, Fons J.
2012-03-01
In computer graphics and visualization, reconstruction of a 3D surface from a point cloud is an important research area. As the surface contains information that can be measured, i.e. expressed in features, the application of surface reconstruction can be potentially important for application in bio-imaging. Opportunities in this application area are the motivation for this study. In the past decade, a number of algorithms for surface reconstruction have been proposed. Generally speaking, these methods can be separated into two categories: i.e., explicit representation and implicit approximation. Most of the aforementioned methods are firmly based in theory; however, so far, no analytical evaluation between these methods has been presented. The straightforward way of evaluation has been by convincing through visual inspection. Through evaluation we search for a method that can precisely preserve the surface characteristics and that is robust in the presence of noise. The outcome will be used to improve reliability in surface reconstruction of biological models. We, therefore, use an analytical approach by selecting features as surface descriptors and measure these features in varying conditions. We selected surface distance, surface area and surface curvature as three major features to compare quality of the surface created by the different algorithms. Our starting point has been ground truth values obtained from analytical shapes such as the sphere and the ellipsoid. In this paper we present four classical surface reconstruction methods from the two categories mentioned above, i.e. the Power Crust, the Robust Cocone, the Fourier-based method and the Poisson reconstruction method. The results obtained from our experiments indicate that Poisson reconstruction method performs the best in the presence of noise.
Lu, Benzhuo; Zhou, Y C; Huber, Gary A; Bond, Stephen D; Holst, Michael J; McCammon, J Andrew
2007-10-07
A computational framework is presented for the continuum modeling of cellular biomolecular diffusion influenced by electrostatic driving forces. This framework is developed from a combination of state-of-the-art numerical methods, geometric meshing, and computer visualization tools. In particular, a hybrid of (adaptive) finite element and boundary element methods is adopted to solve the Smoluchowski equation (SE), the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order to describe electrodiffusion processes. The finite element method is used because of its flexibility in modeling irregular geometries and complex boundary conditions. The boundary element method is used due to the convenience of treating the singularities in the source charge distribution and its accurate solution to electrostatic problems on molecular boundaries. Nonsteady-state diffusion can be studied using this framework, with the electric field computed using the densities of charged small molecules and mobile ions in the solvent. A solution for mesh generation for biomolecular systems is supplied, which is an essential component for the finite element and boundary element computations. The uncoupled Smoluchowski equation and Poisson-Boltzmann equation are considered as special cases of the PNPE in the numerical algorithm, and therefore can be solved in this framework as well. Two types of computations are reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck equations solutions. A biological application of the first type is the ionic density distribution around a fragment of DNA determined by the equilibrium PNPE. The stationary PNPE with nonzero flux is also studied for a simple model system, and leads to an observation that the interference on electrostatic field of the substrate charges strongly affects the reaction rate coefficient. The second is a time-dependent diffusion process: the consumption of the neurotransmitter acetylcholine by acetylcholinesterase, determined by the SE and a single uncoupled solution of the Poisson-Boltzmann equation. The electrostatic effects, counterion compensation, spatiotemporal distribution, and diffusion-controlled reaction kinetics are analyzed and different methods are compared.
Kumar, Rajesh; Srivastava, Subodh; Srivastava, Rajeev
2017-07-01
For cancer detection from microscopic biopsy images, image segmentation step used for segmentation of cells and nuclei play an important role. Accuracy of segmentation approach dominate the final results. Also the microscopic biopsy images have intrinsic Poisson noise and if it is present in the image the segmentation results may not be accurate. The objective is to propose an efficient fuzzy c-means based segmentation approach which can also handle the noise present in the image during the segmentation process itself i.e. noise removal and segmentation is combined in one step. To address the above issues, in this paper a fourth order partial differential equation (FPDE) based nonlinear filter adapted to Poisson noise with fuzzy c-means segmentation method is proposed. This approach is capable of effectively handling the segmentation problem of blocky artifacts while achieving good tradeoff between Poisson noise removals and edge preservation of the microscopic biopsy images during segmentation process for cancer detection from cells. The proposed approach is tested on breast cancer microscopic biopsy data set with region of interest (ROI) segmented ground truth images. The microscopic biopsy data set contains 31 benign and 27 malignant images of size 896 × 768. The region of interest selected ground truth of all 58 images are also available for this data set. Finally, the result obtained from proposed approach is compared with the results of popular segmentation algorithms; fuzzy c-means, color k-means, texture based segmentation, and total variation fuzzy c-means approaches. The experimental results shows that proposed approach is providing better results in terms of various performance measures such as Jaccard coefficient, dice index, Tanimoto coefficient, area under curve, accuracy, true positive rate, true negative rate, false positive rate, false negative rate, random index, global consistency error, and variance of information as compared to other segmentation approaches used for cancer detection. Copyright © 2017 Elsevier B.V. All rights reserved.
On the Overdispersed Molecular Clock
Takahata, Naoyuki
1987-01-01
Rates of molecular evolution at some loci are more irregular than described by simple Poisson processes. Three situations under which molecular evolution would not follow simple Poisson processes are reevaluated from the viewpoint of the neutrality hypothesis: (i) concomitant or multiple substitutions in a gene, (ii) fluctuating substitution rates in time caused by coupled effects of deleterious mutations and bottlenecks, and (iii) changes in the degree of selective constraints against a gene (neutral space) caused by successive substitutions. The common underlying assumption that these causes are lineage nonspecific excludes the case where mutation rates themselves change systematically among lineages or taxonomic groups, and severely limits the extent of variation in the number of substitutions among lineages. Even under this stringent condition, however, the third hypothesis, the fluctuating neutral space model, can generate fairly large variation. This is described by a time-dependent renewal process, which does not exhibit any episodic nature of molecular evolution. It is argued that the observed elevated variances in the number of nucleotide or amino acid substitutions do not immediately call for positive Darwinian selection in molecular evolution. PMID:3596230
Chao, Jerry; Ward, E. Sally; Ober, Raimund J.
2012-01-01
The high quantum efficiency of the charge-coupled device (CCD) has rendered it the imaging technology of choice in diverse applications. However, under extremely low light conditions where few photons are detected from the imaged object, the CCD becomes unsuitable as its readout noise can easily overwhelm the weak signal. An intended solution to this problem is the electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the acquired signal to drown out the readout noise. Here, we develop the theory for calculating the Fisher information content of the amplified signal, which is modeled as the output of a branching process. Specifically, Fisher information expressions are obtained for a general and a geometric model of amplification, as well as for two approximations of the amplified signal. All expressions pertain to the important scenario of a Poisson-distributed initial signal, which is characteristic of physical processes such as photon detection. To facilitate the investigation of different data models, a “noise coefficient” is introduced which allows the analysis and comparison of Fisher information via a scalar quantity. We apply our results to the problem of estimating the location of a point source from its image, as observed through an optical microscope and detected by an EMCCD. PMID:23049166
LDPC-PPM Coding Scheme for Optical Communication
NASA Technical Reports Server (NTRS)
Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael
2009-01-01
In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.
Fedosov’s formal symplectic groupoids and contravariant connections
NASA Astrophysics Data System (ADS)
Karabegov, Alexander V.
2006-10-01
Using Fedosov's approach we give a geometric construction of a formal symplectic groupoid over any Poisson manifold endowed with a torsion-free Poisson contravariant connection. In the case of Kähler-Poisson manifolds this construction provides, in particular, the formal symplectic groupoids with separation of variables. We show that the dual of a semisimple Lie algebra does not admit torsion-free Poisson contravariant connections.
Cache-enabled small cell networks: modeling and tradeoffs.
Baştuǧ, Ejder; Bennis, Mehdi; Kountouris, Marios; Debbah, Mérouane
We consider a network model where small base stations (SBSs) have caching capabilities as a means to alleviate the backhaul load and satisfy users' demand. The SBSs are stochastically distributed over the plane according to a Poisson point process (PPP) and serve their users either (i) by bringing the content from the Internet through a finite rate backhaul or (ii) by serving them from the local caches. We derive closed-form expressions for the outage probability and the average delivery rate as a function of the signal-to-interference-plus-noise ratio (SINR), SBS density, target file bitrate, storage size, file length, and file popularity. We then analyze the impact of key operating parameters on the system performance. It is shown that a certain outage probability can be achieved either by increasing the number of base stations or the total storage size. Our results and analysis provide key insights into the deployment of cache-enabled small cell networks (SCNs), which are seen as a promising solution for future heterogeneous cellular networks.
Nguyen, Hung; Do, Nhat; Phan, Tuyn; Pham, Tri
2018-02-01
The aim of this study is to use steered molecular dynamics to investigate the dissociation process between IRK and PTP1Bs for wild type and five mutants (consisting of p.D181E, p.D181A, p.Q262A, p.D181A-Y46F, and p.D181A-Q262A). The gained results are observed not only the unbinding mechanism of IRK-PTP1B complexes came from pulling force profile, number of hydrogen bonds, and interaction energy between IRK and PTP1Bs but also described PTP1B's point mutations could variably change its binding affinity towards IRK. Additionally, the binding free energy calculated by Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) is also revealed that electrostatic energy and polar solvation energy mainly made up the binding free energy of PTP1B-IRK complexes.
NASA Astrophysics Data System (ADS)
Ciarlet, P.
1994-09-01
Hereafter, we describe and analyze, from both a theoretical and a numerical point of view, an iterative method for efficiently solving symmetric elliptic problems with possibly discontinuous coefficients. In the following, we use the Preconditioned Conjugate Gradient method to solve the symmetric positive definite linear systems which arise from the finite element discretization of the problems. We focus our interest on sparse and efficient preconditioners. In order to define the preconditioners, we perform two steps: first we reorder the unknowns and then we carry out a (modified) incomplete factorization of the original matrix. We study numerically and theoretically two preconditioners, the second preconditioner corresponding to the one investigated by Brand and Heinemann [2]. We prove convergence results about the Poisson equation with either Dirichlet or periodic boundary conditions. For a meshsizeh, Brand proved that the condition number of the preconditioned system is bounded byO(h-1/2) for Dirichlet boundary conditions. By slightly modifying the preconditioning process, we prove that the condition number is bounded byO(h-1/3).
Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Parthasarathy, Arun; Rakheja, Shaloo
2018-06-01
The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.
NASA Astrophysics Data System (ADS)
Bell, Colin; Jump, Ellen; Kerr, William; Corney, Jonathan; Zuelli, Nicola; Savings, David
2017-10-01
This paper presents the results of an experimental investigation of the strain measured on a sample of Ti35A (commercially pure) titanium that was formed past the point of failure in a hydroforming operation. The sample was etched prior to forming to allow for a strain map of the exterior to be created and examined by using a circle grid analysis (CGA) technique. The sample was scanned post forming with precise optical inspection to ascertain an accurate model of its geometry. This paper discusses the results of the analyses including the full geometric and surface strain measurements. This paper then compares material thinning properties to strain values and finds a linear relationship of approximately 3:1 between Von Mises strain and material thinning percentage throughout the sample. The slope of the line appears to correlate strongly with the material's Poisson's ratio and could have potential uses in process planning.
NASA Astrophysics Data System (ADS)
Zhaunerchyk, V.; Frasinski, L. J.; Eland, J. H. D.; Feifel, R.
2014-05-01
Multidimensional covariance analysis and its validity for correlation of processes leading to multiple products are investigated from a theoretical point of view. The need to correct for false correlations induced by experimental parameters which fluctuate from shot to shot, such as the intensity of self-amplified spontaneous emission x-ray free-electron laser pulses, is emphasized. Threefold covariance analysis based on simple extension of the two-variable formulation is shown to be valid for variables exhibiting Poisson statistics. In this case, false correlations arising from fluctuations in an unstable experimental parameter that scale linearly with signals can be eliminated by threefold partial covariance analysis, as defined here. Fourfold covariance based on the same simple extension is found to be invalid in general. Where fluctuations in an unstable parameter induce nonlinear signal variations, a technique of contingent covariance analysis is proposed here to suppress false correlations. In this paper we also show a method to eliminate false correlations associated with fluctuations of several unstable experimental parameters.
Lord, Dominique; Guikema, Seth D; Geedipally, Srinivas Reddy
2008-05-01
This paper documents the application of the Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM) for modeling motor vehicle crashes. The COM-Poisson distribution, originally developed in 1962, has recently been re-introduced by statisticians for analyzing count data subjected to over- and under-dispersion. This innovative distribution is an extension of the Poisson distribution. The objectives of this study were to evaluate the application of the COM-Poisson GLM for analyzing motor vehicle crashes and compare the results with the traditional negative binomial (NB) model. The comparison analysis was carried out using the most common functional forms employed by transportation safety analysts, which link crashes to the entering flows at intersections or on segments. To accomplish the objectives of the study, several NB and COM-Poisson GLMs were developed and compared using two datasets. The first dataset contained crash data collected at signalized four-legged intersections in Toronto, Ont. The second dataset included data collected for rural four-lane divided and undivided highways in Texas. Several methods were used to assess the statistical fit and predictive performance of the models. The results of this study show that COM-Poisson GLMs perform as well as NB models in terms of GOF statistics and predictive performance. Given the fact the COM-Poisson distribution can also handle under-dispersed data (while the NB distribution cannot or has difficulties converging), which have sometimes been observed in crash databases, the COM-Poisson GLM offers a better alternative over the NB model for modeling motor vehicle crashes, especially given the important limitations recently documented in the safety literature about the latter type of model.
Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.
Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio
2014-11-24
The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine stratification.
ERIC Educational Resources Information Center
Brookes, Bertram C.; Griffiths, Jose M.
1978-01-01
Frequency, rank, and frequency rank distributions are defined. Extensive discussion on several aspects of frequency rank distributions includes the Poisson process as a means of exploring the stability of ranks; the correlation of frequency rank distributions; and the transfer coefficient, a new measure in frequency rank distribution. (MBR)
A New Model that Generates Lotka's Law.
ERIC Educational Resources Information Center
Huber, John C.
2002-01-01
Develops a new model for a process that generates Lotka's Law. Topics include measuring scientific productivity through the number of publications; rate of production; career duration; randomness; Poisson distribution; computer simulations; goodness-of-fit; theoretical support for the model; and future research. (Author/LRW)
A Behavioral Theory of Timing.
ERIC Educational Resources Information Center
Killeen, Peter R.; Fetterman, J. Gregor
1988-01-01
A theory of timing is proposed, based on the observation that signals of reinforcement elicit adjunctive behaviors. Transitions between these behaviors are described as a Poisson process. These behaviors may come to serve as the basis for conditional discriminations of the passage of time. (SLD)
Characterizing the performance of the Conway-Maxwell Poisson generalized linear model.
Francis, Royce A; Geedipally, Srinivas Reddy; Guikema, Seth D; Dhavala, Soma Sekhar; Lord, Dominique; LaRocca, Sarah
2012-01-01
Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in risk assessment for this problem suffer from limitations due to the assumed variance structure. A more flexible model based on the Conway-Maxwell Poisson (COM-Poisson) distribution was recently proposed, a model that has the potential to overcome the limitations of the traditional model. However, the statistical performance of this new model has not yet been fully characterized. This article assesses the performance of a maximum likelihood estimation method for fitting the COM-Poisson generalized linear model (GLM). The objectives of this article are to (1) characterize the parameter estimation accuracy of the MLE implementation of the COM-Poisson GLM, and (2) estimate the prediction accuracy of the COM-Poisson GLM using simulated data sets. The results of the study indicate that the COM-Poisson GLM is flexible enough to model under-, equi-, and overdispersed data sets with different sample mean values. The results also show that the COM-Poisson GLM yields accurate parameter estimates. The COM-Poisson GLM provides a promising and flexible approach for performing count data regression. © 2011 Society for Risk Analysis.
Trend in frequency of extreme precipitation events over Ontario from ensembles of multiple GCMs
NASA Astrophysics Data System (ADS)
Deng, Ziwang; Qiu, Xin; Liu, Jinliang; Madras, Neal; Wang, Xiaogang; Zhu, Huaiping
2016-05-01
As one of the most important extreme weather event types, extreme precipitation events have significant impacts on human and natural environment. This study assesses the projected long term trends in frequency of occurrence of extreme precipitation events represented by heavy precipitation days, very heavy precipitation days, very wet days and extreme wet days over Ontario, based on results of 21 CMIP3 GCM runs. To achieve this goal, first, all model data are linearly interpolated onto 682 grid points (0.45° × 0.45°) in Ontario; Next, biases in model daily precipitation amount are corrected with a local intensity scaling method to make the total wet days and total wet day precipitation from each of the GCMs are consistent with that from the climate forecast system reanalysis data, and then the four indices are estimated for each of the 21 GCM runs for 1968-2000, 2046-2065 and 2081-2100. After that, with the assumption that the rate parameter of the Poisson process for the occurrence of extreme precipitation events may vary with time as climate changes, the Poisson regression model which expresses the log rate as a linear function of time is used to detect the trend in frequency of extreme events in the GCMs simulations; Finally, the trends and their uncertainty are estimated. The result shows that in the twenty-first century annual heavy precipitation days, very heavy precipitation days and very wet days and extreme wet days are likely to significantly increase over major parts of Ontario and particularly heavy precipitation days, very wet days are very likely to significantly increase in some sub-regions in eastern Ontario. However, trends of seasonal indices are not significant.
A Method of Poisson's Ration Imaging Within a Material Part
NASA Technical Reports Server (NTRS)
Roth, Don J. (Inventor)
1994-01-01
The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention, longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to display the data.
Method of Poisson's ratio imaging within a material part
NASA Technical Reports Server (NTRS)
Roth, Don J. (Inventor)
1996-01-01
The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to displayed the image.
NASA Astrophysics Data System (ADS)
Zhong, Jie; Zhao, Honggang; Yang, Haibin; Yin, Jianfei; Wen, Jihong
2018-06-01
Rubbery coatings embedded with air cavities are commonly used on underwater structures to reduce reflection of incoming sound waves. In this paper, the relationships between Poisson's and modulus loss factors of rubbery materials are theoretically derived, the different effects of the tiny Poisson's loss factor on characterizing the loss factors of shear and longitudinal moduli are revealed. Given complex Young's modulus and dynamic Poisson's ratio, it is found that the shear loss factor has almost invisible variation with the Poisson's loss factor and is very close to the loss factor of Young's modulus, while the longitudinal loss factor almost linearly decreases with the increase of Poisson's loss factor. Then, a finite element (FE) model is used to investigate the effect of the tiny Poisson's loss factor, which is generally neglected in some FE models, on the underwater sound absorption of rubbery coatings. Results show that the tiny Poisson's loss factor has a significant effect on the sound absorption of homogeneous coatings within the concerned frequency range, while it has both frequency- and structure-dependent influence on the sound absorption of inhomogeneous coatings with embedded air cavities. Given the material parameters and cavity dimensions, more obvious effect can be observed for the rubbery coating with a larger lattice constant and/or a thicker cover layer.
A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution
Inouye, David; Yang, Eunho; Allen, Genevera; Ravikumar, Pradeep
2017-01-01
The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section. PMID:28983398
A NEW METHOD FOR DERIVING THE STELLAR BIRTH FUNCTION OF RESOLVED STELLAR POPULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gennaro, M.; Brown, T. M.; Gordon, K. D.
We present a new method for deriving the stellar birth function (SBF) of resolved stellar populations. The SBF (stars born per unit mass, time, and metallicity) is the combination of the initial mass function (IMF), the star formation history (SFH), and the metallicity distribution function (MDF). The framework of our analysis is that of Poisson Point Processes (PPPs), a class of statistical models suitable when dealing with points (stars) in a multidimensional space (the measurement space of multiple photometric bands). The theory of PPPs easily accommodates the modeling of measurement errors as well as that of incompleteness. Our method avoidsmore » binning stars in the color–magnitude diagram and uses the whole likelihood function for each data point; combining the individual likelihoods allows the computation of the posterior probability for the population's SBF. Within the proposed framework it is possible to include nuisance parameters, such as distance and extinction, by specifying their prior distributions and marginalizing over them. The aim of this paper is to assess the validity of this new approach under a range of assumptions, using only simulated data. Forthcoming work will show applications to real data. Although it has a broad scope of possible applications, we have developed this method to study multi-band Hubble Space Telescope observations of the Milky Way Bulge. Therefore we will focus on simulations with characteristics similar to those of the Galactic Bulge.« less
NASA Astrophysics Data System (ADS)
Vidybida, Alexander; Shchur, Olha
We consider a class of spiking neuronal models, defined by a set of conditions typical for basic threshold-type models, such as the leaky integrate-and-fire or the binding neuron model and also for some artificial neurons. A neuron is fed with a Poisson process. Each output impulse is applied to the neuron itself after a finite delay Δ. This impulse acts as being delivered through a fast Cl-type inhibitory synapse. We derive a general relation which allows calculating exactly the probability density function (pdf) p(t) of output interspike intervals of a neuron with feedback based on known pdf p0(t) for the same neuron without feedback and on the properties of the feedback line (the Δ value). Similar relations between corresponding moments are derived. Furthermore, we prove that the initial segment of pdf p0(t) for a neuron with a fixed threshold level is the same for any neuron satisfying the imposed conditions and is completely determined by the input stream. For the Poisson input stream, we calculate that initial segment exactly and, based on it, obtain exactly the initial segment of pdf p(t) for a neuron with feedback. That is the initial segment of p(t) is model-independent as well. The obtained expressions are checked by means of Monte Carlo simulation. The course of p(t) has a pronounced peculiarity, which makes it impossible to approximate p(t) by Poisson or another simple stochastic process.