Science.gov

Sample records for polar intermetallic phase

  1. Electrocrystallization: A Synthetic Method for Intermetallic Phases with Polar Metal-Metal Bonding.

    PubMed

    Tambornino, Frank; Sappl, Jonathan; Pultar, Felix; Cong, Trung Minh; Hübner, Sabine; Giftthaler, Tobias; Hoch, Constantin

    2016-11-07

    Isothermal electrolysis is a convenient preparation technique for a large number of intermetallic phases. A solution of the salt of a less-noble metal is electrolyzed on a cathode consisting of a liquid metal or intermetallic system. This yields crystalline products at mild reaction conditions in a few hours. We show the aptness and the limitations of this approach. First, we give an introduction into the relevance of electrolytic synthesis for chemistry. Then we present materials and techniques our group has developed for electrocrystallization that are useful for electrochemical syntheses in general. Subsequently, we discuss different phase formation eventualities and propose basic rationalization concepts, illustrated with examples from our work. The scope of this report is to present electrocrystallization as a well-known yet underestimated synthetic process, especially in intermetallic chemistry. For this purpose we adduce literature examples (Li3Ga14, NaGa4, K8Ga8Sn38), technical advice, basic concepts, and new crystal structures only available by this method: Li3Ga13Sn and CsIn12. Electrocrystallization has recently proven especially helpful in our work concerning synthesis of intermetallic phases with polar metal-metal bonding, especially Hg-rich amalgams of less-noble metals. With the term "polar metal-metal bonding" we describe phases where the constituting elements have large electronegativity difference and yet show incomplete electron transfer from the less-noble to the nobler metal. This distinguishes polar intermetallic phases from classical Zintl phases where the electron transfer is virtually complete. Polar metallic phases can show "bad metal behavior" and interesting combinations of ionic and metallic properties. Amalgams of less-noble metals are preeminent representatives for this class of intermetallic phases as Hg is the only noble metal with endothermic electron affinity and thus a very low tendency toward anion formation. To illustrate both

  2. Synthesis, Structure and bonding Analysis of the Polar Intermetallic Phase Ca2Pt2Cd

    SciTech Connect

    Samal, Saroj L.; Corbett, John D.

    2012-08-14

    The polar intermetallic phase Ca2Pt2Cd was discovered during explorations of the Ca-Pt-Cd system. The compound was synthesized by high temperature reactions, and its structure refined by single-crystal X-ray diffraction as orthorhombic, Immm, a = 4.4514(5), b = 5.8415(6), c = 8.5976(9) Å, Z = 2. The structure formally contains infinite, planar networks of [Pt2Cd]4– along the ab plane, which can be described as tessellation of six and four-member rings of the anions, with cations stuffed between the anion layers. The infinite condensed platinum chains show a substantial long–short distortion of 0.52 Å, an appreciable difference between Ca2Pt2Cd (26 valence electrons) and the isotypic but regular Ca2Cu2Ga (29 VE). The relatively large cation proportion diminishes the usual dominance of polar (Pt–Cd) and 5d–5d (Pt–Pt) contributions to the total Hamilton populations.

  3. More statistics on intermetallic compounds - ternary phases.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  4. Transient liquid phase bonding of intermetallics

    NASA Astrophysics Data System (ADS)

    Guan, Yimin

    The present work was undertaken to examine the applicability of transient liquid phase bonding to structural intermetallics. This research was based on an investigation of the mechanisms governing microstructural development in the joint and adjacent substrates during the joining process. The bonding systems investigated included polycrystalline NiAl/Cu/Ni, polycrystalline NiAl/Cu/superalloys (Martin-Marietta (MM)-247, Inconel (IN) 718 and Nimonic 90), single-crystal NiAl (with 1.5 at % Hf) joined to MM-247 using different filler metals (Cu foil, powder filler metal and electro-plated thin Cu film), and martensitic NiAl joined with martensitic NiTi using Cu foil and specially designed powder filler metals. In polycrystalline NiAl/Cu/Ni bonds, the mechanism of isothermal solidification is considered. Changes in the microstructure of the bond centerline due to element redistribution are discussed. The precipitation of both L1sb2 type gammasp' and B2 type beta phase at the joint centerline is investigated. The formation of martensitic L1sb0 type NiAl is also examined. The mechanical properties of the joints are investigated using shear strength and microhardness tests. In TLP bonding of polycrystalline NiAl with MM-247, both the epitaxial growth of the beta phase NiAl into the joint and the formation of non-epitaxial beta-phase layers are considered. The formation of second-phases, including the gammasp' phase, carbides, and sigma-phase intermetallics is also examined. Bond-line and adjacent substrate microstructures for the NiAl/Cu/MM-247 bonds are correlated with joint mechanical properties determined by room temperature shear testing. Single-crystal NiAl (1.5 at % Hf)/Cu/MM-247 joints are examined and compared with polycrystalline NiAl/Cu/MM247 joints. The effect of Hf on the microstructure of joints is investigated. The influence of different filler metals (i.e., wide-gap powder filler metal and electro-plated thin film filler metal) on the joining process is also

  5. Intermetallic R-phase in maraging steels of the Fe-Cr-Ni-Co-Mo system

    NASA Astrophysics Data System (ADS)

    Tarasenko, L. V.; Titov, V. I.

    2006-07-01

    Concentration and temperature conditions of formation of intermetallic R-phase in margining steels of the Fe-Cr-Ni-Co-Mo system are studied with the help of methods of physicochemical phase analysis and x-ray diffraction analysis. The role of chemical elements in the formation of the multicomponent R-phase is determined. A hypothesis employing the Kasper dimensional principle is suggested for multicomponent intermetallics formed in steels.

  6. Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-09-01

    Understanding the thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical to alloy design and application of Mo-containing austenitic steels. Coupled with thermodynamic modeling, the thermal stability of intermetallic Chi and Laves phases in two Fe-Cr-Ni-Mo alloys was investigated at 1273 K, 1123 K, and 973 K (1000 °C, 850 °C, and 700 °C) for different annealing times. The morphologies, compositions, and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Two key findings resulted from this study. First, the Chi phase is stable at high temperature, and with the decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, and Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. The thermodynamic models that were developed were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  7. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-08-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  8. Numerical simulations of creep in ductile-phase toughened intermetallic matrix composites

    SciTech Connect

    Henshall, G.A.; Strum, M.J.

    1994-04-07

    Analytical and finite element method (FEM) simulations of creep in idealized ductile-phase toughened intermetallic composites are described. For these strong-matrix materials, the two types of analyses predict similar time-independent composite creep rates if each phase individually exhibits only steady-state creep. The composite creep rate becomes increasingly higher than that of the monolithic intermetallic as the stress exponent of the intermetallic and the volume fraction and creep rate of the ductile phase increase. FEM analysis shows that the shape of the ductile phase does not affect the creep rate but may affect the internal stress and strain distributions, and thus damage accumulation rates. If primary creep occurs in one or both of the individual phases, the composite also exhibits primary creep. In this case, there can be significant deviations in the creep curves computed by the analytical and FEM models. The model predictions are compared with data for the Nb5Si3/Nb system.

  9. The preparation of the Ti-Al alloys based on intermetallic phases

    NASA Astrophysics Data System (ADS)

    Kosova, N.; Sachkov, V.; Kurzina, I.; Pichugina, A.; Vladimirov, A.; Kazantseva, L.; Sachkova, A.

    2016-01-01

    This article deals with a method of obtaining materials in the Ti-Al system. Research was carried out in accordance with the phase diagram of the system state. It was established, that both single-phase and multiphase systems, containing finely dispersed intermetallic compositions of phases Ti3Al, TiAl and TiAl3, are formed. Additionally, it was found that the pure finely dispersed (coherent-scattering region (CSR) up to 100 nm) intermetallic compound TiAl3 is formed at molar ratio of Ti:Al = 1:3. Experimentally proved the possibility of produce the complex composition of alloys and intermetallic compounds and products based on them.

  10. Phase-Controlled Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.

    2012-01-01

    We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.

  11. Superplasticity and hot rolling of two-phase intermetallic alloy based on TiAl

    SciTech Connect

    Imayev, R.; Shagiev, M.; Salishchev, G.; Imayev, V.; Valitov, V.

    1996-03-15

    The recent investigations of superplasticity (SP) in intermetallic alloys indicate that these materials exhibit lower indices of SP (the relative elongation to rupture) at high enough homologous temperatures and low strain rates compared to conventional alloys. This behavior inhibits application of SP effects in intermetallics. The results of two-phase titanium alloys indicate that the combination of a high stable microstructure with a submicron grain size is necessary to realize the effect of SP at relatively high strain rates. The aim of the present work is to examine the SP behavior of a Ti-46at.%Al intermetallic alloy (TiAl + Ti{sub 3}Al) with micro- and submicron grain sizes and to apply obtained results in hot rolling.

  12. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    SciTech Connect

    Fredrickson, Daniel C

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  13. Metastable phase formation in Be-Nb intermetallic compounds

    SciTech Connect

    Brimhall, J.L.; Charlot, L.A.; Bruemmer, S.M.

    1990-11-01

    Amorphous structures or metastable crystalline phases are produced in sputter-deposited Beryllium-Niobium (Be-Nb) alloys (5-15 at. % Nb) depending on the substrate temperature. The metastable phases transform to the stable Be{sub 12}Nb, Be{sub 17}Nb{sub 2}Nb phases on annealing at temperatures >800{degree}C. No Be{sub 5}Nb phase was found and the Be{sub 17}Nb{sub 2} phase is stable to low temperature. The Be{sub 12}Nb phase appeared to have a stoichiometric range of about 5.5 to 7.7 at. % Nb. The formation of the metastable phases is consistent with current models and theories. 17 refs., 1 fig., 2 tabs.

  14. Preparation of nanocrystalline metal oxides and intermetallic phases by controlled thermolysis of organometallic coordination polymers

    NASA Astrophysics Data System (ADS)

    Rehbein, Marcus; Epple, Matthias; Fischer, R. Dieter

    2000-06-01

    Organometallic coordination polymers of the super-Prussian blue type [(Me 3Sn) nM(CN) 6] (Me=CH 3; n=3, 4; M=Fe, Co, Ru) were subjected to thermolysis in different atmospheres (air, argon, hydrogen/nitrogen). In air, oxides were found: Fe 2O 3/SnO 2 (crystalline and nanocrystalline), Co 2SnO 4 and RuO 2. In argon and in hydrogen, the intermetallic phases FeSn 2, CoSn 2, Ru 3Sn 7 and Fe 3SnC were obtained. A detailed mechanistic study was carried out using thermogravimetry (TG), X-ray diffraction (XRD), X-ray absorption spectroscopy (EXAFS) at Fe, Co, Ru and Sn K-edges, infrared spectroscopy (IR) and elemental analysis. Below 250°C, Me 3SnCN and (CN) 2 are released, whereas above 250°C oxidation or pyrolysis leads to the corresponding oxides or intermetallic phases. Polymeric cyanides containing at least two metals have turned out to be suitable precursors to prepare well-defined oxides and intermetallic phases at comparatively low temperature.

  15. Technetium Incorporation into C14 and C15 Laves Intermetallic Phases

    SciTech Connect

    Buck, Edgar C.; Schemer-Kohrn, Alan L.; Wierschke, Jonathan B.

    2013-01-23

    Laves-type intermetallics have been observed to be the dominant phases in a series of alloy compositions being designed for the immobilization technetium in a metallic waste form. The dominant metals in the alloy compositions were Fe-Mo and Fe-Mo-Zr. Alloy composition, Fe-Mo-Zr, also contained Pd, Zr, Cr, and Ni. Both non-radioactive rhenium-containing and radioactive technetium-bearing alloy compositions were investigated. In the Fe-Mo series, phases were observed Fe2Mo (C14 Laves phase) and ferrite in agreement with predictions. Both Tc and Re resided predominantly in the Laves phase. In the Fe-Mo-Zr system, the phases included hexagonal C14 with the composition (Fe,Cr)2Mo, cubic C15 phase with a (Fe,Ni)2Zr composition, and the hcp phase Pd2Zr.

  16. Irradiation induced structural change in Mo2Zr intermetallic phase

    DOE PAGES

    Gan, J.; Keiser, Jr., D. D.; Miller, B. D.; ...

    2016-05-14

    The Mo2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. Transmission electron microscopy in-situ irradiation with Kr ions at 200 °C with doses up to 2.0E+16 ions/cm2 was carried out to investigate the radiation stability of the Mo2Zr. The Mo2Zr undergoes a radiation-induced structural change, from a large cubic (cF24) to a small cubic (cI2), along with an estimated 11.2% volume contraction without changing its composition. The structural change begins at irradiation dose below 1.0E+14 ions/cm2. Furthermore, the transformed Mo2Zr phase demonstrates exceptional radiation tolerance with the development of dislocations without bubblemore » formation.« less

  17. Intermetallic phase detection in lead-free solders using synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Jackson, Gavin J.; Lu, Hua; Durairaj, Raj; Hoo, Nick; Bailey, Chris; Ekere, Ndy N.; Wright, Jon

    2004-12-01

    The high-intensity, high-resolution x-ray source at the European Synchrotron Radiation Facility (ESRF) has been used in x-ray diffraction (XRD) experiments to detect intermetallic compounds (IMCs) in lead-free solder bumps. The IMCs found in 95.5Sn3.8Ag0.7Cu solder bumps on Cu pads with electroplated-nickel immersion-gold (ENIG) surface finish are consistent with results based on traditional destructive methods. Moreover, after positive identification of the IMCs from the diffraction data, spatial distribution plots over the entire bump were obtained. These spatial distributions for selected intermetallic phases display the layer thickness and confirm the locations of the IMCs. For isothermally aged solder samples, results have shown that much thicker layers of IMCs have grown from the pad interface into the bulk of the solder. Additionally, the XRD technique has also been used in a temperature-resolved mode to observe the formation of IMCs, in situ, during the solidification of the solder joint. The results demonstrate that the XRD technique is very attractive as it allows for nondestructive investigations to be performed on expensive state-of-the-art electronic components, thereby allowing new, lead-free materials to be fully characterized.

  18. Growth of new ternary intermetallic phases from Ca/Zn eutectic flux

    SciTech Connect

    Stojanovic, Milorad Latturner, Susan E.

    2007-03-15

    The eutectic 7.3:2.7 molar ratio mixture of calcium and zinc metal melts at 394 deg. C and was explored as a solvent for the growth of new intermetallic phases for potential use as hydrogen storage materials. The reaction of nickel in this molten mixture produces two new phases-the CaCu{sub 5}-related structure CaNi{sub 2}Zn{sub 3} (P6/mmm, a=8.9814(5) A, c=4.0665(5) A) and a new cubic structure Ca{sub 21}Ni{sub 2}Zn{sub 36} (Fd-3m, a=21.5051(4) A). Palladium-containing reactions produced CaPd{sub 0.85}Zn{sub 1.15} with the orthorhombic TiNiSi structure type (Pnma, a=7.1728(9) A, b=4.3949(5) A, c=7.7430(9) A). Reactions of platinum in the Ca/Zn mixture produce Ca{sub 6}Pt{sub 3}Zn{sub 5}, with an orthorhombic structure related to that of W{sub 3}CoB{sub 3} (Pmmn, a=13.7339(9) A, b=4.3907(3) A, c=10.7894(7) A). - Graphical abstract: The calcium/zinc eutectic is a useful synthesis medium for the growth of new intermetallic phases. Addition of group 10 transition metals to this flux produces ternary phases CaNi{sub 2}Zn{sub 3}, Ca{sub 21}Ni{sub 2}Zn{sub 36}, CaPd{sub 0.85}Zn{sub 1.15}, and Ca{sub 6}Pt{sub 3}Zn{sub 5}. The nickel-centered zinc icosahedron surrounded by a pentagonal dodecahedron of calcium atoms is found in Ca{sub 21}Ni{sub 2}Zn{sub 36}.

  19. Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Khodir, S. A.; Ahmed, M. M. Z.; Ahmed, Essam; Mohamed, Shaymaa M. R.; Abdel-Aleem, H.

    2016-11-01

    Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.

  20. Structural properties, phase stability, elastic properties and electronic structures of Cu-Ti intermetallics

    NASA Astrophysics Data System (ADS)

    Chen, Shuai; Duan, Yong-Hua; Huang, Bo; Hu, Wen-Cheng

    2015-11-01

    The structural properties, phase stabilities, anisotropic elastic properties and electronic structures of Cu-Ti intermetallics have been systematically investigated using first principles based on the density functional theory. The calculated equilibrium structural parameters agree well with available experimental data. The ground-state convex hull of formation enthalpies as a function of Cu content is slightly symmetrical at CuTi with a minimal formation enthalpy (-13.861 kJ/mol of atoms), which indicates that CuTi is the most stable phase. The mechanical properties, including elastic constants, polycrystalline moduli and anisotropic indexes, were evaluated. G/B is more pertinent to hardness than to the shear modulus G due to the high power indexes of 1.137 for G/B. The mechanical anisotropy was also characterized by describing the three-dimensional (3D) surface constructions. The order of elastic anisotropy is Cu4Ti3 > Cu3Ti2 > α-Cu4Ti > Cu2Ti > CuTi > β-Cu4Ti > CuTi2. Finally, the electronic structures were discussed and Cu2Ti is a semiconductor.

  1. Growth of intermetallic phases in Al/Cu composites at various annealing temperatures during the ARB process

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Chun; Shi, Ming-Shou; Wu, Weite

    2012-02-01

    The purpose of this study is to discuss the effect of annealing temperatures on growth of intermetallic phases in Al/Cu composites during the accumulative roll bonding (ARB) process. Pure Al (AA1100) and pure Cu (C11000) were stacked into layered structures at 8 cycles as annealed at 300 °C and 400 °C using the ARB technique. Microstructural results indicate that the necking of layered structures occur after 300 °C annealing. Intermetallic phases grow and form a smashed morphology of Al and Cu when annealed at 400 °C. From the XRD and EDS analysis results, the intermetallic phases of Al2Cu (θ) and Al4Cu9 (γ2) formed over 6 cycles and the AlCu (η2) precipitated at 8 cycles after 300 °C annealing. Three phases (Al2Cu (θ), Al4Cu9 (γ2), and AlCu (η2)) were formed over 2 cycles after 400 °C annealing.

  2. Kinetic Stabilization of Ordered Intermetallic Phases as Fuel Cell Anode Materials

    SciTech Connect

    Liu, Yi; Lowe, Michael A.; DiSalvo, Francis J.; Abruña, Héctor D.

    2010-08-16

    The influence of fuel molecules on the stability of the ordered intermetallic PtBi and PtPb phases has been extensively studied by synchrotron-based in situ X-ray grazing incidence diffraction under active electrochemical control. Cycling the potential to increasingly positive values resulted in little change to the surface composition and crystalline structure when specific fuel molecules (such as formic acid for PtBi and formic acid or methanol for PtPb) were oxidized at the intermetallic electrode surface. This was demonstrated by the absence of diffraction peaks due to Pt domains that would be generated by the leaching out of the less noble metal. This phenomenon has been rationalized as a competition process between the oxidation of fuel molecules at the electrode surface and corrosion and damage of the surface due to the electrochemical treatment. For example, PtBi electrodes, which exhibit excellent catalytic activity toward the oxidation of formic acid, could be kinetically stabilized to such a corrosion/degradation process in the presence of formic acid even at relatively positive potentials. An analogous effect was observed for PtPb in the presence of methanol as fuel. In the absence of fuel molecules (formic acid for PtBi and formic acid and/or methanol for PtPb), various surface layers were generated by different electrochemical pretreatments in the presence of only a supporting electrolyte. Crystalline oxidized bismuth species (such as Bi2O3) with an ~50 nm domain size were formed on the PtBi electrode surface by holding the potential at +1.00 V or beyond for at least 30 min. On the other hand, platinum nanopaticles with an ~5 nm crystalline domain size were formed when cycling the potential to higher values. In the case of PtPb, the only detected corrosion product was PbSO 4, whose diffraction peaks were utilized to qualitatively analyze the lead leaching-out and dissolution processes. No crystalline lead oxide species

  3. Discovery and characterization of magnetism in sigma-phase intermetallic Fe-Re compounds

    SciTech Connect

    Cieślak, J. Dubiel, S. M.; Tobola, J.; Reissner, M.

    2014-11-14

    Systematic experimental studies (vibrating sample magnetometry) supported by theoretical calculations (electronic structure by spin self-consistent Korringa-Kohn-Rostoker Green's function method) were performed on a series of intermetallic sigma-phase Fe{sub 100−x}Re{sub x} (x = 43–53) compounds. All investigated samples exhibit magnetism with an ordering temperature ranging between ∼65 K for x = 43 and ∼23 K for x = 53. The magnetism was revealed to be itinerant and identified as a spin-glass (SG) possibly having a re-entrant character. The SG was found to be heterogeneous, viz., two regimes could be distinguished as far as irreversibility in temperature dependence of magnetization is concerned: (1) of a weak irreversibility and (2) of a strong one. According to the theoretical calculations, the main contribution to the magnetism comes from Fe atoms occupying all five sub lattices, while Re atoms have rather small magnetic moments. However, the calculated average magnetic moments highly (ferromagnetic ordering model) or moderately (antiparallel ordering model) overestimate the experimental data.

  4. Ba 5Ti 12Sb 19+x, a polar intermetallic compound with a stuffed γ-brass structure

    NASA Astrophysics Data System (ADS)

    Bie, Haiying; Mar, Arthur

    2009-11-01

    The polar intermetallic compound Ba 5Ti 12Sb 19+x ( x⩽0.2) has been synthesized by reaction of the elements. Single-crystal X-ray diffraction analysis revealed that it adopts a new structure type (Ba 5Ti 12Sb 19.102(6), space group P43¯m, Z=2, a=12.4223(11) Å, V=1916.9(3) Å 3). The set of Ba and Sb sites corresponds to the structure of Cu 9Al 4, a γ-brass type with a primitive cell. A complex three-dimensional framework of Ti atoms, in the form of linked planar Ti 9 clusters, is stuffed within the γ-brass-type Ba-Sb substructure. Notwithstanding its relationship to the γ-brass structure, the compound does not appear to conform to the Hume-Rothery electron concentration rules. Band structure calculations on an idealized Ba 5Ti 12Sb 19 model suggest that the availability of bonding states above the Fermi level is responsible for the partial occupation, but only to a limited degree, of an additional Sb site within the structure. Magnetic measurements indicated Pauli paramagnetic behaviour.

  5. Effect of chromium on the formation of intermetallic phases in hot-dipped aluminide Cr-Mo steels

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Jen; Wang, Chaur-Jeng

    2013-07-01

    Cr-Mo steels with different chromium contents were coated by hot-dipping into molten baths containing pure aluminum and Al-10 wt.% Si for 180 s. The effect of chromium content in the steels on the formation of the intermetallic phases in the aluminide coatings was studied. The results show that all the aluminide coatings can be distinguished into an outer pure aluminum or Al-Si topcoat and an inner intermetallic layer. The intermetallic layers, resulting from the steels hot-dipped in pure aluminum, have the same phase constitution, an outer minor FeAl3 and an inner major Fe2Al5. In the aluminide coatings on the steels with 0 and 2.25 wt.% chromium after hot-dipping in Al-10 wt.% Si, the intermetallic layers were composed of an outer layer of τ5(H)-Al7(Fe,Cr)2Si and an inner one of FeAl3/τ1-(Al,Si)5Fe3/Fe2Al5, while a small amount of polyhedral τ5(H)-Al7(Fe,Cr)2Si and plate-shaped τ6-Al4FeSi were observed in the Al-Si topcoats. In the aluminide coatings on the steels with 5 and 9 wt.% chromium after hot-dipping in Al-10 wt.% Si, the intermetallic layers were composed of only a τ5(H)-Al7(Fe,Cr)2Si phase. A large amount of scattered granular τ5(C)-Al7(Fe,Cr)2Si and a small amount of plate-shaped τ4-Al3FeSi2 and τ6-Al4FeSi were also found in the Al-Si topcoats. When the chromium content reached 5 wt.%, the amount of steel, which dissolved when samples were hot-dipped in Al-10 wt.% Si, increased. Also, the rate of dissolving went up as chromium content went up. The increase of dissolution is because the interdiffusion between steels and Al-10 wt.% Si bath was enhanced by the formation of scattered granular τ5(C)-Al7(Fe,Cr)2Si, which was stabilized by chromium.

  6. X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al-Si hypoeutectic alloy

    SciTech Connect

    Manickaraj, Jeyakumar; Gorny, Anton; Shankar, Sumanth; Cai, Zhonghou

    2014-02-17

    The evolution of strontium (Sr) containing intermetallic phase in the eutectic reaction of Sr-modified Al-Si hypoeutectic alloy was studied with high energy synchrotron beam source for nano-diffraction experiments and x-ray fluorescence elemental mapping. Contrary to popular belief, Sr does not seem to interfere with the Twin Plane Re-entrant Edge (TPRE) growth mechanism of eutectic Si, but evolves as the Al{sub 2}Si{sub 2}Sr phase during the eutectic reaction at the boundary between the eutectic Si and Al grains.

  7. Crystal structure, chemical bonding and magnetism studies for three quinary polar intermetallic compounds in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 (x = 0.66, y = 0.03) and the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) (x = 0.66, 0.68; y = 0.13, 0.27) phases.

    PubMed

    Woo, Hyein; Jang, Eunyoung; Kim, Jin; Lee, Yunho; Kim, Jongsik; You, Tae-Soo

    2015-04-22

    Three quinary polar intermetallic compounds in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 (x = 0.66, y = 0.03) and the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) (x = 0.66, 0.68; y = 0.13, 0.27) phases have been synthesized using the molten In-metal flux method, and the crystal structures are characterized by powder and single-crystal X-ray diffractions. Two orthorhombic structural types can be viewed as an assembly of polyanionic frameworks consisting of the In(Ge/Sn)4 tetrahedral chains, the bridging Ge2 dimers, either the annulene-like "12-membered rings" for the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 series or the cis-trans Ge/Sn-chains for the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) series, and several Eu/Ca-mixed cations. The most noticeable difference between two structural types is the amount and the location of the Sn-substitution for Ge: only a partial substitution (11%) occurs at the In(Ge/Sn)4 tetrahedron in the (Eu(1-x)Ca(x))9In8(Ge(1-y)Sn(y))8 series, whereas both a complete and a partial substitution (up to 27%) are observed, respectively, at the cis-trans Ge/Sn-chain and at the In(Ge/Sn)4 tetrahedron in the (Eu(1-x)Ca(x))3In(Ge(3-y)Sn(1+y)) series. A series of tight-binding linear muffin-tin orbital calculations is conducted to understand overall electronic structures and chemical bonding among components. Magnetic susceptibility measurement indicates a ferromagnetic ordering of Eu atoms below 5 K for Eu1.02(1)Ca1.98InGe2.87(1)Sn1.13.

  8. SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} - two new Ae-Zn-Sn polar intermetallic compounds (Ae: alkaline earth metal)

    SciTech Connect

    Stegmaier, Saskia; Faessler, Thomas F.

    2012-08-15

    SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}, two closely related new polar intermetallic compounds, were obtained by high temperature reactions of the elements. Their crystal structures were determined with single crystal XRD methods, and their electronic structures were analyzed by means of DFT calculations. The Zn-Sn structure part of SrZn{sub 2}Sn{sub 2} comprises (anti-)PbO-like {l_brace}ZnSn{sub 4/4}{r_brace} and {l_brace}SnZn{sub 4/4}{r_brace} layers. Ca{sub 2}Zn{sub 3}Sn{sub 6} shows similar {l_brace}ZnSn{sub 4/4}{r_brace} layers and {l_brace}Sn{sub 4}Zn{r_brace} slabs constructed of a covalently bonded Sn scaffold capped by Zn atoms. For both phases, the two types of layers are alternatingly stacked and interconnected via Zn-Sn bonds. SrZn{sub 2}Sn{sub 2} adopts the SrPd{sub 2}Bi{sub 2} structure type, and Ca{sub 2}Zn{sub 3}Sn{sub 6} is isotypic to the R{sub 2}Zn{sub 3}Ge{sub 6} compounds (R=La, Ce, Pr, Nd). Band structure calculations indicate that both SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} are metallic. Analyses of the chemical bonding with the electron localization function (ELF) show lone pair like basins at Sn atoms and Zn-Sn bonding interactions between the layers for both title phases, and covalent Sn-Sn bonding within the {l_brace}Sn{sub 4}Zn{r_brace} layers of Ca{sub 2}Zn{sub 3}Sn{sub 6}. - Graphical abstract: Crystal structures of the new Ae-Zn-Sn polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Highlights: Black-Right-Pointing-Pointer New polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Black-Right-Pointing-Pointer Obtained by high temperature reactions of the elements. Black-Right-Pointing-Pointer Single crystal XRD structure determination and DFT electronic structure calculations. Black-Right-Pointing-Pointer Closely related crystal and electronic structures. Black-Right-Pointing-Pointer Metallic conductivity coexisting with lone pairs and covalent bonding

  9. Studies of magnetostriction and spin polarized band structures of rare earth intermetallics

    NASA Technical Reports Server (NTRS)

    Wallace, W. E.

    1979-01-01

    Anisotropic magnetostriction measurements of R6Fe23, R = (Tb, Dy, Ho, and Er) were carried out from 77 K to room temperature. Magnetic fields up to 2.1 Tesla were applied. All the compounds exhibited large magnetostrictions at 77 K, the largest effect being obtained for Tb6Fe23. Saturation magnetostriction values for the compounds were also determined for 77 K and room temperature. Results of the temperature dependence of magnetostriction for Er6Fe23 are in good agreement with Callen and Callen's single ion theory. Therefore, the main sources of magnetostriction in this compound is the Er ion. The spin-up and spin-down electronic energy bands, the density of states and the magnetic moments of YCo5, SmCo5, and GdCo5 were calculated by the spin polarized augmented plane wave technique. The calculations obtained show the origin of the moment, provide good estimates of its magnitude and variation, and the reasons for those variations. They also show the important role of partial charge transfer and of d-d electronic coupling. Calculations for LaNi5 and GdNi5 systems are discussed.

  10. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    SciTech Connect

    Leon-Escamilla, E.A.

    1996-10-17

    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  11. Polarization Imager Technology. Phase I

    DTIC Science & Technology

    2007-11-02

    orientation axes (e.g., with a polarizing filter). Resolving image irradiance at three (3) unique orientations is sufficient for unique measurement. Using...an orientation reference and resolving the electric field at relative 0’, 450, 900, if the image irradiances obtained at each pixel are respectively...with the video rate of the camera. See Figure 2. The unpolarized component is not effected . Each TN liquid crystal is binary in the sense that it either

  12. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  13. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  14. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  15. Exploring phase stability, electronic and mechanical properties of Ce–Pb intermetallic compounds using first-principles calculations

    SciTech Connect

    Tao, Xiaoma; Wang, Ziru; Lan, Chunxiang; Xu, Guanglong; Ouyang, Yifang; Du, Yong

    2016-05-15

    The phase stability, electronic and mechanical properties of Ce–Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce–Pb intermetallics were verified. Among them, CePb{sub 2} has been confirmed as HfGa{sub 2}-type structure. For Ce{sub 5}Pb{sub 3}, the high pressure phase transformation from D8{sub m} to D8{sub 8} with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8{sub m} to D8{sub 8} with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement with experimental values. The electronic density of states, charge density and electron localization function of Ce{sub 3}Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce–Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce{sub 3}Pb has the largest Debye temperature of 192.6 K, which means the Ce{sub 3}Pb has a highest melting point and high thermal conductivity than other compounds. - Graphical abstract: The convex hull plots of the enthalpies of formation for Ce–Pb binary systems calculated at 0 K. - Highlights: • The five stable and four metastable phases in the Ce–Pb binary system were predicted. • The crystal structure of CePb{sub 2} has been confirmed as HfGa{sub 2}-type.

  16. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    NASA Astrophysics Data System (ADS)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  17. Multiscale modeling of the influence of Fe content in a Al-Si-Cu alloy on the size distribution of intermetallic phases and micropores

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Li, Mei; Allison, John; Lee, Peter D.

    2010-03-01

    A multiscale model was developed to simulate the formation of Fe-rich intermetallics and pores in quaternary Al-Si-Cu-Fe alloys. At the microscale, the multicomponent diffusion equations were solved for multiphase (liquid-solid-gas) materials via a finite difference framework to predict microstructure formation. A fast and robust decentered plate algorithm was developed to simulate the strong anisotropy of the solid/liquid interfacial energy for the Fe-rich intermetallic phase. The growth of porosity was controlled by local pressure drop due to solidification and interactions with surrounding solid phases, in addition to hydrogen diffusion. The microscale model was implemented as a subroutine in a commercial finite element package, producing a coupled multiscale model. This allows the influence of varying casting conditions on the Fe-rich intermetallics, the pores, and their interactions to be predicted. Synchrotron x-ray tomography experiments were performed to validate the model by comparing the three-dimensional morphology and size distribution of Fe-rich intermetallics as a function of Fe content. Large platelike Fe-rich β intermetallics were successfully simulated by the multiscale model and their influence on pore size distribution in shape castings was predicted as a function of casting conditions.

  18. Kinetics of the Formation of Intermetallic Phases in HP-Type Heat-Resistant Alloys at Long-Term High-Temperature Exposure

    NASA Astrophysics Data System (ADS)

    Kondrat'ev, Sergey Yu.; Anastasiadi, Grigoriy P.; Petrov, Sergey N.; Ptashnik, Alina V.

    2017-01-01

    The kinetics of formation and morphology of the intermetallic phases in the structure of heat-resistant as-cast HP40NbTi alloys in the course of long high-temperature exposure have been studied with the help of light and electron microscopy, electron microprobe, and X-ray diffraction. During exposure of 2 to 1000 hours at 1423 K (1150 °C), intermetallic phase with conditional formula Cr7Ni5Si3N3FeNb is formed in the alloy. The analysis of the kinetics of intermetallic phase's growth for an impact assessment of certain metal substitutional elements (niobium, chromium, silicon) on the size of the formed particles was performed. Formation and growth of the intermetallic phases with high silicon content in the alloy structure on the boundaries between niobium and chromium carbides (NbC and M23C6) and matrix γ-phase provide a diffusion barrier for oxygen in oxidizing environment. This may create partial protection against oxidation of hardening carbide phases in the structure and promote increasing of the serviceability of the HP series alloys under operating conditions in the petrochemical industry.

  19. The phase composition of Triton's polar caps

    NASA Technical Reports Server (NTRS)

    Duxbury, N. S.; Brown, R. H.

    1993-01-01

    Triton's polar caps are modeled as permanent nitrogen deposits hundreds of meters thick. Complex temperature variations on Triton's surface induce reversible transitions between the cubic and hexagonal phases of solid nitrogen, often with two coexisting propagating transition fronts. Subsurface temperature distributions are calculated using a two-dimensional thermal model with phase changes. The phase changes fracture the upper nitrogen layer, increasing its reflectivity and thus offering an explanation for the surprisingly high southern polar cap albedo (approximately 0.8) seen during the Voyager 2 flyby. The model has other implications for the phase transition phenomena on Triton, such as a plausible mechanism for the origin of geyser-like plume vent areas and a mechanism of energy transport toward them.

  20. The Phase Composition of Triton's Polar Caps.

    PubMed

    Duxbury, N S; Brown, R H

    1993-08-06

    Triton's polar caps are modeled as permanent nitrogen deposits hundreds of meters thick. Complex temperature variations on Triton's surface induce reversible transitions between the cubic and hexagonal phases of solid nitrogen, often with two coexisting propagating transition fronts. Subsurface temperature distributions are calculated using a two-dimensional thermal model with phase changes. The phase changes fracture the upper nitrogen layer, increasing its reflectivity and thus offering an explanation for the surprisingly high southern polar cap albedo (approximately 0.8) seen during the Voyager 2 flyby. The model has other implications for the phase transition phenomena on Triton, such as a plausible mechanism for the origin of geyser-like plume vent areas and a mechanism of energy transport toward them.

  1. Quantum many-body intermetallics: Phase stability of Fe3Al and small-gap formation in Fe2VAl

    NASA Astrophysics Data System (ADS)

    Kristanovski, Oleg; Richter, Raphael; Krivenko, Igor; Lichtenstein, Alexander I.; Lechermann, Frank

    2017-01-01

    Various intermetallic compounds harbor subtle electronic correlation effects. To elucidate this fact for the Fe-Al system, we perform a realistic many-body investigation based on a combination of density functional theory with dynamical mean-field theory in a charge self-consistent manner. A better characterization and understanding of the phase stability of bcc-based D 03-Fe3Al through an improved description of the correlated charge density and the magnetic energy is achieved. Upon replacement of one Fe sublattice with V, the Heusler compound Fe2VAl is realized, known to display bad-metal behavior and increased specific heat. Here we document a charge-gap opening at low temperatures in line with previous experimental work. The gap structure does not match conventional band theory and is reminiscent of (pseudo)gap characteristics in correlated oxides.

  2. Crystal structure and chemical bonding of novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}

    SciTech Connect

    Jung, Yaho; Nam, Gnu; Jeon, Jieun; Kim, Youngjo; You, Tae-Soo

    2012-12-15

    A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} has been synthesized using the high-temperature reaction method and characterized by both powder and single-crystal X-ray diffractions. The title compound crystallized in the orthorhombic crystal system (space group Immm, Z=2, Pearson symbol oI78) with fifteen crystallographically unique atomic positions in the asymmetric unit, and the lattice parameters are refined as a=4.5244(4) A, b=6.9932(6) A, and c=53.043(5) A. The complex crystal structure of the title compound can be described as a 2:1 intergrowth of two closely related compounds: La{sub 2}Li{sub 2}Ge{sub 3} (Ce{sub 2}Li{sub 2}Ge{sub 3}-type) and La{sub 3}Li{sub 4}Ge{sub 4} (Zr{sub 3}Cu{sub 4}Si{sub 4}-type) acting like 'building-blocks' along the c-axis. Six La sites are categorized into three distinct types based on the local coordination environment showing the coordination numbers of 12-14. Three unique Li sites are placed in the centers of local tetrahedra formed by four Ge atoms which eventually construct Ge{sub 2} dimers or 1-dimensional cis-/trans-Ge chains. Theoretical investigations using the tight-binding linear muffin-tin orbital (LMTO) method provide rationales for an improved structural stability and for unique local coordination geometries established by anionic elements including [LiGe{sub 4}] tetrahedra, cis-/trans-Ge chain and Ge{sub 2} dimers. - Graphical abstract: Reported is a novel ternary Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}. The complex crystal structure can be viewed as a simple combination of two closely related known compounds acting as 'building-blocks', La{sub 2}Li{sub 2}G{sub 3} and La{sub 3}Li{sub 4}Ge{sub 4}, in a 2:1 stoichiometric ratio. Highlights: Black-Right-Pointing-Pointer A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} was synthesized. Black-Right-Pointing-Pointer The complex crystal structure was easily explained as

  3. Section 2: Phase transformation studies in mechanically alloyed Fe-Nz and Fe-Zn-Si intermetallics

    SciTech Connect

    Jordan, A.; Uwakweh, O.N.C.; Maziasz, P.J.

    1997-04-01

    The initial stage of this study, which was completed in FY 1995, entailed an extensive analysis characterizing the structural evolution of the Fe-Zn intermetallic system. The primary interest in these Fe-Zn phases stems from the fact that they form an excellent coating for the corrosion protection of steel (i.e., automobile body panels). The Fe-Zn coating generally forms up to four intermetallic phases depending on the particular industrial application used, (i.e., galvanization, galvannealing, etc.). Since the different coating applications are non-equilibrium in nature, it becomes necessary to employ a non-equilibrium method for producing homogeneous alloys in the solid-state to reflect the structural changes occurring in a true coating. This was accomplished through the use of a high energy/non-equilibrium technique known as ball-milling which allowed the authors to monitor the evolution process of the alloys as they transformed from a metastable to stable equilibrium state. In FY 1996, this study was expanded to evaluate the presence of Si in the Fe-Zn system and its influence in the overall coating. The addition of silicon in steel gives rise to an increased coating. However, the mechanisms leading to the coating anomaly are still not fully understood. For this reason, mechanical alloying through ball-milling of pure elemental powders was used to study the structural changes occurring in the sandelin region (i.e., 0.12 wt % Si). Through the identification of invariant reactions (i.e., eutectic, etc.) the authors were able to explore the sandelin phenomenon and also determine the various fields or boundaries associated with the Fe-Zn-Si ternary system.

  4. Characterization of second-phase plates in a Gd5Ge3 intermetallic compound

    SciTech Connect

    Cao, Qing; Chumbley, Leonard S.

    2013-05-16

    Rare-earth compounds based on the stoichiometry R5(SixGe1-x)4 (R = rare-earth elements) exhibit many unusual features, including possessing R5(SixGe1-x)3 thin plates which always precipitate from the matrix despite efforts to suppress their formation. In an effort to better understand the unique relationship between these two intermetallic alloy systems, the bulk microstructure of the compound Gd5Ge3 was examined using scanning (SEM) and transmission electron microscopy (TEM) and optical microscopy. Surprisingly, SEM examination revealed a series of thin plates present in the Gd5Ge3 matrix similar to what is seen in Gd5Ge4. TEM observation revealed that a role reversal had occurred, with the thin plates possessing the orthorhombic structure and composition of Gd5Ge4. The orientation relationship between Gd5Ge4 thin plates and the Gd5Ge3 matrix was determined to be Graphic the same relationship reported for Gd5Ge3 plates precipitating from a Gd5Ge4 matrix. However, by exchanging the respective roles of the phases as regards matrix vs. precipitate, the total number of precipitation variants seen can be increased from two to six. The persistence with which these two intermetallic systems co-exist is truly unique. However, understanding exactly the kinetic and thermodynamic conditions that lead to their unique relationship is hampered by the high formation temperatures at which the observed reaction occurs.

  5. Innovative processing to produce advanced intermetallic materials. Phase 1 final report

    SciTech Connect

    Loutfy, R.O.

    1989-09-01

    The program demonstrates the technical feasibility of synthesizing submicron titanium aluminide in a thermal rf plasma. Micron and submicron spherical titanium aluminide particles are produced in argon, hydrogen, and argon/hydrogen plasmas from the reaction of TiCl4(g), and Al(g). The ratio of Ti and Al is varied to produce the compounds Ti3Al, TiAl, and TiAl3. Microalloying with boron and macroalloying with niobium is demonstrated. Ti3Al whiskers can be produced, as well as other intermetallics of niobium aluminide, nickel aluminide, and molybdenum disilicide in the plasma synthesis process. Since submicron particles are produced, they have a high surface area and are sensitive to oxidation if not treated with a fugitive protective coating or utilized in a nonoxidizing atmosphere. Ti3Al particles are consolidated and utilized as a matrix for TiC and AlN composites. The submicron AlTi3 has significantly higher strength at room temperature than reported for commercial Ti3Al-11Nb alloy and useable strength is maintained up to 1000 C. The elongation is about the same as for commercial material because of possible oxide contamination in powder handling. However, dimpling and nacking is evident in the fracture surface, which suggests true room temperature ductility. Titanium aluminides have the potential to replace superalloys and become the dominant material for aerospace engines, air frames and skins for hypersonic vehicles.

  6. The polarization phase difference of orchard trees

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Mo, Tsan

    1990-01-01

    An image obtained by the Jet Propulsion Laboratory's airborne L-band polarimeter (SAR) over an agricultural area near Fresno, California, was analyzed for the signatures of polarization phase difference (PPD). The PPD of orchard trees was found to be distinctly different from that of bare fields or fields covered with other crops. Thus the PPD signatures obtained from a polarimeter may be useful in the understanding of the radar remote sensing of the earth's surface.

  7. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content

    PubMed Central

    Körner, Wolfgang; Krugel, Georg; Elsässer, Christian

    2016-01-01

    We report on theoretical investigations of intermetallic phases derived from the ThMn12-type crystal structure. Our computational high-throughput screening (HTS) approach is extended to an estimation of the anisotropy constant K1, the anisotropy field Ha and the energy product (BH)max. The calculation of K1 is fast since it is based on the crystal field parameters and avoids expensive total-energy calculations with many k-points. Thus the HTS approach allows a very efficient search for hard-magnetic materials for which the magnetization M and the coercive field Hc connected to Ha represent the key quantities. Besides for NdFe12N which has the highest magnetization we report HTS results for several intermetallic phases based on Cerium which are interesting as alternative hard-magnetic phases because Cerium is a less ressource-critical element than Neodymium. PMID:27098547

  8. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys and intermetallic materials: Phase stability in NbCr{sub 2} Laves phase alloys

    SciTech Connect

    Zhu, J.H.; Liaw, P.K.; Liu, C.T.

    1996-08-01

    Phase stability in NbCr{sub 2}-based transition-metal Laves phases is studied in this paper, using data from binary X-Cr, Nb-X, and ternary Nb-Cr-X phase diagrams. It was shown that when the atomic size ratios are kept identical, the average electron concentration factor (e/a = the average number of electrons per atom outside the closed shells of the component atoms) is the determinate factor in controlling the phase stability of NbCr{sub 2}-based transition-metal Laves phases. The e/a ratios for different Laves phase structures were determined as follows: with e/a < 5.76, the C15 structure is stabilized; at an e/a range of 5.88-7.53, the C14 structure is stabilized; with e/a > 7.65, the C15 structure was stabilized again. A further increase in the electron concentration factor (e/a > 8) leads to the disordering of the alloy. The electron concentration effect on the phase stability of transition-metal A{sub 3}B intermetallic compounds and Mg-based Laves phases is also reviewed and compared with the present observations in transition-metal Laves phases.

  9. Primordial Inflation Polarization Explorer (Phase 3)

    NASA Astrophysics Data System (ADS)

    Kogut, Alan

    This is the Lead Proposal for the investigation "Primordial Inflation Polarization Explorer (Phase 3)". We propose to complete and fly the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravitational waves produced during an inflationary epoch in the early universe. Detection of the inflationary signal would have profound consequences for both cosmology and high-energy physics. Not only would it establish inflation as a physical reality, it would provide a direct, model-independent determination of the relevant energy scale, shedding light on physics at energies twelve orders of magnitude beyond those accessible to direct experimentation in particle accelerators. The recent detection of CMB polarization by the BICEP2 instrument brings new urgency to the field. The BICEP2 detection at degree angular scales is consistent with inflation, but the amplitude is a factor of two higher than upper limits set by unpolarized data. A critical test is the rise in power at large angular scales predicted by inflation. Detecting this rise would confirm the signal's inflationary origin, fulfilling a long quest for cosmology while providing new insight into physics at the highest energies. PIPER is the only suborbital instrument capable of measuring CMB polarization on the large angular scales needed to test an inflationary origin for the BICEP2 detection. PIPER is a balloon-borne instrument, optimized to detect the inflationary signal on large angular scales. It consists of two co-aligned telescopes cooled to 1.5 K within a large liquid helium bucket dewar. A variable-delay polarization modulator (VPM) on each telescope chops between linear and circular polarization to isolate the polarized signal while rejecting the much brighter unpolarized emission. Four 32 x 40 element detector arrays provide background-limited sensitivity. A series of flights from mid-latitude sites will map

  10. Primordial Inflation Polarization Explorer (Phase 2)

    NASA Astrophysics Data System (ADS)

    Kogurt, Alan; Bennett, Charles

    This is the Lead Proposal for the proposed investigation "Primordial Inflation Polarization Explorer (Phase 2)" We propose to fly the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravitational waves produced during an inflationary epoch in the early universe. Such a signal is expected to exist: the simplest inflation models predict tensor-to-scalar ratio 0.01 < r < 0.16 corresponding to detectable amplitudes in the range 30--100 nK. Detection of the inflationary signal would have profound consequences for both cosmology and high-energy physics. Not only would it establish inflation as a physical reality, it would provide a direct, model- independent determination of the relevant energy scale, shedding light on physics at energies twelve orders of magnitude beyond those accessible to direct experimentation in particle accelerators. PIPER is a balloon-borne instrument optimized to detect the inflationary signal on large angular scales. It consists of two co-aligned telescopes cooled to 1.5 K within a large liquid helium bucket dewar. A variable-delay polarization modulator (VPM) on each telescope chops between linear and circular polarization to isolate the polarized signal while rejecting the much brighter unpolarized emission. PIPER's innovative architecture combines cryogenic optics with kilo-pixel detector arrays to provide unprecedented sensitivity to CMB polarization. The fast modulation between linear and circular polarization takes advantage of the lack of astrophysical circular polarization to eliminate common sources of systematic error. The sensitivity and control of systematic errors in turn enable measurements over most of the sky from mid-latitude launch sites; long-duration Antarctic flights are not required. With sensitivity r < 0.007 at 95% CL, PIPER will either detect the inflationary signal or rule out nearly all large-field inflation models

  11. Phase equilibria and solid state transformations in niobium-rich niobium-titanium-aluminum intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Leonard, Keith John

    The phase equilibria and solid state transformations within seven Nb-rich Nb-Ti-Al alloys were investigated. The alloys ranged in composition between 15 and 40 at.% Al with Nb:Ti ratios of 1.5:1 to 4:1. Examination of the as-cast microstructures revealed that all alloys solidified from the beta phase field, with subsequent solid-state transformations occurring within four of the alloys during cooling. The range of primary beta phase solidification was determined to extend beyond the limits of previous liquidus projections. The high temperature beta phase field was verified in each alloy through quenching experiments. The beta phase exhibited B2 ordering at room temperature with the order-disorder transition temperatures increasing with Ti concentration. The site occupancy preferences within the beta phase were evaluated through the ALCHEMI technique, which determined that Ti substitution occurred for Nb on Nb sublattice sites with the degree of sublattice partitioning found to depend upon alloy composition. The phase equilibria and transformations that occurred within the alloys were explored over a complete range of temperatures, with experimental isotherms produced at 1400, 1100, 900 and 700°C. Formation of metastable O-Ti 2AlNb plates occurred within the 15 at.% Al alloys at 700°C, instead of the delta-Nb3Al phase due to the slow diffusion growth kinetics of the delta phase below 900°C. A new phase with a body centered tetragonal structure belonging to the I41/amd space group was discovered in the Nb-24Ti-40Al alloy below 1100°C. This phase formed as lamella with the gamma-TiAl phase from the beta solid solution at 900 and 700°C, and was also present following treatments at 1100 + 900, 1100 + 700°C and within material oil quenched from elevated temperatures. No correlation existed between this phase and either the r-TiAl2 phase, which also has the I41/amd structure, or the gamma1 phase, which was not observed within this work. The formation of a metastable

  12. Fabrication and Investigation of Intermetallic Compound-Glassy Phase Composites having Tensile Ductility

    DTIC Science & Technology

    2012-08-09

    with Mg-Y-Cu BGA, MgY phase also has a cP2 B2 structure), Mg-Y-Ag (AgMg phase also has a cP2 B2 structure and is ductile) and Y-Cu-Zn and some other...result were obtained is connected with cP2 TiNi phase which demonstrates martensitic transformations. Choice of alloys and sample preparation...1. The tentative compositions at which bulk glassy phase formation and possible formation of cP2 crystal-glassy composites are Cu-Y (starting from

  13. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    SciTech Connect

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed into the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.

  14. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE PAGES

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less

  15. Processing, phase equilibria and environmental degradation of molybdenum (silicom,aluminum)(2) intermetallic compound

    NASA Astrophysics Data System (ADS)

    Eason, Paul Duane

    The Mo(Si,Al)2 C40 compound was chosen for investigation as a possible high temperature structural material. To produce the C40 phase, several processing routes were explored with emphasis on obtaining microstructure/property relationships (i.e. control of grain size and minimization of secondary phases). To facilitate processing of single phase material, the phase equilibria of the Mo-Si-Al ternary system were reevaluated with respect to the phases adjacent to the C40 compound. An anomalous environmental degradation appeared to be the primary obstacle to further study of the compound and was investigated accordingly. Several processing routes were assessed for the production of dense, nearly single-phase Mo(Si,Al)2. Hot powder compaction was chosen as the method of sample production as is the case with many refractory silicide based materials. Therefore, variations in the processing techniques came from the choice of precursor materials and methods of powder production. Mechanical alloying, arc-melting and comminution, and blending of both elemental and compound powders were all employed to produce charges for hot uniaxial pressing. The final compacts were compared on the basis of density, grain size and presence of secondary phases. Establishment of a Mo-Si-Al ternary isothermal phase diagram at 1400°C was performed. Multiphase alloy compositions were selected to identify the phase boundaries of the C40, C54, T1 and Mo3Al8 phase fields, as well as to verify the existence of the C54 phase at 1400°C. The alloys were equilibrated by heat treatment and analyzed for phase identification and quantitative compositional information. The environmental degradation phenomenon was approached as a classical "pest" with an emphasis of study on grain boundary chemistry and atmospheric dependence of attack. Both Auger spectroscopy and electron microscopy revealed carbon-impurity-induced grain boundary segregation responsible for the embrittlement and material loss. Means of

  16. Solid-State Phase Equilibria and Intermetallic Compounds of the Si-V-Zr Ternary System

    NASA Astrophysics Data System (ADS)

    Pan, Yanfang; Ye, Haimei; Chen, Xiaoxian; Jiang, Wenping; Yang, Wenchao; Zhan, Yongzhong

    2016-12-01

    Phase relations in the Si-V-Zr ternary system at 973 K (700 °C) were experimentally investigated using X-ray powder diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The isothermal section at 973 K (700 °C) is governed by seventeen three-phase regions, thirty-two two-phase regions, and sixteen single-phase regions. Ten binary compounds and one ternary compound (SiVZr) were confirmed. There are two new ternary compounds found in this work for the first time. One of them (Si4V3Zr2) was found in the stoichiometric composition around V 38 pct, Si 50 pct, and Zr 12 pct. The existence of another one (V17Si12Zr3) was observed while analyzing the XRD results of large quantities of equilibrated samples in the region around 54 at. pct V, 33 at. pct Si, and 13 at. pct Zr.

  17. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  18. Electrical, magnetic, and thermal properties of the δ-FeZn10 complex intermetallic phase

    NASA Astrophysics Data System (ADS)

    Jazbec, S.; Koželj, P.; Vrtnik, S.; Jagličić, Z.; Popčević, P.; Ivkov, J.; Stanić, D.; Smontara, A.; Feuerbacher, M.; Dolinšek, J.

    2012-08-01

    We report the electrical, magnetic, and thermal properties of the δ-FeZn10 phase in the zinc-rich domain of the Fe-Zn system. The δ-FeZn10 phase possesses high structural complexity typical of complex metallic alloys: a giant unit cell comprising 556 atoms, polyhedral atomic order with icosahedrally coordinated environments, fractionally occupied lattice sites, and statistically disordered atomic clusters that introduce intrinsic disorder into the structure. Structural disorder results in suppression of the electrical and heat transport phenomena, making δ-FeZn10 a poor electrical and thermal conductor. Structural complexity results in a complex electronic structure that is reflected in the opposite signs of the thermoelectric power and the Hall coefficient. The δ-FeZn10 phase is paramagnetic down to the lowest investigated temperature of 2 K with a significant interspin coupling of antiferromagnetic type. Specific heat indicates the formation of short-range-ordered spin clusters at low temperatures, very likely a precursor of a phase transition to a collective magnetic state that would take place below 2 K. The magnetoresistance of δ-FeZn10 is sizeable, amounting to 1.5% at 2 K in a 9-T field. The electrical resistivity exhibits a maximum at about 220 K, and its temperature dependence could be explained by the theory of slow charge carriers, applicable to metallic systems with weak dispersion of the electronic bands, where the electron motion changes from ballistic to diffusive upon heating.

  19. Irradiation induced structural change in Mo2Zr intermetallic phase

    SciTech Connect

    Gan, J.; Keiser, Jr., D. D.; Miller, B. D.; Eriksson, N.; Sohn, Y. H.; Kirk, M.

    2016-05-14

    The Mo2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. Transmission electron microscopy in-situ irradiation with Kr ions at 200 °C with doses up to 2.0E+16 ions/cm2 was carried out to investigate the radiation stability of the Mo2Zr. The Mo2Zr undergoes a radiation-induced structural change, from a large cubic (cF24) to a small cubic (cI2), along with an estimated 11.2% volume contraction without changing its composition. The structural change begins at irradiation dose below 1.0E+14 ions/cm2. Furthermore, the transformed Mo2Zr phase demonstrates exceptional radiation tolerance with the development of dislocations without bubble formation.

  20. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  1. Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.

    2014-06-01

    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-<-| S 373K|-<-550- μV-K-1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  2. Spin-polarized structural, electronic and magnetic properties of intermetallic Dy 2Ni 2Pb from computational study

    NASA Astrophysics Data System (ADS)

    Arbouche, Omar; Azzaz, Yahia; Bendaoud, Hanifi; Belgoumène, Berrzoug; Driz, Mohamed; Abid, Hamza

    2012-03-01

    We report a first-principles study of structural, electronic and magnetic properties of ternary plumbides (rare earth-transition metal-Plumb) Dy 2Ni 2Pb crystallizes with the orthorhombic structure of the Mn 2AlB 2 type (space group Cmmm), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbital method within the frame work of spin-polarized density functional theory (SP-DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA). We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, total densities of states and magnetic properties. The calculated total magnetic moment is found to be equal to 9.52 μB.

  3. Polarization phase shifting interferometric technique for phase calibration of a reflective phase spatial light modulator

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Somparna; Sarkar, Sanjukta; Bhattacharya, Kallol; Hazra, Lakshminarayan

    2013-03-01

    Calibration of phase in spatial light modulators is a prerequisite for applications where a prespecified phase distribution needs to be implemented over the surface of the modulator. The present work proposes a full-field polarization phase shifting interferometric technique, based on the Twyman-Green interferometer, for the purpose.

  4. X-ray Fluorescence Investigation of Ordered Intermetallic Phases as Electrocatalysts towards the Oxidation of Small Organic Molecules

    SciTech Connect

    Liu, Yi; Lowe, Michael A.; Finkelstein, Ken D.; Dale, Darren S.; DiSalvo, Francis J.; Abruña, Héctor D.

    2010-10-13

    The composition of ordered intermetallic nanoparticles (PtBi and PtPb) has been quantitatively studied by in situ X-ray fluorescence (XRF) during active electrochemical control in solutions of supporting electrolyte and small organic molecules (SOMs). Because the Pt Lβ1,2 lines and the Bi Lα1,2 lines are only separated by 200 eV, an energy-dispersive detector and a multiple-channel analyzer (MCA) were used to record the major fluorescent emission lines from these two elements. The molar ratios of platinum to the less-noble elements (Bi, Pb) in the nanoparticles dramatically changed as a function of the applied upper limit potentials (Eulp) in cyclic voltammetric (CV) characterization. Similar to previous investigations for bulk intermetallic surfaces, the less-noble elements leached out from the surfaces of the intermetallic nanoparticles. For PtBi nanoparticles, the ratios of fluorescence intensities of Pt/Bi in the samples were 0.42, 0.96, and 1.36 for Eulp=+0.40, +0.80, and 1.20 V, respectively, while cycling the potential from -0.20 V to the Eulp value for 10 cycles. The leaching-out process of the less-noble elements occurred at more negative Eulp values than expected. After cycling to relatively positive Eulp values, nonuniform PtM (M=Bi of Pb) nanoparticles formed with a Pt-rich shell and intermetallic PtM core. When the supporting solutions contained active fuel molecules in addition to the intermetallic nanoparticles (formic acid for PtBi, formic acid and methanol for PtPb), kinetic stabilization effects were observed for Eulp=+0.80 V, in a way similar to the response of the bulk materials. It was of great importance to quantitatively explore the change in composition and structure of the intermetallic nanoparticles under active electrochemical control. More importantly, this approach represents a simple, universal, and multifunctional method for the study of multi

  5. Some statistics on intermetallic compounds.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-02-02

    It is still largely unknown why intermetallic phases show such a large variety of crystal structures, with unit cell sizes varying between 1 and more than 20 000 atoms. The goal of our study was, therefore, to get a general overview of the symmetries, unit cell sizes, stoichiometries, most frequent structure types, and their stability fields based on the Mendeleev numbers as ordering parameters. A total of 20829 structures crystallizing in 2166 structure types have been studied for this purpose. Thereby, the focus was on a subset of 6441 binary intermetallic compounds, which crystallize in 943 structure types.

  6. Improving hot corrosion resistance of two phases intermetallic alloy α2-Ti3Al/γ-TiAl with enamel coating

    NASA Astrophysics Data System (ADS)

    Pambudi, Muhammad Jajar; Basuki, Eddy Agus; Prajitno, Djoko Hadi

    2017-01-01

    TiAl intermetallic alloys have attracted great interest among aerospace industry after successful utilization in low pressure turbine blades of aircraft engine which makes dramatic weight saving up to 40% weight saving. However, poor oxidation and corrosion resistance at temperatures above 800°C still become the drawbacks of this alloys, making the development of protective coatings to improve the resistance is important. This study investigates the hot corrosion behavior of two phases intermetallic alloy α2-Ti3Al/γ-TiAl with and without enamel coating using immersion test method in molten salt of 85%-wt Na2SO4 and 15%-wt NaCl at 850°C. The results show after 50 hours of hot corrosion test, bare alloy showed poor hot corrosion resistance due to the formation of non-protective Al2O3+TiO2 mixed scale at the surface of the alloy. Improvement of hot corrosion resistance was obtained in samples protected with enamel coating, indicated by significant decreasing in mass change (mg/cm2) by 98.20%. Enamel coating is expected to has the capability in suppressing the diffusion of oxygen and corrosive ions into the substrate layer, and consequently, it improves hot corrosion resistance of the alloy. The study showed that enamel coatings have strong adherent to the substrate and no spallation was observed after hot corrosion test. Nevertheless, the dissolution of oxides components of the enamel coating into the molten salts was observed that lead enamel coating degradation. This degradation is believed involving Cl- anion penetration into the substrate through voids in the coating that accelerates the corrosion of the two phases α2-Ti3Al/γ-TiAl alloy. Even though further observations are needed, it appears that enamel coating could be a promising protective coating to increase hot corrosion resistance of TiAl intermetallic alloys.

  7. Polarization-multiplexed plasmonic phase generation with distributed nanoslits.

    PubMed

    Lee, Seung-Yeol; Kim, Kyuho; Lee, Gun-Yeal; Lee, Byoungho

    2015-06-15

    Methods for multiplexing surface plasmon polaritons (SPPs) have been attracting much attention due to their potentials for plasmonic integrated systems, plasmonic holography, and optical tweezing. Here, using closely-distanced distributed nanoslits, we propose a method for generating polarization-multiplexed SPP phase profiles which can be applied for implementing general SPP phase distributions. Two independent types of SPP phase generation mechanisms - polarization-independent and polarization-reversible ones - are combined to generate fully arbitrary phase profiles for each optical handedness. As a simple verification of the proposed scheme, we experimentally demonstrate that the location of plasmonic focus can be arbitrary designed, and switched by the change of optical handedness.

  8. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization.

    PubMed

    Balthasar Mueller, J P; Rubin, Noah A; Devlin, Robert C; Groever, Benedikt; Capasso, Federico

    2017-03-17

    We present a method allowing for the imposition of two independent and arbitrary phase profiles on any pair of orthogonal states of polarization-linear, circular, or elliptical-relying only on simple, linearly birefringent wave plate elements arranged into metasurfaces. This stands in contrast to previous designs which could only address orthogonal linear, and to a limited extent, circular polarizations. Using this approach, we demonstrate chiral holograms characterized by fully independent far fields for each circular polarization and elliptical polarization beam splitters, both in the visible. This approach significantly expands the scope of metasurface polarization optics.

  9. Elliptically polarizing adjustable phase insertion device

    DOEpatents

    Carr, Roger

    1995-01-01

    An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets.

  10. Evaluation of polarized terahertz waves generated by Cherenkov phase matching.

    PubMed

    Akiba, Takuya; Akimoto, Yasuhiro; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2014-03-10

    We report terahertz (THz) wave generation by satisfying Cherenkov phase-matching condition in both s and p polarizations. A dual-wavelength optical parametric oscillator is constructed from two potassium titanium oxide phosphate crystals pumped by a frequency-doubled Nd:YAG laser. By rotating the orientation of both a lithium niobate crystal (LiNbO3) and the polarization of the pump waves, the polarization of the THz wave changes. Due to the difference in the refractive index and absorption, the output power for p polarization is one tenth that for s polarization. A tuning range from 0.2 to 6.5 THz is obtained for s polarization, and from 0.2 to 4.2 and 5.4 to 6.9 THz for p polarization. The extraction efficiency is improved by changing the angle of prism for p polarization, and a large phase change occurs at total internal reflection. Consequently, p-polarized THz waves are optimal for spectroscopic applications.

  11. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization

    NASA Astrophysics Data System (ADS)

    Balthasar Mueller, J. P.; Rubin, Noah A.; Devlin, Robert C.; Groever, Benedikt; Capasso, Federico

    2017-03-01

    We present a method allowing for the imposition of two independent and arbitrary phase profiles on any pair of orthogonal states of polarization—linear, circular, or elliptical—relying only on simple, linearly birefringent wave plate elements arranged into metasurfaces. This stands in contrast to previous designs which could only address orthogonal linear, and to a limited extent, circular polarizations. Using this approach, we demonstrate chiral holograms characterized by fully independent far fields for each circular polarization and elliptical polarization beam splitters, both in the visible. This approach significantly expands the scope of metasurface polarization optics.

  12. Elliptically polarizing adjustable phase insertion device

    DOEpatents

    Carr, R.

    1995-01-17

    An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets. 3 figures.

  13. The Pancharatnam-Berry phase in polarization singular beams

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Viswanathan, Nirmal K.

    2013-04-01

    Space-variant inhomogeneously polarized field formed due to superposition of orthogonally polarized Gaussian (LG00) and Laguerre-Gaussian (LG01) beams results in polarization singular beams with different morphology structures such as lemon, star and dipole patterns around the C-point in the beam cross-section. The Pancharatnam-Berry phase plays a critical role in the formation and characteristics of these spatially inhomogeneous fields. We present our experimental results wherein we measure the variable geometric phase by tracking the trajectory of the component vortices in the beam cross-section, by interfering with selective polarization states and by tracking different latitudes on the Poincaré sphere without the effect of a dynamic phase.

  14. Polarization Phase-Shift Interferometry: A Simple Laboratory Setup

    NASA Astrophysics Data System (ADS)

    Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe

    2008-04-01

    An interferometry experiment is proposed, working on a Twyman-Green optical configuration. The interferogram is acquired with a digital camera and processed. Using polarization components the interferogram is phase-shifted and four different interferograms are acquired. The experiment is proposed as an introduction to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses.

  15. Electric field driven mesoscale phase transition in polarized colloids

    NASA Astrophysics Data System (ADS)

    Khusid, Boris; Elele, Ezinwa; Lei, Qian

    2016-11-01

    A mesoscale phase transition in a polarized suspension was reported by Kumar, Khusid, Acrivos, PRL95, 2005 and Agarwal, Yethiraj, PRL102, 2009. Following the application of a strong AC field, particles aggregated head-to-tail into chains that bridged the interelectrode gap and then formed a cellular pattern, in which large particle-free domains were enclosed by particle-rich thin walls. Cellular structures were not observed in numerous simulations of field induced phase transitions in a polarized suspension. A requirement for matching the particle and fluid densities to avoid particle settling limits terrestrial experiments to negatively polarized particles. We present data on the phase diagram and kinetics of the phase transition in a neutrally buoyant, negatively polarized suspension subjected to a combination of AC and DC. Surprisingly, a weak DC component drastically speeds up the formation of a cellular pattern but does not affect its key characteristic. However, the application of a strong DC field destroys the cellular pattern, but it restores as the DC field strength is reduced. We also discuss the design of experiments to study phase transitions in a suspension of positively polarized, non-buoyancy-matched particles in the International Space Station. Supported by NASA's Physical Science Research Program, NNX13AQ53G.

  16. Polarization effects in reconfigurable liquid crystal phase holograms

    NASA Astrophysics Data System (ADS)

    Komarčević, Miloš; Manolis, Ilias G.; Wilkinson, Timothy D.; Crossland, William A.

    2005-01-01

    An improved configuration for achieving true polarization insensitive reconfigurable phase holograms for optical switches using homogeneously aligned nematic liquid crystal devices is presented. Previous experimental results have been analyzed and explained using numerical modeling of the nematic liquid crystal orientation and associated optical modulation. Twisting of the liquid crystal optical axis from the optimal 45° orientation from the quarter waveplate is shown to degrade the polarization insensitive performance. The alternative direction of surface alignment perpendicular to the long pixel edge eliminates the twist of the director during switching. True polarization insensitivity is predicted with our model for this mode of operation.

  17. Polarization selective phase-change nanomodulator

    SciTech Connect

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-10-27

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.

  18. Polarization selective phase-change nanomodulator

    DOE PAGES

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-10-27

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume ofmore » only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.« less

  19. Polarization selective phase-change nanomodulator

    PubMed Central

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-01-01

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements. PMID:25346427

  20. Dynamic phase measurements based on a polarization Michelson interferometer employing a pixelated polarization camera

    NASA Astrophysics Data System (ADS)

    Serrano-Garcia, David I.; Otani, Yukitoshi

    2017-02-01

    We implemented an interferometric configuration capable of following a phase variation in time. By using a pixelated polarization camera, the system is able to retrieve the phase information instantaneously avoiding the usage of moving components and the necessity of an extra replication method attached at the output of the interferometer. Taking into account the temporal stability obtained from the system, a spatial-temporal phase demodulation algorithm can be implemented on frequency domain for the dynamic phase measurement. Spatial resolution is analyzed experimentally using a USAF pattern, and dynamic phase measurements were done on air and water medium variations due to a jet flame and a living fish as a biological sample, respectively.

  1. Phase-shifting digital holography with a phase difference between orthogonal polarizations.

    PubMed

    Nomura, Takanori; Murata, Shinji; Nitanai, Eiji; Numata, Takuhisa

    2006-07-10

    Phase-shifting digital holography with a phase difference between orthogonal polarizations is proposed. The use of orthogonal polarizations can make it possible to record two phase-shifted holograms simultaneously. By combining the holograms with the distributions of a reference wave and an object wave, the complex field of the object's wavefront can be obtained. Preliminary experimental results are shown to confirm the proposed method.

  2. Effects of intermetallic phases on the electrochemical properties of rapidly-solidified Si-Cr alloys for rechargeable Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ha, Jeong Ae; Jo, In Joo; Park, Won-Wook; Sohn, Keun Yong

    2016-09-01

    The microstructures and the electrochemical properties of rapidly-solidified Si-Cr alloys of various compositions were investigated in order to elucidate the effects of intermetallic phases on the cyclic energy capacity of the materials. Rapidly-solidified ribbons of the alloys were prepared by using a melt-spinning process, which is one of the most efficient rapid-solidification processes. The ribbons were fragmented by using a ball-milling process to produce powders of the alloys. To examine the electrochemical characteristics of the alloys, we mixed each of the alloy powders with Ketjenblack®, a conductive material, and a binder dissolved in deionized water and used it to form electrodes. The electrolyte used was 1.5-M LiPF6 dissolved in ethyl carbonate/dimethyl carbonate/fluoroethylene carbonate. The microstructures and the phases of the alloys were analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analyses. The obtained results showed that the microstructures of the rapidly-solidified Si-Cr alloys were composed of Si and CrSi2 phases. Fine Si particles with diameters of 50 - 100 nm were observed in an eutectic constituent while the sizes of the primary Si and CrSi2 phases were relatively larger at 500 - 900 nm. The specific energy capacities ( C) of the Si-Cr alloys decreased linearly with increasing volume fraction ( f) of the CrSi2 phase as follows: C = -1,667 f + 1,978 after the 50th cycle. The Columbic efficiency after the 3rd cycle increased slightly with increasing volume fraction of the CrSi2 phase; this was effective in improving the cycling capacity of the Si particles.

  3. Chemistry of intermetallic hydrides

    SciTech Connect

    Reilly, J.J.

    1991-01-01

    Certain intermetallic hydrides are safe, convenient and inexpensive hydrogen storage compounds. A particular advantage of such compounds is the ease with which their properties can be modified by small changes in alloy composition or preparation. This quality can be exploited to optimize their storage properties for particular applications, e.g. as intermetallic hydride electrodes in batteries. We will be concerned herein with the more important aspects of the thermodynamic and structural principles which regulate the behavior of intermetallic hydrogen systems and then illustrate their application using the archetype hydrides of LaNi5, FeTi and Mg alloys. The practical utility of these classes of materials will be briefly noted.

  4. Synthesis of general polarization transformers. A geometric phase approach

    NASA Astrophysics Data System (ADS)

    Bhandari, Rajendra

    1989-07-01

    Using a generalized form of Jordan's formulation of the geometric phase problem it is shown that a single gadget capable of realising an arbitrary element of the polarization transformation group SU (2) can be constructed using two half-wave plates and two quarter-wave plates. For special transformations, simpler, practical gadgets are proposed.

  5. Relating polarization phase difference of SAR signals to scene properties

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Dobson, Myron C.; Mcdonald, Kyle C.; Senior, Thomas B. A.; Held, Daniel

    1987-01-01

    This paper examines the statistical behavior of the phase difference Delta-phi between the HH-polarized and VV-polarized backscattered signals recorded by an L-band SAR over an agricultural test site in Illinois. Polarization-phase difference distributions were generated for about 200 agricultural fields for which ground information had been acquired in conjunction with the SAR mission. For the overwhelming majority of cases, the Delta-phi distribution is symmetric and has a single major lobe centered at the mean value of the distribution Delta-phi. Whereas the mean Delta-phi was found to be close to zero degrees for bare soil, cut vegetation, alfalfa, soybeans, and clover, a different pattern was observed for the corn fields; the mean Delta-phi increased with increasing incidence angle Theta = 35 deg. The explanation proposed for this variation is that the corn canopy, most of whose mass is contained in its vertical stalks, acts like a uniaxial crystal characterized by different velocities of propagation for waves with horizontal and vertical polarization. Thus, it is hypothesized that the observed backscatter is contributed by a combination of propagation delay, forward scatter by the soil surface, and specular bistatic reflection by the stalks. Model calculations based on this assumption were found to be in general agreement with the phase observations.

  6. First principles investigation of the mechanical, thermodynamic and electronic properties of FeSn5 and CoSn5 intermetallic phases under pressure

    NASA Astrophysics Data System (ADS)

    Sun, Wenming; Liu, Jing; Wang, Hong; Zhang, Zhenwei; Zhang, Liang; Bu, Yuxiang

    2017-02-01

    For guidance for developing Fe/Co-Sn-based anode materials for lithium-ion batteries, the mechanical, thermodynamic and electronic properties of FeSn5 and CoSn5 intermetallic phases under pressures ranging from 0 to 30 GPa have been investigated systematically using first-principles total-energy calculations within the framework of the generalized gradient approximation. The pressure was found to have significant effects on the mechanical, thermodynamic and electronic properties of these compounds. In the selected pressure range, CoSn5 has a more negative formation enthalpy than FeSn5. Based on the calculated elastic constants, the bulk modulus, shear modulus, and Young's modulus were determined via the Viogt-Reuss-Hill averaging scheme. The variations of specific heats at constant volume for FeSn5 and CoSn5 in a wide pressure (0 - 30 GPa) and temperature (0 - 1000 K) range are also predicted from phonon density of states calculation. The calculated results suggested that both FeSn5 and CoSn5 are mechanically stable at pressure from 0 to 30 GPa. FeSn5 is dynamically stable at pressure up to, 30 GPa, at least, however, CoSn5 is dynamically stable no higher than 15 GPa.

  7. Progress report on DOE research project [Thermodynamic and kinetic behavior of systems with intermetallic and intermediate phases

    SciTech Connect

    Tsakalakos, T.; Semenovskaya-Khachaturyan, S.; Khachaturyan, A.G.

    2000-12-13

    A theoretical investigation was made of the coherent displacive phase transformation between two equilibrium single-phase states producing several orientation variants of the product phase. The research was focused on a behavior of coherent systems (martensitic systems, metal and ceramic, and ferroelectric systems) with defects. The computer simulation demonstrated that randomly distributed static defects may drastically affect the thermodynamics, kinetics, and morphology of the transformation. In particular, the interaction of the transformation mode with the defects may be responsible for appearance of two new fields in the phase diagram: (i) the two-phase field describing the tweed microstructure, which consists of the retain parent phase and the variants of the product phase and (ii) the single-phase field describing the tweed microstructure, which consists of the variants of the product phase. These new fields can be attributed to the pre-transitional states observed in some of th e displacive transformations. The microstructure evolution resulting in formation of the thermoelastic equilibrium is path dependent. This unusual behavior is expected in systems with a sharp dependence of the transition temperature on the defect concentration.

  8. Numerical generation of a polarization singularity array with modulated amplitude and phase.

    PubMed

    Ye, Dong; Peng, Xinyu; Zhao, Qi; Chen, Yanru

    2016-09-01

    A point having no defined polarized ellipse azimuthal angle (circularly polarized) in a space-variant vector field is called a polarization singularity, and it has three types: Lemon, Monstar, and Star. Recently, the connection of polarization singularities has been performed. Inspired by this, we conduct a numerical generation of a polarization singularity array. Our method is based on two orthogonal linearly polarized light beams with modulated amplitude and phase. With appropriate distribution functions of amplitudes and phases we can control the polarized states of polarization singularities, which offer a possibility to simulate a polarization singularity array.

  9. Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer.

    PubMed

    Pan, Shilong; Zhang, Yamei

    2012-11-01

    A novel microwave photonic phase shifter based on a single-sideband (SSB) polarization modulator (PolM) and a polarizer is proposed and demonstrated. In the SSB-PolM, two SSB intensity-modulated signals with a phase difference of π along two orthogonal polarization directions are generated. With the polarizer to combine the two signals, the phase of the optical microwave signal can be tuned from -180 to 180 deg by simply adjusting the polarization direction of the polarizer, whereas the amplitude keeps unchanged. An experiment is carried out. A full-range tunable phase shift in the frequency range of 11-43 GHz is achieved. The flat power response, power independent operation, and high stability of the proposed microwave photonic phase shifter is also confirmed.

  10. Suppression of the antiferroelectric phase during polarization cycling of an induced ferroelectric phase

    SciTech Connect

    Liu, Xiaoming; Tan, Xiaoli

    2015-08-17

    The ceramic Pb{sub 0.99}Nb{sub 0.02}[(Zr{sub 0.57}Sn{sub 0.43}){sub 0.92}Ti{sub 0.08}]{sub 0.98}O{sub 3} can exist in either an antiferroelectric or a ferroelectric phase at room temperature, depending on the thermal and electrical history. The antiferroelectric phase can be partially recovered from the induced ferroelectric phase when the applied field reverses polarity. Therefore, polarization cycling of the ferroelectric phase in the ceramic under bipolar fields at room temperature is accompanied with repeated phase transitions. In this letter, the stability of the recovered antiferroelectric phase upon electrical cycling of the ceramic is investigated. Ex-situ X-ray diffraction reveals that bipolar cycling suppresses the antiferroelectric phase; this is indirectly supported by piezoelectric coefficient d{sub 33} measurements. It is speculated that the accumulated charged point defects during polarization cycling stabilize the polar ferroelectric phase. The findings presented are important to the fundamental studies of electric fatigue and field-induced phase transitions in ferroelectrics.

  11. Large phase shift via polarization-coupling cascading.

    PubMed

    Huo, Juan; Chen, Xianfeng

    2012-06-04

    Herein, we propose a phenomenon of "polarization-coupling (PC) cascading" generated in MgO doped periodically poled lithium niobate crystal (PPMgLN). PC cascading contributes to the effective electro-optical (EO) Kerr effect that is several orders of magnitude stronger than the classical ones. Experiment of Newton's rings demonstrates the large phase accumulation during the PC cascaded processes, and the experimental data is identical with the theoretical simulation.

  12. Polarization-induced phase noise in fiber optic Michelson interferometer with Faraday rotator mirrors

    NASA Astrophysics Data System (ADS)

    Wu, Yuefeng; Li, Fang; Zhang, Wentao; Xiao, Hao; Liu, Yuliang

    2008-11-01

    Polarization-induced phase noise in Michelson interferometer with imperfect Faraday rotator mirrors was investigated. This kind of noise generates from the rotation angle errors of Faraday rotator mirrors and external polarization perturbation. The conversion factor κ, representing the magnitude conversion ability from polarization-noise to polarization induced phase-noise, have been theoretically evaluated and experimentally investigated.

  13. Stress-induced phase transformation and pseudo-elastic/pseudo-plastic recovery in intermetallic Ni-Al nanowires.

    PubMed

    Sutrakar, Vijay Kumar; Mahapatra, D Roy

    2009-07-22

    Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced [Formula: see text]-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of approximately 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of approximately 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 A, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.

  14. Stochastic Radiative Transfer in Polar Mixed Phase Clouds

    NASA Astrophysics Data System (ADS)

    Brodie, J.; Veron, D. E.

    2004-12-01

    According to recent research, mixed phase clouds comprise one third of the overall annual cloud cover in the Arctic region. These clouds contain distinct regions of liquid water and ice, which have a different impact on radiation than single-phase clouds. Despite the prevalence of mixed phase clouds in the polar regions, many modern atmospheric general circulation models use single-phase clouds in their radiation routines. A stochastic approach to representating the transfer of shortwave radiation through a cloud layer where the distribution of the ice and liquid is governed by observed statistics is being assessed. Data from the Surface Heat Budget of the Arctic (SHEBA) program and the Atmospheric Radiation Measurement (ARM) program's North Slopes of Alaska Cloud and Radiation Testbed site will be used to determine the characteristic features of the cloud field and to evaluate the performance of this statistical model.

  15. Synthesis and characterization of Fe-Ti-Sb intermetallic compounds: Discovery of a new Slater-Pauling phase

    NASA Astrophysics Data System (ADS)

    Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.

    2016-03-01

    Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.

  16. Mars Polar Cap During Transition Phase Instrument Checkout

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the last week of September and the first week or so of October 2006, scientific instruments on NASA's Mars Reconnaissance Orbiter were turned on to acquire test information during the transition phase leading up to full science operations. The mission's primary science phase will begin the first week of November 2006, following superior conjunction. (Superior conjunction is where a planet goes behind the sun as viewed from Earth.) Since it is very difficult to communicate with a spacecraft when it is close to the sun as seen from Earth, this checkout of the instruments was crucial to being ready for the primary science phase of the mission.

    Throughout the transition-phase testing, the Mars Color Imager (MARCI) acquired terminator (transition between nighttime and daytime) to terminator swaths of color images on every dayside orbit, as the spacecraft moved northward in its orbit. The south polar region was deep in winter shadow, but the north polar region was illuminated the entire Martian day. During the primary mission, such swaths will be assembled into global maps that portray the state of the Martian atmosphere -- its weather -- as seen every day and at every place at about 3 p.m. local solar time. After the transition phase completed, most of the instruments were turned off, but the Mars Climate Sounder and MARCI have been left on. Their data will be recorded and played back to Earth following the communications blackout associated with conjunction.

    Combined with wide-angle image mosaics taken by the Mars Orbiter Camera on NASA's Mars Global Surveyor at 2 p.m. local solar time, the MARCI maps will be used to track motions of clouds.

    This image is a composite mosaic of four polar views of Mars, taken at midnight, 6 a.m., noon, and 6 p.m. local Martian time. This is possible because during summer the sun is always shining in the polar region. It shows the mostly water-ice perennial cap (white area), sitting atop the north polar layered

  17. A comparative first-principles study of martensitic phase transformations in TiPd2 and TiPd intermetallics.

    PubMed

    Krcmar, M; Morris, James R

    2014-04-02

    Martensitic phase transformations in TiPd2 and TiPd alloys are studied employing density-functional, first-principles calculations. We examine the transformation of tetragonal C11b TiPd2 to the low-temperature orthorhombic phase (C11b → oI6), and the transformation of cubic B2 TiPd under orthorhombic (B2→B19) and subsequent monoclinic transformations (B19→B19') as the system is cooled. We employ a theoretical approach based on a phenomenological Landau theory of the structural phase transitions and a mean-field approximation for the free energy, utilizing first-principles calculations to obtain the deformation energy as a function of strains and to deduce parameters for constructing the free energy. The predicted transition temperature for the TiPd2 C11b → oI6 transition is in good agreement with reported experimental results. To investigate the TiPd B2→B19 transformation, we employ both the Cauchy-Born rule and a soft-mode-based approach, and elucidate the importance of the coupling between lattice distortion and atomic displacements (i.e. shuffling) in the formation of the final structure. The calculated B2→B19 transition temperature for TiPd alloy agrees well with the experimental results. We also find that there exists a very small but finite (0.0005 eV/atom) energy barrier of B19 TiPd under monoclinic deformation for B19→B19' structural phase transformation.

  18. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    SciTech Connect

    Lin, Bo; Zhang, Weiwen; Zhao, Yuliang; Li, Yuanyuan

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.

  19. Condensation phase of the Martian south polar cap

    NASA Technical Reports Server (NTRS)

    Capuano, J.; Reed, M.; James, P. B.

    1992-01-01

    One type of database that can be useful in limiting models of the Mars surface-atmosphere system is the time dependent boundary of CO2 frost for the polar caps. Data acquired by the thermal infrared sensors on spacecraft are not limited by the lighting problems that hamper visual observations. The surface temperature of solid CO2 is limited by Clapeyron's equation as a function of the local partial pressure of CO2 gas. The growth was studied of the Martian south polar cap using the Viking IRTM dataset. These data are available in five bands, four of which should correspond to surface radiation in clear conditions; the 20 micron data was examined in the first phase.

  20. Edge states and phase diagram for graphene under polarized light

    SciTech Connect

    Wang, Yi -Xiang; Li, Fuxiang

    2016-03-22

    In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  1. Edge states and phase diagram for graphene under polarized light

    DOE PAGES

    Wang, Yi -Xiang; Li, Fuxiang

    2016-03-22

    In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less

  2. Shaping of attosecond pulses by phase-stabilized polarization gating

    SciTech Connect

    Sansone, G.; Benedetti, E.; Caumes, J. P.; Stagira, S.; Vozzi, C.; Nisoli, M.; Poletto, L.; Villoresi, P.; Strelkov, V.; Sola, I.; Elouga, L. B.; Zaier, A.; Mevel, E.; Constant, E.

    2009-12-15

    We demonstrate that the characteristics of the high-order harmonic spectra generated by few-cycle carrier-envelope phase-stabilized pulses can be finely adjusted by controlling the time-dependent ellipticity. The experimental measurements show evidence for the generation of single, pairs, and trains of attosecond pulses by controlling the time window of linear polarization of the driving pulses. The influence of the carrier-envelope phase on the generation process in different confinement configurations is interpreted and analyzed using a nonadiabatic stationary phase model. We show that the xuv emission depends critically on particular aspects of the fundamental electric field that allows us to steer the electron trajectories on the time scale of tens of attoseconds.

  3. Anisotropy in the paramagnetic phase of RAl/sub 2/ cubic intermetallic compounds (R = Tb, Dy, and Er)

    SciTech Connect

    del Moral, A.; Ibarra, M.R.; Abell, J.S.; Montenegro, J.F.D.

    1987-05-01

    In this paper it is shown that the anisotropy in the paramagnetic phase is a useful characteristic when used to single out high-rank susceptibility tensor components in the paramagnetic regime of cubic crystals. Application of this technique to RAl/sub 2/ compounds (R = Tb,Dy,Er) allows the determination of longitudinal and transverse (in the form of linear combinations) fourth- and sixth-rank paramagnetic susceptibilities. The use of the fourth-rank longitudinal susceptibility allows quadrupolar pair interactions in these compounds to be probed.

  4. Polarization-phase tomography of biological fluids polycrystalline structure

    NASA Astrophysics Data System (ADS)

    Dubolazov, A. V.; Vanchuliak, O. Ya.; Garazdiuk, M.; Sidor, M. I.; Motrich, A. V.; Kostiuk, S. V.

    2013-12-01

    Our research is aimed at designing an experimental method of Fourier's laser polarization phasometry of the layers of human effusion for an express diagnostics during surgery and a differentiation of the degree of severity (acute - gangrenous) appendectomy by means of statistical, correlation and fractal analysis of the coherent scattered field. A model of generalized optical anisotropy of polycrystal networks of albumin and globulin of the effusion of appendicitis has been suggested and the method of Fourier's phasometry of linear (a phase shift between the orthogonal components of the laser wave amplitude) and circular (the angle of rotation of the polarization plane) birefringence with a spatial-frequency selection of the coordinate distributions for the differentiation of acute and gangrenous conditions have been analytically substantiated. Comparative studies of the efficacy of the methods of direct mapping of phase distributions and Fourier's phasometry of a laser radiation field transformed by the dendritic and spherolitic networks of albumin and globulin of the layers of effusion of appendicitis on the basis of complex statistical, correlation and fractal analysis of the structure of phase maps.

  5. Weldability of intermetallic alloys

    SciTech Connect

    David, S.A. )

    1990-01-01

    Ordered intermetallic alloys are a unique class of material that have potential for structural applications at elevated temperatures. The paper describes the welding and weldability of these alloys. The alloys studied were nickel aluminide (Ni[sub 3]Al), titanium aluminide (Ti[sub 3]Al), and iron aluminide.

  6. A tunable and wideband microwave photonic phase shifter based on dual-polarization modulator

    NASA Astrophysics Data System (ADS)

    Peng, Zhengxue; Wen, Aijun; Gao, Yongsheng; Tu, Zhaoyang

    2017-01-01

    A microwave photonic phase shifter based on dual-polarization Mach-Zehnder modulator (DPol-MZM) is proposed and experimentally demonstrated in this paper. A polarization multiplexed double sideband (DSB) signal is produced by a DPol-MZM. An optical bandpass filter (OBPF) follows after the DPol-MZM to filter out the optical carrier and one sideband. The polarization multiplexed signal is converted into a linear polarization light by a polarizer (Pol), and then beat at a photodiode (PD) to obtain the phase shifted signal. Experiments are carried out, and a continuous phase shift from -180° to 180° over a wide microwave frequency range of 10-33 GHz can be achieved by changing the polarization state using a polarization controller (PC). We also studied the spurious free dynamic range (SFDR) in the experiments. The features of this proposed phase shifter are large operation bandwidth, full-range 360° phase shift, and simple structure.

  7. Polarization evolution of radially polarized partially coherent vortex fields: role of Gouy phase of Laguerre-Gauss beams.

    PubMed

    Martínez-Herrero, R; Prado, F

    2015-02-23

    In the framework of the paraxial approximation, we derive the analytical expressions for describing the effect of the Gouy phase of Laguerre-Gauss beams on the polarization evolution of partially coherent vortex fields whose electric field vector at some transverse plane exhibits a radially polarized behavior. At each transverse plane, the polarization distribution across the beam profile is characterized by means of the percentage of irradiance associated with the radial or azimuthal components. The propagation laws for these percentages are also presented. As an illustrative example, we analyze a radially polarized partially coherent vortex beam.

  8. Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Ting; Jau, Hung-Chang; Lin, Tsung-Hsien

    2013-02-01

    This work demonstrates a polymer-stabilized blue phase (PSBP) liquid crystal phase grating, which is made of hybrid PSBPs with two different Kerr constants. The Kerr constant of a PSBP is related to the morphology of the polymer network which can be controlled by the phase separation temperature. Owing to the non-patterned electrode and the optical isotropy of the PSBP, the diffraction effect can be completely switched off when the voltage is absent. The diffraction intensity increases when a uniform applied electrical field induces the phase difference in the hybrid PSBP. The phase grating is completely independent of the polarization of the incident light. Furthermore, the response time to switching is in the sub-millisecond range.

  9. Propagation of polarized light in opals: Amplitude and phase anisotropy

    SciTech Connect

    Baryshev, A. V. Dokukin, M. E.; Merzlikin, A. M.; Inoue, M.

    2011-03-15

    The interaction of linearly polarized light with photonic crystals based on bulk and thin-film synthetic opals is studied. Experimental transmission spectra and spectra showing the polarization state of light transmitted through opals are discussed. A change in polarization is found for waves experiencing Bragg diffraction from systems of crystallographic planes of the opal lattice. It is shown that the polarization plane of the incident linearly polarized wave at the exit from photonic crystals can be considerably rotated. In addition, incident linearly polarized light can be transformed to elliptically polarized light with the turned major axis of the polarization ellipse. Analysis of polarization states of transmitted light by using the transfer-matrix theory and homogenization theory revealed good agreement between calculated and experimental spectra.

  10. Mixed-phased particles in polar stratospheric ice clouds

    NASA Astrophysics Data System (ADS)

    Bogdan, Anatoli; Molina, Mario J.; Loerting, Thomas

    2010-05-01

    Keywords: polar stratospheric clouds (PSCs), ozone depletion, differential scanning calorimeter. The rate of chlorine activation reactions, which lead to ozone depletion in the winter/spring polar stratosphere (Molina, 1994), depends on the phase state of the surface of polar stratospheric cloud (PSC) ice crystals (McNeil et al., 2006). PSCs are thought to consist of solid ice and NAT (nitric acid trihydrate, HNO3× 3H2O) particles and supercooled HNO3/H2SO4/H2O droplets. The corresponding PSCs are called Type II, Ia, and Ib PSCs, respectively (Zondlo et al., 1998). Type II PSCs are formed in the Antarctic region below the ice frost point of 189 K by homogeneous freezing of HNO3/H2SO4/H2O droplets (Chang et al., 1999) with the excess of HNO3. The PSC ice crystals are thought to be solid. However, the fate of H+, NO3-, SO42- ions during freezing was not investigated. Our differential scanning calorimetry (DSC) studies of freezing emulsified HNO3/H2SO4/H2O droplets of sizes and compositions representative of the polar stratosphere demonstrate that during the freezing of the droplets, H+, NO3-, SO42- are expelled from the ice lattice. The expelled ions form a residual solution around the formed ice crystals. The residual solution does not freeze but transforms to glassy state at ~150 K (Bogdan et al., 2010). By contrast to glass-formation in these nitric-acid rich ternary mixtures the residual solution freezes in the case of sulphuric-acid rich ternary mixtures (Bogdan and Molina, 2009). For example, we can consider the phase separation into ice and a residual solution during the freezing of 23/3 wt% HNO3/H2SO4/H2O droplets. On cooling, ice is formed at ~189 K. This is inferred from the fact that the corresponding melting peak at ~248 K exactly matches the melting point of ice in the phase diagram of HNO3/H2SO4/H2O containing 3 wt % H2SO4. After the ice has formed, the glass transition occurs at Tg ≈ 150 K. The appearance of the glass transition indicates that the

  11. Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Li, Qing; Hu, Kai

    2013-10-01

    A polarization independent switchable phase grating based on polymer stabilized blue phase liquid crystal is proposed. A high efficiency of the phase grating has been achieved because of the sharp rectangular phase profile which shows good agreement with the simulation results. The diffraction efficiency of the 1st order is 38%, the response time is in the submillisecond range, and the phase grating is independent of the polarization of the incident light. The voltage-induced hysteresis characteristics are also investigated.

  12. Potentiodynamic polarization effect on phase and microstructure of SAC305 solder in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Zaini, Nurwahida Binti Mohd; Nazeri, Muhammad Firdaus Bin Mohd

    2016-07-01

    The corrosion analysis of SAC305 lead free solder was investigated in Hydrochloric acid (HCl) solution. Potentiodynamic polarization was used to polarize the SAC305. The effect of polarization on the phase and microstructure were compared to as-prepared SAC305 solder. Potentiodynamic polarization introduces mixed corrosion products on the surface of SAC305 solder. The XRD analysis confirms that the mixed corrosion products emerged on the surface after polarization by formation of SnO and SnO2 of which confirmed that dissolution of Sn was dominant during polarization. Microstructure analysis reveal the presence of gap and porosities produced limits the protection offered by the passivation film.

  13. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1992-12-31

    This paper briefly summarizes recent advances in intermetallic research and development. Ordered intermetallics based on aluminides and silicides possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle fracture and poor fracture resistance limit their use as engineering materials in many cases. In recent years, considerable efforts have been devoted to the study of the brittle fracture behavior of intermetallic alloys; as a result, both intrinsic and extrinsic factors governing brittle fracture have been identified. Recent advances in first-principles calculations and atomistic simulations further help us in understanding atomic bonding, dislocation configuration, and alloying effects in intermetallics. The basic understanding has led to the development of nickel, iron, and titanium aluminide alloys with improved mechanical and metallurgical properties for structural use. Industrial interest in ductile intermetallic alloys is high, and several examples of industrial involvement are mentioned.

  14. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1994-12-31

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at high temperatures in hostile environments. Attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at high temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past 10 years, considerable effort was devoted to R&D of ordered intermetallic alloys, and progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel effort on alloy design has led to the development of a number of ductile and strong intermetallic alloys based on Ni{sub 3}Al, NiAl, Fe{sub 3}Al, FeAl, Ti{sub 3}Al, and TiAl systems for structural applications.

  15. SrAu4In4 and Sr4Au9In13: Polar Intermetallic Structures with Cations in Augmented Hexagonal Prismatic Environments

    SciTech Connect

    Palasyuk, A.; Dai, J.C.; Corbett, J.

    2008-03-11

    The title compounds were synthesized via high-temperature reactions of the elements in welded Ta tubes and characterized by single-crystal X-ray diffraction analyses and band structure calculations. SrAu{sub 3.76(2)}In{sub 4.24} crystallizes in the YCo{sub 5}In{sub 3} structure type with two of eight network sites occupied by mixtures of Au and In: Pnma, Z = 4, a = 13.946(7), b = 4.458(2), c = 12.921(6) {angstrom}. Its phase breadth appears to be small. Sr{sub 4}Au{sub 9}In{sub 13} exhibits a new structure type, P{sub 6}m2, Z = 1, a = 12.701(2), c = 4.4350(9) {angstrom}. The Sr atoms in both compounds center hexagonal prisms of nominally alternating In and Au atoms and also have nine augmenting (outer) Au + In atoms around their waists so as to define 21-vertex Sr{at}Au{sub 9}M{sub 4}In{sub 8} (M = Au/In) and Sr{at}Au{sub 9}In{sub 12} polyhedra, respectively. The relatively larger Sr content in the second phase also leads to condensation of some of the ideal building units into trefoil-like cages with edge-shared six-member rings. One overall driving force for the formation of these structures can be viewed as the need for each Sr cation to have as many close neighbors as possible in the more anionic Au-In network. The results also depend on the cation size as well as on the flexibility of the anionic network and an efficient intercluster condensation mode as all clusters are shared. Band structure calculations (LMTO-ASA) emphasize the greater strengths (overlap populations) of the Au-In bonds and confirm expectations that both compounds are metallic.

  16. Molecular-level comparison of alkylsilane and polar-embedded reversed-phase liquid chromatography systems.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2008-08-15

    Stationary phases with embedded polar groups possess several advantages over conventional alkylsilane phases, such as reduced peak tailing, enhanced selectivity for specific functional groups, and the ability to use a highly aqueous mobile phase. To gain a deeper understanding of the retentive properties of these reversed-phase packings, molecular simulations were carried out for three different stationary phases in contact with mobile phases of various water/methanol ratios. Two polar-embedded phases were modeled, namely, amide and ether containing, and compared to a conventional octadecylsilane phase. The simulations show that, due to specific hydrogen bond interactions, the polar-embedded phases take up significantly more solvent and are more ordered than their alkyl counterparts. Alkane and alcohol probe solutes indicate that the polar-embedded phases are less retentive than alkyl phases for nonpolar species, whereas polar species are more retained by them due to hydrogen bonding with the embedded groups and the increased amount of solvent within the stationary phase. This leads to a significant reduction of the free-energy barrier for the transfer of polar species from the mobile phase to residual silanols, and this reduced barrier provides a possible explanation for reduced peak tailing.

  17. Global Observation of Substorm Growth Phase Processes in the Polar Caps

    NASA Technical Reports Server (NTRS)

    Brittnacher, M.; OFillingim, M. O.; Chua, D.; Wilber, M.; Parks, G. K.; Germany, G. A.; Spann, J. F.

    1998-01-01

    Global images of the polar cap region during the substorm growth phase by the Polar Ultraviolet Imager reveals evidence of the processes which are not completely explained by current models. In particular, it was found that size of the polar cap region increases during the growth phase even if the interplanetary magnetic field has no southward component. Three phenomena were observed to produce an increase in the size of the polar cap: (1) motion of the auroral oval to lower latitude, (2) thinning of the auroral oval, and (3) reduction of intense aurora[ precipitation in the polar region. Correlation of image intensities with in situ particle measurements from the FAST satellite are being conducted to study the three growth phase phenomena; and to help identify the source regions of the particles, the mechanisms involved in producing the auroral structures and what may be reducing the polar cap precipitation during the substorm growth phase.

  18. Quorum polarity and the dynamics of the zooming bionematic phase

    NASA Astrophysics Data System (ADS)

    Kessler, John O.

    2005-03-01

    Many species of bacteria are peritrichously flagellated, i.e. the long, helical, rapidly rotating flagella that propel them emerge out of motors that appear randomly distributed over the body of the bacterial cell. The organism considered here is Bacillus subtilis. The cell body is a rod approximately 4 μm long, 0.7μm in diameter; flagella are 3 or 4 times longer than the body. Swimming cells are pushed by the flagella, bundled into a braid of rotating helices. When the bacteria self concentrate into an approximately close-packed assemblage, rapidly moving (zooming) domains of aligned bacterial rods continually form and break apart. PIV measurements show that correlation times are seconds, lengths are hundreds of micrometers, transport of passive tracers is superdiffusive.Below a threshold concentration there is no collective dynamic. A theory of this zooming bionematic phase will be presented, together with measurements and video sequences. The theory considers hydrodynamic cell-cell and collective interactions, the collectively generated flow of the suspending water relative to the cells, and the dynamics of helix bundle flipping, yielding quorum polarity within a given zooming domain. Quorum sensing of signalling molecules and molecular transport generally are pertinent microbiological applications.

  19. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers

    SciTech Connect

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; and Corbett, John D.

    2009-10-29

    The new phase K{sub 12}Au{sub 21}Sn{sub 4} has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) {angstrom}, V = 1901.3(7) {angstrom}{sup 3}, and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au{sub 20}) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn{sub 4}). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K{sub 3}Au{sub 5}In and Rb{sub 2}Au{sub 3}Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

  20. Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter.

    PubMed

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, Dvgln

    2012-11-01

    We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography.

  1. An optically controlled phased array antenna based on single sideband polarization modulation.

    PubMed

    Zhang, Yamei; Wu, Huan; Zhu, Dan; Pan, Shilong

    2014-02-24

    A novel optically controlled phased array antenna consisting a simple optical beamforming network and an N element linear patch antenna array is proposed and demonstrated. The optical beamforming network is realized by N independent phase shifters using a shared optical single sideband (OSSB) polarization modulator together with N polarization controllers (PCs), N polarization beam splitters (PBSs) and N photodetectors (PDs). An experiment is carried out. A 4-element linear patch antenna array operating at 14 GHz and a 1 × 4 optical beamforming network (OBFN) is employed to realize the phased array antenna. The radiation patterns of the phased array antenna at -30°, 0° and 30° are achieved.

  2. First-principles studies of Ni-Ta intermetallic compounds

    SciTech Connect

    Zhou Yi; Wen Bin; Ma Yunqing; Melnik, Roderick; Liu Xingjun

    2012-03-15

    The structural properties, heats of formation, elastic properties, and electronic structures of Ni-Ta intermetallic compounds are investigated in detail based on density functional theory. Our results indicate that all Ni-Ta intermetallic compounds calculated here are mechanically stable except for P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2}. Furthermore, we found that Pmmn-Ni{sub 3}Ta is the ground state stable phase of Ni{sub 3}Ta polymorphs. The polycrystalline elastic modulus has been deduced by using the Voigt-Reuss-Hill approximation. All Ni-Ta intermetallic compounds in our study, except for NiTa, are ductile materials by corresponding G/K values and poisson's ratio. The calculated heats of formation demonstrated that Ni{sub 2}Ta are thermodynamically unstable. Our results also indicated that all Ni-Ta intermetallic compounds analyzed here are conductors. The density of state demonstrated the structure stability increases with the Ta concentration. - Graphical abstract: Mechanical properties and formation heats of Ni-Ta intermetallic compounds are discussed in detail in this paper. Highlights: Black-Right-Pointing-Pointer Ni-Ta intermetallic compounds are investigated by first principle calculations. Black-Right-Pointing-Pointer P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2} are mechanically unstable phases. Black-Right-Pointing-Pointer Pmmn-Ni{sub 3}Ta is ground stable phase of Ni{sub 3}Ta polymorphs. Black-Right-Pointing-Pointer All Ni-Ta intermetallic compounds are conducting materials.

  3. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  4. Focusing light through scattering media by full-polarization digital optical phase conjugation.

    PubMed

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V

    2016-03-15

    Digital optical phase conjugation (DOPC) is an emerging technique for focusing light through or within scattering media such as biological tissue. Since DOPC systems are based on time reversal, they benefit from collecting as much information about the scattered light as possible. However, existing DOPC techniques record and subsequently phase-conjugate the scattered light in only a single-polarization state, limited by the operating principle of spatial light modulators. Here, we develop the first, to the best of our knowledge, full-polarization DOPC system that records and phase-conjugates scattered light along two orthogonal polarizations. When focusing light through thick scattering media, such as 2 mm and 4 mm-thick chicken breast tissue, our full-polarization DOPC system on average doubles the focal peak-to-background ratio achieved by single-polarization DOPC systems and improves the phase-conjugation fidelity.

  5. Focusing light through scattering media by full-polarization digital optical phase conjugation

    PubMed Central

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.

    2016-01-01

    Digital optical phase conjugation (DOPC) is an emerging technique for focusing light through or within scattering media such as biological tissue. Since DOPC systems are based on time reversal, they benefit from collecting as much information about the scattered light as possible. However, existing DOPC techniques record and subsequently phase-conjugate the scattered light in only a single polarization state, limited by the operating principle of spatial light modulators. Here, we develop the first full-polarization DOPC system which records and phase-conjugates scattered light along two orthogonal polarizations. When focusing light through thick scattering media, such as 2 mm and 4 mm thick chicken breast tissue, our full-polarization DOPC system on average doubles the focal peak-to-background ratio achieved by single-polarization DOPC systems and improves the phase conjugation fidelity. PMID:26977651

  6. Single-shot polarization-imaging digital holography based on simultaneous phase-shifting interferometry.

    PubMed

    Tahara, Tatsuki; Awatsuji, Yasuhiro; Shimozato, Yuki; Kakue, Takashi; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2011-08-15

    We propose single-shot digital holography which is capable of simultaneously capturing both the information of multiple phase-shifted holograms and the distribution of the polarization. In this technique, a single image sensor records both the information required for phase-shifting interferometry and that of the polarization states of objects using an array of polarizers. The essence of the technique is the capability of imaging the distribution of the polarization of three-dimensional objects with a single-shot exposure by using the space-division multiplexing of holograms. The validity of the proposed technique was confirmed by the preliminary experiments.

  7. A polar-embedded C30 stationary phase: preparation and evaluation.

    PubMed

    Zhang, Mingliang; Mai, Wenpeng; Zhao, Liang; Guo, Yong; Qiu, Hongdeng

    2015-04-03

    A novel polar-embedded C30 stationary phase has been synthesized and characterized. The polar carbamate group was generated homogeneously in situ by the catalytic reaction between isocyanate and primary alcohol. The simple one-pot synthetic strategy provided an efficient and effective strategy for modification of silica spheres. Efficiency, selectivity and silanol activity of the resulting column were characterized in detail with different classes of analytes that included Standard Reference Materials (SRM) 870, SRM 869b and SRM 1647e, alkylbenzene congeners, as well as polar-substituted aromatics. The polar-embedded C30 stationary phase was found to exhibit excellent shape selectivity.

  8. Materials Processing and Microstructure Control in High Temperature Ordered Intermetallics.

    DTIC Science & Technology

    2007-11-02

    an integrated approach that couples processing with microstructure control as guided by the operative phase equilibria has been used to identify...several promising intermetallic alloys. The experimental efforts have focused on three areas involving a coordination of phase equilibria information with

  9. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms.

    PubMed

    Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Toto-Arellano, Noel-Ivan; Vázquez-Castillo, José F; Robledo-Sánchez, Carlos

    2008-05-26

    An experimental setup for optical phase extraction from 2-D interferograms using a one-shot phase-shifting technique able to achieve four interferograms with 90 degrees phase shifts in between is presented. The system uses a common-path interferometer consisting of two windows in the input plane and a phase grating in Fourier plane as its pupil. Each window has a birefringent wave plate attached in order to achieve nearly circular polarization of opposite rotations one respect to the other after being illuminated with a 45 degrees linear polarized beam. In the output, interference of the fields associated with replicated windows (diffraction orders) is achieved by a proper choice of the windows spacing with respect to the grating period. The phase shifts to achieve four interferograms simultaneously to perform phase-shifting interferometry can be obtained by placing linear polarizers on each diffraction orders before detection at an appropriate angle. Some experimental results are shown.

  10. Self-referenced rectangular path cyclic interferometer with polarization phase shifting.

    PubMed

    Sarkar, S; Ghosh, N; Chakraborty, S; Bhattacharya, K

    2012-01-01

    A polarization phase shifting interferometer using a cyclic path configuration for measurement of phase nonuniformities in transparent samples is presented. A cube beam splitter masked by two linear polarizers is used to split the source wavefront into two counter propagating linearly polarized beams that pass through the sample. At the output of the interferometer, the two orthogonally polarized beams are rendered circularly polarized in the opposite sense through the use of a quarter wave plate. Finally, phase shifting is achieved by rotating a linear polarizer before the recording plane. In a rectangular path interferometer, although the two counter propagating wavefronts are laterally folded with respect to each other in the interferometer arms, the beams finally emerge mutually unfolded at the output of the interferometer. This phenomenon is utilized to create a reference if the sample is introduced in one lateral half of the beam in any one of the interferometer arms. The polarization phase shifting technique is used to generate four phase-shifted interferograms, which are utilized to evaluate the phase profile of the phase sample. Experimental results presented validate the proposed technique.

  11. MECHANICAL BEHAVIOR OF INTERMETALLIC COMPOUNDS.

    DTIC Science & Technology

    AGING(MATERIALS), AGING(MATERIALS), INTERMETALLIC COMPOUNDS, VANADIUM ALLOYS, COBALT ALLOYS, NICKEL ALLOYS, MECHANICAL PROPERTIES, TEMPERATURE, TIME ... CRYSTAL STRUCTURE, MICROSTRUCTURE, HARDNESS, TRANSFORMATIONS, ELECTRICAL RESISTANCE, MEASUREMENT, MICROSCOPY, ALLOYS, METALLOGRAPHY, X RAY DIFFRACTION.

  12. Observation of ferroelectric phase and large spontaneous electric polarization in organic salt of diisopropylammonium iodide

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi K.; Swain, Diptikanta; Prasad, Siva; Nhalil, Hariharan; Bhat, Handady L.; Guru Row, Tayur N.; Elizabeth, Suja

    2017-03-01

    In this manuscript, we explore diisopropylammonium iodide (DPI) for its ferroelectric properties and phase transitions. DPI showed two phase transitions which were identified by differential scanning calorimetry and dielectric and nonlinear optical measurements. From detailed structural studies it was found that the first transition at 369 K is from orthorhombic P212121 to monoclinic P21. The polar P21 phase is ferroelectric as evidenced by the pyroelectric data and has a very high value of spontaneous polarization (Ps = 33 μC cm-2), which is probably the highest among other reported bulk organic ferroelectrics. The second transition at 415 K is identified as polar monoclinic P21 space group to non-polar monoclinic P21/m. Thus, DPI has a high Curie temperature of 415 K. The large spontaneous polarization and high Curie temperature make DPI technologically important.

  13. Quantum phase diagram of Polar Molecules in 1D Double Wire Systems

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ming; Wang, Daw-Wei

    2007-03-01

    We study the quantum phase transitions of fermionic polar molecules loaded in a double wire potential. By tuning the magnitude and direction of external electric field we observed many interesting quantum phases in different parameter range, including an easy-plane spin density wave, a triplet superconducting phase, and a truly long range order of easy-axis ferromagnetic phase in strong interacting regime. We also discuss how these exotic quantum phases can be measured in the existing experimental techniques.

  14. Phase separation in a polarized Fermi gas with spin-orbit coupling

    SciTech Connect

    Yi, W.; Guo, G.-C.

    2011-09-15

    We study the phase separation of a spin-polarized Fermi gas with spin-orbit coupling near a wide Feshbach resonance. As a result of the competition between spin-orbit coupling and population imbalance, the phase diagram for a uniform gas develops a rich structure of phase separation involving topologically nontrivial gapless superfluid states. We then demonstrate the phase separation induced by an external trapping potential and discuss the optimal parameter region for the experimental observation of the gapless superfluid phases.

  15. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    SciTech Connect

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D.

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  16. Measurement of relative phase distribution of onion epidermal cells by using the polarization microscope

    NASA Astrophysics Data System (ADS)

    Shin, In Hee; Lee, Ji Yong; Lee, Seungrag; Lee, Dong Ju; Kim, Dug Young

    2007-02-01

    Bio-cells and tissues have intrinsic polarization characteristics, which are changed by external stimulus and internal metamorphosis in cells and tissues and some of the bio-cells and tissues have intrinsic birefringence characteristics, which are also changed by external stimulus and internal metamorphosis in cells and tissues. In this paper, we have developed the polarization microscope for measurement of relative phase which results from birefringence characteristics of materials with improved linear polarizing method and have measured relative phase distribution of onion epidermal cells. From the measurement of the relative phase distribution of onion epidermal cells, decrease of relative phase distribution of onion epidermal cells was investigated as the elapse of time. In decrease of relative phase distribution, relative phase of cell membrane in onion epidermal cells decreased radically as compared with that of cytoplasm because decline of function in cell membrane that takes charge of matter transfer in onion epidermal cells has occurred.

  17. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.

    1998-11-01

    A new family of Cr-Cr{sub 2}Ta intermetallic alloys based on Cr-(6--10)Ta (at.%) is under development for structural use in oxidizing environments in the 1,000-1,300 C (1,832--2,372 F) temperature range. Development objectives relate to high temperature strength and oxidation resistance and room temperature fracture toughness. The 1,200 C (2,192 F) strength goals have been met: yield and fracture strengths of 275 MPa (40 ksi) and 345 MPa (50 ksi), respectively, were achieved. Progress in attaining reasonable fracture toughness of Cr-Cr{sub 2}Ta alloys has been made; current alloys exhibit room-temperature values of about 10--12 MPa{radical}m (1.1 MPa{radical}m = 1 ksi{radical}in.). Oxidation rates of these alloys at 950 C (1,742 F) in air are in the range of those reported for chromia-forming alloys. At 1,100 C (2,012 F) in air, chromia volatility was significant but, nevertheless, no scale spallation and positive weight gains of 1--5 mg/cm{sup 2} have been observed during 120-h, 6-cycle oxidation screening tests. These mechanical and oxidative properties represent substantial improvement over Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr alloys previously developed.

  18. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.

    PubMed

    West, C; Lesellier, E

    2006-03-31

    In this third paper, varied types of polar stationary phases, namely silica gel (SI), cyano (CN)- and amino-propyl (NH2)-bonded silica, propanediol-bonded silica (DIOL), poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVA), were investigated in subcritical fluid mobile phase. This study was performed to provide a greater knowledge of the properties of these phases in SFC, and to allow a more rapid and efficient choice of polar stationary phase in regard of the chemical nature of the solutes to be separated. The effect of the nature of the stationary phase on interactions between solute and stationary phases and between solute and carbon dioxide-modifier mobile phases was studied by the use of a linear solvation energy relationship (LSER), the solvation parameter model. The retention behaviour observed with sub/supercritical fluid with carbon dioxide-methanol is close to the one reported in normal-phase liquid chromatography with hexane. The hydrogen bond acidity and basicity, and the polarity/polarizability favour the solute retention when the molar volume of the solute reduces it. As with non-polar phases, the absence of water in the subcritical fluid allows the solute/stationary phase interactions to play a greater part in the retention behaviour. As expected, the DIOL phase and the bare silica display a similar behaviour towards acidic and basic solutes, when interactions with basic compounds are lower with the NH2 phase. On the CN phase, all interactions (hydrogen bonding, dipole-dipole and charge transfer) have a nearly equivalent weight on the retention. The polymeric phases, PEG and PVA, provide the most accurate models, possibly due to their better surface homogeneity.

  19. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens.

    PubMed

    Yu, An-Ping; Chen, Gang; Zhang, Zhi-Hai; Wen, Zhong-Quan; Dai, Lu-Ru; Zhang, Kun; Jiang, Sen-Lin; Wu, Zhi-Xiang; Li, Yu-Yan; Wang, Chang-Tao; Luo, Xian-Gang

    2016-12-12

    The generation of a sub-diffraction longitudinally polarized spot is of great interest in various applications, such as optical tweezers, super-resolution microscopy, high-resolution Raman spectroscopy, and high-density optical data storage. Many theoretical investigations have been conducted into the tight focusing of a longitudinally polarized spot with high-numerical-aperture aplanatic lenses in combination with optical filters. Optical super-oscillation provides a new approach to focusing light beyond the diffraction limit. Here, we propose a planar binary phase lens and experimentally demonstrate the generation of a longitudinally polarized sub-diffraction focal spot by focusing radially polarized light. The lens has a numerical aperture of 0.93 and a long focal length of 200λ for wavelength λ = 632.8 nm, and the generated focal spot has a full-width-at-half-maximum of about 0.456λ, which is smaller than the diffraction limit, 0.54λ. A 5λ-long longitudinally polarized optical needle with sub-diffraction size is also observed near the designed focal point.

  20. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens

    NASA Astrophysics Data System (ADS)

    Yu, An-Ping; Chen, Gang; Zhang, Zhi-Hai; Wen, Zhong-Quan; Dai, Lu-Ru; Zhang, Kun; Jiang, Sen-Lin; Wu, Zhi-Xiang; Li, Yu-Yan; Wang, Chang-Tao; Luo, Xian-Gang

    2016-12-01

    The generation of a sub-diffraction longitudinally polarized spot is of great interest in various applications, such as optical tweezers, super-resolution microscopy, high-resolution Raman spectroscopy, and high-density optical data storage. Many theoretical investigations have been conducted into the tight focusing of a longitudinally polarized spot with high-numerical-aperture aplanatic lenses in combination with optical filters. Optical super-oscillation provides a new approach to focusing light beyond the diffraction limit. Here, we propose a planar binary phase lens and experimentally demonstrate the generation of a longitudinally polarized sub-diffraction focal spot by focusing radially polarized light. The lens has a numerical aperture of 0.93 and a long focal length of 200λ for wavelength λ = 632.8 nm, and the generated focal spot has a full-width-at-half-maximum of about 0.456λ, which is smaller than the diffraction limit, 0.54λ. A 5λ-long longitudinally polarized optical needle with sub-diffraction size is also observed near the designed focal point.

  1. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens

    PubMed Central

    Yu, An-ping; Chen, Gang; Zhang, Zhi-hai; Wen, Zhong-quan; Dai, Lu-ru; Zhang, Kun; Jiang, Sen-lin; Wu, Zhi-xiang; Li, Yu-yan; Wang, Chang-tao; Luo, Xian-gang

    2016-01-01

    The generation of a sub-diffraction longitudinally polarized spot is of great interest in various applications, such as optical tweezers, super-resolution microscopy, high-resolution Raman spectroscopy, and high-density optical data storage. Many theoretical investigations have been conducted into the tight focusing of a longitudinally polarized spot with high-numerical-aperture aplanatic lenses in combination with optical filters. Optical super-oscillation provides a new approach to focusing light beyond the diffraction limit. Here, we propose a planar binary phase lens and experimentally demonstrate the generation of a longitudinally polarized sub-diffraction focal spot by focusing radially polarized light. The lens has a numerical aperture of 0.93 and a long focal length of 200λ for wavelength λ = 632.8 nm, and the generated focal spot has a full-width-at-half-maximum of about 0.456λ, which is smaller than the diffraction limit, 0.54λ. A 5λ-long longitudinally polarized optical needle with sub-diffraction size is also observed near the designed focal point. PMID:27941852

  2. Solid phase extraction cleanup for non-polar and moderately polar molecular markers of PM 2.5 sources

    NASA Astrophysics Data System (ADS)

    Turlington, John M.; McDow, Stephen R.

    2010-06-01

    A solid phase extraction cleanup step substantially improved analytical efficiency and data quality for measurements of non-polar and moderately polar organic molecular marker concentrations in airborne particulate matter. Rapid gas chromatography column deterioration was evident after very few samples in the absence of a cleanup step, resulting in the need for frequent recalibration. High molecular weight polycyclic aromatic hydrocarbons, were among the species most strongly impacted by the deterioration, exhibiting deviations as high as 30-40% from expected calibration verification standard values after only a few injections. Column deterioration and calibration verification failure were eliminated by introducing a solid phase extraction step prior to analysis and a total of 58 samples were analyzed with no unacceptable deviation of calibration verification standards from target values

  3. SYNTHESIS AND CHARACTERIZATION OF NEW INTERMETALLIC COMPOUNDS

    SciTech Connect

    Professor Monica Sorescu

    2003-05-07

    This six-month work is focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}2, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T=Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe(80-20 wt%) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x=0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co(80-20 wt%) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which are currently being considered for publication in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Journal of Materials Science. The contributions reveal for the first time in literature the effect of

  4. Effects of birefringence on Fizeau interferometry that uses a polarization phase-shifting technique.

    PubMed

    Zhao, Chunyu; Kang, Dongyel; Burge, James H

    2005-12-10

    Interferometers that use different states of polarization for the reference and the test beams can modulate the relative phase shift by using polarization optics in the imaging system. Thus the interferometer can capture simultaneous images that have a fixed phase shift, which can be used for phase-shifting interferometry. As all measurements are made simultaneously, the interferometer is not sensitive to vibration. Fizeau interferometers of this type have an advantage compared with Twyman-Green-type systems because they are common-path interferometers. However, a polarization Fizeau interferometer is not strictly common path when both wavefronts are transmitted by an optic that suffers from birefringence. The two polarized beams see different phases owing to birefringence; as a result, an error can be introduced in the measurement. We study the effect of birefringence on measurement accuracy when different polarization techniques are used in Fizeau interferometers. We demonstrate that measurement error is reduced dramatically and can be eliminated if the reference and test beams are circularly polarized rather than linearly polarized.

  5. Laser polarization and phase control of up-conversion fluorescence in rare-earth ions

    PubMed Central

    Yao, Yunhua; Zhang, Shian; Zhang, Hui; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2014-01-01

    We theoretically and experimentally demonstrate the up-conversion fluorescence control via resonance-mediated two-photon absorption in rare-earth ions by varying both the laser polarization and phase. We show that both the laser polarization and phase can control the up-conversion fluorescence, and the up-conversion fluorescence intensity is decreased when the laser polarization changes from linear through elliptical to circular. We also show that the laser polarization will affect the control efficiency of the up-conversion fluorescence by varying the laser phase, and the circular polarization will reduce the control efficiency. Furthermore, we suggest that the control efficiency by varying the laser polarization and the effect of the laser polarization on the control efficiency by varying the laser phase can be artificially manipulated by controlling the laser spectral bandwidth. This optical control method opens a new opportunity to control the up-conversion fluorescence of rare-earth ions, which may have significant impact on the related applications of rare-earth ions. PMID:25465401

  6. Quantum phase gate and controlled entanglement with polar molecules

    SciTech Connect

    Charron, Eric; Keller, Arne; Atabek, Osman; Milman, Perola

    2007-03-15

    We propose an alternative scenario for the generation of entanglement between rotational quantum states of two polar molecules. This entanglement arises from dipole-dipole interaction, and is controlled by a sequence of laser pulses simultaneously exciting both molecules. We study the efficiency of the process, and discuss possible experimental implementations with cold molecules trapped in optical lattices or in solid matrices. Finally, various entanglement detection procedures are presented, and their suitability for these two physical situations is analyzed.

  7. Structural size effects of intermetallic compounds on the mechanical properties of Mo-Si-B alloy: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Park, Chun Woong; Suk, Myung-Jin; Kim, Young Do

    2016-01-01

    In general, size, shape and dispersion of phases in alloys significantly affect mechanical properties. In this study, the mechanical properties of Mo-Si-B alloys were experimentally investigated with regards to the refinement of intermetallic compound. To confirm the size effect of the intermetallic compound phases on mechanical properties, two differently sized intermetallic compound powders consisting Mo5SiB2 and Mo3Si were fabricated by mechano-chemical process and high-energy ball milling. A modified powder metallurgy method was used with core-shell intermetallic powders where the intermetallic compound particles were the core and nano-sized Mo particles which formed by the hydrogen reduction of Mo oxide were the shells, leading to the microstructures with uniformly distributed intermetallic compound phases within a continuous α-Mo matrix phase. Vickers hardness and fracture toughness were measured to examine the mechanical properties of sintered bodies. Vickers hardness was 472 Hv for the fine intermetallic compound powder and 415 Hv for the coarse intermetallic compound powder. The fracture toughness was 12.4 MPa·√m for the fine IMC powders and 13.5 MPa·√m for the coarse intermetallic compound powder.

  8. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  9. Oligonuclear molecular models of intermetallic phases: a case study on [Pd2Zn6Ga2(Cp*)5(CH3)3].

    PubMed

    Bollermann, Timo; Molon, Mariusz; Gemel, Christian; Freitag, Kerstin; Seidel, Rüdiger W; von Hopffgarten, Moritz; Jerabek, Paul; Frenking, Gernot; Fischer, Roland A

    2012-04-16

    The synthesis, characterization, and theoretical investigation by means of quantum-chemical calculations of an oligonuclear metal-rich compound are presented. The reaction of homoleptic dinuclear palladium compound [Pd(2)(μ-GaCp*)(3)(GaCp*)(2)] with ZnMe(2) resulted in the formation of unprecedented ternary Pd/Ga/Zn compound [Pd(2)Zn(6)Ga(2)(Cp*)(5)(CH(3))(3)] (1), which was analyzed by (1)H and (13)C NMR spectroscopy, MS, elemental analysis, and single-crystal X-ray diffraction. Compound 1 consisted of two C(s)-symmetric molecular isomers, as revealed by NMR spectroscopy, at which distinct site-preferences related to the Ga and Zn positions were observed by quantum-chemical calculations. Structural characterization of compound 1 showed significantly different coordination environments for both palladium centers. Whilst one Pd atom sat in the central of a bi-capped trigonal prism, thereby resulting in a formal 18-valence electron fragment, {Pd(ZnMe)(2)(ZnCp*)(4)(GaMe)}, the other Pd atom occupied one capping unit, thereby resulting in a highly unsaturated 12-valence electron fragment, {Pd(GaCp*)}. The bonding situation, as determined by atoms-in-molecules analysis (AIM), NBO partial charges, and molecular orbital (MO) analysis, pointed out that significant Pd-Pd interactions had a large stake in the stabilization of this unusual molecule. The characterization and quantum-chemical calculations of compound 1 revealed distinct similarities to related M/Zn/Ga Hume-Rothery intermetallic solid-state compounds, such as Ga/Zn-exchange reactions, the site-preferences of the Zn/Ga positions, and direct M-M bonding, which contributes to the overall stability of the metal-rich compound.

  10. Polar intermetallic compounds as catalysts for hydrogenation reactions: synthesis, structures, bonding, and catalytic properties of Ca(1-x)Sr(x)Ni4Sn2 (x=0.0, 0.5, 1.0) and catalytic properties of Ni3Sn and Ni3Sn2.

    PubMed

    Hlukhyy, Viktor; Raif, Fabian; Claus, Peter; Fässler, Thomas F

    2008-01-01

    The potential of polar intermetallic compounds to catalyze hydrogenation reactions was evaluated. The novel compounds CaNi4Sn2, SrNi4Sn2, and Ca(0.5)Sr(0.5)Ni(4)Sn(2) were tested as unsupported alloys in the liquid-phase hydrogenation of citral. Depending on the reaction conditions, conversions of up to 21.0 % (253 K and 9.0 MPa hydrogen pressure) were reached. The binary compounds Ni3Sn and Ni3Sn2 were also tested in citral hydrogenation under the same conditions. These materials gave conversions of up to 37.5 %. The product mixtures contained mainly geraniol, nerol, citronellal, and citronellol. The isotypic stannides CaNi4Sn2, Ca(0.5)Sr(0.5)Ni4Sn2, and SrNi4Sn2 were obtained by melting mixtures of the elements in an arc-furnace under an argon atmosphere. Single crystals were synthesized in tantalum ampoules using special temperature modes. The novel structures were established by single-crystal X-ray diffraction. They crystallize in the tetragonal space group I4/mcm with parameters: a=7.6991(7), c=7.8150(8) A, wR2=0.034, 162 F(2) values, 14 variable parameters for CaNi4Sn2; a=7.7936(2), c=7.7816(3) A, wR2=0.052, 193 F(2) values, 15 variable parameters for Ca(0.5)Sr(0.5)Ni4Sn2; and a=7.8916(4), c=7.7485(5) A, wR2=0.071, 208 F(2) values, 14 variable parameters for SrNi4Sn2. The Ca(1-x)Sr(x)Ni(4)Sn(2) (x=0.0, 0.5, 1.0) structures can be represented as a stuffed variant of the CuAl2 type by the formal insertion of one-dimensional infinite Ni-cluster chains [Ni4] into the Ca(Sr)Sn2 substructure. The Ni and Sn atoms form a three-dimensional infinite [Ni4Sn2] network in which the Ca or Sr atoms fill distorted octagonal channels. The densities of states obtained from TB-LMTO-ASA calculations show metallic character for both compounds.

  11. A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating.

    PubMed

    Li, Wangzhe; Zhang, Weifeng; Yao, Jianping

    2012-12-31

    A novel approach to implementing a wideband microwave photonic phase shifter by a joint use of a polarization modulator (PolM) and a polarization-maintaining fiber Bragg grating (PM-FBG) is proposed and experimentally demonstrated. A microwave signal to be phase shifted is applied to the PolM. Two phase-modulated signals along the two principal axes of the PolM are generated and sent to the PM-FBG. The phase-modulated signals have a static but complementary phase shift introduced by the dc bias applied to the PolM. Due to the birefringence of the polarization-maintaining (PM) fiber, the PM-FBG has two spectrally separated and orthogonally polarized reflection bands. By employing the PM-FBG to reflect one first-order sideband along one polarization direction and one optical carrier along the other polarization direction, and send them back to the PolM, a second-time phase modulation is imposed to the sideband and the optical carrier. By sending the two signals to a polarizer and beating them at a photodetector, a phase shifted microwave signal is obtained. Since the PolM is used twice, a low dc bias voltage would lead to a large phase shift. A full 360° microwave photonic phase shifter over a frequency range of 30-40 GHz is experimentally demonstrated. The spurious free dynamic range (SFDR) of the phase shifter is also studied.

  12. Slope measurement of a phase object using a polarizing phase-shifting high-frequency Ronchi grating interferometer.

    PubMed

    Toto-Arellano, Noel-Ivan; Martínez-García, Amalia; Rodríguez-Zurita, Gustavo; Rayas-Álvarez, Juan Antonio; Montes-Perez, Areli

    2010-11-20

    An interferometric method to measure the slope of phase objects is presented. The analysis was performed by implementing a polarizing phase-shifting cyclic shear interferometer coupled to a 4-f Fourier imaging system with crossed high-frequency Ronchi gratings. This system can obtain nine interference patterns with adjustable phase shifts and variable lateral shear. In order to extract the slope of a phase object, it is only analyzed using four patterns obtained in a single shot, and applying the classical method of phase extraction.

  13. What the Polar Cap Tells Us about the Substorm Growth Phase

    NASA Technical Reports Server (NTRS)

    Brittnacher, M. J.; Fillingim, M. O.; Chua, D.; Wilber, M.; Parks, G. K.; Germany, G. A.; Spann, James F., Jr.

    1998-01-01

    The polar cap region in the 30 to 60 minute period prior to the onset of the auroral substorm has been examined using global images from the Polar Ultraviolet Imager (UVI) to look for observational evidence of processes related to the substorm growth phase. In particular, the area of the polar cap has been measured to determine changes in its size in relation to the orientation of the interplanetary magnetic field (IMF). It was found that the size of the polar cap region increases during the growth phase even if the IMF has no southward component. Three phenomena have been observed to produce the increase in the size of the polar cap: (1) motion of the auroral oval to lower latitude, (2) thinning of the auroral oval, and (3) reduction of intense auroral precipitation in the polar cap region. The first phenomenon has been considered to be a result of the growth of the tail lobe magnetic field and the second is related to the thinning of the plasma sheet. Both of these have been supported by in situ observational evidence and are consistent with current models of substorm development. However, the third phenomenon appears to be unrelated to the first two and does not appear to be the result of opening of the polar cap flux tubes to the solar wind IMF. This reduction of auroral precipitation provides evidence of a growth phase process, or change in auroral precipitation processes, that is not explained by current substorm models.

  14. Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems.

    PubMed

    Gao, Yuliang; Lau, Alan Pak Tao; Yan, Shuangyi; Lu, Chao

    2011-10-24

    A low-complexity feed-forward carrier phase estimation (CPE) technique is presented for dual-polarization (DP)-16-QAM transmission systems. By combining QPSK partitioning, maximum likelihood (ML) detection and phase offset estimation between signals in different polarizations, simulation and experimental results for a 200 Gb/s DP-16-QAM system demonstrate similar linewidth tolerance to the best feed-forward CPE reported to date while the computational complexity is at least three times lower compared with other simplified feed-forward CPE techniques.

  15. Dynamical Piezoelectric and Magnetopiezoelectric Effects in Polar Metals from Berry Phases and Orbital Moments

    NASA Astrophysics Data System (ADS)

    Varjas, Dániel; Grushin, Adolfo G.; Ilan, Roni; Moore, Joel E.

    2016-12-01

    The polarization of a material and its response to applied electric and magnetic fields are key solid-state properties with a long history in insulators, although a satisfactory theory required new concepts such as Berry-phase gauge fields. In metals, quantities such as static polarization and the magnetoelectric θ term cease to be well defined. In polar metals, there can be analogous dynamical current responses, which we study in a common theoretical framework. We find that current responses to dynamical strain in polar metals depend on both the first and second Chern forms, related to polarization and magnetoelectricity in insulators as well as the orbital magnetization on the Fermi surface. We provide realistic estimates that predict that the latter contribution will dominate, and we investigate the feasibility of experimental detection of this effect.

  16. Polarization fields and phase space densities in storage rings: Stroboscopic averaging and the ergodic theorem

    NASA Astrophysics Data System (ADS)

    Ellison, James A.; Heinemann, Klaus

    2007-10-01

    A class of orbital motions with volume preserving flows and with vector fields periodic in the “time” parameter θ is defined. Spin motion coupled to the orbital dynamics is then defined, resulting in a class of spin-orbit motions which are important for storage rings. Phase space densities and polarization fields are introduced. It is important, in the context of storage rings, to understand the behavior of periodic polarization fields and phase space densities. Due to the 2π time periodicity of the spin-orbit equations of motion the polarization field, taken at a sequence of increasing time values θ,θ+2π,θ+4π,…, gives a sequence of polarization fields, called the stroboscopic sequence. We show, by using the Birkhoff ergodic theorem, that under very general conditions the Cesàro averages of that sequence converge almost everywhere on phase space to a polarization field which is 2π-periodic in time. This fulfills the main aim of this paper in that it demonstrates that the tracking algorithm for stroboscopic averaging, encoded in the program SPRINT and used in the study of spin motion in storage rings, is mathematically well-founded. The machinery developed is also shown to work for the stroboscopic average of phase space densities associated with the orbital dynamics. This yields a large family of periodic phase space densities and, as an example, a quite detailed analysis of the so-called betatron motion in a storage ring is presented.

  17. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model.

    PubMed

    Lázaro, Elisabet; Izquierdo, Pere; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2009-07-03

    The polarity parameter model previously developed: log k=(log k)(0) + p(P(m)(N) - P(s)(N)) has been successfully applied to study several chromatographic systems involving new generation RPLC columns (Luna C18, Resolve C18, XTerra MSC18, and XTerra RP18). In this model the retention of the solutes (log k) is related to a solute parameter (p), a mobile phase parameter (P(m)(N)) and two chromatographic system parameters [P(s)(N) and (log k)(0)]. The studied systems have been characterized with different acetonitrile-water and methanol-water mobile phases, using a set of 12 neutral solutes of different chemical nature. The polarity parameter model allows prediction of retention of any solute in any mobile phase composition just using the retention data obtained in one percentage of organic modifier and the polarity parameters established in the characterization of the chromatographic systems. This model also allows the solute polarity data transference between RPLC characterized systems, so it is possible to predict the retention in various RPLC systems working experimentally with just one of them. Moreover, the global solvation parameter model has also been applied to the same chromatographic systems using a wide set of solutes in order to compare its predictive ability with the one of the polarity parameter model. The results clearly show that both models predict retention with very similar accuracy but the polarity parameter model requires much less preliminary experimental measurements to achieve equivalent results than the global solvation approach.

  18. Role of quantum fluctuations in the hexatic phase of cold polar molecules.

    PubMed

    Lechner, Wolfgang; Büchler, Hans-Peter; Zoller, Peter

    2014-06-27

    Two-dimensional crystals melt via an intermediate hexatic phase, which is characterized by an anomalous scaling of spatial and orientational correlation functions and the absence of an attraction between dislocations. We propose a protocol to study the effect of quantum fluctuations on the nature of this phase with a model system of strongly correlated ultracold polar molecules. Dislocations can be located in experiment from local energy differences which induce internal stark shifts in the molecules. We present a criterion to identify the hexatic phase from the statistics of the end points of topological defect strings and find a hexatic phase, which is dominated by quantum fluctuations, between the crystal and superfluid phases.

  19. Phase control of six-wave mixing from circularly polarized light

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzhe; Liu, Zhe; Wang, Hang; Li, Shuoke; Zhang, Weitao; Yi, Wenhui; Zhang, Yanpeng

    2016-08-01

    We investigate the phase control of six-wave mixing (SWM) in atomic system with multi-Zeeman levels theoretically and experimentally. With the relative phase varying, the switch between bright and dark state can appear in probe transmission signal. Then we demonstrate the evolution of six-wave mixing generated in bright and dark states by scanning the frequency detuning of the dressing field at different polarized probe field. Meanwhile, by utilizing the strong dressing effect of circular polarized light, we observe pure dark state switched to pure bright state in terms of energy level splitting, and compare different phases under different detuning of circularly polarized light. Theoretical calculations are in well agreement with the experimental observations.

  20. Influence of perturbative phase noise on active coherent polarization beam combining system.

    PubMed

    Ma, Pengfei; Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Su, Rongtao; Liu, Zejin

    2013-12-02

    In this manuscript, the influence of perturbative phase noise on active coherent polarization beam combining (CPBC) system is studied theoretically and experimentally. By employing a photo-detector to obtain phase error signal for feedback loop, actively coherent polarization beam combining of two 20 W-level single mode polarization-maintained (PM) fiber amplifiers are demonstrated with more than 94% combining efficiency. Then the influence of perturbative phase noise on active CPBC system is illustrated by incorporating a simulated phase noise signal in one of the two amplifiers. Experimental results show that the combining efficiency of the CPBC system is susceptible to the frequency or amplitude of the perturbative phase noise. In order to ensure the combining efficiency of the unit of CPBC system higher than 90%, the competence of our active phase control module for high power operation is discussed, which suggests that it could be worked at 100s W power level. The relationship between residual phase noise of the active controller and the normalized voltage signal of the photo-detector is developed and validated experimentally. Experimental results correspond exactly with the theoretically analyzed combining efficiency. Our method offers a useful approach to estimate the influence of phase noise on CPBC system.

  1. Enhancement of polar crystalline phase formation in transparent PVDF-CaF2 composite films

    NASA Astrophysics Data System (ADS)

    Lee, Sang Goo; Ha, Jong-Wook; Sohn, Eun-Ho; Park, In Jun; Lee, Soo-Bok

    2016-12-01

    We consider the influence of calcium fluoride (CaF2) nanoparticles on the crystalline phase formation of poly(vinylidene fluoride) (PVDF) for the first time. The transparent PVDF-CaF2 composite films were prepared by casting on PET substrates using N,N-dimethylacetamide (DMAc) as a solvent. It was found that CaF2 promoted the formation of polar crystalline phase of PVDF in composites, whereas nonpolar α-phase was dominant in the neat PVDF film prepared at the same condition. The portion of polar crystalline phase increased in proportional to the weight fraction of CaF2 in the composite films up to 10 wt%. Further addition of CaF2 suppressed completely the α-phase formation. Polar crystalline phase observed in as-cast composite films was a mixture of β- and γ-polymorph structures. It was also shown that much ordered γ-phase could be obtained through thermal treatment of as-cast PVDF-CaF2 composite film at the temperatures above the melting temperature of the composite films, but below that of γ-phase.

  2. Phase sensitivity to temperature of the guiding mode in polarization-maintaining photonic crystal fiber.

    PubMed

    Song, Jingming; Sun, Kang; Li, Shuai; Cai, Wei

    2015-08-20

    The propagating phase changing of a polarization-maintaining photonic crystal fiber (PM-PCF) caused by temperature variation is theoretically studied, as well as compared with conventional PANDA fiber. As to verifying numerical analysis, a platform based on a Michelson interferometer for phase versus temperature measurement was built for both kinds of fiber. Experiments show that PM-PCF has similar temperature sensitivity with conventional polarization-maintaining fiber. With optimized PM-PCF design (thinner coating layer and coating material with smaller thermal expansion coefficient), the sensitivity could be further reduced to about 80% of the present level.

  3. Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals.

    PubMed

    Lin, Chi-Huang; Wang, Yu-Yin; Hsieh, Cheng-Wei

    2011-02-15

    A polarization-independent and high-diffraction-efficiency Fresnel lens is developed based on blue phase liquid crystals (BPLCs). The optically isotropic characteristic of BPLCs is used to produce a polarization-independent Fresnel lens. The small optical phase shift of BPLCs that is induced by the Kerr effect is sufficient for the BPLC Fresnel lens to have high theoretical and experimental diffraction efficiencies of 41% and ∼34%, respectively. An electrically erasable memory effect in the focusing diffraction at an electric field E>4.44 V/μm is observed. The electro-optical properties of the BPLC Fresnel lens are analyzed and discussed.

  4. Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    NASA Astrophysics Data System (ADS)

    Nichman, Leonid; Fuchs, Claudia; Järvinen, Emma; Ignatius, Karoliina; Florian Höppel, Niko; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Bjerring Kristensen, Thomas; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-03-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary organic aerosol (SOA) are presented. We report observations of significant liquid-viscous SOA particle polarization transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarization ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulfate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentrations and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to tropical troposphere layer analysis.

  5. Polarization effects and phase equilibria in high-energy-density polyvinylidene-fluoride-based polymers.

    PubMed

    Ranjan, V; Yu, L; Nakhmanson, Serge; Bernholc, Jerry; Nardelli, M Buongiorno

    2010-09-01

    Using first-principles calculations, the phase diagrams of polyvinylidene fluoride (PVDF) and its copolymers under an applied electric field are studied and phase transitions between their nonpolar alpha and polar beta phases are discussed. The results show that the degree of copolymerization is a crucial parameter controlling the structural phase transition. In particular, for tetrafluoroethylene (TeFE) concentration above 12%, PVDF-TeFE is stabilized in the beta phase, whereas the alpha phase is stable for lower concentrations. As larger electric fields are applied, domains with smaller concentrations (< or = 12%) undergo a transition from the alpha to the beta phase until a breakdown field of approximately 600 MV m(-1) is reached. These structural phase transitions can be exploited for efficient storage of electrical energy.

  6. Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter.

    PubMed

    Zhang, Yamei; Pan, Shilong

    2013-03-01

    A scheme for the generation of phase-coded microwave signals using an electrically tunable photonic microwave phase shifter is proposed and demonstrated. The photonic phase shifter is based on a single-sideband polarization modulator (PolM), and the tuning of the phase shifter is implemented by a second PolM. By introducing an RF signal to the first PolM and an electrical coding signal to the second PolM, a phase-coded microwave signal with binary phase codes or polyphase codes is achieved. An experiment is performed. The simple and flexible operation, high coding rate, large frequency range, excellent transmission performance, and high stability of the system is confirmed.

  7. Substantial Cd-Cd bonding in Ca6PtCd11: a condensed intermetallic phase built of pentagonal Cd7 and rectangular Cd4/2Pt pyramids.

    PubMed

    Gulo, Fakhili; Samal, Saroj L; Corbett, John D

    2013-09-03

    The novel intermetallic Ca6PtCd11 is orthorhombic, Pnma, Z = 4, with a = 18.799(2) Å, b = 5.986(1) Å, c = 15.585(3) Å. The heavily condensed network contains three types of parallel cadmium chains: apically strongly interbonded Cd7 pentagonal bipyramids, linear Cd arrays, and rectangular Cd4/2Pt pyramids. All of the atoms have 11-13 neighbors. Calculations by means of the linear muffin-tin orbitals method in the atomic spheres approximation indicate that some Cd-Cd interactions correspond to notably high Hamilton populations (1.07 eV per average bond) whereas the Ca-Ca covalent interactions (integrated crystal orbital Hamiltonian population) are particularly small (0.17 eV/bond). (Pt-Cd interactions are individually greater but much less in aggregate.) The Ca-Ca separations are small, appreciably less than the single bond metallic diameters, and unusually uniform (Δ = 0.14 Å). The Cd atoms make major contributions to the stability of the phase via substantial 5s and 5p bonding, which include back-donation of Cd 5s, 5p and Pt 5d into Ca 3d states in the principal bonding modes for Ca-Cd and Ca-Pt. Bonding Ca-Ca, Ca-Cd, and Cd-Cd states remain above EF, and some relative oxidation of Ca in this structure seems probable. Ca6PtCd11 joins a small group of other phases in which Cd clustering and Cd-Cd bonding are important.

  8. Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model

    NASA Astrophysics Data System (ADS)

    Kujawa-Cichy, A.; Micnas, R.

    2011-08-01

    We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.

  9. Ferroelectric order in liquid crystal phases of polar disk-shaped ellipsoids

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2014-05-01

    The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long range positional order is considered an outstanding problem of both fundamental and technological interest. Recently, we reported that a system of polar achiral disklike ellipsoids can spontaneously exhibit a long searched ferroelectric nematic phase and a ferroelectric columnar phase with strong axial polarization. The major role is played by the dipolar interactions. The model system of interest consists of attractive-repulsive Gay-Berne oblate ellipsoids embedded with two parallel point dipoles positioned symmetrically on the equatorial plane of the ellipsoids. In the present work, we investigate in detail the profound effects of changing the separation between the two symmetrically placed dipoles and the strength of the dipoles upon the existence of different ferroelectric discotic liquid crystal phases via extensive off-lattice N-P-T Monte Carlo simulations. Ferroelectric biaxial phases are exhibited in addition to the uniaxial ferroelectric fluids where the phase biaxiality results from the dipolar interactions. The structures of all the ferroelectric configurations of interest are presented in detail. Simple phase diagrams are determined which include different polar and apolar discotic fluids generated by the system.

  10. Photoinduced topological phase transition and spin polarization in a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Chen, M. N.; Su, W.; Deng, M. X.; Ruan, Jiawei; Luo, W.; Shao, D. X.; Sheng, L.; Xing, D. Y.

    2016-11-01

    A great deal of attention has been paid to the topological phases engineered by photonics over the past few years. Here, we propose a topological quantum phase transition to a quantum anomalous Hall (QAH) phase induced by off-resonant circularly polarized light in a two-dimensional system that is initially in a quantum spin Hall phase or a trivial insulator phase. This provides an alternative method to realize the QAH effect, other than magnetic doping. The circularly polarized light effectively creates a Zeeman exchange field and a renormalized Dirac mass, which are tunable by varying the intensity of the light and drive the quantum phase transition. Both the transverse and longitudinal Hall conductivities are studied, and the former is consistent with the topological phase transition when the Fermi level lies in the band gap. A highly controllable spin-polarized longitudinal electrical current can be generated when the Fermi level is in the conduction band, which may be useful for designing topological spintronics.

  11. Measurement of displacement and distance with a polarization phase shifting folded Twyman Green interferometer.

    PubMed

    Chatterjee, Sanjib; Kumar, Y Pavan

    2015-11-20

    A Sagnac interferometer (SI), consisting of a polarization beam splitter (PBS), along with two equally spaced plane mirrors that are inclined at 45° to each other, is transformed into a folded Twyman Green interferometer (TGI) by placing a mirrored parallel plate (MPP) into the hypotenuse arm of the SI. The converging input beam produced by a telescope objective (TO) is split into reflected (s-polarized) and transmitted (p-polarized) components by the PBS. The p- and s-polarized focal spots are made to fall on the mirrored end surfaces of the parallel plate (PP). The retroreflected p- and s-polarized beams become collimated after passing through the TO. A linear shift of the PP in either (longitudinal) direction alters the positions of the p- and s-polarized focal spots and results in a set of converging and diverging spherical wavefronts that interfere to form concentric circular fringes. We applied polarization phase-shifting interferometry to obtain the optical path difference (OPD) variation of the interference field. The displacement is calculated from the OPD variation. A validation experiment has been carried out by introducing known shifts to the PP. The setup can be used for displacement as well as distance measurement.

  12. Analysis of polar peptides using a silica hydride column and high aqueous content mobile phases.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Kulsing, Chadin; Matyska, Maria T; Pesek, Joseph J; Hearn, Milton T W

    2013-09-01

    The retention behavior of a set of polar peptides separated on a silica hydride stationary phase was examined with a capillary HPLC system coupled to ESI-MS detection. The mobile phases consisted of formic acid or acetic acid/acetonitrile/water mixtures with the acetonitrile content ranging from 5 to 80% v/v. The effects on peptide retention of these two acidic buffer additives and their concentrations in the mobile phase were systematically investigated. Strong retention of the peptides on the silica hydride phase was observed with relatively high-organic low-aqueous mobile phases (i.e. under aqueous normal-phase conditions). However, when low concentrations of acetic acid were employed as the buffer additive, strong retention of the peptides was also observed even when high aqueous content mobile phases were employed. This unique feature of the stationary phase therefore provides an opportunity for chromatographic analysis of polar peptides with water-rich eluents, a feature usually not feasible with traditional RP sorbents, and thus under conditions more compatible with analytical green chemistry criteria. In addition, both isocratic and gradient elution procedures can be employed to optimize peptide separations with excellent reproducibility and resolution under these high aqueous mobile phase conditions with this silica hydride stationary phase.

  13. Security authentication using phase-encoded nanoparticle structures and polarized light.

    PubMed

    Carnicer, Artur; Hassanfiroozi, Amir; Latorre-Carmona, Pedro; Huang, Yi-Pai; Javidi, Bahram

    2015-01-15

    Phase-encoded nanostructures such as quick response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase-encoded QR codes. The system is illuminated using polarized light, and the QR code is encoded using a phase-only random mask. Using classification algorithms, it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase-encoded QR codes using polarimetric signatures.

  14. Amplitude and phase variations of the chandler wobble from 164-yr polar motion series

    NASA Astrophysics Data System (ADS)

    Malkin, Z. M.; Miller, N. O.

    2011-10-01

    This paper is aimed at investigation of the Chandler wobble (CW) at the 164-year interval to search for the major CW amplitude and phase variations. The CW signal was extracted from the IERS polar motion series using digital filtering. The CW amplitude and phase variations were examined by means of several methods which yield very similar results. Results of our analysis have shown that, besides the well-known CW phase jump in the 1920s, two other large phase jumps have been found in the 1850s and 2000s, all three contemporarily with a sharp decrease in the CW amplitude.

  15. Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips

    NASA Astrophysics Data System (ADS)

    Wei, Helei; Hu, Dejiao; Deng, Yunsheng; Wu, Xuannan; Xiao, Xiao; Hou, Yidong; Wang, Yunjiao; Shi, Ruiying; Wang, Deqiang; Du, Jinglei

    2016-12-01

    Ultra-thin metallic nano-strips (thinner than skin depth) can lead to anomalous reflection for a transverse magnetic (TM) incidence of some wave-lengths, due to the phase modulation of localized surface plasmon resonance. Based on the principle above, we proposed a method of polarization modulation using ultra-thin metallic nano-strips. When irradiating nano-strips vertically by light with a given polarized angle, we can utilize the phase difference of the TM transmission and transverse electric (TE) transmission near anomalous reflection region to modulate transmission polarization. We have designed and fabricated the ultra-thin metallic nano-strips with the function of quarter-wave plate, the attained transmission Stokes parameter S3 is 0.95. The nano-strips is easy to design and fabricate, also compatible with other optics devices, hence has the potential applications in integrated optics field.

  16. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    SciTech Connect

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  17. Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase.

    PubMed

    Zech, Oliver; Thomaier, Stefan; Bauduin, Pierre; Rück, Thomas; Touraud, Didier; Kunz, Werner

    2009-01-15

    In this investigation we present for the first time microemulsions comprising an ionic liquid as surfactant and a room-temperature ionic liquid as polar pseudo-phase. Microemulsions containing the long- chain ionic liquid1-hexadecyl-3-methyl-imidazolium chloride ([C16mim][Cl]) as surfactant, decanol as cosurfactant, dodecaneas continuous phase and room temperature ionic liquids (ethylammonium nitrate (EAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim

  18. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on nonpolar phases

    NASA Astrophysics Data System (ADS)

    Zenkevich, I. G.; Pavlovskii, A. A.

    2016-05-01

    The character of the temperature dependences of the retention indices RI( T) of polar sorbates on nonpolar stationary phases was found to depend on the dosed amounts of sorbates, but not on column overloading. A physicochemical model was suggested to explain the observed anomalies in RI( T).

  19. Diagnostic efficiency of Mueller-matrix polarization reconstruction system of the phase structure of liver tissue

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Pavlov, Sergii V.; Radchenko, Kostiantyn O.; Stasenko, Vladyslav A.; Wójcik, Waldemar; Kussambayeva, Nazym

    2015-12-01

    The application field of using the Mueller-matrix polarizing reconstruction system of phase structure of biological layer for optical-anisotropic parameters differentiation of histological sections of healthy and rat's liver with hepatitis were investigated. Comparison of system informativity with known systems on indexes of sensitivity, specificity and balanced accuracy were performed.

  20. Behaviour of the isothermal retention indices of n-alkylbenzenes on stationary phases of different polarity.

    PubMed

    Santiuste, José María; Quintanilla-López, Jesús Eduardo; Takács, Jószef M; Lebrón-Aguilar, Rosa

    2012-01-27

    Isothermal retention indices (I) of benzene, toluene, ethylbenzene, n-propylbenzene and n-butylbenzene were determined at 323-423 K on twelve WCOT capillary columns covering a broad stationary phase polarity spectrum. These I values have been tested carrying out a comparison with the NIST database values. The effect of the stationary phase polarity on I values was studied. But for the poly(3,3,3-trifluoropropylmethyl siloxane) column, a good linear correlation was found. At each temperature, the dependence on I of the alkyl chain length (z) attached to the ring of the n-alkylbenzenes was linear and of similar magnitude for the stationary phases of low to middle polarity, but lower for the more polar ones. Moreover, an important influence of the column temperature on the slope of the I vs. z plots was observed for the only non polysiloxane-type stationary phase studied, i.e., poly(ethylene glycol), due to its higher chain stiffness. Finally, different expressions describing the effect of the temperature on the retention index have been compared. I values of the n-alkylbenzenes in the 323-423 K range increase with increasing column temperature according to the Antoine-type (I=α+β(γ+T)(-1)) and the extended (I=a+bT(-1)+clnT) models. No significant differences were observed between them, except for the poly[70% bis(3-cyanopropyl) 30% dimethyl silphenylene-siloxane] column, for which the Antoine-type model was slightly better.

  1. ANALYTIC MODELS FOR ALBEDOS, PHASE CURVES, AND POLARIZATION OF REFLECTED LIGHT FROM EXOPLANETS

    SciTech Connect

    Madhusudhan, Nikku; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2012-03-01

    New observational facilities are becoming increasingly capable of observing reflected light from transiting and directly imaged extrasolar planets. In this study, we provide an analytic framework to interpret observed phase curves, geometric albedos, and polarization of giant planet atmospheres. We compute the observables for non-conservative Rayleigh scattering in homogeneous semi-infinite atmospheres using both scalar and vector formalisms. In addition, we compute phase curves and albedos for Lambertian, isotropic, and anisotropic scattering phase functions. We provide analytic expressions for geometric albedos and spherical albedos as a function of the scattering albedo for Rayleigh scattering in semi-infinite atmospheres. Given an observed geometric albedo our prescriptions can be used to estimate the underlying scattering albedo of the atmosphere, which in turn is indicative of the scattering and absorptive properties of the atmosphere. We also study the dependence of polarization in Rayleigh scattering atmospheres on the orbital parameters of the planet-star system, particularly on the orbital inclination. We show how the orbital inclination of non-transiting exoplanets can be constrained from their observed polarization parameters. We consolidate the formalism, solution techniques, and results from analytic models available in the literature, often scattered in various sources, and present a systematic procedure to compute albedos, phase curves, and polarization of reflected light.

  2. On Helium 1083 nm Line Polarization during the Impulsive Phase of an X1 Flare

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.; Kleint, Lucia; Sainz Dalda, Alberto

    2015-12-01

    We analyze spectropolarimetric data of the He i 1083 nm multiplet (1s2s{}3{S}1-1s2p{}3{P}2,1,0o) during the X1 flare SOL2014-03-29T17:48, obtained with the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope. While scanning active region NOAA 12017, the FIRS slit crossed a flare ribbon during the impulsive phase, when the helium line intensities turned into emission at ≲twice the continuum intensity. Their linear polarization profiles are of the same sign across the multiplet including 1082.9 nm, intensity-like, at ≲5% of the continuum intensity. Weaker Zeeman-induced linear polarization is also observed. Only the strongest linear polarization coincides with hard X-ray (HXR) emission at 30-70 keV observed by RHESSI. The polarization is generally more extended and lasts longer than the HXR emission. The upper J = 0 level of the 1082.9 nm component is unpolarizable thus, lower-level polarization is the culprit. We make non-LTE radiative transfer calculations in thermal slabs optimized to fit only intensities. The linear polarizations are naturally reproduced, through a systematic change of sign with wavelength of the radiation anisotropy when slab optical depths of the 1082.9 component are ≲1. Neither are collisions with beams of particles needed, nor can they produce the same sign of polarization of the 1082.9 and 1083.0 nm components. The He i line polarization merely requires heating sufficient to produce slabs of the required thickness. Widely different polarizations of Hα, reported previously, are explained by different radiative anisotropies arising from slabs of different optical depths.

  3. Limonene in Arizona liquid systems used in countercurrent chromatography. II Polarity and stationary-phase retention.

    PubMed

    Faure, K; Bouju, E; Doby, J; Berthod, A

    2014-09-01

    The previous article in this series described the physico-chemical properties and chemical compositions of the two phases of the limonene-ethyl acetate-ethanol-water biphasic liquid system. This system was designed to be a "green" version of the so-called Arizona (AZ) scale of heptane-ethyl acetate-methanol compositions in which the heptane-ethyl acetate volume ratio is exactly the same as the methanol-water ratio. The first major difference between the standard and "green" AZ systems is the difference in upper and lower phase densities. The higher density of limonene compared with heptane greatly reduces the density difference of the "green" system: half the compositions have a density difference lower than 0.06 g mL(-1), precluding their use in hydrodynamic CCC columns. The other major difference is the phase polarity. The better distribution of ethanol between the upper organic and lower aqueous phases of the "green" AZ scale renders them more polar than their counterparts in standard heptane-based compositions. The test solutes aspirin and coumarin have higher distribution constants in the "green" AZ compositions. It is revealed that a hydrostatic column is suitable for use with all "green" compositions, with very good phase retention and limited driving pressure at high flow rates. A hydrodynamic column only functioned at limited flow rates with polar compositions of sufficient phase-density difference. The CCC chromatograms obtained with different compositions and columns are shown, and their peak position and sharpness discussed.

  4. A novel terahertz device with multi-function of polarization and switch based on phase transition of VO2

    NASA Astrophysics Data System (ADS)

    Gu, Wen-hao; Chang, Sheng-jiang; Fan, Fei

    2016-11-01

    A terahertz (THz) polarizer and switch structure is proposed based on the phase transition of vanadium dioxide (VO2). When VO2 is in the insulation phase, the resonance frequencies of the proposed structure are 1.49 THz and 1.22 THz for the x- and y-polarization, respectively. It can perform as a THz polarizer with extinction ratios of 52.5 dB and 17 dB for the y- and x-polarization, respectively; When VO2 transforms into metallic phase, the resonance frequency for x-polarization wave shifts from 1.49 THz to 1.22 THz, while that remains still for the y-polarization component. It means that the structure can work as a polarization-dependent THz switch with a high extinction ratio of 32 dB.

  5. Intermetallic-Based High-Temperature Materials

    SciTech Connect

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  6. Monte Carlo simulation of antiphase boundaries and growth of antiphase domains in Al5Ti3 phase in Al-rich γ-TiAl intermetallics

    NASA Astrophysics Data System (ADS)

    Kulkarni, U. D.; Hata, S.; Nakano, T.; Mitsuhara, M.; Ikeda, K.; Nakashima, H.

    2011-08-01

    Predominantly two kinds of antiphase boundaries (APBs) form in Al5Ti3, which is an Al-rich ordered derivative of the γ-TiAl (L10) phase. This phase can be viewed as a periodic arrangement of lean rhombs and squares on the Ti-rich (002) planes of the tetragonal L10. Energies of the two types of APBs were varied in a Monte Carlo simulation by suitably changing the pair interaction parameters. APBs of both types form boundaries of Al5Ti3 antiphase domains (APDs), which coarsen with time. An important observation in this regard is that mostly facetted APBs form at lower ageing temperatures, whereas curved APBs appear to form at relatively higher ageing temperatures. The findings of this work suggest that there exists a critical temperature, akin to the roughening transition temperature for crystals, that marks the transition from facetted to curved APBs.

  7. Kilohertz generation of high contrast polarization states for visible femtosecond pulses via phase-locked acousto-optic pulse shapers

    SciTech Connect

    Seiler, Hélène; Walsh, Brenna; Palato, Samuel; Kambhampati, Patanjali; Thai, Alexandre; Forget, Nicolas; Crozatier, Vincent

    2015-09-14

    We present a detailed analysis of a setup capable of arbitrary amplitude, phase, and polarization shaping of broadband visible femtosecond pulses at 1 kHz via a pair of actively phase stabilized acousto-optic programmable dispersive filters arranged in a Mach-Zehnder interferometer geometry. The setup features phase stability values around λ/225 at 580 nm as well as degrees of polarization of at least 0.9 for any polarization state. Both numbers are important metrics to evaluate a setup's potential for applications based on polarization-shaped femtosecond pulses, such as fully coherent multi-dimensional electronic spectroscopy.

  8. New icosahedral nanoclusters in crystal structures of intermetallic compounds: Topological types of 50-atom deltahedra D50 in samson phases β-Mg2Al3 and ɛ-Mg23Al30

    NASA Astrophysics Data System (ADS)

    Blatov, V. A.; Ilyushin, G. D.

    2012-12-01

    A database of intermetallic compounds has been compiled using the TOPOS program package. This database includes 514 topological types, containing 12- and 13-atom icosahedral i clusters. An isolated group of 1649 i clusters is described by 14 point groups and their maximum symmetry D 3 d (bar 3 m) and T h ( m bar 3) is established, respectively, in 47 and 25 types of crystal structures. A structural analysis of the outer quasispherical shells showed that local 63-atom i configurations 1@12@50, which contain 50 atoms in the second layer, are implemented in 8 out of 19 cases. Examples of new topologically different types of 50-atom D50 deltahedra in the Samson phases ɛ-Mg23Al30 and β-Mg2Al3 are presented. Four topologically different sites with coordination numbers of 5, 6, 6, or 7 are established in the ɛ shell and seven sites with coordination numbers of 5, 5, 6, 6, 6, 6, or 7 are found in the β shell. The inner i clusters for the β-Mg2Al3 structure (with the symmetry bar 3 m) and the ɛ-Mg23Al30 structure (with the symmetry bar 3) have a similar chemical composition, i.e., Mg7Al6 and Mg6Al7, and their 50-atom shells are chemically identical to 18Mg + 32Al. The configurations found supplement the series of known two-layer icosahedral Bergman and Mackay clusters in the form of deltahedra with 32- and 42-atom shells.

  9. Linear polarization of binaries II. Phase function : wQ~(?)Q~? (??)

    NASA Astrophysics Data System (ADS)

    Barman, S. K.

    2000-12-01

    This paper presents a method of calculating linear polarizations in close binaries whose surfaces are distorted due to tidal and rotational forces. Limb-darkening effect has been taken into account. Particles of different sizes are embedded in the outer atmosphere. The law of differential rotation of the primary is considered in analytic form: ??=3D b1 + b2 w2 + b3 w4, where b1, b2 and b3 are constants and w is the distance of a point P (r,?,?) from the axis of rotation of the primary. The atmosphere is assumed to be non-grey, plane-parallel and the phase function is wQ~(?)Q~? (??). Calculations are done with respect to rest frame fixed at the centre of the primary star for several functions as : mass-ratio (q) between the secondary and the primary, polar radius (rp) of the primary, wave-length (?) of the incident light, radius of a particle (1) and angle of inclination (?) with respect to the line of sight. It is noticed that polarization increases with an increase of the radius rp steadily; polarization increases with an increase of the radius of the particle (1), polarization increases with an increase of the mass-ratio q. The method of solution has been applied to several late type binaries to calculate disk integrated linear polarization of light emitted by them. When the mass-ratio q = 0, the general problem reduces to the calculation for a rotationally distorted single (primary) star.

  10. Quasi-amorphous inorganic thin films: non-crystalline polar phases.

    PubMed

    Wachtel, Ellen; Lubomirsky, Igor

    2010-06-18

    Quasi-amorphous thin films of BaTiO3, SrTiO3, and BaZrO3 are the only known examples of inorganic, non-crystalline, polar materials. The conditions under which they are formed and the origin of their polarity set these materials apart from other classes of inorganic materials. The most important feature of the quasi-amorphous phase is that the polarity is the result of the orientational ordering of local bonding units but without any detectable spatial periodicity. This mechanism is reminiscent of that observed in ferroelectric polymers and permits compounds that do not have polar crystalline polymorphs, such as SrTiO3 and BaZrO3, to form polar non-crystalline solids. In the present report, we provide an overview of the essential features of these materials including preparation, structure, and chemical composition. The report also reviews our current level of understanding and offers some guidelines for further development and application of non-crystalline inorganic polar materials.

  11. Detection of two identical frequency vibrations by phase discrimination in polarization-OTDR

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Pan, Yun; Zhang, MingJiang; Cao, Chunqi; Zhang, Xuping

    2017-04-01

    In this paper, a new detection method for two identical frequency vibrations along optic fiber is proposed, by discrimination of their phase relationship in polarization optical time-domain reflectometer (POTDR). A vibration on fiber would modulate its index and birefringence, then it can consequently change the state of polarization (SOP) of the scattering signal. However, multiple simultaneous vibrations at different positions would result in random fluctuating SOP of the scattering signal, which make them very difficult to be identified. In our proposed method, the phase of the vibration signal along the fiber is obtained by Fast Fourier Transform. Therefore, two vibration events with the same frequency could be distinguished effectively by using the pattern of the phase distribution. The principle of the method is analyzed in detail. Both simulation and experiment results are presented to demonstrate the validity and limitation of this method. It could be widely used for safety monitoring of long distance perimeters, electrical transmission line, and so on.

  12. Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses

    SciTech Connect

    Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu; Satoh, Takuya; Stupakiewicz, Andrzej; Maziewski, Andrzej

    2014-07-28

    A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed for excitation fluences higher than 100 mJ/cm{sup 2}.

  13. A high-power microwave circular polarizer and its application on phase shifter.

    PubMed

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  14. Generation of High Efficiency Longitudinally Polarized Beam using High NA Lens Axicon and Dedicated Phase Filter

    SciTech Connect

    Rajesh, K. B.; Mohankumar, R.; Prathibajanet, C. Amala; Pillai, T. V. S.; Jaroszewicz, Z.

    2011-10-20

    We propose to use pure phase filter in combination with high NA lens axicon to achieve high efficient longitudinally polarized beam with a subwavelength spot size and large depth of focus using hyper geometric Gaussian beam. Using this system, the spot size is reduced to 0.392 {lambda} and the depth of focus is increased to 7 {lambda}. The efficiency of such system is found to be 87%. This high efficient longitudinally polarized beam generated by hyper geometric Gaussian beam is useful for most of the near-field optics applications.

  15. Zn13(CrxAl1-x)27 (x = 0.34-0.37): a new intermetallic phase containing icosahedra as building units

    SciTech Connect

    Thimmaiah, Srinivasa; Han, Mi-Kyung; Miller, Gordon J.

    2011-03-13

    The title compounds Zn{sub 13}(Cr{sub x}Al{sub 1-x}){sub 27} (x = 0.34-0.37) were obtained by melting the pure elements at 923 K, and followed by a heat treatment at 723 K in a tantalum container. According to single crystal structural analysis, the title compounds crystallize in the rhombohedral system, adopting a new structure type (R-3m, a = 7.5971(8), c = 36.816(6), for crystal I). Single crystal X-ray structural analysis reveals a statistical mixing of Cr/Al in their crystallographic positions. Single crystal and powder X-ray diffraction as well as energy dispersive X-ray analyses suggested the title phase to have a narrow homogeneity range. The substructure of Zn{sub 13}(Cr{sub x}Al{sub 1-x}){sub 27} shows close resemblance with the Mn{sub 3}Al{sub 10} structure type. A bonding analysis, through crystal orbital Hamiltonian populations (COHPs), of 'Cr{sub 9}Al{sub 18}Zn{sub 13}' as a representative composition indicated that both homo- and heteronuclear interactions are important for the stability of this new phase.

  16. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  17. Polarity, selectivity and performance of hydrophilic organic/salt-containing aqueous two-phase system on counter-current chromatography for polar compounds.

    PubMed

    Liu, Dan; Hong, Zhilai; Gao, Mingzhe; Wang, Zhixin; Gu, Ming; Zhang, Xiaozhe; Xiao, Hongbin

    2016-05-27

    The essential attributes of a solvent system for separation polar compounds on CCC are polarity, selectively and performance. Here, hydrophilic organic/salt-containing aqueous two-phase system (HO/S TPS) was evaluated as an alternative solvent system for CCC separation of polar compounds. Polarity measurements based on Rohrschneider-Snyder parameter was developed as quantitative assessing the polarity of HO/S TPS and comparing with an organic/aqueous system. All investigated 1-butanol/ethanol/saturated ammonium sulfate solution/water (BEAsWat) and 1-butanol/ethanol/saturated dipotassium hydrogen phosphate solution/water (BEDhpWat) systems with polarity values of organic phase from 4.5 to 6.8, were more polar than chloroform/methanol/water (1/1/1). The considerable water content of BEAsWat and BEDhpWat (0/1/1/1/) was 45.4 and 42.6% (w%) of hydrophilic organic phase, and 66.4 and 51.2% (w%) of salt-containing aqueous phase, respectively, closed to conventional aqueous two-phase system. Therefore, the polarity of HO/S TPS is in the middle of organic/aqueous and aqueous two-phase system. The LogKC values of twenty four polar compounds as model mixture confirmed that the polarities of HO/S TPSs were matched to that of the polar compounds and shown to be a very selective technique capable of separating positional isomers. Moreover, BEAsWat and BEDhpWat systems can be easily retained in CCC column with suitable elution mode. The hydrodynamic behavior reversion of HO/S TPS on hydrodynamic CCC was observed and was tentatively explained based on the density difference. Finally, caffeoylquinic acid isomers and dihydroxybenzoic acid isomers were successfully separated with HO/S TPS on CCC, respectively. Those results demonstrate that HO/S TPS on CCC is a performant and stable way to separate polar compounds from natural products.

  18. 1.14 Tb/s DP-QPSK WDM polarization-diverse optical phase conjugation.

    PubMed

    Stephens, M F C; Tan, M; Phillips, I D; Sygletos, S; Harper, P; Doran, N J

    2014-05-19

    Optical phase conjugation (OPC) of a polarization-multiplexed comb of 10x114Gb/s DP-QPSK signals has been demonstrated for the first time, occupying a spectral bandwidth of >1 THz (~9 nm). The nonlinear element employed for the OPC was highly nonlinear fiber (HNLF) optimized for the suppression of stimulated Brillouin scattering (SBS) and configured in a bi-directional loop offering polarization diversity. Pump power (each way about the loop) and input signal power to the OPC subsystem were optimized at 29.7 dBm and + 3 dBm respectively producing a Q(2) penalty of ≤ 0.9 dB over all conjugate wavelengths, polarizations and output OSNR (up to 20 dB).

  19. Space-bandwidth extension in parallel phase-shifting digital holography using a four-channel polarization-imaging camera.

    PubMed

    Tahara, Tatsuki; Ito, Yasunori; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2013-07-15

    We propose a method for extending the space bandwidth (SBW) available for recording an object wave in parallel phase-shifting digital holography using a four-channel polarization-imaging camera. A linear spatial carrier of the reference wave is introduced to an optical setup of parallel four-step phase-shifting interferometry using a commercially available polarization-imaging camera that has four polarization-detection channels. Then a hologram required for parallel two-step phase shifting, which is a technique capable of recording the widest SBW in parallel phase shifting, can be obtained. The effectiveness of the proposed method was numerically and experimentally verified.

  20. A low-noise delta-sigma phase modulator for polar transmitters.

    PubMed

    Zhou, Bo

    2014-01-01

    A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μ m CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of -104 dBc/Hz and -120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively.

  1. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  2. A reconfigurable parity-time symmetric meta-atom for polarization and phase control (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Baum, Brian; Dionne, Jennifer; Alaeian, Hadiseh; Jankovic, Vladan; Lawrence, Mark

    2016-09-01

    Metasurfaces offer exotic optical properties, which often originate from carefully designed material geometries. With locked geometries, these metasurfaces are difficult or impossible to change post-fabrication. Here, we theoretically explore a nano-scale coaxial structure capable of adjustably manipulating the polarization, phase, and spatial distribution of light through the introduction of parity-time (PT) symmetric perturbations. Coaxial waveguides possess degenerate modes, corresponding to different orbital angular momentum (OAM) states. The degeneracy of OAM modes can be lifted through the introduction of any non-zero amount of gain and loss into the structure in a way that matches the azimuthal periodicity of the degenerate mode pair. New hybrid complex conjugate modes are created which lose their pure OAM nature and are either amplifying or lossy. We confirm this behavior using both a Hamiltonian formulation and degenerate perturbation theory, and propose this selective excitation and absorption scheme as a new method of filtering for mode division multiplexing in on-chip nanophotonic systems. In addition to the creation of new hybrid modes, we show that these PT-symmetric perturbations in coaxial apertures are capable of converting incident circularly polarized light into linearly polarized light with unity efficiency. Further, due to the localization of field intensity within the gain sections, it is possible to rotate linear polarization and induce up to a pi-phase shift. We describe how our PT-symmetric coaxial aperture could function as a reconfigurable meta-atom for phase, amplitude, and polarization controlled meta-surfaces, and discuss routes toward unity-efficiency, reconfigurable holography.

  3. Light beams with general direction and polarization: Global description and geometric phase

    NASA Astrophysics Data System (ADS)

    Nityananda, R.; Sridhar, S.

    2014-02-01

    We construct the manifold describing the family of plane monochromatic light waves with all directions, polarizations, phases and intensities. A smooth description of polarization, valid over the entire sphere S2 of directions, is given through the construction of an orthogonal basis pair of complex polarization vectors for each direction; any light beam is then uniquely and smoothly specified by giving its direction and two complex amplitudes. This implies that the space of all light beams is the six dimensional manifold S2×C2∖{0}, the (untwisted) Cartesian product of a sphere and a two dimensional complex vector space minus the origin. A Hopf map (i.e. mapping the two complex amplitudes to the Stokes parameters) then leads to the four dimensional manifold S2×S2 which describes beams with all directions and polarization states. This product of two spheres can be viewed as an ordered pair of two points on a single sphere, in contrast to earlier work in which the same system was represented using Majorana's mapping of the states of a spin one quantum system to an unordered pair of points on a sphere. This is a different manifold, CP2, two dimensional complex projective space, which does not faithfully represent the full space of all directions and polarizations. Following the now-standard framework, we exhibit the fibre bundle whose total space is the set of all light beams of non-zero intensity, and base space S2×S2. We give the U(1) connection which determines the geometric phase as the line integral of a one-form along a closed curve in the total space. Bases are classified as globally smooth, global but singular, and local, with the last type of basis being defined only when the curve traversed by the system is given. Existing as well as new formulae for the geometric phase are presented in this overall framework.

  4. Composite optical fiber polarizer with ternary copolymer overlay for large range modulation of phase difference

    NASA Astrophysics Data System (ADS)

    Cui, Minxin; Tian, Xiujie; Zou, Gang; Zhu, Bing; Zhang, Qijin

    2017-04-01

    In this work, a ternary copolymer composed of (E)-2-(4-((4-isocyanophenyl) diazenyl) phenoxy) ethyl methacrylate (2-CN), methacrylisobutyl polyhedral oligomeric silsesquioxane (MAPOSS) and 2,2,2-trifluoroethyl methacrylate (TFEMA) is synthesized and used as the overlay for composite optical fiber, in which cage-like POSS component and fluorine-containing component are used to reduce refractive index, and azobenzene component is used to finely manipulate the refractive indices in two orthogonal directions through photo-induced orientation under irradiation of polarized light. Before irradiation, the refractive index of terpolymer (1.4503) is slightly higher than that of the core material (1.4489) of commercial silica single-mode fiber, which is obtained by optimizing the amount of each monomer. After the irradiation of 435 nm polarized light, refractive indices of the overlay in two orthogonal directions decrease, and two values have been finely manipulated so that one is higher and another is lower than the refractive index of the fiber core by optimizing irradiation time. In this way, a radial loss type fiber polarization modulator is obtained. By changing the polarization direction of the irradiation at 435 nm, the polarization of propagating light at 1550 nm in the fiber can also be modulated continuously. The maximum change of phase difference is about 300°, making the device useful as a quarter-wave plate or a half-wave plate.

  5. LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A

    SciTech Connect

    Kopac, D.; Mundell, C. G.; Arnold, D. M.; Steele, I. A.; Kobayashi, S.; Lamb, G. P.; Smith, R. J.; Virgili, F. J.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Dichiara, S.; Harrison, R. M.; Melandri, A.; Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Oates, S. R.; Jelínek, M.

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  6. Suppressors made from intermetallic materials

    SciTech Connect

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  7. Visualizing the phenomena of wave interference, phase-shifting and polarization by interactive computer simulations

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel; Dirckx, Joris

    2015-09-01

    In this manuscript a computer based simulation is proposed for teaching concepts of interference of light (under the scheme of a Michelson interferometer), phase-shifting and polarization states. The user can change some parameters of the interfering waves, such as their amplitude and phase difference in order to graphically represent the polarization state of a simulated travelling wave. Regarding to the interference simulation, the user is able to change the wavelength and type of the interfering waves by selecting combinations between planar and Gaussian profiles, as well as the optical path difference by translating or tilting one of the two mirrors in the interferometer setup, all of this via a graphical user interface (GUI) designed in MATLAB. A theoretical introduction and simulation results for each phenomenon will be shown. Due to the simulation characteristics, this GUI can be a very good non-formal learning resource.

  8. Image encryption using polarized light encoding and amplitude and phase truncation in the Fresnel domain.

    PubMed

    Rajput, Sudheesh K; Nishchal, Naveen K

    2013-06-20

    In this paper, an image encryption scheme based on polarized light encoding and a phase-truncation approach in the Fresnel transform domain is proposed. The phase-truncated data obtained by an asymmetric cryptosystem is encrypted and decrypted by using the concept of the Stokes-Mueller formalism. Image encryption based on polarization of light using Stokes-Mueller formalism has the main advantage over Jones vector formalism that it manipulates only intensity information, which is measurable. Thus any intensity information can be encrypted and decrypted using this scheme. The proposed method offers several advantages: (1) a lens-free setup, (2) flexibility in the encryption key design, (3) use of asymmetric keys, and (4) immunity against special attack. We present numerical simulation results for gray-scale and color images in support of the proposed security scheme. The performance measurement parameters relative error and correlation coefficient have been calculated to check the effectiveness of the scheme.

  9. Polarization maintaining fiber magnetic sensor based on the digital phase generated carrier technology

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Meng, Zhou; Hu, Zhengliang; Yang, Huayong; Song, Zhangqi; Hu, Yongming

    2008-12-01

    A polarization maintaining fiber (PMF) magnetic field sensor based on a digital phase generated carrier (PGC) technology is presented. A magnetic sensor constructed with two magnetostrictive strips attached on the sensing fiber is joined in the sensing arm of a fiber Michelson interferometer. The fiber optic interferometric system is made of all PMF, which inhibits the polarization-induced signal fading. The light source is a fiber laser which can be modulated directly. The PGC metnod is used to demodulate magnetic field signal avoiding phase induced interferometric signal fading, and ensure the sensing partto be all fiber structure. A fiber optic magnetic field sensor with appreciate size for the fiber optic hydrophone towed array is obtained, which can be used to sense the enviromental magnetic field along the sensing direction.This sensor is a good choice for the directional angle measurement through sensing the Earth magnetic field in the array shape measurement of a fiber optic hydrophone towed array.

  10. Intermetallic Nanocrystals: Syntheses and Catalytic Applications.

    PubMed

    Yan, Yucong; Du, Jingshan S; Gilroy, Kyle D; Yang, Deren; Xia, Younan; Zhang, Hui

    2017-02-24

    At the forefront of nanochemistry, there exists a research endeavor centered around intermetallic nanocrystals, which are unique in terms of long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure. In contrast to alloy nanocrystals with no elemental ordering, it is challenging to synthesize intermetallic nanocrystals with a tight control over their size and shape. Here, recent progress in the synthesis of intermetallic nanocrystals with controllable sizes and well-defined shapes is highlighted. A simple analysis and some insights key to the selection of experimental conditions for generating intermetallic nanocrystals are presented, followed by examples to highlight the viable use of intermetallic nanocrystals as electrocatalysts or catalysts for various reactions, with a focus on the enhanced performance relative to their alloy counterparts that lack elemental ordering. Within the conclusion, perspectives on future developments in the context of synthetic control, structure-property relationships, and applications are discussed.

  11. Phase of the quantum harmonic oscillator with applications to optical polarization

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1993-01-01

    The phase of the quantum harmonic oscillator, the temporal distribution of a particle in a square-well potential, and a quantum theory of angles are derived from a general theory of complementarity. Schwinger's harmonic oscillator model of angular momenta is modified for the case of photons. Angular distributions for systems of identical and distinguishable particles are discussed. Unitary and antiunitary time reversal operators are then presented and applied to optical polarization states in birefringent media.

  12. Bright Phase-Stable Broadband Fiber-Based Source of Polarization-Entangled Photon Pairs

    DTIC Science & Technology

    2007-10-24

    distribution 2, and quantum - state teleportation 3. For example, it is now well known that two parties, each sharing half of an entangled photon pair...FUNDING NUMBERS Bright Phase-Stable Broadband Fiber-Based Source of MURI Center for Photonic Quantum Information Systems: ARO/ARDA Program Polarization...wide range of quantum -information applications. 14. SUBJECT TERMS 15. NUMBER OF PAGES single photon source, microstructure fiber, photon correlation

  13. Unscented Kalman filters for polarization state tracking and phase noise mitigation.

    PubMed

    Jignesh, Jokhakar; Corcoran, Bill; Zhu, Chen; Lowery, Arthur

    2016-09-19

    Simultaneous polarization and phase noise tracking and compensation is proposed based on an unscented Kalman filter (UKF). We experimentally demonstrate the tracking under noise-loading and after 800-km single-mode fiber transmission with 20-Gbaud QPSK and 16-QAM signals. These experiments show that the proposed UKF outperforms both conventional blind tracing algorithms and a previously proposed extended Kalman filter, at the cost of higher complexity. Additionally, we propose and test modified Kalman filter algorithms to reduce computational complexity.

  14. Layered Structures and Disordered Polyanionic Nets in the Cation-Poor Polar Intermetallics CsAu 1.4 Ga 2.8 and CsAu 2 Ga 2.6

    SciTech Connect

    Smetana, Volodymyr; Steinberg, Simon; Mudring, Anja-Verena

    2016-12-27

    Gold intermetallics are known for their unusual structures and bonding patterns. Two new compounds have been discovered in the cation-poor part of the Cs–Au–Ga system. We obtained both compounds directly by heating the elements at elevated temperatures. Structure determinations based on single-crystal X-ray diffraction analyses revealed two structurally and compositionally related formations: CsAu1.4Ga2.8 (I) and CsAu2Ga2.6 (II) crystallize in their own structure types (I: R$\\bar{3}$, a = 11.160(2) Å, c = 21.706(4) Å, Z = 18; II: R$\\bar{3}$, a = 11.106(1) Å, Å, c = 77.243(9) Å, Z = 54) and contain hexagonal cationic layers of cesium. Furthermore, this is a unique structural motif, which has never been observed for the other (lighter) alkali metals in combination with Au and post transition elements. The polyanionic part is characterized in contrast by Au/Ga tetrahedral stars, a structural feature that is characteristic for light alkali metal representatives, and disordered sites with mixed Au/Ga occupancies that occur in both structures with a more significant disorder in the polyanionic component of CsAu2Ga2.6. Examinations of the electronic band structure for a model approximating the composition of CsAu1.4Ga2.8 have been completed using density-functional-theory-based methods and reveal a deep pseudogap at EF. Bonding analysis by evaluating the crystal orbital Hamilton populations show dominant heteroatomic Au–Ga bonds and only a negligible contribution from Cs pairs.

  15. Layered Structures and Disordered Polyanionic Nets in the Cation-Poor Polar Intermetallics CsAu 1.4 Ga 2.8 and CsAu 2 Ga 2.6

    DOE PAGES

    Smetana, Volodymyr; Steinberg, Simon; Mudring, Anja-Verena

    2016-12-27

    Gold intermetallics are known for their unusual structures and bonding patterns. Two new compounds have been discovered in the cation-poor part of the Cs–Au–Ga system. We obtained both compounds directly by heating the elements at elevated temperatures. Structure determinations based on single-crystal X-ray diffraction analyses revealed two structurally and compositionally related formations: CsAu1.4Ga2.8 (I) and CsAu2Ga2.6 (II) crystallize in their own structure types (I: Rmore » $$\\bar{3}$$, a = 11.160(2) Å, c = 21.706(4) Å, Z = 18; II: R$$\\bar{3}$$, a = 11.106(1) Å, Å, c = 77.243(9) Å, Z = 54) and contain hexagonal cationic layers of cesium. Furthermore, this is a unique structural motif, which has never been observed for the other (lighter) alkali metals in combination with Au and post transition elements. The polyanionic part is characterized in contrast by Au/Ga tetrahedral stars, a structural feature that is characteristic for light alkali metal representatives, and disordered sites with mixed Au/Ga occupancies that occur in both structures with a more significant disorder in the polyanionic component of CsAu2Ga2.6. Examinations of the electronic band structure for a model approximating the composition of CsAu1.4Ga2.8 have been completed using density-functional-theory-based methods and reveal a deep pseudogap at EF. Bonding analysis by evaluating the crystal orbital Hamilton populations show dominant heteroatomic Au–Ga bonds and only a negligible contribution from Cs pairs.« less

  16. Energy exchange between orthogonally polarized waves by cascaded quasi-phase-matched processes

    NASA Astrophysics Data System (ADS)

    Johnston, B. F.; Dekker, P.; Saltiel, S. M.; Withford, M. J.; Kivshar, Y. S.

    2008-01-01

    By identifying appropriate quasi-phase-matching (QPM) conditions in z-cut congruent lithium niobate, we demonstrate simultaneous QPM of type-I (ooe) and higher order type-0 (eee) second-harmonic-generation, which share a common second harmonic wave. We demonstrate this experimentally at 1064nm, and show that cascading between these processes occurs. The cascading can result in energy exchange between the cross-polarized fundamentals, indicative of an equivalent 3rd order process. The nonlinear phase shifts and transfer functions resulting from this cascading are explored numerically.

  17. Phase Diagram of Two-Dimensional Polar Condensates in a Magnetic Field

    SciTech Connect

    James, A. J. A.; Lamacraft, A.

    2011-04-08

    Spin-1 condensates in the polar (antiferromagnetic) phase in two dimensions are shown to undergo a transition of the Ising type, in addition to the expected Kosterlitz-Thouless (KT) transition of half-vortices, due to the quadratic Zeeman effect. We establish the phase diagram in terms of temperature and the strength of the Zeeman effect using Monte Carlo simulations. When the Zeeman effect is sufficiently strong, the Ising and KT transitions meet. For very strong Zeeman field the remaining transition is of the familiar integer KT type.

  18. Systematics of Mössbauer hyperfine parameters in Np intermetallics

    NASA Astrophysics Data System (ADS)

    Kalvius, G. M.; Gal, J.; Asch, L.; Potzel, W.

    1992-05-01

    Data for intermetallic compounds of neptunium obtained with the 60 keV Mössbauer resonance of237Np are reviewed. Measurements of temperature, pressure and field dependencies are available. The main questions addressed are: (a) the degree of delocalization of 5f-electrons, (b) the formal charge state of Np, and (c) the influence of the ligand on the neptunium electronic structure. For this purpose, we present an evaluation of systematic behavior concerning mainly the hyperfine field and isomer shift in the cubic Laves phase materials NpX2, the NaCl-type monochalcogenides and monopnictides, and intermetallics with AuCu3 and ThCr2Si2 structures. Analogies to corresponding rare-earth compounds will be pointed out.

  19. Theoretical energy release of thermites, intermetallics, and combustible metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1998-06-01

    Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, the authors review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  20. Superplastic ceramics and intermetallics and their potential applications

    SciTech Connect

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al{sub 2}O{sub 3} Hydroxyapatite, {beta}-spodumene glass ceramics, Al{sub 2}0{sub 3}-YTZP two-phase composites, SiC-Si{sub 3}N{sub 4} and Fe-Fe{sub 3}C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni{sub 3}Al and Ni{sub 3}Si) and titanium-base intermetallics (TiAl and T1{sub 3}Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application.

  1. Sonochemical formation of intermetallic coatings

    SciTech Connect

    Sweet, J.D.; Casadonte, D.J. Jr.

    1994-11-01

    An energy-dispersive X-ray (EDX) study of the agglomerates produced during the sonication of a series of mixed-metal powders in decane indicates that metal particles are both fused by the action of ultrasound and develop coatings which are intermetallic in nature. The principal mechanism of these effects is believed to be interparticle collision caused by the rapid movement of particles of less than 50 {mu}m diameter which are propelled by shockwaves generated at cavitation sites. By examination of mixed-metal systems including Ni/Co, Al/Ni, Al/Co, Ni/Mg, and Cu/Mo with substantially different tribological characteristics, it has been determined that the coatings are generated by both adhesive wear and direct impact. The fusion of Cu and Mo is particularly intriguing, as these two metals are immiscible below 1000{degrees}C. This indicates the enormous impact temperatures produced in sonically induced collisions. The mechanisms of intermetallic coatings produced via ultrasound are discussed. 26 refs., 4 figs.

  2. Polarization induced Z2 and Chern topological phases in a periodically driving field

    NASA Astrophysics Data System (ADS)

    Pi, Shu-Ting; Savrasov, Sergey

    2016-03-01

    Z2 and Chern topological phases such as newly discovered quantum spin Hall and original quantum Hall states hardly both co–exist in a single material due to their contradictory requirement on the time–reversal symmetry (TRS). We show that although the TRS is broken in systems with a periodically driving field, an effective TRS can still be defined provided the ac–field is linearly polarized or certain other conditions are satisfied. The controllable TRS provides us a route to manipulate contradictory phases by tuning the polarization. To demonstrate the idea, we consider a tight-binding model that is relevant to several monolayered materials as a benchmark system. Our calculation shows not only topological Z2 to Chern phase transition occurs but rich Chern phases are also observed. In addition, we also discussed the realization of our proposal in real materials, such as spin-orbit coupled graphene and crystal Bismuth. This opens the possibility of manipulating various topological phases in a single material and can be a promising approach to engineer new electronic states of matter.

  3. Electrochemical properties of the passive film on bulk Zr-Fe-Cr intermetallic fabricated by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Bai, Yakui; Ling, Yunhan; Lai, Wensheng; Xing, Shupei; Ma, Wen

    2016-12-01

    Although Zr-based second phase particles (SPPs) are important factors influencing corrosion resistance of zircaloy cladding materials, the corrosion behavior of SPPs has not been investigated by means of electrochemical method so far. In order to clarify the role of SPPs commonly existed in zircaloy, bulk Zr-based intermetallics were firstly fabricated by spark plasma sintering (SPS) at temperatures 1373 K and an applied pressure of 60 MPa in this work. Both the natural passive film on surface and oxidation behavior of intermetallic has been investigated in this work. X-ray diffraction (XRD) pattern showed that as-prepared intermetallic of crystal structure belongs to Laves phase with AB2 type. Electrochemical measurement of passive film on surface of bulk Zr-based intermetallic exhibited significant difference with that of zirconium. Potentiodynamic measurements results revealed that intermetallic exhibited higher corrosion potential and lower corrosion current density than that of pure zirconium, implying that Zr-based second phase will act as cathode when they are included in zirconium matrix. Meanwhile, significant improvement of Zr-Fe-Cr intermetallic on the water chemistry corrosion resistance was demonstrated comparing with Zr-Fe and Zr-Cr binary intermetallics.

  4. A simple method for the synthesis of a polar-embedded and polar-endcapped reversed-phase chromatographic packing with low activity of residue silanols.

    PubMed

    Liu, Hai-yan; Li, Zhi-yong; Liu, Dan; Xue, Ying-wen; Shi, Zhi-guo

    2016-04-22

    Octadecyl bonded silica (ODS) is the most popular packing for reversed-phase chromatography. However, it generally demonstrates bad resolution for polar analytes because of the residue silanols and its poor stability in aqueous mobile phase. To address the problem, a new reversed-phase packing containing both polar-embedded and polar-endcapped moieties was proposed. It was prepared by a very simple method, in which the epoxide addition reaction of 3-glycidoxypropyltrimethoxysilane with 1-octadecanethiol proceeded simultaneously with the reaction of silane coupling onto silica particles. By controlling the molecular ratio of 3-glycidoxypropyltrimethoxysilane to 1-octadecanethiol higher than 1.0 (1.56 for the present study), both polar-embedded and polar-endcapped moieties were achieved onto the packing. The performance of the packing was evaluated in detail. The results demonstrated that neutral, acidic and basic analytes were well separated on the packing. The column efficiency for phenanthrene was 34,200 theoretical plates per meter. In addition, four nucleotides can be separated in 100% phosphate buffered saline solution with good reproducibility, which indicates the packing has good stability in aqueous mobile phase. Amitriptyline, a typical basic analytes, was eluted out with relatively symmetric peak shape (asymmetry factor of 1.36), which implies that the packing has not suffered from the negative effect of residue silanols significantly. Good stability in buffer solution of pH ranging from 2.0 to 10.0 was also documented for the packing.

  5. Corrosion behavior of binary titanium aluminide intermetallics

    SciTech Connect

    Saffarian, H.M.; Gan, Q.; Hadkar, R.; Warren, G.W.

    1996-08-01

    The corrosion behavior of arc-melted binary titanium aluminide intermetallics TiAl, Ti{sub 2}Al, and TiAl{sub 3} in aqueous sodium sulfate and sodium chloride solutions was measured and compared to that of pure Ti and Al. Effects of electrolyte composition (e.g., sulfate [0.25 M SO{sub 4}{sup 2}{sup {minus}}], chloride [0.1 to 1.0 M Cl{sup {minus}}], and pH [3 to 10]) were examined. Anodic polarization of titanium aluminides in aqueous SO{sub 4}{sup 2}{sup {minus}} solutions was similar (showing passive behavior), but no pitting or pitting potential (E{sub pit}) was observed. In aqueous NaCl, however, titanium aluminides were susceptible to pitting, and E{sub pit} decreased with increasing Al content (i.e., Ti{sub 3}Al had the highest E{sub pit} and, therefore, a greater resistance to pitting, followed by TiAl and TiAl{sub 3}). For TiAl, E{sub pit} was slightly dependent upon pH or Cl{sup {minus}} concentration. Pit morphology and E{sub pit} values were quite different for TiAl compared to Ti{sub 3}Al. TiAl showed numerous small pits, whereas Ti{sub 3}Al exhibited fewer but larger and deeper pits. The larger pit density for TiAl was associated with Al-rich interdendrite regions. One interesting feature of the anodic polarization curves for Ti{sub 3}Al was a small anodic peak frequently observed at {approximately}1.4 V{sub SCE} to 1.8 V{sub SCE}. Results suggested this peak was associated with pit initiation, since pitting initiated concurrently with the peak or immediately afterward.

  6. Electron Density Determination, Bonding and Properties of Tetragonal Ferromagnetic Intermetallics

    SciTech Connect

    Wiezorek, Jorg

    2016-09-01

    The project developed quantitative convergent-beam electron diffraction (QCBED) methods by energy-filtered transmission electron microscopy (EFTEM) and used them in combination with density functional theory (DFT) calculations to study the electron density distribution in metallic and intermetallic phases with different cubic and non-cubic crystal structures that comprise elements with d-electron shells. The experimental methods developed here focus on the bonding charge distribution as one of the quantum mechanical characteristics central for understanding of intrinsic properties and validation of DFT calculations. Multiple structure and temperature factors have been measured simultaneously from nano-scale volumes of high-quality crystal with sufficient accuracy and precision for comparison with electron density distribution calculations by DFT. The often anisotropic temperature factors for the different atoms and atom sites in chemically ordered phases can differ significantly from those known for relevant pure element crystals due to bonding effects. Thus they have been measured from the same crystal volumes from which the structure factors have been determined. The ferromagnetic ordered intermetallic phases FePd and FePt are selected as model systems for 3d-4d and 3d-5d electron interactions, while the intermetallic phases NiAl and TiAl are used to probe 3d-3p electron interactions. Additionally, pure transition metal elements with d-electrons have been studied. FCC metals exhibit well defined delocalized bonding charge in tetrahedral sites, while less directional, more distributed bonding charge attains in BCC metals. Agreement between DFT calculated and QCBED results degrades as d-electron levels fill in the elements, and for intermetallics as d-d interactions become prominent over p-d interactions. Utilizing the LDA+U approach enabled inclusion of onsite Coulomb-repulsion effects in DFT calculations, which can afford improved agreements with QCBED results

  7. Na-Au intermetallic compounds formed under high pressure at room temperature

    NASA Astrophysics Data System (ADS)

    Takemura, K.; Fujihisa, H.

    2011-07-01

    High-pressure powder x-ray diffraction experiments have revealed that sodium and gold react at room temperature and form Na-Au intermetallic compounds under high pressure. We have identified four intermetallic phases up to 60 GPa. The first phase (phase I) is the known Na2Au with the tetragonal CuAl2-type structure. It changed to the second phase (phase II) at ˜0.8 GPa, which has the composition Na3Au with the trigonal Cu3As-type or hexagonal Cu3P-type structure. Phase II further transformed to phase III at 3.6 GPa. Phase III has the same composition, Na3Au, with the cubic BiF3-type structure. Finally, phase III changed to phase IV at ˜54 GPa. Phase IV gives broad diffraction peaks, indicating large structural disorder.

  8. Field-driven mesoscale phase transition in polarized colloids in microgravity

    NASA Astrophysics Data System (ADS)

    Khusid, Boris; Elele, Ezinwa

    2014-11-01

    An unexpected phase transition in a polarized suspension was reported by Kumar, Khusid, Acrivos, PRL 95, 258301, 2005 and Agarwal, Yethiraj, PRL 102, 198301, 2009. Following the field application, particles aggregated head-to-tail into chains that bridged the interelectrode gap and then formed a cellular pattern, in which large-scale particle-free voids were enclosed by particle-rich thin walls. Surprisingly, the size of particle-free domains scales linearly with the gap thickness but is insensitive to the particle size and the field strength and frequency. Cellular structures were not observed in simulations of equilibrium in a polarized suspension (Richardi, Weis, J. Chem. Phys. 135, 124502, 2011; Almudallal, Saika-Voivod, PRE 84, 011402, 2011). Nonequilibrium simulations (Park, Saintillan, PRE 83, 041409, 2011) showed cellular-like structures but at a particle concentration much higher than in experiments. A requirement for precise matching of densities between particles and a fluid to avoid gravity effects limits terrestrial experiments to negatively polarized particles. We will present data on positively polarized non-buoyancy-matched particles and the development of experiments in the International Space Station needed to evaluate gravity contribution. Supported by NASA's Physical Science Research Program, NNX13AQ53G.

  9. Coexistence of probe conformations in lipid phases-a polarized fluorescence microspectroscopy study.

    PubMed

    Urbančič, Iztok; Ljubetič, Ajasja; Arsov, Zoran; Strancar, Janez

    2013-08-20

    Several well-established fluorescence methods depend on environment-sensitive probes that report about molecular properties of their local environment. For reliable interpretation of experiments, careful characterization of probes' behavior is required. In this study, bleaching-corrected polarized fluorescence microspectroscopy with nanometer spectral peak position resolution was applied to characterize conformations of two alkyl chain-labeled 7-nitro-2-1,3-benzoxadiazol-4-yl phospholipids in three model membranes, representing the three main lipid phases. The combination of polarized and spectral detection revealed two main probe conformations with their preferential fluorophore dipole orientations roughly parallel and perpendicular to membrane normal. Their peak positions were separated by 2-6 nm because of different local polarities and depended on lipid environment. The relative populations of conformations, estimated by a numerical model, indicated a specific sensitivity of the two probes to molecular packing with cholesterol. The coexistence of probe conformations could be further exploited to investigate membrane organization below microscopy spatial resolution, such as lipid rafts. With the addition of polarized excitation or detection to any environment-sensitive fluorescence imaging technique, the conformational analysis can be directly applied to explore local membrane complexity.

  10. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  11. Dipole-Oriented Molecular Solids Can Undergo a Phase Change and Still Maintain Electrical Polarization

    SciTech Connect

    Cassidy, Andrew; Jørgensen, Mads R. V.; Rosu-Finsen, Alexander; Lasne, Jérôme; Jørgensen, Jakob H.; Glavic, Artur; Lauter, Valeria; Iversen, Bo B.; McCoustra, Martin R. S.; Field, David

    2016-10-02

    It has recently been demonstrated that nanoscale molecular films can spontaneously assemble to self-generate intrinsic electric fields that can exceed 108 V/m. These electric fields originate from polarization charges in the material that arise because the films self-assemble to orient molecular dipole moments. This has been called the spontelectric effect. Such growth of spontaneously polarized layers of molecular solids has implications for our understanding of how intermolecular interactions dictate the structure of molecular materials used in a range of applications, for example, molecular semiconductors, sensors, and catalysts. In this paper, we present the first in situ structural characterization of a representative spontelectric solid, nitrous oxide. Infrared spectroscopy, temperature-programmed desorption, and neutron reflectivity measurements demonstrate that polarized films of nitrous oxide undergo a structural phase transformation upon heating above 48 K. A mean-field model can be used to describe quantitatively the magnitude of the spontaneously generated field as a function of film-growth temperature, and this model also recreates the phase change. Finally, this reinforces the spontelectric model as a means of describing long-range dipole–dipole interactions and points to a new type of ordering in molecular thin films.

  12. Enhanced ferroelectric polarization and possible morphotrophic phase boundary in PZT-based alloys

    SciTech Connect

    Parker, David S.; Singh, David; McGuire, Michael A.; Herklotz, Andreas; Ward, Thomas Zac

    2016-05-16

    We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr0.5Ti0.5O3) with BZnT (BiZn0.5Ti0.5O3) and BZnZr (BiZn0.5Zr0.5O3), focusing on atomic displacements, ferroelectric polarization, and elastic stability. From theory we find that the 75-25 PZT-BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c/a ratios. Elastic stability calculations find the structures to be essentially stable. Lastly, experiments indicate the feasibility of sample synthesis within this alloy system, although measurements do not find significant polarization, probably due to a large coercive field.

  13. Dipole-Oriented Molecular Solids Can Undergo a Phase Change and Still Maintain Electrical Polarization

    DOE PAGES

    Cassidy, Andrew; Jørgensen, Mads R. V.; Rosu-Finsen, Alexander; ...

    2016-10-02

    It has recently been demonstrated that nanoscale molecular films can spontaneously assemble to self-generate intrinsic electric fields that can exceed 108 V/m. These electric fields originate from polarization charges in the material that arise because the films self-assemble to orient molecular dipole moments. This has been called the spontelectric effect. Such growth of spontaneously polarized layers of molecular solids has implications for our understanding of how intermolecular interactions dictate the structure of molecular materials used in a range of applications, for example, molecular semiconductors, sensors, and catalysts. In this paper, we present the first in situ structural characterization of amore » representative spontelectric solid, nitrous oxide. Infrared spectroscopy, temperature-programmed desorption, and neutron reflectivity measurements demonstrate that polarized films of nitrous oxide undergo a structural phase transformation upon heating above 48 K. A mean-field model can be used to describe quantitatively the magnitude of the spontaneously generated field as a function of film-growth temperature, and this model also recreates the phase change. Finally, this reinforces the spontelectric model as a means of describing long-range dipole–dipole interactions and points to a new type of ordering in molecular thin films.« less

  14. Enhanced ferroelectric polarization and possible morphotrophic phase boundary in PZT-based alloys

    DOE PAGES

    Parker, David S.; Singh, David; McGuire, Michael A.; ...

    2016-05-16

    We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr0.5Ti0.5O3) with BZnT (BiZn0.5Ti0.5O3) and BZnZr (BiZn0.5Zr0.5O3), focusing on atomic displacements, ferroelectric polarization, and elastic stability. From theory we find that the 75-25 PZT-BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c/a ratios. Elastic stability calculations find the structures to be essentially stable. Lastly, experiments indicate the feasibility of sample synthesismore » within this alloy system, although measurements do not find significant polarization, probably due to a large coercive field.« less

  15. Extrinsic Fabry-Perot interferometric sensor using a polarization-switched phase interrogator

    NASA Astrophysics Data System (ADS)

    Xia, Ji; Wang, Fuyin; Yang, Yangyang; Xiong, Shuidong; Luo, Hong; Wei, Wenjian

    2016-10-01

    In this paper, a phase variation tracking method for the extrinsic Fabry-Perot interferometric (EFPI) voice sensing system is designed and experimentally demonstrated through a polarization-switched unit based on the combination of polarization-maintaining fiber Bragg grating (PMFBG). The measurements at two operation wavelengths are firstly achieved in one total-optical path, which eliminates the imbalance of optical power from the external disturbances, optical source fluctuation, different detecting response of photoelectric detector and different background noise. Two operation wavelengths reflected from a PMFBG for interference phase tracking are switched via an electro-optic modulator at a high switching speed of 10 kHz. Besides, an ellipse fitting-differential cross multiplication (EF-DCM) algorithm is proposed and illustrated for interrogating the variation of EFPI cavity gap length of the EFPI voice sensor effectively. Preliminary experimental results have proven that the polarization-switched system based on the EF-DCM algorithm could find potential applications in the fields of marine acoustic, medical science measurements, etc.

  16. A Laboratory Study on the Phase Transition for Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.

    1997-01-01

    The nucleation and growth of different phases of simulated polar stratospheric cloud (PSC) particles were investigated in the laboratory. Solutions and mixtures of solutions at concentrations 1 to 5 m (molality) of ammonium sulfate, ammonium bisulfate, sodium chloride, sulfuric acid, and nitric acid were supercooled to prescribed temperatures below their equilibrium melting point. These solutions were contained in small diameter glass tubing of volumes ranging from 2.6 to 0.04 ml. Samples were nucleated by insertion of an ice crystal, or in some cases by a liquid nitrogen cooled wire. Crystallization velocities were determined by timing the crystal growth front passages along the glass tubing. Solution mixtures containing aircraft exhaust (soot) were also examined. Crystallization rates increased as deltaT2, where deltaT is the supercooling for weak solutions (2 m or less). The higher concentrated solutions (greater than 3 m) showed rates significantly less than deltaT2. This reduced rate suggested an onset of a glass phase. Results were applied to the nucleation of highly concentrated solutions at various stages of polar stratospheric cloud development within the polar stratosphere.

  17. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  18. Existence of polar switching in the nematic and orthogonal smectic phases in novel four-ring bent-core compounds

    NASA Astrophysics Data System (ADS)

    Turlapati, Srikanth; Khan, Raj Kumar; Ghosh, Sharmistha; Tadapatri, Pramod; Pratibha, R.; Rao, Nandiraju V. S.

    2016-11-01

    Bent-core liquid crystals have set the first example of forming polar superstructures from achiral molecules. Polar switching studies in smectic phases have revealed several exciting sub-phases which have never been observed in rod-like liquid crystals. In this study, mesomorphic and polar switching properties of three bent-core compounds belonging to a homologous series have been investigated using polarizing optical microscopy (POM), differential scanning calorimetry, XRD studies, electro-optics, and dielectric spectroscopy. These achiral, unsymmetrical four-ring bent-core liquid crystals with a polar fluoro substituent at one end and n-alkoxy chain at the other terminal end possess azo, ester, and imine linkages between the four phenyl rings and different lateral substituents. The compounds 16-F and 18-F exhibit orthogonal smectic phase with antiferroelectric polar order, and additionally, the compound 16-F exhibits a short range nematic phase with a polar order. The compound 7-F exhibits broad enantiotropic nematic mesomorphism without appearance of any smectic ordering at low temperature. The smectic and nematic phases were identified by their optical textures observed by POM. Distinct polarization current peaks under triangular wave voltage are observed for all the compounds in the entire mesophase range. Relaxation phenomena corresponding to polar associations of the molecules are observed in dielectric spectroscopy. The cybotactic nature of the nematic phase is established by the XRD and electro-optic studies of 16-F. Although it is rather difficult to form mesophase when the number of aromatic rings is reduced from five, we have successfully demonstrated the bent-core compounds with four-ring which exhibit orthogonal smectic phases as well as nematic mesomorphism with unusual cybotactic signature.

  19. Measuring CP-violating phases through studying the polarization of the final particles in μ → eee

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman

    2009-06-01

    It is shown that the polarizations of the final particles in μ+ →e+e-e+ provide us with information on the CP-violating phases of the effective Lagrangian leading to this Lepton Flavor Violating (LFV) decay.

  20. Phase dynamics in vertical-cavity surface-emitting lasers with delayed optical feedback and cross-polarized reinjection

    NASA Astrophysics Data System (ADS)

    Javaloyes, J.; Marconi, M.; Giudici, M.

    2014-08-01

    We study theoretically the nonlinear polarization dynamics of vertical-cavity surface-emitting lasers in the presence of an external cavity providing delayed optical feedback and cross-polarized reinjection. We show that, far from the laser threshold, the dynamics remains confined close to the equatorial plane of a Poincaré sphere with a fixed radius. It entails that the evolution of the system is described by two phase variables: the orientation phase of the quasilinear polarization and the optical phase of the field. We explore the complex modal structure given by the double reinjection configuration and how it evolves between the cases of single cross-polarized reinjection and single optical feedback, hence disclosing the relationship with the Lang-Kobayashi model. We also reinterpret the square-wave switching observed by J. Mulet et al. [Phys. Rev. A 76, 043801 (2007), 10.1103/PhysRevA.76.043801] in terms of phase kinks.

  1. Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current

    SciTech Connect

    Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu

    2015-08-24

    We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.

  2. A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling

    NASA Astrophysics Data System (ADS)

    Wu, Chenjun; Cheng, Yongzhi; Wang, Wenying; He, Bo; Gong, Rongzhou

    2016-02-01

    A polarization-independent phase-gradient metasurface (PGM) is proposed, and theoretically as well as experimentally investigated, for realizing spoof surface plasmon polariton (SPP) coupling. The designed PGM is a periodic array comprising a dielectric substrate sandwiched between a metallic split cross structure and a continuous metallic film. The numerical results for the designed PGM indicate that normally incident electromagnetic waves can be efficiently coupled into spoof SPPs, since the additional wave vector generated by the designed PGM is greater than that of the incident waves. Both simulations and experiments demonstrate that the designed PGM, as a spoof SPP coupler, is insensitive to polarization, and highly efficient under normally incident X-band radiation.

  3. Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current

    NASA Astrophysics Data System (ADS)

    Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu

    2015-08-01

    We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.

  4. Hierarchical Phased Array Antenna Focal Plane for Cosmic Microwave Background Polarization and Sub-mm Observations

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    We propose to develop planar-antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization, log-periodic antenna with a 5:1 bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. We propose to develop an hierarchical phased array of our basic pixel type that gives optimal mapping speed (sensitivity) over a much broader range of frequencies. The advantage of this combination of an intrinsically broadband pixel with hierarchical phase arraying include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands compared to focal-plane designs using conventional single-color pixels. These advantages have the potential to greatly reduce cost and/or increase performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization, a wide frequency range of about 30 to 400 GHz is required to subtract galactic foregrounds. As an example, the multichroic architecture we propose could reduce the focal plane mass of the EPIC-IM CMB polarization mission study concept by a factor of 4, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR groundbased CMB polarization experiment which is now operating in Chile. That experiment uses a single-band planar antenna that gives excellent beam properties and optical efficiency. POLARBEAR recently succeeded in detecting gravitational lensing B-modes in the CMB polarization. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Pixels of this type are slated to be deployed on the ground in POLARBEAR and SPT-3G and proposed to be used on a balloon by EBEX

  5. Ultracold Polar Molecules: New Phases of Matter for Quantum Information and Quantum Control

    DTIC Science & Technology

    2013-06-01

    Devil’s staircase” where Mott solids appear at rational fillings of the lattice.   Studied 1D  fermionic  and bosonic gases with repulsive power‐law...superfluid transition in single‐component  fermionic  gas in a trap with dipole  moments polarized in perpendicular layers, finding that many‐body effects...Zoller, Bilayer superfluidity of fermionic polar molecules: Many‐Body effects, Phys. Rev. A 83, 043602 (2011).  2012 Phase   1) N. Henkel, F. Cinti, P

  6. Apparatus and method for phase fronts based on superluminal polarization current

    DOEpatents

    Singleton, John [Los Alamos, NM; Ardavan, Houshang [Cambridge, GB; Ardavan, Arzhang [Cambridge, GB

    2012-02-28

    An apparatus and method for a radiation source involving phase fronts emanating from an accelerated, oscillating polarization current whose distribution pattern moves superluminally (that is, faster than light in vacuo). Theoretical predictions and experimental measurements using an existing prototype superluminal source show that the phase fronts from such a source can be made to be very complex. Consequently, it will be very difficult for an aircraft imaged by such a radiation to detect where this radiation has come from. Moreover, the complexity of the phase fronts makes it almost impossible for electronics on an aircraft to synthesize a rogue reflection. A simple directional antenna and timing system should, on the other hand, be sufficient for the radar operators to locate the aircraft, given knowledge of their own source's speed and modulation pattern.

  7. Environmental Effects in Advanced Intermetallics

    SciTech Connect

    Liu, C.T.

    1998-11-24

    This paper provides a comprehensive review of environmental embrittlement in iron and nickel aluminizes. The embrittlement involves the interaction of these intermetallics with moisture in air and generation of atomic hydrogen, resulting in hydrogen-induced embrittlement at ambient temperatures. Environmental embrittlement promotes brittle grain-boundary fracture in Ni{sub 3}Al alloys but brittle cleavage fracture in Fe{sub 3}Al-FeAl alloys. The embrittlement strongly depends on strain rate, with tensile-ductility increase with increasing strain rate. It has been demonstrated that environmental embrittlement can be alleviated by alloying additions, surface modifications, and control of grain size and shape. Boron tends to segregate strongly to grain boundaries and is most effective in suppressing environmental embrittlement in Ni{sub 3}Al alloys. The mechanistic understanding of alloy effects and environmental embrittlement has led to the development of nickel and iron aluminide alloys with improved properties for structural use at elevated temperatures in hostile environments.

  8. Three-dimensional displacement measurement for diffuse object using phase-shifting digital holography with polarization imaging camera.

    PubMed

    Kiire, Tomohiro; Nakadate, Suezou; Shibuya, Masato; Yatagai, Toyohiko

    2011-12-01

    The amount of displacement of a diffused object can be measured using phase-shifting digital holography with a polarization imaging camera. Four digital holograms in quadrature are extracted from the polarization imaging camera and used to calculate the phase hologram. Two Fourier transforms of the phase holograms are calculated before and after the displacement of the object. A phase slope is subsequently obtained from the phase distribution of division between the two Fourier transforms. The slope of the phase distribution is proportional to the lateral displacement of the object. The sensitivity is less than one pixel size in the lateral direction of the movement. The longitudinal component of the displacement can be also measured separately from the intercept on the phase axis along the phase distribution of the division between two Fourier transforms of the phase holograms.

  9. Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies

    PubMed Central

    Cao, Tun; Wei, Chen-wei; Simpson, Robert E.; Zhang, Lei; Cryan, Martin J.

    2014-01-01

    We report a broadband polarization-independent perfect absorber with wide-angle near unity absorbance in the visible regime. Our structure is composed of an array of thin Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) layer. It shows that the near perfect absorbance is flat and broad over a wide-angle incidence up to 80° for either transverse electric or magnetic polarization due to a high imaginary part of the dielectric permittivity of Ge2Sb2Te5. The electric field, magnetic field and current distributions in the absorber are investigated to explain the physical origin of the absorbance. Moreover, we carried out numerical simulations to investigate the temporal variation of temperature in the Ge2Sb2Te5 layer and to show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 433 K (amorphous-to-crystalline phase transition temperature) in just 0.37 ns with a low light intensity of 95 nW/μm2, owing to the enhanced broadband light absorbance through strong plasmonic resonances in the absorber. The proposed phase-change metamaterial provides a simple way to realize a broadband perfect absorber in the visible and near-infrared (NIR) regions and is important for a number of applications including thermally controlled photonic devices, solar energy conversion and optical data storage. PMID:24492415

  10. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies.

    PubMed

    Cao, Tun; Wei, Chen-wei; Simpson, Robert E; Zhang, Lei; Cryan, Martin J

    2014-02-04

    We report a broadband polarization-independent perfect absorber with wide-angle near unity absorbance in the visible regime. Our structure is composed of an array of thin Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) layer. It shows that the near perfect absorbance is flat and broad over a wide-angle incidence up to 80° for either transverse electric or magnetic polarization due to a high imaginary part of the dielectric permittivity of Ge2Sb2Te5. The electric field, magnetic field and current distributions in the absorber are investigated to explain the physical origin of the absorbance. Moreover, we carried out numerical simulations to investigate the temporal variation of temperature in the Ge2Sb2Te5 layer and to show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 433 K (amorphous-to-crystalline phase transition temperature) in just 0.37 ns with a low light intensity of 95 nW/μm(2), owing to the enhanced broadband light absorbance through strong plasmonic resonances in the absorber. The proposed phase-change metamaterial provides a simple way to realize a broadband perfect absorber in the visible and near-infrared (NIR) regions and is important for a number of applications including thermally controlled photonic devices, solar energy conversion and optical data storage.

  11. Polarization state demodulation of channeled imaging spectropolarimeter by phase rearrangement calibration method

    NASA Astrophysics Data System (ADS)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Wei, Yutong

    2016-11-01

    The basic principle of channeled Fourier-transform imaging spectropolarimeter (CFTISP) is outlined. The two mainstream techniques existing for performing polarization state demodulation are analyzed, which show uncertainty that may not be suitable for CFTISP based on lateral shear interferometer. A modified demodulation method for Stokes parameters is described. The method separate the phase of the sign and the high-order retarders' retardations from the total phase acquired from the fast Fourier transform of the interferogram, which will not cause the amplitude error from the reference beam. Furthermore, the retardations and the residual phase error in each band introduced by instrument can be seen directly in this method. The effectiveness of this method is experimentally demonstrated with four known input states of polarization, and the results are satisfactory. The RMS error of each Stokes parameters is also presented, which demonstrates that the low spectral signal-to-noise ratio can increase the RMS error by nearly a factor of 2-5 for the individual Stokes parameters. The comparison of reconstructed results by four methods further demonstrates the effectiveness of the proposed method.

  12. Effect of poly(ethylene glycol) on phospholipid hydration and polarity of the external phase.

    PubMed

    Arnold, K; Pratsch, L; Gawrisch, K

    1983-02-09

    The hydration properties of phosphatidylcholine (PC)/water dispersions on the addition of poly(ethylene glycol) were studied by means of 2H-NMR. The quadrupole splittings and their temperature dependences correspond to measurements of PC/water dispersions at low water content. It is concluded that the bound water is partly extracted by poly(ethylene glycol) but the binding properties of the water in the inner hydration shell of about five water molecules are not changed. The ability of some phospholipid/water dispersions to undergo phase transitions to nonlamellar structures upon dehydration is discussed. Dipalmitoylphosphatidylcholine (DPPC) and egg phosphatidylcholine do not form nonlamellar structures on addition of purified poly(ethylene glycol), as was demonstrated by means of 31P-NMR. Poly(ethylene glycol) decreases the polarity of the aqueous phase and the partition of hydrophobic molecules between the membrane and the external phase is changed. This was demonstrated using the excimer fluorescence of pyrene in a ghost suspension. It is suggested that the changes in polarity and hydration on the addition of poly(ethylene glycol) can contribute to the alterations in the membrane surface observed under conditions of membrane contact and fusion.

  13. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  14. Cycle of phase, coherence and polarization singularities in Young's three-pinhole experiment.

    PubMed

    Pang, Xiaoyan; Gbur, Greg; Visser, Taco D

    2015-12-28

    It is now well-established that a variety of singularities can be characterized and observed in optical wavefields. It is also known that these phase singularities, polarization singularities and coherence singularities are physically related, but the exact nature of their relationship is still somewhat unclear. We show how a Young-type three-pinhole interference experiment can be used to create a continuous cycle of transformations between classes of singularities, often accompanied by topological reactions in which different singularities are created and annihilated. This arrangement serves to clarify the relationships between the different singularity types, and provides a simple tool for further exploration.

  15. Self-consistent relativistic random-phase approximation with vacuum polarization

    SciTech Connect

    Haga, A.; Toki, H.; Tamenaga, S.; Horikawa, Y.; Yadav, H.L.

    2005-09-01

    We present a theoretical formulation for the description of nuclear excitations within the framework of a relativistic random-phase approximation whereby the vacuum polarization arising from nucleon-antinucleon fields is duly accounted for. The vacuum contribution to the Lagrangian is explicitly described as extra new terms of interacting mesons by means of the derivative expansion of the effective action. It is shown that the self-consistent calculation yields zero eigenvalue for the spurious isoscalar-dipole state and also conserves the vector-current density.

  16. Circularly polarized carrier-envelope-phase stable attosecond pulse generation based on coherent undulator radiation.

    PubMed

    Tóth, Gy; Tibai, Z; Nagy-Csiha, Zs; Márton, Zs; Almási, G; Hebling, J

    2015-09-15

    In this Letter, we present a new method for generation of circularly polarized attosecond pulses. According to our calculations, shape-controlled, carrier-envelope-phase stable pulses of several hundred nanojoule energy could be produced by exploitation of the coherent undulator radiation of an electron bunch. Our calculations are based on an existing particle accelerator system (FLASH II in DESY, Germany). We investigated the energy dependence of the attosecond pulses on the energy of electrons and the parameters of the radiator undulator, which generate the electromagnetic radiation.

  17. Dispersion characterization of group birefringence in polarization-maintaining fiber using a Kerr phase-interrogator

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Baker, Chams; Bao, Xiaoyi

    2015-07-01

    We present a new approach to characterize dispersion of group birefringence in a long polarization-maintaining fiber (PMF). Two sinusoidal optical signals are respectively launched into fast and slow axes of a PMF under test. Wavelength dependent group-delay difference between two sinusoidal optical signals induced by group birefringence in the PMF is measured using a Kerr phase-interrogator, and dispersion of group birefringence is characterized from the group-delay difference. Measurements of wavelength dependent group birefringence and group birefringence dispersion for a 459.4-m Panda PMF are experimentally demonstrated.

  18. Study of polarization properties of fiber-optics probes with use of a binary phase plate.

    PubMed

    Alferov, S V; Khonina, S N; Karpeev, S V

    2014-04-01

    We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.

  19. Processing - Property Relationship in Advanced Intermetallics

    DTIC Science & Technology

    1994-07-01

    AD-A285 262 - IlE I !!III Illl iIII c.,. Processing- Property Relationship I in Advanced Intermetallics Final Report For Period March 4,1991 through...through 03-03-94 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Processing- Property Relationship in Advanced Intermetallics; 4. AUTHOR(S) D.A. Hardwick and P.L...2 M echanical Properties ......................................................................... 9 3 C

  20. Resonant ultrasound spectroscopy: Elastic properties of some intermetallic compounds

    SciTech Connect

    Chu, F.; Thoma, D.J.; He, Y.; Maloy, S.A.; Mitchell, T.E.

    1996-09-01

    A novel nondestructive evaluation method, resonant ultrasound spectroscopy (RUS), is reviewed with an emphasis upon defining the elastic properties of intermetallic phases. The applications and advantages of RUS as compared to other conventional elastic constant measurement methods are explained. RUS has been employed to measure the elastic properties of single crystal and/or polycrystalline intermetallics, such as Laves phases (C15 HfV{sub 2} and NbCr{sub 2}), Nb-modified titanium aluminides, and transition metal disilicides (C11{sub b} MoSi{sub 2}, C40 NbSi{sub 2} and TaSi{sub 2}). For Laves phases, the elastic properties of HfV{sub 2}-based C15 phases show various anomalies and those of C15 NbCr{sub 2} do not. For Nb-modified titanium aluminides, the elastic properties of O-phase alloys are investigated as a function of alloying content. For transition metal disilicides, single crystal elastic constants of MoSi{sub 2}, NbSi{sub 2}, and TaSi{sub 2} are obtained and compared. Based on the experimentally determined elastic properties, the characteristics of interatomic bonding in these materials are examined and the possible impact of the elastic properties on mechanical behavior is discussed.

  1. Polarization independent electro-optical waveguides with liquid crystals in isotropic phase

    NASA Astrophysics Data System (ADS)

    Costache, Florenta; Blasl, Martin; Bornhorst, Kirstin

    2015-02-01

    Electro-optically induced waveguides can be used in fiber optic networks for optical power control and the distribution of optical signals transmitted over optical fibers. Reliable operation is ensured with this type of waveguides due to their non-mechanical principle of operation. Their polarization dependent behavior caused by field-induced birefringence effects may limit however their practical applications. We report on a method to reduce the polarization dependent loss in electro-optically induced waveguides with a core made of liquid crystals in isotropic phase. The concept design enables a controlled adjustment of the electric field distribution, which is responsible for inducing and shaping the optical mode, by employing an optimized electrode arrangement. In this new waveguide structure, the TM and TE modes coexist spatially and are guided in a similar way. In order to demonstrate this concept, straight and bending waveguides in 1×1 and 1×2 light input to output configurations have been designed and fabricated. The electrode arrangement and single mode waveguide geometry were optimized using FEM simulations. Bulk silicon micromachining was used to fabricate these waveguides. In particular, the manufactured device consisted of two processed silicon substrates with a liquid crystal layer enclosed in between. Devices tested with varying driving voltage have revealed comparable transmitted power for both TE and TM modes. Very low polarization dependent losses over a more than 20 dB wide dynamic attenuation range have been obtained.

  2. Spin-polarized hydrogen and its isotopes: A rich class of quantum phases (Review Article)

    NASA Astrophysics Data System (ADS)

    Bešlić, I.; Vranješ Markić, L.; Boronat, J.

    2013-10-01

    We review the recent activity in the theoretical description of spin-polarized atomic hydrogen and its isotopes at very low temperatures. Spin-polarized hydrogen is the only system in nature that remains stable in the gas phase even in the zero temperature limit due to its small mass and weak interatomic interaction. Hydrogen and its heavier isotope tritium are bosons, the heavier mass of tritium producing a self-bound (liquid) system at zero temperature. The other isotope, deuterium, is a fermion with nuclear spin one making possible the study of three different quantum systems depending on the population of the three degenerate spin states. From the theoretical point of view, spin-polarized hydrogen is specially appealing because its interatomic potential is very accurately known making possible its precise quantum many-body study. The experimental study of atomic hydrogen has been very difficult due to its high recombination rate, but it finally led to its Bose-Einstein condensate state in 1998. Degeneracy has also been observed in thin films of hydrogen adsorbed on the 4He surface allowing for the possibility of observing the Berezinskii-Kosterlitz-Thouless superfluid transition.

  3. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering

    PubMed Central

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-01-01

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064

  4. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-10-01

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.

  5. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  6. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase.

    PubMed

    West, Caroline; Melin, Jodie; Ansouri, Hassna; Mengue Metogo, Maïly

    2017-04-07

    The mobile phases employed in current supercritical fluid chromatography (SFC) are usually composed of a mixture of pressurized carbon dioxide and a co-solvent. The co-solvent is most often an alcohol and may contain a third component in small proportions, called an additive (acid, base or salt). The polarity of such mobile phase compositions is here re-evaluated with a solvatochromic dye (Nile Red), particularly to assess the contribution of additives. It appears that additives, when employed in usual concentration range (0.1% or 20mM) do not modify the polarity in the immediate environment of the probe. In addition, the combination of carbon dioxide and an alcohol is known to form alkoxylcarbonic acid, supposedly conferring some acidic character to SFC mobile phases. Direct measurements of the apparent pH are impossible, but colour indicators of pH can be used to define the range of apparent pH provided by carbon dioxide-alcohol mixtures, with or without additives. Five colour indicators (Thymol Blue, Bromocresol Green, Methyl Red, Bromocresol Purple, and Bromothymol Blue) were selected to provide a wide range of aqueous pKa values (from 1.7 to 8.9). UV-vis absorption spectra measured in liquid phases of controlled pH were compared to those measured with a diode-array detector employed in SFC, with the help of chemometric methods. Based on these observations, it is concluded that the apparent pH range in carbon dioxide-methanol mobile phases is close to 5. Increasing the proportion of methanol (in the course of a gradient elution for instance) causes decreasing apparent pH. Strong acids can further decrease the apparent pH below 1.7; strong bases have little influence on the apparent pH, probably because, in this range of concentrations, they are titrated by alkoxylcarbonic acid or form ion pairs with alkoxycarbonate. However, bases and salts could stabilize the acidity in the course of gradient runs.

  7. Formation of Intermetallic Compounds During Explosive Welding

    NASA Astrophysics Data System (ADS)

    Greenberg, Bella A.; Ivanov, Mikhail A.; Pushkin, Mark S.; Inozemtsev, Alexei V.; Patselov, Alexander M.; Tankeyev, Anatoliy P.; Kuzmin, Sergey V.; Lysak, Vladimir I.

    2016-11-01

    Transition states between traditional, i.e., plain and wavy, shapes of the interface during explosive welding were studied. A sequence of the transition states was found for the studied copper-titanium and copper-tantalum joints. Some transition states are common for the joints under study, while others are only typical of the copper-titanium joints, due to sufficiently high solubility of original elements. A transition state has been found, during which cusps, even though they are solid phase, look like splashes on the water. The key role of these splashes is that they evidence the lower boundary of the `weldability window.' The study found certain self-organization processes of the cusps that cause them to turn into a quasi-wavy shape of the interface, and then, as the welding mode is intensified, into a wavy shape. The role of intermetallic compounds was analyzed, due to which a wave only consists of cusps in case mutual solubility of original metals is sufficiently high.

  8. A birefringent polarization modulator: Application to phase measurement in conoscopic interference patterns.

    PubMed

    Veiras, F E; Garea, M T; Perez, L I

    2016-04-01

    Conoscopic interferometry for crystal characterization is a very well-known technique with increasing applications in different fields of technology. The advantage of the scheme proposed here is the introduction of a polarization modulator that allows the recovery of the phase information contained in conoscopic interferograms. This represents a real advantage since the most relevant physical information of the sample under study is usually contained in the phase of the fringe pattern. Moreover, this technique works successfully even when there are no visible fringes. The setup employed is a simple conoscopic interferometer where the elements under study correspond to two birefringent crystal slabs and a commercial mica wave plate. It allows the crystals to be characterized and the wave plate retardance to be measured as a function of the angle of incidence. The modulator itself consists of a single tiltable crystal plate which, by means of phase shifting techniques, permits the recovery of a phase map for each sample. It is inexpensive and it can be easily calibrated, so it works with a wide range of phase shifting interferometry algorithms. We show that our scheme is easily adaptable to algorithms that require either a low or high amount of interferograms.

  9. Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator.

    PubMed

    Chen, Cihai; He, Chao; Zhu, Dan; Guo, Ronghui; Zhang, Fangzheng; Pan, Shilong

    2013-08-15

    A scheme to generate a flat optical frequency comb (OFC) with a fixed phase relationship between the comb lines is proposed and experimentally demonstrated based on a cascaded polarization modulator (PolM) and phase modulator. Because the PolM introduces more controllable parameters compared with the conventional intensity modulator, 9, 11, and 13 comb lines can be generated with relatively low RF powers, or 15, 17, and 19 comb lines can be obtained if high RF powers are applied. The experimentally generated 9, 11, and 13 OFCs have a flatness of 1, 1.3, and 2.1 dB, respectively. The scheme requires no DC bias to the modulators, no optical filter, and no frequency divider or multiplier, which is simple and stable.

  10. An experimental study of growth and phase change of polar stratospheric cloud particles

    NASA Technical Reports Server (NTRS)

    Hallett, John; Teets, Edward

    1992-01-01

    This report describes the progress made on understanding phase changes related to solutions which may comprise Polar Stratospheric Clouds. In particular, it is concerned with techniques for investigating specific classes of metastability and phase change which may be important not only in Polar Stratospheric Clouds but in all atmospheric aerosols in general. While the lower level atmospheric aerosol consists of mixtures of (NH4)(SO4)2, NH4HSO4, NaCl among others, there is evidence that aerosol at PSC levels is composed of acid aerosol, either injected from volcanic events (such as Pinatubo) or having diffused upward from the lower atmosphere. In particular, sulfuric acid and nitric acid are known to occur at PSC levels, and are suspected of catalyzing ozone destruction reactions by adsorption on surfaces of crystallized particles. The present study has centered on two approaches: (1) the extent of supercooling (with respect to ice) and supersaturation (with respect to hydrate) and the nature of crystal growth in acid solutions of specific molality; and (2) the nature of growth from the vapor of HNO3 - H2O crystals both on a substrate and on a pre-existing aerosol.

  11. Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions

    DOEpatents

    Rawers, James C.; Alman, David E.; Petty, Jr., Arthur V.

    1996-01-01

    Industrial applications of composites often require that the final product have a complex shape. In this invention intermetallic or ceramic phases are formed from sheets of unreacted elemental metals. The process described in this invention allows the final product shape be formed prior to the formation of the composite. This saves energy and allows formation of shaped articles of metal-intermetallic composites composed of brittle materials that cannot be deformed without breaking.

  12. Preparation and evaluation of a lysine-bonded silica monolith as polar stationary phase for hydrophilic interaction pressurized capillary electrochromatography.

    PubMed

    Huang, Guihua; Lian, Qiuyan; Zeng, Wencan; Xie, Zenghong

    2008-09-01

    A silica-based monolith as polar stationary phase was described for hydrophilic interaction pressurized capillary electrochromatography (HI-pCEC). The polar monolithic column was prepared by on-column reaction of lysine with epoxy groups on a gamma-glycidoxypropyltrimethosysilane-modified silica monolith. The stationary phase yielded strong hydrophilic interaction due to the slightly polar hydroxyl groups, and the strong polar lysine ligand with amino groups and carboxylic groups contained on the surface of the monolith. In order to evaluate the hydrophilic character of lysine ligand, the chromatographic behaviors of epoxy monolith (before lysine bonded) and diol monolith (hydroxyl groups contained) were also investigated. Two groups of comparative experiment were developed in terms of the separation of typical neutral non-polar and polar compounds performed in a mobile phase of aqueous-acetonitrile solution. Results showed that the lysine monolith was much more hydrophilic than the diol monolith, which presented less hydrophobic than the epoxy monolith. For further study on its hydrophilic character, the lysine monolith was demonstrated in the HI-pCEC mode for the separations of various polar compounds such as phenols, nucleic acid bases and nucleosides.

  13. Operational modes of a ferroelectric LCoS modulator for displaying binary polarization, amplitude, and phase diffraction gratings.

    PubMed

    Martínez-García, Antonio; Moreno, Ignacio; Sánchez-López, María M; García-Martínez, Pascuala

    2009-05-20

    We analyze the performance of a ferroelectric liquid crystal on silicon display (FLCoS) as a binary polarization diffraction grating. We analyze the correspondence between the two polarization states emerging from the displayed grating and the polarization and intensity of the diffracted orders generated at the Fourier diffraction plane. This polarization-diffraction analysis leads, in a simple manner, to configurations yielding binary amplitude or binary phase modulation by incorporating an analyzer on the reflected beam. Based on this analysis, we present two useful variations of the polarization configuration. The first is a simplification using a single polarizer, which provides equivalent results for amplitude or phase modulation as the more general operational mode involving two polarizers. The second variation is proposed to compensate the reduction of the diffraction efficiency when the operating wavelength differs from the design one (for which the FLCoS liquid-crystal layer acts as a half-wave plate). In this situation we show how the ideal grating performance can be recovered in spite of the phase-shift mismatch originated by chromatic dispersion. In all cases, we provide experimental results that verify the theoretical analyses.

  14. Dislocation sources in ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Appel, F.; Wagner, R.; Mecking, H.

    1996-09-01

    An overview on the current understanding of dislocation sources and multiplication mechanisms is made for ordered intermetallic alloys of the L1{sub 2}, B2, and D0{sub 19} structures. In L1{sub 2} alloys, a large disparity of edge/screw segments in their relative mobility reduces the efficiency of a Frank-Read Type multiplication mechanism. In Fe-40%Al of the B2 structure, a variety of dislocation sources are available for <111> slip, including ones resulting from condensation of thermal vacancies. In NiAl with the relatively high APB energy, <100> dislocations may result from the dislocation decomposition reactions, the prismatic punching out from inclusion particles, and/or steps and coated layers of the surface. Internal interfaces often provide sites for dislocation multiplication, e.g., grain boundaries, sub-boundaries in Ni{sub 3}Ga, NiAl and Ti{sub 3}Al, and antiphase domain boundaries in Ti{sub 3}Al. As for the crack tip as a dislocation source, extended SISFs trailed by super-Shockley partials emanating form the cracks in Ni{sub 3}Al and Co{sub 3}Ti are discussed in view of a possible toughening mechanism.

  15. Unusual physical properties in B phase of polar bent-core thioester compound

    NASA Astrophysics Data System (ADS)

    Wróbel, S.; Burakowski, Z.; Chruściel, J.; Czerwiec, J.; Marzec, M.; Ossowska-Chruściel, M. D.; Wantusiak, B.

    2012-04-01

    Bent-core compound, 4-chloro-1,3-phenylene bis{4-[(n-undecyloxybenzoyl)-sulfanyl]benzoate}, has been studied by dielectric spectroscopy, DSC calorimetry, and electro-optic methods. As found, the spontaneous polarization of the B phase is by one order of magnitude smaller than for B 2 phases of nOSOR series studied by us before. Its temperature dependence is characteristic for B 1 phase, observed for shorter homologues of nOSORs. Measurements of the complex electric permittivity were carried out in the frequency range from 40 to 15 MHz using gold-coated electrodes. Electro-optic studies have been done applying AWAT HG 1.9 µm cells with strongly rubbed polymer layers. Such cells facilitate inhomogeneous planar alignment, which under strong electric field transforms into a mono-domain exhibiting switching behavior. Dielectric and electro-optic data of bent-core compounds will be discussed taking into account molecular structure and phase structure as well.

  16. Characterization of phase-shifted Brillouin dynamic gratings in a polarization maintaining fiber

    NASA Astrophysics Data System (ADS)

    Zhou, Dengwang; Dong, Yongkang; Xu, Pengbai; Teng, Lei; Zhang, Hongying; Lu, Zhiwei

    2016-11-01

    We numerically calculate and experimentally investigate the characterization of phase-shifted Brillouin dynamic gratings (PS-BDGs) in a polarization maintaining fiber (PMF). A phase-shifted point is induced into the middle of a conventional BDG through phase-modulating one of the two pump pulse, generating a PS-BDG thanks to the stimulated Brillouin scattering (SBS). When the frequency difference between a high frequency pump1 pulse with 1ns and π-1ns and a low frequency pump2 pulse with 100ps is equal to the Brillouin frequency shift of the PMF, a transient PS-BDG with a 3dBbandwidth of 354MHz of the notch spectrum is simulated based on the coupled-wave equations of BDG. By increasing the repetition rate up to 250MHz, an enhanced PS-BDG with a deep notch depth is obtained since the residual acoustic wave of the former SBS process is enhanced by the optical waves of the latter SBS process. Then a proof-of-concept experiment is built to verify the transient PS-BDG and the results show that the notch feature is consistent with the simulation results and the notch frequency of the PS-BDG can be changed by tuning the phase shift Δϕ . The proposed PS-BDGs have important potential applications in optical fiber sensing, microwave photonics, all-optical signal processing and RoF (radio-over-fiber) networks.

  17. Four-dimensional key design in amplitude, phase, polarization and distance for optical encryption based on polarization digital holography and QR code.

    PubMed

    Lin, Chao; Shen, Xueju; Li, Baochen

    2014-08-25

    We demonstrate that all parameters of optical lightwave can be simultaneously designed as keys in security system. This multi-dimensional property of key can significantly enlarge the key space and further enhance the security level of the system. The single-shot off-axis digital holography with orthogonal polarized reference waves is employed to perform polarization state recording on object wave. Two pieces of polarization holograms are calculated and fabricated to be arranged in reference arms to generate random amplitude and phase distribution respectively. When reconstruction, original information which is represented with QR code can be retrieved using Fresnel diffraction with decryption keys and read out noise-free. Numerical simulation results for this cryptosystem are presented. An analysis on the key sensitivity and fault tolerance properties are also provided.

  18. Polarized Imaging Nephelometer for Field and Aircraft Measurements of Aerosol Phase Function

    NASA Astrophysics Data System (ADS)

    Dolgos, G.; Martins, J.

    2012-12-01

    Aerosols have a significant impact on the radiative balance and water cycle of our planet through influencing atmospheric radiation. Remote sensing of aerosols relies on scattering phase matrix information to retrieve aerosol properties with frequent global coverage. At the Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland, Baltimore County we developed a new technique to directly measure the aerosol phase function and the degree of linear polarization of the scattered light (two elements of the phase matrix). We designed and built a portable instrument called the Polarized Imaging Nephelometer (PI-Neph). The PI-Neph successfully participated in dozens of flights of the NASA Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project and the Deep Convective Clouds and Chemistry (DC3) project. The ambient aerosol enters the PI-Neph through an inlet and the sample is illuminated by laser light (wavelength of 532 nm); the scattered light is imaged by a stationary wide field of view camera in the scattering angle range of 2° to 178°. (In some cases stray light limited the scattering angle range to 3° to 176°). The PI-Neph measurement of phase function and the AERONET (AErosol RObotic NETwork) retrievals have already been compared in some cases when the aircraft spiraled over AERONET sites, for example at NASA's Wallops Flight Facility, on October 18 2011, as shown in Figure 1. The differences between the PI-Neph and the AERONET retrievals can be attributed to differences between the ambient size distribution and the one sampled inside the aircraft. The data that is resolved with respect to scattering angle is used to compute the volume scattering coefficient. The above mentioned October 18 flight data showed good agreement between the PI-Neph measurements of volume scattering coefficient and the parallel TSI integrating nephelometer measurements. On average the TSI measurements were 1.02 times the PI

  19. Smart Solution Chemistry to Sn-Containing Intermetallic Compounds through a Self-Disproportionation Process.

    PubMed

    Zhang, Yuelan; Li, Liping; Li, Qi; Fan, Jianming; Zheng, Jing; Li, Guangshe

    2016-09-26

    Developing new methods to synthesize intermetallics is one of the most critical issues for the discovery and application of multifunctional metal materials; however, the synthesis of Sn-containing intermetallics is challenging. In this work, we demonstrated for the first time that a self-disproportionation-induced in situ process produces cavernous Sn-Cu intermetallics (Cu3 Sn and Cu6 Sn5 ). The successful synthesis is realized by introducing inorganic metal salts (SnCl2 ⋅2 H2 O) to NaOH aqueous solution to form an intermediate product of reductant (Na2 SnO2 ) and by employing steam pressures that enhance the reduction ability. Distinct from the traditional in situ reduction, the current reduction process avoided the uncontrolled phase composition and excessive use of organic regents. An insight into the mechanism was revealed for the Sn-Cu case. Moreover, this method could be extended to other Sn-containing materials (Sn-Co, Sn-Ni). All these intermetallics were attempted in the catalytic effect on thermal decompositions of ammonium perchlorate. It is demonstrated that Cu3 Sn showed an outstanding catalytic performance. The superior property might be primarily originated from the intrinsic chemical compositions and cavernous morphology as well. We supposed that this smart solution reduction methodology reported here would provide a new recognition for the reduction reaction, and its modified strategy may be applied to the synthesis of other metals, intermetallics as well as some unknown materials.

  20. Spectral and polarization properties of a ‘cholesteric liquid crystal—phase plate—metal’ structure

    NASA Astrophysics Data System (ADS)

    Vetrov, S. Ya; Pyatnov, M. V.; Timofeev, I. V.

    2016-01-01

    We investigate the localized surface modes in a structure consisting of the cholesteric liquid crystal layer, a phase plate, and a metal layer. These modes are analogous to the optical Tamm states. The nonreciprocal transmission of polarized light propagating in the forward and backward directions is established. It is demonstrated that the transmission spectrum can be controlled by external fields acting on the cholesteric liquid crystal and by varying the plane of polarization of the incident light.

  1. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  2. Electric Current Enhanced Point Defect Mobility in Ni3Ti Intermetallic

    SciTech Connect

    Anselmi-Tamburini, U; Asoka-Kumar, P; Garay, J E; Munir, Z A; Glade, S C

    2004-02-05

    The effect of the application of a DC current on the annealing of point defects in Ni{sub 3}Ti was investigated by positron annihilation spectroscopy (PAS). An increased rate of point defect annealing is observed under the influence of a current and is attributed to a 24% decrease in the mobility activation energy. The results are interpreted in terms of the electron wind effect and the complex nature of diffusion in ordered intermetallic phases. This work represents the first direct evidence of the role of the current on the mobility of point defects in intermetallic systems.

  3. Evidence of high densities and ion outflows in the polar cap during the recovery phase

    SciTech Connect

    Gallagher, D.L.; Menietti, J.D.; Burch, J.L.; Persoon, A.M.; Waite J.H. Jr.; Chappell, C.R.

    1986-03-01

    During the recovery phase of a large storm on October 14, 1981, instruments on board Dynamics Explorer 1 (DE 1) the Retarding Ion Mass Spectrometer (RIMS), the High Altitude Plasma Instrument (HAPI), and the Plasma Wave Instrument (PWI) detected unusually high plasma densities and ion flows in the polar cap. At the time of detection, DE 1 was located at a radial distance of about 3.5 earth radii, a magnetic local time near midnight, and between 70/sup 0/ and 80/sup 0/ invariant latitude. Total plasma density was found to be about 50 cm/sup -3/, an order of magnitude above median polar cap densities at the altitude of observation. In addition, highly collimated flows of hydrogen and oxygen are found flowing through a background hydrogen plasma. The O/sup +/ component of the plasma discussed is not directly identified but is inferred to be O/sup +/ through the combined analysis of data from three instruments. Results of the combined instrument analysis indicate that the detected plasma was composed of outflowing H/sup +/ with a density of 6-10 cm/sup -3/ with a temperature of about 0.15 eV; isotropic H/sup +/ with a density of about 15-20 cm/sup -3/; and outflowing and strongly convecting O/sup +/ with an average density of about 20 cm/sup -3/ and a temperature of about 0.26 eV. The flux of outflowing H/sup +/ and O/sup +/ are both about 10/sup 7/ cm/sup -2/ s/sup -1/. The data indicate that the O/sup +/ detected by HAPI seems to originate in the dayside ionosphere, while the H/sup +/ detected by RIMS has a source in the nightside polar cap.

  4. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    SciTech Connect

    Kanatzidis, Mercouri G.

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  5. Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Fernández, J. R.

    2015-12-01

    Interaction for both pure Al and Al-U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al-U interaction fits various properties of the Al2U, Al3U and Al4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al3U intermetallic in the Al/U interface in agreement with experimental evidence.

  6. Photoinduced phase transfer of luminescent quantum dots to polar and aqueous media.

    PubMed

    Palui, Goutam; Avellini, Tommaso; Zhan, Naiqian; Pan, Feng; Gray, David; Alabugin, Igor; Mattoussi, Hedi

    2012-10-03

    We report a new strategy for the photomediated phase transfer of luminescent quantum dots, QDs, and potentially other inorganic nanocrystals, from hydrophobic to polar and hydrophilic media. In particular, we demonstrate that UV-irradiation (λ < 400 nm) promotes the in situ ligand exchange on hydrophobic CdSe QDs with lipoic acid (LA)-based ligands and their facile QD transfer to polar solvents and to buffer media. This convenient method obviates the need to use highly reactive agents for chemical reduction of the dithiolane groups on the ligands. It maintains the optical and spectroscopic properties of the QDs, while providing high photoluminescence yield and robust colloidal stability in various biologically relevant conditions. Furthermore, development of this technique significantly simplifies the preparation and purification of QDs with sensitive functionalities. Application of these QDs to imaging the brain of live mice provides detailed information about the brain vasculature over the period of a few hours. This straightforward approach offers exciting possibilities for expanded functional compatibilities and reaction orthogonality on the surface of inorganic nanocrystals.

  7. Analysis of a shearography device using a Wollaston prism and polarization phase shifting

    NASA Astrophysics Data System (ADS)

    Sanchez, E.; Benedet, M. E.; Willemann, D. P.; Fantin, A. V.; Albertazzi, A. G.

    2016-08-01

    Speckle shear interferometry, or shearography, has been more and more frequently used in the industry for in-field nondestructive inspections of flaws in composite materials used in the aerospace and oil and gas industry. Nowadays new applications has emerged demanding the ability to operate in harsher environments. Bringing interferometric systems to harsh environments is not an easy task since they are very sensitive to many harsh environmental factors. Due to the quasi-equal-path property, shearography is an intrinsically robust interferometric technique that has been successfully used in the field, but there are still limits to overcome. Mechanical vibrations are probably the most challenging factor to cope in the field measurements. This work presents a potentially robust shear interferometer configuration. It uses a Wollaston prism as the shearing element rather than a traditional Michelson interferometer and polarizers to achieve the phase shift. The use of the Wollaston prism makes the optical setup more compact and robust, given that a rotating polarizer is the only movable part of the interferometer.

  8. Polarization effects on the electric properties of urea and thiourea molecules in solid phase

    SciTech Connect

    Santos, O. L.; Fonseca, T. L. Sabino, J. R.; Georg, H. C.; Castro, M. A.

    2015-12-21

    We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by point charges. It is found for both urea and thiourea molecules that the influence of the polarization effects is mild for the linear polarizability, but it is marked for the dipole moment and first hyperpolarizability. The replacement of oxygen atoms by sulfur atoms increases, in general, the electric responses. Our second-order Møller–Plesset perturbation theory based iterative scheme predicts for the in-crystal dipole moment of urea and thiourea the values of 7.54 and 9.19 D which are, respectively, increased by 61% and 58%, in comparison with the corresponding isolated values. The result for urea is in agreement with the available experimental result of 6.56 D. In addition, we present an estimate of macroscopic quantities considering explicit unit cells of urea and thiourea crystals including environment polarization effects. These supermolecule calculations take into account partially the exchange and dispersion effects. The results illustrate the role played by the electrostatic interactions on the static second-order nonlinear susceptibility of the urea crystal.

  9. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    PubMed

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  10. Direct acceleration of electrons by a circular polarized laser pulse with phase modulation

    SciTech Connect

    Zhu, Lun-Wu; Sheng, Zheng-Mao; Yu, M. Y.

    2013-11-15

    Electron acceleration by transversely echelon phase-modulated (EPM) circularly polarized (CP) intense laser pulse is investigated. Solution of the relativistic electron equations of motion shows that the CP EPM light wave structure can disrupt the harmonic response of a trapped electron not only in the transverse direction but also in the direction of laser propagation. In each laser cycle, there can be a net gain in the electron's transverse momentum, which is promptly converted into the forward direction by the Lorentz force. As a result, the electron can be trapped and accelerated in the favorable phase of the laser for a rather long time. Its momentum gain then accumulates and can eventually reach high levels. It is also found that with the CP EPM laser, the net acceleration of the electron is not sensitive to its initial position and velocity relative to the phase of the laser fields, so that such a laser can also be useful for accelerating thermal electron bunches to high energies.

  11. The structure and phase of cloud tops as observed by polarization lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Hansen, M. Z.; Simpson, J.

    1983-01-01

    High-resolution observations of the structure of cloud tops have been obtained with polarization lidar operated from a high altitude aircraft. Case studies of measurements acquired from cumuliform cloud systems are presented, two from September 1979 observations in the area of Florida and adjacent waters and a third during the May 1981 CCOPE experiment in southeast Montana. Accurate cloud top height structure and relative density of hydrometers are obtained from the lidar return signal intensity. Correlation between the signal return intensity and active updrafts was noted. Thin cirrus overlying developing turrets was observed in some cases. Typical values of the observed backscatter cross section were 0.1-5 (km/sr) for cumulonimbus tops. The depolarization ratio of the lidar signals was a function of the thermodynamic phase of cloud top areas. An increase of the cloud top depolarization with decreasing temperature was found for temperatures above and below -40 C.

  12. Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Mayer, Erwin; Loerting, Thomas

    2010-03-01

    Polar stratospheric clouds (PSCs) are extremely efficient at catalysing the transformation of photostable chlorine reservoirs into photolabile species, which are actively involved in springtime ozone-depletion events. Why PSCs are such efficient catalysts, however, is not well understood. Here, we investigate the freezing behaviour of ternary HNO₃-H₂SO₄-H₂O droplets of micrometric size, which form type II PSC ice particles. We show that on freezing, a phase separation into pure ice and a residual solution coating occurs; this coating does not freeze but transforms into glass below ∼150 K. We find that the coating, which is thicker around young ice crystals, can still be approximately 30 nm around older ice crystals of diameter about 10 µm. These results affect our understanding of PSC microphysics and chemistry and suggest that chlorine-activation reactions are better studied on supercooled HNO₃-H₂SO₄-H₂O solutions rather than on a pure ice surface.

  13. Angular phase shift in polarization-angle dependence of microwave-induced magnetoresistance oscillations

    NASA Astrophysics Data System (ADS)

    Liu, Han-Chun; Samaraweera, Rasanga L.; Mani, R. G.; Reichl, C.; Wegscheider, W.

    2016-12-01

    We examine the microwave frequency (f ) variation of the angular phase shift, θ0, observed in the polarization-angle dependence of microwave-induced magnetoresistance oscillations in a high-mobility GaAs/AlGaAs two-dimensional electron system. By fitting the diagonal resistance Rx x versus θ plots to an empirical cosine square law, we extract θ0 and trace its quasicontinuous variation with f . The results suggest that the overall average of θ0 extracted from Hall bar device sections with length-to-width ratios of L /W =1 and 2 is the same. We compare the observations with expectations arising from the "ponderomotive force" theory for microwave radiation-induced transport phenomena.

  14. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction

    SciTech Connect

    Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

    2010-01-01

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

  15. Chemical effect on diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ting

    With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion

  16. Polar phase transitions and physical properties in fresnoite A2TiSi2O8 (A= Ba, Sr) by first principles calculations

    NASA Astrophysics Data System (ADS)

    Song, Nayoung; Momida, Hiroyoshi; Oguchi, Tamio; Kim, Bog G.

    2016-10-01

    Polar phase transitions of fresnoites, Ba2TiSi2O8 (BTS) and Sr2TiSi2O8 (STS) have been comparatively analyzed by the first principles calculations. We show that both BTS and STS have a polar structure with the space group P4bm as a ground state, and there is a fictitious phase transition in the tetragonal space group from the nonpolar P4/mbm meta-stable phase to the polar P4bm phase. From the analyses of the two atomic structures, we find that a noticeable issue in the phase transition is bond length changes of Si-O and Ti-O which break the inversion symmetry, resulting that one of vertices in the edge-shared Si-O and Ti-O polyhedron is detached in the polar phase. The structural phase transition between the polar and the nonpolar states are discussed in terms of electronic structures and structural symmetry mode analyses. We evaluate the size of spontaneous polarizations of BTS and STS in the polar P4bm phases, and the correlation analysis shows significant contributions of the detached polyhedrons to the strong polar property. We also show second harmonic generation susceptibilities of BTS and STS as a candidate for second-order nonlinear optics materials. Our quantitative studies can provide full understandings of atomic and electronic mechanisms of their polar phase and nonlinear optical properties.

  17. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Schneeloch, John A.; Xu, Zhijun; Winn, B.; Stock, C.; Gehring, P. M.; Birgeneau, R. J.; Xu, Guangyong

    2015-12-01

    We report neutron inelastic scattering experiments on single-crystal PbMg1 /3Nb2 /3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E ∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ℏ ω ≤9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E . Our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.

  18. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    DOE PAGES

    John A. Schneeloch; Xu, Zhijun; Winn, B.; ...

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropicmore » field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less

  19. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    SciTech Connect

    John A. Schneeloch; Xu, Zhijun; Winn, B.; Stock, C.; Gehring, P. M.; Birgeneau, R. J.; Xu, Guangyong

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.

  20. Development of intermetallic coatings for fusion power applications

    SciTech Connect

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1994-03-01

    In the design of liquid-metal cooling systems, corrosion resistance of structural materials and magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys are potential materials for structural applications in a fusion reactor. Insulator coatings inside the tubing are required when the system is cooled by liquid metals. Various intermetallic films were produced on V, V-t, and V-20 Ti, V-5Cr-t and V-15Cr-t, and Ti, and Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid lithium of 3--5 at.% and containing dissolved metallic solutes at temperatures of 416--880{degrees}C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved nitrogen in liquid lithium or by air oxidation under controlled conditions at 600--1000{degrees}C. These reactions converted the intermetallic layers to electrically insulating oxide/nitride or oxy-nitride layers. This coating method could be applied to a commercial product. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes because the coating is formed by liquid-phase reaction. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid lithium at high temperatures.

  1. Polarization rotation of light propagating through a medium with efficient four-wave mixing and cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Sahoo, Sushree S.; Bhowmick, Arup; Mohapatra, Ashok K.

    2017-03-01

    We have studied the rotation of an elliptically polarized light propagating through thermal rubidium vapor with efficient four-wave mixing (FWM) and cross-phase modulation (XPM). These nonlinear processes are enhanced by Zeeman coherence within the degenerate sub-levels of the two-level atomic system. The elliptically polarized light with small ellipticity is considered as the superposition of a strong-linearly-polarized pump beam and a weak-orthogonal-polarized probe beam. The interference of the probe and the newly generated light field due to degenerate FWM and their gain in the medium due to a large XPM induced by the pump beam leads to the rotation of the elliptical polarized light. A theoretical analysis of the probe propagation through the nonlinear medium was used to explain the experimental observation and the fitting of the experimental data gives the estimates of the third-order non-linear susceptibilities associated with FWM and XPM. Our study can provide useful parameters for the generation of efficient squeezed vacuum states and squeezed polarization states of light. Furthermore our study finds application in controlling the diffraction of a linearly-polarized light beam traversing the medium.

  2. Finite-Difference Time-Domain Analysis of Polarization-Dependent Transmission in Cholesteric Blue Phase II

    NASA Astrophysics Data System (ADS)

    Ojima, Masayoshi; Ogawa, Yasuhiro; Ozaki, Ryotaro; Moritake, Hiroshi; Yoshida, Hiroyuki; Fujii, Akihiko; Ozaki, Masanori

    2010-03-01

    The photonic band structure and circular-polarization dependence of the transmission properties of cholesteric blue phase II were analyzed using a finite-difference time-domain method based on a double-twist cylinder model. The polarization dependence of the calculated band structure was not recognized in the same manner as that in previous studies. However, it can be clearly observed that the calculated transmission spectra depend on the circular polarization; this result agrees well with experimental results. On the basis of the circular-polarization dependence of the transmission spectra in the case of a thick sample, it can be indicated that a total reflection band appears in the selective reflection band.

  3. Chemical bonding in equiatomic cerium intermetallics - The case of CeMgSn, CePdSn, and CeMgPb

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.; Pöttgen, Rainer

    2015-10-01

    The electronic and magnetic structures and the properties of chemical bonding in isopointal CeMgSn and CePdSn (both phases belong to the family of TiNiSi related intermetallics, space group Pnma) and CeMgPb belonging to the family of CeScSi intermetallics, space group I4/mmm, have been investigated within the density functional theory (DFT). The charge analyses indicate negatively charged tin and lead leading to assign the compounds as stannides and plumbides, as also illustrated by the mapping of the electron localization function ELF. Calculations within spin-degenerate non-magnetic spin-polarized ferro- (SP-F) and SP-antiferromagnetic configurations led to assign a major role of Ce 4f states in the onset of ordered moments within SP-AF ground states from energy differences. Chemical bonding analyses from crystal orbital overlap populations revealed the strongest interactions for Ce-Sn in CeMgSn, Ce-Pb in CeMgPb, and Ce-Pd in CePdSn.

  4. Global Positioning System phase fluctuations and ultraviolet images from the Polar satellite

    NASA Astrophysics Data System (ADS)

    Aarons, J.; Lin, B.; Mendillo, M.; Liou, K.; Codrescu, M.

    2000-03-01

    In a study designed to determine the temporal development of ionospheric irregularities in the auroral region in magnetic storm periods, different types of simultaneous observations were compared for the storms of January 10, April 10-11, and May 15, 1997. The data sets consisted of ultraviolet images (UVI) from the Polar satellite, phase fluctuations and total electron content (TEC) from Global Positioning Systems (GPS) recordings at a large number of sites, magnetometer observations and hemispheric power precipitation. The large-scale global or macroscale picture of the magnetic storm showed the importance of universal time in the development of irregularities. The hemispheric total power picture and the global indices such as Kp show this macroscale picture of the entire storm period. However, individual sites show differences in localized magnetic field variations and the development of irregularities; this we term the microscale. The storms of January 10 and May 15 show the importance of local magnetic time and local magnetic variations at the sites, while the storm of April 10-11 was dominated by the UT storm development. During the intense activity of the storms, total electron content shows minute-by-minute increases with the satellite moving to positions 6 km apart in the minute. The structured precipitation either directly produces irregularities or indirectly sets instability conditions for irregularity development in the auroral region. Good correlation was established for the three storms between UVI intensity and phase fluctuation development. The UVI Lyman-Birge-Hopfield-long (170 nm) emission is sensitive to 100-200 km precipitation. Phase fluctuation development undoubtedly arises from perturbations in the F region as well. Topside and bottomside soundings have shown the high occurrence of spread-F in the auroral region. The comparison of the data sets from these storms and from other studies indicates that the creation of irregularities develops

  5. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    PubMed

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-02

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.

  6. Heats of formation in transition intermetallic alloys

    SciTech Connect

    Pasturel, A.; Colinet, C.; Hicter, P.

    1984-07-01

    The heats of formation in intermetallic alloys are calculated within a tight-binding scheme for the d band. The difference in bandwidth between the metals and the difference between their energy levels are two dominant effects in determination of the formation energy. The influence of charge transfer on alloy formation is studied.

  7. Surfaces of Intermetallics: Quasicrystals and Beyond

    SciTech Connect

    Yuen, Chad

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  8. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  9. Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography.

    PubMed

    Nomura, Takanori; Javidi, Bahram; Murata, Shinji; Nitanai, Eiji; Numata, Takuhisa

    2007-03-01

    A polarimetric imaging method of a 3D object by use of on-axis phase-shifting digital holography is presented. The polarimetric image results from a combination of two kinds of holographic imaging using orthogonal polarized reference waves. Experimental demonstration of a 3D polarimetric imaging is presented.

  10. Compensation algorithm for the phase-shift error of polarization-based parallel two-step phase-shifting digital holography.

    PubMed

    Tahara, Tatsuki; Ito, Kenichi; Kakue, Takashi; Fujii, Motofumi; Shimozato, Yuki; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2011-03-01

    We propose an algorithm for compensating the phase-shift error of polarization-based parallel two-step phase-shifting digital holography, which is a technique for recording a spatial two-step phase-shifted hologram. Although a polarization-based system of the technique has been experimentally demonstrated, there had been the problem that the phase difference of two phase-shifted holograms had been changed by the extinction ratio of the micropolarizer array attached to the image sensor used in the system. To improve the performance of the system, we established and formulated an algorithm for compensating the phase-shift error. Accurate spatial phase-shifting interferometry in the system can be conducted by the algorithm regardless of phase-shift error due to the extinction ratio. By the numerical simulation, the proposed algorithm was capable of reducing the root mean square errors of the reconstructed image by 1/4 and 1/5 in amplitude and phase, respectively. Also, the algorithm was experimentally demonstrated, and the experimental results showed that the system employing the proposed algorithm suppressed the conjugate image, which slightly appeared in the image reconstructed by the system not employing the algorithm, even when the extinction ratio was 10:1. Thus, the effectiveness of the proposed algorithm was numerically and experimentally verified.

  11. Alumina as diffusion barrier to intermetallic formation in thermal interface materials made from indium and copper

    NASA Astrophysics Data System (ADS)

    Saleh, Ibrahim Khalifa

    Indium and copper react at wide range of temperatures to form intermetallic compounds that have different physical, mechanical and thermal properties. Liquid Phase Sintered indium-copper composite long-term performance as thermal interface material is adversely affected by the evolution of the intermetallic. In this study, i) the effect of intermetallic formation and growth on the performance of Liquid Phase Sintered copper-indium composite, ii) the effect of alumina as diffusion barrier between indium and copper, (iii) thermal stability and wettability between indium and alumina, iv) the indium and quartz wettability, v) indium and tungsten oxide wettability have been studied. Deleterious effect of the intermetallic formation and growth on the thermal and mechanical properties has been observed. 5nm of alumina deposited by Atomic Layer Deposition on flat copper surface has been optimized to prevent diffusion process between indium and copper at 120°C. 15nm of alumina prevented the reaction at 230°C. Instability of indium thin film thermally deposited on sapphire substrate was observed. Also, decrease in the sintering density of indium-alumina composite with increasing temperature was observed. The dewetting contact angle between liquid indium and sapphire was ˜127°. The wetting experiments between indium and different oxides showed that indium wets tungsten oxide and quartz..

  12. In situ examination of moving crack tips in ordered intermetallics.

    SciTech Connect

    Heuer, J.; Lam, N. Q.; Okamoto, P. R.; Stubbins, J. F.

    1999-01-25

    Recent studies have shown that high stress concentrations at moving crack tips in the intermetallic compound NiTi can induce a crystalline-to-amorphous (C-A) transformation of the crack tip region. This stress-induced C-A transformation has a temperature dependence and crystallization behavior similar to those of ion irradiation-induced C-A transformation of NiTi. The present study examines if these similarities between stress- and irradiation-induced amorphization hold true for two other intermetallic compounds, CuTi and Ni{sub 3}Ti. In situ straining was performed in an intermediate-voltage transmission electron microscope. The presence or absence of an amorphous phase was determined by dark field imaging and selected area diffraction of crack tip regions. Crack tips in both CuTi and Ni{sub 3}Ti were found to remain crystalline upon fracture. The observed absence of stress-induced amorphization in Ni{sub 3}Ti is consistent with its known absence during irradiation, but the absence in CuTi differs from its known irradiation-induced amorphization behavior. Reasons for the similarity and difference are discussed.

  13. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  14. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1999-05-14

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  15. Development of intermetallic-hardened abrasion-resistant weld hardfacing alloys

    SciTech Connect

    School, M.R.

    1986-01-01

    Chromium and cobalt are strategic materials in the US and both are major constituents in many weld hardfacing alloys. Substitution for these materials or alternatives to their use was a primary direction of this investigation which was conducted in conjunction with the US Bureau of Mines. Minimization of the use of strategic materials was the criteria guiding the development of intermetallic-hardened abrasion resistant weld hardfacing materials. Other criteria were that the new alloy contain a hard intermetallic compound in an FCC matrix, and that these intermetallic compounds be stable at room temperature. A survey of ternary systems was made and the Fe-Mo-Ni system was selected to provide a basis for alloy development. Fe-Mo-Ni alloys synthesized by arc-melting and similar alloys made by welding possessed similar microstructures, a (Fe, Ni){sub 7}Mo{sub 6} intermetallic plus austenite eutectic in an austenitic matrix. These materials exhibited poor abrasive resistance. Silicon additions to the alloy promoted formation of a Laves phase FeMoSi intermetallic which helped increase the abrasive wear resistance. Through a series of alloy chemistry iterations a final composition of Fe-20Mo-15Ni-5Si was selected. Heat treatment of this alloy at 550 to 650 C caused second phase precipitation in the matrix and raised the hardness about 14 points HRC to 50 HRC. The alloy's wear rate, measured with the pin-on-drum abrasive wear test, was 6.3 to 6.5 mg/m. However this was twice the wear rate observed in commercial high-carbon high-chromium alloys. Based on examination of the alloy microstructures, their chemistry, and an analysis of the Fe-Mo-Si phase system; directions for further research are to increase the molybdenum and silicon content to produce a Fe-20Mo-10Ni-15Si composition.

  16. Column selectivity in reversed-phase liquid chromatography. VI. Columns with embedded or end-capping polar groups.

    PubMed

    Wilson, N S; Gilroy, J; Dolan, J W; Snyder, L R

    2004-02-13

    A previous model of column selectivity for reversed-phase liquid chromatography (RP-LC) has been applied to an additional 21 columns with embedded or end-capping polar groups (EPGs). Embedded-polar-group columns exhibit a significantly different selectivity vs. non-EPG, type-B columns, generally showing preferential retention of hydrogen-bond donors, as well as decreased retention for hydrogen-bond acceptors or ionized bases. EPG-columns are also generally less hydrophobic (more polar) than are non-EPG-columns. Interestingly, columns with polar end-capping tend to more closely resemble non-EPG columns, suggesting that the polar group has less effect on column selectivity when used to end-cap the column versus the case of an embedded polar group. Column selectivity data reported here for EPG-columns can be combined with previously reported values for non-EPG columns to provide a database of 154 different columns. This enables a comparison of any two of these columns in terms of selectivity. However, comparisons that involve EPG columns are more approximate.

  17. The role of zinc on the chemistry of complex intermetallic compounds

    SciTech Connect

    Xie, Weiwei

    2014-01-01

    Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co8+xZn12–x was analyzed for their crystal and electronic structures.

  18. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  19. Robust aptamer sol-gel solid phase microextraction of very polar adenosine from human plasma.

    PubMed

    Mu, Li; Hu, Xiangang; Wen, Jianping; Zhou, Qixing

    2013-03-01

    Conventional solid phase microextraction (SPME) has a limited capacity to extract very polar analytes, such as adenosine. To solve this problem, aptamer conjugating sol-gel methodology was coupled with an SPME fiber. According to the authors' knowledge, this is the first reported use of aptamer SPME. The fiber of aptamer sol-gel SPME with a mesoporous structure has high porosity, large surface area, and small water contact angle. Rather than employing direct entrapment, covalent immobilization was the dominant method of aptamer loading in sol-gel. Aptamer sol-gel fiber captured a specified analyte from among the analog molecules, thereby, exhibiting an excellent selective property. Compared with commercial SPME fibers, this aptamer fiber was suitable for extracting adenosine, presenting an extraction efficiency higher than 20-fold. The values of repeatability and reproducibility expressed by relative standard deviation were low (9.4%). Interestingly, the sol-gel network enhanced the resistance of aptamer SPME to both nuclease and nonspecific proteins. Furthermore, the aptamer sol-gel fiber was applied in human plasma with LOQ 1.5 μg/L, which is an acceptable level. This fiber also demonstrates durability and regeneration over 20-cycles without significant loss of efficiency. Given the various targets (from metal ions to biomacromolecules and cells) of aptamers, this methodology will extend the multi-domain applications of SPME.

  20. Nuclear quadrupole interaction of highly polarized gas phase 131Xe with a glass surface

    NASA Astrophysics Data System (ADS)

    Butscher, R.; Wäckerle, G.; Mehring, M.

    1994-05-01

    We report nuclear magnetic resonance (NMR) experiments on 131Xe (I=3/2) gas-phase atoms which exhibit nuclear quadrupole interaction with the surface of the sample cell. Nuclear quadrupole coupling constants and quadrupole relaxation rates are obtained from the time-domain signal of the freely precessing nuclear magnetization in weak magnetic fields. The nuclear spin species is polarized by spin-exchange collisions with optically pumped ground-state spins of Rb gas atoms. The Rb atoms also present in the sample are used as a magnetometer to probe the free-induction decay of the nuclear-spin ensemble. The temperature dependence of both the effective quadrupole splittings and the relaxation rates are explained by a model for the surface interactions of a Xe atom adsorbed on the glass surface. The desorption is thermally activated with an activation energy of EA=0.12 eV. The surface diffusion of an adsorbed atom is characterized by an activation energy ED for thermally activated hopping between neighboring surface sites. Both energies enter the spectral density function governing wall-induced nuclear quadrupole relaxation. Our experimental results lead to the conclusion that they are on the same order of magnitude.

  1. Electric field-induced orthogonal polarization switching in morphotropic phase boundary Pb(0.57)Ba(0.43)Nb(2)O(6) (PBN57) single crystals.

    PubMed

    Guo, R; Bhalla, A S; Cross, L E

    1990-03-01

    Tungsten bronze crystals of Pb(0.57)Ba(0.43)Nb(2)O(6) composition near the morphotropic phase boundary were examined for possible switching of the polarization vector. It is demonstrated that for the single crystal lead barium niobate of tetragonal symmetry, the polarization vector can be switched orthogonally to an orthorhombic phase simply by the application of an electric field.

  2. N-single-helix photonic-metamaterial based broadband optical range circular polarizer by induced phase lags between helices.

    PubMed

    Behera, Saraswati; Joseph, Joby

    2015-02-10

    In this work, we have designed a photonic-metamaterial based broadband circular polarizer using N=4 phase-lagged aluminum single helices arranged in a square array as a unit cell. The effect of phase differences between the helices in an array on the optical performance of the structure is studied, and a comparative study is done with that of multi-intertwined helices. It is observed that the proposed metamaterial structure shows circular polarization sensitivity over a broad optical wavelength range (≈450-900  nm), with improved optical performance in average extinction ratio and broad positive circular dichroism in comparison to multiple intertwined helices. The induced phase lag between the helices in a square-array based unit cell reduces the linear birefringence and leads to the recovery of circular space symmetry in the structure.

  3. Hexatic and blue phases in a chiral liquid crystal: optical polarizing microscopy, synchrotron radiation and dielectric study

    NASA Astrophysics Data System (ADS)

    Sinha, Debashis; Debnath, Asim; Mandal, Pradip Kumar

    2014-09-01

    Phase behavior, structure and molecular dynamics of a chiral liquid crystalline compound, which exhibits SmG*, SmJ*, SmF*, SmI*, SmC*, SmA*, N* and BP*, have been investigated. Observed optical textures, synchrotron radiation diffraction data and frequency dependent dielectric spectroscopic study clearly depict the temperature evolution of the different hexatic smectic phases along with cholesteric and blue phase in a single compound. In hexatic phases dielectric absorption spectra show one low frequency relaxation process, related to the phase fluctuation of the bond orientational order, and one high frequency process related to amplitude fluctuation of the bond orientational order coupled with the polarization and tilt of the molecules. Goldstone and soft mode relaxation processes are detected, respectively, in SmC* and SmA* phases.

  4. Polar Second-Harmonic Imaging to Resolve Pure and Mixed Crystal Phases along GaAs Nanowires.

    PubMed

    Timofeeva, Maria; Bouravleuv, Alexei; Cirlin, George; Shtrom, Igor; Soshnikov, Ilya; Reig Escalé, Marc; Sergeyev, Anton; Grange, Rachel

    2016-10-12

    In this work, we report an optical method for characterizing crystal phases along single-semiconductor III-V nanowires based on the measurement of polarization-dependent second-harmonic generation. This powerful imaging method is based on a per-pixel analysis of the second-harmonic-generated signal on the incoming excitation polarization. The dependence of the second-harmonic generation responses on the nonlinear second-order susceptibility tensor allows the distinguishing of areas of pure wurtzite, zinc blende, and mixed and rotational twins crystal structures in individual nanowires. With a far-field nonlinear optical microscope, we recorded the second-harmonic generation in GaAs nanowires and precisely determined their various crystal structures by analyzing the polar response for each pixel of the images. The predicted crystal phases in GaAs nanowire are confirmed with scanning transmission electron and high-resolution transmission electron measurements. The developed method of analyzing the nonlinear polar response of each pixel can be used for an investigation of nanowire crystal structure that is quick, sensitive to structural transitions, nondestructive, and on-the-spot. It can be applied for the crystal phase characterization of nanowires built into optoelectronic devices in which electron microscopy cannot be performed (for example, in lab-on-a-chip devices). Moreover, this method is not limited to GaAs nanowires but can be used for other nonlinear optical nanostructures.

  5. Phase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio.

    PubMed

    Wang, Wen Ting; Liu, Jian Guo; Mei, Hai Kuo; Zhu, Ning Hua

    2016-01-11

    We propose and experimentally verify a novel approach to achieve phase-coherence orthogonally polarized optical single sideband (OSSB) modulation with a tunable optically carrier-to-sideband ratio (OCSR). In our scheme, the orthogonally polarized OSSB signal is achieved using a dual-polarization quadrature phase shift keying (DP-QPSK) modulator without an optical band-pass filter (OBPF). Therefore, the proposed method is wavelength independent. The DP-QPSK modulator includes two parallel QPSK modulators locating on its two arms. The upper QPSK modulator of the DP-QPSK modulator is driven by two quadrature sinusoidal microwave signals and works at the frequency shifting condition whose bias voltages are optimized to suppress the optical. The lower QPSK modulator of that works at the maximum transmission point and the optical carrier is not modulated. The OCSR is continuously tunable by simply adjusting the bias voltages of the lower modulator. The frequency shifting optical signal from the upper QPSK modulator and the optical carrier from the lower QPSK modulator are combined together at the output of the DP-QPSK modulator. The optical carrier and sideband are polarized orthogonally. The generated OSSB signals could be used to shift and code the phase of the microwave signal and generate ultra-wideband (UWB) microwave pulse. The proposed method is analyzed and experimental demonstrated.

  6. Online polar two phase countercurrent chromatography×high performance liquid chromatography for preparative isolation of polar polyphenols from tea extract in a single step.

    PubMed

    Chen, Wei-Bin; Li, Shu-Qi; Chen, Long-Jiang; Fang, Mei-Juan; Chen, Quan-Cheng; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun

    2015-08-01

    Herein, we report an on-line two-dimensional system constructed by counter-current chromatography (CCC) coupling with preparative high-performance liquid chromatography (prep-HPLC) for the separation and purification of polar natural products. The CCC was used as the first dimensional isolation column, where an environmental friendly polar two-phase solvent system of isopropanol and 16% sodium chloride aqueous solution (1:1.2, v/v) was introduced for low toxicity and favorable resolution. In addition, by applying the stop-and-go flow technique, effluents pre-fractionated by CCC was further purified by a preparative column packed with octadecyl silane (ODS) as the second dimension. The interface between the two dimensions was comprised of a 6-port switching valve and an electronically controlled 2-position 10-port switching valve connected with two equivalent holding columns. To be highlighted here, this rationally designed interface for the purpose of smooth desalination, absorption and desorption, successfully solved the solvent compatibility problem between the two dimensional separation systems. The present integrated system was successfully applied in a one-step preparative separation and identification of 10 pure compounds from the water extracts of Tieguanyin tea (Chinese oolong tea). In short, all the results demonstrated that the on-line 2D CCC×LC method is an efficient and green approach for harvesting polar targets in a single step, which showed great promise in drug discovery.

  7. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    NASA Astrophysics Data System (ADS)

    Ho, Kevin Ming-Jiang

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka-band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and production. Using the switches in a novel manner for the feed network, microstrip antennas with polarization diversity are presented. Frequency agility is achieved with the use of tuning diodes to provide capacitive loading to the antenna element. Additional inductance effects from surface-mounted capacitors, and its impact, is introduced. Theoretical cross-polarization of probe-fed antenna elements is presented for both linear and circular polarized microstrip antennas. Designs and measurements are presented, for microstrip antennas with polarization diversity, wide frequency tuning range, and both features. Replacement of the tuning diodes with commercially-packaged high Q RF MEMS tunable capacitors will allow for significant improvements to the radiation efficiency. In another project, multi-channel CMOS RFIC phased-array receiver chips are assembled in QFN packages and directly integrated on the same multi-layered PCB stack-up with the antenna arrays. Problems of isolation from the PCB-QFN interface, and potential performance degradation on antenna array from the use of commercial-grade laminates for assembly requirements, namely potential scan blindness and radiation efficiency, are presented. Causes for apparent drift of dielectric constant for microstrip circuits, and high conductor losses observed in measurements, are introduced. Finally, studies are performed for the design of a Ku/Ka-Band shared aperture array. Different approaches for developing dual-band shared apertures

  8. Structural and Electronic Investigations of Complex Intermetallic Compounds

    SciTech Connect

    Ko, Hyunjin

    2008-01-01

    structures of these and related materials. Such calculations allow us to examine various interactions at the atomic scale, interactions which include orbital overlap, two-electron interactions, and Madelung terms. Moreover, these electronic studies also provide links between the angstrom-scale atomic interactions and the macro-scale physical properties, such as magnetism. Over the past few decades, there have been many significant developments toward understanding structure-bonding-property relationships in extended solids in terms of variables including atomic size, valence electron concentration, and electronegativity. However, many simple approaches based on electron counting, e.g., the octet rule, the 18-electron rule, or Wade's rules for boranes, cannot be applied adequately or universally to many of the more complex intermetallic compounds. For intermetallic phases that include late transition metals and post transition main group elements as their constituents, one classification scheme has been developed and effectively applied by using their valence electron count per atom (vec). These compounds are known as Hume-Rothery electron phases, and they have a variety of structure types with vec < 2.0 as shown in Table 1.

  9. Quaternary borocarbides: New class of intermetallic superconductors

    NASA Technical Reports Server (NTRS)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-01-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  10. Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum

    SciTech Connect

    Karimi, Ebrahim; Marrucci, Lorenzo; Slussarenko, Sergei; Piccirillo, Bruno; Santamato, Enrico

    2010-05-15

    We present an easy, efficient, and fast method to generate arbitrary linear combinations of light orbital angular-momentum eigenstates l={+-}2 starting from a linearly polarized TEM{sub 00} laser beam. The method exploits the spin-to-orbital angular-momentum conversion capability of a liquid-crystal-based q plate and a Dove prism inserted into a Sagnac polarizing interferometer. The nominal generation efficiency is 100%, being limited only by reflection and scattering losses in the optical components. When closed paths are followed on the polarization Poincare sphere of the input beam, the associated Pancharatnam geometric phase is transferred unchanged to the orbital angular momentum state of the output beam.

  11. A New Phase of Exploration and Understanding: Planning for The International Polar Year - 2007/2008

    NASA Astrophysics Data System (ADS)

    Rapley, C.; Bell, R.

    2004-05-01

    Planning is underway for an International Polar Year in 2007-2008. (IPY 2007/8) which will be a significant research opportunity to further our understanding of polar regions and polar processes. The International Polar Year has the potential to capture the public's imagination and convey the crucial role that the polar regions play in global systems. IPY 2007/8 will be an international programme of coordinated, interdisciplinary, scientific research in the Earth's polar regions to explore new frontiers, to increase our ability to detect changes at the Earth's poles and to deepen our understanding of polar processes and their global linkages. A crucial component of the IPY 2007/8 will be to attract and develop the next generation of polar scientists, engineers and leaders and to capture the interest of the public and decision-makers. The vision is for many nations to work together to gain holistic insights into planetary processes, targeted at exploring and increasing our understanding of the poles and their role in the global system. The concept of an International Polar Year 2007/8 has been endorsed and advanced by a broad range of global and polar research groups both internationally and nationally. To date 18 nations have formed national committees who are coordinating IPY activities nationally. The International Council for Science (ICSU) formed an International Polar Year Planning Group (IPY-PG) to stimulate, encourage and organize a debate on the International Polar Year 2007/8, formulate a set of objectives and develop a high level Science Plan. The Planning Group has sought input from the international science community and to date has received 138 ideas from over 22 nations. This input from the international community covers both poles, global processes and a diverse spectrum of disciplines. To date the input from the science community has identified key questions and proposed projects within the three major themes proposed by the ICSU IPY Planning Group

  12. Use of vancomycin silica stationary phase in packed capillary electrochromatography: III. enantiomeric separation of basic compounds with the polar organic mobile phase.

    PubMed

    Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna

    2002-02-01

    The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.

  13. Bergman Clusters, Multiple Bonds, and Defect Planes: Synthetic Outcomes of Chemical Frustration in Ternary Intermetallic Systems

    NASA Astrophysics Data System (ADS)

    Hadler, Amelia Beth

    Intermetallics crystallize in a variety of complex structures, many of which show unusual bonding or intriguing properties. Understanding what factors drive this structural chemistry would be a valuable step towards designing new intermetallics with specific structures or properties. One pathway towards understanding and predicting the structures of complex intermetallics is chemical frustration, a design tool which harnesses competition between incompatible bonding or packing modes to induce complexity in ternary intermetallic systems. The research outlined in this thesis focuses on developing chemical frustration through exploratory synthesis in ternary systems designed to induce frustration between the tetrahedral close packing of many intermetallics and the simple cubic packing seen for ionic salts or elemental metals. Syntheses in three systems yielded six new ternary intermetallics, four of which crystallize in novel structure types. Three were discovered in the Ca-Cu-Cd system: Ca5Cu2Cd and Ca2Cu 2Cd9, which adopt ternary variants of binary structures, and Ca10Cu2Cd27, which crystallizes in a new structure built from Bergman clusters. All three structures can be traced to electronic packing frustration induced by the similar electronegativities but different metallic radii of Cu and Cd. The Gd-Fe-C system yielded the new carbometalate Gd13Fe 10C13 and an oxycarbide derivative. These phases crystallize in structures built from Gd tricapped trigonal prisms interpenetrated by an Fe-C network. Theoretical analyses reveal that Fe-Fe and Fe-C multiple bonding is found throughout this network. A theoretical investigation of similar carbides uncovers additional metal-metal, metal-carbon, and carbon-carbon multiple bonding. This unusual bonding stabilizes the carbides by satisfying preferred electron counts for their transition metal sites. One new phase, Mg4.5Pd5Ge1.5, was found in the Mg-Pd-Ge system. Its structure is closely related to the CsCl-type structure of

  14. Polarization sensitivity analysis of an earth remote sensing instrument - The MODIS-N phase B study

    NASA Technical Reports Server (NTRS)

    Waluschka, E.; Silverglate, P.; Ftaclas, C.; Turner, A.

    1992-01-01

    Polarization analysis software that employs Jones matrix formalism to calculate the polarization sensitivity of an instrument design was developed at Hughes Danbury Optical Systems. The code is capable of analyzing the full ray bundle at its angles of incidence for each optical surface. Input is based on the system ray trace and the thin film coating design at each surface. The MODIS-N (Moderate Resolution Imaging Spectrometer) system is used to demonstrate that it is possible to meet stringent requirements on polarization insensitivity associated with planned remote sensing instruments. Analysis indicates that a polarization sensitivity less than or equal to 2 percent was achieved in all desired spectral bands at all pointing angles, per specification. Polarization sensitivities were as high as 10 percent in similar remote sensing instruments.

  15. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  16. Formation of a diffusion-based intermetallic interface layer in friction stir welded dissimilar Al-Cu lap joints

    NASA Astrophysics Data System (ADS)

    Marstatt, R.; Krutzlinger, M.; Luderschmid, J.; Zaeh, M. F.; Haider, F.

    2017-03-01

    The joining of dissimilar metals is an important issue in modern lightweight design. Friction Stir Welding (FSW) is suitable for this task since the solidus temperature is usually not exceeded during the process. As a consequence, dissimilar joints can be produced with a minimum of deteriorating intermetallic phases. The latest studies showed the formation of intermetallic layers at the bonding interface with no significant negative influence on the seam quality. In this study, those intermetallic nanolayers at the interface of aluminium / copper lap joints were analysed. For the experiments, the commercially pure alloys EN AW-1050 and CW008A were chosen. The process temperature changed with respect to the parameter setup and was measured at different locations of the seam. The intermetallic layers at the interface were analysed by scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). The experiments show that the thickness of the interlayer clearly correlates with the process temperature using an Arrhenius equation. It is supposed, that the rotating probe removes the oxide layers of the metal surfaces and a metallic bonding between the Al- and the Cu-phase is formed. Due to the elevated temperature after the probe has passed, the intermetallic layer has emerged by interdiffusion.

  17. Plasma spray forming metals, intermetallics, and composites

    NASA Astrophysics Data System (ADS)

    Sampath, Sanjay; Herman, Herbert

    1993-07-01

    Plasma spray processing is a droplet deposition method that combines the steps of melting, rapid solidification, and consolidation into a single step. The versatility of the technology enables the processing of freestanding bulk, near-net shapes of a wide range of alloys, intermetallics, ceramics, and composites, while still retaining the benefits of rapid solidification processing. In particular, it is possible to produce dense forms through vacuum plasma spraying.

  18. Oxygen stabilized zirconium vanadium intermetallic compound

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

  19. Measurement of the surface profile of an axicon lens with a polarization phase-shifting shearing interferometer.

    PubMed

    Chatterjee, Sanjib; Kumar, Y Pavan

    2011-11-10

    We present a Twyman-Green interferometer (TGI)-based polarization phase-shifting shearing interferometric technique for testing the conical surface of an axicon (AX) lens. In this technique, the annular beam generated due to the passing of an expanded collimated laser beam traveling along the axis of revolution of the transparent glass AX element is split up into its reflected and transmitted components, having the plane of polarization in the orthogonal planes, by the polarization beam splitter (PBS) cube of the TGI-based optical setup. The split-up components are made to travel unequal paths along the two arms of the TGI and are recombined by the PBS. Because of the difference in path lengths traveled by the annular conical beams, a linear shear is introduced along the radial direction between the interfering components. Thus, the resulting interference pattern gives a map of the optical path difference (OPD) between two successive close points along a radial direction on the conical surface of the AX lens. The OPD map along radial directions, and hence the slopes/profiles of the conical surface, are obtained by applying polarization phase-shifting interferometry. Results obtained for an AX lens are presented.

  20. Measurement of the surface profile of an axicon lens with a polarization phase-shifting shearing interferometer

    SciTech Connect

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2011-11-10

    We present a Twyman-Green interferometer (TGI)-based polarization phase-shifting shearing interferometric technique for testing the conical surface of an axicon (AX) lens. In this technique, the annular beam generated due to the passing of an expanded collimated laser beam traveling along the axis of revolution of the transparent glass AX element is split up into its reflected and transmitted components, having the plane of polarization in the orthogonal planes, by the polarization beam splitter (PBS) cube of the TGI-based optical setup. The split-up components are made to travel unequal paths along the two arms of the TGI and are recombined by the PBS. Because of the difference in path lengths traveled by the annular conical beams, a linear shear is introduced along the radial direction between the interfering components. Thus, the resulting interference pattern gives a map of the optical path difference (OPD) between two successive close points along a radial direction on the conical surface of the AX lens. The OPD map along radial directions, and hence the slopes/profiles of the conical surface, are obtained by applying polarization phase-shifting interferometry. Results obtained for an AX lens are presented.

  1. Spectral induced polarization of the three-phase system CO2 - brine - sand under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Börner, Jana H.; Herdegen, Volker; Repke, Jens-Uwe; Spitzer, Klaus

    2016-10-01

    The spectral complex conductivity of a water-bearing sand during interaction with carbon dioxide (CO2) is influenced by multiple, simultaneous processes. These processes include partial saturation due to the replacement of conductive pore water with CO2 and chemical interaction of the reactive CO2 with the bulk fluid and the grain-water interface. We present a laboratory study on the spectral induced polarization (SIP) of water-bearing sands during exposure to and flow-through by CO2. Conductivity spectra were measured successfully at pressures up to 30 MPa and 80°C during active flow and at steady-state conditions concentrating on the frequency range between 0.0014 and 100 Hz. The frequency range between 0.1 and 100 Hz turned out to be most indicative for potential monitoring applications. The presented data show that the impact of CO2 on the electrolytic conductivity may be covered by a model for pore-water conductivity, which depends on salinity, pressure and temperature and has been derived from earlier investigations of the pore-water phase. The new data covering the three-phase system CO2-brine-sand further show that chemical interaction causes a reduction of surface conductivity by almost 20 per cent, which could be related to the low pH-value in the acidic environment due to CO2 dissolution and the dissociation of carbonic acid. The quantification of the total CO2 effect may be used as a correction during monitoring of a sequestration in terms of saturation. We show that this leads to a correct reconstruction of fluid saturation from electrical measurements. In addition, an indicator for changes of the inner surface area, which is related to mineral dissolution or precipitation processes, can be computed from the imaginary part of conductivity. The low frequency range between 0.0014 and 0.1 Hz shows additional characteristics, which deviate from the behaviour at higher frequencies. A Debye decomposition approach is applied to isolate the feature dominating

  2. Spectral induced polarization of the three-phase system CO2 - brine - sand under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Börner, Jana H.; Herdegen, Volker; Repke, Jens-Uwe; Spitzer, Klaus

    2017-01-01

    The spectral complex conductivity of a water-bearing sand during interaction with carbon dioxide (CO2) is influenced by multiple, simultaneous processes. These processes include partial saturation due to the replacement of conductive pore water with CO2 and chemical interaction of the reactive CO2 with the bulk fluid and the grain-water interface. We present a laboratory study on the spectral induced polarization of water-bearing sands during exposure to and flow-through by CO2. Conductivity spectra were measured successfully at pressures up to 30 MPa and 80 °C during active flow and at steady-state conditions concentrating on the frequency range between 0.0014 and 100 Hz. The frequency range between 0.1 and 100 Hz turned out to be most indicative for potential monitoring applications. The presented data show that the impact of CO2 on the electrolytic conductivity may be covered by a model for pore-water conductivity, which depends on salinity, pressure and temperature and has been derived from earlier investigations of the pore-water phase. The new data covering the three-phase system CO2-brine-sand further show that chemical interaction causes a reduction of surface conductivity by almost 20 per cent, which could be related to the low pH-value in the acidic environment due to CO2 dissolution and the dissociation of carbonic acid. The quantification of the total CO2 effect may be used as a correction during monitoring of a sequestration in terms of saturation. We show that this leads to a correct reconstruction of fluid saturation from electrical measurements. In addition, an indicator for changes of the inner surface area, which is related to mineral dissolution or precipitation processes, can be computed from the imaginary part of conductivity. The low frequency range between 0.0014 and 0.1 Hz shows additional characteristics, which deviate from the behaviour at higher frequencies. A Debye decomposition approach is applied to isolate the feature dominating the

  3. Phase and direction dependence of photorefraction in a low-frequency strong circular-polarized plane wave

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Sheng; Wang, Nai-Yan; Tang, Xiu-Zhang

    2015-05-01

    Contrary to the superposition principle, it is well known that photorefraction exists in the vacuum with the presence of a strong static field, a laser field, or a rotational magnetic field. Different from the classical optical crystals, the refractive index also depends on the phase of the strong electromagnetic field. We obtain the phase and direction dependence of the refractive index of a probe wave incident in the strong field of a circular-polarized plane wave by solving the Maxwell equations corrected by the effective Lagrangian. It may provide a valuable theoretical basis to calculate the polarization evolution of waves in the strong electromagnetic circumstances of pulsar or neutron stars. Project supported by the National Basic Research Program of China (Grant No. 2011CB808104) and the National Natural Science Foundation of China (Grant No. 11105233).

  4. Overview of the development of FeAl intermetallic alloys

    SciTech Connect

    Maziasz, P.J.; Liu, C.T.; Goodwin, G.M.

    1995-09-01

    B2-phase FeAl ordered intermetallic alloys based on an Fe-36 at.% Al composition are being developed to optimize a combination of properties that includes high-temperature strength, room-temperature ductility, and weldability. Microalloying with boron and proper processing are very important for FeAl properties optimization. These alloys also have the good to outstanding resistance to oxidation, sulfidation, and corrosion in molten salts or chlorides at elevated temperatures, characteristic of FeAl with 30--40 at.% Al. Ingot- and powder-metallurgy (IM and PM, respectively) processing both produce good properties, including strength above 400 MPa up to about 750 C. Technology development to produce FeAl components for industry testing is in progress. In parallel, weld-overlay cladding and powder coating technologies are also being developed to take immediate advantage of the high-temperature corrosion/oxidation and erosion/wear resistance of FeAl.

  5. Plastic deformation of ordered intermetallic alloys: Fundamental aspects

    SciTech Connect

    Yoo, M.H.

    1994-10-01

    Fundamental aspects of plastic deformation in ordered intermetallic alloys are reviewed by directly comparing the temperature-dependent yield stresses of Ni{sub 3}Al and Ni{sub 3}Si (the L1{sub 2} structure), NiAl and FeAl (the B2 structure), and TiAl and Ti{sub 3}Al (non-cubic L1{sub 0} and D0{sub 19} structures, respectively). While the yield strength anomaly observed in Ni{sub 3}Al is consistent with the prevailing dislocation models, that found in stoichiometric Ni{sub 3}Si is not. The strong plastic anisotropy observed in NiAl stems from the high antiphase boundary energy, and that found in two-phase {gamma}-TiAl/{alpha}{sub 2}-Ti{sub 3}Al is due to the exceptionally high compressive yield strength along the c-axis of Ti{sub 3}Al.

  6. High pressure Mössbauer studies of magnetic Np intermetallics

    NASA Astrophysics Data System (ADS)

    Moser, J.; Gal, J.; Potzel, W.; Wortmann, G.; Kalvius, G. M.; Dunlap, B. D.; Lam, D. J.; Spirlet, J. C.

    1980-10-01

    A high pressure (50 kbar) Mössbauer spectrometer for the 60 keV resonance in 237Np for temperatures between 1.4 and 100 K is described. It was used to study the magnetic properties of some neptunium intermetallics under pressure. For the cubic Laves phase compounds NpOs 2 and NpAl 2 a drastic decrease of the ordering temperature, the hyperfine field, and the isomer shift under increasing pressure was observed. It shows that their magnetic properties are primarily determined by the Np-Np separation which controls the width and hybridization of the 5f band. In contrast, an increase of ordering temperature coupled with a decrease of isomer shift with pressure was found in tetragonal NpCo 2Si 2, while the hyperfine field remains constant. This suggests that its magnetic properties must arise from different sources.

  7. Intermetallic compounds in heterogeneous catalysis-a quickly developing field.

    PubMed

    Armbrüster, Marc; Schlögl, Robert; Grin, Yuri

    2014-06-01

    The application of intermetallic compounds for understanding in heterogeneous catalysis developed in an excellent way during the last decade. This review provides an overview of concepts and developments revealing the potential of intermetallic compounds in fundamental as well as applied catalysis research. Intermetallic compounds may be considered as platform materials to address current and future catalytic challenges, e.g. in respect to the energy transition.

  8. Intermetallic compounds in heterogeneous catalysis—a quickly developing field

    PubMed Central

    Armbrüster, Marc; Schlögl, Robert; Grin, Yuri

    2014-01-01

    The application of intermetallic compounds for understanding in heterogeneous catalysis developed in an excellent way during the last decade. This review provides an overview of concepts and developments revealing the potential of intermetallic compounds in fundamental as well as applied catalysis research. Intermetallic compounds may be considered as platform materials to address current and future catalytic challenges, e.g. in respect to the energy transition. PMID:27877674

  9. Determination of polar aromatic amines using newly synthesized sol-gel titanium (IV) butoxide cyanopropyltriethoxysilane as solid phase extraction sorbent.

    PubMed

    Miskam, Mazidatulakmam; Abu Bakar, Nor Kartini; Mohamad, Sharifah

    2014-03-01

    A solid phase extraction (SPE) method has been developed using a newly synthesized titanium (IV) butoxide-cyanopropyltriethoxysilane (Ti-CNPrTEOS) sorbent for polar selective extraction of aromatic amines in river water sample. The effect of different parameters on the extraction recovery was studied using the SPE method. The applicability of the sorbents for the extraction of polar aromatic amines by the SPE was extensively studied and evaluated as a function of pH, conditioning solvent, sample loading volume, elution solvent and elution solvent volume. The optimum experimental conditions were sample at pH 7, dichloromethane as conditioning solvent, 10 mL sample loading volume and 5 mL of acetonitrile as the eluting solvent. Under the optimum conditions, the limit of detection (LOD) and limit of quantification (LOQ) for solid phase extraction using Ti-CNPrTEOS SPE sorbent (0.01-0.2; 0.03-0.61 µg L(-1)) were lower compared with those achieved using Si-CN SPE sorbent (0.25-1.50; 1.96-3.59 µg L(-1)) and C18 SPE sorbent (0.37-0.98; 1.87-2.87 µg L(-1)) with higher selectivity towards the extraction of polar aromatic amines. The optimized procedure was successfully applied for the solid phase extraction method of selected aromatic amines in river water, waste water and tap water samples prior to the gas chromatography-flame ionization detector separation.

  10. Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator.

    PubMed

    Liu, Shifeng; Zhu, Dan; Wei, Zhengwu; Pan, Shilong

    2014-07-01

    A photonic approach for the generation of a widely tunable arbitrarily phase-coded microwave signal based on a dual-parallel polarization modulator (DP-PolM) is proposed and demonstrated without using any optical or electrical filter. Two orthogonally polarized ± first-order optical sidebands with suppressed carrier are generated based on the DP-PolM, and their polarization directions are aligned with the two principal axes of the following PolM. Phase coding is implemented at a following PolM driven by an electrical coding signal. The inherent frequency-doubling operation can make the system work at a frequency beyond the operation bandwidth of the DP-PolM and the 90° hybrid. Because no optical or electrical filter is applied, good frequency tunability is realized. An experiment is performed. The generation of phase-coded signals tuning from 10 to 40 GHz with up to 10  Gbit/s coding rates is verified.

  11. Polarization-independent integrated electro-optic phase modulator in polymers

    NASA Astrophysics Data System (ADS)

    Braeuer, Andreas H.; Gase, Torsten; Erdmann, Lars; Dannberg, Peter; Karthe, Wolfgang

    1994-01-01

    Polymer multilayer waveguide technology was used to fabricate a polarization-independent phasemodulator. Refractive indices and electro-optic coefficient r33 of the materials used (Co. SANDOZ) were determined by waveguide methods.

  12. Long-Term Behavior of the Tritides Formed by Nickel-Based Intermetallic Compounds

    SciTech Connect

    Bowman, Jr., R. C.; Steinmeyer, R. H.; Matson, L. K.; Attalla, A.; Craft, B. D.

    1985-04-01

    Some properties of the tritide phases formed by the intermetallic compounds Mg2Ni, ZrNi, and LaNi5 have been studied. Whereas ZrNiT3 will retain its stoichiometry indefinitely when sufficient gaseous tritium is available, the stoichiometries of Mg2NiT4 and LaNi5T6.9 decrease with time. Although all three intermetallic tritides can retain large quantities of the helium-3 tritium decay daughter product in the solid phase, irreversible release of helium begins after several hundred days for ZrNiTx and Mg2NiTx. However, LaNi5Tx retains all of the helium generated in the solid for at least 2400 days. NMR measurements for ZrNiTx and Mg2NiTx imply that helium is retained in microscopic bubbles as previously observed in several binary metal tritides.

  13. Microstructure of an Ingot of Sm2Fe17 Intermetallic and its Homogenization

    NASA Astrophysics Data System (ADS)

    Buryakov, I. N.; Kamynin, A. V.; Éverstov, A. A.; Kraposhin, V. S.; Talis, A. L.

    2017-01-01

    The phase composition and microstructure of Sm - Fe alloys obtained by vacuum induction melting of the elements are studied near the stoichiometry of Sm2F17 by the methods of scanning electron microscopy, local microanalysis and x-ray analysis. The possibility of coherent junction of all the phase components of an ingot is analyzed with the help of representation of the crystal structures of all intermetallics of the Sm - Fe system in terms of coordination polyhedrons. It is shown that long-term annealing at a high temperature (for 30 h at 1150°C) does not remove from the structure of the ingot the regions of metallic samarium formed due to the peritectic type of solidification of the Sm2Fe17 intermetallic.

  14. Stability of pharmaceuticals and other polar organic compounds stored on polar organic chemical integrative samplers and solid-phase extraction cartridges.

    PubMed

    Carlson, Jules C; Challis, Jonathan K; Hanson, Mark L; Wong, Charles S

    2013-02-01

    The stability of 24 chemicals, including pharmaceuticals and personal care products, and some agrochemicals on extraction media was evaluated by preloading them onto Oasis hydrophilic lipophilic balanced solid-phase extraction (SPE) cartridges and polar organic chemical integrative samplers (POCIS) followed by storage at -20°C over time. After 20 months, the average loss was 11% on POCIS, with only 2,4-dichlorophenoxyacetic acid, atrazine, chlorpyrifos, and gemfibrozil showing a statistically significant decline compared with initial concentrations. Losses on SPE cartridges were below 19%, with an average loss of 9%. In addition to laboratory spiked samples, multiple POCIS deployed in wastewater-impacted surface waters and SPE extracts of these waters were stored in their original coextracted matrix for nearly two years with minimal observed losses. Errors from typical sampling, handling, and concentration estimates from POCIS sampling rates were typically ± 15 to 30% relative standard deviation, so observed storage losses are minimal for most POCIS applications. While losses during storage on SPE cartridges for 20 months were small but statistically significant for many compounds, addition of labeled internal standards prior to freezing should correct for such losses. Thus, storage of processed water samples for analysis of polar organic pollutants is viable for archival purposes or studies for which samples cannot be analyzed in the short term.

  15. Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Jia, Huaiting; Tian, Xiaocheng; Yuan, Haoyu; Zhu, Na; Su, Jingqin; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo

    2016-10-01

    In the research of inertial confinement fusion, laser plasma interaction (LPI) is becoming a key problem that affects ignition. Here, multi-frequency modulation (Multi-FM) smoothing by spectral dispersion (SSD), continuous phase plate (CPP) and polarization smoothing (PS) were experimentally studied and implemented on the SG-III laser facility. After using these techniques, the far field distribution of SG-Ⅲ laser facility can be adjusted, controlled and repeated accurately. The output spectrums of the cascade phase modulators used for Multi-FM SSD were stable and the FM-to-AM effect can be restrained. Experiments on SG-III laser facility indicate that when the number of color cycles adopts 1, imposing SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of preamplifier and main amplifiers with 30-TDL pinhole size. The nonuniformity of the focal spots using Multi-FM SSD, CPP and PS drops to 0.18, comparing to 0.26 with CPP+SSD, 0.57 with CPP+PS and 0.84 with only CPP and wedged lens. Polarization smoothing using flat birefringent plate in the convergent beam of final optics assembly (FOA) was studied. The PS plates were manufactured and equipped on SG-III laser facility for LPI research. Combined beam smoothing and polarization manipulation were also studied to solve the LPI problem. Results indicate that through adjusting dispersion directions of SSD beams in a quad, two dimensional SSD can be obtained. Using polarization control plate (PCP), polarization on the near field and far field can be manipulated, providing new method to solve LPI problem in indirect drive laser fusion.

  16. Short- and long-range polar order contributions to the Ferroelectric phase of Ca2+ doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Markovin, P. A.; Trepakov, V. A.; Guzhva, M. E.; Razdobarin, A. G.; Tagantsev, A. K.; Andreev, D. A.; Dejneka, A.

    2016-11-01

    Short- and long-range impurity-induced polar ordering in Sr1-x CaxTiO3 (x = 0.014) single crystals was investigated and discussed on the basis of light refraction, morphic birefringence and temperature-dependent dielectric hysteresis loop measurements. A new method for the calculation of the short-range polar order contribution P sh in ferroelectric (FE) phases below T C from light refraction measurements was applied. This method considers optical indicatrix perturbation due to polar ordering taking into account polarization fluctuations. The magnitudes and temperature dependences of P sh originated by spatial fluctuations and long-range spontaneous polarization P s were determined. These results allowed us to obtain quantitatively and to compare short (P sh)- and long (P s) range polar order contributions to the formation of impurity-induced FE phase in quantum paraelectrics.

  17. Magnetic properties of a new intermetallic compound Ho2Ni2Pb

    NASA Astrophysics Data System (ADS)

    Muñoz-Sandoval, E.; Chinchure, A. D.; Hendrikx, R. W. A.; Mydosh, J. A.

    2001-10-01

    Single-phase, textured samples of a new orthorhombic intermetallic compound Ho2Ni2Pb have been fabricated (space group Cmmm). Here the bulk magnetic properties are presented as determined via magnetization, susceptibility, heat capacity and resistivity measurements. The results exhibit two distinct magnetic transitions and large metamagnetic effects. Such behaviour is related to the unusual rare-earth symmetry of the highly anisotropic crystal structure.

  18. Polarity control of GaN grown on pulsed-laser-deposited AlN/GaN template by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoo, Jinyeop; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    We report on the polarity control of GaN regrown on pulsed-laser-deposition-grown N-polar AlN on a metalorganic-vapor-phase-epitaxy-grown Ga-polar GaN template. The polarity of the regrown GaN, which was confirmed using aqueous KOH solutions, can be inverted from that of AlN by inserting a low-temperature GaN (LT-GaN) buffer layer. We hypothetically ascribe the Ga-polarity selection of GaN on the LT-GaN buffer layer to the mixed polarity of LT-GaN grains and higher growth rate of the Ga-polar grain, which covers up the N-polar grain during the initial stage of the high-temperature growth. The X-ray rocking curve analysis revealed that the edge-dislocation density in the N-polar regrown GaN is 5 to 8 times smaller than that in the Ga-polar regrown GaN. N-polar GaN grows directly on N-polar AlN at higher temperatures. Therefore, nucleus islands grow larger than those of LT-GaN and the area fraction of coalescence boundaries between islands, where edge dislocations emerge, becomes smaller.

  19. Design of Bulk Metallic Glasses and Glass Matrix Composites Near Intermetallic Composition by the Principle of Competitive Growth

    NASA Astrophysics Data System (ADS)

    Ma, G. Z.; Chen, D.

    2016-11-01

    A Cu49Zr51 intermetallic is used as a base for synthesizing metallic glasses and composites with glass matrixes [(Cu49Zr51)100 - x Al x , where x = 0, 2, 4, 6, 8, 10 and 12 at.%]. The introduction of aluminum raises the microhardness and the ultimate compressive strength. In addition, the suppression of formation of crystalline phase upon the introduction of 8 at.% Al provides a glass-like structure in alloy (Cu49Zr51)92Al8. The formation of the glass-like structure is discussed within the concept of competitive nucleation of different intermetallics.

  20. In vitro biomonitoring in polar extracts of solid phase matrices reveals the presence of unknown compounds with estrogenic activity.

    PubMed

    Legler, J; Leonards, P; Spenkelink, A; Murk, A J

    2003-01-01

    Determination of estrogenic activity has so far mainly concentrated on the assessment of compounds in surface water and effluent. This study is one of the first to biomonitor (xeno-)estrogens in sediment, suspended particulate matter and aquatic organisms. The relatively polar acetone extracts from these solid phase matrices do not contain the well-known estrogenic compounds such as hormones, alkylphenols and phthalates. An in vitro 'estrogen receptor-mediated chemical activated luciferase gene expression' (ER-CALUX) assay was applied to samples from various locations in the Netherlands. Estrogenic activity measured in polar fractions of particulate matter and sediment extracts ranged from below detection limit to up to 4.5 pmol estradiol equivalents (EEQ)/g dry weight. Estrogenic activity in freshwater river sediments was up to five times higher compared to sediments from large lakes and coastal locations. Tissue extracts EEQs were determined in bream (Abramis brama), flounder (Platichthysflesus), freshwater mussels (Dreissena polymorpha) and marine mussels (Mytilus edulis). The highest biota EEQ levels were found in the freshwater zebra mussel (30 pmol EEQ/g lipid). One sample site showed greatly elevated EEQs in sediment and biota, which correlated with effects found in the wild populations of bream. The EEQ activity of the unknown compounds in the polar fraction mostly was much higher than the calculated EEQ levels based on known estrogens in the non-polar fraction (previously published data).

  1. Simultaneous polarization-insensitive phase-space trans-multiplexing and wavelength multicasting via cross-phase modulation in a photonic crystal fiber at 10 GBd

    NASA Astrophysics Data System (ADS)

    Cannon, Brice M.

    This thesis investigates the all-optical combination of amplitude and phase modulated signals into one unified multi-level phase modulated signal, utilizing the Kerr nonlinearity of cross-phase modulation (XPM). Predominantly, the first experimental demonstration of simultaneous polarization-insensitive phase-transmultiplexing and multicasting (PI-PTMM) will be discussed. The PI-PTMM operation combines the data of a single 10-Gbaud carrier-suppressed return-to-zero (CSRZ) on-off keyed (OOK) pump signal and 4x10-Gbaud return-to-zero (RZ) binary phase-shift keyed (BPSK) probe signals to generate 4x10-GBd RZ-quadrature phase-shift keyed (QPSK) signals utilizing a highly nonlinear, birefringent photonic crystal fiber (PCF). Since XPM is a highly polarization dependent nonlinearity, a polarization sensitivity reduction technique was used to alleviate the fluctuations due to the remotely generated signals' unpredictable states of polarization (SOP). The measured amplified spontaneous emission (ASE) limited receiver sensitivity optical signal-to-noise ratio (OSNR) penalty of the PI-PTMM signal relative to the field-programmable gate array (FPGA) pre-coded RZ-DQPSK baseline at a forward-error correction (FEC) limit of 10-3 BER was ≈ 0.3 dB. In addition, the OSNR of the remotely generated CSRZ-OOK signal could be degraded to ≈ 29 dB/0.1nm, before the bit error rate (BER) performance of the PI-PTMM operation began to exponentially degrade. A 138-km dispersion-managed recirculating loop system with a 100-GHz, 13-channel mixed-format dense-wavelength-division multiplexed (DWDM) transmitter was constructed to investigate the effect of metro/long-haul transmission impairments. The PI-PTMM DQPSK and the FPGA pre-coded RZ-DQPSK baseline signals were transmitted 1,900 km and 2,400 km in the nonlinearity-limited transmission regime before reaching the 10-3 BER FEC limit. The relative reduction in transmission distance for the PI-PTMM signal was due to the additional transmitter

  2. Demonstration of Heterogeneous Parahydrogen Induced Polarization Using Hyperpolarized Agent Migration from Dissolved Rh(I) Complex to Gas Phase

    PubMed Central

    2015-01-01

    Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C=C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene 1H NMR signals observed in situ were enhanced by a factor of approximately 10 000 at a static field of 47.5 mT. High-resolution 1H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time. PMID:24918975

  3. Demonstration of heterogeneous parahydrogen induced polarization using hyperpolarized agent migration from dissolved Rh(I) complex to gas phase.

    PubMed

    Kovtunov, Kirill V; Barskiy, Danila A; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Koptyug, Igor V; Chekmenev, Eduard Y

    2014-07-01

    Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene (1)H NMR signals observed in situ were enhanced by a factor of approximately 10,000 at a static field of 47.5 mT. High-resolution (1)H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time.

  4. Intermetallic strengthened alumina-forming austenitic steels for energy applications

    NASA Astrophysics Data System (ADS)

    Hu, Bin

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, materials required are strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe 2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. This research starts with microstructural and microchemical analyses of these intermetallic strengthened alumina-forming austenitic steels in a scanning electron microscope. The microchemistry of precipitates, as determined by energy-dispersive x-ray spectroscopy and transmission electron microscope, is also studied. Different thermo-mechanical treatments were carried out to these stainless steels in an attempt to further improve their mechanical properties. The microstructural and microchemical analyses were again performed after the thermo-mechanical processing. Synchrotron X-ray diffraction was used to measure the lattice parameters of these steels after different thermo-mechanical treatments. Tensile tests at both room and elevated temperatures were performed to study mechanical behaviors of this novel alloy system; the deformation mechanisms were studied by strain rate jump tests at elevated temperatures. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these alumina-forming austenitic steels after creep tests. Experiments were carried out to study the effects of boron and carbon additions in the aged alumina-forming austenitic steels.

  5. DOE-EPSCoR. Exchange interactions in epitaxial intermetallic layered systems

    SciTech Connect

    LeClair, Patrick R.; Gary, Mankey J.

    2015-05-25

    The goal of this research is to develop a fundamental understanding of the exchange interactions in epitaxial intermetallic alloy thin films and multilayers, including films and multilayers of Fe-Pt, Co-Pt and Fe-P-Rh alloys deposited on MgO and Al2O3 substrates. Our prior results have revealed that these materials have a rich variety of ferromagnetic, paramagnetic and antiferromagnetic phases which are sensitive functions of composition, substrate symmetry and layer thickness. Epitaxial antiferromagnetic films of FePt alloys exhibit a different phase diagram than bulk alloys. The antiferromagnetism of these materials has both spin ordering transitions and spin orienting transitions. The objectives include the study of exchange-inversion materials and the interface of these materials with ferromagnets. Our aim is to formulate a complete understanding of the magnetic ordering in these materials, as well as developing an understanding of how the spin structure is modified through contact with a ferromagnetic material at the interface. The ultimate goal is to develop the ability to tune the phase diagram of the materials to produce layered structures with tunable magnetic properties. The alloy systems that we will study have a degree of complexity and richness of magnetic phases that requires the use of the advanced tools offered by the DOE-operated national laboratory facilities, such as neutron and x-ray scattering to measure spin ordering, spin orientations, and element-specific magnetic moments. We plan to contribute to DOE’s mission of producing “Materials by Design” with properties determined by alloy composition and crystal structure. We have developed the methods for fabricating and have performed neutron diffraction experiments on some of the most interesting phases, and our work will serve to answer questions raised about the element-specific magnetizations using the magnetic x-ray dichroism techniques and interface magnetism in layered structures

  6. Thickness measurement of transparent glass plates using a lateral shearing cyclic path optical configuration setup and polarization phase shifting interferometry.

    PubMed

    Kumar, Y Pavan; Chatterjee, Sanjib

    2010-11-20

    We present a measurement technique to determine the thickness of a transparent glass plate (GP) by using a lateral shearing cyclic path optical configuration (CPOC) setup and polarization phase shifting interferometry (PPSI). In the technique, the GP introduces a longitudinal shift in the focus of the beam and, as a result, a spherical wavefront emerges from the lens, which is otherwise set for producing a collimated beam. Using CPOC, two laterally sheared orthogonally polarized beams are generated from the incident spherical wavefront. By applying PPSI, the slope of the optical path difference variation between the laterally sheared interfering beams is evaluated, and the radius of the spherical wavefront and the longitudinal shift of the beam focus are calculated. The thickness of the GP is determined from the standard relation between the longitudinal shift of the focus introduced by the GP and the thickness of the GP. Results obtained for a GP of 9.810mm thickness are presented.

  7. Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium

    SciTech Connect

    Hang Chao; Huang Guoxiang

    2010-11-15

    We present a scheme for obtaining entangled photons and quantum phase gates in a room-temperature four-state tripod-type atomic system with two-mode active Raman gain (ARG). We analyze the linear and nonlinear optical responses of this ARG system and show that the scheme is fundamentally different from those based on electromagnetically induced transparency and hence can avoid significant probe-field absorption as well as a temperature-related Doppler effect. We demonstrate that highly entangled photon pairs can be produced and rapidly responding polarization qubit phase gates can be constructed based on the unique features of the enhanced cross-phase-modulation and superluminal probe-field propagation of the system.

  8. Concerted spatial-frequency and polarization-phase filtering of laser images of polycrystalline networks of blood plasma smears

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu A.

    2012-11-01

    The complex technique of concerted polarization-phase and spatial-frequency filtering of blood plasma laser images is suggested. The possibility of obtaining the coordinate distributions of phases of linearly and circularly birefringent protein networks of blood plasma separately is presented. The statistical (moments of the first to fourth orders) and scale self-similar (logarithmic dependences of power spectra) structure of phase maps of different types of birefringence of blood plasma of two groups of patients-healthy people (donors) and those suffering from rectal cancer-is investigated. The diagnostically sensitive parameters of a pathological change of the birefringence of blood plasma polycrystalline networks are determined. The effectiveness of this technique for detecting change in birefringence in the smears of other biological fluids in diagnosing the appearance of cholelithiasis (bile), operative differentiation of the acute and gangrenous appendicitis (exudate), and differentiation of inflammatory diseases of joints (synovial fluid) is shown.

  9. Concerted spatial-frequency and polarization-phase filtering of laser images of polycrystalline networks of blood plasma smears.

    PubMed

    Ushenko, Yu A

    2012-11-01

    The complex technique of concerted polarization-phase and spatial-frequency filtering of blood plasma laser images is suggested. The possibility of obtaining the coordinate distributions of phases of linearly and circularly birefringent protein networks of blood plasma separately is presented. The statistical (moments of the first to fourth orders) and scale self-similar (logarithmic dependences of power spectra) structure of phase maps of different types of birefringence of blood plasma of two groups of patients--healthy people (donors) and those suffering from rectal cancer--is investigated. The diagnostically sensitive parameters of a pathological change of the birefringence of blood plasma polycrystalline networks are determined. The effectiveness of this technique for detecting change in birefringence in the smears of other biological fluids in diagnosing the appearance of cholelithiasis (bile), operative differentiation of the acute and gangrenous appendicitis (exudate), and differentiation of inflammatory diseases of joints (synovial fluid) is shown.

  10. Intermetallic insertion anodes for lithium batteries.

    SciTech Connect

    Thackeray, M. M.; Vaughey, J.; Johnson, C. S.; Kepler, K. D.

    1999-11-12

    Binary intermetallic compounds containing lithium, or lithium alloys, such as Li{sub x}Al, Li{sub x}Si and Li{sub x}Sn have been investigated in detail in the past as negative electrode materials for rechargeable lithium batteries. It is generally acknowledged that the major limitation of these systems is the large volumetric expansion that occurs when lithium reacts with the host metal. Such large increases in volume limit the practical use of lithium-tin electrodes in electrochemical cells. It is generally recognized that metal oxide electrodes, MO{sub y}, in lithium-ion cells operate during charge and discharge by means of a reversible lithium insertion/extraction process, and that the cells offer excellent cycling behavior when the crystallographic changes to the unit cell parameters and unit cell volume of the Li{sub x}MO{sub y} electrode are kept to a minimum. An excellent example of such an electrode is the spinel Li{sub 4}Ti{sub 5}O{sub 12}, which maintains its cubic symmetry without any significant change to the lattice parameter (and hence unit cell volume) during lithium insertion to the rock-salt composition Li{sub 7}Ti{sub 5}O{sub 12}. This spinel electrode is an example of a ternary Li{sub x}MO{sub y} system in which a binary MO{sub y} framework provides a stable host structure for lithium. With this approach, the authors have turned their attention to exploring ternary intermetallic systems Li{sub x}MM{prime} in the hope of finding a system that is not subject to the high volumetric expansion that typifies many binary systems. In this paper, the authors present recent data of their investigations of lithium-copper-tin and lithium-indium-antimonide electrodes in lithium cells. The data show that lithium can be inserted reversibly into selected intermetallic compounds with relatively small expansion of the lithiated intermetallic structures.

  11. Metal thin-film optical polarizers for space applications, phase 2

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1991-01-01

    A light polarizing material was developed for wavelengths in the visible and near infrared spectral band (400 to 3,000 nm). The material is comprised of ellipsoidal silver particles uniformly distributed and aligned on the surface of an optical material. A method is set forth for making polarizing material by evaporatively coating a smooth glass surface with ellipsoidal silver particles. The wavelength of peak absorption is chosen by selecting the aspect ratio of the ellipsoidal metal particles and the refractive index of the material surrounding the metal particles. The wavelength of peak absorption can be selected to fall at a desired wavelength in the range from 400 to 3,000 nm by control of the deposition process. This method is demonstrated by evaporative deposition of silver particles directly on to a smooth optical surface. By applying a multilayer silver coating of a glass disc, a contrast of greater than 40,000 was achieved at 590 nm. A polarizing filter was designed, fabricated, and assembled which achieved contrast of 100,00 at 59 nm and can serve as a replacement for crystal polarizers.

  12. Synthesis, crystal structure, and magnetic properties of novel intermetallic compounds R2Co2SiC (R = Pr, Nd).

    PubMed

    Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E

    2014-06-16

    The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments.

  13. Electric polarization induced by phase separation in magnetically ordered and paramagnetic states of RMn2O5 (R=Gd, Bi)

    NASA Astrophysics Data System (ADS)

    Khannanov, B. Kh.; Sanina, V. A.; Golovenchits, E. I.; Scheglov, M. P.

    2017-01-01

    The electric polarization hysteresis loops and remanent polarization were revealed in multiferroics RMn2O5 with R=Gd and Bi at wide temperature interval from 5 K up to 330 K. Until recently, the long-range ferroelectric order having an exchange-striction magnetic nature had been observed in RMn2O5 only at low temperatures (T ≤TC = 30 - 35 K) . We believe that the polarization we observed was caused by the frozen superparaelectric state which was formed by the restricted polar domains resulting from phase separation and charge carriers self-organization. At some sufficiently high temperatures T ≫TC the frozen superparaelectric state was destroyed, and the conventional superparaelectric state occurred. This happened when the potential barriers of the restricted polar domain reorientations become equal to the kinetic energy of the itinerant electrons (leakage). The hysteresis loops were measured by the so-called PUND method which allowed us to correctly subtract the contribution of conductivity from the measured polarization. The correlations between properties of the phase separation domains and polarization were revealed and studied. The high-temperature polarization also had a magnetic nature and was controlled by the magnetic field because the double exchange between pairs of Mn ions with different valences (Mn3+ and Mn4+) in RMn2O5 was the basic interaction resulting in phase separation.

  14. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    SciTech Connect

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  15. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    SciTech Connect

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-09-15

    Plate impact experiments were conducted on a {gamma}-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics.

  16. Cold Sprayed Intermetallic Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Leshchinsky, Evgeny

    Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bond coat and a ceramic heat-isolative topcoat. Several recent research activities are concentrated on the development of improved multilayer bond coat and TBC materials. This study represents an investigation performed for the aluminum based bond coats, especially those with reduced thermal conductivities. Using alternative TBC materials, such as metal alloys and intermetallics, their processing methods can be further optimized to achieve the best thermal physical parameters. One example is the ten-layer system in which cold sprayed aluminum based intermetallics are synthesized. These systems demonstrated improved heat insulation and thermal fatigue capabilities compared to conventional TBC. The microstructures and properties of the laminar coatings were characterized by SEM, EDS, XRD; micromechanical and durability tests were performed to define the structure and coating formation mechanisms. Application prospects for HCCI engines are discussed. Fuel energy can be utilized more efficiently with the concept of low heat rejection engines with applied TBC.

  17. Miniaturized silicon photonic integrated swept source OCT receiver with dual polarization, dual balanced, in-phase and quadrature detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Lee, Hsiang-Chieh; Chen, Long; Vermeulen, Diedrik; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2016-03-01

    Miniaturization and cost reduction of OCT systems are important for enabling many new clinical applications as well as accelerating the development of existing applications. Silicon photonics is an important low-cost, high-volume, multi-functional platform for integrated optics because it can benefit from existing semiconductor fabrication techniques to integrate many advanced optical functions onto a single microchip. We present a miniaturized silicon photonic integrated swept source OCT receiver, measuring 3×4mm2, with advanced functionalities including dual polarization, dual balanced, in-phase and quadrature detection, essentially enabling the detection of the full vector field (amplitude, phase, and polarization) of the optical signal. With this integrated receiver, we demonstrate full-range OCT for complex conjugate artifact suppression, polarization diversity detection for removing polarization fading artifact, and polarization sensitive OCT for tissue birefringence imaging. The silicon photonic integrated receiver is a key advance towards developing a miniaturized, multi-functional swept source OCT system.

  18. Using polarity for engineering oxide nanostructures: structural phase diagram in free and supported MgO(111) ultrathin films.

    PubMed

    Goniakowski, Jacek; Noguera, Claudine; Giordano, Livia

    2004-11-19

    Using an ab initio total energy approach, we study the stability of free and Ag(111)-supported MgO(111) ultrathin films. We unravel a novel microscopic mechanism of stabilization of polar oxide orientations, based on a strong modification of the MgO structural phase diagram with respect to the bulk material. We predict that, at low thickness, films which are either unsupported or deposited on Ag(111) display a graphitelike Bk structure rather than the expected rocksalt one. Our results provide a consistent interpretation of recent experimental findings, exemplify the efficiency of this novel stabilization mechanism, and suggest new methods to engineer oxide nanostructures.

  19. Core-polarization-corrected random-phase approximation with exact exchange for dipole surface plasmons in silver clusters

    NASA Astrophysics Data System (ADS)

    Xuan, Fengyuan; Guet, Claude

    2016-10-01

    The surface plasmon in silver clusters is red shifted with respect to standard jellium random-phase approximation (RPA) predictions that work well for simple metal clusters. The reason for the deviation arises primarily from the non-negligible polarization interaction between the valence electrons and ionic cores. In order to quantify this effect in the jellium approximation we introduce a modified RPAE (RPA with exact exchange). The jellium background of Ag cores is treated as a polarizable sphere. This model predicts a dipole surface resonance in excellent agreement with published experimental data. Moreover it yields the blue shift (red shift) with decreasing sizes for cationic (anionic) Ag clusters as observed experimentally.

  20. Evidence of high densities and ion outflows in the polar cap during the recovery phase

    NASA Astrophysics Data System (ADS)

    Gallagher, D. L.; Waite, J. H., Jr.; Chappell, C. R.; Menietti, J. D.; Burch, J. L.

    1986-03-01

    The composition and characteristics of the polar cap plasma for an Oct. 14, 1981 outflow of polar wind ions are examined using data from the DE 1 satellite. The on-board instruments included a plasma wave instrument, a retarding ion mass spectrometer (RIMS) and a high altitude plasma instrument (HAPI). The outflow took place at an altitude of about 19,000 km at a magnetic local time of about midnight. The total plasma density measured was about 50/cu cm, which was an order of magnitude higher than normally recorded at that location and altitude. The background hydrogen plasma was disturbed by highly collimated flows of hydrogen and oxygen ions. The H(+) ions had a mean energy of 0.15 eV and a density of 6-10/cu cm. The O(+) ions had an average density of 20/cu cm and a temperature of 0.26 eV. The total flux of outflowing H(+) and O(+) was about 10 million/sq cm per sec. The HAPI data indicated that the O(+) ions appeared in the dayside ionosphere and the H(+) ions detected by the RIMS originated in the nightside polar cap.

  1. Evidence of high densities and ion outflows in the polar cap during the recovery phase

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Waite, J. H., Jr.; Chappell, C. R.; Menietti, J. D.; Burch, J. L.

    1986-01-01

    The composition and characteristics of the polar cap plasma for an Oct. 14, 1981 outflow of polar wind ions are examined using data from the DE 1 satellite. The on-board instruments included a plasma wave instrument, a retarding ion mass spectrometer (RIMS) and a high altitude plasma instrument (HAPI). The outflow took place at an altitude of about 19,000 km at a magnetic local time of about midnight. The total plasma density measured was about 50/cu cm, which was an order of magnitude higher than normally recorded at that location and altitude. The background hydrogen plasma was disturbed by highly collimated flows of hydrogen and oxygen ions. The H(+) ions had a mean energy of 0.15 eV and a density of 6-10/cu cm. The O(+) ions had an average density of 20/cu cm and a temperature of 0.26 eV. The total flux of outflowing H(+) and O(+) was about 10 million/sq cm per sec. The HAPI data indicated that the O(+) ions appeared in the dayside ionosphere and the H(+) ions detected by the RIMS originated in the nightside polar cap.

  2. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    PubMed Central

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  3. Determination of the carrier envelope phase for short, circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Titov, Alexander I.; Kämpfer, Burkhard; Hosaka, Atsushi; Nousch, Tobias; Seipt, Daniel

    2016-02-01

    We analyze the impact of the carrier envelope phase on the differential cross sections of the Breit-Wheeler and the generalized Compton scattering in the interaction of a charged electron (positron) with an intensive ultrashort electromagnetic (laser) pulse. The differential cross sections as a function of the azimuthal angle of the outgoing electron have a clear bump structure, where the bump position coincides with the value of the carrier phase. This effect can be used for the carrier envelope phase determination.

  4. Influence of hydrogen input partial pressure on the polarity of InN on GaAs (1 1 1)A grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Murakami, Hisashi; Eriguchi, Ken-ichi; Torii, Jun-ichi; Cho, Hyun-Chol; Kumagai, Yoshinao; Koukitu, Akinori

    2008-04-01

    Influences of hydrogen input partial pressure in the carrier gas ( F=PHo/(PHo+PNo)) on the crystalline quality and polarities of InN on GaAs (1 1 1)A surfaces were investigated by metalorganic vapor phase epitaxy (MOVPE). It was found that the polarity of the InN was affected by the hydrogen gas in the system regardless of the polarity of GaAs starting substrate. The polarity of InN layer grown with the hydrogen partial pressure of Fo=0.004 was a mixture of In-polarity and N-polarity, while that grown with Fo=0 was In-polarity. Degradation of the crystalline quality of InN grown with Fo=0.004 occurred due to the polarity inversion during the growth. The reason why the polarity of InN was influenced by the hydrogen carrier gas could be explained by the preferential growth of N-polarity InN in the H 2 contained ambient and/or the limiting reaction of InN decomposition.

  5. Direct high-performance liquid chromatography enantioseparation of terazosin on an immobilised polysaccharide-based chiral stationary phase under polar organic and reversed-phase conditions.

    PubMed

    Ferretti, Rosella; Gallinella, Bruno; La Torre, Francesco; Zanitti, Leo; Turchetto, Luciana; Mosca, Antonina; Cirilli, Roberto

    2009-07-10

    High-performance liquid chromatography (HPLC) enantioseparation of terazosin (TER) was accomplished on the immobilised-type Chiralpak IC chiral stationary phase (CSP) under both polar organic and reversed-phase modes. A simple analytical method was validated using a mixture of methanol-water-DEA 95:5:0.1 (v/v/v) as a mobile phase. Under reversed-phase conditions good linearities were obtained over the concentration range 8.76-26.28 microg mL(-1) for both enantiomers. The limits of detection and quantification were 10 and 30 ng mL(-1), respectively. The intra- and inter-day assay precision was less than 1.66% (RSD%). The optimised conditions also allowed to resolve chiral and achiral impurities from the enantiomers of TER. The proposed HPLC method supports pharmacological studies on the biological effects of the both forms of TER and analytical investigations of potential drug formulations based on a single enantiomer. At the semipreparative scale, 5.3 mg of racemic sample were resolved with elution times less than 12 min using a mobile phase consisting of methanol-DEA 100:0.1 (v/v) and both enantiomers were isolated with a purity of > or = 99% enantiomeric excess (ee). The absolute configuration of TER enantiomers was assigned by comparison of the measured specific rotations with those reported in the literature.

  6. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  7. Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase.

    PubMed

    Atkin, Rob; Warr, Gregory G

    2007-08-09

    Microemulsions of nonionic alkyl oligoethyleneoxide (CiEj) surfactants, alkanes, and ethylammonium nitrate (EAN), a room-temperature ionic liquid, have been prepared and characterized. Studies of phase behavior reveal that EAN microemulsions have many features in common with corresponding aqueous systems, the primary difference being that higher surfactant concentrations and longer surfactant tailgroups are required to offset the decreased solvophobicity the surfactant molecules in EAN compared with water. The response of the EAN microemulsions to variation in the length of the alkane, surfactant headgroup, and surfactant tailgroup has been found to parallel that observed in aqueous systems in most instances. EAN microemulsions exhibit a single broad small-angle X-ray scattering peak, like aqueous systems. These are well described by the Teubner-Strey model. A lamellar phase was also observed for surfactants with longer tails at lower temperatures. The scattering peaks of both microemulsion and lamellar phases move to lower wave vector on increasing temperature. This is ascribed to a decrease in the interfacial area of the surfactant layer. Phase behavior, small-angle X-ray scattering, and conductivity experiments have allowed the weakly to strongly structured transition to be identified for EAN systems.

  8. Joint mitigation of laser phase noise and fiber nonlinearity for polarization-multiplexed QPSK and 16-QAM coherent transmission systems.

    PubMed

    Morsy-Osman, Mohamed; Zhuge, Qunbi; Chen, Lawrence R; Plant, David V

    2011-12-12

    We propose the use of pilot-aided (PA) transmission, enabled by single-sideband-subcarrier modulation of both quadratures in the DSP-domain, in single-carrier systems to mitigate jointly laser phase noise and fiber nonlinearity. In addition to tolerance against laser phase noise, we show that the proposed scheme also improves the nonlinear tolerance of both polarization-division-multiplexed (PDM) QPSK and 16-QAM coherent transmission systems by increasing the maximum allowable launch power by 1 dB and 1.5 dB, respectively. The improved nonlinear performance of both systems also manifests itself as an increase in the maximum reach by 720 km and 480 km, respectively. Finally, when digital-to-analog converters (DACs) with lower bit resolutions are used at the transmitter, PA transmission is shown to preserve the same performance improvement over the non-PA case.

  9. Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride).

    PubMed

    Liu, Yi-Liao; Li, Ying; Xu, Jun-Ting; Fan, Zhi-Qiang

    2010-06-01

    Poly(vinylidene difluoride)/organically modified montmorillonite (PVDF/OMMT) composite nanofibers were prepared by electrospinning the solution of PVDF/OMMT precursor in DMF. Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM) show that in the bulk of the PVDF/OMMT precursor OMMT platelets are homogeneously dispersed in PVDF and can be both intercalated and exfoliated. It is found that the diameter of the PVDF/OMMT composite nanofibers is smaller than that of the neat PVDF fibers because the lower viscosity of PVDF/OMMT solution, which is attributed to the possible adsorption of PVDF chains on OMMT layers and thus reduction in number of entanglement. The crystal structure of the composite nanofibers was investigated using WAXD and Fourier transform infrared (FT-IR) and compared with that of thin film samples. The results show that the nonpolar alpha phase is completely absent in the electrospun PVDF/OMMT composite nanofibers, whereas it is still present in the neat PVDF electrospun fibers and in the thin films of PVDF/OMMT nanocomposites. The cooperative effect between electrospinning and nanoclay on formation of polar beta and gamma crystalline phases in PVDF is discussed. The IR result reveals that electrospinning induces formation of long trans conformation, whereas OMMT platelets can retard relaxation of PVDF chains and stabilize such conformation due to the possible interaction between the PVDF chains and OMMT layers. This cooperative effect leads to extinction of nonpolar alpha phase and enhances the polar beta and gamma phases in the electrospun PVDF/OMMT composite nanofibers.

  10. Enhanced resolution of Mentha piperita volatile fraction using a novel medium-polarity ionic liquid gas chromatography stationary phase.

    PubMed

    Ragonese, Carla; Sciarrone, Danilo; Grasso, Elisa; Dugo, Paola; Mondello, Luigi

    2016-02-01

    The evaluation of a novel medium-polarity ionic-liquid-based gas chromatography column, SLB-IL60, towards the analysis of a complex essential oil, namely, a peppermint essential oil sample, is reported. The SLB-IL60 30 m column was subjected to bleeding measurements, by means of conventional gas chromatography with mass spectrometry. The SLB-IL60 column was then evaluated in the analysis of pure standard compounds, chosen as typical constituents of peppermint essential oil. Resolution and peak symmetry (expressed as tailing factors at 10% of peak height) were measured and the results were compared to those obtained on the most widely used columns in such an application, namely a medium-polarity [100% poly(ethyleneglycol)] stationary phase, and an apolar 5% diphenyl/95% dimethyl siloxane. The final part of the evaluation was dedicated to the gas chromatography with mass spectrometry analysis of a peppermint essential oil sample and again the data were compared to those obtained on the 100% poly(ethyleneglycol) and the 5% diphenyl/95% dimethyl siloxane phase. Linear retention indices were determined for all the identified components on the ionic liquid capillary.

  11. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-10-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  12. Engineering of phase matching for mid-infrared coherent anti-Stokes Raman wavelength conversion with orthogonally polarized pump and Stokes waves in silicon-on-sapphire waveguides.

    PubMed

    Wang, Zhaolu; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng

    2013-11-20

    The conversion efficiency of mid-infrared wavelength conversion based on coherent anti-Stokes Raman scattering with TE-polarized pump and TM-polarized Stokes waves is theoretically investigated in silicon-on-sapphire (SOS) waveguides. The peak conversion efficiency of -10  dB is obtained when the linear propagation loss is 1  dB/cm at Δk=0; however, it is reduced to -13.6  dB when the linear propagation loss is 2  dB/cm. The phase matching for wavelength conversion with orthogonally polarized pump and Stokes waves can be realized by engineering the birefringence in SOS waveguides, because proper phase mismatch induced by birefringence together with material dispersion-induced phase mismatch can counteract the large phase mismatch induced by waveguide dispersion. Moreover, compared with the phase matching for identically polarized pump and Stokes waves, the phase matching for orthogonally polarized pump and Stokes waves can be realized in a SOS waveguide with much smaller cross section, which reduces the power requirement for optical systems.

  13. Intermetallic compound formation at Cu-Al wire bond interface

    NASA Astrophysics Data System (ADS)

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du, Yong

    2012-12-01

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 °C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable θ'-CuAl2 IMC phase (tetragonal, space group: I4¯m2, a = 0.404 nm, c = 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable θ'-CuAl2 phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and θ'-CuAl2, which can minimize lattice mismatch for θ'-CuAl2 to grow on Cu.

  14. Thermal barrier coating system with intermetallic overlay bond coat

    SciTech Connect

    Duderstadt, E.C.; Nagaraj, B A.

    1993-08-24

    A superalloy article is described having a thermal barrier coating system thereon, comprising: a substrate made of a material selected from the group consisting of a nickel-based superalloy and a cobalt-based superalloy; and a thermal barrier coating system on the substrate, the thermal barrier coating system including an intermetallic bond coat overlying the substrate, the bond coat being selected from the group consisting of a nickel aluminide and a platinum aluminide intermetallic compound, a thermally grown aluminum oxide layer overlying the intermetallic bond coat, and a ceramic topcoat overlying the aluminum oxide layer.

  15. Titanium aluminide intermetallic alloys with improved wear resistance

    DOEpatents

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  16. Evaluation and comparison of n-alkyl chain and polar ligand bonded stationary phases for protein separation in reversed-phase liquid chromatography.

    PubMed

    Ding, Ling; Guo, Zhimou; Xiao, Yuansheng; Xue, Xingya; Zhang, Xiuli; Liang, Xinmiao

    2014-09-01

    Protein retention is very sensitive to the change of solvent composition in reversed-phase liquid chromatography for so called "on-off" mechanism, leading to difficulty in mobile phase optimization. In this study, a novel 3-chloropropyl trichlorosilane ligand bonded column was prepared for protein separation. The differences in retention characteristics between the 3-chloropropyl trichlorosilane ligand bonded column and n-alkyl chain modified (C2, C4, C8) stationary phases were elucidated by the retention equation l nk=a+cC(B). Retention parameters (a and c) of nine standard proteins with different molecular weights were calculated by using homemade software. Results showed that retention times of nine proteins were similar on four columns, but the 3-chloropropyl trichlorosilane ligand bonded column obtained the lowest retention parameter values of larger proteins. It meant that their retention behavior affected by acetonitrile concentration would be different due to lower |c| values. More specifically, protein elution windows were broader, and retentions were less sensitive to the change of acetonitrile concentration on the 3-chloropropyl trichlorosilane ligand bonded column than that on other columns. Meanwhile, the 3-chloropropyl trichlorosilane ligand bonded column displayed distinctive selectivity for some proteins. Our results indicated that stationary phase with polar ligand provided potential solutions to the "on-off" problem and optimization in protein separation.

  17. Hot isostatic pressing of intermetallic powders

    NASA Astrophysics Data System (ADS)

    Schaefer, R. J.; Kushner, B. G.

    The application of the intelligent processing of materials (IPM) approach to powder densification by hot isostatic pressing (HIP) is made possible by the development of in situ sensors, process models and adaptive control strategies. The challenge is to optimize the process schedule for new materials to achieve densification, shape and microstructural goals. The development of an IPM system for HIP of intermetallic powders is described. The primary sensor used in this system employs eddy currents to measure changes of sample dimensions, while the process model is that of Ashby et al., reformulated to more closely describe real materials in real HIP process cycles. Process cycles are developed by combining a knowledge base derived from experts with the process model refined by sensor measurements.

  18. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-01

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternary alloying additions in DO3 Fe3Al, Co3Al, and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO3 lattice. An important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.

  19. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    DOE PAGES

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less

  20. Clutter noise reduction for phased array imaging using frequency-spatial polarity coherence

    NASA Astrophysics Data System (ADS)

    Gongzhang, Rui; Gachagan, Anthony; Xiao, Bo

    2015-03-01

    A number of materials used in industry exhibit highly-scattering properties which can reduce the performance of conventional ultrasonic NDE approaches. Moving Bandwidth Polarity Thresholding (MBPT) is a robust frequency diversity based algorithm for scatter noise reduction in single A-scan waveforms, using sign coherence across a range of frequency bands to reduce grain noise and improve Signal to Noise Ratio. Importantly, for this approach to be extended to array applications, spatial variation of noise characteristics must also be considered. This paper presents a new spatial-frequency diversity based algorithm for array imaging, extended from MBPT. Each A-scan in the full matrix capture array dataset is partitioned into a serial of overlapped frequency bands and then undergoes polarity thresholding to generate sign-only coefficients indicating possible flaw locations within each selected band. These coefficients are synthesized to form a coefficient matrix using a delay and sum approach in each frequency band. Matrices produced across the frequency bands are then summed to generate a weighting matrix, which can be applied on any conventional image. A 5MHz linear array has been used to acquire data from both austenitic steel and high nickel alloy (HNA) samples to validate the proposed algorithm. Background noise is significantly suppressed for both samples after applying this approach. Importantly, three side drilled holes and the back wall of the HNA sample are clearly enhanced in the processed image, with a mean 133% Contrast to Noise Ratio improvement when compared to a conventional TFM image.

  1. Polar and nonpolar phases of BiMO{sub 3}: A review

    SciTech Connect

    Belik, Alexei A.

    2012-11-15

    Simple Bi-based compounds, BiMO{sub 3}, are quite interesting materials. They offer large variations in crystal symmetries, polarity, and properties. Their chemical simplicity makes them ideal systems for materials fabrications, theoretical understanding, and thin-film growths. They can only be prepared at high-pressure high-temperature conditions (except for BiFeO{sub 3}) in a bulk form. Some of them can be stabilized in thin films (M=Al, Sc, Cr, Mn, and Fe). In this review, we collect and analyze the recent experimental and theoretical results on BiMO{sub 3} with M=Al, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Ga, In, and Rh. In addition, unresolved problems and desirable future experiments are emphasized especially for the highly controversial compound BiMnO{sub 3}. - Graphical abstract: Crystal symmetries in which BiMO{sub 3} compounds crystallize. Highlights: Black-Right-Pointing-Pointer BiMO{sub 3} compounds offer large variations in crystal symmetries, polarity, and properties. Black-Right-Pointing-Pointer Experimental and theoretical results on BiMO{sub 3} were reviewed. Black-Right-Pointing-Pointer Unresolved problems and desirable future experiments are emphasized. Black-Right-Pointing-Pointer Special attention is paid on the highly controversial compound BiMnO{sub 3}.

  2. Deposition of Functional Coatings Based on Intermetallic Systems TiAl on the Steel Surface by Vacuum Arc Plasma

    NASA Astrophysics Data System (ADS)

    Budilov, V.; Vardanyan, E.; Ramazanov, K.

    2015-11-01

    Laws governing the formation of intermetallic phase by sequential deposition of nano-sized layers coatings from vacuum arc plasma were studied. Mathematical modeling process of deposition by vacuum arc plasma was performed. In order to identify the structural and phase composition of coatings and to explain their physical and chemical behaviour XRD studies were carried out. Production tests of the hardened punching tools were performed.

  3. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

    NASA Astrophysics Data System (ADS)

    Dusoe, Keith J.; Vijayan, Sriram; Bissell, Thomas R.; Chen, Jie; Morley, Jack E.; Valencia, Leopolodo; Dongare, Avinash M.; Aindow, Mark; Lee, Seok-Woo

    2017-01-01

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  4. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

    PubMed Central

    Dusoe, Keith J.; Vijayan, Sriram; Bissell, Thomas R.; Chen, Jie; Morley, Jack E.; Valencia, Leopolodo; Dongare, Avinash M.; Aindow, Mark; Lee, Seok-Woo

    2017-01-01

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed. PMID:28067334

  5. TiNiSn: A gateway to the (1,1,1) intermetallic compounds

    SciTech Connect

    Cook, B.A.; Harringa, J.L.; Tan, Z.S.; Jesser, W.A.

    1996-06-01

    Recent awareness of the transport properties of Skutterudite pnictides has stimulated an interest in numerous other intermetallic compounds having a gap in the density of states at the Fermi level including the MNiSn compounds where M = (Ti, Zr, Hf). These intermetallic half-Heusler compounds are characterized by high Seebeck coefficients ({minus}150 to {minus}300 {micro}V/deg.) and reasonable carrier mobilities (30 to 50 cm{sup 2}/V-s) at room temperature which make them attractive candidates for intermediate temperature thermoelectric applications. Samples of TiNiSn were prepared by arc melting and homogenized by heat treatment. The temperature dependence of the electrical resistivity, Seebeck coefficient, and thermal diffusivity of these samples was characterized between 22 C and 900 C. The electrical resistivity and thermopower both decrease with temperature although the resistivity decreases at a faster rate. Electrical power factors in excess of 25 {micro}W/cm-C{sup 2} were observed in nearly single phase alloys within a 300 to 600 C temperature range. A brief survey of other selected ternary intermetallic compounds is also presented.

  6. Substantial Cd-Cd Bonding in Ca6PtCd11: A Condensed Intermetallic Phase Built of Pentagonal Cd7 and Rectangular Cd4/2Pt Pyramids

    SciTech Connect

    Gulo, Fakhili; Samal, Saroj L.; Corbett, John D.

    2013-08-19

    The new trail-breaking compound Ca6PtCd11 has been synthesized and its structural and bonding properties investigated. This unusual phase features an unprecedented degree of cadmium aggregation, including linear chains, novel Cd7 PBP aggregates, and edge-shared chains of PtCd4/2 square pyramids. Manifestations of this chemistry elsewhere has evidently been precluded in earlier work by the inclusion of larger amounts of the strong d-metal bonding Au or Pt. Under the right conditions Cd seems quite effective as an open s,p-band metal.

  7. Ultra-thin optical vortex phase plate based on the L-shaped nanoantenna for both linear and circular polarized incidences

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Guo, Zhongyi; Sun, Yongxuan; Shen, Fei; Li, Yan; Liu, Yi; Wang, Xinshun; Qu, Shiliang

    2015-11-01

    Based on the L-shaped gold nanoantennas, the ultra-thin optical vortex phase plates (VPPs) have been designed to generate the optical vortex beams with different topological charges, which are independent of the incident polarization states and suitable for both X/Y linear and circular polarization incidences simultaneously. The phase and amplitude of transmitted cross-polarization light can be simultaneously manipulated by changing two degrees of freedom (the length and the width) in the L-shaped nanoantenna unit. Evolution properties of the generated vortex beam are demonstrated and analyzed. The different interactions of angular momentums between light and the VPP in the different incident polarization states have also been investigated fully. The designed VPP shows a superior broadband characteristics in near-infrared wavelength ranging from 750 nm to 1200 nm, which enable a potential implication for integrated optics and vortex optics.

  8. Phase-stable source of polarization-entangled photons in a linear double-pass configuration.

    PubMed

    Steinlechner, Fabian; Ramelow, Sven; Jofre, Marc; Gilaberte, Marta; Jennewein, Thomas; Torres, Juan P; Mitchell, Morgan W; Pruneri, Valerio

    2013-05-20

    We demonstrate a compact, robust, and highly efficient source of polarization-entangled photons, based on linear bi-directional down-conversion in a novel 'folded sandwich' configuration. Bi-directionally pumping a single periodically poled KTiOPO(4) (ppKTP) crystal with a 405-nm laser diode, we generate entangled photon pairs at the non-degenerate wavelengths 784 nm (signal) and 839 nm (idler), and achieve an unprecedented detection rate of 11.8 kcps for 10.4 μW of pump power (1.1 million pairs / mW), in a 2.9-nm bandwidth, while maintaining a very high two-photon entanglement quality, with a Bell-state fidelity of 99.3 ± 0.3%.

  9. Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves.

    PubMed

    Li, Zhuolin; Li, Mingyu; Xiao, Yong; Wang, Chunqing

    2014-05-01

    Homogeneous intermetallic compound joints are demanded by the semiconductor industry because of their high melting point. In the present work, ultrasonic vibration was applied to Cu/Sn foil/Cu interconnection system at room temperature to form homogeneous Cu6Sn5 and Cu3Sn joints. Compared with other studies based on transient-liquid-phase soldering, the processing time of our method was dramatically reduced from several hours to several seconds. This ultrarapid intermetallic phase formation process resulted from accelerated interdiffusion kinetics, which can be attributed to the sonochemical effects of acoustic cavitation at the interface between the liquid Sn and the solid Cu during the ultrasonic bonding process.

  10. Local Strain Development and Property Variability in B2 Intermetallics

    DTIC Science & Technology

    2005-09-19

    COVERED (From - To) 19092005 Final Report 15 Jan 2001 - 30 Apr 2005 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Local Strain Development and Property...Variability in B2 Intermetallics 5b. GRANT NUMBER F49620-01-1-0159 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) 5d. PROJECT NUMBER Professor Tresa M. Pollock 5e... 4 3.0 The Strain Mapping Technique .............................................. 4 4.0 Intermetallic

  11. Choosing the polarity of the phase-encoding direction in diffusion MRI: Does it matter for group analysis?

    PubMed Central

    Kennis, M.; van Rooij, S.J.H.; Kahn, R.S.; Geuze, E.; Leemans, A.

    2016-01-01

    Notorious for degrading diffusion MRI data quality are so-called susceptibility-induced off-resonance fields, which cause non-linear geometric image deformations. While acquiring additional data to correct for these distortions alleviates the adverse effects of this artifact drastically – e.g., by reversing the polarity of the phase-encoding (PE) direction – this strategy is often not an option due to scan time constraints. Especially in a clinical context, where patient comfort and safety are of paramount importance, acquisition specifications are preferred that minimize scan time, typically resulting in data obtained with only one PE direction. In this work, we investigated whether choosing a different polarity of the PE direction would affect the outcome of a specific clinical research study. To address this methodological question, fractional anisotropy (FA) estimates of FreeSurfer brain regions were obtained in civilian and combat controls, remitted posttraumatic stress disorder (PTSD) patients, and persistent PTSD patients before and after trauma-focused therapy and were compared between diffusion MRI data sets acquired with different polarities of the PE direction (posterior-to-anterior, PA and anterior-to-posterior, AP). Our results demonstrate that regional FA estimates differ on average in the order of 5% between AP and PA PE data. In addition, when comparing FA estimates between different subject groups for specific cingulum subdivisions, the conclusions for AP and PA PE data were not in agreement. These findings increase our understanding of how one of the most pronounced data artifacts in diffusion MRI can impact group analyses and should encourage users to be more cautious when interpreting and reporting study outcomes derived from data acquired along a single PE direction. PMID:27158586

  12. Headspace analysis of polar organic compounds in biological matrixes using solid phase microextraction (SPME)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...

  13. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Meng; Yang, Mingchao; Shi, Li-Jie; Deng, Luogen; Yang, Huai

    2016-09-01

    In this paper, we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals. Two groups of lasing peaks, of which the full widith at half maximum is about 0.3 nm, are clearly observed. The shorter- and longer-wavelength modes are associated with the excitation of the single laser dye (DCM) monomers and dimers respectively. The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light. When the polarization of the pump light is rotated from 0° to 90°, the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases. In addition, a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474021 and 51333001), the Key Program for International S&T Cooperation Projects of China (Grant No. 2013DFB50340), the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001130005), and the Key (Key Grant) Project of Chinese Ministry of Education (Grant No. 313002).

  14. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    SciTech Connect

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; Wang, Lin -Lin; Gustafson, Jeffrey; Pei, Yuchen; Qi, Zhiyuan; Johnson, Duane D.; Zhang, Shiran; Tao, Franklin; Huang, Wenyu

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similar activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.

  15. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    DOE PAGES

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; ...

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similarmore » activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.« less

  16. Experimental and computed phase diagrams of the Fe-Re system

    NASA Astrophysics Data System (ADS)

    Breidi, A.; Andasmas, M.; Crivello, J.-C.; Dupin, N.; Joubert, J.-M.

    2014-12-01

    In order to clarify controversial reports on the Fe-Re phase diagram, a new experimental investigation has been carried out. Three intermetallic phases have been evidenced, including the new report of the P phase found for the first time in a binary system. The phase relations involving the σ phase were established. In parallel, a first-principles study has been performed which provided the heat of formation of every ordered configuration for four intermetallic phases (D8b, A12, A13 and P). The mixing energy of solid solutions (fcc, bcc, hcp) was calculated using the special quasi-random structure method. Calculations were performed with the help of the density functional theory, with and without spin polarization. From these results, in the frame of the Compound Energy Formalism using the Bragg-Williams approximation, the Fe-Re phase diagram has been computed without the use of adjustable parameters. Different thermodynamic parameters obtained experimentally and theoretically, as the site occupancies, are compared. The computed phase diagram presents several differences with the experimental one. To understand these differences, the influence of several parameters on the phase stability, such as the magnetic contribution has been evaluated.

  17. Measurement of the second-order nonlinear susceptibility of collagen using polarization modulation and phase-sensitive detection

    NASA Astrophysics Data System (ADS)

    Stoller, Patrick C.; Kim, Beop-Min; Rubenchik, Alexander M.; Reiser, Karen M.; Da Silva, Luiz B.

    2001-05-01

    The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in a rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter (gamma) related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.

  18. Resistivity of the insulating phase approaching the two-dimensional metal-insulator transition: The effect of spin polarization

    NASA Astrophysics Data System (ADS)

    Li, Shiqi; Sarachik, M. P.

    2017-01-01

    The resistivities of the dilute, strongly interacting two-dimensional electron systems in the insulating phase of a silicon MOSFET are the same for unpolarized electrons in the absence of magnetic field and for electrons that are fully spin polarized by the presence of an in-plane magnetic field. In both cases the resistivity obeys Efros-Shklovskii variable range hopping ρ (T ) =ρ0exp[(TES/T ) 1 /2] , with TE S and 1 /ρ0 mapping onto each other if one applies a shift of the critical density nc reported earlier. With and without magnetic field, the parameters TE S and 1 /ρ0=σ0 exhibit scaling consistent with critical behavior approaching a metal-insulator transition.

  19. Measurement of the Second Order Non-linear Susceptibility of Collagen using Polarization Modulation and Phase-sensitive Detection

    SciTech Connect

    Stoller, P; Kim, B-M; Rubenchik, A M; Reiser, K M; Da Silva, L B

    2001-03-03

    The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation (SHG) in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter {gamma} related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.

  20. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime.

    PubMed

    Yan, X Q; Lin, C; Sheng, Z M; Guo, Z Y; Liu, B C; Lu, Y R; Fang, J X; Chen, J E

    2008-04-04

    A new ion acceleration method, namely, phase-stable acceleration, using circularly-polarized laser pulses is proposed. When the initial target density n(0) and thickness D satisfy a(L) approximately (n(0)/n(c))D/lambda(L) and D>l(s) with a(L), lambda(L), l(s), and n(c) the normalized laser amplitude, the laser wavelength in vacuum, the plasma skin depth, and the critical density of the incident laser pulse, respectively, a quasiequilibrium for the electrons is established by the light pressure and the space charge electrostatic field at the interacting front of the laser pulse. The ions within the skin depth of the laser pulse are synchronously accelerated and bunched by the electrostatic field, and thereby a high-intensity monoenergetic proton beam can be generated. The proton dynamics is investigated analytically and the results are verified by one- and two-dimensional particle-in-cell simulations.

  1. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  2. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    SciTech Connect

    DiSalvo, Francis J.

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  3. Significant geomagnetic differences in both phase and amplitude observed at "conjugate" polar latitudes near the December 1903 Solstice

    NASA Astrophysics Data System (ADS)

    Egeland, Alv; Deehr, Charles

    2014-05-01

    During Roald Amundsen's exploration of the Northwest Passage (1903-1906) he conducted systematic measurements of diurnal and seasonal variations of the north magnetic dip pole (NMDP) at Gjøahavn (~ 68 N, 95 E). The NMDP variations have been largely interpreted as indicating control by the polarity of the interplanetary magnetic field (IMF); the Svalgard-Mansurov (S-M) effect. In Sir Robert Scott's Discovery expedition, geomagnetic observations were made in 1903 from Cape Armitage, Antarctica (~78 S, 168 E). Unwittingly, the measurements of Amundsen and Scott were acquired near conjugate ends of the same magnetic field lines. While their separation in solar local time is ~ 5 hours, they differ in magnetic local time less than 1/2 hour. However, up to this time no direct comparison of the two sets of magnetic observations has ever been made. This presentation contains an analysis of magnetic perturbations observed at both locations for comparison with contemporary and present day monthly-averaged diurnal variations, even if the overlap in data among these expeditions is somewhat limited. The near magnetic conjugacy of Gjøahavn- Cape Armitage locations makes these measurements valuable. Our analysis shows: (1) While similar variations appeared at both ends of the joining magnetic field they manifest significant differences in both phase and amplitude, (2) present day NMDP variations appear consistent with the S-M effect analyses when compared with satellite measurements of solar wind/IMF measurements, (3) differences at the "conjugate" locations cannot be explained in terms of the S-M effect alone. The roles of lobe cell and ionospheric conductance at polar magnetically "conjugate" locations are used to explain the observed phase and amplitude differences.

  4. Magnetization process and topological plateau phase induced by circularly polarized laser

    NASA Astrophysics Data System (ADS)

    Takayoshi, Shintaro; Sato, Masahiro; Oka, Takashi

    2014-03-01

    One of the fundamental experiments to investigate magnetic properties of materials is a measurement of magnetization curve. Antiferromagnets with large exchange couplings, however, need high external field to achieve their saturated magnetization, and large equipment is required in experiments. We theoretically propose a new and dynamic way to realize magnetization processes of general quantum magnets without any static field. The way is to apply a circularly polarized laser to magnetic systems. We can show that the coupling between the laser and magnets is mapped to an effective static Zeeman term with a longitudinal magnetic field via a time-dependent unitary transformation or Floquet theory. It is hence expected that the magnetization curve of magnets can be realized by applying a suitable laser. We demonstrate dynamical magnetization processes by numerically solving Schrödinger equations for concrete quantum spin models under applied lasers. We also show that a laser-induced magnetization plateau state appears in a simple Ferro-Ferro-Antiferro spin chain model under a certain condition and it has a topological nature.

  5. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    SciTech Connect

    Kohashi, Teruo Motai, Kumi; Nishiuchi, Takeshi; Hirosawa, Satoshi

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  6. Molecular alloys, linking organometallics with intermetallic Hume-Rothery phases: the highly coordinated transition metal compounds [M(ZnR)(n)] (n >or= 8) containing organo-zinc ligands.

    PubMed

    Cadenbach, Thomas; Bollermann, Timo; Gemel, Christian; Tombul, Mustafa; Fernandez, Israel; von Hopffgarten, Moritz; Frenking, Gernot; Fischer, Roland A

    2009-11-11

    This paper presents the preparation, characterization and bonding analyses of the closed shell 18 electron compounds [M(ZnR)(n)] (M = Mo, Ru, Rh, Ni, Pd, Pt, n = 8-12), which feature covalent bonds between n one-electron organo-zinc ligands ZnR (R = Me, Et, eta(5)-C(5)(CH(3))(5) = Cp*) and the central metal M. The compounds were obtained in high isolated yields (>80%) by treatment of appropriate GaCp* containing transition metal precursors 13-18, namely [Mo(GaCp*)(6)], [Ru(2)(Ga)(GaCp*)(7)(H)(3)] or [Ru(GaCp*)(6)(Cl)(2)], [(Cp*Ga)(4)RhGa(eta(1)-Cp*)Me] and [M(GaCp*)(4)] (M = Ni, Pd, Pt) with ZnMe(2) or ZnEt(2) in toluene solution at elevated temperatures of 80-110 degrees C within a few hours of reaction time. Analytical characterization was done by elemental analyses (C, H, Zn, Ga), (1)H and (13)C NMR spectroscopy. The molecular structures were determined by single crystal X-ray diffraction. The coordination environment of the central metal M and the M-Zn and Zn-Zn distances mimic the situation in known solid state M/Zn Hume-Rothery phases. DFT calculations at the RI-BP86/def2-TZVPP and BP86/TZ2P+ levels of theory, AIM and EDA analyses were done with [M(ZnH)(n)] (M = Mo, Ru, Rh, Pd; n = 12, 10, 9, 8) as models of the homologous series. The results reveal that the molecules can be compared to 18 electron gold clusters of the type M@Au(n), that is, W@Au(12), but are neither genuine coordination compounds nor interstitial cage clusters. The molecules are held together by strong radial M-Zn bonds. The tangential Zn-Zn interactions are generally very weak and the (ZnH)(n) cages are not stable without the central metal M.

  7. Synthesis of cerium rich intermetallics using molten metal eutectics

    NASA Astrophysics Data System (ADS)

    Tucker, Patricia Christine

    Metal eutectic fluxes are useful for exploratory synthesis of new intermetallic phases. In this work the use of cerium/transition metal eutectics such as: Ce/Co, Ce/Ni, and Ce/Fe have yielded many new synthetically and magnetically complex phases. Structural units that were previously observed in phases grown in La/Ni eutectic reactions have also been observed in new structures and analogs grown from cerium/transition metal eutectics. These structural units include a main group element coordinated by 9 rare-earth atoms (such as the Al Ce9 clusters seen in Ce31.0(2)Fe11.8(5)Al6.5(6) B13C4), trigonal planar FeC3 units (also seen in Ce31.0(2)Fe11.8(5)Al6.5(6)B 13C4), iron clusters capped by light elements (Fe4C 6 frustrated tetrahedral in Ce21Fe8M7C 14, and larger Fe clusters in Ce33Fe14B25 C34). Variants of these building blocks were observed in Ce10Co2B7C16 with square Co units and chains of B and C connected to them, Fe2C8 units observed in Ce7Fe2C9, and FeC4 observed in Ce4FeGa0.85Al0.15C4 and Ce4FeAlC4. Two new phases were grown from Ce/Fe eutectic, Ce33Fe 14B25C34 and Ce33Fe13B 18C34 which exhibits very similar structures, but significantly different magnetic behavior. Structurally these two phases are similar. Both crystallize in the Im-3m space group, but differ by the centering of the Fe clusters. Ce33Fe14B25C34 contains Fe clusters centered by B atoms and Al doped on the Fe2 site. In Ce33Fe13B18C34, the Fe cluster is a perfect cuboctahedron. Ce33Fe14B25 C34 exhibits mixed valent behavior of cerium at 75K and no magnetic moment on iron, where-as Ce33Fe13B18C 34 exhibits tetravalent cerium and its iron clusters undergo a ferromagnetic transition at 180K. Another borocarbide, Ce10Co2B7C 16 was synthesized from Ce/Co eutectic flux. This structure features squares of Co surrounded by chains of C and B and a sea of cerium atoms. Temperature dependent magnetic susceptibility measurements at 1 Tesla were fit to a modified Curie-Weiss law and a moment per Ce was

  8. Role of template layer on microstructure, phase formation and polarization behavior of ferroelectric relaxor thin films

    NASA Astrophysics Data System (ADS)

    Ranjith, R.; Chaudhuri, Ayan Roy; Krupanidhi, S. B.; Victor, P.

    2007-05-01

    (1-x)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 (PMNPT) a relaxor ferroelectric has gained attention due to its interesting physical properties both in the bulk and thin film forms from a technological and fundamental point of view. The PMNPT solid solution at the morphotropic phase boundary composition has superior properties and is potentially used as an electrostrictive actuator, sensor, and in MEMS applications. Deposition of phase pure PMNPT thin films on bare platinized silicon wafers has been an impossible task so far. In this study the role of the LSCO template on the phase formation and the influence of platinum surface on the same have been studied. It was observed that formation of hillocks in Pt coated silicon wafers is associated with an ATG type of instability while roughening through strain relaxation. The hillocks formation was observed only on the troughs of the strain waves on the surface of Pt. The nucleation and growth of the PMNPT films were analyzed using AFM studies and the nucleation nucleates only at the tips of the hillocks and grows along the same direction with a new nucleus adjacent to the first one. A wavy pattern of PMNPT nuclei was observed and later the lateral growth of the islands takes place to cover the surface and minimizes the roughness to 2 nm. Hence, a template layer with a minimum of 40 nm is required to have a complete coverage with a roughness of less than 2 nm. The chemical states of the PMNPT films grown with and without the template layer were analyzed using x-ray photoelectron spectrum. The XPS spectrum of PMNPT deposited on a Pt surface exhibited a reduced oxidation state of niobium ions and a metallic state of Pb at the initial stage of the growth, which effectively destabilizes the perovskite phase of PMNPT in which the charge states and the ordering of Nb and Mg are more crucial to have a stable perovskite structure.

  9. Pressure-induced topological phase transition in the polar semiconductor BiTeBr

    NASA Astrophysics Data System (ADS)

    Ohmura, Ayako; Higuchi, Yuichiro; Ochiai, Takayuki; Kanou, Manabu; Ishikawa, Fumihiro; Nakano, Satoshi; Nakayama, Atsuko; Yamada, Yuh; Sasagawa, Takao

    2017-03-01

    We performed x-ray diffraction and electrical resistivity measurement up to pressures of 5 GPa and the first-principles calculations utilizing experimental structural parameters to investigate the pressure-induced topological phase transition in BiTeBr having a noncentrosymmetric layered structure (space group P 3 m 1 ). The P 3 m 1 structure remains stable up to pressures of 5 GPa; the ratio of lattice constants c /a has a minimum at pressures of 2.5-3 GPa. In the same range, the temperature dependence of resistivity changes from metallic to semiconducting at 3 GPa and has a plateau region between 50 and 150 K in the semiconducting state. Meanwhile, the pressure variation of band structure shows that the bulk band-gap energy closes at 2.9 GPa and re-opens at higher pressures. Furthermore, according to the Wilson loop analysis, the topological nature of electronic states in noncentrosymmetric BiTeBr at 0 and 5 GPa are explicitly revealed to be trivial and nontrivial, respectively. These results strongly suggest that pressure-induced topological phase transition in BiTeBr occurs at the pressures of 2.9 GPa.

  10. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  11. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  12. Service limitations for oxidation resistant intermetallic compounds

    SciTech Connect

    Smialek, J.L.; Nesbitt, J.A.; Brindley, W.J.; Brady, M.P.; Doychak, J.; Dickerson, R.M.; Hull, D.R.

    1995-07-01

    Oxidation resistant intermetallic compounds based on NiAl, TiAl, and MoSi{sub 2} are of interest for high temperature applications. Each system exhibits different life-limiting degradation modes due to oxidation. {beta}-NiAl forms protective {alpha}-Al{sub 2}O scales. Breakdown follows well-established diffusion controlled processes resulting in survival for thousands of hours. The effect of thermal cycling and spalling is well established. Ti{sub 3}Al and TiAl compounds form less protective mixed TiO{sub 2} and Al{sub 2}O{sub 3} scales. However at realistic use temperatures (600--800 C), scale growth rates are acceptably low. The critical factor is embrittlement due to interstitial oxygen diffusion over a matter of hours. Solutions based on alloy development and coatings have not been satisfactory. MoSi{sub 2} materials exhibit very low oxidation rates at very high temperatures. However, low temperature (500 C) pest oxidation can be a catastrophic transient effect. Material integrity is a key factor. Fracture occurs because of accelerated growth of non-protective mixed MoO{sub 2}-SiO{sub 2} scales in pores and microcracks.

  13. Use of trifluoroacetic acid to quantify small, polar compounds in rat plasma during discovery-phase pharmacokinetic evaluation.

    PubMed

    Bock, M J; Neilson, K L; Dudley, A

    2007-09-01

    Although it is accepted that trifluoroacetic acid (TFA) can cause suppression of an analyte during LC/MS analysis, this paper presents a relatively sensitive gradient method that uses a TFA mobile phase for the improved quantification of small, polar drug-like compounds. The described method was developed in a discovery drug metabolism and pharmacokinetics (DMPK) laboratory for the screening measurement of compound concentrations to calculate PK parameters and CNS exposure of compounds from a chemical series that had poor chromatography under generic methods using formic acid mobile phase. The samples were collected by a Culex automated sampling unit, and the plasma proteins were precipitated by a Tecan robot in 96-well plates. After centrifugation, the supernatant was removed, dried down using a SPE-Dry unit, and the samples were reconstituted in aqueous buffer on the robot. The samples were analyzed on an Agilent LC/MSD using a 5-min gradient on a 5 cm phenyl column. No additional steps, such as the "TFA-fix", were necessary. Although sample batches were analyzed over 6h, no drift or degradation of signal was observed. The improved chromatography resulted in a method that was selective, rugged, and had a dynamic range from 5 to 20,000 nM, which was sufficient to quantitate low volume, serial plasma samples collected out to 8 h postdose.

  14. Phase-field modeling of chemical control of polarization stability and switching dynamics in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Kalinin, Sergei V.

    2016-12-01

    Phase-field simulation (PFS) has revolutionized the understanding of domain structure and switching behavior in ferroelectric thin films and ceramics. Generally, PFS is based on the solution of (a set of) Landau-Ginzburg-Devonshire equations for a defined order parameter field(s) under physical boundary conditions (BCs) of fixed potential or charge. While well matched to the interfaces in bulk materials and devices, these BCs are generally not applicable to free ferroelectric surfaces. Here, we developed a self-consistent phase-field model with BCs based on electrochemical equilibria. We chose Pb (Z r0.2T i0.8 ) O3 ultrathin film consisting of (001) oriented single tetragonal domain (Pz) as a model system and systematically studied the effects of oxygen partial pressure, temperature, and surface ions on the ferroelectric state and compared it with the case of complete screening. We have further explored the polarization switching induced by the oxygen partial pressure and observed pronounced size effect induced by chemical screening. Our paper thus helps to understand the emergent phenomena in ferroelectric thin films brought about by the electrochemical ionic surface compensations.

  15. Dual-polarity GaN micropillars grown by metalorganic vapour phase epitaxy: Cross-correlation between structural and optical properties

    SciTech Connect

    Coulon, P. M.; Mexis, M.; Teisseire, M.; Vennéguès, P.; Leroux, M.; Zuniga-Perez, J.; Jublot, M.

    2014-04-21

    Self-assembled catalyst-free GaN micropillars grown on (0001) sapphire substrates by metal organic vapor phase epitaxy are investigated. Transmission electron microscopy, as well as KOH etching, shows the systematic presence of two domains of opposite polarity within each single micropillar. The analysis of the initial growth stages indicates that such double polarity originates at the micropillar/substrate interface, i.e., during the micropillar nucleation, and it propagates along the micropillar. Furthermore, dislocations are also generated at the wire/substrate interface, but bend after several hundreds of nanometers. This leads to micropillars several tens of micrometers in length that are dislocation-free. Spatially resolved cathodoluminescence and microphotoluminescence show large differences in the optical properties of each polarity domain, suggesting unequal impurity/dopant/vacancy incorporation depending on the polarity.

  16. Anisotropic 2D Larkin-Imry-Ma state in the polar distorted ABM phase of 3He in a "nematically ordered" aerogel

    NASA Astrophysics Data System (ADS)

    Askhadullin, R. Sh.; Dmitriev, V. V.; Martynov, P. N.; Osipov, A. A.; Senin, A. A.; Yudin, A. N.

    2015-01-01

    We present results of experiments in superfluid phases of 3He confined in aerogel which strands are nearly parallel to one another. High temperature superfluid phases of 3He in this aerogel (ESP1 and ESP2) are biaxial chiral phases and have polar distorted ABM order parameter which orbital part forms 2D Larkin-Imry-Ma state. We demonstrate that this state can be anisotropic if the aerogel is squeezed in direction transverse to the strands. Values of this anisotropy in ESP1 and ESP2 phases are different, what leads to different NMR properties.

  17. The impact of bright artificial white and 'blue-enriched' light on sleep and circadian phase during the polar winter.

    PubMed

    Mottram, Victoria; Middleton, Benita; Williams, Peter; Arendt, Josephine

    2011-03-01

    Delayed sleep phase (and sometimes free-run) is common in the Antarctic winter (no natural sunlight) and optimizing the artificial light conditions is desirable. This project evaluated sleep when using 17,000 K blue-enriched lamps compared with standard white lamps (5000 K) for personal and communal illumination. Base personnel, 10 males, five females, 32.5±8 years took part in the study. From 24 March to 21 September 2006 light exposure alternated between 4-5-week periods of standard white (5000 K) and blue-enriched lamps (17,000 K), with a 3-week control before and after extra light. Sleep and light exposure were assessed by actigraphy and sleep diaries. General health (RAND 36-item questionnaire) and circadian phase (urinary 6-sulphatoxymelatonin rhythm) were evaluated at the end of each light condition. Direct comparison (rmanova) of blue-enriched light with white light showed that sleep onset was earlier by 19 min (P=0.022), and sleep latency tended to be shorter by 4 min (P=0.065) with blue-enriched light. Analysing all light conditions, control, blue and white, again provided evidence for greater efficiency of blue-enriched light compared with white (P<0.05), but with the best sleep timing, duration, efficiency and quality in control natural light conditions. Circadian phase was earlier on average in midwinter blue compared with midwinter white light by 45 min (P<0.05). Light condition had no influence on general health. We conclude that the use of blue-enriched light had some beneficial effects, notably earlier sleep, compared with standard white light during the polar winter.

  18. Generation of two-color polarization-entangled optical beams with a self-phase-locked two-crystal optical parametric oscillator

    SciTech Connect

    Laurat, Julien; Keller, Gaeelle; Fabre, Claude; Coudreau, Thomas

    2006-01-15

    A device to generate polarization-entangled light in the continuous-variable regime is introduced. It consists of an optical parametric oscillator with two type-II phase-matched nonlinear crystals orthogonally oriented, associated with birefringent elements for adjustable linear coupling. We give in this paper a theoretical study of its classical and quantum properties. It is shown that two optical beams with adjustable frequencies and well-defined polarization can be emitted. The Stokes parameters of the two beams are entangled. The principal advantage of this setup is the possibility to directly generate polarization-entangled light without the need of mixing four modes on beamsplitters as required in current experimental setups. This device opens up different directions for the study of light-matter interfaces and a generation of multimode nonclassical light and higher dimensional phase space.

  19. Spin polarization of gapped Dirac surface states near the topological phase transition in TlBi(S(1-x)Se(x))2.

    PubMed

    Souma, S; Komatsu, M; Nomura, M; Sato, T; Takayama, A; Takahashi, T; Eto, K; Segawa, Kouji; Ando, Yoichi

    2012-11-02

    We performed systematic spin- and angle-resolved photoemission spectroscopy of TlBi(S(1-x)Se(x))(2) which undergoes a topological phase transition at x ~ 0.5. In TlBiSe(2) (x = 1.0), we revealed a helical spin texture of Dirac-cone surface states with an intrinsic in-plane spin polarization of ~0.8. The spin polarization still survives in the gapped surface states at x > 0.5, although it gradually weakens upon approaching x = 0.5 and vanishes in the nontopological phase. No evidence for the out-of-plane spin polarization was found, irrespective of x and momentum. The present results unambiguously indicate the topological origin of the gapped Dirac surface states, and also impose a constraint on models to explain the origin of mass acquisition of Dirac fermions.

  20. [emim][etSO4] as the polar phase in low-temperature-stable microemulsions.

    PubMed

    Harrar, Agnes; Zech, Oliver; Hartl, Robert; Bauduin, Pierre; Zemb, Thomas; Kunz, Werner

    2011-03-01

    We demonstrate here that microemulsions with an IL as the continuous phase can be formed so that they are stable over a wide temperature range and have intermediary properties between flexible and stiff microemulsions. Three components (1-ethyl-3-methylimidazolium ethylsulfate ([emim][etSO(4)]), limonene, and octylphenol ethoxylate (Triton X 100, abbreviated as TX-100)) were used. This ternary system has been characterized from ambient temperature down to -10 °C by means of conductivity, viscosity, and small-angle X-ray scattering (SAXS) measurements. The SAXS data exhibit a characteristic single, broad scattering peak in conjunction with a typical q(-4) decay at large q values. The SAXS data have also been interpreted in terms of a dimensionless dilution plot, demonstrating that microstructures are neither isolated droplets nor a random flexible film structure but resemble molten liquid crystals (i.e., they are formed from locally cylindrical or planar structures). This semirigidity is attributed to a good match between the surfactant and the ionic liquid; this holds in a temperature range well below 0 °C.

  1. Liquid crystalline phases in suspensions of pigments in non-polar solvents

    NASA Astrophysics Data System (ADS)

    Klein, Susanne; Richardson, Robert M.; Eremin, Alexey

    We will discuss colloid suspensions of pigments and compare their electro-optic properties with those of traditional dyed low molecular weight liquid crystal systems. There are several potential advantages of colloidal suspensions over low molecular weight liquid crystal systems: a very high contrast because of the high orientational order parameter of suspensions of rod shaped nano-particles, the excellent light fastness of pigments as compared to dyes and high colour saturations resulting from the high loading of the colour stuff. Although a weak `single-particle' electro-optic response can be observed in dilute suspensions, the response is very much enhanced when the concentration of the particles is sufficient to lead to a nematic phase. Excellent stability of suspensions is beneficial for experimental observation and reproducibility, but it is a fundamental necessity for display applications. We therefore discuss a method to achieve long term stability of dispersed pigments and the reasons for its success. Small angle X-ray scattering was used to determine the orientational order parameter of the suspensions as a function of concentration and the dynamic response to an applied electric field. Optical properties were investigated for a wide range of pigment concentrations. Electro-optical phenomena, such as field-induced birefringence and switching, were characterised. In addition, mixtures of pigment suspensions with small amounts of ferrofluids show promise as future magneto-optical materials.

  2. Pressure tuning of competing magnetic interactions in intermetallic CeFe2

    SciTech Connect

    Wang, Jiyang; Feng, Yejun; Jaramillo, R.; van Wezel, Jasper; Canfield, Paul C.; Rosenbaum, T.F.

    2012-07-20

    We use high-pressure magnetic x-ray diffraction and numerical simulation to determine the low-temperature magnetic phase diagram of stoichiometric CeFe2. Near 1.5 GPa we find a transition from ferromagnetism to antiferromagnetism, accompanied by a rhombohedral distortion of the cubic Laves crystal lattice. By comparing pressure and chemical substitution we find that the phase transition is controlled by a shift of magnetic frustration from the Ce-Ce to the Fe-Fe sublattice. Notably the dominant Ce-Fe magnetic interaction, which sets the temperature scale for the onset of long-range order, remains satisfied throughout the phase diagram but does not determine the magnetic ground state. Our results illustrate the complexity of a system with multiple competing magnetic energy scales and lead to a general model for magnetism in cubic Laves phase intermetallic compounds.

  3. Exploring the Structural Complexity of Intermetallic Compounds by an Adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Nguyen, M. C.; Zhang, W. Y.; Wang, C. Z.; Kramer, M. J.; Sellmyer, D. J.; Li, X. Z.; Zhang, F.; Ke, L. Q.; Antropov, V. P.; Ho, K. M.

    2014-01-01

    Solving the crystal structures of novel phases with nanoscale dimensions resulting from rapid quenching is difficult due to disorder and competing polymorphic phases. Advances in computer speed and algorithm sophistication have now made it feasible to predict the crystal structure of an unknown phase without any assumptions on the Bravais lattice type, atom basis, or unit cell dimensions, providing a novel approach to aid experiments in exploring complex materials with nanoscale grains. This approach is demonstrated by solving a long-standing puzzle in the complex crystal structures of the orthorhombic, rhombohedral, and hexagonal polymorphs close to the Zr2Co11 intermetallic compound. From our calculations, we identified the hard magnetic phase and the origin of high coercivity in this compound, thus guiding further development of these materials for use as high performance permanent magnets without rare-earth elements.

  4. Polarization-modulation infrared reflection-absorption spectroscopy affording time-resolved simultaneous detection of surface and liquid phase species at catalytic solid-liquid interfaces.

    PubMed

    Meier, Daniel M; Urakawa, Atsushi; Baiker, Alfons

    2009-09-01

    Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) combined with concentration modulation allows simultaneous monitoring of dynamic evolutions of surface and liquid phase species during reactions at catalytic interfaces as demonstrated for the Pt-catalysed oxidation of CO by O2 in cyclohexane.

  5. Processing, properties, and ballistic performance of titanium-aluminum titanium metal-intermetallic laminate (MIL) composites

    NASA Astrophysics Data System (ADS)

    Harach, David John

    2000-10-01

    A systematic investigation into the processing of Ti-Al3Ti metal-intermetallic laminate (MIL) composites from elemental titanium and aluminum foils in open air by a novel one step technique, and subsequent characterization, physical, mechanical and ballistic testing was carried out. Al3Ti is the only intermetallic phase to form, and no oxides or other phases are formed. Composites with Ti volume fractions of ˜0, 14, 20, 35, and 57 percent can be processed consistently, with measured density agreeing well with calculated density. The intermetallic reaction occurs in two parts that are linear with respect to Al3Ti growth with time: oxide controlled diffusion of Al, and the order of magnitude faster chemical reaction that occurs after the oxide layer breaks down and transient liquid phases are formed. A reaction model based on the production of Al3Ti spheroids that are ejected from the Ti reaction surface has been developed, and is titled reactive foil sintering. Quasi-static and dynamic compression tests resulted in maximum yield stresses for the 20Ti composite, and end-confined quasi-static and dynamic compression tests, tension tests, and 3-point bend tests resulted in maximum yield stresses and bending loads for the 35Ti composite. Maximum yield stresses occurred in specimens tested with layers parallel to the load. Arrester orientation R-curve testing was completed for the 14Ti composite under large-scale bridging conditions, with initiation toughness values obtained for 20Ti and 35Ti which developed cracks in the intermetallic layer growing perpendicular to the load axis. Divider orientation R-curves were obtained, with the 20Ti and 35Ti curves closely approaching calculated steady-state toughness values. Ballistics testing of bonded Ti, bonded Ti-Al, 5Ti, 14Ti, 35Ti, 57Ti, and Al3Ti at projectile velocities of 500--700 m/s resulted in the 14Ti and 35Ti having the best ballistic performance based on mass efficiency. Ballistics testing of 14Ti, 20Ti, and 35Ti

  6. Scanning force microscopy study of phase segregation in fuel cell membrane materials as a function of solvent polarity and relative humidity

    SciTech Connect

    Hawley, Marilyn Emily; Kim, Yu S; Hjelm, Rex P

    2010-01-01

    Scanning force microscopy (SFM) phase imaging provides a powerful method for directly studying and comparing phase segregation in fuel cell membrane materials due to different preparation and under different temperature and hwnidity exposures. In this work, we explored two parameters that can influence phase segregation: the properties of the solvents used in casting membrane films and how these solvents alter phase segregation after exposure to boiling water as a function of time. SFM was used under ambient conditions to image phase segregation in Nafion samples prepared using five different solvents. Samples were then subjected to water vapor maintained at 100C for periods ranging from 30 minutes to three hours and re-imaged using the same phase imaging conditions. SFM shows what appears to be an increase in phase segregation as a function of solvent polarity that changes as a function of water exposure.

  7. A solid phase extraction procedure for determination of triazine herbicides and polar metabolites in natural waters

    SciTech Connect

    Young, M.S.

    1996-11-01

    Atrazine and related triazine herbicides are used in great quantities throughout the world for pre-emergence weed control. In the central United States, for example, millions of kilograms of triazines are applied each year. In areas of heavy usage, surface water supplies are often affected by runoff of these substances and their transformation products. Therefore, a number of these compounds are routinely monitored in drinking water in the United States, particularly in agricultural areas such as the Mississippi river valley. There is also significant interest regarding the fate and transport of the triazine herbicides in the natural environment. In Europe, where groundwater is utilized for a high proportion of drinking water supplies, the EC has established more stringent limits than has the US EPA. Currently, the US limit is 3 {mu}g/L for atrazine; the European limit is 0.1 {mu}g/L for atrazine or any individual regulated pesticide, and 0.5 {mu}g/L for the sum of all pesticides. Because groundwater levels in agricultural areas were consistently above this limit, Germany banned the use of Atrazine in 1991, and has recommended banning the use of this herbicide throughout the European Community (EC). Clearly, a rugged method for determination of the triazine herbicides is desirable with detection limits in the part per trillion range. Because direct determination at these levels is not usually possible, sample enrichment techniques, such as solid phase extraction (SPE), must be employed. In this study, Porapak RDX Sep-Pak{reg_sign} cartridges were used for trace enrichment of triazines and metabolites.

  8. Tandem mass spectrometry with online high-flow reversed-phase extraction and normal-phase chromatography on silica columns with aqueous-organic mobile phase for quantitation of polar compounds in biological fluids.

    PubMed

    Deng, Yuzhong; Zhang, Hongwei; Wu, Jing-Tao; Olah, Timothy V

    2005-01-01

    In this work, high-flow online reversed-phase extraction was coupled with normal phase on silica columns with aqueous-organic mobile phase liquid chromatography/tandem mass spectrometry (LC/MS/MS) to quantify drug candidates in biological fluids. The orthogonal separation effect obtained from this configuration considerably reduced matrix effects and increased sensitivity for highly polar compounds as detected by selected reaction monitoring. This approach also significantly improved the robustness and limit of detection of the assays. An evaluation of this system was performed using a mixture of albuterol and bamethan in rat plasma. Assay validation demonstrated acceptable accuracy (< 8% difference) and precision (< 6% CV) for these model compounds. The system has been used for the quantitation of polar ionic compounds in biological fluids in support of drug discovery programs. This assay was used to analyze samples for a BMS proprietary compound (A) in a rat pharmacokinetic study and is shown as an example to demonstrate the precision, accuracy, and sufficient sensitivity of this system.

  9. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  10. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  11. Explosive reaction pressing of intermetallic compounds from stoichiometric powder mixtures

    SciTech Connect

    Kochsiek, D.; Pruemmer, R.; Brunold, A.

    1995-09-01

    Intermetallic NiAl, TiAl, and TiAl{sub 3} were synthesized by shock compression experiments from stoichiometric powder mixtures of nickel and aluminium as well as of titanium and aluminium. Good consolidation and complete intermetallic reaction were achieved by the direct method of explosive compaction. For each powder mixture, a certain individual threshold pressure has to be exceeded in order to initiate intermetallic reaction. The reacting compounds melted completely with subsequent rapid solidification during the passage of the shock wave. The new material shows high hardness. Pores are formed by gaseous reaction products in the NiAl and TiAl{sub 3} compacts. The TiAl structure is fully-dense and dendritic.

  12. Effect of solvent strength and temperature on retention for a polar-endcapped, octadecylsiloxane-bonded silica stationary phase with methanol-water mobile phases.

    PubMed

    Kiridena, Waruna; Poole, Colin F; Koziol, Wladyslaw W

    2004-12-10

    Synergi Hydro-RP is a new type of polar-endcapped, octadecylsiloxane-bonded silica packing for reversed-phase liquid chromatography. Its retention properties as a function of solvent strength and temperature are evaluated from the change in retention factors over the composition range (0-70% v/v methanol) and temperature range (25-65 degrees C) using the solvation parameter model and response surface methodologies. The main factors that affect retention are solute size and hydrogen-bond basicity, with minor contributions from solute hydrogen-bond acidity, dipole-type and electron lone pair interactions. Within the easily accessible range for both temperature and solvent strength, the ability to change selectivity is much greater for solvent strength than temperature. Also, a significant portion of the effect of increasing temperature is to reduce retention without changing selectivity. Response surfaces for the system constants are smooth and non-linear, except for cavity formation and dispersion interactions (v system constant), which is linear. Modeling of the response surfaces suggests that solvent strength and temperature are not independent factors for the b, s and e system constants and for the model intercept (c term).

  13. Behavior of alloys of the PtPd intermetallic compound with Hf and Zr in the electrosynthesis of peroxo salts

    SciTech Connect

    Toroptseva, N.T.; Vaseva, A.Yu.

    1988-08-10

    The objective of this study was to investigate the behavior of anodes made of alloys of the PtPd intermetallic compound with Hf and Zr in the synthesis of potassium peroxodicarbonates and peroxoborates. The investigations were based on polarization measurements in different regimes on stationary and rotating electrodes, the determination of the current yield of active oxygen in galvano- and potentiostatic syntheses, and the study of the kinetics of catalytic decomposition of peroxide solutions in the presence of the electrode in the range 289-308 K.

  14. Phase behavior of hyperbranched polymer systems: experiments and application of the perturbed-chain polar SAFT equation of state.

    PubMed

    Kozłowska, Marta K; Jürgens, Bas F; Schacht, Christian S; Gross, Joachim; de Loos, Theo W

    2009-01-29

    Vapor-liquid equilibrium data for systems of hyperbranched polymer (HBP) and carbon dioxide are reported for temperatures of 285-455 K and pressures up to 13 MPa. The bubble-point pressures of (CO2 + hyperbranched polyester) and of (CO2 + hyperbranched polyglycerol + CH3OH) samples with fixed compositions were measured using a Cailletet apparatus. The system (CO2 + polyglycerol + CH3OH) also exhibits a liquid-liquid phase split characterized by lower critical solution temperatures. For this system cloud point curves and vapor-liquid-liquid bubble-point curves were also measured. Moreover, a thermodynamic model has been developed for HBP mixtures in the framework of the perturbed-chain polar statistical association fluid theory (PCP-SAFT) equation of state accounting for branching effects. There is no additional binary interaction parameter introduced along with the branching contributions to the model. Although the miscibility gap in the system (CO2 + polyglycerol + CH3OH) is not predicted by the model, PCP-SAFT including branching effects gives a good representation of the bubble-point curves of this system at temperatures lower than the lower solution temperature (LST).

  15. Oblique incidence effect on steering efficiency of liquid crystal polarization gratings used for optical phased array beam steering amplification

    NASA Astrophysics Data System (ADS)

    Xiangjie, Zhao; Jiazhu, Duan; Dayong, Zhang; Cangli, Liu; Yongquan, Luo

    2016-10-01

    A liquid crystal polarization grating (LCPG) is proposed that amplifies the steering angle of a liquid crystal optical phased array for non-mechanical beam steering, taking advantage of its high steering efficiency under normal incidence. However, oblique incidence may play an important role in the overall steering efficiency. The effect of oblique incidence on steering efficiency of a LCPG was analyzed by numerically solving the extended Jones matrix and considering propagation crosstalk. The results indicate that the outgoing laser beam is amplitude-modulated under the effect of oblique incidence and behaves as a sinusoidal-modulated amplitude grating, which diffracts certain energies to non-blazed orders. Over-oblique incidence may even eliminate the steering effect of the incident beam. The modulation depth of the induced amplitude grating was found to be proportional to the product of sinusoidal value of oblique incidence angle and the LC layer thickness, and inversely proportional to the periodic pitch length of the LCPG. Both in-plane incidence and out-of-plane incidence behave similarly to influence the steering efficiency. Finally, the overall steering efficiency for cascaded LCPGs was analyzed and a difference of up to 11 % steering efficiency can be induced between different LCPG configurations, even without considering the over-oblique incidence effect. Both the modulation depth and final steering efficiency can be optimized by varying the LC birefringence and layer thickness.

  16. Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control.

    PubMed

    Rodrigo, Peter John; Pedersen, Christian

    2010-03-01

    Optimization of signal-to-noise ratio is an important aspect in the design of optical heterodyne detection systems such as a coherent Doppler lidar (CDL). In a CDL, optimal performance is achieved when the noise in the detector signal is dominated by local oscillator shot-noise. Most modern CDL systems are built using rugged and cost-efficient fiber optic components. Unfortunately, leakage signals such as residual reflections inherent within fiber components (e.g. circulator) can introduce phase-induced intensity noise (PIIN) to the Doppler spectrum in a CDL. Such excess noise may be a few orders of magnitude above the shot-noise level within the relevant CDL frequency bandwidth--corrupting the measurement of typically weak backscattered signals. In this study, observation of PIIN in a fiber-based CDL with a master-oscillator power-amplifier tapered semiconductor laser source is reported. Furthermore, we experimentally demonstrate what we believe is a newly proposed method using a simple polarization scheme to reduce PIIN by more than an order of magnitude.

  17. Reversed-phase liquid chromatography coupled on-line to estrogen receptor bioaffinity detection based on fluorescence polarization.

    PubMed

    Reinen, Jelle; Kool, Jeroen; Vermeulen, Nico P E

    2008-04-01

    We describe the development and validation of a high-resolution screening (HRS) platform which couples gradient reversed-phase high-performance liquid chromatography (RP-HPLC) on-line to estrogen receptor alpha (ERalpha) affinity detection using fluorescence polarization (FP). FP, which allows detection at high wavelengths, limits the occurrence of interference from the autofluorescence of test compounds in the bioassay. A fluorescein-labeled estradiol derivative (E2-F) was synthesized and a binding assay was optimized in platereader format. After subsequent optimization in flow-injection analysis (FIA) mode, the optimized parameters were translated to the on-line HRS bioassay. Proof of principle was demonstrated by separating a mixture of five compounds known to be estrogenic (17beta-estradiol, 17alpha-ethinylestradiol and the phytoestrogens coumestrol, coumarol and zearalenone), followed by post-column bioaffinity screening of the individual affinities for ERalpha. Using the HRS-based FP setup, we were able to screen affinities of off-line-generated metabolites of zearalenone for ERalpha. It is concluded that the on-line FP-based bioassay can be used to screen for the affinity of compounds without the disturbing occurrence of autofluorescence.

  18. Characteristics of electric-field-induced polarization rotation in <001>-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals close to the morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Peräntie, J.; Hagberg, J.; Uusimäki, A.; Tian, J.; Han, P.

    2012-08-01

    The special characteristics of polarization rotation and accompanying electric-field-induced ferroelectric-ferroelectric phase transitions in <001>-poled Pb(Mg1/3Nb2/3)1-xTixO3 (x = 27.4, 28.8, and 30.7 mol. %) single crystals close to the morphotropic phase boundary region were studied by means of dielectric and thermal measurements as a function of a unipolar electric field at various temperatures. Discontinuous first-order-type phase transition behavior was evidenced by distinct and sharp changes in polarization and thermal responses with accompanying hysteresis as a function of the electric field. All compositions of crystals showed either one or two reversible discontinuities along the polarization rotation paths, which can be understood by electric-field-induced phase transition sequences to the tetragonal phase through different monoclinic phases previously observed along the polarization rotation path. Together with increasing polarization, a field-induced reversible decrease in temperature was observed with increasing electric field, indicating increased dipolar entropy during the electric-field-induced phase transitions. Constructed electric field-temperature phase diagrams based on the polarization and thermal data suggest that the complex polarization rotation path extends to a wider composition range than previously observed. The measured thermal response showed that a transition from the monoclinic to the tetragonal phase produced a greater thermal change in comparison with a transition within two monoclinic phases.

  19. Modeling of Substitutional Site Preference in Ordered Intermetallic Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    1998-01-01

    We investigate the site substitution scheme of specific alloying elements in ordered compounds and the dependence of site occupancy on compound stoichiometry, alloy concentration. This basic knowledge, and the interactions with other alloying additions are necessary in order to predict and understand the effect of various alloying schemes on the physical properties of a material, its response to various temperature treatments, and the resulting mechanical properties. Many theoretical methods can provide useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. With this in mind, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed to overcome these limitations, with the intent of providing an useful tool for the theoretical prediction of fundamental properties and structure of complex systems. After a brief description of the BFS method, its use for the determination of site substitution schemes for individual as well as collective alloying additions to intermetallic systems is described, including results for the concentration dependence of the lattice parameter. Focusing on B2 NiAl, FeAl and CoAl alloys, the energetics of Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W alloying additions are surveyed. The effect of single additions as well as the result of two simultaneous additions, discussing the interaction between additions and their influence on site preference schemes is considered. Finally, the BFS analysis is extended to ternary L1(sub 2) (Heusler phase) alloys. A comparison between experimental and theoretical results for the limited number of cases for which experimental data is available is also included.

  20. Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films.

    PubMed

    Park, Min Hyuk; Kim, Han Joon; Lee, Young Hwan; Kim, Yu Jin; Moon, Taehwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong

    2016-07-21

    The broken ferroelectric hysteresis loop achieved from a Hf0.4Zr0.6O2 film was interpreted based on the first order phase transition theory. The two-step polarization switching, which was expected from the theory, could be observed by dynamic pulse switching measurement. The variations in the interfacial capacitance values along with switching time and number of switching cycles could also be estimated from the pulse switching test. Being different from the one-step polarization switching in other ferroelectric films, two-step polarization switching produced two slanted plateau regions where the estimated interfacial capacitance values were different from each other. This could be understood based on the quantitative model of the two-step polarization switching with the involvement of an intermediate nonpolar phase. The Hf0.4Zr0.6O2 film was changed from antiferroelectric-like to ferroelectric-like with the increasing number of electric field cycles, which could be induced by the field driven phase change.

  1. Twinning Mechanisms in Complex High Tm Intermetallic Compounds

    DTIC Science & Technology

    2007-11-02

    Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle and M.V. Nathal, Editors, TMS, Warrendale, PA (1993), pp 637-646. 12. "Deformation...of the 1995 Hume -Rothery Award Symposium, TMS, Warrendale, PA. 18. "Ductility and Toughness Considerations in Intermetallics", Y. Kimura and D.P...Pope, in Structural Intermetallics 1997, M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle , R. Wagner, and M. Yamaguchi, Editors, TMS

  2. Comparative HPLC methods for β-blockers separation using different types of chiral stationary phases in normal phase and polar organic phase elution modes. Analysis of propranolol enantiomers in natural waters.

    PubMed

    Morante-Zarcero, Sonia; Sierra, Isabel

    2012-03-25

    The enantioselectivities of β-blockers (propranolol, metoprolol, atenolol and pindolol) on four different types of chiral stationary phases (CSPs): Chiralpak AD-H, Lux Cellulose-1, Chirobiotic T and Sumichiral OA-4900 were compared using polar organic (PO) elution mode and normal phase (NP) elution mode. Method optimizations were demonstrated by modifying parameters such as organic modifier composition (ethanol, 2-propanol and acetonitrile) and basic mobile phase additives (triethylamine, diethylamine, ethanolamine, and buthylamine). In normal phase elution mode with Lux Cellulose-1, the four pairs of enantiomers can be separated in the same run in gradient elution mode. Additionally, a simple chiral HPLC-DAD method using a newly commercialized polysaccharide-based CSP by Phenomenex (Lux Cellulose-1) in NP elution mode for enantioselective determination of propranolol in water samples by highly selective molecularly imprinted polymers extraction was validated. The optimized conditions were a mobile phase composed by n-hexane/ethanol/DEA (70/30/0.3, v/v/v) at a flow rate of 1.0 mL min(-1) and 25 °C. The method is selective, precise and accurate and was found to be linear in the range of 0.125-50 μg mL(-1) (R(2)>0.999) with a method detection limit (MLD) of 0.4 μg mL(-1) for both enantiomers. Recoveries achieved with both enantiomers ranged from 97 to 109%.

  3. Effect of intermetallic compounds on the thermal conductivity of Ti-Cu composites

    SciTech Connect

    Jagannadham, K.

    2016-03-15

    Ti films were deposited by magnetron sputtering on polycrystalline Cu substrates. The samples were annealed at different temperatures and characterized by x-ray diffraction for phase identification, scanning electron microscopy, and energy dispersive spectrometry for microstructure and composition and transient thermoreflectance for thermal conductivity and interface thermal conductance. The results showed that the diffused layer of Ti in Cu contained intermetallic compounds and solid solution of Ti in Cu. The thermal conductivity of the diffused layer is reduced, and the thickness increased for higher annealing temperature. The interface thermal conductance also decreased for higher temperature of annealing. A stable Cu{sub 4}Ti phase was formed after annealing at 725 °C with thermal conductivity of 10 W m{sup −1} K{sup −1}. The interface thermal conductance between the intermetallic compound and the solid solution of Ti in Cu also was reduced to 30 MW m{sup −2} K{sup −1}. The effective thermal resistance of the diffused layer and the interface was found to increase for higher annealing temperature.

  4. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a birefringent nonlinear PCF.

    PubMed

    Mahmood, T; Cannon, B M; Astar, W; Carter, G M

    2014-12-29

    Polarization-insensitive (PI) all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK was successfully demonstrated in a birefringent nonlinear photonic crystal fiber (PCF), by utilizing cross-phase modulation (XPM) and the inherent birefringence of the device, for the first time. PI operation was achieved by launching the probe and one pump off-axis while the state of polarization (SOP) of the other pump was randomized. Optimum pump-probe detuning, all within the C-Band, was also utilized to reduce the polarization-induced power fluctuation. Receiver sensitivity penalty at 10-9 bit-error-rate was < 5.5 dB in PI operation, relative to the FPGA-precoded RZ-DQPSK baseline.

  5. Size-Dependent Disorder-Order Transformation in the Synthesis of Monodisperse Intermetallic PdCu Nanocatalysts.

    PubMed

    Wang, Chenyu; Chen, Dennis P; Sang, Xiahan; Unocic, Raymond R; Skrabalak, Sara E

    2016-06-28

    The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopy techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure-activity studies. Moreover, the study of their growth mechanism provides insights into the size dependence of disorder-order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.

  6. Intermetallic Strengthened Alumina-Forming Austenitic Steels for Energy Applications

    SciTech Connect

    Hu, Bin; Baker, Ian

    2016-03-31

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, the materials required must be strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and L12 precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. Microstructural and microchemical analyses of the recently developed alumina-forming austenitic (AFA) steels (Fe-14Cr-32Ni-3Nb-3Al-2Ti-based) indicated they are strengthened by Ni3Al(Ti) L12, NiAl B2, Fe2Nb Laves phase and MC carbide precipitates. Different thermomechanical treatments (TMTs) were performed on these stainless steels in an attempt to further improve their mechanical properties. The thermo-mechanical processing produced nanocrystalline grains in AFA alloys and dramatically increased their yield strength at room temperature. Unfortunately, the TMTs didn’t increase the yield strengths of AFA alloys at ≥700ºC. At these temperatures, dislocation climb is the dominant mechanism for deformation of TMT alloys according to strain rate jump tests. After the characterization of aged AFA alloys, we found that the largest strengthening effect from L12 precipitates can be obtained by aging for less than 24 h. The coarsening behavior of the L12 precipitates was not influenced by carbon and boron additions. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these AFA steels after creep tests. Though the Laves and B2-NiAl phase precipitated along the boundaries can improve the creep properties, cracks were

  7. Combination of sorption properties of polydimethylsiloxane and solid-phase extraction sorbents in a single composite material for the passive sampling of polar and apolar pesticides in water.

    PubMed

    Martin, Alexis; Margoum, Christelle; Coquery, Marina; Randon, Jérôme

    2016-10-01

    Passive sampling techniques have been developed as an alternative method for in situ integrative monitoring of trace levels of neutral pesticides in environmental waters. The objective of this work was to develop a new receiving phase for pesticides with a wide range of polarities in a single step. We describe the development of three new composite silicone rubbers, combining polydimethylsiloxane mechanical and sorption properties with solid-phase extraction sorbents, prepared as a receiving phase for passive sampling. A composite silicone rubber composed of polydimethylsiloxane/poly(divinylbenzene-co-N-vinylpyrrolidone) was selected by batch experiments for its high sorption properties for pesticides with octanol-water partition coefficients ranging from 2.3 to 5.5. We named this composite material "Polar/Apolar Composite Silicone Rubber". A structural study by scanning electron microscopy confirmed the homogeneous dispersion of the sorbent particles and the encapsulation of particles within the polydimethylsiloxane matrix. We also demonstrate that this composite material is resistant to common solvents used for the back-extraction of analytes and has a maximal resistance temperature of 350°C. Therefore, the characteristics of the "Polar/Apolar Composite Silicone Rubber" meet most of the criteria for use as a receiving phase for the passive sampling of pesticides.

  8. Controlling the polarity of metalorganic vapor phase epitaxy-grown GaP on Si(111) for subsequent III-V nanowire growth

    SciTech Connect

    Paszuk, A.; Steidl, M.; Zhao, W.; Dobrich, A.; Kleinschmidt, P.; Brückner, S.; Supplie, O.; Hannappel, T.; Prost, W.

    2015-06-08

    Nanowire growth on heteroepitaxial GaP/Si(111) by metalorganic vapor phase epitaxy requires the [-1-1-1] face, i.e., GaP(111) material with B-type polarity. Low-energy electron diffraction (LEED) allows us to identify the polarity of GaP grown on Si(111), since (2×2) and (1×1) surface reconstructions are associated with GaP(111)A and GaP(111)B, respectively. In dependence on the pre-growth treatment of the Si(111) substrates, we were able to control the polarity of the GaP buffers. GaP films grown on the H-terminated Si(111) surface exhibited A-type polarity, while GaP grown on Si surfaces terminated with arsenic exhibited a (1×1) LEED pattern, indicating B-type polarity. We obtained vertical GaAs nanowire growth on heteroepitaxial GaP with (1×1) surface reconstruction only, in agreement with growth experiments on homoepitaxially grown GaP(111)

  9. Phase-shifting interferometry with four interferograms using linear polarization modulation and a Ronchi grating displaced by only a small unknown amount

    NASA Astrophysics Data System (ADS)

    Meneses-Fabian, Cruz; Rodriguez-Zurita, Gustavo; Encarnacion-Gutierrez, Maria-del-Carmen; Toto-Arellano, Noel I.

    2009-08-01

    A method to reduce the number of captures needed in phase-shifting interferometry is proposed on the basis of grating interferometry and modulation of linear polarization. The case of four interferograms is considered. A common-path interferometer is used with two windows in the object plane and a Ronchi grating as the pupil, thus forming several replicated images of each window over the image plane. The replicated images, under proper matching conditions, superpose in such a way so that they produce interference patterns. Orders 0 and +1 and -1 and 0 form useful patterns to extract the optical phase differences associated to the windows. A phase of π is introduced between these orders using linear polarizing filters placed in the windows and also in the replicated windows, so two π-shifted patterns can be captured in one shot. An unknown translation is then applied to the grating in order to produce another shift in the each pattern. A second and final shot captures these last patterns. The actual grating displacement and the phase shift can be determined according to the method proposed by Kreis before applying proper phase-shifting techniques to finally calculate the phase difference distribution between windows. Related simulations and experimental results are given.

  10. Controlling the cation distribution and electric polarization with epitaxial strain in Aurivillius-phase Bi5FeTi3O15

    NASA Astrophysics Data System (ADS)

    Birenbaum, Axiel Yaël; Ederer, Claude

    2016-02-01

    This work explores the impact of in-plane bi-axial (epitaxial) strain on the cation distribution and electric polarization of the Aurivillius-phase compound Bi5FeTi3O15 using first-principles electronic structure calculations. Our calculations indicate that the site preference of the Fe3+ cation can be controlled via epitaxial strain. Tensile strain enhances the preference for the inner sites within the perovskite-like layers of the Aurivillius-phase structure, whereas compressive strain favors occupation of the outer sites, i.e., the sites close to the Bi2O2 layer. Controlling the distribution of the magnetic cations offers the possibility to control magnetic order in this magnetically dilute system. Furthermore, the magnitude of the electric polarization is strongly strain-dependent, increasing under tensile strain and decreasing under compressive strain. We find strongly anomalous Born effective charges, both of the Bi3+ and the Ti4+ cations.

  11. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    SciTech Connect

    Priyotomo, Gadang Nuraini, Lutviasari; Kaneno, Yasuyuki

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  12. Combined QM/MM Molecular Dynamics Study on a Condensed-Phase SN2 Reaction at Nitrogen:  The Effect of Explicitly Including Solvent Polarization.

    PubMed

    Geerke, Daan P; Thiel, Stephan; Thiel, Walter; van Gunsteren, Wilfred F

    2007-07-01

    In a previous combined QM/MM molecular dynamics (MD) study from our laboratory on the identity SN2 reaction between a chloride anion and an amino chloride in liquid dimethyl ether (DME), an increase in the free energy activation barrier was observed in the condensed phase when compared to the gas-phase activation energy. Here we reproduce these findings, but when comparing the condensed-phase potential of mean force (PMF) with the free energy profile in the gas phase (obtained from Monte Carlo simulations), we observe a smaller solvent effect on the activation barrier of the reaction. In a next step, we introduce an explicit description of electronic polarization in the MM (solvent) part of the system. A polarizable force field for liquid DME was developed based on the charge-on-spring (COS) model, which was calibrated to reproduce thermodynamic properties of the nonpolarizable model in classical MD simulations. The COS model was implemented into the MNDO/GROMOS interface in a special version of the QM/MM software ChemShell, which was used to investigate the effect of solvent polarization on the free energy profile of the reaction under study. A higher activation barrier was obtained using the polarizable solvent model than with the nonpolarizable force field, due to a better solvation of and a stronger polarization of solvent molecules around the separate reactants. The obtained PMFs were subjected to an energy-entropy decomposition of the relative solvation free energies of the reactant complex along the reaction coordinate, to investigate in a quantitative manner whether the solvent (polarization) effects are mainly due to favorable QM-MM (energetic) interactions.

  13. New insight into probe-location dependent polarity and hydration at lipid/water interfaces: comparison between gel- and fluid-phases of lipid bilayers.

    PubMed

    Singh, Moirangthem Kiran; Shweta, Him; Khan, Mohammad Firoz; Sen, Sobhan

    2016-09-21

    Environment polarity and hydration at lipid/water interfaces play important roles in membrane biology, which are investigated here using a new homologous series of 4-aminophthalimide-based fluorescent molecules (4AP-Cn; n = 2-10, 12) having different lipophilicities (octanol/water partition coefficient - log P). We show that 4AP-Cn molecules probe a peculiar stepwise polarity (E) profile at the lipid/water interface of the gel-phase (Lβ') DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature, which was not anticipated in earlier studies. However, the same molecules probe only a subtle but continuous polarity change at the interface of water and the fluid-phase (Lα) DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayer at room temperature. Fluorescence quenching experiments indicate that solutes with different log P values adsorb at different depths across DPPC/water and DOPC/water interfaces, which correlate with the polarity profiles observed at the interfaces. Molecular dynamics simulations performed on eight probe-lipid systems (four in each of the DPPC and DOPC bilayers - a total run of 2.6 μs) support experimental results, providing further information on the relative position and angle distributions as well as hydration of probes at the interfaces. Simulation results indicate that besides positions, probe orientations also play an important role in defining the local dielectric environment by controlling the probes' exposure to water at the interfaces especially of the gel-phase DPPC bilayer. The results suggest that 4AP-Cn probes are well suited for studying solvation properties at lipid/water interfaces of gel- and fluid-phases simultaneously.

  14. Solar Wind Sources in the Late Declining Phase of Cycle 23: Effects of the Weak Solar Polar Field on High Speed Streams

    DTIC Science & Technology

    2009-01-01

    solar wind model (Arge and Pizzo, 2000), based on daily updating solar magnetic field synoptic maps, is then used to map the outflows from the corona ...worldwide. University of California Peer Reviewed Title: Solar Wind Sources in the Late Declining Phase of Cycle 23: Effects of the Weak Solar Polar...currently valid OMB control number. 1. REPORT DATE 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Solar Wind

  15. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  16. Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials

    SciTech Connect

    Nie, Anmin; Gan, Li-yong; Cheng, Yingchun; Tao, Xinyong; Yuan, Yifei; Sharifi-Asl, Soroosh; He, Kun; Asayesh-Ardakani, Hasti; Vasiraju, Venkata; Lu, Jun; Mashayek, Farzad; Klie, Robert; Vaddiraju, Sreeram; Schwingenschlögl, Udo; Shahbazian-Yassar, Reza

    2015-12-17

    The progress on sodium-ion battery technology faces many grand challenges, one of which is the considerably lower rate of sodium insertion/deinsertion in electrode materials due to the larger size of sodium (Na) ions and complicated redox reactions compared to the lithium-ion systems. Here, it is demonstrated that sodium ions can be reversibly stored in Zn-Sb intermetallic nanowires at speeds that can exceed 295 nm s-1. Remarkably, these values are one to three orders of magnitude higher than the sodiation rate of other nanowires electrochemically tested with in situ transmission electron micro­scopy. It is found that the nanowires display about 161% volume expansion after the first sodiation and then cycle with an 83% reversible volume expansion. Despite their massive expansion, the nanowires can be cycled without any cracking or facture during the ultrafast sodiation/desodiation process. Additionally, most of the phases involved in the sodiation/desodiation process possess high electrical conductivity. More specifically, the NaZnSb exhibits a layered structure, which provides channels for fast Na+ diffusion. This observation indicates that Zn-Sb intermetallic nanomaterials offer great promise as high rate and good cycling stability anodic materials for the next generation of sodium-ion batteries.

  17. Observations of a dynamical-to-kinematic diffraction transition in plastically deformed polycrystalline intermetallic YCu

    SciTech Connect

    Williams, Scott H.; Brown, Donald W.; Clausen, Bjorn; Russell, Alan; Gschneidner Jr., Karl A.

    2014-03-01

    Unlike most intermetallic compounds, polycrystalline YCu, a B2 (CsCl-type) intermetallic, is ductile at room temperature. The mechanisms for this behavior are not fully understood. In situ neutron diffraction was used to investigate whether a stress-induced phase transformation or twinning contribute to the ductility; however, neither mechanism was found to be active in YCu. Surprisingly, this study revealed that the intensities of the diffraction peaks increased after plastic deformation. It is thought that annealing the samples created nearly perfect crystallinity, and subsequent deformation reduced this high degree of lattice coherency, resulting in a modified mosaic structure that decreased or eliminated the extinction effect. Analysis of changes in diffraction peak intensity showed a region of primary plasticity that exhibits significant changes in diffraction behavior. Fully annealed samples initially contain diffracting volumes large enough to follow the dynamical theory of diffraction. When loaded beyond the yield point, dislocation motion disrupts the lattice perfection, and the diffracting volume is reduced to the point that diffraction follows the kinematic theory of diffraction. Since the sample preparation and deformation mechanisms present in this study are common in numerous material systems, this dynamical to kinematic diffraction transition should also be considered in other diffraction experiments. These measurements also suggest the possibility of a new method of investigating structural characteristics. (C) 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  18. A strong phase reversal of the Arctic Oscillation in midwinter 2015/2016: Role of the stratospheric polar vortex and tropospheric blocking

    NASA Astrophysics Data System (ADS)

    Cheung, Hoffman H. N.; Zhou, Wen; Leung, Marco Y. T.; Shun, C. M.; Lee, S. M.; Tong, H. W.

    2016-11-01

    In January 2016, Asia and North America experienced unusual cold temperatures, although the global average of surface air temperature broke the warmest record during a strong El Niño event. This was closely related to the remarkable phase transition of the Arctic Oscillation (AO), which can be explained by stratosphere-troposphere interactions. First, the quasi-biennial oscillation changed to its westerly phase in summer 2015 and the stratospheric polar vortex was stronger in early to midwinter 2015/2016. As blocking did not occur in December, the associated downward propagation signal resulted in a strongly positive AO in late December 2015. Second, after late December, the positive phase of Pacific-North America pattern became apparent in El Niño event, which strengthened the Aleutian anticyclone in the stratosphere. In addition, an equivalent barotropic ("blocking") anticyclone was established in the troposphere over Asia. The coexistence of blocking over Asia and North America characterized the negative AO and a strong zonal wave number 2 pattern. Due to stronger zonal wave number 2 signals from the troposphere, the stronger stratospheric polar vortex was elongated, with two cyclonic centers over Asia and the North Atlantic in January. The resultant southward displacement of polar vortices was followed by rare snowfall in the subtropical region of East Asia and a heavy snowstorm on the East Coast of the United States.

  19. Preparation of a mixed-mode hydrophilic interaction/anion-exchange polymeric monolithic stationary phase for capillary liquid chromatography of polar analytes.

    PubMed

    Lin, Jian; Lin, Jia; Lin, Xucong; Xie, Zenghong

    2009-01-30

    A novel cationic hydrophilic interaction monolithic stationary phase based on the copolymerization of 2-(methacryloyloxy)ethyltrimethylammonium methyl sulfate (META) and pentaerythritol triacrylate (PETA) in a binary porogenic solvent consisting of cyclohexanol/ethylene glycol was designed for performing capillary liquid chromatography. While META functioned as both the ion-exchange sites and polar ligand provider, the PETA, a trivinyl monomer, was introduced as cross-linker. The monolithic stationary phases with different properties were easily prepared by adjusting the amount of META in the polymerization solution as well as the composition of the porogenic solvent. The hydrophilicity of the monolith increased with increasing content of META in the polymerization mixture. A typical hydrophilic interaction chromatography mechanism was observed when the content of acetonitrile in the mobile phase was higher than 20%. The poly(META-co-PETA) monolith showed very good selectivity for neutral, basic and acidic polar analytes. For polar-charged analytes, both hydrophilic interaction and electrostatic interaction contributed to their retention. Peak tailing of basic compounds was avoided and the efficient separation of benzoic acid derivatives was obtained.

  20. Cell polarity

    PubMed Central

    Romereim, Sarah M

    2011-01-01

    Despite extensive genetic analysis of the dynamic multi-phase process that transforms a small population of lateral plate mesoderm into the mature limb skeleton, the mechanisms by which signaling pathways regulate cellular behaviors to generate morphogenetic forces are not known. Recently, a series of papers have offered the intriguing possibility that regulated cell polarity fine-tunes the morphogenetic process via orienting cell axes, division planes and cell movements. Wnt5a-mediated non-canonical signaling, which may include planar cell polarity, has emerged as a common thread in the otherwise distinct signaling networks that regulate morphogenesis in each phase of limb development. These findings position the limb as a key model to elucidate how global tissue patterning pathways direct local differences in cell behavior that, in turn, generate growth and form. PMID:22064549

  1. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    PubMed

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination.

  2. Single solid phase extraction method for the simultaneous analysis of polar and non-polar pesticides in urine samples by gas chromatography and ultra high pressure liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Cazorla-Reyes, Rocío; Fernández-Moreno, José Luis; Romero-González, Roberto; Frenich, Antonia Garrido; Vidal, José Luis Martínez

    2011-07-15

    A new multiresidue method has been developed and validated for the simultaneous extraction of more than two hundred pesticides, including non-polar and polar pesticides (carbamates, organochlorine, organophosphorous, pyrethroids, herbicides and insecticides) in urine at trace levels by gas and ultra high pressure liquid chromatography coupled to ion trap and triple quadrupole mass spectrometry, respectively (GC-IT-MS/MS, UHPLC-QqQ-MS/MS). Non-polar and polar pesticides were simultaneously extracted from urine samples by a simple and fast solid phase extraction (SPE) procedure using C(18) cartridges as sorbent, and dichloromethane as elution solvent. Recovery was in the range of 60-120%. Precision values expressed as relative standard deviation (RSD) were lower than 25%. Identification and confirmation of the compounds were performed by the use of retention time windows, comparison of spectra (GC-amenable compounds) or the estimation of the ion ratio (LC-amenable compounds). For GC-amenable pesticides, limits of detection (LODs) ranged from 0.001 to 0.436 μg L(-1) and limits of quantification (LOQs) from 0.003 to 1.452 μg L(-1). For LC-amenable pesticides, LODs ranged from 0.003 to 1.048 μg L(-1) and LOQs ranged from 0.011 to 3.494 μg L(-1). Finally, the optimized method was applied to the analysis of fourteen real samples of infants from agricultural population. Some pesticides such as methoxyfenozide, tebufenozide, piperonyl butoxide and propoxur were found at concentrations ranged from 1.61 to 24.4 μg L(-1), whereas methiocarb sulfoxide was detected at trace levels in two samples.

  3. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    PubMed

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  4. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection

    PubMed Central

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications. PMID:26203382

  5. Generality of the 18-n Rule: Intermetallic Structural Chemistry Explained through Isolobal Analogies to Transition Metal Complexes.

    PubMed

    Yannello, Vincent J; Fredrickson, Daniel C

    2015-12-07

    Intermetallic phases exhibit a vast structural diversity in which electron count is known to be one controlling factor. However, chemical bonding theory has yet to establish how electron counts and structure are interrelated for the majority of these compounds. Recently, a simple bonding picture for transition metal (T)-main group (E) intermetallics has begun to take shape based on isolobal analogies to molecular T complexes. This bonding picture is summarized in the 18-n rule: each T atom in a T-E intermetallic phase will need 18-n electrons to achieve a closed-shell 18-electron configuration, where n is the number of electron pairs it shares with other T atoms in multicenter interactions isolobal to T-T bonds. In this Article, we illustrate the generality of this rule with a survey over a wide range of T-E phases. First, we illustrate how three structural progressions with changing electron counts can be accounted for, both geometrically and electronically, with the 18-n rule: (1) the transition between the fluorite and complex β-FeSi2 types for TSi2 phases; (2) the sequence from the marcasite type to the arsenopyrite type and back to the marcasite type for TSb2 compounds; and (3) the evolution from the AuCu3 type to the ZrAl3 and TiAl3 types for TAl3 phases. We then turn to a broader survey of the applicability of the 18-n rule through a study of the following 34 binary structure types: PtHg4, CaF2 (fluorite), Fe3C, CoGa3, Co2Al5, Ru2B3, β-FeSi2, NiAs, Ni2Al3, Rh4Si5, CrSi2, Ir3Ga5, Mo3Al8, MnP, TiSi2, Ru2Sn3, TiAl3, MoSi2, CoSn, ZrAl3, CsCl, FeSi, AuCu3, ZrSi2, Mn2Hg5, FeS2 (oP6, marcasite), CoAs3 (skutterudite), PdSn2, CoSb2, Ir3Ge7, CuAl2, Re3Ge7, CrP2, and Mg2Ni. Through these analyses, the 18-n rule is established as a framework for interpreting the stability of 341 intermetallic phases and anticipating their properties.

  6. Serial coupling of reversed-phase and zwitterionic hydrophilic interaction LC/MS for the analysis of polar and nonpolar phenols in wine.

    PubMed

    Greco, Giorgia; Grosse, Sylvia; Letzel, Thomas

    2013-04-01

    In the present study, an easy and efficient method based on the serial coupling of analytical reversed-phase and zwitterionic hydrophilic interaction liquid chromatography was developed for the simultaneous separation of polar and nonpolar phenols occurring in wine. The zwitterionic hydrophilic column was connected in series to the reversed-phase one via a T-piece, with which the ACN content in eluent of the second dimension was increased, in order to cope the solvent strength incompatibility between the two columns. The final mobile phase at low-flow rate (≤0.5 mL/min), high-ACN content (90%), and low-salt concentration was directed to an ESI-TOF-MS , for high accurate mass detections. The developed method was applied for the identification of target phenols in several wines. Retention time and peak width intra- and interday repeatability studies proved the reliability of the method for the simultaneous analysis of all the polar and nonpolar analytes in wine. The serial reversed-phase/zwitterionic hydrophilic interaction liquid chromatography coupling offered the possibility to enlarge the number of identified compounds and it represents a valid approach for nontarget analysis of complex samples by a single injection.

  7. First principles study of halogens adsorption on intermetallic surfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Quanxi; Wang, Shao-qing

    2016-02-01

    Halides are often present at electrochemical environment, they can directly influence the electrode potential or zero charge potential through the induced work-function change. In this work, we focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine on Al2Au and Al2Pt (110) surfaces. Results show that the real relation between work function change and dipole moment change for halogens adsorption on intermetallic surfaces is just a common linear relationship rather than a directly proportion. Besides, the different slopes between fitted lines and the theoretical slope employed in pure metal surfaces demonstrating that the halogens adsorption on intermetallic surfaces are more complicated. We also present a weight parameter β to describe different factors effect on work function shift and finally qualify which factor dominates the shift direction.

  8. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  9. Laser Metal Deposition of the Intermetallic TiAl Alloy

    NASA Astrophysics Data System (ADS)

    Thomas, Marc; Malot, Thierry; Aubry, Pascal

    2017-03-01

    Laser metal deposition of the commercial intermetallic Ti-47Al-2Cr-2Nb alloy was investigated. A large number of experiments were conducted under controlled atmosphere by changing the processing parameters to manufacture a series of beads, thin walls, and massive blocks. Optimal process parameters were successfully found to prevent cracking which is generally observed in this brittle material due to built-up residual stresses during fast cooling. These non-equilibrium cooling conditions tend to generate ultra-fine and metastable structures exhibiting high microhardness values, thus requiring post-heat treatments. The latter were successfully used to restore homogeneous lamellar or duplex microstructures and to relieve residual stresses. Subsequent tensile tests enabled us to validate the soundness and homogeneity of the Intermetallic TiAl alloy. Finally, a higher mechanical performance was achieved for the LMD material with respect to cast+HIP and EBM counterparts.

  10. Understanding and optimizing microstrip patch antenna cross polarization radiation on element level for demanding phased array antennas in weather radar applications

    NASA Astrophysics Data System (ADS)

    Vollbracht, D.

    2015-11-01

    The antenna cross polarization suppression (CPS) is of significant importance for the accurate calculation of polarimetric weather radar moments. State-of-the-art reflector antennas fulfill these requirements, but phased array antennas are changing their CPS during the main beam shift, off-broadside direction. Since the cross polarization (x-pol) of the array pattern is affected by the x-pol element factor, the single antenna element should be designed for maximum CPS, not only at broadside, but also for the complete angular electronic scan (e-scan) range of the phased array antenna main beam positions. Different methods for reducing the x-pol radiation from microstrip patch antenna elements, available from literature sources, are discussed and summarized. The potential x-pol sources from probe fed microstrip patch antennas are investigated. Due to the lack of literature references, circular and square shaped X-Band radiators are compared in their x-pol performance and the microstrip patch antenna size variation was analyzed for improved x-pol pattern. Furthermore, the most promising technique for the reduction of x-pol radiation, namely "differential feeding with two RF signals 180° out of phase", is compared to single fed patch antennas and thoroughly investigated for phased array applications with simulation results from CST MICROWAVE STUDIO (CST MWS). A new explanation for the excellent port isolation of dual linear polarized and differential fed patch antennas is given graphically. The antenna radiation pattern from single fed and differential fed microstrip patch antennas are analyzed and the shapes of the x-pol patterns are discussed with the well-known cavity model. Moreover, two new visual based electromagnetic approaches for the explanation of the x-pol generation will be given: the field line approach and the surface current distribution approach provide new insight in understanding the generation of x-pol component in microstrip patch antenna radiation

  11. An intermetallic forming steel under radiation for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hofer, C.; Stergar, E.; Maloy, S. A.; Wang, Y. Q.; Hosemann, P.

    2015-03-01

    In this work we investigated the formation and stability of intermetallics formed in a maraging steel PH 13-8 Mo under proton radiation up to 2 dpa utilizing nanoindentation, microcompression testing and atom probe tomography. A comprehensive discussion analyzing the findings utilizing rate theory is introduced, comparing the aging process to radiation induced diffusion. New findings of radiation induced segregation of undersize solute atoms (Si) towards the precipitates are considered.

  12. Magnetization of RFe3 intermetallic compounds: Molecular field theory analysis

    NASA Astrophysics Data System (ADS)

    Herbst, J. F.; Croat, J. J.

    1982-06-01

    We report magnetization measurements of all RFe3 intermetallic compounds known to form (R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm). A two-sublattice molecular field model is employed to analyze the data except in the case of YFe3, for which one magnetic sublattice is assumed. In general, the model adequately describes the temperature dependence of the magnetization. For SmFe3 our results suggest that the samarium and iron moments are ferromagnetically coupled.

  13. Normal and polar-organic-phase high-performance liquid chromatographic enantioresolution of omeprazole, rabeprazole, lansoprazole and pantoprazole using monochloro-methylated cellulose-based chiral stationary phase and determination of dexrabeprazole.

    PubMed

    Dixit, Shuchi; Dubey, Rituraj; Bhushan, Ravi

    2014-01-01

    Enantioresolution of four anti-ulcer drugs (chiral sulfoxides), namely, omeprazole, rabeprazole, lansoprazole and pantoprazole, was carried out by high-performance liquid chromatography using a polysaccharide-based chiral stationary phase consisting of monochloromethylated cellulose (Lux cellulose-2) under normal and polar-organic-phase conditions with ultraviolet detection at 285 nm. The method was validated for linearity, accuracy, precision, robustness and limit of detection. The optimized enantioresolution method was compared for both the elution modes. The optimized method was further utilized to check the enantiomeric purity of dexrabeprazole.

  14. Analysis of interface formation mechanism in GaN double-polarity selective-area growth by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kuze, Kenta; Osumi, Noriyuki; Fujita, Yohei; Inoue, Yoku; Nakano, Takayuki

    2016-05-01

    The fabrication of quasi-phase-matching (QPM) crystals by selective-area growth on the two asymmetrically polar surfaces of GaN is examined. We attempted the fabrication of GaN-QPM crystals by one-time growth using a carbon mask. For GaN double-polarity selective-area growth (DP-SAG), we investigated the effect of varied nitriding times of the Al2O3 templates patterned with the carbon mask. We optimized the nitriding conditions for the DP-SAG process, and evaluated the substrate fabricated by the optimized DP-SAG process. In addition, we examined the interface formation mechanism of DP-GaN fabricated by GaN DP-SAG process. We determined that it is possible to fabricate DP-GaN with a sharp interface by optimizing the growth conditions.

  15. CP-conserving unparticle phase effects on the unpolarized and polarized direct CP asymmetry in b{yields}dl{sup +}l{sup -} transition

    SciTech Connect

    Bashiry, V.

    2008-05-01

    We examine the unparticle CP-conserving phase effects on the direct CP asymmetry for both polarized and unpolarized leptons in the inclusive b{yields}dl{sup +}l{sup -} transition, where the flavor-changing neutral currents are forbidden at tree level but are induced by one-loop penguin diagrams. The averaged polarized and unpolarized CP asymmetries depict strong dependency on the unparticle parameters. In particular, a sizable discrepancy corresponding to the standard model is achieved when the scale dimension value is 1

  16. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver.

    PubMed

    Portuondo-Campa, Erwin; Buchs, Gilles; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-12-14

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz at 10 MHz offset frequency has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs' timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the phase-noise limitations in the system.

  17. Laves intermetallics in stainless steel-zirconium alloys

    SciTech Connect

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-05-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni){sub 2+x}, have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni){sub 23}Zr{sub 6} during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy.

  18. Multiconfigurational nature of 5f orbitals in uranium and plutonium and their intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Booth, Corwin

    2013-03-01

    The structural, electronic, and magnetic properties of U and Pu elements and intermetallics remain poorly understood despite decades of effort, and currently represent an important scientific frontier toward understanding matter. The last decade has seen great progress both due to the discovery of superconductivity in PuCoGa5 and advances in theory that finally can explain fundamental ground state properties in elemental plutonium, such as the phonon dispersion curve, the non-magnetic ground state, and the volume difference between the α and δ phases. A new feature of the recent calculations is the presence not only of intermediate valence of the Pu 5f electrons, but of multiconfigurational ground states, where the different properties of the α and δ phases are primarily governed by the different relative weights of the 5f4, 5f5, and 5f6 electronic configurations. The usual method for measuring multiconfigurational states in the lanthanides is to measure the lanthanide LIII-edge x-ray absorption near-edge structure (XANES), a method that is severely limited for the actinides because the spectroscopic features are not well enough separated. Advances in resonant x-ray emission spectroscopy (RXES) have now allowed for spectra with sufficient resolution to resolve individual resonances associated with the various actinide valence states. Utilizing a new spectrometer at the Stanford Synchrotron Radiation Lightsource (SSRL), RXES data have been collected that show, for the first time, spectroscopic signatures of each of these configurations and their relative changes in various uranium and plutonium intermetallic compounds. In combination with conventional XANES spectra on related compounds, these data indicate such states may be ubiquitous in uranium and plutonium intermetallics, providing a new framework toward understanding properties ranging from heavy fermion behavior, superconductivity, and intermediate valence to mechanical and fundamental bonding behavior in

  19. Preparation of polypyrrole composite solid-phase microextraction fiber coatings by sol-gel technique for the trace analysis of polar biological volatile organic compounds.

    PubMed

    Zhang, Zhuomin; Zhu, Li; Ma, Yunjian; Huang, Yichun; Li, Gongke

    2013-02-21

    Two novel polypyrrole (PPy) composite solid-phase microextraction (SPME) fiber coatings involving polypyrrole β-naphthalenesulfonic acid (PPy/β-NSA) and polypyrrole graphene (PPy/GR) composite SPME fiber coatings were prepared by a simple sol-gel technique for selectively sampling relatively polar biological volatile organic compounds (VOCs). Crucial preparation conditions of the PPy composite SPME fiber coatings were optimized and are discussed in detail. Physical tests suggested that the PPy composite SPME fiber coatings possessed a porous surface morphology, stable chemical and thermal properties. Due to the inducing polar functional groups in the PPy molecule, the PPy composite SPME fiber coatings achieved a higher extraction capacity and special selectivity for the polar biological VOCs with conjugate structures, compared with commercial SPME fiber coatings. Enrichment factors of most of the VOCs by the PPy/β-NSA and PPy/GR SPME fibers were much higher than those achieved by common commercially available SPME fiber coatings. Finally, the PPy/β-NSA and PPy/GR SPME fiber coatings were applied for the trace analysis of typical polar VOCs from ant and coriander samples coupled with gas chromatography/mass spectrometry (GC/MS) detection, respectively. It was satisfactory that the average contents of 4-heptanone, 4-heptanol, 4-nonanone and methyl 5-methylsalicylate from ant samples were actually found to be 28.0, 58.7, 3.0 and 0.6 μg g(-1), and the average contents of nonane, decanal, undecanal and dodecanal from coriander samples were actually found to be 0.79, 0.13, 0.06 and 0.21 μg g(-1). The results suggested that PPy composite SPME coatings will be a potentially excellent sampling technique for the trace analysis of polar biological VOCs.

  20. Microcantilever Fracture Testing of Intermetallic Cu3Sn in Lead-Free Solder Interconnects

    NASA Astrophysics Data System (ADS)

    Philippi, Bastian; Matoy, Kurt; Zechner, Johannes; Kirchlechner, Christoph; Dehm, Gerhard

    2017-01-01

    Driven by legislation and the abolishment of harmful and hazardous lead-containing solders, lead-free replacement materials are in continuous development. Assessment of the mechanical properties of intermetallic phases such as Cu3Sn that evolve at the interface between solder and copper metalization is crucial to predict performance and meet the high reliability demands in typical application fields of microelectronics. While representative material parameters and fracture properties are required to assess mechanical behavior, indentation-based testing produces different results depending on the sample type. In this work, focused ion beam machined cantilevers were used to unravel the impact of microstructure on the fracture behavior of Sn-Ag-Cu lead-free solder joints. Fracture testing on notched cantilevers showed brittle fracture for Cu3Sn. Unnotched samples allowed measurement of the fracture stress, to estimate the critical defect size in unnotched Cu3Sn microcantilevers.