Science.gov

Sample records for polar intermetallic phase

  1. Synthesis, Structure and bonding Analysis of the Polar Intermetallic Phase Ca2Pt2Cd

    SciTech Connect

    Samal, Saroj L.; Corbett, John D.

    2012-08-14

    The polar intermetallic phase Ca2Pt2Cd was discovered during explorations of the Ca-Pt-Cd system. The compound was synthesized by high temperature reactions, and its structure refined by single-crystal X-ray diffraction as orthorhombic, Immm, a = 4.4514(5), b = 5.8415(6), c = 8.5976(9) Å, Z = 2. The structure formally contains infinite, planar networks of [Pt2Cd]4– along the ab plane, which can be described as tessellation of six and four-member rings of the anions, with cations stuffed between the anion layers. The infinite condensed platinum chains show a substantial long–short distortion of 0.52 Å, an appreciable difference between Ca2Pt2Cd (26 valence electrons) and the isotypic but regular Ca2Cu2Ga (29 VE). The relatively large cation proportion diminishes the usual dominance of polar (Pt–Cd) and 5d–5d (Pt–Pt) contributions to the total Hamilton populations.

  2. A first-principles study on structural stability and mechanical properties of polar intermetallic phases CaZn2 and SrZn2

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Cheng; Liu, Yong; Li, De-Jiang; Li, Ke; Jin, Hua-Lan; Xu, Ying-Xuan; Xu, Chun-Shui; Zeng, Xiao-Qin

    2014-12-01

    Structural stability and electronic properties of polar intermetallic CaZn2 and SrZn2 in both CeCu2-type and MgZn2-type structures have been investigated using first-principles method. The calculated equilibrium lattice parameters agree closely with the available experimental and other theoretical results. In terms of formation enthalpy, it is discovered that the present compounds with CeCu2-type structure are energetically more stable than that with MgZn2-type. They are all mechanically stable according to the criteria of elastic stability. In particular, we have investigated the pressure effect on the compressive behaviour and structural stability of each compound. Subsequently, the bulk modulus, shear modulus, Young's modulus, theoretical hardness, Poisson's ratio and Debye temperature in the ground state can be estimated using Voigt-Reuss-Hill homogenization method. Mechanical anisotropy is characterized by the anisotropic factors and direction-dependent Young's modulus. Finally, the electronic structures are determined to reveal the bonding characteristics of considered phases.

  3. More statistics on intermetallic compounds - ternary phases.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  4. Nonstoichiometry of Al-Zr intermetallic phases

    SciTech Connect

    Radmilovic, V.; Thomas, G.

    1994-06-01

    Nonstoichiometry of metastable cubic {beta}{prime} and equilibrium tetragonal {beta} Al-Zr intermetallic phases of the nominal composition Al{sub 3}Zr in Al-rich alloys has been extensively studied. It is proposed that the ``dark contrast`` of {beta}{prime} core in {beta}{prime}/{sigma}{prime} complex precipitates, in Al-Li-Zr based alloys, is caused by incorporation of Al and Li atoms into the {beta}{prime} phase on Zr sublattice sites, forming nonstoichiometric Al-Zr intermetallic phases, rather than by Li partitioning only. {beta}{prime} particles contain very small amounts of Zr, approximately 5 at.%, much less than the stoichiometric 25 at.% in the Al{sub 3}Zr metastable phase. These particles are, according to simulation of high resolution images, of the Al{sub 3}(Al{sub 0.4}Li{sub 0.4}Zr{sub 0.2}) type. Nonstoichiometric particles of average composition Al{sub 4}Zr and Al{sub 6}Zr are observed also in the binary Al-Zr alloy, even after annealing for several hours at 600{degree}C.

  5. Magnetic phase transitions in layered intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mushnikov, N. V.; Gerasimov, E. G.; Rosenfeld, E. V.; Terent'ev, P. B.; Gaviko, V. S.

    2012-10-01

    Magnetic, magnetoelastic, and magnetotransport properties have been studied for the RMn2Si2 and RMn6Sn6 (R is a rare earth metal) intermetallic compounds with natural layered structure. The compounds exhibit wide variety of magnetic structures and magnetic phase transitions. Substitution of different R atoms allows us to modify the interatomic distances and interlayer exchange interactions thus providing the transition from antiferromagnetic to ferromagnetic state. Near the boundary of this transition the magnetic structures are very sensitive to the external field, temperature and pressure. The field-induced transitions are accompanied by considerable change in the sample size and resistivity. It has been shown that various magnetic structures and magnetic phase transitions observed in the layered compounds arise as a result of competition of the Mn-Mn and Mn-R exchange interactions.

  6. BaHg2Tl2. An Unusual Polar Intermetallic Phase with Strong DifferentiationBetween the Neighboring Elements Mercury and Thallium

    SciTech Connect

    Dai, Jing-Chao; Gupta, Shalabh; Gourdon, Olivier; Proffen, Th.; Corbett, John D

    2009-01-01

    High yields of the novel BaHg2Tl2 are achieved from reactions of the appropriate cast alloys at ~ 400 C. (Isotypic SrHg2Tl2 also exists.) The tetragonal barium structure (P42/mnm, a = 10.417, c = 4.952 ) was refined from both single crystal X-ray and neutron powder diffraction data in order to ensure the atom site assignments although distances and atom site potentials all also supportive of the results. The Hg and Tl network atoms are distinctive in their functions and bonding. Parallel chains of Hg hexagons and of Tl tetrahedra along c are constructed of like polyhedra that share opposed like edges, and these are in turn interconnected by Hg Tl bonds. Overall, Tl Tl bonds per cell exceed Hg Hg by 20:12 although these are ~1:2 in bonding according to the −ICOHP (≈ overlap population) values. Barium is bound within a close 15-atom polyhedron, 12 of which are the more electronegative Hg. LMTO-ASA calculations show that scalar relativistic effects are particularly important for Hg (5d-6s mixing in Hg Hg and Hg Tl bonding), whereas relatively separate (lower) 5d and 6s states of Tl are more important in Tl Tl interactions, appropriate to the 6s2 6p1 ground state for the atom. The highest occupied states define a dominantly 6p band, and the phase is metallic and Pauli-like paramagnetic. Binary active metal mercury systems that have been studied theoretically all have distinctly higher electron populations per mercury.

  7. Zintl and intermetallic phases grown from calcium/lithium flux

    NASA Astrophysics Data System (ADS)

    Blankenship, Trevor

    Metal flux synthes is a useful alternative method to high temperature solid state synthesis; it allows easy diffusion of reactants at lower temperatures, and presents favorable conditions for crystal growth. A mixed flux of calcium and lithium in a 1:1 ratio was explored in this work; this mixture melts at 300°C and is an excellent solvent for main group elements and CaH 2. Reactions of p-block elements in a 1:1 Ca/Li flux have produced several new intermetallic and Zintl phases. Electronegative elements from groups 14 and 15 are reduced to anions in this flux, yielding charge-balanced products. More electropositive metals from group 13 are not fully reduced; the resulting products are complex intermetallics. The reactions of tin or lead and carbon in Ca/Li flux produced the analogous phases Ca11Tt3C8 (Tt = Sn, Pb) in the monoclinic C21/c space group (a = 13.2117(8) A, b =10.7029(7) A, c = 14.2493(9) A, beta = 105.650(1)° for the Sn analog). These compounds are carbide Zintl phases that includes the rare combination of C3 4- and C22- units as well as Sn4- or Pb4- anions. Ca/Li flux reactions of CaH2 and arsenic have produced the Zintl phases LiCa3As 2H in orthorhombic Pnma (a = 11.4064(7), b = 4.2702(3), c = 11.8762(8) A), and Ca 13As6C0.46N1.155H6.045in tetragonal P4/mbm (a = 15.7493(15), c = 9.1062(9) A). The complex stoichiometry of the latter phase was caused by incorporation of light element contaminants and was studied by neutron diffraction, showing mixing of anionic sites to achieve charge balance. Ca/Li flux reactions with group 13 metals have resulted in several new intermetallic phases. Reactions of indium and CaH2 in the Ca/Li flux (with or without boron) formed Ca53In13B4-x H23+x(2.4 < x < 4.0) in cubic space group Im-3 (a = 16.3608(6) A) which features metallic indium atoms and ionic hydride sites. The electronic properties of this "subhydride" were confirmed by 1H and 115In NMR spectroscopy. Attempts to replace boron with carbon yielded Ca12InC13-x

  8. Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound

    PubMed Central

    Ghosh, Krishanu; Mazumdar, Chandan; Ranganathan, R.; Mukherjee, S.

    2015-01-01

    The rare coexistence of a Griffiths phase (GP) and a geometrically frustrated antiferromagnetism in the non-stoichiometric intermetallic compound GdFe0.17Sn2 (the paramagnetic Weiss temperature θp ~ −59 K) is reported in this work. The compound forms in the Cmcm space group with large structural anisotropy (b/c ~ 4). Interestingly, all the atoms in the unit cell possess the same point group symmetry (Wycoff position 4c), which is rather rare. The frustration parameter, f = |θp|/TN has been established as 3.6, with the Néel temperature TN and Griffiths temperature TG being 16.5 and 32 K, respectively. The TG has been determined from the heat capacity measurement and also from the magnetocaloric effect (MCE). It is also shown that substantial difference in GP region may exist between zero field and field cooled measurements - a fact hitherto not emphasized so far. PMID:26515256

  9. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    NASA Astrophysics Data System (ADS)

    Amani, H.; Soltanieh, M.

    2016-08-01

    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  10. The preparation of the Ti-Al alloys based on intermetallic phases

    NASA Astrophysics Data System (ADS)

    Kosova, N.; Sachkov, V.; Kurzina, I.; Pichugina, A.; Vladimirov, A.; Kazantseva, L.; Sachkova, A.

    2016-01-01

    This article deals with a method of obtaining materials in the Ti-Al system. Research was carried out in accordance with the phase diagram of the system state. It was established, that both single-phase and multiphase systems, containing finely dispersed intermetallic compositions of phases Ti3Al, TiAl and TiAl3, are formed. Additionally, it was found that the pure finely dispersed (coherent-scattering region (CSR) up to 100 nm) intermetallic compound TiAl3 is formed at molar ratio of Ti:Al = 1:3. Experimentally proved the possibility of produce the complex composition of alloys and intermetallic compounds and products based on them.

  11. Phase-Controlled Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.

    2012-01-01

    We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.

  12. Structure, stability, and mechanical properties of intermetallic phases

    SciTech Connect

    Schneibel, J.H.; Liu, C.T.

    1993-12-31

    The importance of the structural stability of intermetallics with regard to their mechanical properties is illustrated with two case studies. First, the importance of structural and thermal defects for the strength of (weakly ordered) FeAl and (strongly ordered) NiAl is shown. Several inconsistencies and unresolved issues in the present understanding of point defects in FeAl are addressed. Since point defects alone may not explain the mechanical differences between these two materials, the role of dislocations is considered as well. It is shown that the differences in the atomic bonding of FeAl and NiAl, which deter-mine the active slip systems, are likely to influence the compositional dependence of the strength of these two intermetallics. Second, the class of the trialuminides is reviewed with emphasis on Al{sub 3}Ti. In addition to stabilizing a cubic crystal structure, the ratio of K/G, where K is the bulk modulus and G the shear modulus, needs to be increased in order to achieve extensive plastic deformation at room temperature. It is not clear, at the present time, to what extent macroalloying of trialuminides can achieve this goal, although promising results have been reported for Al{sub 3}Ti containing relatively high concentrations (14 at. %) of chromium.

  13. Experimental and theoretical investigations of the polar intermetallics SrPt3Al2 and Sr2Pd2Al

    NASA Astrophysics Data System (ADS)

    Stegemann, Frank; Benndorf, Christopher; Touzani, Rachid St.; Fokwa, Boniface P. T.; Janka, Oliver

    2016-10-01

    SrPt3Al2, a CaCu5 relative (P6/mmm; a = 566.29(3), c = 389.39(3) pm; wR2 = 0.0202, 121 F2 values, 9 parameters), and Sr2Pd2Al, isostructural to Ca2Pt2Ge (Fdd2; a = 1041.45(5), b = 1558.24(7), c = 604.37(3) pm; wR2 = 0.0291, 844 F2 values, 25 parameters) have been prepared from the elements. The crystal structures have been investigated by single crystal X-ray diffraction. Structural relaxation confirmed the electronic stability of SrPt3Al2, while orthorhombic Sr2Pd2Al might be a metastable polymorph as it is energetically competitive to its monoclinic variant. Both compounds are predicted to be metallic conductors as their density-of-states (DOS) are non-zero at the Fermi level. COHP bonding analysis coupled with Bader effective charge analysis suggest that the title compounds are polar intermetallic phases in which strong Pt-Al and Pd-Al covalent bonds are present, while a significant electron transfer from Sr atoms to the [Pt3Al2]δ- or [Pd2Al]δ- network is found.

  14. Evolution of Intermetallic Phases in Soldering of the Die Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Song, Jie; Wang, Xiaoming; DenOuden, Tony; Han, Qingyou

    2016-06-01

    Most die failures are resulted from chemical reactions of dies and molten aluminum in the die casting of aluminum. The formation of intermetallic phases between a steel die and molten aluminum is investigated by stationary immersion tests and compared to a real die casting process. Three intermetallic phases are identified in the stationary immersion tests: a composite layer and two compact layers. The composite layer is a mixture of α bcc, Al, and Si phases. The α bcc phase changes in morphology from rod-like to spherical shape, while the growth rate of the layer changes from parabolic to linear pattern with immersion time. The first compact layer forms rapidly after immersion and maintains a relatively constant thickness. The second compact layer forms after 4 hours of immersion and exhibits parabolic growth with immersion time. In comparison, only a composite layer and the first compact layer are observed in a real die casting process. The fresh molten aluminum of high growth rate washes away the second intermetallic layer easily.

  15. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    SciTech Connect

    Fredrickson, Daniel C

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  16. Preparation of nanocrystalline metal oxides and intermetallic phases by controlled thermolysis of organometallic coordination polymers

    NASA Astrophysics Data System (ADS)

    Rehbein, Marcus; Epple, Matthias; Fischer, R. Dieter

    2000-06-01

    Organometallic coordination polymers of the super-Prussian blue type [(Me 3Sn) nM(CN) 6] (Me=CH 3; n=3, 4; M=Fe, Co, Ru) were subjected to thermolysis in different atmospheres (air, argon, hydrogen/nitrogen). In air, oxides were found: Fe 2O 3/SnO 2 (crystalline and nanocrystalline), Co 2SnO 4 and RuO 2. In argon and in hydrogen, the intermetallic phases FeSn 2, CoSn 2, Ru 3Sn 7 and Fe 3SnC were obtained. A detailed mechanistic study was carried out using thermogravimetry (TG), X-ray diffraction (XRD), X-ray absorption spectroscopy (EXAFS) at Fe, Co, Ru and Sn K-edges, infrared spectroscopy (IR) and elemental analysis. Below 250°C, Me 3SnCN and (CN) 2 are released, whereas above 250°C oxidation or pyrolysis leads to the corresponding oxides or intermetallic phases. Polymeric cyanides containing at least two metals have turned out to be suitable precursors to prepare well-defined oxides and intermetallic phases at comparatively low temperature.

  17. In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases

    PubMed Central

    Rameshan, Christoph; Stadlmayr, Werner; Penner, Simon; Lorenz, Harald; Mayr, Lukas; Hävecker, Michael; Blume, Raoul; Rocha, Tulio; Teschner, Detre; Knop-Gericke, Axel; Schlögl, Robert; Zemlyanov, Dmitry; Memmel, Norbert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503–523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase. In general, the composition of the PdGa model system is much more variable than that of its PdZn counterpart, which results in gradual changes of the near-surface composition with increasing annealing or reaction temperature. In contrast to near-surface PdZn, in methanol steam reforming, no temperature region with pronounced CO2 selectivity was observed, which is due to the inability of purely intermetallic PdGa to efficiently activate water. This allows to pinpoint the water-activating role of the intermetallic/support interface and/or of the oxide support in the related supported PdxGa/Ga2O3 systems, which exhibit high CO2 selectivity in a broad temperature range. In contrast, corresponding experiments starting on the purely bimetallic model surface in oxidative methanol reforming yielded high CO2 selectivity already at low temperatures (∼460 K), which is due to efficient O2 activation on PdGa. In situ detected partial and reversible oxidative Ga segregation on intermetallic PdGa is associated with total oxidation of intermediate C1 oxygenates to CO2. PMID:22875996

  18. Irradiation induced structural change in Mo2Zr intermetallic phase

    DOE PAGES

    Gan, J.; Keiser, Jr., D. D.; Miller, B. D.; Eriksson, N.; Sohn, Y. H.; Kirk, M.

    2016-05-14

    The Mo2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. Transmission electron microscopy in-situ irradiation with Kr ions at 200 °C with doses up to 2.0E+16 ions/cm2 was carried out to investigate the radiation stability of the Mo2Zr. The Mo2Zr undergoes a radiation-induced structural change, from a large cubic (cF24) to a small cubic (cI2), along with an estimated 11.2% volume contraction without changing its composition. The structural change begins at irradiation dose below 1.0E+14 ions/cm2. Furthermore, the transformed Mo2Zr phase demonstrates exceptional radiation tolerance with the development of dislocations without bubblemore » formation.« less

  19. Technetium Incorporation into C14 and C15 Laves Intermetallic Phases

    SciTech Connect

    Buck, Edgar C.; Schemer-Kohrn, Alan L.; Wierschke, Jonathan B.

    2013-01-23

    Laves-type intermetallics have been observed to be the dominant phases in a series of alloy compositions being designed for the immobilization technetium in a metallic waste form. The dominant metals in the alloy compositions were Fe-Mo and Fe-Mo-Zr. Alloy composition, Fe-Mo-Zr, also contained Pd, Zr, Cr, and Ni. Both non-radioactive rhenium-containing and radioactive technetium-bearing alloy compositions were investigated. In the Fe-Mo series, phases were observed Fe2Mo (C14 Laves phase) and ferrite in agreement with predictions. Both Tc and Re resided predominantly in the Laves phase. In the Fe-Mo-Zr system, the phases included hexagonal C14 with the composition (Fe,Cr)2Mo, cubic C15 phase with a (Fe,Ni)2Zr composition, and the hcp phase Pd2Zr.

  20. Nonisothermal kinetics study of phase evolution of Zn-Fe intermetallics

    SciTech Connect

    Uwakweh, O.N.C.; Liu, Z.T.; Boisson, M.

    1996-12-31

    Through mechanical alloying of pure elemental powders of Fe and Zn, true homogeneous alloys of {Gamma} (Fe{sub 3}Zn{sub 10}), {Gamma}{sub 1} (Fe{sub 5}Zn{sub 21}), {delta} (FeZn{sub 7}) and {zeta} (FeZn{sub 13}) intermetallic phases are formed. Based on nonisothermal kinetics analyses, the highest activation energies associated with the metastable to stable transformations of these phases are determined as follows: 170 {+-} 1 kJ/mol, 251 {+-} 2 kJ/mol, 176 {+-} 1 kJ/mol and 737 {+-} 4 kJ/mol for the {Gamma}, {Gamma}{sub 1}, {delta} and {zeta}-phases, respectively. These values reflect different diffusion/thermally induced processes associated with the transition of each of these phases.

  1. Phase diagram of the Co-Al-W system. structure and phase transformations near the Co3(Al, W) intermetallic composition range

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Demakov, S. L.; Yurovskikh, A. S.; Stepanova, N. N.; Vinogradova, N. I.; Davydov, D. I.; Lepikhin, S. V.

    2016-07-01

    Low-temperature portion of the polythermal section for the Co-Al-W system in the vicinity of the Co3(Al, W) intermetallic composition has been studied experimentally using electron microscopy and hightemperature X-ray diffraction analysis. Low-temperature structural phase transformations and temperature ranges of the existence of phases have been determined. The morphology of Co3(Al, W) intermetallic particles was studied as a function of the tungsten content in alloys.

  2. The role of fluid flow and intermetallic phases in the formation of the primary Al-phase in AlSi alloys

    NASA Astrophysics Data System (ADS)

    Mikołajczak, P.; Ratke, L.

    2012-01-01

    In secondary AlSi alloys, the presence of small amounts of Fe causes the formation of intermetallic phases, which have a negative effect on mechanical and physical properties of castings. To understand the effect of fluid flow on the microstructure and intermetallic phases, Al-5/7/9 wt pet Si 0.2/0.5/1.0 wt pet Fe alloys have been directionally solidified under defined thermal (gradient 3 K/mm, solidification velocity 0.04 mm/s) and fluid flow (rotating magnetic field 6 mT) conditions. The primary α-Al phase and intermetallic phases were studied using light microscopy and SEM with EDX. The influence of fluid flow and intermetallic phases (β-Al5FeSi) on microstructure was characterized by changes of primary and secondary dendrite arm spacing and specific surface area of the dendrites. We observe a pronounced effect of flow on the length of the intermetallic precipitates, a macro-segregation Fe and Si and even small amounts of iron and thus intermetallics reduce possible effects of flow on microstructural parameters.

  3. Some aspects of the precipitation of metastable intermetallic phases in INCONEL 718

    NASA Astrophysics Data System (ADS)

    Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S.

    1992-07-01

    Some aspects of the precipitation of the metastable intermetallic phases —γ″ and γ″—in the commercial nickel base superalloy, INCONEL 718, have been investigated over a wide range of aging temperatures. It has been confirmed that the spherical γ″ particles and the ellipsoidal γ″ particles evolve predominantly through homogeneous nucleation. Precipitation of the former does not appear to precede that of the latter in this alloy. The tetragonal distortion associated with the γ″ particles has been found to increase with increasing precipitate size. It has been observed that at certain temperatures, physical association between precipitates of the two types occurs frequently, leading to the development of different composite precipitate morphologies. During coarsening, the precipitate size has been found to depend linearly on the cube root of the aging time for γ' as well as γ″ particles.

  4. Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Khodir, S. A.; Ahmed, M. M. Z.; Ahmed, Essam; Mohamed, Shaymaa M. R.; Abdel-Aleem, H.

    2016-09-01

    Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.

  5. SrZn2Sn2 and Ca2Zn3Sn6 — two new Ae-Zn-Sn polar intermetallic compounds (Ae: alkaline earth metal)

    NASA Astrophysics Data System (ADS)

    Stegmaier, Saskia; Fässler, Thomas F.

    2012-08-01

    SrZn2Sn2 and Ca2Zn3Sn6, two closely related new polar intermetallic compounds, were obtained by high temperature reactions of the elements. Their crystal structures were determined with single crystal XRD methods, and their electronic structures were analyzed by means of DFT calculations. The Zn-Sn structure part of SrZn2Sn2 comprises (anti-)PbO-like {ZnSn4/4} and {SnZn4/4} layers. Ca2Zn3Sn6 shows similar {ZnSn4/4} layers and {Sn4Zn} slabs constructed of a covalently bonded Sn scaffold capped by Zn atoms. For both phases, the two types of layers are alternatingly stacked and interconnected via Zn-Sn bonds. SrZn2Sn2 adopts the SrPd2Bi2 structure type, and Ca2Zn3Sn6 is isotypic to the R2Zn3Ge6 compounds (R=La, Ce, Pr, Nd). Band structure calculations indicate that both SrZn2Sn2 and Ca2Zn3Sn6 are metallic. Analyses of the chemical bonding with the electron localization function (ELF) show lone pair like basins at Sn atoms and Zn-Sn bonding interactions between the layers for both title phases, and covalent Sn-Sn bonding within the {Sn4Zn} layers of Ca2Zn3Sn6.

  6. The polarity effect of electromigration on intermetallic compound formation and back stress in v-groove solder lines

    NASA Astrophysics Data System (ADS)

    Ou, Shengquan

    2005-07-01

    The trend of the miniaturization of VLSI and electronic packaging toward higher input/output density, smaller feature size and greater performance makes electromigration a serious reliability concern in flip chip technology. As an integral part of the joint, intermetallic compound (IMC) formation is very important to achieve good joint strength. However, the effect of electromigration on the IMC formation is a subject in which still very little is known. We utilize solder v-groove samples etched on (001) Si wafer with 100 mum opening to study the polarity effect of electromigration on IMC formation in solder joints. We focus on the interaction between chemical and electrical forces, and the influence of interface morphology on the IMC dissolution. The current densities used are from 103 to 104 A/cm2 and the temperature settings are in the range of 120°C to 180°C. We have found in both 95.5Sn3.8Ag0.7Cu/Cu and 96.5Sn3.5Ag systems the growth of the IMC has been enhanced by electric current at the anode and inhibited at the cathode. For Ni-Sn compound, kinetic analysis using the motion of the two interfaces gives the general formula of the growth rate as dXdt=aX + b. We have introduced the concept of mean-field theory and the classic model of Zener's precipitation growth into the discussion of the Cu-Sn compound growth under electromigration. A parabolic dependence of the IMC growth on time at the anode is derived as x 2 ≅ (Cm-Ce)2 (Cs-Ce)2 Dt. The interaction between chemical and electrical forces brings a dynamic equilibrium in IMC dissolution at the cathode. This has been proved theoretically and experimentally. A new critical product has been derived from this dynamic equilibrium, which can provide us a critical IMC thickness before voids formation at a given current density. Our study shows the dissolution rate of Cu with current density 5x103 A/cm2 at 150°C is about 0.076 mum/hr. We also notice that the interface morphology plays an important role in the IMC

  7. Kinetic Stabilization of Ordered Intermetallic Phases as Fuel Cell Anode Materials

    SciTech Connect

    Liu, Yi; Lowe, Michael A.; DiSalvo, Francis J.; Abruña, Héctor D.

    2010-08-16

    The influence of fuel molecules on the stability of the ordered intermetallic PtBi and PtPb phases has been extensively studied by synchrotron-based in situ X-ray grazing incidence diffraction under active electrochemical control. Cycling the potential to increasingly positive values resulted in little change to the surface composition and crystalline structure when specific fuel molecules (such as formic acid for PtBi and formic acid or methanol for PtPb) were oxidized at the intermetallic electrode surface. This was demonstrated by the absence of diffraction peaks due to Pt domains that would be generated by the leaching out of the less noble metal. This phenomenon has been rationalized as a competition process between the oxidation of fuel molecules at the electrode surface and corrosion and damage of the surface due to the electrochemical treatment. For example, PtBi electrodes, which exhibit excellent catalytic activity toward the oxidation of formic acid, could be kinetically stabilized to such a corrosion/degradation process in the presence of formic acid even at relatively positive potentials. An analogous effect was observed for PtPb in the presence of methanol as fuel. In the absence of fuel molecules (formic acid for PtBi and formic acid and/or methanol for PtPb), various surface layers were generated by different electrochemical pretreatments in the presence of only a supporting electrolyte. Crystalline oxidized bismuth species (such as Bi2O3) with an ~50 nm domain size were formed on the PtBi electrode surface by holding the potential at +1.00 V or beyond for at least 30 min. On the other hand, platinum nanopaticles with an ~5 nm crystalline domain size were formed when cycling the potential to higher values. In the case of PtPb, the only detected corrosion product was PbSO 4, whose diffraction peaks were utilized to qualitatively analyze the lead leaching-out and dissolution processes. No crystalline lead oxide species

  8. Enhanced polarization by the coherent heterophase interface between polar and non-polar phases

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Yeop; Sung, Kil-Dong; Rhyim, Youngmok; Yoon, Seog-Young; Kim, Min-Soo; Jeong, Soon-Jong; Kim, Kwang-Ho; Ryu, Jungho; Kim, Sung-Dae; Choi, Si-Young

    2016-03-01

    A piezoelectric composite containing the ferroelectric polar (Bi(Na0.8K0.2)0.5TiO3: f-BNKT) and the non-polar (0.94Bi(Na0.75K0.25)0.5TiO3-0.06BiAlO3: BNKT-BA) phases exhibits synergetic properties which combine the beneficial aspects of each phase, i.e., the high saturated polarization (Ps) of the polar phase and the low coercive field (Ec) of the non-polar phase. To understand the origin of such a fruitful outcome from this type of polar/non-polar heterophase structure, comprehensive studies are conducted, including transmission electron microscopy (TEM) and finite element method (FEM) analyses. The TEM results show that the polar/non-polar composite has a core/shell structure in which the polar phase (core) is surrounded by a non-polar phase (shell). In situ electrical biasing TEM experiments visualize that the ferroelectric domains in the polar core are aligned even under an electric field of ~1 kV mm-1, which is much lower than its intrinsic coercive field (~3 kV mm-1). From the FEM analyses, we can find that the enhanced polarization of the polar phase is promoted by an additional internal field at the phase boundary which originates from the preferential polarization of the relaxor-like non-polar phase. From the present study, we conclude that the coherent interface between polar and non-polar phases is a key factor for understanding the enhanced piezoelectric properties of the composite.A piezoelectric composite containing the ferroelectric polar (Bi(Na0.8K0.2)0.5TiO3: f-BNKT) and the non-polar (0.94Bi(Na0.75K0.25)0.5TiO3-0.06BiAlO3: BNKT-BA) phases exhibits synergetic properties which combine the beneficial aspects of each phase, i.e., the high saturated polarization (Ps) of the polar phase and the low coercive field (Ec) of the non-polar phase. To understand the origin of such a fruitful outcome from this type of polar/non-polar heterophase structure, comprehensive studies are conducted, including transmission electron microscopy (TEM) and finite element

  9. Discovery and characterization of magnetism in sigma-phase intermetallic Fe-Re compounds

    SciTech Connect

    Cieślak, J. Dubiel, S. M.; Tobola, J.; Reissner, M.

    2014-11-14

    Systematic experimental studies (vibrating sample magnetometry) supported by theoretical calculations (electronic structure by spin self-consistent Korringa-Kohn-Rostoker Green's function method) were performed on a series of intermetallic sigma-phase Fe{sub 100−x}Re{sub x} (x = 43–53) compounds. All investigated samples exhibit magnetism with an ordering temperature ranging between ∼65 K for x = 43 and ∼23 K for x = 53. The magnetism was revealed to be itinerant and identified as a spin-glass (SG) possibly having a re-entrant character. The SG was found to be heterogeneous, viz., two regimes could be distinguished as far as irreversibility in temperature dependence of magnetization is concerned: (1) of a weak irreversibility and (2) of a strong one. According to the theoretical calculations, the main contribution to the magnetism comes from Fe atoms occupying all five sub lattices, while Re atoms have rather small magnetic moments. However, the calculated average magnetic moments highly (ferromagnetic ordering model) or moderately (antiparallel ordering model) overestimate the experimental data.

  10. Polarization-modulated smectic liquid crystal phases.

    PubMed

    Coleman, D A; Fernsler, J; Chattham, N; Nakata, M; Takanishi, Y; Körblova, E; Link, D R; Shao, R-F; Jang, W G; Maclennan, J E; Mondainn-Monval, O; Boyer, C; Weissflog, W; Pelzl, G; Chien, L-C; Zasadzinski, J; Watanabe, J; Walba, D M; Takezoe, H; Clark, N A

    2003-08-29

    Any polar-ordered material with a spatially uniform polarization field is internally frustrated: The symmetry-required local preference for polarization is to be nonuniform, i.e., to be locally bouquet-like or "splayed." However, it is impossible to achieve splay of a preferred sign everywhere in space unless appropriate defects are introduced into the field. Typically, in materials like ferroelectric crystals or liquid crystals, such defects are not thermally stable, so that the local preference is globally frustrated and the polarization field remains uniform. Here, we report a class of fluid polar smectic liquid crystals in which local splay prevails in the form of periodic supermolecular-scale polarization modulation stripes coupled to layer undulation waves. The polar domains are locally chiral, and organized into patterns of alternating handedness and polarity. The fluid-layer undulations enable an extraordinary menagerie of filament and planar structures that identify such phases.

  11. X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al-Si hypoeutectic alloy

    SciTech Connect

    Manickaraj, Jeyakumar; Gorny, Anton; Shankar, Sumanth; Cai, Zhonghou

    2014-02-17

    The evolution of strontium (Sr) containing intermetallic phase in the eutectic reaction of Sr-modified Al-Si hypoeutectic alloy was studied with high energy synchrotron beam source for nano-diffraction experiments and x-ray fluorescence elemental mapping. Contrary to popular belief, Sr does not seem to interfere with the Twin Plane Re-entrant Edge (TPRE) growth mechanism of eutectic Si, but evolves as the Al{sub 2}Si{sub 2}Sr phase during the eutectic reaction at the boundary between the eutectic Si and Al grains.

  12. Exploring phase stability, electronic and mechanical properties of Ce-Pb intermetallic compounds using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Tao, Xiaoma; Wang, Ziru; Lan, Chunxiang; Xu, Guanglong; Ouyang, Yifang; Du, Yong

    2016-05-01

    The phase stability, electronic and mechanical properties of Ce-Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce-Pb intermetallics were verified. Among them, CePb2 has been confirmed as HfGa2-type structure. For Ce5Pb3, the high pressure phase transformation from D8m to D88 with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8m to D88 with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement with experimental values. The electronic density of states, charge density and electron localization function of Ce3Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce-Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce3Pb has the largest Debye temperature of 192.6 K, which means the Ce3Pb has a highest melting point and high thermal conductivity than other compounds.

  13. Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples

    NASA Astrophysics Data System (ADS)

    Gan, H.; Tu, K. N.

    2005-03-01

    Intermetallic compound (IMC) formation is critical for the reliability of microelectronic interconnections, especially for flip chip solder joints. In this article, we investigate the polarity effect of electromigration on kinetics of IMC formation at the anode and the cathode in solder V-groove samples. We use V-groove solder line samples, with width of 100 μm and length of 500-700 μm, to study interfacial IMC growth between Cu electrodes and Sn-3.8Ag-0.7Cu (in wt %) solder under different current density and temperature settings. The current densities are in the range of 103 to 104A/cm2 and the temperature settings are 120, 150, and 180 °C. While the same types of IMCs, Cu6Sn5 and Cu3Sn, form at the solder/Cu interfaces independent of the passage of electric current, the growth of the IMC layer has been enhanced by electric current at the anode and inhibited at the cathode, in comparison with the no-current case. We present a kinetic model, based on the Cu mass transport in the sample, to explain the growth rate of IMC at the anode and cathode. The growth of IMC at the anode follows a parabolic growth rule, and we propose that the back stress induced in the IMC plays a significant role. The model is in good agreement with our experimental data. We then discuss the influence of both chemical force and electrical force, and their combined effect on the IMC growth with electric current.

  14. SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} - two new Ae-Zn-Sn polar intermetallic compounds (Ae: alkaline earth metal)

    SciTech Connect

    Stegmaier, Saskia; Faessler, Thomas F.

    2012-08-15

    SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}, two closely related new polar intermetallic compounds, were obtained by high temperature reactions of the elements. Their crystal structures were determined with single crystal XRD methods, and their electronic structures were analyzed by means of DFT calculations. The Zn-Sn structure part of SrZn{sub 2}Sn{sub 2} comprises (anti-)PbO-like {l_brace}ZnSn{sub 4/4}{r_brace} and {l_brace}SnZn{sub 4/4}{r_brace} layers. Ca{sub 2}Zn{sub 3}Sn{sub 6} shows similar {l_brace}ZnSn{sub 4/4}{r_brace} layers and {l_brace}Sn{sub 4}Zn{r_brace} slabs constructed of a covalently bonded Sn scaffold capped by Zn atoms. For both phases, the two types of layers are alternatingly stacked and interconnected via Zn-Sn bonds. SrZn{sub 2}Sn{sub 2} adopts the SrPd{sub 2}Bi{sub 2} structure type, and Ca{sub 2}Zn{sub 3}Sn{sub 6} is isotypic to the R{sub 2}Zn{sub 3}Ge{sub 6} compounds (R=La, Ce, Pr, Nd). Band structure calculations indicate that both SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} are metallic. Analyses of the chemical bonding with the electron localization function (ELF) show lone pair like basins at Sn atoms and Zn-Sn bonding interactions between the layers for both title phases, and covalent Sn-Sn bonding within the {l_brace}Sn{sub 4}Zn{r_brace} layers of Ca{sub 2}Zn{sub 3}Sn{sub 6}. - Graphical abstract: Crystal structures of the new Ae-Zn-Sn polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Highlights: Black-Right-Pointing-Pointer New polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Black-Right-Pointing-Pointer Obtained by high temperature reactions of the elements. Black-Right-Pointing-Pointer Single crystal XRD structure determination and DFT electronic structure calculations. Black-Right-Pointing-Pointer Closely related crystal and electronic structures. Black-Right-Pointing-Pointer Metallic conductivity coexisting with lone pairs and covalent bonding

  15. Studies of magnetostriction and spin polarized band structures of rare earth intermetallics

    NASA Technical Reports Server (NTRS)

    Wallace, W. E.

    1979-01-01

    Anisotropic magnetostriction measurements of R6Fe23, R = (Tb, Dy, Ho, and Er) were carried out from 77 K to room temperature. Magnetic fields up to 2.1 Tesla were applied. All the compounds exhibited large magnetostrictions at 77 K, the largest effect being obtained for Tb6Fe23. Saturation magnetostriction values for the compounds were also determined for 77 K and room temperature. Results of the temperature dependence of magnetostriction for Er6Fe23 are in good agreement with Callen and Callen's single ion theory. Therefore, the main sources of magnetostriction in this compound is the Er ion. The spin-up and spin-down electronic energy bands, the density of states and the magnetic moments of YCo5, SmCo5, and GdCo5 were calculated by the spin polarized augmented plane wave technique. The calculations obtained show the origin of the moment, provide good estimates of its magnitude and variation, and the reasons for those variations. They also show the important role of partial charge transfer and of d-d electronic coupling. Calculations for LaNi5 and GdNi5 systems are discussed.

  16. Phase transitions as a function of material constants and temperature in intermetallic compounds of the terfenol-D type

    NASA Astrophysics Data System (ADS)

    Fridman, Yu. A.; Klevets, F. N.; Voĭtenko, A. P.

    2010-07-01

    A model of magnetic and magnetoelastic properties of intermetallic compounds has been considered with the inclusion of the influence of the “giant” magnetoelastic coupling and the biquadratic exchange interaction. The phase transitions as a function of material constants and temperature have been investigated in the framework of the proposed model. It has been demonstrated that the ferromagnetic and quadrupole phases can be formed in the system under consideration. In this case, the phase transition between these phases is a first-order transition and occurs through the intermediate, i.e., quadrupole-ferromagnetic, state. The dependences of the phase transition temperature on the Heisenberg and biquadratic exchange interaction constants have been obtained for compounds of the terfenol-D type.

  17. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    SciTech Connect

    Leon-Escamilla, E.A.

    1996-10-17

    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  18. Contrasts in Structural and Bonding Representations among Polar Intermetallic Compounds. Strongly Differentiated Hamilton Populations for Three Related Condensed Cluster Halides of the Rare-Earth Elements

    SciTech Connect

    Gupta, Shalabh; Meyer, Gerd; Corbett, John D.

    2010-10-01

    The crystal and electronic structures of three related R{sub 3}TnX{sub 3} phases (R = rare-earth metal, Tn = transition metal, X = Cl, I) containing extended mixed-metal chains are compared and contrasted: (1) Pr{sub 3}RuI{sub 3} (P2{sub 1}/m), (2) Gd{sub 3}MnI{sub 3} (P2{sub 1}/m), and (3) Pr{sub 3}RuCl{sub 3} (Pnma). The structures all feature double chains built of pairs of condensed R{sub 6}(Tn) octahedral chains encased by halogen atoms. Pr{sub 3}RuI{sub 3} (1) lacks significant Ru-Ru bonding, evidently because of packing restrictions imposed by the large closed-shell size of iodine. However, the vertex Pr2 atoms on the chain exhibit a marked electronic differentiation. These are strongly bound to the central Ru (and to four I), but very little to four neighboring Pr in the cluster according to bond populations, in contrast to Pr2-Pr 'bond' distances that are very comparable to those elsewhere. In Gd{sub 3}MnI{sub 3} (2), the smaller metal atoms allow substantial distortions and Mn-Mn bonding. Pr{sub 3}RuCl{sub 3} (3), in contrast to the iodide (1), can be described in terms of a more tightly bound superstructure of (2) in which both substantial Ru-Ru bonding and an increased number of Pr-Cl contacts in very similar mixed-metal chains are favored by the smaller closed-shell contacts of chlorine. Local Spin Density Approximation (LSDA) Linearized Muffin-Tin Orbital (LMTO)-ASA calculations and Crystal Orbital Hamilton Population (COHP) analyses show that the customary structural descriptions in terms of condensed, Tn-stuffed, R-R bonded polyhedral frameworks are poor representations of the bonding in all. Hamilton bond populations (-ICOHP) for the polar mixed-metal R-Tn and the somewhat smaller R-X interactions account for 75-90% of the total populations in each of these phases, together with smaller contributions and variations for R-R and Tn-Tn interactions. The strength of such R-Tn contributions in polar intermetallics was first established or anticipated by

  19. Selective aluminum dissolution as a means to observe the microstructure of nanocrystalline intermetallic phases from Al-Fe-Cr-Ti-Ce rapidly solidified alloy.

    PubMed

    Michalcová, Alena; Vojtěch, Dalibor; Novák, Pavel

    2013-02-01

    Rapidly solidified aluminum alloys are promising materials with very fine microstructure. The microscopy observation of these materials is complicated due to overlay of fcc-Al matrix and different intermetallic phases. A possible way to solve this problem is to dissolve the Al matrix. By this process powder formed by single intermetallic phase particles is obtained. In this paper a new aqueous based dissolving agent for Al-based alloy is presented. The influence of oxidation agent (FeCl(3)) concentration on quality of extraction process was studied. PMID:23177792

  20. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  1. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  2. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    NASA Astrophysics Data System (ADS)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  3. The Phase Composition of Triton's Polar Caps.

    PubMed

    Duxbury, N S; Brown, R H

    1993-08-01

    Triton's polar caps are modeled as permanent nitrogen deposits hundreds of meters thick. Complex temperature variations on Triton's surface induce reversible transitions between the cubic and hexagonal phases of solid nitrogen, often with two coexisting propagating transition fronts. Subsurface temperature distributions are calculated using a two-dimensional thermal model with phase changes. The phase changes fracture the upper nitrogen layer, increasing its reflectivity and thus offering an explanation for the surprisingly high southern polar cap albedo (approximately 0.8) seen during the Voyager 2 flyby. The model has other implications for the phase transition phenomena on Triton, such as a plausible mechanism for the origin of geyser-like plume vent areas and a mechanism of energy transport toward them.

  4. The phase composition of Triton's polar caps

    NASA Technical Reports Server (NTRS)

    Duxbury, N. S.; Brown, R. H.

    1993-01-01

    Triton's polar caps are modeled as permanent nitrogen deposits hundreds of meters thick. Complex temperature variations on Triton's surface induce reversible transitions between the cubic and hexagonal phases of solid nitrogen, often with two coexisting propagating transition fronts. Subsurface temperature distributions are calculated using a two-dimensional thermal model with phase changes. The phase changes fracture the upper nitrogen layer, increasing its reflectivity and thus offering an explanation for the surprisingly high southern polar cap albedo (approximately 0.8) seen during the Voyager 2 flyby. The model has other implications for the phase transition phenomena on Triton, such as a plausible mechanism for the origin of geyser-like plume vent areas and a mechanism of energy transport toward them.

  5. The Phase Composition of Triton's Polar Caps.

    PubMed

    Duxbury, N S; Brown, R H

    1993-08-01

    Triton's polar caps are modeled as permanent nitrogen deposits hundreds of meters thick. Complex temperature variations on Triton's surface induce reversible transitions between the cubic and hexagonal phases of solid nitrogen, often with two coexisting propagating transition fronts. Subsurface temperature distributions are calculated using a two-dimensional thermal model with phase changes. The phase changes fracture the upper nitrogen layer, increasing its reflectivity and thus offering an explanation for the surprisingly high southern polar cap albedo (approximately 0.8) seen during the Voyager 2 flyby. The model has other implications for the phase transition phenomena on Triton, such as a plausible mechanism for the origin of geyser-like plume vent areas and a mechanism of energy transport toward them. PMID:17757213

  6. The phase composition of Triton's polar caps

    NASA Astrophysics Data System (ADS)

    Duxbury, N. S.; Brown, R. H.

    1993-08-01

    Triton's polar caps are modeled as permanent nitrogen deposits hundreds of meters thick. Complex temperature variations on Triton's surface induce reversible transitions between the cubic and hexagonal phases of solid nitrogen, often with two coexisting propagating transition fronts. Subsurface temperature distributions are calculated using a two-dimensional thermal model with phase changes. The phase changes fracture the upper nitrogen layer, increasing its reflectivity and thus offering an explanation for the surprisingly high southern polar cap albedo (approximately 0.8) seen during the Voyager 2 flyby. The model has other implications for the phase transition phenomena on Triton, such as a plausible mechanism for the origin of geyser-like plume vent areas and a mechanism of energy transport toward them.

  7. Effect of trace elements vanadium and nickel on iron intermetallic phases formation and distribution in DC cast 5xxx series aluminum ingots

    NASA Astrophysics Data System (ADS)

    Li, Gaofeng

    AA5657 alloy is one of the important members of 5xxx-series alloys. It has application in many fields as packing, electricity, architectural, and printing. These applications require high quality surface finishing, and the alloy ingots require homogeneous microstructure. In the industry of DC (direct-chill) casting of 1xxx and 5xxx-series aluminium ingots, there exist different cooling rates from the casting surface to the ingot center. Thus, different Fe intermetallic phases such as AlmFe, Al6Fe, alpha-AlFeSi and Al3Fe can form preferentially in different positions of the ingot. The Fe intermetallic phase transition in DC casting ingot may cause microstructure inhomogeneities, which in turn cause the so called fir-tree zones (FTZs) in the ingots as well as streaks and bands on the Al sheets. Nowadays, with the increase of impurity in aluminium smelting raw materials (coke, alumina, etc.), the levels of trace elements present in the primary metal is gradually increasing. The impact of this increase on the aluminium transformation process and the final products is uncertain. Thus, there is a clear need to better understand these impacts, which will allow identifying ways to mitigate the negative impacts. The study presented in this thesis was performed on AA5657 alloys to study the effect of trace elements V and Ni on Fe intermetallic phases formation and distribution. A slice of AA1050 alloy ingot with visible FTZs was also studied to characterize the Fe intermetallic phases transition across the FTZs. A DC simulator was built in the lab, which can reproduce the solidification conditions in the sub-surface regions of industry ingots. The methods for the characterization of Fe intermetallic particles were developed in this research. AlmFe, Al6Fe, alpha-AlFeSi and alpha-Al3Fe intermetallic phases were successfully identified by using Deep-etching method, EDS and EBSD technique in combination. Quantitative analysis of the Fe intermetallic particles was carried out by

  8. Section 2: Phase transformation studies in mechanically alloyed Fe-Nz and Fe-Zn-Si intermetallics

    SciTech Connect

    Jordan, A.; Uwakweh, O.N.C.; Maziasz, P.J.

    1997-04-01

    The initial stage of this study, which was completed in FY 1995, entailed an extensive analysis characterizing the structural evolution of the Fe-Zn intermetallic system. The primary interest in these Fe-Zn phases stems from the fact that they form an excellent coating for the corrosion protection of steel (i.e., automobile body panels). The Fe-Zn coating generally forms up to four intermetallic phases depending on the particular industrial application used, (i.e., galvanization, galvannealing, etc.). Since the different coating applications are non-equilibrium in nature, it becomes necessary to employ a non-equilibrium method for producing homogeneous alloys in the solid-state to reflect the structural changes occurring in a true coating. This was accomplished through the use of a high energy/non-equilibrium technique known as ball-milling which allowed the authors to monitor the evolution process of the alloys as they transformed from a metastable to stable equilibrium state. In FY 1996, this study was expanded to evaluate the presence of Si in the Fe-Zn system and its influence in the overall coating. The addition of silicon in steel gives rise to an increased coating. However, the mechanisms leading to the coating anomaly are still not fully understood. For this reason, mechanical alloying through ball-milling of pure elemental powders was used to study the structural changes occurring in the sandelin region (i.e., 0.12 wt % Si). Through the identification of invariant reactions (i.e., eutectic, etc.) the authors were able to explore the sandelin phenomenon and also determine the various fields or boundaries associated with the Fe-Zn-Si ternary system.

  9. Crystal structure and chemical bonding of novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}

    SciTech Connect

    Jung, Yaho; Nam, Gnu; Jeon, Jieun; Kim, Youngjo; You, Tae-Soo

    2012-12-15

    A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} has been synthesized using the high-temperature reaction method and characterized by both powder and single-crystal X-ray diffractions. The title compound crystallized in the orthorhombic crystal system (space group Immm, Z=2, Pearson symbol oI78) with fifteen crystallographically unique atomic positions in the asymmetric unit, and the lattice parameters are refined as a=4.5244(4) A, b=6.9932(6) A, and c=53.043(5) A. The complex crystal structure of the title compound can be described as a 2:1 intergrowth of two closely related compounds: La{sub 2}Li{sub 2}Ge{sub 3} (Ce{sub 2}Li{sub 2}Ge{sub 3}-type) and La{sub 3}Li{sub 4}Ge{sub 4} (Zr{sub 3}Cu{sub 4}Si{sub 4}-type) acting like 'building-blocks' along the c-axis. Six La sites are categorized into three distinct types based on the local coordination environment showing the coordination numbers of 12-14. Three unique Li sites are placed in the centers of local tetrahedra formed by four Ge atoms which eventually construct Ge{sub 2} dimers or 1-dimensional cis-/trans-Ge chains. Theoretical investigations using the tight-binding linear muffin-tin orbital (LMTO) method provide rationales for an improved structural stability and for unique local coordination geometries established by anionic elements including [LiGe{sub 4}] tetrahedra, cis-/trans-Ge chain and Ge{sub 2} dimers. - Graphical abstract: Reported is a novel ternary Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}. The complex crystal structure can be viewed as a simple combination of two closely related known compounds acting as 'building-blocks', La{sub 2}Li{sub 2}G{sub 3} and La{sub 3}Li{sub 4}Ge{sub 4}, in a 2:1 stoichiometric ratio. Highlights: Black-Right-Pointing-Pointer A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} was synthesized. Black-Right-Pointing-Pointer The complex crystal structure was easily explained as

  10. Characterization of second-phase plates in a Gd5Ge3 intermetallic compound

    SciTech Connect

    Cao, Qing; Chumbley, Leonard S.

    2013-05-16

    Rare-earth compounds based on the stoichiometry R5(SixGe1-x)4 (R = rare-earth elements) exhibit many unusual features, including possessing R5(SixGe1-x)3 thin plates which always precipitate from the matrix despite efforts to suppress their formation. In an effort to better understand the unique relationship between these two intermetallic alloy systems, the bulk microstructure of the compound Gd5Ge3 was examined using scanning (SEM) and transmission electron microscopy (TEM) and optical microscopy. Surprisingly, SEM examination revealed a series of thin plates present in the Gd5Ge3 matrix similar to what is seen in Gd5Ge4. TEM observation revealed that a role reversal had occurred, with the thin plates possessing the orthorhombic structure and composition of Gd5Ge4. The orientation relationship between Gd5Ge4 thin plates and the Gd5Ge3 matrix was determined to be Graphic the same relationship reported for Gd5Ge3 plates precipitating from a Gd5Ge4 matrix. However, by exchanging the respective roles of the phases as regards matrix vs. precipitate, the total number of precipitation variants seen can be increased from two to six. The persistence with which these two intermetallic systems co-exist is truly unique. However, understanding exactly the kinetic and thermodynamic conditions that lead to their unique relationship is hampered by the high formation temperatures at which the observed reaction occurs.

  11. Third Intermetallic Matrix Composites Symposium, volume 350

    SciTech Connect

    Graves, J.A.; Bowman, R.R.; Lewandowski, J.J.

    1994-04-01

    Partial contents include: issues in potential IMC application for aerospace structures; powder metallurgy processing of intermetallic matrix composites; microstructure and properties of intermetallic matrix composites produced by reaction synthesis; combustion synthesis of niobium aluminide matrix composites; ambient temperature synthesis of bulk intermetallics; wear behavior of SHS intermetallic matrix composites; fracture characteristics of metal-intermetallic laminates produced by SHS reactions; and vapor phase synthesis of Ti aluminides and the interfacial bonding effect on the mechanical property of micro-composites reinforced by pyrolized SiC fibers.

  12. Crack growth in a ductile-phase-toughened Nb/Nb[sub 3]Al in situ intermetallic composite under monotonic and cyclic loading

    SciTech Connect

    Murugesh, L.; Venkateswara Rao, K.T.; Ritchie, R.O. . Dept. of Materials Science and Mineral Engineering)

    1993-10-15

    One approach to improving the ductility and toughness of brittle solids is to incorporate a ductile phase into the brittle matrix in order to impede the extension of incipient cracks. In this regard, recent word has shown that niobium can provide significant ductile-phase toughening in several intermetallic composites via crack bridging, plastic stretching and interfacial debonding mechanisms; however, under cyclic loading the role of the ductile phase appears to be less effective. Accordingly, the purpose of the current study is to examine the effect of the addition of ductile Nb phase on fracture and fatigue behavior in an equiaxed Nb/Nb[sub 3]Al in situ composite; results are compared with behavior in unreinforced Nb[sub 3]Al and Nb to determine possible mechanisms of crack propagation in Nb-toughened Nb[sub 3]Al intermetallic composites.

  13. Innovative processing to produce advanced intermetallic materials. Phase 1 final report

    SciTech Connect

    Loutfy, R.O.

    1989-09-01

    The program demonstrates the technical feasibility of synthesizing submicron titanium aluminide in a thermal rf plasma. Micron and submicron spherical titanium aluminide particles are produced in argon, hydrogen, and argon/hydrogen plasmas from the reaction of TiCl4(g), and Al(g). The ratio of Ti and Al is varied to produce the compounds Ti3Al, TiAl, and TiAl3. Microalloying with boron and macroalloying with niobium is demonstrated. Ti3Al whiskers can be produced, as well as other intermetallics of niobium aluminide, nickel aluminide, and molybdenum disilicide in the plasma synthesis process. Since submicron particles are produced, they have a high surface area and are sensitive to oxidation if not treated with a fugitive protective coating or utilized in a nonoxidizing atmosphere. Ti3Al particles are consolidated and utilized as a matrix for TiC and AlN composites. The submicron AlTi3 has significantly higher strength at room temperature than reported for commercial Ti3Al-11Nb alloy and useable strength is maintained up to 1000 C. The elongation is about the same as for commercial material because of possible oxide contamination in powder handling. However, dimpling and nacking is evident in the fracture surface, which suggests true room temperature ductility. Titanium aluminides have the potential to replace superalloys and become the dominant material for aerospace engines, air frames and skins for hypersonic vehicles.

  14. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content.

    PubMed

    Körner, Wolfgang; Krugel, Georg; Elsässer, Christian

    2016-01-01

    We report on theoretical investigations of intermetallic phases derived from the ThMn12-type crystal structure. Our computational high-throughput screening (HTS) approach is extended to an estimation of the anisotropy constant K1, the anisotropy field Ha and the energy product (BH)max. The calculation of K1 is fast since it is based on the crystal field parameters and avoids expensive total-energy calculations with many k-points. Thus the HTS approach allows a very efficient search for hard-magnetic materials for which the magnetization M and the coercive field Hc connected to Ha represent the key quantities. Besides for NdFe12N which has the highest magnetization we report HTS results for several intermetallic phases based on Cerium which are interesting as alternative hard-magnetic phases because Cerium is a less ressource-critical element than Neodymium. PMID:27098547

  15. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content

    PubMed Central

    Körner, Wolfgang; Krugel, Georg; Elsässer, Christian

    2016-01-01

    We report on theoretical investigations of intermetallic phases derived from the ThMn12-type crystal structure. Our computational high-throughput screening (HTS) approach is extended to an estimation of the anisotropy constant K1, the anisotropy field Ha and the energy product (BH)max. The calculation of K1 is fast since it is based on the crystal field parameters and avoids expensive total-energy calculations with many k-points. Thus the HTS approach allows a very efficient search for hard-magnetic materials for which the magnetization M and the coercive field Hc connected to Ha represent the key quantities. Besides for NdFe12N which has the highest magnetization we report HTS results for several intermetallic phases based on Cerium which are interesting as alternative hard-magnetic phases because Cerium is a less ressource-critical element than Neodymium. PMID:27098547

  16. Phase Separation in a Polarized Fermi Gas at Zero Temperature

    SciTech Connect

    Pilati, S.; Giorgini, S.

    2008-01-25

    We investigate the phase diagram of asymmetric two-component Fermi gases at zero temperature as a function of polarization and interaction strength. The equations of state of the uniform superfluid and normal phase are determined using quantum Monte Carlo simulations. We find three different mixed states, where the superfluid and the normal phase coexist in equilibrium, corresponding to phase separation between (a) the polarized superfluid and the fully polarized normal gas, (b) the polarized superfluid and the partially polarized normal gas, and (c) the unpolarized superfluid and the partially polarized normal gas.

  17. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys and intermetallic materials: Phase stability in NbCr{sub 2} Laves phase alloys

    SciTech Connect

    Zhu, J.H.; Liaw, P.K.; Liu, C.T.

    1996-08-01

    Phase stability in NbCr{sub 2}-based transition-metal Laves phases is studied in this paper, using data from binary X-Cr, Nb-X, and ternary Nb-Cr-X phase diagrams. It was shown that when the atomic size ratios are kept identical, the average electron concentration factor (e/a = the average number of electrons per atom outside the closed shells of the component atoms) is the determinate factor in controlling the phase stability of NbCr{sub 2}-based transition-metal Laves phases. The e/a ratios for different Laves phase structures were determined as follows: with e/a < 5.76, the C15 structure is stabilized; at an e/a range of 5.88-7.53, the C14 structure is stabilized; with e/a > 7.65, the C15 structure was stabilized again. A further increase in the electron concentration factor (e/a > 8) leads to the disordering of the alloy. The electron concentration effect on the phase stability of transition-metal A{sub 3}B intermetallic compounds and Mg-based Laves phases is also reviewed and compared with the present observations in transition-metal Laves phases.

  18. Polarization insensitive phase modulator for quantum cryptosystems.

    PubMed

    Qi, Bing; Huang, Lei-Lei; Lo, Hoi-Kwong; Qian, Li

    2006-05-15

    In this paper, we propose a polarization-insensitive phase modulation scheme based on frequency modulation of light waves using either one or a pair of acousto-optic modulators. A stable Sagnac quantum key distribution (QKD) system employing this technique is also proposed. The interference visibility for a 40km and a 10km fiber loop is 96% and 99% respectively, at single-photon level. We ran standard BB84 QKD protocol in a simplified Sagnac setup (40km fiber loop) continuously for one hour and the measured quantum bit error rate stayed within 2%-5% range. PMID:19516579

  19. Crystal structure and chemical bonding of the intermetallic Zintl phase Yb[subscript 11]AlSb[subscript 9

    SciTech Connect

    Kastbjerg, Sofie; Uvarov, Catherine A.; Kauzlarich, Susan M.; Chen, Yu-Sheng; Nishibori, Eiji; Spackman, Mark A.; Iversen, Bo Brummerstedt

    2012-10-09

    High resolution single crystal synchrotron X-ray diffraction data measured at 15(2) K were used to solve the structure of the complex intermetallic Zintl phase, Yb{sub 11}AlSb{sub 9} (space group Iba2), made up of Yb cations and polyanions along with isolated Sb anions. The 15(2) K cell parameters are a = 11.7383(4) {angstrom}, b = 12.3600(4) {angstrom}, c = 16.6796(6) {angstrom}. The temperature dependence of the structure was investigated through high resolution synchrotron powder X-ray diffraction (PXRD) data measured from 90 K to 1000 K. Rietveld refinements of the crystal structure revealed near linear thermal expansion of Yb{sub 11}AlSb{sub 9} with expansion coefficients of 1.49(2) x 10{sup -5} K{sup -1}, 1.71(3) x 10{sup -5} K{sup -1}, 1.13(1) x 10{sup -5} K{sup -1} for a, b and c, respectively. The chemical bonding in Yb{sub 11}AlSb{sub 9} was analyzed using atomic Hirshfeld surfaces, and the analysis supports the presence of the structural elements of Yb cations, [AlSb{sub 4}]{sup 9-} tetrahedra, [Sb{sub 2}]{sup 4-} dimers and isolated Sb{sup 3-} anions. However, indications of interatomic interactions between the Zintl anions and the Yb cations were also observed.

  20. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    SciTech Connect

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed into the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.

  1. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE PAGES

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less

  2. Solid state phase equilibria and intermetallic compounds of the Al-Cr-Ho system

    SciTech Connect

    Pang, Mingjun; Zhan, Yongzhong; Du, Yong

    2013-02-15

    The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C were experimentally investigated. The phase relations at 500 Degree-Sign C are governed by 14 three-phase regions, 29 two-phase regions and 15 single-phase regions. The existences of 10 binary compounds and 2 ternary phases have been confirmed. Al{sub 11}Cr{sub 2}, Al{sub 11}Cr{sub 4} and Al{sub 17}Ho{sub 2} were not found at 500 Degree-Sign C. Crystal structures of Al{sub 9}Cr{sub 4} and Al{sub 8}Cr{sub 4}Ho were determined by the Rietveld X-ray powder data refinement. Al{sub 9}Cr{sub 4} was found to exhibit cubic structure with space group I4-bar 3m (no. 217) and lattice parameters a=0.9107(5) nm. Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} structure type with space group I4/mmm (no. 139) and lattice parameters a=0.8909(4) nm, c=0.5120(5) nm. It is concluded that the obtained Al{sub 4}Cr phase in this work should be {mu}-Al{sub 4}Cr by comparing with XRD pattern of the hexagonal {mu}-Al{sub 4}Mn compound. - Graphical abstract: The solid state phase equilibria of the Al-Cr-Ho ternary system at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Al-Cr-Ho system has been investigated. Black-Right-Pointing-Pointer Al{sub 9}Cr{sub 4} has cubic structure with space group I4-bar 3m. Black-Right-Pointing-Pointer Al{sub 8}Cr{sub 4}Ho crystallizes in ThMn{sub 12} type with space group I4/mmm. Black-Right-Pointing-Pointer Al{sub 4}Cr phase is {mu}-type at 500 Degree-Sign C.

  3. Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases

    SciTech Connect

    Soboyejo, W.O. ); Venkateswara Rao, K.T.; Ritchie, R.O. ); Sastry, S.M.L. )

    1993-03-01

    The results of recent studies on the fatigue and fracture behavior of extruded Ti-48Al + 20 vol pct TiNb and hot-isostatically pressed ('hipped') MoSi[sub 2] + 20 vol pct Nb are presented (compositions in atomic percent unless stated otherwise). The effects of ductile phase reinforcement of Ti-48Al and MoSi[sub 2] on the micromechanisms of fracture under monotonic and cyclic loading are elucidated. Micromechanics models are applied to the prediction of crack-tip shielding components, and the effects of temperature on tensile/compressive/flexure strengths are discussed. Ductile phase toughening under monotonic loading conditions is shown to be associated with lower fatigue crack growth resistance. The lower fatigue resistance is attributed to the absence of crack-tip shielding, higher crack opening displacements, and the effects of inelastic strains that are developed in ductile phase-reinforced composites under cyclic loading conditions.

  4. Single crystal growth of Al-based intermetallic phases being approximants to quasicrystals

    NASA Astrophysics Data System (ADS)

    Gille, Peter; Bauer, Birgitta; Hahne, Michael; Smontara, Ana; Dolinšek, Janez

    2011-03-01

    Decagonal (d) quasicrystals are formed in a number of Al-based ternary systems with d-AlCoNi being the best studied decagonal phase. They are highly anisotropic showing unusual properties of e.g. electric and thermal transport when measured along the periodic or quasiperiodic directions. For a long time, this has been attributed to the lack of periodicity in certain crystallographic orientations. Some neighbouring phases in the Al-Co-Ni system as well as in related ternaries consist of the same type of large icosahedral clusters, but are periodic in all three directions, sometimes with very large unit cells. Therefore, they are called approximants to the decagonal quasicrystals. They allow comparative studies of these phases as to judge whether some unusual properties of quasicrystals arise from the lack of periodicity or from the common atomic arrangements. Additional to decagonal AlCoNi quasicrystals, various approximants (monoclinic Al13(Co,Ni)4, orthorhombic Al13Co4, orthorhombic Al4(Cr,Fe), monoclinic Al13Fe4 and its ternary extensions Al13(Fe,Cr)4 and Al13(Fe,Ni)4) were grown by the Czochralski method as large single crystals as to carry out transport orientation-dependent measurements. It could be found that transport properties show remarkably similar anisotropic features when comparing corresponding crystallographic directions in these phases that can be related to the periodic stacking of layers.

  5. Ba{sub 5}Ti{sub 12}Sb{sub 19+x}, a polar intermetallic compound with a stuffed gamma-brass structure

    SciTech Connect

    Bie Haiying; Mar, Arthur

    2009-11-15

    The polar intermetallic compound Ba{sub 5}Ti{sub 12}Sb{sub 19+x} (x<=0.2) has been synthesized by reaction of the elements. Single-crystal X-ray diffraction analysis revealed that it adopts a new structure type (Ba{sub 5}Ti{sub 12}Sb{sub 19.102(6)}, space group P43-barm, Z=2, a=12.4223(11) A, V=1916.9(3) A{sup 3}). The set of Ba and Sb sites corresponds to the structure of Cu{sub 9}Al{sub 4}, a gamma-brass type with a primitive cell. A complex three-dimensional framework of Ti atoms, in the form of linked planar Ti{sub 9} clusters, is stuffed within the gamma-brass-type Ba-Sb substructure. Notwithstanding its relationship to the gamma-brass structure, the compound does not appear to conform to the Hume-Rothery electron concentration rules. Band structure calculations on an idealized Ba{sub 5}Ti{sub 12}Sb{sub 19} model suggest that the availability of bonding states above the Fermi level is responsible for the partial occupation, but only to a limited degree, of an additional Sb site within the structure. Magnetic measurements indicated Pauli paramagnetic behaviour. - A gamma-brass substructure built up of Ba-Sb clusters is stuffed with planar Ti{sub 9} clusters.

  6. Digital polarization holography advancing geometrical phase optics.

    PubMed

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-01

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed. PMID:27505793

  7. Anti-mackay polyicosahedral clusters in La-Ni-Mg ternary compounds: synthesis and crystal structure of the La(43)Ni(17)Mg(5) new intermetallic phase.

    PubMed

    Solokha, Pavlo; De Negri, Serena; Pavlyuk, Volodymyr; Saccone, Adriana

    2009-12-21

    The crystal structure of the complex La(43)Ni(17)Mg(5) ternary phase was solved and refined from X-ray single crystal diffraction data. It is characterized by a very large unit cell and represents a new structure type: La(43)Ni(17)Mg(5) - orthorhombic, Cmcm, oS260, a = 10.1895(3), b = 17.6044(14), c = 42.170(3) A, Z = 4, wR1 = 0.0598, wR2 = 0.0897, 4157 F(2) values, 176 variables. The crystal structures of the La-rich La-Ni-Mg intermetallic phases La(4)NiMg, La(23)Ni(7)Mg(4), and La(43)Ni(17)Mg(5) have been comparatively analyzed. The constitutive fragments of these structures are binary polyicosahedral core-shell clusters of Mg(4)La(22) and Mg(5)La(24) compositions together with binary polytetrahedral clusters of nickel and lanthanum atoms. The structures of the Mg-La clusters are described in detail as a unique feature of the analyzed intermetallic phases; the dodecahedral Voronoi polyhedra are proposed as a useful tool to characterize polyicosahedral clusters. The arrangements of the building units in the studied phases show some regularities; particularly the i(4)3, i(5)3 and L-i(4) units, made up of polyicosahedral clusters and analogous to the Kreiner i(3) and L units, are proposed as structural blocks.

  8. Insight into structural, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Zhan, Yongzhong; Wu, Junyan; Wei, Xuanchen

    2015-11-01

    The structural, phase stabilities, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system are investigated by using first-principles method. The equilibrium lattice constants, enthalpy of formation (ΔHform) and elastic constants are obtained and compared with available experimental and theoretical data. The configuration of Zr4Sn is measured with reasonable precision. The ΔHform of five hypothetical structures are obtained in order to find possible metastable phase for Zr-Sn system. The mechanical properties, including bulk modulus, shear modulus, Young's modulus and Poisson's ratio, are calculated by Voigt-Reuss-Hill approximation and the Zr5Sn4 and Zr5Sn3 show excellent mechanical properties. The electronic density of states for Zr5Sn4, Zr5Sn3 and cP8-Zr3Sn are calculated to further investigate the stability of intermetallic compounds. Through the quasi-harmonic Debye model, the Debye temperature, heat capacity and thermal expansion coefficient under temperature of 0-300 K and pressure of 0-50 GPa for Zr5Sn3 and Zr5Sn4 are deeply investigated.

  9. Some statistics on intermetallic compounds.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-02-01

    It is still largely unknown why intermetallic phases show such a large variety of crystal structures, with unit cell sizes varying between 1 and more than 20 000 atoms. The goal of our study was, therefore, to get a general overview of the symmetries, unit cell sizes, stoichiometries, most frequent structure types, and their stability fields based on the Mendeleev numbers as ordering parameters. A total of 20829 structures crystallizing in 2166 structure types have been studied for this purpose. Thereby, the focus was on a subset of 6441 binary intermetallic compounds, which crystallize in 943 structure types.

  10. Elliptically polarizing adjustable phase insertion device

    DOEpatents

    Carr, Roger

    1995-01-01

    An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets.

  11. Polyclusters and substitution effects in the Na-Au-Ga system: remarkable sodium bonding characteristics in polar intermetallics.

    PubMed

    Smetana, Volodymyr; Miller, Gordon J; Corbett, John D

    2013-11-01

    A systematic exploration of Na- and Au-poor parts of the Na-Au-Ga system (less than 15 at. % Na or Au) uncovered several compounds with novel structural features that are unusual for the rest of the system. Four ternary compounds Na1.00(3)Au0.18Ga1.82(1) (I), NaAu2Ga4 (II), Na5Au10Ga16 (III), and NaAu4Ga2 (IV) have been synthesized and structurally characterized by single crystal X-ray diffraction: Na1.00(3)Au0.18Ga1.82(1)(I, P6/mmm, a = 15.181(2), c =9.129(2)Å, Z = 30); NaAu2Ga4 (II, Pnma, a = 16.733(3), b = 4.3330(9), c =7.358(3) Å, Z = 4); Na5Au10Ga16 (III, P6(3)/m, a = 10.754(2), c =11.457(2) Å, Z = 2); and NaAu4Ga2 (IV, P2(1)/c, a = 8.292(2), b = 7.361(1), c =9.220(2)Å, β = 116.15(3), Z = 4). Compound I lies between the large family of Bergman-related compounds and Na-poor Zintl-type compounds and exhibits a clathrate-like structure containing icosahedral clusters similar to those in cubic 1/1 approximants, as well as tunnels with highly disordered cation positions and fused Na-centered clusters. Structures II, III, and IV are built of polyanionic networks and clusters that generate novel tunnels in each that contain isolated, ordered Na atoms. Tight-binding electronic structure calculations using linear muffin-tin-orbital (LMTO) methods on II, III, IV and an idealized model of I show that all are metallic with evident pseudogaps at the Fermi levels. The integrated crystal orbital Hamilton populations for II-IV are typically dominated by Au-Ga, Ga-Ga, and Au-Au bonding, although Na-Au and Na-Ga contributions are also significant. Sodium's involvement into such covalency is consistent with that recently reported in Na-Au-M (M = Ga, Ge, Sn, Zn, and Cd) phases.

  12. Evaluation of polarized terahertz waves generated by Cherenkov phase matching.

    PubMed

    Akiba, Takuya; Akimoto, Yasuhiro; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2014-03-10

    We report terahertz (THz) wave generation by satisfying Cherenkov phase-matching condition in both s and p polarizations. A dual-wavelength optical parametric oscillator is constructed from two potassium titanium oxide phosphate crystals pumped by a frequency-doubled Nd:YAG laser. By rotating the orientation of both a lithium niobate crystal (LiNbO3) and the polarization of the pump waves, the polarization of the THz wave changes. Due to the difference in the refractive index and absorption, the output power for p polarization is one tenth that for s polarization. A tuning range from 0.2 to 6.5 THz is obtained for s polarization, and from 0.2 to 4.2 and 5.4 to 6.9 THz for p polarization. The extraction efficiency is improved by changing the angle of prism for p polarization, and a large phase change occurs at total internal reflection. Consequently, p-polarized THz waves are optimal for spectroscopic applications.

  13. Elliptically polarizing adjustable phase insertion device

    DOEpatents

    Carr, R.

    1995-01-17

    An insertion device for extracting polarized electromagnetic energy from a beam of particles is disclosed. The insertion device includes four linear arrays of magnets which are aligned with the particle beam. The magnetic field strength to which the particles are subjected is adjusted by altering the relative alignment of the arrays in a direction parallel to that of the particle beam. Both the energy and polarization of the extracted energy may be varied by moving the relevant arrays parallel to the beam direction. The present invention requires a substantially simpler and more economical superstructure than insertion devices in which the magnetic field strength is altered by changing the gap between arrays of magnets. 3 figures.

  14. The Pancharatnam-Berry phase in polarization singular beams

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Viswanathan, Nirmal K.

    2013-04-01

    Space-variant inhomogeneously polarized field formed due to superposition of orthogonally polarized Gaussian (LG00) and Laguerre-Gaussian (LG01) beams results in polarization singular beams with different morphology structures such as lemon, star and dipole patterns around the C-point in the beam cross-section. The Pancharatnam-Berry phase plays a critical role in the formation and characteristics of these spatially inhomogeneous fields. We present our experimental results wherein we measure the variable geometric phase by tracking the trajectory of the component vortices in the beam cross-section, by interfering with selective polarization states and by tracking different latitudes on the Poincaré sphere without the effect of a dynamic phase.

  15. Polarization selective phase-change nanomodulator

    PubMed Central

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-01-01

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements. PMID:25346427

  16. Polarization selective phase-change nanomodulator

    SciTech Connect

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-10-27

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.

  17. Polarization selective phase-change nanomodulator

    DOE PAGES

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-10-27

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume ofmore » only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.« less

  18. Polarization selective phase-change nanomodulator

    NASA Astrophysics Data System (ADS)

    Appavoo, Kannatassen; Haglund, Richard F., Jr.

    2014-10-01

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.

  19. Macroscopic polarization in crystalline dielectrics: the geometric phase approach

    NASA Astrophysics Data System (ADS)

    Resta, Raffaele

    1994-07-01

    The macroscopic electric polarization of a crystal is often defined as the dipole of a unit cell. In fact, such a dipole moment is ill defined, and the above definition is incorrect. Looking more closely, the quantity generally measured is differential polarization, defined with respect to a "reference state" of the same material. Such differential polarizations include either derivatives of the polarization (dielectric permittivity, Born effective charges, piezoelectricity, pyroelectricity) or finite differences (ferroelectricity). On the theoretical side, the differential concept is basic as well. Owing to continuity, a polarization difference is equivalent to a macroscopic current, which is directly accessible to the theory as a bulk property. Polarization is a quantum phenomenon and cannot be treated with a classical model, particularly whenever delocalized valence electrons are present in the dielectric. In a quantum picture, the current is basically a property of the phase of the wave functions, as opposed to the charge, which is a property of their modulus. An elegant and complete theory has recently been developed by King-Smith and Vanderbilt, in which the polarization difference between any two crystal states-in a null electric field-takes the form of a geometric quantum phase. The author gives a comprehensive account of this theory, which is relevant for dealing with transverse-optic phonons, piezoelectricity, and ferroelectricity. Its relation to the established concepts of linear-response theory is also discussed. Within the geometric phase approach, the relevant polarization difference occurs as the circuit integral of a Berry connection (or "vector potential"), while the corresponding curvature (or "magnetic field") provides the macroscopic linear response.

  20. Polarization-sensitive optical coherence tomography using continuous polarization modulation with arbitrary phase modulation amplitude

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-03-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  1. Reaction synthesis of intermetallics

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1994-12-31

    Exothermicity associated with the synthesis of aluminides was utilized to obtain nickel, iron, and cobalt aluminides. Combustion synthesis, extrusion, and hot pressing were utilized to obtain intermetallics and their composites. Extrusion conditions, reduction ratios, and hot-pressing conditions of the intermetallics and their composites are discussed.

  2. Phase Resolved Cyclotron Spectroscopy of Polars

    NASA Astrophysics Data System (ADS)

    Dealaman, Shannon J.

    2010-01-01

    This research was conducted through the REU program at Cerro Tololo Interamerican Observatory in La Serena, Chile. For this research we reduced and modeled phase-resolved cyclotron spectroscopy of four AM Her stars: MN Hya, HU Aqu, VV Pup, and QS Tel. Two of the four spectra show good cyclotron harmonics while the other two were taken during a high state with too much noise in the spectra. Using a Constant-Lambda code (Schwope et al., 1990) we modeled the two good spectra and further modeled the harmonic motion of HU Aqr. The models produced for MN Hya gave parameters with a magnetic field strength between 44 MG and 43.4 MG, a plasma temperature between 4.1 keV and 5.6 keV, a log Λ of 4.2 ± 0.3, and a viewing angle set between 83.0 degrees and 70.0 degrees and HU Aqr a magnetic field between 36.0 MG and 37.6 MG, a plasma temperature between 15.0 keV and 15.5 keV, a log Λ of 4.0 ± 0.3, and a viewing angle between 89.5 degrees and 70.5 degrees. This was the first attempt to model MN Hya with a constant lambda code and the first harmonic motion model of HU Aqr.

  3. Polar Phase of Superfluid (3)He in Anisotropic Aerogel.

    PubMed

    Dmitriev, V V; Senin, A A; Soldatov, A A; Yudin, A N

    2015-10-16

    We report the first observation of the polar phase of superfluid (3)He. This phase appears in (3)He confined in a new type of aerogel with a nearly parallel arrangement of strands which play the role of ordered impurities. Our experiments qualitatively agree with theoretical predictions and suggest that in other systems with unconventional Cooper pairing (e.g., in unconventional superconductors) similar phenomena may be found in the presence of anisotropic impurities.

  4. Effects of intermetallic phases on the electrochemical properties of rapidly-solidified Si-Cr alloys for rechargeable Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ha, Jeong Ae; Jo, In Joo; Park, Won-Wook; Sohn, Keun Yong

    2016-09-01

    The microstructures and the electrochemical properties of rapidly-solidified Si-Cr alloys of various compositions were investigated in order to elucidate the effects of intermetallic phases on the cyclic energy capacity of the materials. Rapidly-solidified ribbons of the alloys were prepared by using a melt-spinning process, which is one of the most efficient rapid-solidification processes. The ribbons were fragmented by using a ball-milling process to produce powders of the alloys. To examine the electrochemical characteristics of the alloys, we mixed each of the alloy powders with Ketjenblack®, a conductive material, and a binder dissolved in deionized water and used it to form electrodes. The electrolyte used was 1.5-M LiPF6 dissolved in ethyl carbonate/dimethyl carbonate/fluoroethylene carbonate. The microstructures and the phases of the alloys were analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analyses. The obtained results showed that the microstructures of the rapidly-solidified Si-Cr alloys were composed of Si and CrSi2 phases. Fine Si particles with diameters of 50 - 100 nm were observed in an eutectic constituent while the sizes of the primary Si and CrSi2 phases were relatively larger at 500 - 900 nm. The specific energy capacities ( C) of the Si-Cr alloys decreased linearly with increasing volume fraction ( f) of the CrSi2 phase as follows: C = -1,667 f + 1,978 after the 50th cycle. The Columbic efficiency after the 3rd cycle increased slightly with increasing volume fraction of the CrSi2 phase; this was effective in improving the cycling capacity of the Si particles.

  5. Chemistry of intermetallic hydrides

    SciTech Connect

    Reilly, J.J.

    1991-01-01

    Certain intermetallic hydrides are safe, convenient and inexpensive hydrogen storage compounds. A particular advantage of such compounds is the ease with which their properties can be modified by small changes in alloy composition or preparation. This quality can be exploited to optimize their storage properties for particular applications, e.g. as intermetallic hydride electrodes in batteries. We will be concerned herein with the more important aspects of the thermodynamic and structural principles which regulate the behavior of intermetallic hydrogen systems and then illustrate their application using the archetype hydrides of LaNi5, FeTi and Mg alloys. The practical utility of these classes of materials will be briefly noted.

  6. Numerical generation of a polarization singularity array with modulated amplitude and phase.

    PubMed

    Ye, Dong; Peng, Xinyu; Zhao, Qi; Chen, Yanru

    2016-09-01

    A point having no defined polarized ellipse azimuthal angle (circularly polarized) in a space-variant vector field is called a polarization singularity, and it has three types: Lemon, Monstar, and Star. Recently, the connection of polarization singularities has been performed. Inspired by this, we conduct a numerical generation of a polarization singularity array. Our method is based on two orthogonal linearly polarized light beams with modulated amplitude and phase. With appropriate distribution functions of amplitudes and phases we can control the polarized states of polarization singularities, which offer a possibility to simulate a polarization singularity array. PMID:27607491

  7. IPRT polarized radiative transfer model intercomparison project - Phase A

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Korkin, Sergey; Ota, Yoshifumi; Labonnote, Laurent C.; Lyapustin, Alexei; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2015-10-01

    The polarization state of electromagnetic radiation scattered by atmospheric particles such as aerosols, cloud droplets, or ice crystals contains much more information about the optical and microphysical properties than the total intensity alone. For this reason an increasing number of polarimetric observations are performed from space, from the ground and from aircraft. Polarized radiative transfer models are required to interpret and analyse these measurements and to develop retrieval algorithms exploiting polarimetric observations. In the last years a large number of new codes have been developed, mostly for specific applications. Benchmark results are available for specific cases, but not for more sophisticated scenarios including polarized surface reflection and multi-layer atmospheres. The International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to fill this gap. This paper presents the results of the first phase A of the IPRT project which includes ten test cases, from simple setups with only one layer and Rayleigh scattering to rather sophisticated setups with a cloud embedded in a standard atmosphere above an ocean surface. All scenarios in the first phase A of the intercomparison project are for a one-dimensional plane-parallel model geometry. The commonly established benchmark results are available at the IPRT website.

  8. Suppression of the antiferroelectric phase during polarization cycling of an induced ferroelectric phase

    SciTech Connect

    Liu, Xiaoming; Tan, Xiaoli

    2015-08-17

    The ceramic Pb{sub 0.99}Nb{sub 0.02}[(Zr{sub 0.57}Sn{sub 0.43}){sub 0.92}Ti{sub 0.08}]{sub 0.98}O{sub 3} can exist in either an antiferroelectric or a ferroelectric phase at room temperature, depending on the thermal and electrical history. The antiferroelectric phase can be partially recovered from the induced ferroelectric phase when the applied field reverses polarity. Therefore, polarization cycling of the ferroelectric phase in the ceramic under bipolar fields at room temperature is accompanied with repeated phase transitions. In this letter, the stability of the recovered antiferroelectric phase upon electrical cycling of the ceramic is investigated. Ex-situ X-ray diffraction reveals that bipolar cycling suppresses the antiferroelectric phase; this is indirectly supported by piezoelectric coefficient d{sub 33} measurements. It is speculated that the accumulated charged point defects during polarization cycling stabilize the polar ferroelectric phase. The findings presented are important to the fundamental studies of electric fatigue and field-induced phase transitions in ferroelectrics.

  9. Suppression of the antiferroelectric phase during polarization cycling of an induced ferroelectric phase

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Tan, Xiaoli

    2015-08-01

    The ceramic Pb0.99Nb0.02[(Zr0.57Sn0.43)0.92Ti0.08]0.98O3 can exist in either an antiferroelectric or a ferroelectric phase at room temperature, depending on the thermal and electrical history. The antiferroelectric phase can be partially recovered from the induced ferroelectric phase when the applied field reverses polarity. Therefore, polarization cycling of the ferroelectric phase in the ceramic under bipolar fields at room temperature is accompanied with repeated phase transitions. In this letter, the stability of the recovered antiferroelectric phase upon electrical cycling of the ceramic is investigated. Ex-situ X-ray diffraction reveals that bipolar cycling suppresses the antiferroelectric phase; this is indirectly supported by piezoelectric coefficient d33 measurements. It is speculated that the accumulated charged point defects during polarization cycling stabilize the polar ferroelectric phase. The findings presented are important to the fundamental studies of electric fatigue and field-induced phase transitions in ferroelectrics.

  10. Mars Polar Cap During Transition Phase Instrument Checkout

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the last week of September and the first week or so of October 2006, scientific instruments on NASA's Mars Reconnaissance Orbiter were turned on to acquire test information during the transition phase leading up to full science operations. The mission's primary science phase will begin the first week of November 2006, following superior conjunction. (Superior conjunction is where a planet goes behind the sun as viewed from Earth.) Since it is very difficult to communicate with a spacecraft when it is close to the sun as seen from Earth, this checkout of the instruments was crucial to being ready for the primary science phase of the mission.

    Throughout the transition-phase testing, the Mars Color Imager (MARCI) acquired terminator (transition between nighttime and daytime) to terminator swaths of color images on every dayside orbit, as the spacecraft moved northward in its orbit. The south polar region was deep in winter shadow, but the north polar region was illuminated the entire Martian day. During the primary mission, such swaths will be assembled into global maps that portray the state of the Martian atmosphere -- its weather -- as seen every day and at every place at about 3 p.m. local solar time. After the transition phase completed, most of the instruments were turned off, but the Mars Climate Sounder and MARCI have been left on. Their data will be recorded and played back to Earth following the communications blackout associated with conjunction.

    Combined with wide-angle image mosaics taken by the Mars Orbiter Camera on NASA's Mars Global Surveyor at 2 p.m. local solar time, the MARCI maps will be used to track motions of clouds.

    This image is a composite mosaic of four polar views of Mars, taken at midnight, 6 a.m., noon, and 6 p.m. local Martian time. This is possible because during summer the sun is always shining in the polar region. It shows the mostly water-ice perennial cap (white area), sitting atop the north polar layered

  11. Phase stability of fcc- and hcp-based intermetallics: The Ti-Al and Cd-Mg systems

    SciTech Connect

    Asta, M.; McCormack, R. . Dept. of Materials Science and Mineral Engineering); van Schilfgaarde, M. ); Ceder, G. . Dept. of Materials Science); de Fontaine, D. . Dept. of Materials Science and Mi

    1992-06-01

    In this paper we summarize results of first-principles phase stability studies of fcc- and hcp-based Ti-Al alloys and of the hcp-based Cd-Mg system. In particular, heats of formation for ordered alloy compounds are calculated with the linear muffin tin orbital method; effective cluster interactions are determined from the results of these calculations and are used to derive thermodynamic properties and composition-temperature phase diagrams.

  12. Stabilizing blue phase liquid crystals with linearly polarized UV light

    NASA Astrophysics Data System (ADS)

    Xu, Daming; Yuan, Jiamin; Schadt, Martin; Yan, Jing; Wu, Shin-Tson

    2015-03-01

    Polymer-stabilized blue-phase liquid crystal (PS-BPLC) has become an increasingly important technology trend for information display and photonic applications. BPLC exhibits several attractive features, such as reasonably wide temperature range, submillisecond gray-to-gray response time, no need for alignment layer, optically isotropic voltageoff state, and large cell gap tolerance when an in-plane switching (IPS) cell is employed. However, some bottlenecks such as high operation voltage, relatively low transmittance, and noticeable hysteresis and prolonged response time at high field region for IPS mode, still remain to be overcome before widespread application of BPLC can be realized. To reduce operation voltage, both new BPLC materials and new device structures have been investigated. In this paper, we demonstrate the stabilization a photopolymer-embedded blue phase liquid crystal precursor using a linearly polarized UV light for first time. When the UV polarization axis is perpendicular to the stripe electrodes of an IPS cell, anisotropic polymer networks are formed through the linear photo-polymerization process and the electrostriction effect is suppressed. As a result, the measured hysteresis is dramatically reduced from 6.95% to 0.36% and the response time shortened by ~2X compared to unpolarized UV exposure. To induce larger anisotropy in polymer networks for mitigating the electrostriction effect, high-intensity linearly polarized UV exposure is preferred. It is foreseeable this method will guide future BPLC device and material development as well as manufacturing process. The dawn of BPLCD is near.

  13. Synthesis and characterization of Fe-Ti-Sb intermetallic compounds: Discovery of a new Slater-Pauling phase

    NASA Astrophysics Data System (ADS)

    Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.

    2016-03-01

    Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.

  14. Shaping of attosecond pulses by phase-stabilized polarization gating

    SciTech Connect

    Sansone, G.; Benedetti, E.; Caumes, J. P.; Stagira, S.; Vozzi, C.; Nisoli, M.; Poletto, L.; Villoresi, P.; Strelkov, V.; Sola, I.; Elouga, L. B.; Zaier, A.; Mevel, E.; Constant, E.

    2009-12-15

    We demonstrate that the characteristics of the high-order harmonic spectra generated by few-cycle carrier-envelope phase-stabilized pulses can be finely adjusted by controlling the time-dependent ellipticity. The experimental measurements show evidence for the generation of single, pairs, and trains of attosecond pulses by controlling the time window of linear polarization of the driving pulses. The influence of the carrier-envelope phase on the generation process in different confinement configurations is interpreted and analyzed using a nonadiabatic stationary phase model. We show that the xuv emission depends critically on particular aspects of the fundamental electric field that allows us to steer the electron trajectories on the time scale of tens of attoseconds.

  15. Shaping of attosecond pulses by phase-stabilized polarization gating

    NASA Astrophysics Data System (ADS)

    Sansone, G.; Benedetti, E.; Caumes, J. P.; Stagira, S.; Vozzi, C.; Nisoli, M.; Poletto, L.; Villoresi, P.; Strelkov, V.; Sola, I.; Elouga, L. B.; Zaïr, A.; Mével, E.; Constant, E.

    2009-12-01

    We demonstrate that the characteristics of the high-order harmonic spectra generated by few-cycle carrier-envelope phase-stabilized pulses can be finely adjusted by controlling the time-dependent ellipticity. The experimental measurements show evidence for the generation of single, pairs, and trains of attosecond pulses by controlling the time window of linear polarization of the driving pulses. The influence of the carrier-envelope phase on the generation process in different confinement configurations is interpreted and analyzed using a nonadiabatic stationary phase model. We show that the xuv emission depends critically on particular aspects of the fundamental electric field that allows us to steer the electron trajectories on the time scale of tens of attoseconds.

  16. Edge states and phase diagram for graphene under polarized light

    DOE PAGES

    Wang, Yi -Xiang; Li, Fuxiang

    2016-03-22

    In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less

  17. Edge states and phase diagram for graphene under polarized light

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Xiang; Li, Fuxiang

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  18. Polar organic phase liquid chromatography with packed capillary columns using a vancomycin chiral stationary phase

    PubMed

    Svensson; Donnecke; Karlsson; Karlsson; Vessman

    2000-08-01

    Vancomycin immobilized on silica served as the chiral stationary phase (CSP) in this investigation with polar organic solvents as the mobile phase in liquid chromatography (LC). It was shown that trace amounts of water were beneficial for improving peak shape and efficiency. To regulate the retention and selectivity an acid and/or base were added to the mobile phase where an excess of acid was shown to be preferential for enantioseparation. An unusual increase in selectivity with increasing temperature was shown for the acidic drug, thalidomide. Additionally, nonlinear van't Hoff plots were obtained for metoprolol enantiomers that showed increased retention with increasing temperature. Metoprolol also showed unusual behavior in the polar organic phase when water was added to resemble reversed-phase chromatography, with minimum retention observed at high water or high methanol concentrations. In both instances a high degree of electrostatic interaction between metoprolol and vancomycin was concluded. Metoprolol and ten of its analogs were examined on this CSP to evaluate the enantiorecognition process. A comparison in enantioselectivity for a number of acidic and basic drugs using this CSP was also carried out using the polar organic phase, reversed phase, and normal phase LC which were all compared to the results obtained in supercritical fluid chromatography (SFC). Polar organic phase LC offered a better separation of basic molecules while reversed phase LC was preferred for the resolution of acids. SFC showed the broadest enantioselectivity overall and normal phase LC indicated similar properties, as expected, to SFC but with lower column efficiency. Copyright 2000 Wiley-Liss, Inc. PMID:10897097

  19. A comparative first-principles study of martensitic phase transformations in TiPd2 and TiPd intermetallics.

    PubMed

    Krcmar, M; Morris, James R

    2014-04-01

    Martensitic phase transformations in TiPd2 and TiPd alloys are studied employing density-functional, first-principles calculations. We examine the transformation of tetragonal C11b TiPd2 to the low-temperature orthorhombic phase (C11b → oI6), and the transformation of cubic B2 TiPd under orthorhombic (B2→B19) and subsequent monoclinic transformations (B19→B19') as the system is cooled. We employ a theoretical approach based on a phenomenological Landau theory of the structural phase transitions and a mean-field approximation for the free energy, utilizing first-principles calculations to obtain the deformation energy as a function of strains and to deduce parameters for constructing the free energy. The predicted transition temperature for the TiPd2 C11b → oI6 transition is in good agreement with reported experimental results. To investigate the TiPd B2→B19 transformation, we employ both the Cauchy-Born rule and a soft-mode-based approach, and elucidate the importance of the coupling between lattice distortion and atomic displacements (i.e. shuffling) in the formation of the final structure. The calculated B2→B19 transition temperature for TiPd alloy agrees well with the experimental results. We also find that there exists a very small but finite (0.0005 eV/atom) energy barrier of B19 TiPd under monoclinic deformation for B19→B19' structural phase transformation. PMID:24625683

  20. Polarization-phase tomography of biological fluids polycrystalline structure

    NASA Astrophysics Data System (ADS)

    Dubolazov, A. V.; Vanchuliak, O. Ya.; Garazdiuk, M.; Sidor, M. I.; Motrich, A. V.; Kostiuk, S. V.

    2013-12-01

    Our research is aimed at designing an experimental method of Fourier's laser polarization phasometry of the layers of human effusion for an express diagnostics during surgery and a differentiation of the degree of severity (acute - gangrenous) appendectomy by means of statistical, correlation and fractal analysis of the coherent scattered field. A model of generalized optical anisotropy of polycrystal networks of albumin and globulin of the effusion of appendicitis has been suggested and the method of Fourier's phasometry of linear (a phase shift between the orthogonal components of the laser wave amplitude) and circular (the angle of rotation of the polarization plane) birefringence with a spatial-frequency selection of the coordinate distributions for the differentiation of acute and gangrenous conditions have been analytically substantiated. Comparative studies of the efficacy of the methods of direct mapping of phase distributions and Fourier's phasometry of a laser radiation field transformed by the dendritic and spherolitic networks of albumin and globulin of the layers of effusion of appendicitis on the basis of complex statistical, correlation and fractal analysis of the structure of phase maps.

  1. Stable Topological Superfluid Phase of Ultracold Polar Fermionic Molecules

    SciTech Connect

    Cooper, N. R.; Shlyapnikov, G. V.

    2009-10-09

    We show that single-component fermionic polar molecules confined to a 2D geometry and dressed by a microwave field may acquire an attractive 1/r{sup 3} dipole-dipole interaction leading to superfluid p-wave pairing at sufficiently low temperatures even in the BCS regime. The emerging state is the topological p{sub x}+ip{sub y} phase promising for topologically protected quantum information processing. The main decay channel is via collisional transitions to dressed states with lower energies and is rather slow, setting a lifetime of the order of seconds at 2D densities approx10{sup 8} cm{sup -2}.

  2. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    SciTech Connect

    Lin, Bo; Zhang, Weiwen; Zhao, Yuliang; Li, Yuanyuan

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.

  3. BEC BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids

    NASA Astrophysics Data System (ADS)

    Sheehy, Daniel E.; Radzihovsky, Leo

    2007-08-01

    We study resonantly-paired s-wave superfluidity in a degenerate gas of two species (hyperfine states labeled by ↑, ↓) of fermionic atoms when the numbers N↑ and N↓ of the two species are unequal, i.e., the system is "polarized." We find that the continuous crossover from the Bose-Einstein condensate (BEC) limit of tightly-bound diatomic molecules to the Bardeen-Cooper-Schrieffer (BCS) limit of weakly correlated Cooper pairs, studied extensively at equal populations, is interrupted by a variety of distinct phenomena under an imposed population difference Δ N ≡ N↑ - N↓. Our findings are summarized by a "polarization" (Δ N) versus Feshbach-resonance detuning ( δ) zero-temperature phase diagram, which exhibits regions of phase separation, a periodic FFLO superfluid, a polarized normal Fermi gas and a polarized molecular superfluid consisting of a molecular condensate and a fully polarized Fermi gas. We describe numerous experimental signatures of such phases and the transitions between them, in particular focusing on their spatial structure in the inhomogeneous environment of an atomic trap.

  4. Phase diversity and polarization augmented techniques for active imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Peter M.

    A firm understanding of the space environment is necessary to defend US access to space-based systems. Conventional imaging systems have been developed to gather information on space-based objects, but they are incapable of imaging objects in the earth's shadow. In order close this gap in imaging-system coverage, an active-illumination based approach must be used. To facilitate this, a multi-frame active phase diversity imaging (APDI) algorithm is derived and demonstrated for the statistics of coherent light. In addition to conventional focal-plane and diversity-plane data, a statistical description for the pupil plane intensity distribution is formed and included in the derivation. The algorithm is implemented and characterized using a Monte Carlo approach. Analysis shows that the algorithm is robust, that the effect of system configuration on optimal algorithm parameters is minimal, that the algorithm is insensitive to detection noise for SNR ≥ 7, and that it performs well for SNRs as low as 2. Furthermore, it's shown that introduction of pupil-plane data on average results in a 60% better image reconstruction from dynamically aberrated data than is obtained using only focal-plane and diversity-plane data. Both an Expectation-Maximization algorithm and a lensless-APDI approach are presented for generating imagery directly from pupil-plane polarization measurements. Shortfalls of these methods and areas worthy of further consideration are identified. The use of pupil-plane polarization state measurements in place of pupil-plane intensity measurements in the APDI algorithm is explored. A framework for including polarization measurements into the APDI algorithm is demonstrated, and an initial statistical model and results are presented. Under the developed implementation, introduction of the polarization data doesn't result in better performance. Areas that may result in better reconstructions are discussed.

  5. Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase.

    PubMed

    Yang, Yihao; Jing, Liqiao; Zheng, Bin; Hao, Ran; Yin, Wenyan; Li, Erping; Soukoulis, Costas M; Chen, Hongsheng

    2016-08-01

    A full-polarization arbitrary-shaped 3D metasurface cloak with preserved amplitude and phase in microwave frequencies is experimentally demonstrated. By taking the unique feature of metasurfaces, it is shown that the cloak can completely restore the polarization, amplitude, and phase of light for full polarization as if light was incident on a flat mirror. PMID:27218885

  6. Silicon waveguide polarization rotation Bragg grating with phase shift section and sampled grating scheme

    NASA Astrophysics Data System (ADS)

    Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori

    2016-08-01

    We describe a Bragg grating with a phase shift section and a sampled grating scheme that converts input polarization to orthogonal polarization. A very narrow polarization-independent wavelength peak can be generated by phase shift structures and polarization-independent multiple diffraction peaks by sampled gratings. The characteristics of the device were examined by transfer matrix and finite-difference time-domain methods.

  7. Characterization of a generalized elliptical phase retarder by using equivalent theorem of a linear phase retarder and a polarization rotator

    NASA Astrophysics Data System (ADS)

    Yu, Chih-Jen; Chou, Chien

    2011-03-01

    An equivalence theory based on a unitary optical system of a generalized elliptical phase retarder was derived. Whereas the elliptical phase retarder can be treated as the combination of a linear phase retarder and a polarization rotator equivalently. Three fundamental parameters, including the elliptical phase retardation, the azimuth angle and the ellipticity angle of the fast elliptical eigen-polarization state were derived. All parameters of a generalized elliptical phase retarder can be determined from the analytical solution of the characteristic parameters of the optical components: linear phase retardation and fast axis angle of the equivalently linear phase retarder respectively, and polarization rotation angle of an equivalent polarization rotator. In this study, the experimental verification was demonstrated by testing a twisted nematic liquid crystal device (TNLCD) treated as a generalized elliptical phase retarder. A dual-frequency heterodyne ellipsometer was setup and the experimental result demonstrates the capability of the equivalent theory on elliptical birefringence measurement at high sensitivity by using heterodyne technique.

  8. Propagation of polarized light in opals: Amplitude and phase anisotropy

    SciTech Connect

    Baryshev, A. V. Dokukin, M. E.; Merzlikin, A. M.; Inoue, M.

    2011-03-15

    The interaction of linearly polarized light with photonic crystals based on bulk and thin-film synthetic opals is studied. Experimental transmission spectra and spectra showing the polarization state of light transmitted through opals are discussed. A change in polarization is found for waves experiencing Bragg diffraction from systems of crystallographic planes of the opal lattice. It is shown that the polarization plane of the incident linearly polarized wave at the exit from photonic crystals can be considerably rotated. In addition, incident linearly polarized light can be transformed to elliptically polarized light with the turned major axis of the polarization ellipse. Analysis of polarization states of transmitted light by using the transfer-matrix theory and homogenization theory revealed good agreement between calculated and experimental spectra.

  9. Mixed-phased particles in polar stratospheric ice clouds

    NASA Astrophysics Data System (ADS)

    Bogdan, Anatoli; Molina, Mario J.; Loerting, Thomas

    2010-05-01

    Keywords: polar stratospheric clouds (PSCs), ozone depletion, differential scanning calorimeter. The rate of chlorine activation reactions, which lead to ozone depletion in the winter/spring polar stratosphere (Molina, 1994), depends on the phase state of the surface of polar stratospheric cloud (PSC) ice crystals (McNeil et al., 2006). PSCs are thought to consist of solid ice and NAT (nitric acid trihydrate, HNO3× 3H2O) particles and supercooled HNO3/H2SO4/H2O droplets. The corresponding PSCs are called Type II, Ia, and Ib PSCs, respectively (Zondlo et al., 1998). Type II PSCs are formed in the Antarctic region below the ice frost point of 189 K by homogeneous freezing of HNO3/H2SO4/H2O droplets (Chang et al., 1999) with the excess of HNO3. The PSC ice crystals are thought to be solid. However, the fate of H+, NO3-, SO42- ions during freezing was not investigated. Our differential scanning calorimetry (DSC) studies of freezing emulsified HNO3/H2SO4/H2O droplets of sizes and compositions representative of the polar stratosphere demonstrate that during the freezing of the droplets, H+, NO3-, SO42- are expelled from the ice lattice. The expelled ions form a residual solution around the formed ice crystals. The residual solution does not freeze but transforms to glassy state at ~150 K (Bogdan et al., 2010). By contrast to glass-formation in these nitric-acid rich ternary mixtures the residual solution freezes in the case of sulphuric-acid rich ternary mixtures (Bogdan and Molina, 2009). For example, we can consider the phase separation into ice and a residual solution during the freezing of 23/3 wt% HNO3/H2SO4/H2O droplets. On cooling, ice is formed at ~189 K. This is inferred from the fact that the corresponding melting peak at ~248 K exactly matches the melting point of ice in the phase diagram of HNO3/H2SO4/H2O containing 3 wt % H2SO4. After the ice has formed, the glass transition occurs at Tg ≈ 150 K. The appearance of the glass transition indicates that the

  10. High-temperature structural intermetallics

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Ito, K.

    2000-01-01

    In the last one and a half decades, a great deal of fundamental and developmental research has been made on high-temperature structural intermetallics aiming at the implementation of these intermetallics in aerospace, automotive and land-based applications. These intermetallics include aluminides formed with either titanium, nickel or iron and silicides formed with transition metals. Of these high-temperature intermetallics, TiAl-based alloys with great potential in both aerospace and automotive applications have been attracting particular attention. Recently TiAl turbocharger wheels have finally started being used for turbochargers for commercial passenger cars of a special type. The current status of the research and development of these high-temperature intermetallics is summarized and a perspective on what directions future research and development of high-temperature intermetallics should take is provided.

  11. Potentiodynamic polarization effect on phase and microstructure of SAC305 solder in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Zaini, Nurwahida Binti Mohd; Nazeri, Muhammad Firdaus Bin Mohd

    2016-07-01

    The corrosion analysis of SAC305 lead free solder was investigated in Hydrochloric acid (HCl) solution. Potentiodynamic polarization was used to polarize the SAC305. The effect of polarization on the phase and microstructure were compared to as-prepared SAC305 solder. Potentiodynamic polarization introduces mixed corrosion products on the surface of SAC305 solder. The XRD analysis confirms that the mixed corrosion products emerged on the surface after polarization by formation of SnO and SnO2 of which confirmed that dissolution of Sn was dominant during polarization. Microstructure analysis reveal the presence of gap and porosities produced limits the protection offered by the passivation film.

  12. Theory of Phase Separation and Polarization for Pure Ionic Liquids.

    PubMed

    Gavish, Nir; Yochelis, Arik

    2016-04-01

    Room temperature ionic liquids are attractive to numerous applications and particularly, to renewable energy devices. As solvent free electrolytes, they demonstrate a paramount connection between the material morphology and Coulombic interactions: the electrode/RTIL interface is believed to be a product of both polarization and spatiotemporal bulk properties. Yet, theoretical studies have dealt almost exclusively with independent models of morphology and electrokinetics. Introduction of a distinct Cahn-Hilliard-Poisson type mean-field framework for pure molten salts (i.e., in the absence of any neutral component), allows a systematic coupling between morphological evolution and the electrokinetic phenomena, such as transient currents. Specifically, linear analysis shows that spatially periodic patterns form via a finite wavenumber instability and numerical simulations demonstrate that while labyrinthine type patterns develop in the bulk, lamellar structures are favored near charged surfaces. The results demonstrate a qualitative phenomenology that is observed empirically and thus, provide a physically consistent methodology to incorporate phase separation properties into an electrochemical framework. PMID:26954098

  13. Polarization-sensitive optical coherence tomography measurements with different phase modulation amplitude when using continuous polarization modulation

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-01-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  14. Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter

    PubMed Central

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, DVGLN

    2012-01-01

    We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography. PMID:23109732

  15. Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter.

    PubMed

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, Dvgln

    2012-11-01

    We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography.

  16. SrAu4In4 and Sr4Au9In13: Polar Intermetallic Structures with Cations in Augmented Hexagonal Prismatic Environments

    SciTech Connect

    Palasyuk, A.; Dai, J.C.; Corbett, J.

    2008-03-11

    The title compounds were synthesized via high-temperature reactions of the elements in welded Ta tubes and characterized by single-crystal X-ray diffraction analyses and band structure calculations. SrAu{sub 3.76(2)}In{sub 4.24} crystallizes in the YCo{sub 5}In{sub 3} structure type with two of eight network sites occupied by mixtures of Au and In: Pnma, Z = 4, a = 13.946(7), b = 4.458(2), c = 12.921(6) {angstrom}. Its phase breadth appears to be small. Sr{sub 4}Au{sub 9}In{sub 13} exhibits a new structure type, P{sub 6}m2, Z = 1, a = 12.701(2), c = 4.4350(9) {angstrom}. The Sr atoms in both compounds center hexagonal prisms of nominally alternating In and Au atoms and also have nine augmenting (outer) Au + In atoms around their waists so as to define 21-vertex Sr{at}Au{sub 9}M{sub 4}In{sub 8} (M = Au/In) and Sr{at}Au{sub 9}In{sub 12} polyhedra, respectively. The relatively larger Sr content in the second phase also leads to condensation of some of the ideal building units into trefoil-like cages with edge-shared six-member rings. One overall driving force for the formation of these structures can be viewed as the need for each Sr cation to have as many close neighbors as possible in the more anionic Au-In network. The results also depend on the cation size as well as on the flexibility of the anionic network and an efficient intercluster condensation mode as all clusters are shared. Band structure calculations (LMTO-ASA) emphasize the greater strengths (overlap populations) of the Au-In bonds and confirm expectations that both compounds are metallic.

  17. An optically controlled phased array antenna based on single sideband polarization modulation.

    PubMed

    Zhang, Yamei; Wu, Huan; Zhu, Dan; Pan, Shilong

    2014-02-24

    A novel optically controlled phased array antenna consisting a simple optical beamforming network and an N element linear patch antenna array is proposed and demonstrated. The optical beamforming network is realized by N independent phase shifters using a shared optical single sideband (OSSB) polarization modulator together with N polarization controllers (PCs), N polarization beam splitters (PBSs) and N photodetectors (PDs). An experiment is carried out. A 4-element linear patch antenna array operating at 14 GHz and a 1 × 4 optical beamforming network (OBFN) is employed to realize the phased array antenna. The radiation patterns of the phased array antenna at -30°, 0° and 30° are achieved.

  18. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1992-12-31

    This paper briefly summarizes recent advances in intermetallic research and development. Ordered intermetallics based on aluminides and silicides possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle fracture and poor fracture resistance limit their use as engineering materials in many cases. In recent years, considerable efforts have been devoted to the study of the brittle fracture behavior of intermetallic alloys; as a result, both intrinsic and extrinsic factors governing brittle fracture have been identified. Recent advances in first-principles calculations and atomistic simulations further help us in understanding atomic bonding, dislocation configuration, and alloying effects in intermetallics. The basic understanding has led to the development of nickel, iron, and titanium aluminide alloys with improved mechanical and metallurgical properties for structural use. Industrial interest in ductile intermetallic alloys is high, and several examples of industrial involvement are mentioned.

  19. Recent advances in ordered intermetallics

    SciTech Connect

    Liu, C.T.

    1994-12-31

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at high temperatures in hostile environments. Attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at high temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past 10 years, considerable effort was devoted to R&D of ordered intermetallic alloys, and progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel effort on alloy design has led to the development of a number of ductile and strong intermetallic alloys based on Ni{sub 3}Al, NiAl, Fe{sub 3}Al, FeAl, Ti{sub 3}Al, and TiAl systems for structural applications.

  20. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers

    SciTech Connect

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; and Corbett, John D.

    2009-10-29

    The new phase K{sub 12}Au{sub 21}Sn{sub 4} has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) {angstrom}, V = 1901.3(7) {angstrom}{sup 3}, and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au{sub 20}) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn{sub 4}). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K{sub 3}Au{sub 5}In and Rb{sub 2}Au{sub 3}Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

  1. Focusing light through scattering media by full-polarization digital optical phase conjugation

    PubMed Central

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.

    2016-01-01

    Digital optical phase conjugation (DOPC) is an emerging technique for focusing light through or within scattering media such as biological tissue. Since DOPC systems are based on time reversal, they benefit from collecting as much information about the scattered light as possible. However, existing DOPC techniques record and subsequently phase-conjugate the scattered light in only a single polarization state, limited by the operating principle of spatial light modulators. Here, we develop the first full-polarization DOPC system which records and phase-conjugates scattered light along two orthogonal polarizations. When focusing light through thick scattering media, such as 2 mm and 4 mm thick chicken breast tissue, our full-polarization DOPC system on average doubles the focal peak-to-background ratio achieved by single-polarization DOPC systems and improves the phase conjugation fidelity. PMID:26977651

  2. Arbitrary polarized beams generated and detected by one phase-only LC-SLM

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Qi, Junli; Wang, Weihua; Chen, Yu; Gu, Guohua; Chu, Delin; Zhang, Qianghua; Deng, Haifei; Zhao, Sugui; Han, Jiajia; Wang, Rongfei

    2014-09-01

    Arbitrary polarized beams, including homogeneously polarized beams and cylindrical vector beams, have been generated by an experimental setup with one phase-only liquid crystal spatial light modulator, and a four-path method was demonstrated to measure the polarization degree of detected beams. Besides, another method was proposed to measure the polarization directions of cylindrical vector beams. The polarized states can be calculated by controlling the spatial light modulator and optical intensity obtained from a CCD. The generation setup and detection methods have simple structure and low cost, and they are available for multi wavelength input beams, and the detection methods can realize real-time and on-line measurement.

  3. A polar-embedded C30 stationary phase: preparation and evaluation.

    PubMed

    Zhang, Mingliang; Mai, Wenpeng; Zhao, Liang; Guo, Yong; Qiu, Hongdeng

    2015-04-01

    A novel polar-embedded C30 stationary phase has been synthesized and characterized. The polar carbamate group was generated homogeneously in situ by the catalytic reaction between isocyanate and primary alcohol. The simple one-pot synthetic strategy provided an efficient and effective strategy for modification of silica spheres. Efficiency, selectivity and silanol activity of the resulting column were characterized in detail with different classes of analytes that included Standard Reference Materials (SRM) 870, SRM 869b and SRM 1647e, alkylbenzene congeners, as well as polar-substituted aromatics. The polar-embedded C30 stationary phase was found to exhibit excellent shape selectivity. PMID:25725953

  4. Hexagonal-diamond-like gold lattices, Ba and (Au,T)3 interstitials, and delocalized bonding in a family of intermetallic phases Ba2Au6(Au,T)3 (T = Zn, Cd, Ga, In, or Sn).

    PubMed

    Lin, Qisheng; Mishra, Trinath; Corbett, John D

    2013-07-31

    Au-rich polar intermetallics exhibit a wide variety of structural motifs, and this hexagonal-diamond-like gold host is unprecedented. The series Ba2Au6(Au,T)3 (T = Zn, Cd, Ga, In, or Sn), synthesized through fusion of the elements at 700-800 °C followed by annealing at 400-500 °C, occur in space group R3[overline]c (a ≈ 8.6-8.9 Å, c ≈ 21.9-22.6 Å, and Z = 6). Their remarkable structure, generated by just three independent atoms, features a hexagonal-diamond-like gold superstructure in which tunnels along the 3-fold axes are systematically filled by interstitial Ba atoms (blue) and triangles of disordered (Au,T)3 atoms (green) in 2:1 proportions. The Au/Zn mixing in the latter spans ~34 to 87% Zn, whereas the Au/Sn result is virtually invariant compositionally. Complementary bonding between the gold lattice and the disordered (Au,T)3 units is substantial and very regular. Bonding and charge density analyses indicate delocalized bonding within the gold host and the (Au,T)3 triangular units, and moderately polarized bonding between Ba and the electronegative framework. The new structure can also be viewed empirically as the result of an atom-by-triad [i.e., Ba by (Au,T)3 triangle] topological substitution in a BaAu2 (AlB2-type) superstructure.

  5. Surfaces of complex intermetallic compounds: insights from density functional calculations.

    PubMed

    Hafner, Jürgen; Krajčí, Marian

    2014-11-18

    CONSPECTUS: Complex intermetallic compounds are a class of ordered alloys consisting of quasicrystals and other ordered compounds with large unit cells; many of them are approximant phases to quasicrystals. Quasicrystals are the limiting case where the unit cell becomes infinitely large; approximants are series of periodic structures converging to the quasicrystal. While the unique properties of quasicrystals have inspired many investigations of their surfaces, relatively little attention has been devoted to the surface properties of the approximants. In general, complex intermetallic compounds display rather irregular, often strongly corrugated surfaces, making the determination of their atomic structure a very complex and challenging task. During recent years, scanning tunneling microscopy (STM) has been used to study the surfaces of several complex intermetallic compounds. If atomic resolution can be achieved, STM permits visualization of the local atomistic surface structure. However, the interpretation of the STM images is often ambiguous and sometimes even impossible without a realistic model of the structure of the surface and the distribution of the electronic density above the surface. Here we demonstrate that ab initio density functional theory (DFT) can be used to determine the energetics and the geometric and electronic structures of the stable surfaces of complex intermetallic compounds. Calculations for surfaces with different chemical compositions can be performed in the grand canonical ensemble. Simulated cleavage experiments permit us to determine the formation of the cleavage planes requiring the lowest energy. The investigation of the adsorption of molecular species permits a comparison with temperature-programmed thermal desorption experiments. Calculated surface electronic densities of state can be compared with the results of photoelectron spectroscopy. Simulations of detailed STM images can be directly confronted with the experimental results

  6. First-principles studies of Ni-Ta intermetallic compounds

    SciTech Connect

    Zhou Yi; Wen Bin; Ma Yunqing; Melnik, Roderick; Liu Xingjun

    2012-03-15

    The structural properties, heats of formation, elastic properties, and electronic structures of Ni-Ta intermetallic compounds are investigated in detail based on density functional theory. Our results indicate that all Ni-Ta intermetallic compounds calculated here are mechanically stable except for P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2}. Furthermore, we found that Pmmn-Ni{sub 3}Ta is the ground state stable phase of Ni{sub 3}Ta polymorphs. The polycrystalline elastic modulus has been deduced by using the Voigt-Reuss-Hill approximation. All Ni-Ta intermetallic compounds in our study, except for NiTa, are ductile materials by corresponding G/K values and poisson's ratio. The calculated heats of formation demonstrated that Ni{sub 2}Ta are thermodynamically unstable. Our results also indicated that all Ni-Ta intermetallic compounds analyzed here are conductors. The density of state demonstrated the structure stability increases with the Ta concentration. - Graphical abstract: Mechanical properties and formation heats of Ni-Ta intermetallic compounds are discussed in detail in this paper. Highlights: Black-Right-Pointing-Pointer Ni-Ta intermetallic compounds are investigated by first principle calculations. Black-Right-Pointing-Pointer P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2} are mechanically unstable phases. Black-Right-Pointing-Pointer Pmmn-Ni{sub 3}Ta is ground stable phase of Ni{sub 3}Ta polymorphs. Black-Right-Pointing-Pointer All Ni-Ta intermetallic compounds are conducting materials.

  7. Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-08-01

    We propose an approach to the generation of nondiffracting quasi-circularly polarized beams by a highly focusing azimuthally polarized beam using an amplitude modulated spiral phase hologram. Numerical verifications are implemented in the calculation of the electromagnetic fields and Poynting vector field near the focus based on the vector diffraction theory, and the polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the electric field, magnetic field, and Poynting vector field can simultaneously be uniform and nondiverging over a relatively long axial range of ~7.23λ. In the transverse plane, the ellipticity and azimuthal angle of the local polarization ellipse varies from point to point. No polarization singularity and phase singularity are found at the beam center, which makes the bright spot possible. PMID:21811334

  8. Complete polarization analysis of extreme ultraviolet radiation with a broadband phase retarder and analyzer

    SciTech Connect

    Wang Zhanshan; Wang Hongchang; Zhu Jingtao; Zhang Zhong; Wang Fengli; Xu Yao; Zhang Shumin; Wu Wenjuan; Chen Lingyan; Michette, Alan G.; Pfauntsch, Slawka J.; Powell, A. Keith; Schaefers, Franz; Gaupp, Andreas; Cui Mingqi; Sun Lijuan; MacDonald, Mike

    2007-02-19

    The polarization state of the BESSY UE56/1-PGM beamline radiation in the broad wavelength range of 12.7-15.5 nm was measured using a molybdenum/silicon transmission phase retarder and a reflection analyzer with aperiodic multilayer interference structures, which can broaden the spectral response of these optical elements. The characteristics of the circular polarized undulator radiation, as well as the polarization properties of the two polarizing elements, were determined by a complete polarization analysis. Furthermore, the polarization of the radiation as a function of the undulator shift setting was also measured at the wavelength of 13.1 nm by use of the broadband phase retarder-analyzer pair.

  9. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  10. Labyrinthine instability in freely suspended films of a polarization-modulated smectic phase

    NASA Astrophysics Data System (ADS)

    Eremin, Alexey; Kornek, Ulrike; Stannarius, Ralf; Weissflog, Wolfgang; Nádasi, Hajnalka; Araoka, Fumito; Takezoe, Hideo

    2013-12-01

    We report on fingering and labyrinthine instabilities of the layer dislocation lines in freely suspended polar liquid-crystalline films. These polar fingerlike and labyrinth structures reversibly form upon a transition into a modulated phase. External electric fields of several kV/m applied in the film plane can reversibly influence the formation of the finger textures. We show that the labyrinthine pattern is intrinsically related to regular splay deformations of the polarization.

  11. Effect of the spiral phase element on the radial-polarization (0, 1) ∗ LG beam

    NASA Astrophysics Data System (ADS)

    Machavariani, G.; Lumer, Y.; Moshe, I.; Jackel, S.

    2007-03-01

    Radially-polarized beams can be strongly amplified without significant birefringent-induced aberrations. However, radially-polarized beam is a high-order beam, and therefore has to be transformed into a fundamental Gaussian beam for reduction the beam-propagation factor M2. In effort to transform the radially-polarized beam to a nearly-Gaussian beam, we consider effect of a spiral phase element (SPE) on the Laguerre-Gaussian (LG) (0, 1)∗ beam with radial polarization, and compare this with the case when the input beam is a LG (0, 1)∗ beam with spiral phase and uniform or random polarization. The LG (0, 1)∗ beam with radial polarization, despite its identity in intensity profile to the beam with spiral phase, has distinctly different properties when interacting with the SPE. With the SPE and spatial filter, we transformed the radially-polarized (0, 1)∗ mode with M2 = 2.8 to a nearly-Gaussian beam with M2 = 1.7. Measured transformation efficiency was 50%, and the beam brightness P/(M2)2 was practically unchanged. The SPE affects polarization state of the radially-polarized beam, leading to appearance of spin angular momentum in the beam center at the far-field.

  12. Phase separation in a polarized Fermi gas with spin-orbit coupling

    SciTech Connect

    Yi, W.; Guo, G.-C.

    2011-09-15

    We study the phase separation of a spin-polarized Fermi gas with spin-orbit coupling near a wide Feshbach resonance. As a result of the competition between spin-orbit coupling and population imbalance, the phase diagram for a uniform gas develops a rich structure of phase separation involving topologically nontrivial gapless superfluid states. We then demonstrate the phase separation induced by an external trapping potential and discuss the optimal parameter region for the experimental observation of the gapless superfluid phases.

  13. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    SciTech Connect

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D.

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  14. Measurement of relative phase distribution of onion epidermal cells by using the polarization microscope

    NASA Astrophysics Data System (ADS)

    Shin, In Hee; Lee, Ji Yong; Lee, Seungrag; Lee, Dong Ju; Kim, Dug Young

    2007-02-01

    Bio-cells and tissues have intrinsic polarization characteristics, which are changed by external stimulus and internal metamorphosis in cells and tissues and some of the bio-cells and tissues have intrinsic birefringence characteristics, which are also changed by external stimulus and internal metamorphosis in cells and tissues. In this paper, we have developed the polarization microscope for measurement of relative phase which results from birefringence characteristics of materials with improved linear polarizing method and have measured relative phase distribution of onion epidermal cells. From the measurement of the relative phase distribution of onion epidermal cells, decrease of relative phase distribution of onion epidermal cells was investigated as the elapse of time. In decrease of relative phase distribution, relative phase of cell membrane in onion epidermal cells decreased radically as compared with that of cytoplasm because decline of function in cell membrane that takes charge of matter transfer in onion epidermal cells has occurred.

  15. A high phase-space-density gas of polar molecules.

    PubMed

    Ni, K-K; Ospelkaus, S; de Miranda, M H G; Pe'er, A; Neyenhuis, B; Zirbel, J J; Kotochigova, S; Julienne, P S; Jin, D S; Ye, J

    2008-10-10

    A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, not only would enable explorations of a large class of many-body physics phenomena but also could be used for quantum information processing. We report on the creation of an ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules. Using a single step of STIRAP (stimulated Raman adiabatic passage) with two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential. The polar molecular gas has a peak density of 10(12) per cubic centimeter and an expansion-determined translational temperature of 350 nanokelvin. The polar molecules have a permanent electric dipole moment, which we measure with Stark spectroscopy to be 0.052(2) Debye (1 Debye = 3.336 x 10(-30) coulomb-meters) for the triplet rovibrational ground state and 0.566(17) Debye for the singlet rovibrational ground state.

  16. Polarization-phase images of liquor polycrystalline films in determining time of death.

    PubMed

    Garazdyuk, M S; Bachinskyi, V T; Vanchulyak, O Ya; Ushenko, A G; Dubolazov, O V; Gorsky, M P

    2016-04-20

    An optical model for generalized optical anisotropy of polycrystalline networks of albumin and globulin liquor of the human brain has been suggested. The polarization-phase method for spatial and frequency differentiation of linear and circular birefringence coordinate distributions has been analytically substantiated. A set of criteria documenting the dynamics of polarization-phase images of liquor polycrystalline films has been identified in determining time of death. PMID:27140134

  17. Intermetallic Layers in Soldered Joints

    1998-12-10

    ILAG solves the one-dimensional partial differential equations describing the multiphase, multicomponent, solid-state diffusion-controlled growth of intermetallic layers in soldered joints. This software provides an analysis capability for materials researchers to examine intermetallic growth mechanisms in a wide variety of defense and commercial applications involving both traditional and advanced materials. ILAG calculates the interface positions of the layers, as well as the spatial distribution of constituent mass fractions, and outputs the results at user-prescribed simulation times.

  18. Phase equilibrium in a polarized saturated {sup 3}He-{sup 4}He mixture

    SciTech Connect

    Rodrigues, A.; Vermeulen, G.

    1997-07-01

    We present experimental results on the phase equilibrium of a saturated {sup 3}He-{sup 4}He mixture, which has been cooled to a temperature of 10-15 mK and polarized in a {sup 4}He circulating dilution refrigerator to a stationary polarization of 15 %, 7 times higher than the equilibrium polarization in the external field of 7 T. The pressure dependence of the polarization enhancement in the refrigerator shows that the molar susceptibilities of the concentrated and dilute phase of a saturated {sup 3}He-{sup 4}He mixture are equal at p = 2.60 {+-} 0.04 bar. This result affects the Fermi liquid parameters of the dilute phase. The osmotic pressure in the dilute phase has been measured as a function of the polarization of the coexisting concentrated phase up to 15 %. We find that the osmotic pressure at low polarization ( < 7 % ) agrees well with thermodynamics using the new Fermi liquid parameters of the dilute phase.

  19. A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Tsou, Yu-Shih

    2011-12-01

    A polarization-independent liquid crystal (LC) phase modulation using the surface pinning effect of polymer dispersed liquid crystals (SP-PDLC) is demonstrated. In the bulk region of the SP-PDLC, the orientations of LC directors are randomly dispersed; thus, any polarization of incident light experiences the same averaged refractive index. In the regions near glass substrates, the LC droplets are pinned. The orientations of top and bottom droplets are orthogonal. Two eigen-polarizations of an incident light experience the same phase shift. As a result, the SP-PDLC is polarization independent. Polarizer-free microlens arrays of SP-PDLC are also demonstrated. The SP-PDLC has potential for application in spatial light modulators, laser beam steering, and electrically tunable microprisms.

  20. Quantum phase gate and controlled entanglement with polar molecules

    SciTech Connect

    Charron, Eric; Keller, Arne; Atabek, Osman; Milman, Perola

    2007-03-15

    We propose an alternative scenario for the generation of entanglement between rotational quantum states of two polar molecules. This entanglement arises from dipole-dipole interaction, and is controlled by a sequence of laser pulses simultaneously exciting both molecules. We study the efficiency of the process, and discuss possible experimental implementations with cold molecules trapped in optical lattices or in solid matrices. Finally, various entanglement detection procedures are presented, and their suitability for these two physical situations is analyzed.

  1. Multi-frequency phase-coded microwave signal generation based on polarization modulation and balanced detection.

    PubMed

    Zhu, Dan; Xu, Weiyuan; Wei, Zhengwu; Pan, Shilong

    2016-01-01

    Photonic multi-frequency phase-coded microwave signal generation is proposed and demonstrated based on polarization modulation and balanced detection. Consisting of only a polarization modulator (PolM) driven by an electrical coding data, a polarization beam splitter (PBS) and a balanced photodetector (BPD), the proposed microwave phase coder has no requirement on the wavelength, intensity modulation format, or modulation index of the input optical microwave signal, and allows phase coding of arbitrary-format RF signals, which enables multi-frequency phase coding with compact structure, simple operation, and high flexibility. A proof-of-concept experiment is performed, achieving simultaneous phase coding of 15 and 30 GHz, or 10 and 20 GHz RF signals with a coding rate of 5  Gb/s.

  2. Synthesis of early transition metal and non-equilibrium intermetallic nanoparticles using n-butyllithium

    NASA Astrophysics Data System (ADS)

    Bondi, James F.

    reacting Au nanoparticle seeds with n-butyllithium. The reaction yielded the thermodynamically stable phase Au3Li, a polar intermetallic which adopts the L12 structure type. Interestingly, the Au3Li nanoparticles decompose in water to regenerate Au. The Au3Li phase gives insight to a plausible template-driven reaction pathway for the non-equilibrium Au3M 1-x phases. The synthetic achievement of both non-equilibrium phases and polar intermetallics shows that n-butyllithium is capable of affecting nucleation kinetics and lithium intercalation. Finally, n-butyllithium was used as a strong reducing agent in the solution-based synthesis of elemental Mn nanoparticles. The particles were synthesized using air-free techniques by reacting n-butyllithium with MnCl2 and oleic acid in diphenyl ether. The nanoparticles were found to adopt the alpha-Mn structure and contained a thin amorphous MnO layer bound by oleate ligands to help render them air-stable. Unlike antiferromagnetic bulk Mn, the as-made nanoparticles were paramagnetic. With little modification, crystalline Mo and amorphous W nanoparticles were synthesized using the same n-butyllithium procedure. Using the thermal decomposition of metal-carbonyls was shown to yield W, Mo-based alloys, and tetrapod-like MnO nanoparticles.

  3. Origin of Ferroelectricity in a Family of Polar Oxides: The Dion-Jacobson Phases

    NASA Astrophysics Data System (ADS)

    Benedek, Nicole

    2014-03-01

    The discovery of octahedral rotation-induced ferroelectricity has expanded the opportunities for designing materials in which the polarization is coupled to (and therefore makes possible the electric field control of) other properties, e.g. magnetism, orbital order, metal-insulator transitions. Recent work has elucidated the microscopic mechanism of octahedral rotation-induced ferroelectricity in two families of layered perovskites: AA'B2O6 double perovskites and Ruddlesden-Popper (RP) phases. However, there are many other families of layered perovskites - are there octahedral rotation-induced polar materials among them also? We use symmetry arguments, crystal chemical models and first-principles calculations to elucidate the microscopic origin of ferroelectricity in the Dion-Jacobson (DJ) phases. Although ``on paper'' the phenomenology of the DJ phases appears identical to that of polar double perovskites and RP phases, the crystal chemical details regarding how the polar state emerges are different. We link trends in the magnitude of the induced polarizations to changes in structure and composition and discuss possible phase transition scenarios. Our results add surprising new richness to theories of how polar structures emerge in layered perovskites.

  4. Liquid Crystal Phases of Molecular Bananas: Polarity and Chirality as Broken Symmetries

    NASA Astrophysics Data System (ADS)

    Clark, Noel

    2006-03-01

    The study of the interplay of chirality and polarity has been a particularly rich theme of soft matter science since Meyer's seminal discovery that tilted smectics of chiral molecules are macroscopically polar. This event, and the subsequent realization of polar domains and high-speed electro-optic switching in chiral smectics, engaged the liquid crystal community in a worldwide pursuit of novel smectics for applications, featured by the synthesis of more than 50,000 new liquid crystal compounds, and by a consequent broad diversification of the palette of liquid crystal phases and possibilities for supermolecular ordering. A current important activity in this scenario is the study of polar order in synthetically achiral molecules, for example, in molecular bananas, which, as their shape suggests, might be expected to organize in a polar way. Indeed they do, but beyond this, almost everything learned about them has been surprising, including their persistent tendency to exhibit chirality as a spontaneously broken symmetry. I will discuss some of these new phases and phenomena, including the discovery of fluid conglomerates (Pasteur's experiment in a fluid), triclinic fluid order, chiral twist grain boundary phases of achiral molecules, chirality flipping and field-induced deracemization, ferroelectric and antiferroelectric phases with supermolecular- scale polarization modulation, and chiral thermotropic sponge phases.

  5. Reactions of intermetallic clusters

    NASA Astrophysics Data System (ADS)

    Farley, R. W.; Castleman, A. W., Jr.

    1990-02-01

    Reaction of bismuth-alkali clusters with closed-shell HX acids provides insight into the structures, formation, and stabilities of these intermetallic species. HC1 and HI are observed to quantitatively strip BixNay and BixKy, respectively, of their alkali component, leaving bare bismuth clusters as the only bismuth-containing species detected. Product bismuth clusters exhibit the same distribution observed when pure bismuth is evaporated in the source. Though evaporated simultaneously from the same crucible, this suggests alkali atoms condense onto existing bismuth clusters and have negligible effect on their formation and consequent distribution. The indistinguishibility of reacted and pure bismuth cluster distributions further argues against the simple replacement of alkali atoms with hydrogen in these reactions. This is considered further evidence that the alkali atoms are external to the stable bismuth Zintl anionic structures. Reactivities of BixNay clusters with HC1 are estimated to lie between 3×10-13 for Bi4Na, to greater than 4×10-11 for clusters possessing large numbers of alkali atoms. Bare bismuth clusters are observed in separate experiments to react significantly more slowly with rates of 1-9×10-14 and exhibit little variation of reactivity with size. The bismuth clusters may thus be considered a relatively inert substrate upon which the alkali overlayer reacts.

  6. Direct observation of the recovery of an antiferroelectric phase during polarization reversal of an induced ferroelectric phase

    NASA Astrophysics Data System (ADS)

    Guo, Hanzheng; Tan, Xiaoli

    2015-04-01

    Electric fields are generally known to favor the ferroelectric polar state over the antiferroelectric nonpolar state for their Coulomb interactions with dipoles in the crystal. In this paper, we directly image an electric-field-assisted ferroelectric-to-antiferroelectric phase transition during polarization reversal of the ferroelectric phase in polycrystalline P b0.99{N b0.02[(Zr0.57Sn0.43) 0.92T i0.08] 0.98}O3 . With the electric-field in situ transmission electron microscopy technique, such an unlikely phenomenon is verified to occur by both domain morphology change and electron-diffraction analysis. The slower kinetics of the phase transition, compared with ferroelectric polarization reversal, is suggested to contribute to this unusual behavior.

  7. Testing Models for the Shallow Decay Phase of Gamma-Ray Burst Afterglows with Polarization Observations

    NASA Astrophysics Data System (ADS)

    Lan, Mi-Xiang; Wu, Xue-Feng; Dai, Zi-Gao

    2016-08-01

    The X-ray afterglows of almost one-half of gamma-ray bursts have been discovered by the Swift satellite to have a shallow decay phase of which the origin remains mysterious. Two main models have been proposed to explain this phase: relativistic wind bubbles (RWBs) and structured ejecta, which could originate from millisecond magnetars and rapidly rotating black holes, respectively. Based on these models, we investigate polarization evolution in the shallow decay phase of X-ray and optical afterglows. We find that in the RWB model, a significant bump of the polarization degree evolution curve appears during the shallow decay phase of both optical and X-ray afterglows, while the polarization position angle abruptly changes its direction by 90°. In the structured ejecta model, however, the polarization degree does not evolve significantly during the shallow decay phase of afterglows whether the magnetic field configuration in the ejecta is random or globally large-scale. Therefore, we conclude that these two models for the shallow decay phase and relevant central engines would be testable with future polarization observations.

  8. Comment on "Pairing and phase separation in a polarized Fermi gas".

    PubMed

    Zwierlein, Martin W; Ketterle, Wolfgang

    2006-10-01

    Partridge et al. (Reports, 27 January 2006, p. 503) reported pairing and phase separation in a polarized Fermi gas. We argue that it is not possible to distinguish the superfluid from the normal regimes in the presented data, or to discern which clouds were phase-separated. Some of the reported conclusions are inconsistent with recent experiments.

  9. Phase boundary of spin-polarized-current state of electrons in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Yan, Xin-Zhong; Ma, Yinfeng; Ting, C. S.

    2016-06-01

    Using a four-band Hamiltonian, we study the phase boundary of spin-polarized-current state (SPCS) of interacting electrons in bilayer graphene. The model of spin-polarized-current state has previously been shown to resolve a number of experimental puzzles in bilayer graphene. The phase boundaries of the SPCS with and without the external voltage between the two layers are obtained in this work. An unusual phase boundary where there are two transition temperatures for a given carrier concentration is found at finite external voltage. The physics of this phenomenon is explained.

  10. SYNTHESIS AND CHARACTERIZATION OF NEW INTERMETALLIC COMPOUNDS

    SciTech Connect

    Professor Monica Sorescu

    2003-05-07

    This six-month work is focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}2, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T=Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe(80-20 wt%) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x=0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co(80-20 wt%) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which are currently being considered for publication in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Journal of Materials Science. The contributions reveal for the first time in literature the effect of

  11. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  12. Chemical Nuclear Polarization of Biradicals Created by Photolysis of Cyclic Aliphatic Ketones in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Obynochnyia, A. A.; Purtovb, P. A.; Salikhova, K. M.

    2008-02-01

    Chemical nuclear polarization (CNP) of short-lived biradicals created in the photolysis of cyclic ketones in the gas phase with a buffer gas of CDCl3 molecules was studied theoretically and experimentally. The magnetoresonance and kinetic parameters were proposed for the biradicals. The experimental fact that the CNP of cycloundecanone in the gas phase and liquid was the strongest was confirmed by calculations. The computational results agree well with the experiment for both gas and liquid phases.

  13. Polar Phase of One-dimensional Bosons with Large Spin

    SciTech Connect

    Tsvelik, A.M.; Shlyapnikov, G.

    2011-06-20

    Spinor ultracold gases in one dimension (1D) represent an interesting example of strongly correlated quantum fluids. They have a rich phase diagram and exhibit a variety of quantum phase transitions. We consider a 1D spinor gas of bosons with a large spin S. A particular example is the gas of chromium atoms (S = 3), where the dipolar collisions efficiently change the magnetization and make the system sensitive to the linear Zeeman effect. We argue that in 1D the most interesting effects come from the pairing interaction. If this interaction is negative, it gives rise to a (quasi)condensate of singlet bosonic pairs with an algebraic order at zero temperature, and for (2S+1) >> 1 the saddle point approximation leads to physically transparent results. Since in 1D one needs a finite energy to destroy a pair, the spectrum of spin excitations has a gap. Hence, in the absence of a magnetic field, there is only one gapless mode corresponding to phase fluctuations of the pair quasicondensate. Once the magnetic field exceeds the gap, another condensate emerges, namely the quasicondensate of unpaired bosons with spins aligned along the magnetic field. The spectrum then contains two gapless modes corresponding to the singlet-paired and spin-aligned unpaired Bose condensed particles, respectively. At T = 0, the corresponding phase transition is of the commensurate-incommensurate type.

  14. Formation of intermetallics at the interface of explosively welded Ni-Al multilayered composites during annealing

    NASA Astrophysics Data System (ADS)

    Ogneva, T. S.; Lazurenko, D. V.; Bataev, I. A.; Mali, V. I.; Esikov, M. A.; Bataev, A. A.

    2016-04-01

    The Ni-Al multilayer composite was fabricated using explosive welding. The zones of mixing of Ni and Al are observed at the composite interfaces after the welding. The composition of these zones is inhomogeneous. Continuous homogeneous intermetallic layers are formed at the interface after heat treatment at 620 °C during 5 h These intermetallic layers consist of NiAl3 and Ni2Al3 phases. The presence of mixed zones significantly accelerates the growth rate of intermetallic phases at the initial stages of heating.

  15. B phase with polar distortion in superfluid {sup 3}He in “ordered” aerogel

    SciTech Connect

    Dmitriev, V. V. Senin, A. A.; Soldatov, A. A.; Surovtsev, E. V.; Yudin, A. N.

    2014-12-15

    The properties of the low-temperature superfluid phase of {sup 3}He in “nematically ordered” aerogel in which strands are almost parallel to one another are investigated by nuclear magnetic resonance methods. Such a strong anisotropy of the aerogel affects the phase diagram of {sup 3}He and the structure of superfluid phases. A theoretical model of the B phase with polar distortion is developed. It is shown that this model successfully describes the observed properties of the low-temperature phase.

  16. Phase control of six-wave mixing from circularly polarized light

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzhe; Liu, Zhe; Wang, Hang; Li, Shuoke; Zhang, Weitao; Yi, Wenhui; Zhang, Yanpeng

    2016-08-01

    We investigate the phase control of six-wave mixing (SWM) in atomic system with multi-Zeeman levels theoretically and experimentally. With the relative phase varying, the switch between bright and dark state can appear in probe transmission signal. Then we demonstrate the evolution of six-wave mixing generated in bright and dark states by scanning the frequency detuning of the dressing field at different polarized probe field. Meanwhile, by utilizing the strong dressing effect of circular polarized light, we observe pure dark state switched to pure bright state in terms of energy level splitting, and compare different phases under different detuning of circularly polarized light. Theoretical calculations are in well agreement with the experimental observations.

  17. Pseudo-polar tilted smectic phases exhibited by bent-core hockey stick shaped molecules.

    PubMed

    Malkar, Deepshika; Sadashiva, B K; Roy, Arun

    2016-06-14

    We report experimental and theoretical studies on two new achiral fluid lamellar phases exhibited by bent-core hockey stick shaped molecules. The packing of these bent-core hockey stick shaped molecules in the layers leads to a pseudo-polar order in these tilted smectic phases. An anticlinic SmCA type stacking of the pseudo-polar layers is observed in the higher temperature smectic phase, while in the lower temperature phase the difference in the azimuthal angles of the tilt directions in successive layers is between zero and π with a randomized tilt organization between the successive layers. The randomness arises due to the sign degeneracy of the azimuthal angle difference of the tilt directions in successive layers. Both of these smectic phases show a strong electro-optic response which can be exploited for potential applications.

  18. Asymmetric simultaneous phase-inversion cross-polarization in solid-state MAS NMR: Relaxing selective polarization transfer condition between two dilute spins

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengfeng; Fu, Riqiang; Li, Jianping; Yang, Jun

    2014-05-01

    Double cross polarization (DCP) has been widely used for heteronuclear polarization transfer between 13C and 15N in solid-state magic-angle spinning (MAS) NMR. However, DCP is such sensitive to experimental settings that small variations or deviations in RF fields would deteriorate its efficiency. Here, we report on asymmetric simultaneous phase-inversion cross polarization (referred as aSPICP) for selective polarization transfer between low-γ 13C and 15N spins. We have demonstrated through simulations and experiments using biological solids that the asymmetric duration in the simultaneous phase-inversion cross polarization scheme leads to efficient polarization transfer between 13C and 15N even with large chemical shift anisotropies in the presence of B1 field variations or mismatch of the Hartmann-Hahn conditions. This could be very useful in the aspect of long-duration experiments for membrane protein studies at high fields.

  19. Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    NASA Astrophysics Data System (ADS)

    Nichman, Leonid; Fuchs, Claudia; Järvinen, Emma; Ignatius, Karoliina; Florian Höppel, Niko; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Bjerring Kristensen, Thomas; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-03-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary organic aerosol (SOA) are presented. We report observations of significant liquid-viscous SOA particle polarization transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarization ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulfate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentrations and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to tropical troposphere layer analysis.

  20. Polarization effects and phase equilibria in high-energy-density polyvinylidene-fluoride-based polymers.

    SciTech Connect

    Ranjan, V.; Yu, L.; Nakhmanson, S.; Bernholc, J.; Nardelli, M. B.; Materials Science Division; North Carolina State Univ.; ORNL

    2010-01-01

    Using first-principles calculations, the phase diagrams of polyvinylidene fluoride (PVDF) and its copolymers under an applied electric field are studied and phase transitions between their nonpolar {alpha} and polar {beta} phases are discussed. The results show that the degree of copolymerization is a crucial parameter controlling the structural phase transition. In particular, for tetrafluoroethylene (TeFE) concentration above 12%, PVDF-TeFE is stabilized in the {beta} phase, whereas the {alpha} phase is stable for lower concentrations. As larger electric fields are applied, domains with smaller concentrations ({le} 12%) undergo a transition from the {alpha} to the {beta} phase until a breakdown field of {approx}600 MV m{sup -1} is reached. These structural phase transitions can be exploited for efficient storage of electrical energy.

  1. Ferroelectric order in liquid crystal phases of polar disk-shaped ellipsoids.

    PubMed

    Bose, Tushar Kanti; Saha, Jayashree

    2014-05-01

    The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long range positional order is considered an outstanding problem of both fundamental and technological interest. Recently, we reported that a system of polar achiral disklike ellipsoids can spontaneously exhibit a long searched ferroelectric nematic phase and a ferroelectric columnar phase with strong axial polarization. The major role is played by the dipolar interactions. The model system of interest consists of attractive-repulsive Gay-Berne oblate ellipsoids embedded with two parallel point dipoles positioned symmetrically on the equatorial plane of the ellipsoids. In the present work, we investigate in detail the profound effects of changing the separation between the two symmetrically placed dipoles and the strength of the dipoles upon the existence of different ferroelectric discotic liquid crystal phases via extensive off-lattice N-P-T Monte Carlo simulations. Ferroelectric biaxial phases are exhibited in addition to the uniaxial ferroelectric fluids where the phase biaxiality results from the dipolar interactions. The structures of all the ferroelectric configurations of interest are presented in detail. Simple phase diagrams are determined which include different polar and apolar discotic fluids generated by the system.

  2. Ferroelectric order in liquid crystal phases of polar disk-shaped ellipsoids

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2014-05-01

    The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long range positional order is considered an outstanding problem of both fundamental and technological interest. Recently, we reported that a system of polar achiral disklike ellipsoids can spontaneously exhibit a long searched ferroelectric nematic phase and a ferroelectric columnar phase with strong axial polarization. The major role is played by the dipolar interactions. The model system of interest consists of attractive-repulsive Gay-Berne oblate ellipsoids embedded with two parallel point dipoles positioned symmetrically on the equatorial plane of the ellipsoids. In the present work, we investigate in detail the profound effects of changing the separation between the two symmetrically placed dipoles and the strength of the dipoles upon the existence of different ferroelectric discotic liquid crystal phases via extensive off-lattice N-P-T Monte Carlo simulations. Ferroelectric biaxial phases are exhibited in addition to the uniaxial ferroelectric fluids where the phase biaxiality results from the dipolar interactions. The structures of all the ferroelectric configurations of interest are presented in detail. Simple phase diagrams are determined which include different polar and apolar discotic fluids generated by the system.

  3. Measurement of displacement and distance with a polarization phase shifting folded Twyman Green interferometer.

    PubMed

    Chatterjee, Sanjib; Kumar, Y Pavan

    2015-11-20

    A Sagnac interferometer (SI), consisting of a polarization beam splitter (PBS), along with two equally spaced plane mirrors that are inclined at 45° to each other, is transformed into a folded Twyman Green interferometer (TGI) by placing a mirrored parallel plate (MPP) into the hypotenuse arm of the SI. The converging input beam produced by a telescope objective (TO) is split into reflected (s-polarized) and transmitted (p-polarized) components by the PBS. The p- and s-polarized focal spots are made to fall on the mirrored end surfaces of the parallel plate (PP). The retroreflected p- and s-polarized beams become collimated after passing through the TO. A linear shift of the PP in either (longitudinal) direction alters the positions of the p- and s-polarized focal spots and results in a set of converging and diverging spherical wavefronts that interfere to form concentric circular fringes. We applied polarization phase-shifting interferometry to obtain the optical path difference (OPD) variation of the interference field. The displacement is calculated from the OPD variation. A validation experiment has been carried out by introducing known shifts to the PP. The setup can be used for displacement as well as distance measurement. PMID:26836546

  4. Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers.

    PubMed

    Hayman, Matthew; Spuler, Scott; Morley, Bruce; VanAndel, Joseph

    2012-12-31

    We describe implementation and demonstration of a polarization technique adapted for lidar to measure all unique elements of the volume backscatter phase matrix. This capability allows for detection of preferential orientation within a scattering volume, and may improve scattering inversions on oriented ice crystals. The technique is enabled using a Mueller formalism commonly employed in polarimetry, which does not require the lidar instrument be polarization preserving. Instead, the accuracy of the polarization measurements are limited by the accuracy of the instrument characterization. A high spectral resolution lidar at the National Center for Atmospheric Research was modified to demonstrate this polarization technique. Two observations where the instrument is tilted off zenith are presented. In the first case, the lidar detects flattened large raindrops oriented along the same direction due to drag forces from falling. The second case is an ice cloud approximately 5 km above lidar base that contains preferentially oriented ice crystals in a narrow altitude band.

  5. A method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-06-01

    A phase fluctuation calibration method is presented for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method consists of the generation of a continuous triggered tone-burst waveform rather than an asynchronous waveform by use of a function generator and the removal of the global phases of the measured Jones matrices by use of matrix normalization. This could remove the use of auxiliary optical components for the phase fluctuation compensation in the system, which reduces the system complexity. Phase fluctuation calibration is necessary to obtain the reference Jones matrix by averaging the measured Jones matrices at sample surfaces. Measurements on an equine tendon sample were made by the PS-SS-OCT system to validate the proposed method.

  6. Method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-07-01

    We present a phase fluctuation calibration method for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method uses a low-voltage broadband polarization modulator driven by a synchronized sinusoidal burst waveform rather than an asynchronous waveform, together with the removal of the global phases of the measured Jones matrices by the use of matrix normalization. This makes it possible to average the measured Jones matrices to remove the artifact due to the speckle noise of the signal in the sample without introducing auxiliary optical components into the sample arm. This method was validated on measurements of an equine tendon sample by the PS-SS-OCT system.

  7. Polar Nephelometer Measurements of Aerosol Phase Functions: Calibration and Field Measurements in Hawaii and the UAE

    NASA Astrophysics Data System (ADS)

    Porter, J. N.

    2005-12-01

    A custom polar nephelometer was built to make open air aerosol phase function measurements. The system is calibrated using filtered air as well as known aerosols. Measurements of aerosol phase functions were made in Hawaii and the United Arab Emirates. Using Mie and Pollack and Cuzzi code, aerosol size distributions are inverted. Time permiting these results will be compared with aerosol size distribution measurements obtained by other techniques.

  8. ANALYTIC MODELS FOR ALBEDOS, PHASE CURVES, AND POLARIZATION OF REFLECTED LIGHT FROM EXOPLANETS

    SciTech Connect

    Madhusudhan, Nikku; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2012-03-01

    New observational facilities are becoming increasingly capable of observing reflected light from transiting and directly imaged extrasolar planets. In this study, we provide an analytic framework to interpret observed phase curves, geometric albedos, and polarization of giant planet atmospheres. We compute the observables for non-conservative Rayleigh scattering in homogeneous semi-infinite atmospheres using both scalar and vector formalisms. In addition, we compute phase curves and albedos for Lambertian, isotropic, and anisotropic scattering phase functions. We provide analytic expressions for geometric albedos and spherical albedos as a function of the scattering albedo for Rayleigh scattering in semi-infinite atmospheres. Given an observed geometric albedo our prescriptions can be used to estimate the underlying scattering albedo of the atmosphere, which in turn is indicative of the scattering and absorptive properties of the atmosphere. We also study the dependence of polarization in Rayleigh scattering atmospheres on the orbital parameters of the planet-star system, particularly on the orbital inclination. We show how the orbital inclination of non-transiting exoplanets can be constrained from their observed polarization parameters. We consolidate the formalism, solution techniques, and results from analytic models available in the literature, often scattered in various sources, and present a systematic procedure to compute albedos, phase curves, and polarization of reflected light.

  9. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on nonpolar phases

    NASA Astrophysics Data System (ADS)

    Zenkevich, I. G.; Pavlovskii, A. A.

    2016-05-01

    The character of the temperature dependences of the retention indices RI( T) of polar sorbates on nonpolar stationary phases was found to depend on the dosed amounts of sorbates, but not on column overloading. A physicochemical model was suggested to explain the observed anomalies in RI( T).

  10. Origin of ferroelectricity in a family of polar oxides: the Dion-Jacobson phases.

    PubMed

    Benedek, Nicole A

    2014-04-01

    Recent work on layered perovskites has established the group theoretical guidelines under which a combination of octahedral distortions and cation ordering can break inversion symmetry, leading to polar structures. The microscopic mechanism of this form of ferroelectricity-so-called hybrid-improper ferroelectricity-has been elucidated in two families of layered perovskites: AA'B2O6 double perovskites and Ruddlesden-Popper phases. In this work, we use symmetry principles, crystal chemical models, and first-principles calculations to unravel the crystal chemical origin of ferroelectricity in the Dion-Jacobson phases, and show that the hybrid improper mechanism can provide a unifying explanation for the emergence of polar structures in this family of materials. We link trends in the magnitude of the induced polarizations to changes in structure and composition and discuss possible phase-transition scenarios. Our results suggest that the structures of several Dion-Jacobson phases that have previously been characterized as centrosymmetric should be re-examined. Our work adds new richness to theories of how polar structures emerge in layered perovskites.

  11. Diagnostic efficiency of Mueller-matrix polarization reconstruction system of the phase structure of liver tissue

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Pavlov, Sergii V.; Radchenko, Kostiantyn O.; Stasenko, Vladyslav A.; Wójcik, Waldemar; Kussambayeva, Nazym

    2015-12-01

    The application field of using the Mueller-matrix polarizing reconstruction system of phase structure of biological layer for optical-anisotropic parameters differentiation of histological sections of healthy and rat's liver with hepatitis were investigated. Comparison of system informativity with known systems on indexes of sensitivity, specificity and balanced accuracy were performed.

  12. Laws of formation of polar smectic phases under a frustrated interaction

    SciTech Connect

    Dolganov, P. V.; Zhilin, V. M.; Kats, E. I.

    2012-12-15

    The Landau theory of phase transitions with a two-component order parameter is used to systematically calculate the structures and phase diagrams of polar liquid crystals. Commensurate and incommensurate structures with a layer-type period form as a result of a frustration interaction. Phase diagrams are calculated when various short- and long-range interlayer interactions are sequentially introduced. As a result, the nature of formation of various structures is revealed. The calculated phase diagrams explain the formation of various phases, their temperature sequence (including so-called 'unusual' sequence of phases), and the nature of forces responsible for the formation of a certain structure and the shape of a phase diagram.

  13. On Helium 1083 nm Line Polarization during the Impulsive Phase of an X1 Flare

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.; Kleint, Lucia; Sainz Dalda, Alberto

    2015-12-01

    We analyze spectropolarimetric data of the He i 1083 nm multiplet (1s2s{}3{S}1-1s2p{}3{P}2,1,0o) during the X1 flare SOL2014-03-29T17:48, obtained with the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope. While scanning active region NOAA 12017, the FIRS slit crossed a flare ribbon during the impulsive phase, when the helium line intensities turned into emission at ≲twice the continuum intensity. Their linear polarization profiles are of the same sign across the multiplet including 1082.9 nm, intensity-like, at ≲5% of the continuum intensity. Weaker Zeeman-induced linear polarization is also observed. Only the strongest linear polarization coincides with hard X-ray (HXR) emission at 30-70 keV observed by RHESSI. The polarization is generally more extended and lasts longer than the HXR emission. The upper J = 0 level of the 1082.9 nm component is unpolarizable thus, lower-level polarization is the culprit. We make non-LTE radiative transfer calculations in thermal slabs optimized to fit only intensities. The linear polarizations are naturally reproduced, through a systematic change of sign with wavelength of the radiation anisotropy when slab optical depths of the 1082.9 component are ≲1. Neither are collisions with beams of particles needed, nor can they produce the same sign of polarization of the 1082.9 and 1083.0 nm components. The He i line polarization merely requires heating sufficient to produce slabs of the required thickness. Widely different polarizations of Hα, reported previously, are explained by different radiative anisotropies arising from slabs of different optical depths.

  14. Radiance and polarization in the diffusion region with an arbitrary scattering phase matrix

    NASA Astrophysics Data System (ADS)

    Sun, Bingqiang; Kattawar, George W.; Yang, Ping

    2016-11-01

    Radiance and polarization patterns in an optically deep region, the so-called diffusion region or asymptotic region, of a homogeneous atmosphere or ocean, depend mainly on the scattering phase matrix and the single-scattering albedo of the medium. The radiance and polarization properties in the diffusion region for an arbitrary scattering phase matrix can be obtained in terms of a series of the generalized spherical functions. The number of terms is closely related to the single-scattering albedo of the medium. If the medium is conservative, the radiance is isotropic in conjunction with no polarization. If the single-scattering albedo is close to 1, several terms are sufficient to obtain the patterns, in which the degree of polarization feature is less than 1%. If the medium is highly absorptive, more expansion terms are required to obtain the diffusion patterns. The examples of simulated radiance and polarization patterns for Rayleigh scattering, Henyey-Greenstein-Rayleigh scattering, and haze L and cloud C1 scattering, defined by Deirmendjian, are calculated.

  15. Absolute polarity determination of teeth cementum by phase sensitive second harmonic generation microscopy.

    PubMed

    Aboulfadl, Hanane; Hulliger, Jürg

    2015-10-01

    The absolute sign of local polarity in relation to the biological growth direction has been investigated for teeth cementum using phase sensitive second harmonic generation microscopy (PS-SHGM) and a crystal of 2-cyclooctylamino-5-nitropyridine (COANP) as a nonlinear optic (NLO) reference material. A second harmonic generation (SHG) response was found in two directions of cementum: radial (acellular extrinsic fibers that are oriented more or less perpendicular to the root surface) and circumferential (cellular intrinsic fibers that are oriented more or less parallel to the surface). A mono-polar state was demonstrated for acellular extrinsic cementum. However, along the different parts of cementum in circumferential direction, two corresponding domains were observed featuring an opposite sign of polarity indicative for a bi-polar microscopic state of cellular intrinsic cementum. The phase information showed that the orientation of radial collagen fibrils of cementum is regularly organized with the donor (D) groups pointing to the surface. Circumferential collagen molecules feature orientational disorder and are oriented up and down in random manner showing acceptor or donor groups at the surface of cementum. Considering that the cementum continues to grow in thickness throughout life, we can conclude that the cementum is growing circumferentially in two opposite directions and radially in one direction. A Markov chain type model for polarity formation in the direction of growth predicts D-groups preferably appearing at the fiber front.

  16. Absolute polarity determination of teeth cementum by phase sensitive second harmonic generation microscopy.

    PubMed

    Aboulfadl, Hanane; Hulliger, Jürg

    2015-10-01

    The absolute sign of local polarity in relation to the biological growth direction has been investigated for teeth cementum using phase sensitive second harmonic generation microscopy (PS-SHGM) and a crystal of 2-cyclooctylamino-5-nitropyridine (COANP) as a nonlinear optic (NLO) reference material. A second harmonic generation (SHG) response was found in two directions of cementum: radial (acellular extrinsic fibers that are oriented more or less perpendicular to the root surface) and circumferential (cellular intrinsic fibers that are oriented more or less parallel to the surface). A mono-polar state was demonstrated for acellular extrinsic cementum. However, along the different parts of cementum in circumferential direction, two corresponding domains were observed featuring an opposite sign of polarity indicative for a bi-polar microscopic state of cellular intrinsic cementum. The phase information showed that the orientation of radial collagen fibrils of cementum is regularly organized with the donor (D) groups pointing to the surface. Circumferential collagen molecules feature orientational disorder and are oriented up and down in random manner showing acceptor or donor groups at the surface of cementum. Considering that the cementum continues to grow in thickness throughout life, we can conclude that the cementum is growing circumferentially in two opposite directions and radially in one direction. A Markov chain type model for polarity formation in the direction of growth predicts D-groups preferably appearing at the fiber front. PMID:26297858

  17. Kilohertz generation of high contrast polarization states for visible femtosecond pulses via phase-locked acousto-optic pulse shapers

    SciTech Connect

    Seiler, Hélène; Walsh, Brenna; Palato, Samuel; Kambhampati, Patanjali; Thai, Alexandre; Forget, Nicolas; Crozatier, Vincent

    2015-09-14

    We present a detailed analysis of a setup capable of arbitrary amplitude, phase, and polarization shaping of broadband visible femtosecond pulses at 1 kHz via a pair of actively phase stabilized acousto-optic programmable dispersive filters arranged in a Mach-Zehnder interferometer geometry. The setup features phase stability values around λ/225 at 580 nm as well as degrees of polarization of at least 0.9 for any polarization state. Both numbers are important metrics to evaluate a setup's potential for applications based on polarization-shaped femtosecond pulses, such as fully coherent multi-dimensional electronic spectroscopy.

  18. Kilohertz generation of high contrast polarization states for visible femtosecond pulses via phase-locked acousto-optic pulse shapers

    NASA Astrophysics Data System (ADS)

    Seiler, Hélène; Walsh, Brenna; Palato, Samuel; Thai, Alexandre; Crozatier, Vincent; Forget, Nicolas; Kambhampati, Patanjali

    2015-09-01

    We present a detailed analysis of a setup capable of arbitrary amplitude, phase, and polarization shaping of broadband visible femtosecond pulses at 1 kHz via a pair of actively phase stabilized acousto-optic programmable dispersive filters arranged in a Mach-Zehnder interferometer geometry. The setup features phase stability values around λ/225 at 580 nm as well as degrees of polarization of at least 0.9 for any polarization state. Both numbers are important metrics to evaluate a setup's potential for applications based on polarization-shaped femtosecond pulses, such as fully coherent multi-dimensional electronic spectroscopy.

  19. Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses

    SciTech Connect

    Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu; Satoh, Takuya; Stupakiewicz, Andrzej; Maziewski, Andrzej

    2014-07-28

    A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed for excitation fluences higher than 100 mJ/cm{sup 2}.

  20. Optically isotropic liquid-crystal phase of bent-core molecules with polar nanostructure

    NASA Astrophysics Data System (ADS)

    Liao, G.; Stojadinovic, S.; Pelzl, G.; Weissflog, W.; Sprunt, S.; Jákli, A.

    2005-08-01

    We found that the optically isotropic (IM) mesophase observed recently below the nematic phase of the bent-core liquid crystal 4-chlororesorcinol bis[4-(4-n-dodecyloxybenzoyloxy)benzoate] shows ferroelectric-type switching. Polarizing microscopic, electric current, dielectric, and dynamic light scattering studies lead us to propose that the IM phase is composed of interconnected orthoconic racemic smectic (Sm-CaPF) nanodomains with random layer orientations. Near the nematic phase, where the polarization can be saturated by electric fields, the system responds in a fashion analogous to the granular structure of a magnetic spin glass—in particular, we observed that the relaxation back to the nonpoled structure follows a similar, inverse logarithmic rule.

  1. A high-power microwave circular polarizer and its application on phase shifter

    NASA Astrophysics Data System (ADS)

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  2. Active phase and polarization locking of a 1.4 kW fiber amplifier.

    PubMed

    Goodno, Gregory D; McNaught, Stuart J; Rothenberg, Joshua E; McComb, Timothy S; Thielen, Peter A; Wickham, Michael G; Weber, Mark E

    2010-05-15

    A three-stage Yb-fiber amplifier emitted 1.43 kW of single-mode power when seeded with a 25 GHz linewidth master oscillator (MO). The amplified output was polarization stabilized and phase locked using active heterodyne phase control. A low-power sample of the output beam was coherently combined to a second fiber amplifier with 90% visibility. The measured combining efficiency agreed with estimated decoherence effects from fiber nonlinearity, linewidth, and phase-locking accuracy. This is the highest-power fiber laser that has been coherently locked using any method that allows brightness scaling.

  3. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    SciTech Connect

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  4. New icosahedral nanoclusters in crystal structures of intermetallic compounds: Topological types of 50-atom deltahedra D50 in samson phases β-Mg2Al3 and ɛ-Mg23Al30

    NASA Astrophysics Data System (ADS)

    Blatov, V. A.; Ilyushin, G. D.

    2012-12-01

    A database of intermetallic compounds has been compiled using the TOPOS program package. This database includes 514 topological types, containing 12- and 13-atom icosahedral i clusters. An isolated group of 1649 i clusters is described by 14 point groups and their maximum symmetry D 3 d (bar 3 m) and T h ( m bar 3) is established, respectively, in 47 and 25 types of crystal structures. A structural analysis of the outer quasispherical shells showed that local 63-atom i configurations 1@12@50, which contain 50 atoms in the second layer, are implemented in 8 out of 19 cases. Examples of new topologically different types of 50-atom D50 deltahedra in the Samson phases ɛ-Mg23Al30 and β-Mg2Al3 are presented. Four topologically different sites with coordination numbers of 5, 6, 6, or 7 are established in the ɛ shell and seven sites with coordination numbers of 5, 5, 6, 6, 6, 6, or 7 are found in the β shell. The inner i clusters for the β-Mg2Al3 structure (with the symmetry bar 3 m) and the ɛ-Mg23Al30 structure (with the symmetry bar 3) have a similar chemical composition, i.e., Mg7Al6 and Mg6Al7, and their 50-atom shells are chemically identical to 18Mg + 32Al. The configurations found supplement the series of known two-layer icosahedral Bergman and Mackay clusters in the form of deltahedra with 32- and 42-atom shells.

  5. 1.14 Tb/s DP-QPSK WDM polarization-diverse optical phase conjugation.

    PubMed

    Stephens, M F C; Tan, M; Phillips, I D; Sygletos, S; Harper, P; Doran, N J

    2014-05-19

    Optical phase conjugation (OPC) of a polarization-multiplexed comb of 10x114Gb/s DP-QPSK signals has been demonstrated for the first time, occupying a spectral bandwidth of >1 THz (~9 nm). The nonlinear element employed for the OPC was highly nonlinear fiber (HNLF) optimized for the suppression of stimulated Brillouin scattering (SBS) and configured in a bi-directional loop offering polarization diversity. Pump power (each way about the loop) and input signal power to the OPC subsystem were optimized at 29.7 dBm and + 3 dBm respectively producing a Q(2) penalty of ≤ 0.9 dB over all conjugate wavelengths, polarizations and output OSNR (up to 20 dB).

  6. Polarity, selectivity and performance of hydrophilic organic/salt-containing aqueous two-phase system on counter-current chromatography for polar compounds.

    PubMed

    Liu, Dan; Hong, Zhilai; Gao, Mingzhe; Wang, Zhixin; Gu, Ming; Zhang, Xiaozhe; Xiao, Hongbin

    2016-05-27

    The essential attributes of a solvent system for separation polar compounds on CCC are polarity, selectively and performance. Here, hydrophilic organic/salt-containing aqueous two-phase system (HO/S TPS) was evaluated as an alternative solvent system for CCC separation of polar compounds. Polarity measurements based on Rohrschneider-Snyder parameter was developed as quantitative assessing the polarity of HO/S TPS and comparing with an organic/aqueous system. All investigated 1-butanol/ethanol/saturated ammonium sulfate solution/water (BEAsWat) and 1-butanol/ethanol/saturated dipotassium hydrogen phosphate solution/water (BEDhpWat) systems with polarity values of organic phase from 4.5 to 6.8, were more polar than chloroform/methanol/water (1/1/1). The considerable water content of BEAsWat and BEDhpWat (0/1/1/1/) was 45.4 and 42.6% (w%) of hydrophilic organic phase, and 66.4 and 51.2% (w%) of salt-containing aqueous phase, respectively, closed to conventional aqueous two-phase system. Therefore, the polarity of HO/S TPS is in the middle of organic/aqueous and aqueous two-phase system. The LogKC values of twenty four polar compounds as model mixture confirmed that the polarities of HO/S TPSs were matched to that of the polar compounds and shown to be a very selective technique capable of separating positional isomers. Moreover, BEAsWat and BEDhpWat systems can be easily retained in CCC column with suitable elution mode. The hydrodynamic behavior reversion of HO/S TPS on hydrodynamic CCC was observed and was tentatively explained based on the density difference. Finally, caffeoylquinic acid isomers and dihydroxybenzoic acid isomers were successfully separated with HO/S TPS on CCC, respectively. Those results demonstrate that HO/S TPS on CCC is a performant and stable way to separate polar compounds from natural products.

  7. Polarized XAFS study of high-temperature phases of NaNbO3.

    PubMed

    Shuvaeva, V A; Azuma, Y; Yagi, K; Sakaue, K; Terauchi, H

    2001-03-01

    Temperature dependence of the Nb displacement relative to the center of oxygen octahedron in NaNbO3 has been studied by polarized Nb K XAFS. Spectra were measured at two orientations of a single crystalline sample. Room temperature EXAFS data are in a good agreement with earlier X-ray diffraction data: Nb antiferroelectric displacements were found to be orthogonal to the b axis. Analysis of the temperature dependent EXAFS data didn't reveal any abrupt changes of Nb-O distances in the phase transition points. In all high-temperature paraelectric phases Nb appeared to be displaced to the off-center positions. Displacements, orthogonal to b axis, remained almost constant, while displacement along b axis gradually increased with temperature, so that in the cubic phase the displacements along all axes became equal. This shows, that disorder plays an important role in the high temperature phases. The above results are supported also by the analysis of the pre-edge structure, - the integral intensity of the pre-edge peak was temperature-independent when the polarization vector of the X-rays was orthogonal to b axis and gradually increased with temperature when the polarization was parallel to b.

  8. Zn13(CrxAl1-x)27 (x = 0.34-0.37): a new intermetallic phase containing icosahedra as building units

    SciTech Connect

    Thimmaiah, Srinivasa; Han, Mi-Kyung; Miller, Gordon J.

    2011-03-13

    The title compounds Zn{sub 13}(Cr{sub x}Al{sub 1-x}){sub 27} (x = 0.34-0.37) were obtained by melting the pure elements at 923 K, and followed by a heat treatment at 723 K in a tantalum container. According to single crystal structural analysis, the title compounds crystallize in the rhombohedral system, adopting a new structure type (R-3m, a = 7.5971(8), c = 36.816(6), for crystal I). Single crystal X-ray structural analysis reveals a statistical mixing of Cr/Al in their crystallographic positions. Single crystal and powder X-ray diffraction as well as energy dispersive X-ray analyses suggested the title phase to have a narrow homogeneity range. The substructure of Zn{sub 13}(Cr{sub x}Al{sub 1-x}){sub 27} shows close resemblance with the Mn{sub 3}Al{sub 10} structure type. A bonding analysis, through crystal orbital Hamiltonian populations (COHPs), of 'Cr{sub 9}Al{sub 18}Zn{sub 13}' as a representative composition indicated that both homo- and heteronuclear interactions are important for the stability of this new phase.

  9. Intermetallic-Based High-Temperature Materials

    SciTech Connect

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  10. A low-noise delta-sigma phase modulator for polar transmitters.

    PubMed

    Zhou, Bo

    2014-01-01

    A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μ m CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of -104 dBc/Hz and -120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively.

  11. A Low-Noise Delta-Sigma Phase Modulator for Polar Transmitters

    PubMed Central

    Zhou, Bo

    2014-01-01

    A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μm CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of −104 dBc/Hz and −120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively. PMID:24719578

  12. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers.

    PubMed

    Soto, Marcelo A; Lu, Xin; Martins, Hugo F; Gonzalez-Herraez, Miguel; Thévenaz, Luc

    2015-09-21

    In this paper a technique to measure the distributed birefringence profile along optical fibers is proposed and experimentally validated. The method is based on the spectral correlation between two sets of orthogonally-polarized measurements acquired using a phase-sensitive optical time-domain reflectometer (ϕOTDR). The correlation between the two measured spectra gives a resonance (correlation) peak at a frequency detuning that is proportional to the local refractive index difference between the two orthogonal polarization axes of the fiber. In this way the method enables local phase birefringence measurements at any position along optical fibers, so that any longitudinal fluctuation can be precisely evaluated with metric spatial resolution. The method has been experimentally validated by measuring fibers with low and high birefringence, such as standard single-mode fibers as well as conventional polarization-maintaining fibers. The technique has potential applications in the characterization of optical fibers for telecommunications as well as in distributed optical fiber sensing. PMID:26406692

  13. Limits on Optical Polarization during the Prompt Phase of GRB 140430A

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Japelj, J.; Arnold, D. M.; Steele, I. A.; Guidorzi, C.; Dichiara, S.; Kobayashi, S.; Gomboc, A.; Harrison, R. M.; Lamb, G. P.; Melandri, A.; Smith, R. J.; Virgili, F. J.; Castro-Tirado, A. J.; Gorosabel, J.; Järvinen, A.; Sánchez-Ramírez, R.; Oates, S. R.; Jelínek, M.

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  14. LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A

    SciTech Connect

    Kopac, D.; Mundell, C. G.; Arnold, D. M.; Steele, I. A.; Kobayashi, S.; Lamb, G. P.; Smith, R. J.; Virgili, F. J.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Dichiara, S.; Harrison, R. M.; Melandri, A.; Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Oates, S. R.; Jelínek, M.

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  15. NMR Properties of the Polar Phase of Superfluid ^3He in Anisotropic Aerogel Under Rotation

    NASA Astrophysics Data System (ADS)

    Mineev, V. P.

    2016-09-01

    The polar phase of superfluid ^3He is stable in "nematically ordered" densed aerogel. A rotating vessel with the polar superfluid can be filled either by an array of the single quantum vortices or by an array of the half-quantum vortices. It is shown that the inhomogeneous distribution of the spin part of the order parameter arising in an array of half-quantum vortices in strong enough magnetic field tilted to the average direction of aerogel strands leads to the appearance of a satellite in the NMR signal shifted in the negative direction with respect to the Larmor frequency. The satellite is absent in the case of an array of single quantum vortices which allows to distinguish these two configurations. The polar state in the anisotropic aerogel with lower density transforms at lower temperatures to the axipolar state. The array of half-quantum vortices created in the polar phase keeps its structure under transition to the axipolar state. The temperature dependence of the vortex-satellite NMR frequency is found to be slower below the transition temperature to the axipolar state.

  16. Ultrathin planar chiral metasurface for controlling gradient phase discontinuities of circularly polarized waves

    NASA Astrophysics Data System (ADS)

    Liu, Yahong; Zhou, Xin; Song, Kun; Wang, Mei; Zhao, Xiaopeng

    2015-09-01

    We develop a gradient phase discontinuities ultrathin planar metasurface based on chiral branched gammadion structure (CBGS) that provides extreme control of electromagnetic wavefronts across single-sheet design. The introduction of the branch can provide antiparallel magnetic moment, which tunes the chirality of the CBGS. In the CBGS metasurface, the transmission phase of a circularly polarized wave can be varied from  -180° to +180°. We experimentally demonstrate a beam-refracting CBGS metasurface with refracting a normally incident plane wave to an angle of 17°. The performances of the proposed metasurface at oblique incidence are also presented. The CBGS metasurface can find a wide range of applications over the entire electromagnetic spectrum including single-surface lenses, fully controlling light in direction, and polarization controlling devices.

  17. Phase of the quantum harmonic oscillator with applications to optical polarization

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1993-01-01

    The phase of the quantum harmonic oscillator, the temporal distribution of a particle in a square-well potential, and a quantum theory of angles are derived from a general theory of complementarity. Schwinger's harmonic oscillator model of angular momenta is modified for the case of photons. Angular distributions for systems of identical and distinguishable particles are discussed. Unitary and antiunitary time reversal operators are then presented and applied to optical polarization states in birefringent media.

  18. Effect of ferroelastic twin walls on local polarizations switching - phase field modeling

    SciTech Connect

    Jia, Quanzi; Choudhury, S; Zhang, J X; Li, Y L; Chen, Q; Kalinin, S V

    2008-01-01

    Local polarization switching in epitaxial ferroelectric thin films in the presence of ferroelastic domain walls was studied using phase-field approach. The nucleation bias profile across a twin wall was analyzed, and the localization of preferential nucleation sites was established. This analysis was further extended to a realistic domain structure with multiple twin boundaries. It was observed that the local nucleation voltage required for a 180{sup o} domain switching is closely related to the number of such local defects.

  19. Unscented Kalman filters for polarization state tracking and phase noise mitigation.

    PubMed

    Jignesh, Jokhakar; Corcoran, Bill; Zhu, Chen; Lowery, Arthur

    2016-09-19

    Simultaneous polarization and phase noise tracking and compensation is proposed based on an unscented Kalman filter (UKF). We experimentally demonstrate the tracking under noise-loading and after 800-km single-mode fiber transmission with 20-Gbaud QPSK and 16-QAM signals. These experiments show that the proposed UKF outperforms both conventional blind tracing algorithms and a previously proposed extended Kalman filter, at the cost of higher complexity. Additionally, we propose and test modified Kalman filter algorithms to reduce computational complexity.

  20. Cluster expansion of fcc Pd-V intermetallics

    SciTech Connect

    de Fontaine, D.; Wolverton, C.; Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-06-01

    A cluster expansion is used to compute fcc ground states from first principles for the Pd-V system. Intermetallic structures are not assumed but derived rigorously by minimizing the configurational energy subject to linear constraints. A large number of concentration-independent interactions are calculated by the method of direct configurational averaging. Agreement with the fcc-based portion of the experimentally-determined Pd-V phase diagram is quite satisfactory. 25 refs., 2 figs.

  1. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence.

    PubMed Central

    Parasassi, T; De Stasio, G; Ravagnan, G; Rusch, R M; Gratton, E

    1991-01-01

    The sensitivity of Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) excitation and emission spectra to the physical state of the membrane arises from dipolar relaxation processes in the membrane region surrounding the Laurdan molecule. Experiments performed using phospholipid vesicles composed of phospholipids with different polar head groups show that this part of the molecule is not responsible for the observed effects. Also, pH titration in the range from pH 4 to 10 shows that the spectral variations are independent of the charge of the polar head. A two-state model of dipolar relaxation is used to qualitatively explain the behavior of Laurdan. It is concluded that the presence of water molecules in the phospholipid matrix are responsible for the spectral properties of Laurdan in the gel phase. In the liquid crystalline phase there is a relaxation process that we attribute to water molecules that can reorientate during the few nanoseconds of the excited state lifetime. The quantitation of lipid phases is obtained using generalized polarization which, after proper choice of excitation and emission wavelengths, satisfies a simple addition rule. PMID:1883937

  2. Phase Diagram of Two-Dimensional Polar Condensates in a Magnetic Field

    SciTech Connect

    James, A. J. A.; Lamacraft, A.

    2011-04-08

    Spin-1 condensates in the polar (antiferromagnetic) phase in two dimensions are shown to undergo a transition of the Ising type, in addition to the expected Kosterlitz-Thouless (KT) transition of half-vortices, due to the quadratic Zeeman effect. We establish the phase diagram in terms of temperature and the strength of the Zeeman effect using Monte Carlo simulations. When the Zeeman effect is sufficiently strong, the Ising and KT transitions meet. For very strong Zeeman field the remaining transition is of the familiar integer KT type.

  3. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  4. Polarization induced Z2 and Chern topological phases in a periodically driving field.

    PubMed

    Pi, Shu-Ting; Savrasov, Sergey

    2016-01-01

    Z2 and Chern topological phases such as newly discovered quantum spin Hall and original quantum Hall states hardly both co-exist in a single material due to their contradictory requirement on the time-reversal symmetry (TRS). We show that although the TRS is broken in systems with a periodically driving field, an effective TRS can still be defined provided the ac-field is linearly polarized or certain other conditions are satisfied. The controllable TRS provides us a route to manipulate contradictory phases by tuning the polarization. To demonstrate the idea, we consider a tight-binding model that is relevant to several monolayered materials as a benchmark system. Our calculation shows not only topological Z2 to Chern phase transition occurs but rich Chern phases are also observed. In addition, we also discussed the realization of our proposal in real materials, such as spin-orbit coupled graphene and crystal Bismuth. This opens the possibility of manipulating various topological phases in a single material and can be a promising approach to engineer new electronic states of matter. PMID:26965181

  5. Polarization induced Z2 and Chern topological phases in a periodically driving field

    PubMed Central

    Pi, Shu-Ting; Savrasov, Sergey

    2016-01-01

    Z2 and Chern topological phases such as newly discovered quantum spin Hall and original quantum Hall states hardly both co–exist in a single material due to their contradictory requirement on the time–reversal symmetry (TRS). We show that although the TRS is broken in systems with a periodically driving field, an effective TRS can still be defined provided the ac–field is linearly polarized or certain other conditions are satisfied. The controllable TRS provides us a route to manipulate contradictory phases by tuning the polarization. To demonstrate the idea, we consider a tight-binding model that is relevant to several monolayered materials as a benchmark system. Our calculation shows not only topological Z2 to Chern phase transition occurs but rich Chern phases are also observed. In addition, we also discussed the realization of our proposal in real materials, such as spin-orbit coupled graphene and crystal Bismuth. This opens the possibility of manipulating various topological phases in a single material and can be a promising approach to engineer new electronic states of matter. PMID:26965181

  6. Phase Shift of Polarized Light after Transmission through a Biaxial Anisotropic Thin Film

    NASA Astrophysics Data System (ADS)

    Hou, Yong-Qiang; Li, Xu; He, Kai; Qi, Hong-Ji; Yi, Kui; Shao, Jian-Da

    2013-01-01

    Based on the theoretical analysis of biaxial birefringent thin films with characteristic matrix method, we investigate the phase shift on transmission of a tilted columnar biaxial film at normal and oblique incidence over 300-1200 nm for s- and p-polarized waves. Compared with the simplified calculation method, the interference effects of the birefringent thin film are considered to yield more accurate results. The quarter wavelength phase shift calculated with the characteristic matrix method is consistent with that monitored with in situ measurement by two-angle ellipsometry, which validates our complied program for the calculation of the phase shift of the biaxial anisotropic thin film. Furthermore, the characteristic matrix method can be easily used to obtain continuous adjustable phase retardation at oblique incidence, whereas the simplified calculation method is valid for the case of normal incidence. A greater generality and superiority of the characteristic matrix method is presented.

  7. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  8. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells.

    PubMed

    Žižka, Zdeněk; Gabriel, Jiří

    2015-11-01

    Polarization and positive phase contrast microscope were concomitantly used in the study of the internal structure of microbial cells. Positive phase contrast allowed us to view even the fine cell structure with a refractive index approaching that of the surrounding environment, e.g., the cytoplasm, and transferred the invisible phase image to a visible amplitude image. With polarization microscopy, crossed polarizing filters together with compensators and a rotary stage showed the birefringence of different cell structures. Material containing algae was collected in ponds in Sýkořice and Zbečno villages (Křivoklát region). The objects were studied in laboratory microscopes LOMO MIN-8 Sankt Petersburg and Polmi A Carl Zeiss Jena fitted with special optics for positive phase contrast, polarizers, analyzers, compensators, rotary stages, and digital SLR camera Nikon D 70 for image capture. Anisotropic granules were found in the cells of flagellates of the order Euglenales, in green algae of the orders Chlorococcales and Chlorellales, and in desmid algae of the order Desmidiales. The cell walls of filamentous algae of the orders Zygnematales and Ulotrichales were found to exhibit significant birefringence; in addition, relatively small amounts of small granules were found in the cytoplasm. A typical shape-related birefringence of the cylindrical walls and the septa between the cells differed in intensity, which was especially apparent when using a Zeiss compensator RI-c during its successive double setting. In conclusion, the anisotropic granules found in the investigated algae mostly showed strong birefringence and varied in number, size, and location of the cells. Representatives of the order Chlorococcales contained the highest number of granules per cell, and the size of these granules was almost double than that of the other monitored microorganisms. Very strong birefringence was exhibited by cell walls of filamentous algae; it differed in the intensity

  9. Suppressors made from intermetallic materials

    SciTech Connect

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  10. Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal

    NASA Astrophysics Data System (ADS)

    Huang, Yuhua; Wen, Chien-Hui; Wu, Shin-Tson

    2006-07-01

    A polarization-independent phase modulator using a 90° twisted dual-frequency liquid crystal (DFLC) is demonstrated. In addition to being polarization independent, such a phase modulator exhibits many other advantages such as being scattering-free and having large phase change, low operating voltage, and submillisecond response time. Using a 15μm transmissive DFLC cell, the phase shift achieves 1π at λ =633nm and the applied voltage is lower than 25Vrms. Potential applications of such a phase modulator for laser beam steering, tunable-focus lenses, and switchable two-dimensional/three-dimensional liquid crystal displays are foreseeable.

  11. A low cost design to eliminate polarization induced phase shift for dual Mach-Zehnder fiber interferometer

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liang, Sheng; Liu, Qianzhe; Xiao, Wen

    2015-08-01

    In dual Mach-Zehnder interferometer (DMZI) system, polarization induced phase shift (PIPS) leads to a big location error. Traditional approaches adopt polarization controller (PC) to eliminate PIPS by controlling polarization state (PS) of light source. Through establishing the influence model of input light PS and equivalent polarization parameters of sensing cable on interference signals, an approach using a simplified polarization controller (PC) to obtain high location accuracy is proposed. The simplified PC is composed of a polarizer and a fiber-fused half-wave plate and can provide a linearly polarized light with azimuth angle controlled. Simulation and experiment indicate that the proposed method and PC design not only has capability of eliminating PIPS, but also has the benefits of low cost and easy control.

  12. Field-driven mesoscale phase transition in polarized colloids in microgravity

    NASA Astrophysics Data System (ADS)

    Khusid, Boris; Elele, Ezinwa

    2014-11-01

    An unexpected phase transition in a polarized suspension was reported by Kumar, Khusid, Acrivos, PRL 95, 258301, 2005 and Agarwal, Yethiraj, PRL 102, 198301, 2009. Following the field application, particles aggregated head-to-tail into chains that bridged the interelectrode gap and then formed a cellular pattern, in which large-scale particle-free voids were enclosed by particle-rich thin walls. Surprisingly, the size of particle-free domains scales linearly with the gap thickness but is insensitive to the particle size and the field strength and frequency. Cellular structures were not observed in simulations of equilibrium in a polarized suspension (Richardi, Weis, J. Chem. Phys. 135, 124502, 2011; Almudallal, Saika-Voivod, PRE 84, 011402, 2011). Nonequilibrium simulations (Park, Saintillan, PRE 83, 041409, 2011) showed cellular-like structures but at a particle concentration much higher than in experiments. A requirement for precise matching of densities between particles and a fluid to avoid gravity effects limits terrestrial experiments to negatively polarized particles. We will present data on positively polarized non-buoyancy-matched particles and the development of experiments in the International Space Station needed to evaluate gravity contribution. Supported by NASA's Physical Science Research Program, NNX13AQ53G.

  13. Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element

    SciTech Connect

    Yang, S. C.; Ho, C. E.; Chang, C. W.; Kao, C. R.

    2007-04-15

    Massive spalling of intermetallic compounds has been reported in the literature for several solder/substrate systems, including SnAgCu soldered on Ni substrate, SnZn on Cu, high-Pb PbSn on Cu, and high-Pb PbSn on Ni. In this work, a unified thermodynamic argument is proposed to explain this rather unusual phenomenon. According to this argument, two necessary conditions must be met. The number one condition is that at least one of the reactive constituents of the solder must be present in a limited amount, and the second condition is that the soldering reaction has to be very sensitive to its concentration. With the growth of intermetallic, more and more atoms of this constituent are extracted out of the solder and incorporated into the intermetallic. As the concentration of this constituent decreases, the original intermetallic at the interface becomes a nonequilibrium phase, and the spalling of the original intermetallic occurs.

  14. Polar switching in the smectic- AdPA phase composed of asymmetric bent-core molecules

    NASA Astrophysics Data System (ADS)

    Guo, Lingfeng; Dhara, Surajit; Sadashiva, B. K.; Radhika, S.; Pratibha, R.; Shimbo, Yoshio; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo

    2010-01-01

    We have studied mesogenic properties in the smectic- AdPA phase of an asymmetric bent-core liquid crystal by means of polarizing optical microscopy, second-harmonic generation (SHG), electro-optical (EO), and dielectric measurements. In homeotropically aligned cells, EO switching is clearly observed from a schlieren texture with both four- and two-brush defects to a uniform bright domain under the application of very low in-plane electric field below 1V/μm . The phase is SHG active under an electric field, i.e., SHG gradually increases without a threshold and saturates with the increasing field. In homogeneous cells, by applying triangular wave field at saturated voltage, the splitting of the polarization switching current peak is observed, indicating that the mesophase is antiferroelectric. The dielectric studies indicate a Debye-type relaxation of the transverse dipoles associated with the rotation of the molecules about their long axis. The dc bias-dependent dielectric relaxation time and the dielectric strength suggest that a field-induced antiferroelectric-ferroelectric phase transition occurs continuously beyond 1.2V/μm and is reversible. The field-dependent texture observation is consistent with the dielectric measurements. Two possible models are proposed to interpret the continuous phase transition.

  15. Slater-Pauling behavior within quaternary intermetallic borides of the Ti{sub 3}Co{sub 5}B{sub 2} structure-type

    SciTech Connect

    Burghaus, Jens; Dronskowski, Richard; Miller, Gordon J.

    2009-10-15

    First-principles, density-functional studies of several intermetallic borides of the general type M{sub 2}M'Ru{sub 5-n}Rh{sub n}B{sub 2} (n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions in this family of complex borides. COHP analyses of the M'-M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases. - Graphical abstract: Theoretically determined (spin-polarized LMTO-GGA) local magnetic moments as a function of the chemical valence Z for various intermetallic borides.

  16. Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain.

    PubMed

    Hayman, Matthew; Spuler, Scott; Morley, Bruce

    2014-07-14

    Oriented particles can exhibit different polarization properties than randomly oriented particles. These properties cannot be resolved by conventional polarization lidar systems and are capable of corrupting the interpretation of depolarization ratio measurements. Additionally, the typical characteristics of backscatter phase matrices from atmospheric oriented particles are not well established. The National Center for Atmospheric Research High Spectral Resolution Lidar was outfitted in spring of 2012 to measure the backscatter phase matrix, allowing it to fully characterize the polarization properties of oriented particles. The lidar data analyzed here considers operation at 4°, 22° and 32° off zenith in Boulder, CO, USA (40.0°N,105.2°W). The HSRL has primarily observed oriented ice crystal signatures at lidar tilt angles near 32° off zenith which corresponds to an expected peak in backscatter from horizontally oriented plates. The maximum occurrence frequency of oriented ice crystals is measured at 5 km, where 2% of clouds produced significant oriented ice signatures by exhibiting diattenuation in their scattering matrices. The HSRL also observed oriented particle characteristics of rain at all three tilt angles. Oriented signatures in rain are common at all three tilt angles. As many as 70% of all rain observations made at 22° off zenith exhibited oriented signatures. The oriented rain signatures exhibit significant linear diattenuation and retardance.

  17. A Laboratory Study on the Phase Transition for Polar Stratospheric Cloud Particles

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.

    1997-01-01

    The nucleation and growth of different phases of simulated polar stratospheric cloud (PSC) particles were investigated in the laboratory. Solutions and mixtures of solutions at concentrations 1 to 5 m (molality) of ammonium sulfate, ammonium bisulfate, sodium chloride, sulfuric acid, and nitric acid were supercooled to prescribed temperatures below their equilibrium melting point. These solutions were contained in small diameter glass tubing of volumes ranging from 2.6 to 0.04 ml. Samples were nucleated by insertion of an ice crystal, or in some cases by a liquid nitrogen cooled wire. Crystallization velocities were determined by timing the crystal growth front passages along the glass tubing. Solution mixtures containing aircraft exhaust (soot) were also examined. Crystallization rates increased as deltaT2, where deltaT is the supercooling for weak solutions (2 m or less). The higher concentrated solutions (greater than 3 m) showed rates significantly less than deltaT2. This reduced rate suggested an onset of a glass phase. Results were applied to the nucleation of highly concentrated solutions at various stages of polar stratospheric cloud development within the polar stratosphere.

  18. Enhanced ferroelectric polarization and possible morphotrophic phase boundary in PZT-based alloys

    DOE PAGES

    Parker, David S.; Singh, David; McGuire, Michael A.; Herklotz, Andreas; Ward, Thomas Zac

    2016-05-16

    We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr0.5Ti0.5O3) with BZnT (BiZn0.5Ti0.5O3) and BZnZr (BiZn0.5Zr0.5O3), focusing on atomic displacements, ferroelectric polarization, and elastic stability. From theory we find that the 75-25 PZT-BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c/a ratios. Elastic stability calculations find the structures to be essentially stable. Lastly, experiments indicate the feasibility of sample synthesismore » within this alloy system, although measurements do not find significant polarization, probably due to a large coercive field.« less

  19. Probing local and global ferroelectric phase stability and polarization switching in ordered macroporous PZT

    SciTech Connect

    Mclachlan, Martyn A.; McComb, D W; Ryan, Mary P.; Morozovska, Anna N; Eliseev, E. A.; Payzant, E Andrew; Jesse, Stephen; Seal, Katyayani; Kalinin, Sergei V

    2011-01-01

    We describe the characterization, ferroelectric phase stability and polarization switching in strain-free macroscopic assemblies of 50-100 nm wide PbZr0.3Ti0.7O3 (PZT) nanostructures (ferroelectric nanosponges). The structures present uniquely large areas and volumes of PZT where the microstructure is spatially modulated and the composition is homogeneous. Variable temperature powder X-ray diffraction (XRD) studies show that the global structure is tetragonal at room temperature and undergoes a reversible tetragonal to cubic phase transition on heating/cooling. Our studies indicate that this transition temperature is 30-50 C lower than unstructured PZT of the same composition. To characterize and confirm that the structures are ferroelectric we have utilized piezoresponse force spectroscopy and we demonstrate that the switching polarization can be spatially mapped within the structures. Corresponding polarization distributions have been calculated for the bulk and nanostructured materials using a two-parameter direct variational method based on Landau-Ginzburg-Devonshire equation. Our studies correlate global and local characterization of ferroelectric nanostructures revealing that in the nanosponges tetragonal and ferroelectric PZT is stabilized and open a pathway for effective studies of nanoscale ferroelectrics in large volumes.

  20. Theoretical energy release of thermites, intermetallics, and combustible metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1998-06-01

    Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, the authors review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  1. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  2. Superplastic ceramics and intermetallics and their potential applications

    SciTech Connect

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al{sub 2}O{sub 3} Hydroxyapatite, {beta}-spodumene glass ceramics, Al{sub 2}0{sub 3}-YTZP two-phase composites, SiC-Si{sub 3}N{sub 4} and Fe-Fe{sub 3}C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni{sub 3}Al and Ni{sub 3}Si) and titanium-base intermetallics (TiAl and T1{sub 3}Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application.

  3. Apparatus and method for phase fronts based on superluminal polarization current

    SciTech Connect

    Singleton, John; Ardavan, Houshang; Ardavan, Arzhang

    2012-02-28

    An apparatus and method for a radiation source involving phase fronts emanating from an accelerated, oscillating polarization current whose distribution pattern moves superluminally (that is, faster than light in vacuo). Theoretical predictions and experimental measurements using an existing prototype superluminal source show that the phase fronts from such a source can be made to be very complex. Consequently, it will be very difficult for an aircraft imaged by such a radiation to detect where this radiation has come from. Moreover, the complexity of the phase fronts makes it almost impossible for electronics on an aircraft to synthesize a rogue reflection. A simple directional antenna and timing system should, on the other hand, be sufficient for the radar operators to locate the aircraft, given knowledge of their own source's speed and modulation pattern.

  4. Phase-conjugation and self-oscillation with copropagating cross-polarized beams

    NASA Astrophysics Data System (ADS)

    Vallet, M.; Pinard, M.; Grynberg, G.

    1991-03-01

    We present the result of an experiment on optical phase conjugation made with a probe beam propagating in the same direction as the forward pump beam but having an orthogonal polarization. Using the difference of polarization, we separate the reflected beam from the backward pump beam. Is is shown that the amplitude of the reflected beam is the sum of two components, one proportional to the conjugate of the probe and one proportional to the amplitude of the probe. The experiment is done in sodium vapor and reflectivities larger than 350% have been observed near the D 1 transition. Weaker reflectivities due to a less efficient optical pumping are obtained near the D 2 line. We also describe the characteristics of the cw oscillation that appears between the Na cell and a mirror.

  5. Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current

    SciTech Connect

    Suzuki, Ippei; Naito, Tomoyuki; Itoh, Mitsuru; Taniyama, Tomoyasu

    2015-08-24

    We provide clear evidence for the effect of a spin polarized current on the antiferromagnetic to ferromagnetic phase transition of an FeRh wire at Co/FeRh wire junctions, where the antiferromagnetic ground state of FeRh is suppressed by injecting a spin polarized current. We find a discrete change in the current-voltage characteristics with increasing current density, which we attribute to the Barkhausen-like motion of antiferromagnetic/ferromagnetic interfaces within the FeRh wire. The effect can be understood via spin transfer, which exerts a torque to the antiferromagnetic moments of FeRh, together with non-equilibrium magnetic effective field at the interface. The conclusion is reinforced by the fact that spin unpolarized current injection from a nonmagnetic Cu electrode has no effects on the antiferromagnetic state of FeRh.

  6. Momentum analyticity of transverse polarization tensor in the normal phase of a holographic superconductor

    NASA Astrophysics Data System (ADS)

    Yin, Lei; Ren, Hai-cang; Lee, Ting Kuo; Hou, Defu

    2016-08-01

    We explore the momentum analyticity of the static transverse polarization tensor of a 2+1 dimensional holographic superconductor in its normal phase, aiming at finding the holographic counterpart of the singularities underlying the Friedel oscillations of an ordinary field theory. We prove that the polarization tensor is a meromorphic function with an infinite number of poles located on the complex momentum plane off real axis. With the aid of the WKB approximation these poles are found to lies asymptotically along two straight lines parallel to the imaginary axis for a large momentum magnitude. The similarity between the holographic Green's function and that of an weakly coupled ordinary field theory (e.g., 2+1 dimensional QED) regarding the location of the momentum singularities offers further support to the validity of the gauge/gravity duality.

  7. Strain-induced phase transition and electron spin-polarization in graphene spirals

    PubMed Central

    Zhang, Xiaoming; Zhao, Mingwen

    2014-01-01

    Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices. PMID:25027550

  8. Polar fuel constituents: compound identification and equilibrium partitioning between nonaqueous phase liquids and water.

    PubMed

    Schmidt, Torsten C; Kleinert, Peter; Stengel, Caroline; Goss, Kai-Uwe; Haderlein, Stefan B

    2002-10-01

    Groundwater contamination by fuel constituents from nonaqueous phase liquids (NAPLs) on top of the groundwater table is a widespread problem. While leaching of classical fuel constituents such as benzene, toluene, ethylbenzene, and xylenes (BTEX) from NAPLs into groundwater has been studied extensively, little is known about the identity and partitioning of polar fuel components. Our work shows that gasoline commonly contains appreciable amounts of aniline, phenol, and their alkyl-substituted homologues as well as a suite of other polar compounds. To assess the potential for leaching of such compounds from NAPLs into groundwater we measured the equilibrium fuel/water partitioning coefficients, Kfw, of some representative constituents in batch systems. Kfw values for the investigated phenols, anilines, benzotriazoles, and S-heterocycles ranged from 0.2 to 1700. These values are up to 3 orders of magnitude lower than the Kfw of benzene. The NAPL--water partitioning of anilines and phenols strongly depends on the compounds' structure as well as on pH and the gasoline composition (e.g., MTBE content). Linear free energy relationships (LFERs) using Kow or Cwsat failed to predict measured Kfw values of polar solutes. In contrast, a polyparameter approach taking into account molecular interactions (van der Waals forces, hydrogen bonds) between solutes and major gasoline components allows precise a-priori predictions of Kfw values of both polar and BTEX fuel constituents without any fit parameters. Since most of the polar fuel constituents studied here are extracted from NAPLs by groundwater much more efficiently than BTEX, such compounds could form contaminant plumes threatening receiving wells before detectable concentrations of BTEX are present.

  9. Polarization dependence of phase-sensitive optical time-domain reflectometry and its suppression method based on orthogonal-state of polarization pulse pair

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Xu, Yemian; Shan, Yuanyuan; Sun, Zhenhong; Zhu, Fan; Zhang, Xuping

    2016-07-01

    Phase-sensitive optical time-domain reflectometry (Φ-OTDR) has been widely used in various applications for its distributed measurement capability of dynamic disturbance along the entire sensing fiber. Commonly, the sensing system is considered to be only sensitive to the phase change and capable of detecting multiple vibration events. In application, once any of the vibration events leads to a local birefringence change, the polarization evolution of the signal will be disturbed along the following fiber, which will result in the generation of polarization-related noise and the failure of identification for multipoint vibration events. We will reveal the polarization-dependence of Φ-OTDR both theoretically and experimentally. To suppress the polarization-dependence of Φ-OTDR, an orthogonal-state of polarization pulse pair method has been proposed, making the sensing system purely phase-sensitive. The experiment result has shown that maximum noise suppression ratio of 11.2 dB and mean noise suppression ratio of 4.9 dB could be achieved, which confirmed the validity of the proposed method.

  10. Strongly Correlated 2D Quantum Phases with Cold Polar Molecules: Controlling the Shape of the Interaction Potential

    SciTech Connect

    Buechler, H. P.; Micheli, A.; Pupillo, G.; Zoller, P.; Demler, E.; Lukin, M.; Prokof'ev, N.

    2007-02-09

    We discuss techniques to tune and shape the long-range part of the interaction potentials in quantum gases of bosonic polar molecules by dressing rotational excitations with static and microwave fields. This provides a novel tool towards engineering strongly correlated quantum phases in combination with low-dimensional trapping geometries. As an illustration, we discuss the 2D superfluid-crystal quantum phase transition for polar molecules interacting via an electric-field-induced dipole-dipole potential.

  11. Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies

    PubMed Central

    Cao, Tun; Wei, Chen-wei; Simpson, Robert E.; Zhang, Lei; Cryan, Martin J.

    2014-01-01

    We report a broadband polarization-independent perfect absorber with wide-angle near unity absorbance in the visible regime. Our structure is composed of an array of thin Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) layer. It shows that the near perfect absorbance is flat and broad over a wide-angle incidence up to 80° for either transverse electric or magnetic polarization due to a high imaginary part of the dielectric permittivity of Ge2Sb2Te5. The electric field, magnetic field and current distributions in the absorber are investigated to explain the physical origin of the absorbance. Moreover, we carried out numerical simulations to investigate the temporal variation of temperature in the Ge2Sb2Te5 layer and to show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 433 K (amorphous-to-crystalline phase transition temperature) in just 0.37 ns with a low light intensity of 95 nW/μm2, owing to the enhanced broadband light absorbance through strong plasmonic resonances in the absorber. The proposed phase-change metamaterial provides a simple way to realize a broadband perfect absorber in the visible and near-infrared (NIR) regions and is important for a number of applications including thermally controlled photonic devices, solar energy conversion and optical data storage. PMID:24492415

  12. Polarization state demodulation of channeled imaging spectropolarimeter by phase rearrangement calibration method

    NASA Astrophysics Data System (ADS)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Wei, Yutong

    2016-11-01

    The basic principle of channeled Fourier-transform imaging spectropolarimeter (CFTISP) is outlined. The two mainstream techniques existing for performing polarization state demodulation are analyzed, which show uncertainty that may not be suitable for CFTISP based on lateral shear interferometer. A modified demodulation method for Stokes parameters is described. The method separate the phase of the sign and the high-order retarders' retardations from the total phase acquired from the fast Fourier transform of the interferogram, which will not cause the amplitude error from the reference beam. Furthermore, the retardations and the residual phase error in each band introduced by instrument can be seen directly in this method. The effectiveness of this method is experimentally demonstrated with four known input states of polarization, and the results are satisfactory. The RMS error of each Stokes parameters is also presented, which demonstrates that the low spectral signal-to-noise ratio can increase the RMS error by nearly a factor of 2-5 for the individual Stokes parameters. The comparison of reconstructed results by four methods further demonstrates the effectiveness of the proposed method.

  13. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  14. Dispersion characterization of group birefringence in polarization-maintaining fiber using a Kerr phase-interrogator

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Baker, Chams; Bao, Xiaoyi

    2015-07-01

    We present a new approach to characterize dispersion of group birefringence in a long polarization-maintaining fiber (PMF). Two sinusoidal optical signals are respectively launched into fast and slow axes of a PMF under test. Wavelength dependent group-delay difference between two sinusoidal optical signals induced by group birefringence in the PMF is measured using a Kerr phase-interrogator, and dispersion of group birefringence is characterized from the group-delay difference. Measurements of wavelength dependent group birefringence and group birefringence dispersion for a 459.4-m Panda PMF are experimentally demonstrated.

  15. Unscented Kalman filters for polarization state tracking and phase noise mitigation.

    PubMed

    Jignesh, Jokhakar; Corcoran, Bill; Zhu, Chen; Lowery, Arthur

    2016-09-19

    Simultaneous polarization and phase noise tracking and compensation is proposed based on an unscented Kalman filter (UKF). We experimentally demonstrate the tracking under noise-loading and after 800-km single-mode fiber transmission with 20-Gbaud QPSK and 16-QAM signals. These experiments show that the proposed UKF outperforms both conventional blind tracing algorithms and a previously proposed extended Kalman filter, at the cost of higher complexity. Additionally, we propose and test modified Kalman filter algorithms to reduce computational complexity. PMID:27661962

  16. Study of polarization properties of fiber-optics probes with use of a binary phase plate.

    PubMed

    Alferov, S V; Khonina, S N; Karpeev, S V

    2014-04-01

    We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.

  17. Frequency-dependent polarization-angle-phase-shift in the microwave-induced magnetoresistance oscillations

    SciTech Connect

    Liu, Han-Chun; Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2015-02-14

    Linear polarization angle, θ, dependent measurements of the microwave radiation-induced oscillatory magnetoresistance, R{sub xx}, in high mobility GaAs/AlGaAs 2D electron devices have shown a θ dependence in the oscillatory amplitude along with magnetic field, frequency, and extrema-dependent phase shifts, θ{sub 0}. Here, we suggest a microwave frequency dependence of θ{sub 0}(f) using an analysis that averages over other smaller contributions, when those contributions are smaller than estimates of the experimental uncertainty.

  18. Ground state searches in fcc intermetallics

    SciTech Connect

    Wolverton, C.; de Fontaine, D. ); Ceder, G. ); Dreysse, H. . Lab. de Physique du Solide)

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

  19. High-temperature ordered intermetallic alloys III; Proceedings of the Third Symposium, Boston, MA, Nov. 29-Dec. 1, 1988

    NASA Technical Reports Server (NTRS)

    Liu, C. T. (Editor); Taub, A. I. (Editor); Stoloff, N. S. (Editor); Koch, C. C. (Editor)

    1989-01-01

    The present conference on high-temperature ordered intermetallic alloys discusses alloy theory and phase stability, defects and microstructures, mechanical behavior, alloy design and material processing, multiphase and composite materials, nickel aluminides, titanium aluminides, and other ordered intermetallics. Attention is given to compositional effects on processing and properties of nickel aluminides, dynamic compaction and hot-isostatic-pressing of nickel aluminides, improvement of elevated-temperature material properties in Ni3Al, the effect of microalloying B on the high-temperature mechanical properties of Ti3Al, the effects of structure on creep of Ti-53.4 mol pct Al intermetallics, the deformation microstructure in Ni3Si polycrystals strained over the range of temperature of flow stress anomaly, and the microstructure and mechanical properties of dual phase alloys consisting of the intermetallic phases.

  20. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering

    PubMed Central

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-01-01

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064

  1. Polarization transport of transverse acoustic waves: Berry phase and spin Hall effect of phonons

    NASA Astrophysics Data System (ADS)

    Bliokh, K. Yu.; Freilikher, V. D.

    2006-11-01

    We carry out a detailed analysis of the short-wave (semiclassical) approximation for the linear equations of the elasticity in a smoothly inhomogeneous isotropic medium. It is shown that the polarization properties of the transverse waves are completely analogous to those of electromagnetic waves and can be considered as spin properties of optical phonons. In particular, the Hamiltonian of the transverse waves contains an additional term of the phonon spin-orbit interaction arising from the Berry gauge potential in the momentum space. This potential is diagonal in the basis of the circularly polarized waves and corresponds to the field of two “magnetic monopoles” of opposite signs for phonons of opposite helicities. This leads to the appearance of the Berry phase in the equation for the polarization evolution and an additional “anomalous velocity” term in the ray equations. The anomalous velocity has the form of the “Lorentz force” caused by the Berry gauge field in momentum space and gives rise to the transverse transport of waves of opposite helicities in opposite directions. This is a manifestation of the spin Hall effect of optical phonons. The effect directly relates to the conservation of total angular momentum of phonons and also influences reflection from a sharp boundary (acoustic analog of the transverse Ferdorov-Imbert shift).

  2. Environmental Effects in Advanced Intermetallics

    SciTech Connect

    Liu, C.T.

    1998-11-24

    This paper provides a comprehensive review of environmental embrittlement in iron and nickel aluminizes. The embrittlement involves the interaction of these intermetallics with moisture in air and generation of atomic hydrogen, resulting in hydrogen-induced embrittlement at ambient temperatures. Environmental embrittlement promotes brittle grain-boundary fracture in Ni{sub 3}Al alloys but brittle cleavage fracture in Fe{sub 3}Al-FeAl alloys. The embrittlement strongly depends on strain rate, with tensile-ductility increase with increasing strain rate. It has been demonstrated that environmental embrittlement can be alleviated by alloying additions, surface modifications, and control of grain size and shape. Boron tends to segregate strongly to grain boundaries and is most effective in suppressing environmental embrittlement in Ni{sub 3}Al alloys. The mechanistic understanding of alloy effects and environmental embrittlement has led to the development of nickel and iron aluminide alloys with improved properties for structural use at elevated temperatures in hostile environments.

  3. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, Kevin; Tiegs, Terry N.; Becher, Paul F.

    1999-01-01

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.

  4. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOEpatents

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  5. A birefringent polarization modulator: Application to phase measurement in conoscopic interference patterns.

    PubMed

    Veiras, F E; Garea, M T; Perez, L I

    2016-04-01

    Conoscopic interferometry for crystal characterization is a very well-known technique with increasing applications in different fields of technology. The advantage of the scheme proposed here is the introduction of a polarization modulator that allows the recovery of the phase information contained in conoscopic interferograms. This represents a real advantage since the most relevant physical information of the sample under study is usually contained in the phase of the fringe pattern. Moreover, this technique works successfully even when there are no visible fringes. The setup employed is a simple conoscopic interferometer where the elements under study correspond to two birefringent crystal slabs and a commercial mica wave plate. It allows the crystals to be characterized and the wave plate retardance to be measured as a function of the angle of incidence. The modulator itself consists of a single tiltable crystal plate which, by means of phase shifting techniques, permits the recovery of a phase map for each sample. It is inexpensive and it can be easily calibrated, so it works with a wide range of phase shifting interferometry algorithms. We show that our scheme is easily adaptable to algorithms that require either a low or high amount of interferograms.

  6. A birefringent polarization modulator: Application to phase measurement in conoscopic interference patterns

    NASA Astrophysics Data System (ADS)

    Veiras, F. E.; Garea, M. T.; Perez, L. I.

    2016-04-01

    Conoscopic interferometry for crystal characterization is a very well-known technique with increasing applications in different fields of technology. The advantage of the scheme proposed here is the introduction of a polarization modulator that allows the recovery of the phase information contained in conoscopic interferograms. This represents a real advantage since the most relevant physical information of the sample under study is usually contained in the phase of the fringe pattern. Moreover, this technique works successfully even when there are no visible fringes. The setup employed is a simple conoscopic interferometer where the elements under study correspond to two birefringent crystal slabs and a commercial mica wave plate. It allows the crystals to be characterized and the wave plate retardance to be measured as a function of the angle of incidence. The modulator itself consists of a single tiltable crystal plate which, by means of phase shifting techniques, permits the recovery of a phase map for each sample. It is inexpensive and it can be easily calibrated, so it works with a wide range of phase shifting interferometry algorithms. We show that our scheme is easily adaptable to algorithms that require either a low or high amount of interferograms.

  7. Polar Effects Control the Gas-phase Reactivity of Charged para-Benzyne Analogs

    PubMed Central

    Wittrig, Ashley M.; Archibold, Enada F.; Sheng, Huaming; Nash, John J.; Kenttämaa, Hilkka I.

    2014-01-01

    The gas-phase reactivity of charged para-benzynes is entirely unexplored as they and/or their precursors tend to undergo ring-opening upon their generation. We report here a gas-phase reactivity study of two such benzynes, the 2,5-didehydropyridinium and 5,8-didehydroisoquinolinium cations, generated in a modified dual-linear quadrupole ion trap (DLQIT) mass spectrometer. Both biradicals were found to form diagnostic products with organic molecules, indicating the presence of two radical sites. As opposed to earlier predictions that the singlet-triplet (S-T) splitting controls the radical reactivity of such species, the 2,5-didehydropyridinium cation reacts much faster in spite of its larger S-T splitting. Calculated vertical electron affinities of the radical sites of the para-benzynes, a parameter related to the polarity of the transition states of their reactions, appears to be the most important reactivity controlling factor. PMID:25838787

  8. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene.

    PubMed

    Tahir, M; Schwingenschlögl, U

    2013-01-01

    The electronic properties of silicene are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit interaction and the buckled structure. Silicene has the potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that the combination of an electric field with intrinsic spin orbit interaction leads to quantum phase transitions at the charge neutrality point, providing a tool to experimentally tune the topological state. Silicene constitutes a model system for exploring the spin and valley physics not accessible in graphene due to the small spin orbit interaction.

  9. Organization of the polarization splay modulated smectic liquid crystal phase by topographic confinement

    PubMed Central

    Ki Yoon, Dong; Deb, Rajdeep; Chen, Dong; Körblova, Eva; Shao, Renfan; Ishikawa, Ken; Rao, Nandiraju V. S.; Walba, David M.; Smalyukh, Ivan I.; Clark, Noel A.

    2010-01-01

    Recently, the topographic patterning of surfaces by lithography and nanoimprinting has emerged as a new and powerful tool for producing single structural domains of liquid crystals and other soft materials. Here the use of surface topography is extended to the organization of liquid crystals of bent-core molecules, soft materials that, on the one hand, exhibit a rich, exciting, and intensely studied array of novel phases, but that, on the other hand, have proved very difficult to align. Among the most notorious in this regard are the polarization splay modulated (B7) phases, in which the symmetry-required preference for ferroelectric polarization to be locally bouquet-like or “splayed” is expressed. Filling space with splay of a single sign requires defects and in the B7 splay is accommodated in the form of periodic splay stripes spaced by defects and coupled to smectic layer undulations. Upon cooling from the isotropic phase this structure grows via a first order transition in the form of an exotic array of twisted filaments and focal conic defects that are influenced very little by classic alignment methods. By contrast, growth under conditions of confinement in rectangular topographic channels is found to produce completely new growth morphology, generating highly ordered periodic layering patterns. The resulting macroscopic order will be of great use in further exploration of the physical properties of bent-core phases and offers a route for application of difficult-to-align soft materials as are encountered in organic electronic and optical applications. PMID:21098307

  10. Migration-induced field-stabilized polar phase in strontium titanate single crystals at room temperature

    NASA Astrophysics Data System (ADS)

    Hanzig, Juliane; Zschornak, Matthias; Hanzig, Florian; Mehner, Erik; Stöcker, Hartmut; Abendroth, Barbara; Röder, Christian; Talkenberger, Andreas; Schreiber, Gerhard; Rafaja, David; Gemming, Sibylle; Meyer, Dirk C.

    2013-07-01

    Local reversible structural changes in SrTiO3 single crystals in an external electric field are induced by oxygen redistribution. We present in situ x-ray diffraction measurements during and immediately after electroformation. Several reflections are monitored and show an elongation of the cubic unit cell of strontium titanate. Raman investigations verify that the expansion of the unit cell involves a transition from the centrosymmetric to a lower symmetry phase. During a complete formation cycle, including the hold time of the electric field and relaxation time without field, two different dynamics are observed for the reversible transitions from cubic symmetry to tetragonal distortion: a slow one during the increase of the lattice constant in field direction and a fast one after switching off the electric field. Based on the experimental data, we propose the formation of a polar strontium titanate unit cell at room temperature stabilized by the electric field, which is referred to as migration-induced field-stabilized polar phase.

  11. An experimental study of growth and phase change of polar stratospheric cloud particles

    NASA Technical Reports Server (NTRS)

    Hallett, John; Teets, Edward

    1992-01-01

    This report describes the progress made on understanding phase changes related to solutions which may comprise Polar Stratospheric Clouds. In particular, it is concerned with techniques for investigating specific classes of metastability and phase change which may be important not only in Polar Stratospheric Clouds but in all atmospheric aerosols in general. While the lower level atmospheric aerosol consists of mixtures of (NH4)(SO4)2, NH4HSO4, NaCl among others, there is evidence that aerosol at PSC levels is composed of acid aerosol, either injected from volcanic events (such as Pinatubo) or having diffused upward from the lower atmosphere. In particular, sulfuric acid and nitric acid are known to occur at PSC levels, and are suspected of catalyzing ozone destruction reactions by adsorption on surfaces of crystallized particles. The present study has centered on two approaches: (1) the extent of supercooling (with respect to ice) and supersaturation (with respect to hydrate) and the nature of crystal growth in acid solutions of specific molality; and (2) the nature of growth from the vapor of HNO3 - H2O crystals both on a substrate and on a pre-existing aerosol.

  12. Target tracking using log-polar transform-based shifted phase-encoded joint transform correlation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammed Nazrul; Bitew, Worku T.

    2014-04-01

    Automatic target detection and tracking requires efficient recognition of the target pattern in variable environmental conditions. Optical joint transform correlation (JTC) method has been proven to be efficient in recognizing a target without requiring complex optical set up. However, the classical JTC suffers from poor correlation performance, which can be improved through the use of different and modified designs. A very successful scheme is developed by employing phase-shifted and phase-encoded fringe-adjusted JTC (SPFJTC), which provides with a high discrimination between a target and non-target objects in a given scene and better utilization of the space-bandwidth resource. Further enhancement of the target detection performance can be achieved by incorporating log-polar transform in the SPFJTC technique. We applied the SPFJTC technique to the log-polar transformation of both the reference image and the input scene that makes the pattern recognition invariant to rotation and scale variations. Peak-to-side lobe ratio is measured and a threshold operation is employed to detect and track a target in an unknown input scene.

  13. Environmental embrittlement in ordered intermetallic alloys

    SciTech Connect

    Liu, C.T.; Stoloff, N.S.

    1992-12-31

    Ordered intermetallics based on aluminides and silicides possess many promising properties for elevated-temperature applications; however, poor fracture resistance and limited fabricability restrict their use as engineering material. Recent studies have shown that environmental embrittlement is a major cause of low ductility and brittle fracture in many ordered intermetallic alloys. There are two types of environmental embrittlement observed in intermetallic alloys. One is hydrogen-induced embrittlement occurring at ambient temperatures in air. The other is oxygen-induced embrittlement in oxidizing atmospheres at elevated temperatures. In most cases, the embrittlements are due to a dynamic effect involving generation and penetration of embrittling agents (i.e., hydrogen or oxygen ) during testing. Diffusion of embrittling agents plays a dominant role in fracture of these intermetallic alloys. This chapter summarizes recent progress in understanding and reducing environmental embrittlement in these alloys.

  14. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  15. Anisotropic lattice response induced by a linearly-polarized femtosecond optical pulse excitation in interfacial phase change memory material.

    PubMed

    Makino, Kotaro; Saito, Yuta; Fons, Paul; Kolobov, Alexander V; Nakano, Takashi; Tominaga, Junji; Hase, Muneaki

    2016-01-01

    Optical excitation of matter with linearly-polarized femtosecond pulses creates a transient non-equilibrium lattice displacement along a certain direction. Here, the pump and probe pulse polarization dependence of the photo-induced ultrafast lattice dynamics in (GeTe)2/(Sb2Te3)4 interfacial phase change memory material is investigated under obliquely incident conditions. Drastic pump polarization dependence of the coherent phonon amplitude is observed when the probe polarization angle is parallel to the c-axis of the sample, while the pump polarization dependence is negligible when the probe polarization angle is perpendicular to the c-axis. The enhancement of phonon oscillation amplitude due to pump polarization rotation for a specific probe polarization angle is only found in the early time stage (≤2 ps). These results indicate that the origin of the pump and probe polarization dependence is dominantly attributable to the anisotropically-formed photo-excited carriers which cause the directional lattice dynamics. PMID:26805401

  16. Resonant ultrasound spectroscopy: Elastic properties of some intermetallic compounds

    SciTech Connect

    Chu, F.; Thoma, D.J.; He, Y.; Maloy, S.A.; Mitchell, T.E.

    1996-09-01

    A novel nondestructive evaluation method, resonant ultrasound spectroscopy (RUS), is reviewed with an emphasis upon defining the elastic properties of intermetallic phases. The applications and advantages of RUS as compared to other conventional elastic constant measurement methods are explained. RUS has been employed to measure the elastic properties of single crystal and/or polycrystalline intermetallics, such as Laves phases (C15 HfV{sub 2} and NbCr{sub 2}), Nb-modified titanium aluminides, and transition metal disilicides (C11{sub b} MoSi{sub 2}, C40 NbSi{sub 2} and TaSi{sub 2}). For Laves phases, the elastic properties of HfV{sub 2}-based C15 phases show various anomalies and those of C15 NbCr{sub 2} do not. For Nb-modified titanium aluminides, the elastic properties of O-phase alloys are investigated as a function of alloying content. For transition metal disilicides, single crystal elastic constants of MoSi{sub 2}, NbSi{sub 2}, and TaSi{sub 2} are obtained and compared. Based on the experimentally determined elastic properties, the characteristics of interatomic bonding in these materials are examined and the possible impact of the elastic properties on mechanical behavior is discussed.

  17. Polarization Sensitive THz TDS and Fabrication of Alignment Cells for Solution Phase THz Spectroscopy

    NASA Astrophysics Data System (ADS)

    George, Deepu Koshy

    sense that it makes use of the polarization state of THz pulse which is also the case for the alignment spectroscopy. PMOTS technique detects the rotation and change in ellipticity to the incident polarization from which the hall coefficients of the sample can be calculated. The final section deals with the fabrication of Dynamical Alignment Terahertz Spectroscopy cells for solution phase measurements. Design, fabrication and process optimization are detailed. Micro-fabrication based on optical lithography and SU-8 negative photoresist has been explored.

  18. Polarized Imaging Nephelometer for Field and Aircraft Measurements of Aerosol Phase Function

    NASA Astrophysics Data System (ADS)

    Dolgos, G.; Martins, J.

    2012-12-01

    Aerosols have a significant impact on the radiative balance and water cycle of our planet through influencing atmospheric radiation. Remote sensing of aerosols relies on scattering phase matrix information to retrieve aerosol properties with frequent global coverage. At the Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland, Baltimore County we developed a new technique to directly measure the aerosol phase function and the degree of linear polarization of the scattered light (two elements of the phase matrix). We designed and built a portable instrument called the Polarized Imaging Nephelometer (PI-Neph). The PI-Neph successfully participated in dozens of flights of the NASA Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project and the Deep Convective Clouds and Chemistry (DC3) project. The ambient aerosol enters the PI-Neph through an inlet and the sample is illuminated by laser light (wavelength of 532 nm); the scattered light is imaged by a stationary wide field of view camera in the scattering angle range of 2° to 178°. (In some cases stray light limited the scattering angle range to 3° to 176°). The PI-Neph measurement of phase function and the AERONET (AErosol RObotic NETwork) retrievals have already been compared in some cases when the aircraft spiraled over AERONET sites, for example at NASA's Wallops Flight Facility, on October 18 2011, as shown in Figure 1. The differences between the PI-Neph and the AERONET retrievals can be attributed to differences between the ambient size distribution and the one sampled inside the aircraft. The data that is resolved with respect to scattering angle is used to compute the volume scattering coefficient. The above mentioned October 18 flight data showed good agreement between the PI-Neph measurements of volume scattering coefficient and the parallel TSI integrating nephelometer measurements. On average the TSI measurements were 1.02 times the PI

  19. Formation of Intermetallic Compounds During Explosive Welding

    NASA Astrophysics Data System (ADS)

    Greenberg, Bella A.; Ivanov, Mikhail A.; Pushkin, Mark S.; Inozemtsev, Alexei V.; Patselov, Alexander M.; Tankeyev, Anatoliy P.; Kuzmin, Sergey V.; Lysak, Vladimir I.

    2016-11-01

    Transition states between traditional, i.e., plain and wavy, shapes of the interface during explosive welding were studied. A sequence of the transition states was found for the studied copper-titanium and copper-tantalum joints. Some transition states are common for the joints under study, while others are only typical of the copper-titanium joints, due to sufficiently high solubility of original elements. A transition state has been found, during which cusps, even though they are solid phase, look like splashes on the water. The key role of these splashes is that they evidence the lower boundary of the `weldability window.' The study found certain self-organization processes of the cusps that cause them to turn into a quasi-wavy shape of the interface, and then, as the welding mode is intensified, into a wavy shape. The role of intermetallic compounds was analyzed, due to which a wave only consists of cusps in case mutual solubility of original metals is sufficiently high.

  20. Formation of Intermetallic Compounds During Explosive Welding

    NASA Astrophysics Data System (ADS)

    Greenberg, Bella A.; Ivanov, Mikhail A.; Pushkin, Mark S.; Inozemtsev, Alexei V.; Patselov, Alexander M.; Tankeyev, Anatoliy P.; Kuzmin, Sergey V.; Lysak, Vladimir I.

    2016-08-01

    Transition states between traditional, i.e., plain and wavy, shapes of the interface during explosive welding were studied. A sequence of the transition states was found for the studied copper-titanium and copper-tantalum joints. Some transition states are common for the joints under study, while others are only typical of the copper-titanium joints, due to sufficiently high solubility of original elements. A transition state has been found, during which cusps, even though they are solid phase, look like splashes on the water. The key role of these splashes is that they evidence the lower boundary of the `weldability window.' The study found certain self-organization processes of the cusps that cause them to turn into a quasi-wavy shape of the interface, and then, as the welding mode is intensified, into a wavy shape. The role of intermetallic compounds was analyzed, due to which a wave only consists of cusps in case mutual solubility of original metals is sufficiently high.

  1. Restraining the motion of a ligand for modulating the structural phase transition in two isomorphic polar coordination polymers.

    PubMed

    Wang, Bao-Ying; Xu, Wei-Jian; Xue, Wei; Lin, Rui-Biao; Du, Zi-Yi; Zhou, Dong-Dong; Zhang, Wei-Xiong; Chen, Xiao-Ming

    2014-06-28

    A structural phase transition induced by ligand motion was found in a new polar coordination polymer: [Cu(NCS)2(4-APy)2]n (4-APy = 4-aminopyridine). Restraining such motion in an isomorphic compound [Cu(NCS)2(4-MeAPy)2]n (4-MeAPy = 4-methylaminopyridine) results in distinct phase transition behaviour. These findings provide a new clue for modulating phase transition behaviour in known materials.

  2. The spatially varying polarization of a focused Gaussian beam in quasi-phase-matched superlattice under electro-optic effect.

    PubMed

    Tang, Haibo; Chen, Lixiang; She, Weilong

    2010-11-22

    We present in this paper a wave coupling theory of linear electro-optic (EO) effect for quasi-phase matched (QPM) of focused Gaussian beam in an optical superlattice (OSL). The numerical results indicate that, due to the EO effect of an appropriate applied electric field, the output beam will form spatially inhomogeneous polarization, changing continuously in transverse section of beam; the confocal parameter has a significant impact on the output polarization of Gaussian beam and determines the half-wave voltage.

  3. Nightside auroral zone and polar cap ion outflow as a function of substorm size and phase

    NASA Astrophysics Data System (ADS)

    Wilson, G. R.; Ober, D. M.; Germany, G. A.; Lund, E. J.

    2004-02-01

    Because the high latitude ionosphere is an important source of plasma for the magnetosphere under active conditions, we have undertaken a study of the way ion outflow from the nightside auroral zone and polar cap respond to substorm activity. We have combined data from the Ultraviolet Imager (UVI) on Polar with ion upflow measurements from the TEAMS instrument on the FAST spacecraft to construct a picture of ion upflow from these regions as a function of substorm size and as a function of time relative to substorm onset. We use data taken during solar minimum in the northern hemisphere between December 1996 and February 1997. We find that the total nightside auroral zone ion outflow rate (averaged over substorm phase) depends on the size of the substorm, increasing by about a factor of 10 for both O+ and H+ from the smallest to the largest substorms in our study. The combined outflow rate from both the polar cap and the nightside auroral zone goes up by a factor of 7 for both ions for the same change in conditions. Regardless of storm size, the nightside auroral zone outflow rate increases by about a factor of 2 after onset, reaching its peak level after about 20 min. These results indicate that the change in the nightside auroral zone ion outflow rate that accompanies substorm onset is not as significant as the change from low to high magnetic activity. As a consequence, the prompt increase in the near earth plasma sheet energy density of O+ and H+ ions that accompanies onset [, 1996] is likely due to local energization of ions already present rather than to the sudden arrival and energization of fresh ionospheric plasma.

  4. Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions

    DOEpatents

    Rawers, James C.; Alman, David E.; Petty, Jr., Arthur V.

    1996-01-01

    Industrial applications of composites often require that the final product have a complex shape. In this invention intermetallic or ceramic phases are formed from sheets of unreacted elemental metals. The process described in this invention allows the final product shape be formed prior to the formation of the composite. This saves energy and allows formation of shaped articles of metal-intermetallic composites composed of brittle materials that cannot be deformed without breaking.

  5. Geometric-Phase approach to macroscopic polarization in lattice fermion models

    NASA Astrophysics Data System (ADS)

    Ortiz, Gerardo; Martin, Richard M.; Ordejón, Pablo

    1996-03-01

    The Geometric-Phase approach is a convenient way to calculate changes in the macroscopic polarization of an insulating system, based on the concept that the integrated current is connected to the phase of the wavefunction of interacting electrons. The method has provided a powerful mathematical scheme to study dielectric phenomena in correlated systems. We have applied these ideas to a variety of strongly correlated lattice fermion models in one and two dimensions; in particular, the 3-band Hubbard model in Cu-O planes in the parent compounds of High-Temperature superconductors. We analyze the information contained in the phase when a quantum transition takes place as one parameter of the hamiltonian is adiabatically changed. Previous results assume a correlated insulator in zero macroscopic electric field. In presence of such a singular perturbation there is no stable ground state. We present a way to overcome this problem, the main idea of which consists in constraining the manifold where the electrons move, i.e., the configuration space of the N identical particles.

  6. Direct acceleration of electrons by a circular polarized laser pulse with phase modulation

    SciTech Connect

    Zhu, Lun-Wu; Sheng, Zheng-Mao; Yu, M. Y.

    2013-11-15

    Electron acceleration by transversely echelon phase-modulated (EPM) circularly polarized (CP) intense laser pulse is investigated. Solution of the relativistic electron equations of motion shows that the CP EPM light wave structure can disrupt the harmonic response of a trapped electron not only in the transverse direction but also in the direction of laser propagation. In each laser cycle, there can be a net gain in the electron's transverse momentum, which is promptly converted into the forward direction by the Lorentz force. As a result, the electron can be trapped and accelerated in the favorable phase of the laser for a rather long time. Its momentum gain then accumulates and can eventually reach high levels. It is also found that with the CP EPM laser, the net acceleration of the electron is not sensitive to its initial position and velocity relative to the phase of the laser fields, so that such a laser can also be useful for accelerating thermal electron bunches to high energies.

  7. Polarization effects on the electric properties of urea and thiourea molecules in solid phase

    NASA Astrophysics Data System (ADS)

    Santos, O. L.; Fonseca, T. L.; Sabino, J. R.; Georg, H. C.; Castro, M. A.

    2015-12-01

    We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by point charges. It is found for both urea and thiourea molecules that the influence of the polarization effects is mild for the linear polarizability, but it is marked for the dipole moment and first hyperpolarizability. The replacement of oxygen atoms by sulfur atoms increases, in general, the electric responses. Our second-order Møller-Plesset perturbation theory based iterative scheme predicts for the in-crystal dipole moment of urea and thiourea the values of 7.54 and 9.19 D which are, respectively, increased by 61% and 58%, in comparison with the corresponding isolated values. The result for urea is in agreement with the available experimental result of 6.56 D. In addition, we present an estimate of macroscopic quantities considering explicit unit cells of urea and thiourea crystals including environment polarization effects. These supermolecule calculations take into account partially the exchange and dispersion effects. The results illustrate the role played by the electrostatic interactions on the static second-order nonlinear susceptibility of the urea crystal.

  8. Polarization effects on the electric properties of urea and thiourea molecules in solid phase

    SciTech Connect

    Santos, O. L.; Fonseca, T. L. Sabino, J. R.; Georg, H. C.; Castro, M. A.

    2015-12-21

    We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by point charges. It is found for both urea and thiourea molecules that the influence of the polarization effects is mild for the linear polarizability, but it is marked for the dipole moment and first hyperpolarizability. The replacement of oxygen atoms by sulfur atoms increases, in general, the electric responses. Our second-order Møller–Plesset perturbation theory based iterative scheme predicts for the in-crystal dipole moment of urea and thiourea the values of 7.54 and 9.19 D which are, respectively, increased by 61% and 58%, in comparison with the corresponding isolated values. The result for urea is in agreement with the available experimental result of 6.56 D. In addition, we present an estimate of macroscopic quantities considering explicit unit cells of urea and thiourea crystals including environment polarization effects. These supermolecule calculations take into account partially the exchange and dispersion effects. The results illustrate the role played by the electrostatic interactions on the static second-order nonlinear susceptibility of the urea crystal.

  9. The structure and phase of cloud tops as observed by polarization lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Hansen, M. Z.; Simpson, J.

    1983-01-01

    High-resolution observations of the structure of cloud tops have been obtained with polarization lidar operated from a high altitude aircraft. Case studies of measurements acquired from cumuliform cloud systems are presented, two from September 1979 observations in the area of Florida and adjacent waters and a third during the May 1981 CCOPE experiment in southeast Montana. Accurate cloud top height structure and relative density of hydrometers are obtained from the lidar return signal intensity. Correlation between the signal return intensity and active updrafts was noted. Thin cirrus overlying developing turrets was observed in some cases. Typical values of the observed backscatter cross section were 0.1-5 (km/sr) for cumulonimbus tops. The depolarization ratio of the lidar signals was a function of the thermodynamic phase of cloud top areas. An increase of the cloud top depolarization with decreasing temperature was found for temperatures above and below -40 C.

  10. Nonreciprocal phase shift caused by magnetic-thermal coupling of a polarization maintaining fiber optic gyroscope.

    PubMed

    Zhang, Dengwei; Zhao, Yuxiang; Fu, Wenlan; Zhou, Wenqing; Liu, Cheng; Shu, Xiaowu; Che, Shuangliang

    2014-03-15

    A theory for nonreciprocal phase shift caused by cross coupling generated in a polarization maintaining (PM) fiber optic gyroscope (FOG) under the combined action of magnetic and temperature fields is proposed. The magnetic-thermal coupling in the FOG originates from the interaction of the magnetic field, fiber twist, birefringence caused by thermal stress, and the intrinsic and bending birefringence of the fiber. The cross coupling changes with temperature. When the PM fiber has a diameter of 250 μm, beat length of 3 mm, length of 500 m, twist rate of 1  rad/m, and optical source wavelength of 1310 nm, the maximum degree of magnetic-thermal coupling generated by a 1 mT radial magnetic field within the temperature range of -20°C  to 60°C is -5.47%.

  11. Measurements of antenna polar diagrams and efficiencies using a phase-switched interferometer

    NASA Technical Reports Server (NTRS)

    Vincent, R. A.; Candy, B.; Briggs, B. H.

    1986-01-01

    It is desirable to know antenna polar patterns and efficiencies accurately. In the past, calibration measurements have been made using balloons and aircraft and more recently satellites. These techniques are usually very expensive. It is shown that under certain circumstances it is possible to use a simpler and inexpensive technique by connecting together the antenna under test with another antenna to form a phase switched interferometer as first described by Ryle (1952). The technique does require a suitable radio source which gives measurable powers when using small antennas and since dipoles have broad patterns, radio sources with similar right ascensions but different declinations to the primary source can be a problem. These problems can partly be overcome by filtering the interference pattern.

  12. Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Mayer, Erwin; Loerting, Thomas

    2010-03-01

    Polar stratospheric clouds (PSCs) are extremely efficient at catalysing the transformation of photostable chlorine reservoirs into photolabile species, which are actively involved in springtime ozone-depletion events. Why PSCs are such efficient catalysts, however, is not well understood. Here, we investigate the freezing behaviour of ternary HNO₃-H₂SO₄-H₂O droplets of micrometric size, which form type II PSC ice particles. We show that on freezing, a phase separation into pure ice and a residual solution coating occurs; this coating does not freeze but transforms into glass below ∼150 K. We find that the coating, which is thicker around young ice crystals, can still be approximately 30 nm around older ice crystals of diameter about 10 µm. These results affect our understanding of PSC microphysics and chemistry and suggest that chlorine-activation reactions are better studied on supercooled HNO₃-H₂SO₄-H₂O solutions rather than on a pure ice surface.

  13. Multiferroicity in polar phase LiNbO3 at room temperature

    NASA Astrophysics Data System (ADS)

    Manikandan, M.; Saravana Kumar, K.; Aparnadevi, N.; Praveen Shanker, N.; Venkateswaran, C.

    2015-10-01

    LiNbO3, prepared by ball milling assisted ceramic method, exhibits weak ferromagnetism and ferroelectricity at room temperature. X-ray diffraction pattern reveals the rhombohedral phase of LiNbO3 with hexagonal unit cell symmetry. The weak ferromagnetic behavior, obtained using VSM, has been explained using Dzyaloshinskii-Moriya interaction caused by the ferroelectric distortion in its magnetic order. The P-E loop measurement shows lossy natured ferroelectric loop. Electrical and dielectric properties analyzed using impedance spectroscopy show two thermally activated conduction processes, derived from the Arrhenius plot. A gradual increase in the dielectric constant below 493 K and a rapid increase above 493 K reveals the contribution of polarization components and Lithium ion hopping.

  14. Dislocation sources in ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Appel, F.; Wagner, R.; Mecking, H.

    1996-09-01

    An overview on the current understanding of dislocation sources and multiplication mechanisms is made for ordered intermetallic alloys of the L1{sub 2}, B2, and D0{sub 19} structures. In L1{sub 2} alloys, a large disparity of edge/screw segments in their relative mobility reduces the efficiency of a Frank-Read Type multiplication mechanism. In Fe-40%Al of the B2 structure, a variety of dislocation sources are available for <111> slip, including ones resulting from condensation of thermal vacancies. In NiAl with the relatively high APB energy, <100> dislocations may result from the dislocation decomposition reactions, the prismatic punching out from inclusion particles, and/or steps and coated layers of the surface. Internal interfaces often provide sites for dislocation multiplication, e.g., grain boundaries, sub-boundaries in Ni{sub 3}Ga, NiAl and Ti{sub 3}Al, and antiphase domain boundaries in Ti{sub 3}Al. As for the crack tip as a dislocation source, extended SISFs trailed by super-Shockley partials emanating form the cracks in Ni{sub 3}Al and Co{sub 3}Ti are discussed in view of a possible toughening mechanism.

  15. Room-temperature electric polarization induced by phase separation in multiferroic GdMn2O5

    NASA Astrophysics Data System (ADS)

    Khannanov, B. Kh.; Sanina, V. A.; Golovenchits, E. I.; Scheglov, M. P.

    2016-02-01

    It was generally accepted until recently that multiferroics RMn2O5 crystallized in the centrosymmetric space group Pbam and ferroelectricity in them could exist only at low temperatures due to the magnetic exchange striction. Recent comprehensive structural studies [V. Baledent et al., Phys. Rev. Lett. 114, 117601 (2015)] have shown that the actual symmetry of RMn2O5 at room temperature is a noncentrosymmetric monoclinic space group Pm, which allows room temperature ferroelectricity to exist. However, such a polarization has not yet been found. Our electric polarization loop studies of GdMn2O5 have revealed that a polarization does exist up to room temperature. This polarization occurs mainly in restricted polar domains that arise in the initial GdMn2O5 matrix due to phase separation and charge carrier self-organization. These domains are selfconsistent with the matrix, which leads to the noncentrosymmetricity of the entire crystal. The polarization is controlled by a magnetic field, thereby demonstrating the presence of magnetoelectric coupling. The lowtemperature ferroelectricity enhances the restricted polar domain polarization along the b axis.

  16. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih

    2012-07-01

    A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.

  17. Stochastic description of geometric phase for polarized waves in random media

    NASA Astrophysics Data System (ADS)

    Boulanger, Jérémie; Le Bihan, Nicolas; Rossetto, Vincent

    2013-01-01

    We present a stochastic description of multiple scattering of polarized waves in the regime of forward scattering. In this regime, if the source is polarized, polarization survives along a few transport mean free paths, making it possible to measure an outgoing polarization distribution. We consider thin scattering media illuminated by a polarized source and compute the probability distribution function of the polarization on the exit surface. We solve the direct problem using compound Poisson processes on the rotation group SO(3) and non-commutative harmonic analysis. We obtain an exact expression for the polarization distribution which generalizes previous works and design an algorithm solving the inverse problem of estimating the scattering properties of the medium from the measured polarization distribution. This technique applies to thin disordered layers, spatially fluctuating media and multiple scattering systems and is based on the polarization but not on the signal amplitude. We suggest that it can be used as a non-invasive testing method.

  18. Quantum criticality in selected uranium intermetallic and organometallic compounds

    NASA Astrophysics Data System (ADS)

    Nasreen, Farzana

    My thesis presents the studies of the bulk properties of materials that exhibit unusual low-temperature properties due to the proximity of a quantum-critical point (QCP), for which long-range magnetic order can be suppressed to 0 K as a consequence of quantum fluctuations. A material can be tuned to the QCP by variation of a non-thermal control parameter such as hydrostatic pressure, magnetic field and chemical pressure/doping. Most of my experimental studies were performed at extreme conditions, such as high magnetic fields, low temperatures and/or high pressures. Two classes of materials were studied, namely uranium intermetallics and organometallics. The investigations on uranium intermetallics were done on compounds close to the edge of magnetism, i.e. the UCu4+xAl 8-x, UCuxAl5-x and UFe1-xNixAl compounds. Several of those compounds exhibit deviations from traditional Fermi-liquid theory and show non-Fermi liquid (NFL) scaling at low temperatures. Field-induced magnetic transitions were studied for some selected uranium compounds (UNiAl, UNiGa, UNiGe and UIrGe) as well. Furthermore, a study of organometallic quantum magnet (DTN: NiCl2-4SC(NH 2)2), which exhibits field-induced quantum criticality, is presented. In DTN, the magnetic-field induced polarization shows magneto-electric couplings between the antiferromagnetic Ni spins and the soft organic lattice.

  19. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  20. Modeling of Intermetallic Compounds Growth Between Dissimilar Metals

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Yin; Prangnell, Philip; Robson, Joseph

    2015-09-01

    A model has been developed to predict growth kinetics of the intermetallic phases (IMCs) formed in a reactive diffusion couple between two metals for the case where multiple IMC phases are observed. The model explicitly accounts for the effect of grain boundary diffusion through the IMC layer, and can thus be used to explore the effect of IMC grain size on the thickening of the reaction layer. The model has been applied to the industrially important case of aluminum to magnesium alloy diffusion couples in which several different IMC phases are possible. It is demonstrated that there is a transition from grain boundary-dominated diffusion to lattice-dominated diffusion at a critical grain size, which is different for each IMC phase. The varying contribution of grain boundary diffusion to the overall thickening kinetics with changing grain size helps explain the large scatter in thickening kinetics reported for diffusion couples produced under different conditions.

  1. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction

    SciTech Connect

    Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

    2010-01-01

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

  2. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    SciTech Connect

    Kanatzidis, Mercouri G.

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  3. Polar phase transitions and physical properties in fresnoite A2TiSi2O8 (A= Ba, Sr) by first principles calculations

    NASA Astrophysics Data System (ADS)

    Song, Nayoung; Momida, Hiroyoshi; Oguchi, Tamio; Kim, Bog G.

    2016-10-01

    Polar phase transitions of fresnoites, Ba2TiSi2O8 (BTS) and Sr2TiSi2O8 (STS) have been comparatively analyzed by the first principles calculations. We show that both BTS and STS have a polar structure with the space group P4bm as a ground state, and there is a fictitious phase transition in the tetragonal space group from the nonpolar P4/mbm meta-stable phase to the polar P4bm phase. From the analyses of the two atomic structures, we find that a noticeable issue in the phase transition is bond length changes of Si-O and Ti-O which break the inversion symmetry, resulting that one of vertices in the edge-shared Si-O and Ti-O polyhedron is detached in the polar phase. The structural phase transition between the polar and the nonpolar states are discussed in terms of electronic structures and structural symmetry mode analyses. We evaluate the size of spontaneous polarizations of BTS and STS in the polar P4bm phases, and the correlation analysis shows significant contributions of the detached polyhedrons to the strong polar property. We also show second harmonic generation susceptibilities of BTS and STS as a candidate for second-order nonlinear optics materials. Our quantitative studies can provide full understandings of atomic and electronic mechanisms of their polar phase and nonlinear optical properties.

  4. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    SciTech Connect

    John A. Schneeloch; Xu, Zhijun; Winn, B.; Stock, C.; Gehring, P. M.; Birgeneau, R. J.; Xu, Guangyong

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.

  5. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    DOE PAGES

    John A. Schneeloch; Xu, Zhijun; Winn, B.; Stock, C.; Gehring, P. M.; Birgeneau, R. J.; Xu, Guangyong

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropicmore » field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less

  6. Formation of Intermetallic Ni-Al Coatings by Mechanical Alloying with Different Intensities

    NASA Astrophysics Data System (ADS)

    Zadorozhnyy, V. Yu.; Kaloshkin, S. D.; Churyukanova, M. N.; Borisova, Yu. V.

    2013-04-01

    Intermetallic Ni-Al coatings on the Ni substrate were prepared by the mechanical alloying (MA) method in mechanical activators of vibratory and planetary type. It was found that coatings that were fabricated in a high-energy (planetary) activator in comparison with those fabricated in a low-energy (vibratory) activator are more homogeneous, have higher density, and experience better adhesion to the substrate. It was shown that different intermetallic phases (NiAl, NiAl3, and Ni2Al3) can form directly during the MA treatment in the planetary activator.

  7. Simulated polarization diversity lidar returns from water and precipitating mixed phase clouds.

    PubMed

    Sassen, K; Zhao, H; Dodd, G C

    1992-05-20

    The dependence of polarization lidar returns on basic microphysical and thermodynamic variables is assessed by using a cloud model to simulate the growth of water and mixed (water and ice) phase clouds. Cloud contents that evolve with height in updrafts are converted, by using Mie theory, into cloud droplet single and double backscattering and attenuation coefficients. The lidar equation includes forward multiple scattering attenuation corrections based on diffraction theory for droplets and ice crystals, whose relative scattering contributions are treated empirically. Lidar depolarization is computed from droplet and crystal single scattering and an analytical treatment of droplet double scattering. Water cloud results reveal the expected increases in linear depolarization ratios (delta) with increasing lidar field of view and distance to cloud but also show that depolarization is a function of cloud liquid water content, which depends primarily on temperature. Ice crystals modulate mixed phase cloud liquid water contents through water vapor competition effects, thereby affecting multiple scattering delta values as functions of updraft velocity, temperature, and crystal size and concentration. Although the minimum delta at cloud base increases with increasing ice content, the peak measurable delta in the cloud decreases. Comparison with field data demonstrate that this modeling approach is a valuable supplement to cloud measurements.

  8. Simulated polarization diversity lidar returns from water and precipitating mixed phase clouds.

    PubMed

    Sassen, K; Zhao, H; Dodd, G C

    1992-05-20

    The dependence of polarization lidar returns on basic microphysical and thermodynamic variables is assessed by using a cloud model to simulate the growth of water and mixed (water and ice) phase clouds. Cloud contents that evolve with height in updrafts are converted, by using Mie theory, into cloud droplet single and double backscattering and attenuation coefficients. The lidar equation includes forward multiple scattering attenuation corrections based on diffraction theory for droplets and ice crystals, whose relative scattering contributions are treated empirically. Lidar depolarization is computed from droplet and crystal single scattering and an analytical treatment of droplet double scattering. Water cloud results reveal the expected increases in linear depolarization ratios (delta) with increasing lidar field of view and distance to cloud but also show that depolarization is a function of cloud liquid water content, which depends primarily on temperature. Ice crystals modulate mixed phase cloud liquid water contents through water vapor competition effects, thereby affecting multiple scattering delta values as functions of updraft velocity, temperature, and crystal size and concentration. Although the minimum delta at cloud base increases with increasing ice content, the peak measurable delta in the cloud decreases. Comparison with field data demonstrate that this modeling approach is a valuable supplement to cloud measurements. PMID:20725225

  9. Effect of Specific Energy Input on Microstructure and Mechanical Properties of Nickel-Base Intermetallic Alloy Deposited by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Kumar, Santosh; Chandra, Kamlesh; Vishwanadh, B.; Kishore, R.; Viswanadham, C. S.; Srivastava, D.; Dey, G. K.

    2012-12-01

    This article describes the microstructural features and mechanical properties of nickel-base intermetallic alloy laser-clad layers on stainless steel-316 L substrate, with specific attention on the effect of laser-specific energy input (defined as the energy required per unit of the clad mass, kJ/g) on the microstructure and properties of the clad layer, keeping the other laser-cladding parameters same. Defect-free clad layers were observed, in which various solidified zones could be distinguished: planar crystallization near the substrate/clad interface, followed by cellular and dendritic morphology towards the surface of the clad layer. The clad layers were characterized by the presence of a hard molybdenum-rich hexagonal close-packed (hcp) intermetallic Laves phase dispersed in a relatively softer face-centered cubic (fcc) gamma solid solution or a fine lamellar eutectic phase mixture of an intermetallic Laves phase and gamma solid solution. The microstructure and properties of the clad layers showed a strong correlation with the laser-specific energy input. As the specific energy input increased, the dilution of the clad layer increased and the microstructure changed from a hypereutectic structure (with a compact dispersion of characteristic primary hard intermetallic Laves phase in eutectic phase mixture) to near eutectic or hypoeutectic structure (with reduced fraction of primary hard intermetallic Laves phase) with a corresponding decrease in the clad layer hardness.

  10. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystal with orthogonal alignment layers

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin

    2012-10-01

    A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.

  11. Helicity-selective phase-matching and quasi-phase matching of circularly polarized high-order harmonics: towards chiral attosecond pulses

    NASA Astrophysics Data System (ADS)

    Kfir, Ofer; Grychtol, Patrik; Turgut, Emrah; Knut, Ronny; Zusin, Dmitriy; Fleischer, Avner; Bordo, Eliyahu; Fan, Tingting; Popmintchev, Dimitar; Popmintchev, Tenio; Kapteyn, Henry; Murnane, Margaret; Cohen, Oren

    2016-06-01

    Phase matching of circularly polarized high-order harmonics driven by counter-rotating bi-chromatic lasers was recently predicted theoretically and demonstrated experimentally. In that work, phase matching was analyzed by assuming that the total energy, spin angular momentum and linear momentum of the photons participating in the process are conserved. Here we propose a new perspective on phase matching of circularly polarized high harmonics. We derive an extended phase matching condition by requiring a new propagation matching condition between the classical vectorial bi-chromatic laser pump and harmonics fields. This allows us to include the influence of the laser pulse envelopes on phase matching. We find that the helicity dependent phase matching facilitates generation of high harmonics beams with a high degree of chirality. Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization. Moreover, while the degree of circularity of the most intense pulse approaches unity, all other pulses exhibit reduced circularity. This feature suggests the possibility of using a train of attosecond pulses as an isolated attosecond probe for chiral-sensitive experiments.

  12. Selective separation and purification of highly polar basic compounds using a silica-based strong cation exchange stationary phase.

    PubMed

    Long, Zhen; Guo, Zhimou; Xue, Xingya; Zhang, Xiuli; Nordahl, Lilly; Liang, Xinmiao

    2013-12-01

    Compared to moderately and weakly hydrophilic bases, highly polar basic compounds are even more difficult to separate due to their poor retention in reversed phase (RP) mode. This study described the successful applications of a strong cation exchange (SCX) stationary phase to achieve symmetric peak shape, adequate retention and selectivity in the separation of very polar basic compounds. Salt and acetonitrile concentrations were adjusted to optimize the separation. Good correlations (R(2)=0.998-1.000) between the logarithm of the retention factor and the logarithm of salt or acetonitrile concentration were obtained. Gradients generated by changing salt or acetonitrile concentration were compared for the analysis of different highly polar bases. Although all of the analytes were eluted more quickly with an acetonitrile gradient, the effect of the gradients tested on peak width and peak shape varied with respect to analyte. In addition, the effects of different types of cation and anion additives were also investigated. After separation parameters were acquired, the SCX-based method was utilized to analyze highly hydrophilic alkaloids from Scopolia tangutica Maxim with high separation efficiency (plate numbers>32,000 m(-1)). Concurrently, one very polar alkaloid fraction was purified with symmetric peak shape using the current method. Our results suggest that SCX stationary phase can be used as an alternative to RP stationary phase in the analysis and purification of highly hydrophilic basic compounds. PMID:24267097

  13. Estimation of age based on tooth cementum annulations: A comparative study using light, polarized, and phase contrast microscopy

    PubMed Central

    Kaur, Prabhpreet; Astekar, Madhusudan; Singh, Jappreet; Arora, Karandeep Singh; Bhalla, Gagandeep

    2015-01-01

    Context: The identification of living or deceased persons using unique traits and characteristics of the teeth and jaws is a cornerstone of forensic science. Teeth have been used to estimate age both in the young and old, as well as in the living and dead. Gradual structural changes in teeth throughout life are the basis for age estimation. Tooth cementum annulation (TCA) is a microscopic method for the determination of an individual's age based on the analysis of incremental lines of cementum. Aim: To compare ages estimated using incremental lines of cementum as visualized by bright field microscopy, polarized microscopy, and phase contrast microscopy with the actual age of subject and to determine accuracy and feasibility of the method used. Materials and Methods: Cementum annulations of 60 permanent teeth were analyzed after longitudinal ground sections were made in the mesiodistal plane. The incremental lines were counted manually using a light, polarized and phase contrast microscopy. Ages were estimated and then compared with the actual age of individual. Statistical Analysis: Analysis of variance (ANOVA), Student's t-test, the Pearson product-moment corre (PPMCC) and regression analysis were performed. Results: PPMCC value r = 0.347, 0.542 and 0.989 were obtained using light, polarized and phase contrast microscopy methods respectively. Conclusion: It was concluded that incremental lines of cementum were most clearly visible under a phase contrast microscope, followed by a polarized microscope, and then a light microscope when used for age estimation. PMID:26816462

  14. Chemical effect on diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ting

    With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion

  15. Suppression of metastable-phase inclusion in N-polar (0001{sup ¯}) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Shojiki, Kanako Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-06-01

    The metastable zincblende (ZB) phase in N-polar (0001{sup ¯}) (−c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the −c-plane and Ga-polar (0001) (+c-plane), the −c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the −c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated.

  16. Robust aptamer sol-gel solid phase microextraction of very polar adenosine from human plasma.

    PubMed

    Mu, Li; Hu, Xiangang; Wen, Jianping; Zhou, Qixing

    2013-03-01

    Conventional solid phase microextraction (SPME) has a limited capacity to extract very polar analytes, such as adenosine. To solve this problem, aptamer conjugating sol-gel methodology was coupled with an SPME fiber. According to the authors' knowledge, this is the first reported use of aptamer SPME. The fiber of aptamer sol-gel SPME with a mesoporous structure has high porosity, large surface area, and small water contact angle. Rather than employing direct entrapment, covalent immobilization was the dominant method of aptamer loading in sol-gel. Aptamer sol-gel fiber captured a specified analyte from among the analog molecules, thereby, exhibiting an excellent selective property. Compared with commercial SPME fibers, this aptamer fiber was suitable for extracting adenosine, presenting an extraction efficiency higher than 20-fold. The values of repeatability and reproducibility expressed by relative standard deviation were low (9.4%). Interestingly, the sol-gel network enhanced the resistance of aptamer SPME to both nuclease and nonspecific proteins. Furthermore, the aptamer sol-gel fiber was applied in human plasma with LOQ 1.5 μg/L, which is an acceptable level. This fiber also demonstrates durability and regeneration over 20-cycles without significant loss of efficiency. Given the various targets (from metal ions to biomacromolecules and cells) of aptamers, this methodology will extend the multi-domain applications of SPME.

  17. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  18. Chemical bonding in equiatomic cerium intermetallics - The case of CeMgSn, CePdSn, and CeMgPb

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.; Pöttgen, Rainer

    2015-10-01

    The electronic and magnetic structures and the properties of chemical bonding in isopointal CeMgSn and CePdSn (both phases belong to the family of TiNiSi related intermetallics, space group Pnma) and CeMgPb belonging to the family of CeScSi intermetallics, space group I4/mmm, have been investigated within the density functional theory (DFT). The charge analyses indicate negatively charged tin and lead leading to assign the compounds as stannides and plumbides, as also illustrated by the mapping of the electron localization function ELF. Calculations within spin-degenerate non-magnetic spin-polarized ferro- (SP-F) and SP-antiferromagnetic configurations led to assign a major role of Ce 4f states in the onset of ordered moments within SP-AF ground states from energy differences. Chemical bonding analyses from crystal orbital overlap populations revealed the strongest interactions for Ce-Sn in CeMgSn, Ce-Pb in CeMgPb, and Ce-Pd in CePdSn.

  19. Unique determination of the -CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-10-14

    The relative phase and amplitude ratio between the ssp and ppp polarization combinations of the vibrational sum-frequency generation (SFG) response can be uniquely and accurately determined by the polarization null angle (PNA) method. In this report we show that PNA measurements of the -CN vibration in the 4-n pentyl-4'-cyanoterphenyl (5CT) Langmuir monolayer at the air/water interface yields ssp and ppp response of the same phase, while those in the 4-n-octyl-4'cyanobiphenyl (8CB) Langmuir monolayer have the opposite phase. Accordingly, the -CN group in the 5CT monolayer is tilted around 25+/-2 from the interface normal, while that in the 8CB is tilted around 57+/-2, consistent with the significant differences in the phase diagrams and hydrogen bonding SFG spectra of the two Langmuir monolayers as reported in the literature. These results also demonstrate that in SFG studies the relative phase information of the different polarization combinations, especially for the ssp and ppp, is important in the unique determination of the tilt angle and conformation of a molecular group at the interface.

  20. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix.

    PubMed

    Yu, Ji Hoon; Chen, Hung-Shan; Chen, Po-Ju; Song, Ki Hoon; Noh, Seong Cheol; Lee, Jae Myeong; Ren, Hongwen; Lin, Yi-Hsin; Lee, Seung Hee

    2015-06-29

    Electrically tunable focusing microlens arrays based on polarization independent optical phase of nano liquid crystal droplets dispersed in polymer matrix are demonstrated. Such an optical medium is optically isotropic which is so-called an optically isotropic liquid crystals (OILC). We not only discuss the optical theory of OILC, but also demonstrate polarization independent optical phase modulation based on the OILC. The experimental results and analytical discussion show that the optical phase of OILC microlens arrays results from mainly orientational birefringence which is much larger than the electric-field-induced birefringence (or Kerr effect). The response time of OILC microlens arrays is fast~5.3ms and the tunable focal length ranges from 3.4 mm to 3.8 mm. The potential applications are light field imaging systems, 3D integrating imaging systems and devices for augment reality.

  1. N-single-helix photonic-metamaterial based broadband optical range circular polarizer by induced phase lags between helices.

    PubMed

    Behera, Saraswati; Joseph, Joby

    2015-02-10

    In this work, we have designed a photonic-metamaterial based broadband circular polarizer using N=4 phase-lagged aluminum single helices arranged in a square array as a unit cell. The effect of phase differences between the helices in an array on the optical performance of the structure is studied, and a comparative study is done with that of multi-intertwined helices. It is observed that the proposed metamaterial structure shows circular polarization sensitivity over a broad optical wavelength range (≈450-900  nm), with improved optical performance in average extinction ratio and broad positive circular dichroism in comparison to multiple intertwined helices. The induced phase lag between the helices in a square-array based unit cell reduces the linear birefringence and leads to the recovery of circular space symmetry in the structure.

  2. Leaning-type polar smectic-C phase in a freely suspended bent-core liquid crystal film.

    PubMed

    Chattham, Nattaporn; Tamba, Maria-Gabriela; Stannarius, Ralf; Westphal, Eduard; Gallardo, Hugo; Prehm, Marko; Tschierske, Carsten; Takezoe, Hideo; Eremin, Alexey

    2015-03-01

    A rich variety of responsive behavior occurs in complex structured fluids due to their lower symmetries. On the other hand, fluid disorder tends to increase the symmetry of liquid crystal mesophases. Here, we report direct evidence for the existence of a mesophase with CS symmetry. The observations are based on optical studies of director inversion walls in freely suspended films in electric fields under obliquely incident light. This phase is distinguished by the polarization lying in the molecular tilt plane in freely suspended films. Such a low-symmetry polar fluid phase has been long predicted to occur in bent-core liquid crystals. The stability of this phase is attributed to the bent shape of the mesogens and dominating dispersion interactions.

  3. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix.

    PubMed

    Yu, Ji Hoon; Chen, Hung-Shan; Chen, Po-Ju; Song, Ki Hoon; Noh, Seong Cheol; Lee, Jae Myeong; Ren, Hongwen; Lin, Yi-Hsin; Lee, Seung Hee

    2015-06-29

    Electrically tunable focusing microlens arrays based on polarization independent optical phase of nano liquid crystal droplets dispersed in polymer matrix are demonstrated. Such an optical medium is optically isotropic which is so-called an optically isotropic liquid crystals (OILC). We not only discuss the optical theory of OILC, but also demonstrate polarization independent optical phase modulation based on the OILC. The experimental results and analytical discussion show that the optical phase of OILC microlens arrays results from mainly orientational birefringence which is much larger than the electric-field-induced birefringence (or Kerr effect). The response time of OILC microlens arrays is fast~5.3ms and the tunable focal length ranges from 3.4 mm to 3.8 mm. The potential applications are light field imaging systems, 3D integrating imaging systems and devices for augment reality. PMID:26191743

  4. N-single-helix photonic-metamaterial based broadband optical range circular polarizer by induced phase lags between helices.

    PubMed

    Behera, Saraswati; Joseph, Joby

    2015-02-10

    In this work, we have designed a photonic-metamaterial based broadband circular polarizer using N=4 phase-lagged aluminum single helices arranged in a square array as a unit cell. The effect of phase differences between the helices in an array on the optical performance of the structure is studied, and a comparative study is done with that of multi-intertwined helices. It is observed that the proposed metamaterial structure shows circular polarization sensitivity over a broad optical wavelength range (≈450-900  nm), with improved optical performance in average extinction ratio and broad positive circular dichroism in comparison to multiple intertwined helices. The induced phase lag between the helices in a square-array based unit cell reduces the linear birefringence and leads to the recovery of circular space symmetry in the structure. PMID:25968042

  5. Phase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio.

    PubMed

    Wang, Wen Ting; Liu, Jian Guo; Mei, Hai Kuo; Zhu, Ning Hua

    2016-01-11

    We propose and experimentally verify a novel approach to achieve phase-coherence orthogonally polarized optical single sideband (OSSB) modulation with a tunable optically carrier-to-sideband ratio (OCSR). In our scheme, the orthogonally polarized OSSB signal is achieved using a dual-polarization quadrature phase shift keying (DP-QPSK) modulator without an optical band-pass filter (OBPF). Therefore, the proposed method is wavelength independent. The DP-QPSK modulator includes two parallel QPSK modulators locating on its two arms. The upper QPSK modulator of the DP-QPSK modulator is driven by two quadrature sinusoidal microwave signals and works at the frequency shifting condition whose bias voltages are optimized to suppress the optical. The lower QPSK modulator of that works at the maximum transmission point and the optical carrier is not modulated. The OCSR is continuously tunable by simply adjusting the bias voltages of the lower modulator. The frequency shifting optical signal from the upper QPSK modulator and the optical carrier from the lower QPSK modulator are combined together at the output of the DP-QPSK modulator. The optical carrier and sideband are polarized orthogonally. The generated OSSB signals could be used to shift and code the phase of the microwave signal and generate ultra-wideband (UWB) microwave pulse. The proposed method is analyzed and experimental demonstrated.

  6. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    NASA Astrophysics Data System (ADS)

    Ho, Kevin Ming-Jiang

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka-band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and production. Using the switches in a novel manner for the feed network, microstrip antennas with polarization diversity are presented. Frequency agility is achieved with the use of tuning diodes to provide capacitive loading to the antenna element. Additional inductance effects from surface-mounted capacitors, and its impact, is introduced. Theoretical cross-polarization of probe-fed antenna elements is presented for both linear and circular polarized microstrip antennas. Designs and measurements are presented, for microstrip antennas with polarization diversity, wide frequency tuning range, and both features. Replacement of the tuning diodes with commercially-packaged high Q RF MEMS tunable capacitors will allow for significant improvements to the radiation efficiency. In another project, multi-channel CMOS RFIC phased-array receiver chips are assembled in QFN packages and directly integrated on the same multi-layered PCB stack-up with the antenna arrays. Problems of isolation from the PCB-QFN interface, and potential performance degradation on antenna array from the use of commercial-grade laminates for assembly requirements, namely potential scan blindness and radiation efficiency, are presented. Causes for apparent drift of dielectric constant for microstrip circuits, and high conductor losses observed in measurements, are introduced. Finally, studies are performed for the design of a Ku/Ka-Band shared aperture array. Different approaches for developing dual-band shared apertures

  7. Online polar two phase countercurrent chromatography×high performance liquid chromatography for preparative isolation of polar polyphenols from tea extract in a single step.

    PubMed

    Chen, Wei-Bin; Li, Shu-Qi; Chen, Long-Jiang; Fang, Mei-Juan; Chen, Quan-Cheng; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun

    2015-08-01

    Herein, we report an on-line two-dimensional system constructed by counter-current chromatography (CCC) coupling with preparative high-performance liquid chromatography (prep-HPLC) for the separation and purification of polar natural products. The CCC was used as the first dimensional isolation column, where an environmental friendly polar two-phase solvent system of isopropanol and 16% sodium chloride aqueous solution (1:1.2, v/v) was introduced for low toxicity and favorable resolution. In addition, by applying the stop-and-go flow technique, effluents pre-fractionated by CCC was further purified by a preparative column packed with octadecyl silane (ODS) as the second dimension. The interface between the two dimensions was comprised of a 6-port switching valve and an electronically controlled 2-position 10-port switching valve connected with two equivalent holding columns. To be highlighted here, this rationally designed interface for the purpose of smooth desalination, absorption and desorption, successfully solved the solvent compatibility problem between the two dimensional separation systems. The present integrated system was successfully applied in a one-step preparative separation and identification of 10 pure compounds from the water extracts of Tieguanyin tea (Chinese oolong tea). In short, all the results demonstrated that the on-line 2D CCC×LC method is an efficient and green approach for harvesting polar targets in a single step, which showed great promise in drug discovery.

  8. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    PubMed

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-01

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.

  9. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  10. Surfaces of Intermetallics: Quasicrystals and Beyond

    SciTech Connect

    Yuen, Chad

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  11. Valence of neptunium in intermetallic compounds

    SciTech Connect

    Spitsyn, V.I.; Ionova, G.V.

    1987-07-01

    The authors use Moessbauer spectroscopy and quantum chemical calculations to determine the valence and electronic structure of neptunium in its intermetallic forms with a variety of alloys. The isomeric shifts are measured on Np 237 nuclei. Quantum electronic properties and population density estimates are calculated within the framework of the Hartree-Fock-Slater method.

  12. Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis.

    PubMed

    Jana, Subhra

    2015-11-21

    Based on the bottom-up chemistry techniques, the size, shape, and composition controlled synthesis of nanoparticles can now be achieved uniformly, which is of great importance to the nanoscience community as well as in modern catalysis research. The low-temperature solution-phase synthesis approach represents one of the most attractive strategies and has been utilized to synthesize nanoscale metals, alloys and intermetallics, including a number of new metastable phases. This perspective will highlight the solution-based nanoparticle synthesis techniques, a low-temperature platform, for the synthesis of size and shape-tunable nanoscale transition metals, alloys, and intermetallics from the literature, keeping a focus on the utility of these nanomaterials in understanding the catalysis. For each solution-based nanoparticle synthesis technique, a comprehensive overview has been given for the reported nanoscale metals, alloys, and intermetallics, followed by critical comments. Finally, their enhanced catalytic activity and durability as novel catalysts have been discussed towards several hydrogenation/dehydrogenation reactions and also for different inorganic to organic reactions. Hence, the captivating advantages of this controllable low-temperature solution chemistry approach have several important implications and together with them this approach provides a promising route to the development of next-generation nanostructured metals, alloys, and intermetallics since they possess fascinating properties as well as outstanding catalytic activity. PMID:26477400

  13. Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment

    SciTech Connect

    Anantha Narayanan, L. |; Samuel, F.H.; Gruzleski, J.E.

    1995-08-01

    Conventional heat treatment techniques in Al-Si alloys to achieve optimum mechanical properties are limited to precipitation strengthening processes due to the presence of second-phase particles and spheroidization of silicon particles. The iron intermetallic compounds present in the microstructure of these alloys are reported to be stable, and they do not dissolve during conventional (equilibrium) heat treatments. The dissolution behavior of iron intermetallics on nonequilibrium heat treatment has been investigated by means of microstructure and mechanical property studies. The dissolution of iron intermetallics improves with increasing solution temperature. The addition of manganese to the alloy hinders the dissolution of iron intermetallics. Nonequilibrium heat treatment increases the strength properties of high iron alloys until a critical solution temperature is exceeded. Above this temperature, a large amount of liquid phase is formed as a result of interdendritic and grain boundary melting. The optimum solution treatment temperature for Al-6Si-3.5Cu-0.3Mg-1Fe alloys is found to be between 515 C and 520 C.

  14. A phase width for CaGaSn. Crystal structure of mixed intermetallic Ca4Ga4+xSn4-x and SmGaxSn3-x, stability, geometry and electronic structure

    NASA Astrophysics Data System (ADS)

    Tillard, Monique

    2016-10-01

    X-ray single-crystal structure has been established for new compositions in intermetallic systems of tin and gallium. Crystals were successfully obtained in alloys prepared from elements. The structure of SmGaSn2 (cubic Pm3¯m, a=4.5778(8) Å, Z=1, R1=0.012) is described with atomic disorder at all Sn/Ga positions and the structure of Ca4Ga4.9Sn3.1 (hexagonal, P63/mmc, a=4.2233(9), c=17.601(7) Å, Z=1, R1=0.062) raises an interesting question about existence of a composition domain for CaGaSn. Finally, Ca4Ga4.9Sn3.1 should be considered as a particular composition of Ca4Ga4+xSn4-x, a compound assumed to exist in the range x ~ 0-1. Partial atomic ordering characterizes the Sn/Ga puckered layers of hexagons whose geometries are analyzed and discussed comparatively with analogous arrangements in AlB2 related hexagonal compounds. The study is supported by rigid band model and DFT calculations performed for different experimental and hypothetic arrangements.

  15. Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum

    SciTech Connect

    Karimi, Ebrahim; Marrucci, Lorenzo; Slussarenko, Sergei; Piccirillo, Bruno; Santamato, Enrico

    2010-05-15

    We present an easy, efficient, and fast method to generate arbitrary linear combinations of light orbital angular-momentum eigenstates l={+-}2 starting from a linearly polarized TEM{sub 00} laser beam. The method exploits the spin-to-orbital angular-momentum conversion capability of a liquid-crystal-based q plate and a Dove prism inserted into a Sagnac polarizing interferometer. The nominal generation efficiency is 100%, being limited only by reflection and scattering losses in the optical components. When closed paths are followed on the polarization Poincare sphere of the input beam, the associated Pancharatnam geometric phase is transferred unchanged to the orbital angular momentum state of the output beam.

  16. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  17. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1999-05-14

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  18. Use of vancomycin silica stationary phase in packed capillary electrochromatography: III. enantiomeric separation of basic compounds with the polar organic mobile phase.

    PubMed

    Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna

    2002-02-01

    The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.

  19. Dependence of Polarization of the near-Earth Asteroids (1036) Ganymed and (5143) Heracles on Wavelength and Phase Angle

    NASA Astrophysics Data System (ADS)

    Maleszewski, C.; McMillan, R.; Smith, P.

    2012-12-01

    We are measuring the polarization of asteroids with the SPOL polarimeter of Steward Observatory. With monthly access to the instrument, we can obtain many observations throughout phase angle. This is in contrast to other recent work that had to rely on aggregate properties of targets of similar taxonomic type. Comparing individual objects to these aggregate results may reveal differences of regolith properties from object to object. Both the phase angle and spectral dependence of polarization are being measured. SPOL provides simultaneous coverage from 0.40-0.75 microns, equivalent to BVR filters. Three phase curves thus reveal differences of phase angle dependences with respect to wavelength. The spectral dependence of the linear polarization is determined according to a linear trend previously used to describe the dependence for Main Belt Asteroids (MBAs) in various taxonomic classes (Belskaya et al. 2009). The slopes of these linear trends vs. phase angle are also investigated as was also done in the Belskaya analysis for MBAs in the C-, M-, and S-types. Two initial objects of interest are the NEAs (1036) Ganymed and (5143) Heracles. The taxonomic types of Ganymed and Heracles are S-type and Q-type respectively (DeMeo et al. 2009). For Ganymed, twelve observations were made between 2011 September and 2012 March. These include observations below ten degrees phase angle, which are currently lacking in the polarimetric databases. The positive branch of Ganymed's polarization phase curve behaved similarly across SPOL's wavelength range. But for wavelengths associated with a typical B-filter, the negative branch is more shallow and narrow. The negative phase branch of Ganymed is smaller compared to the aggregate phase curve of S-types determined by Gil-Hutton and Cañada-Assandri (2011). The linear polarization decreases with increasing wavelength at all observed phase angles. As the phase angle increases, the slope of the wavelength dependence of polarization

  20. The role of zinc on the chemistry of complex intermetallic compounds

    SciTech Connect

    Xie, Weiwei

    2014-01-01

    Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co8+xZn12–x was analyzed for their crystal and electronic structures.

  1. Growth of polar and non-polar nitride semiconductor quasi-substrates by hydride vapor phase epitaxy for the development of optoelectronic devices by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Moldawer, Adam Lyle

    The family of nitride semiconductors has had a profound influence on the development of optoelectronics for a large variety of applications. However, as of yet there are no native substrates commercially available that are grown by liquid phase methods as with Si and GaAs. As a result, the majority of electronic and optoelectronic devices are grown heteroepitaxially on sapphire and SiC. This PhD research addresses both the development of polar and non-polar GaN and AIN templates by Hydride Vapor Phase Epitaxy (HVPE) on sapphire and SiC substrates, as well as the growth and characterization of optoelectronic devices on these templates by molecular beam epitaxy (MBE). Polar and non-polar GaN templates have been grown in a vertical HVPE reactor on the C- and R-planes of sapphire respectively. The growth conditions have been optimized to allow the formation for thick (50um) GaN templates without cracks. These templates were characterized structurally by studying their surface morphologies by SEM and AFM, and their structure through XRD and TEM. The polar C-plane GaN templates were found to be atomically smooth. However, the surface morphology of the non-polar GaN films grown on the R-plane of sapphire were found to have a facetted surface morphology, with the facets intersecting at 120° angles. This surface morphology reflects an equilibrium growth, since the A-plane of GaN grows faster than the M-planes of GaN due to the lower atomic density of the plane. For the development of deep-UV optoelectronics, it is required to grow AIGaN quantum wells on AIN templates. However, since AIN is a high melting point material, such templates have to be grown at higher temperatures, close to half the melting point of the material (1500 °C). As these temperatures cannot be easily obtained by traditional furnace heating, an HVPE reactor has been designed to heat the substrate inductively to these temperatures. This apparatus has been used to grow high-quality, transparent AIN films

  2. Single-shot dual-wavelength phase reconstruction in off-axis digital holography with polarization-multiplexing transmission.

    PubMed

    Wang, Zhe; Jiang, Zhuqing; Chen, Yifei

    2016-08-01

    A new system for single-shot dual-wavelength digital holographic microscopy with polarization-multiplexing path-shared transmission is presented. The key feature of the optical configuration is that the interference waves of two wavelengths having orthogonal polarization can transmit in the same interferometer paths at the same time, and two polarizers orthogonal to each other are placed in front of the CCD to realize single-shot recording of two holograms. The correlative filtering algorithm of the spatial-frequency spectrum for dual-wavelength digital holograms is reliable and efficient in the dual-wavelength path-shared configuration. The phase reconstruction in dual-wavelength digital holographic imaging is achieved by using this filtering algorithm. The experiment results of phase reconstruction of a groove grating demonstrate the reliability and validity of this optical configuration and the correlative filtering algorithm. This polarization-multiplexing configuration for dual-wavelength digital holography is compact and has more flexibility for the replacement of different-wavelength lasers. PMID:27505390

  3. Measurement of the surface profile of an axicon lens with a polarization phase-shifting shearing interferometer

    SciTech Connect

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2011-11-10

    We present a Twyman-Green interferometer (TGI)-based polarization phase-shifting shearing interferometric technique for testing the conical surface of an axicon (AX) lens. In this technique, the annular beam generated due to the passing of an expanded collimated laser beam traveling along the axis of revolution of the transparent glass AX element is split up into its reflected and transmitted components, having the plane of polarization in the orthogonal planes, by the polarization beam splitter (PBS) cube of the TGI-based optical setup. The split-up components are made to travel unequal paths along the two arms of the TGI and are recombined by the PBS. Because of the difference in path lengths traveled by the annular conical beams, a linear shear is introduced along the radial direction between the interfering components. Thus, the resulting interference pattern gives a map of the optical path difference (OPD) between two successive close points along a radial direction on the conical surface of the AX lens. The OPD map along radial directions, and hence the slopes/profiles of the conical surface, are obtained by applying polarization phase-shifting interferometry. Results obtained for an AX lens are presented.

  4. Spectral induced polarization of the three-phase system CO2 - brine - sand under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Börner, Jana H.; Herdegen, Volker; Repke, Jens-Uwe; Spitzer, Klaus

    2016-10-01

    The spectral complex conductivity of a water-bearing sand during interaction with carbon dioxide (CO2) is influenced by multiple, simultaneous processes. These processes include partial saturation due to the replacement of conductive pore water with CO2 and chemical interaction of the reactive CO2 with the bulk fluid and the grain-water interface. We present a laboratory study on the spectral induced polarization (SIP) of water-bearing sands during exposure to and flow-through by CO2. Conductivity spectra were measured successfully at pressures up to 30 MPa and 80°C during active flow and at steady-state conditions concentrating on the frequency range between 0.0014 and 100 Hz. The frequency range between 0.1 and 100 Hz turned out to be most indicative for potential monitoring applications. The presented data show that the impact of CO2 on the electrolytic conductivity may be covered by a model for pore-water conductivity, which depends on salinity, pressure and temperature and has been derived from earlier investigations of the pore-water phase. The new data covering the three-phase system CO2-brine-sand further show that chemical interaction causes a reduction of surface conductivity by almost 20 per cent, which could be related to the low pH-value in the acidic environment due to CO2 dissolution and the dissociation of carbonic acid. The quantification of the total CO2 effect may be used as a correction during monitoring of a sequestration in terms of saturation. We show that this leads to a correct reconstruction of fluid saturation from electrical measurements. In addition, an indicator for changes of the inner surface area, which is related to mineral dissolution or precipitation processes, can be computed from the imaginary part of conductivity. The low frequency range between 0.0014 and 0.1 Hz shows additional characteristics, which deviate from the behaviour at higher frequencies. A Debye decomposition approach is applied to isolate the feature dominating

  5. Phase and direction dependence of photorefraction in a low-frequency strong circular-polarized plane wave

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Sheng; Wang, Nai-Yan; Tang, Xiu-Zhang

    2015-05-01

    Contrary to the superposition principle, it is well known that photorefraction exists in the vacuum with the presence of a strong static field, a laser field, or a rotational magnetic field. Different from the classical optical crystals, the refractive index also depends on the phase of the strong electromagnetic field. We obtain the phase and direction dependence of the refractive index of a probe wave incident in the strong field of a circular-polarized plane wave by solving the Maxwell equations corrected by the effective Lagrangian. It may provide a valuable theoretical basis to calculate the polarization evolution of waves in the strong electromagnetic circumstances of pulsar or neutron stars. Project supported by the National Basic Research Program of China (Grant No. 2011CB808104) and the National Natural Science Foundation of China (Grant No. 11105233).

  6. Structural and Electronic Investigations of Complex Intermetallic Compounds

    SciTech Connect

    Ko, Hyunjin

    2008-01-01

    structures of these and related materials. Such calculations allow us to examine various interactions at the atomic scale, interactions which include orbital overlap, two-electron interactions, and Madelung terms. Moreover, these electronic studies also provide links between the angstrom-scale atomic interactions and the macro-scale physical properties, such as magnetism. Over the past few decades, there have been many significant developments toward understanding structure-bonding-property relationships in extended solids in terms of variables including atomic size, valence electron concentration, and electronegativity. However, many simple approaches based on electron counting, e.g., the octet rule, the 18-electron rule, or Wade's rules for boranes, cannot be applied adequately or universally to many of the more complex intermetallic compounds. For intermetallic phases that include late transition metals and post transition main group elements as their constituents, one classification scheme has been developed and effectively applied by using their valence electron count per atom (vec). These compounds are known as Hume-Rothery electron phases, and they have a variety of structure types with vec < 2.0 as shown in Table 1.

  7. Self-homodyne free-space optical communication system based on orthogonally polarized binary phase shift keying.

    PubMed

    Cai, Guangyu; Sun, Jianfeng; Li, Guangyuan; Zhang, Guo; Xu, Mengmeng; Zhang, Bo; Yue, Chaolei; Liu, Liren

    2016-06-10

    A self-homodyne laser communication system based on orthogonally polarized binary phase shift keying is demonstrated. The working principles of this method and the structure of a transceiver are described using theoretical calculations. Moreover, the signal-to-noise ratio, sensitivity, and bit error rate are analyzed for the amplifier-noise-limited case. The reported experiment validates the feasibility of the proposed method and demonstrates its advantageous sensitivity as a self-homodyne communication system.

  8. Spatial subharmonic generation of orthogonally polarized light waves in BaTiO(3) by phase-matched nonlinear mixing.

    PubMed

    Novikov, A; Odoulov, S; Jungen, R; Tschudi, T

    1991-12-15

    The development of a spatial subharmonic, i.e., of a light wave propagating at the bisector of two pump waves, with orthogonal polarizations incident upon a BaTiO(3) crystal in a plane normal to the optical axis is observed and studied. Parametric amplification of a seed wave meeting the phase-matching condition in the presence of two pump waves is shown to be the main reason for subharmonic generation in this crystal.

  9. Quaternary borocarbides: New class of intermetallic superconductors

    NASA Technical Reports Server (NTRS)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-01-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  10. Determination of polar aromatic amines using newly synthesized sol-gel titanium (IV) butoxide cyanopropyltriethoxysilane as solid phase extraction sorbent.

    PubMed

    Miskam, Mazidatulakmam; Abu Bakar, Nor Kartini; Mohamad, Sharifah

    2014-03-01

    A solid phase extraction (SPE) method has been developed using a newly synthesized titanium (IV) butoxide-cyanopropyltriethoxysilane (Ti-CNPrTEOS) sorbent for polar selective extraction of aromatic amines in river water sample. The effect of different parameters on the extraction recovery was studied using the SPE method. The applicability of the sorbents for the extraction of polar aromatic amines by the SPE was extensively studied and evaluated as a function of pH, conditioning solvent, sample loading volume, elution solvent and elution solvent volume. The optimum experimental conditions were sample at pH 7, dichloromethane as conditioning solvent, 10 mL sample loading volume and 5 mL of acetonitrile as the eluting solvent. Under the optimum conditions, the limit of detection (LOD) and limit of quantification (LOQ) for solid phase extraction using Ti-CNPrTEOS SPE sorbent (0.01-0.2; 0.03-0.61 µg L(-1)) were lower compared with those achieved using Si-CN SPE sorbent (0.25-1.50; 1.96-3.59 µg L(-1)) and C18 SPE sorbent (0.37-0.98; 1.87-2.87 µg L(-1)) with higher selectivity towards the extraction of polar aromatic amines. The optimized procedure was successfully applied for the solid phase extraction method of selected aromatic amines in river water, waste water and tap water samples prior to the gas chromatography-flame ionization detector separation.

  11. Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism.

    PubMed

    Saha, Shambaditya; Weber, Christoph A; Nousch, Marco; Adame-Arana, Omar; Hoege, Carsten; Hein, Marco Y; Osborne-Nishimura, Erin; Mahamid, Julia; Jahnel, Marcus; Jawerth, Louise; Pozniakovski, Andrej; Eckmann, Christian R; Jülicher, Frank; Hyman, Anthony A

    2016-09-01

    P granules are non-membrane-bound RNA-protein compartments that are involved in germline development in C. elegans. They are liquids that condense at one end of the embryo by localized phase separation, driven by gradients of polarity proteins such as the mRNA-binding protein MEX-5. To probe how polarity proteins regulate phase separation, we combined biochemistry and theoretical modeling. We reconstitute P granule-like droplets in vitro using a single protein PGL-3. By combining in vitro reconstitution with measurements of intracellular concentrations, we show that competition between PGL-3 and MEX-5 for mRNA can regulate the formation of PGL-3 droplets. Using theory, we show that, in a MEX-5 gradient, this mRNA competition mechanism can drive a gradient of P granule assembly with similar spatial and temporal characteristics to P granule assembly in vivo. We conclude that gradients of polarity proteins can position RNP granules during development by using RNA competition to regulate local phase separation. PMID:27594427

  12. Magnetoelectric effect and magnetic phase diagram of a polar ferrimagnet CaBaFe4O7

    NASA Astrophysics Data System (ADS)

    Kocsis, V.; Tokunaga, Y.; Bordács, S.; Kriener, M.; Puri, A.; Zeitler, U.; Taguchi, Y.; Tokura, Y.; Kézsmárki, I.

    2016-01-01

    The magnetic phase diagram of a polar ferrimagnet CaBaFe4O7 with a magnetic easy axis has been investigated by measurements of magnetization, specific heat, and magnetoelectricity. A ferrimagnetic transition takes place at TC 1=275 K within the orthorhombic phase followed by a second magnetic transition at TC 2=211 K. Below TC 2, successive metamagnetic transitions occur for magnetic fields applied perpendicular to the easy axis, implying a sequential emergence of magnetic states which are neither collinear nor coplanar. The observation of the static magnetoelectric effect was limited to temperatures below 120 K due to the conducting nature of the crystals at higher temperatures. The magnitude of the ferroelectric polarization shows large changes between the different field-induced magnetic phases. The low-field state is characterized by a large linear magnetoelectric coefficient of αc c=39 ps/m, while a gigantic polarization change of Δ P =850 μ C /m2 is observed for μoH =14 T applied along the easy axis.

  13. Quantum Phases of Externally In-Plane Polarized Hard-Core Dipoles on a Zig-Zag Chain

    NASA Astrophysics Data System (ADS)

    Wang, Qingyang; Otterbach, Johanes; Yelin, Susanne

    2016-05-01

    We describe the ground-state phase diagram of externally polarized hard-core dipoles at half-filling moving along a one-dimensional zig-zag chain. The dipoles are oriented to lie in-plane. Together with the geometry of the chain this gives rise to a bond-alternating nearest neighbor interaction due to simultaneous attractive and repulsive interactions. By tuning the ratio between the nearest-neighbor interaction and hopping, various phases can be accessed by controlling the polarization angle. In ultra-strong coupling limit, the system boils down to frustrated axial next-nearest-neighbor Ising (ANNNI) model. An exact phase diagram is shown in this limit. In small coupling limit, we qualitatively discuss the ordering behavior using perturbative effective field-theoretic arguments, together with numerical methods. We show that when chain angle is small, the system mostly exhibits BKT-type phase transitions, whereas large chain angle would drive the system into gapped dimerized phase, where the hopping strength is closely related to the orientation of dimerized pairs.

  14. Surface order at surfactant-laden interfaces between isotropic liquid crystals and liquid phases with different polarity

    NASA Astrophysics Data System (ADS)

    Feng, Xunda; Bahr, Christian

    2011-03-01

    We present an ellipsometry study of the interface between thermotropic liquid crystals and liquid phases consisting of various binary mixtures of water and glycerol. The liquid-crystal samples contain a small constant amount of a surfactant which induces a homeotropic anchoring at the interface. We determine the smectic or nematic order at the interface in the temperature range above the liquid-crystal-isotropic transition while the water to glycerol ratio is varied, corresponding to a systematic modification of the polarity of the liquid phase. The surface-induced order becomes less pronounced with increasing glycerol concentration in the liquid phase. The observed behavior is compared with previous studies in which the surfactant concentration in the liquid-crystal bulk phase was varied. The results indicate that in both cases the magnitude of the surfactant coverage at the interface is the key quantity which determines the liquid-crystal surface order at the interface.

  15. Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Jia, Huaiting; Tian, Xiaocheng; Yuan, Haoyu; Zhu, Na; Su, Jingqin; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo

    2016-10-01

    In the research of inertial confinement fusion, laser plasma interaction (LPI) is becoming a key problem that affects ignition. Here, multi-frequency modulation (Multi-FM) smoothing by spectral dispersion (SSD), continuous phase plate (CPP) and polarization smoothing (PS) were experimentally studied and implemented on the SG-III laser facility. After using these techniques, the far field distribution of SG-Ⅲ laser facility can be adjusted, controlled and repeated accurately. The output spectrums of the cascade phase modulators used for Multi-FM SSD were stable and the FM-to-AM effect can be restrained. Experiments on SG-III laser facility indicate that when the number of color cycles adopts 1, imposing SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of preamplifier and main amplifiers with 30-TDL pinhole size. The nonuniformity of the focal spots using Multi-FM SSD, CPP and PS drops to 0.18, comparing to 0.26 with CPP+SSD, 0.57 with CPP+PS and 0.84 with only CPP and wedged lens. Polarization smoothing using flat birefringent plate in the convergent beam of final optics assembly (FOA) was studied. The PS plates were manufactured and equipped on SG-III laser facility for LPI research. Combined beam smoothing and polarization manipulation were also studied to solve the LPI problem. Results indicate that through adjusting dispersion directions of SSD beams in a quad, two dimensional SSD can be obtained. Using polarization control plate (PCP), polarization on the near field and far field can be manipulated, providing new method to solve LPI problem in indirect drive laser fusion.

  16. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  17. Bergman Clusters, Multiple Bonds, and Defect Planes: Synthetic Outcomes of Chemical Frustration in Ternary Intermetallic Systems

    NASA Astrophysics Data System (ADS)

    Hadler, Amelia Beth

    Intermetallics crystallize in a variety of complex structures, many of which show unusual bonding or intriguing properties. Understanding what factors drive this structural chemistry would be a valuable step towards designing new intermetallics with specific structures or properties. One pathway towards understanding and predicting the structures of complex intermetallics is chemical frustration, a design tool which harnesses competition between incompatible bonding or packing modes to induce complexity in ternary intermetallic systems. The research outlined in this thesis focuses on developing chemical frustration through exploratory synthesis in ternary systems designed to induce frustration between the tetrahedral close packing of many intermetallics and the simple cubic packing seen for ionic salts or elemental metals. Syntheses in three systems yielded six new ternary intermetallics, four of which crystallize in novel structure types. Three were discovered in the Ca-Cu-Cd system: Ca5Cu2Cd and Ca2Cu 2Cd9, which adopt ternary variants of binary structures, and Ca10Cu2Cd27, which crystallizes in a new structure built from Bergman clusters. All three structures can be traced to electronic packing frustration induced by the similar electronegativities but different metallic radii of Cu and Cd. The Gd-Fe-C system yielded the new carbometalate Gd13Fe 10C13 and an oxycarbide derivative. These phases crystallize in structures built from Gd tricapped trigonal prisms interpenetrated by an Fe-C network. Theoretical analyses reveal that Fe-Fe and Fe-C multiple bonding is found throughout this network. A theoretical investigation of similar carbides uncovers additional metal-metal, metal-carbon, and carbon-carbon multiple bonding. This unusual bonding stabilizes the carbides by satisfying preferred electron counts for their transition metal sites. One new phase, Mg4.5Pd5Ge1.5, was found in the Mg-Pd-Ge system. Its structure is closely related to the CsCl-type structure of

  18. Oxygen stabilized zirconium vanadium intermetallic compound

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

  19. Polarization spectroscopy and photodissociation studies of nitroaromatic compounds in the gas phase

    NASA Astrophysics Data System (ADS)

    Abbott, James E., Jr.

    The central purpose of this dissertation was to explore and expand the use of an uniform electric field for orientation and for subsequent spectroscopic investigation of asymmetric polar molecules in the gas phase. The systems of study were nitrobenzene (NB) and the nitrotoluene (NT) isomers. We were able to quantitatively determine the direction of the electronic transition dipole relative to the permanent dipole for these molecules, thus providing quantitative information on the symmetry of the second and third singlet excited electronic states. Transition to the second singlet excited state (S 2) was shown to have a dipole predominantly perpendicular to the permanent dipole, consistent with a localized excitation of the -NO2 moiety. The transition dipole to the S3 state for the meta and para isomers was almost completely parallel to the permanent dipole, opposite to that observed for the S2 transition. The success of these experiments has demonstrated the ability of the Brute Force Orientation technique to quantitatively characterize the transition dipole properties of large molecules. The importance of this technique lies in the fact that most large molecules undergo rapid internal conversion and slow dissociation after absorption, therefore information on the symmetry properties of these systems is otherwise unattainable. In addition to the determination of the transition dipole direction, we were able to characterize many details of the dissociation process by analyzing the internal energy distribution of the Nitric Oxide (NO) photofragment. The Resonantly Enhanced Multi Photon Ionization spectrum of NO has revealed that the methyl group causes significant perturbation in the dissociation process, while it seems to have minimal effect on the transition dipole direction among NB and NT. All NT isomers showed significantly more vibrational excitation than previously reported for NB. Additionally, the meta and para isomers were observed to have a vibrational

  20. Slater-Pauling behavior within quaternary intermetallic borides of the Ti 3Co 5B 2 structure-type

    NASA Astrophysics Data System (ADS)

    Burghaus, Jens; Dronskowski, Richard; Miller, Gordon J.

    2009-10-01

    First-principles, density-functional studies of several intermetallic borides of the general type M2M'Ru 5-nRh nB 2 ( n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3 d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions in this family of complex borides. COHP analyses of the M'- M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases.

  1. Intermetallic bonded ceramic matrix composites

    SciTech Connect

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.; Becher, P.F.; Schneibel, J.H.; Waters, S.B.; Menchhofer, P.A.

    1995-07-01

    A range of carbide and oxide-based cermets have been developed utilizing ductile nickel aluminide (Ni{sub 3}Al) alloy binder phases. Some of these, notably materials based upon tungsten and titanium carbides (WC and TiC respectively), offer potential as alternatives to the cermets which use cobalt binders (i.e. WC/Co). Samples have been prepared by blending commercially available Ni{sub 3}Al alloy powders with the desired ceramic phases, followed by hot-pressing. Alumina (Al{sub 2}O{sub 3}) matrix materials have also been prepared by pressurized molten alloy infiltration. The microstructure, flexure strength and fracture toughness of selected materials are discussed.

  2. Polarity control of GaN grown on pulsed-laser-deposited AlN/GaN template by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoo, Jinyeop; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    We report on the polarity control of GaN regrown on pulsed-laser-deposition-grown N-polar AlN on a metalorganic-vapor-phase-epitaxy-grown Ga-polar GaN template. The polarity of the regrown GaN, which was confirmed using aqueous KOH solutions, can be inverted from that of AlN by inserting a low-temperature GaN (LT-GaN) buffer layer. We hypothetically ascribe the Ga-polarity selection of GaN on the LT-GaN buffer layer to the mixed polarity of LT-GaN grains and higher growth rate of the Ga-polar grain, which covers up the N-polar grain during the initial stage of the high-temperature growth. The X-ray rocking curve analysis revealed that the edge-dislocation density in the N-polar regrown GaN is 5 to 8 times smaller than that in the Ga-polar regrown GaN. N-polar GaN grows directly on N-polar AlN at higher temperatures. Therefore, nucleus islands grow larger than those of LT-GaN and the area fraction of coalescence boundaries between islands, where edge dislocations emerge, becomes smaller.

  3. Plastic deformation of ordered intermetallic alloys: Fundamental aspects

    SciTech Connect

    Yoo, M.H.

    1994-10-01

    Fundamental aspects of plastic deformation in ordered intermetallic alloys are reviewed by directly comparing the temperature-dependent yield stresses of Ni{sub 3}Al and Ni{sub 3}Si (the L1{sub 2} structure), NiAl and FeAl (the B2 structure), and TiAl and Ti{sub 3}Al (non-cubic L1{sub 0} and D0{sub 19} structures, respectively). While the yield strength anomaly observed in Ni{sub 3}Al is consistent with the prevailing dislocation models, that found in stoichiometric Ni{sub 3}Si is not. The strong plastic anisotropy observed in NiAl stems from the high antiphase boundary energy, and that found in two-phase {gamma}-TiAl/{alpha}{sub 2}-Ti{sub 3}Al is due to the exceptionally high compressive yield strength along the c-axis of Ti{sub 3}Al.

  4. Overview of the development of FeAl intermetallic alloys

    SciTech Connect

    Maziasz, P.J.; Liu, C.T.; Goodwin, G.M.

    1995-09-01

    B2-phase FeAl ordered intermetallic alloys based on an Fe-36 at.% Al composition are being developed to optimize a combination of properties that includes high-temperature strength, room-temperature ductility, and weldability. Microalloying with boron and proper processing are very important for FeAl properties optimization. These alloys also have the good to outstanding resistance to oxidation, sulfidation, and corrosion in molten salts or chlorides at elevated temperatures, characteristic of FeAl with 30--40 at.% Al. Ingot- and powder-metallurgy (IM and PM, respectively) processing both produce good properties, including strength above 400 MPa up to about 750 C. Technology development to produce FeAl components for industry testing is in progress. In parallel, weld-overlay cladding and powder coating technologies are also being developed to take immediate advantage of the high-temperature corrosion/oxidation and erosion/wear resistance of FeAl.

  5. Carrier-envelope-phase effects and V-like structure in nonsequential double ionization by elliptical polarization

    NASA Astrophysics Data System (ADS)

    Li, Yingbin; Yu, Benhai; Tang, Qingbin; Hua, Duanyang; Tong, Aihong; Jiang, Chenghuan; Shen, Naifeng; Li, Yongchao; Ge, Guixian; Wan, Jianguo

    2016-07-01

    The nonsequential double ionization (NSDI) of atom is revisited by elliptically polarized few-cycle laser pulse with the classical ensemble method. We focus on the events that both electrons emit into the same direction along the long and short axis of the laser polarization plane, and how do the correlated electron momentum spectra of these two events depends on the carrier-envelope-phase (CEP). We first exhibit that the double-ionization probability has a negligible dependence on CEP. Back analysis shows that the ionization dynamics of the second electron are strongly depend on the CEP, which is significantly responsible for the CEP-dependent correlated electron momentum spectra. Besides, the correlated electron momentum spectrum along the long axis of the laser polarization plane reproduces the so-called V-like structure (also called the figurelike structure) observed in experiments [A. Staudte, et al., Phys. Rev. Lett. 99, 263002 (2007); A. Rudenko, et al., Phys. Rev. Lett. 99, 263003 (2007)]. We sort the V-like shape into two regions and find that the different regions exhibit significantly different dynamics behaviors. Simultaneously, we demonstrate that the electron pairs emitted into the same direction along the short axis of the laser polarization plane is a result of the nuclear-electron attraction, and both the nuclear-electron attraction and e-e repulsion significantly contribute to the V-like structure.

  6. Brushing up on the history of intermetallics in dentistry

    NASA Astrophysics Data System (ADS)

    Waterstrat, Richard M.

    1990-03-01

    Employing a silver-tin-mercury intermetallic to repair cavities may seem a little unusual, but intermetallics are quite common in dentistry, ranging from gold crowns to braces. Although the human mouth can be unfriendly territory for a brittle intermetallic alloy, dental amalgam has been around since 659 A.D., and its technology has been developed to the point where a filling can be expected to last 30 years or more.

  7. Demonstration of heterogeneous parahydrogen induced polarization using hyperpolarized agent migration from dissolved Rh(I) complex to gas phase.

    PubMed

    Kovtunov, Kirill V; Barskiy, Danila A; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Koptyug, Igor V; Chekmenev, Eduard Y

    2014-07-01

    Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity. Hyperpolarized norbornene (1)H NMR signals observed in situ were enhanced by a factor of approximately 10,000 at a static field of 47.5 mT. High-resolution (1)H NMR at a field of 9.4 T was used for ex situ detection of hyperpolarized norbornene in the gaseous phase, where a signal enhancement factor of approximately 160 was observed. This concept of stoichiometric as opposed to purely catalytic use of PHIP-available complexes with an unsaturated payload precursor molecule can be extended to other contrast agents for both homogeneous and heterogeneous PHIP. The Rh(I) complex was employed in aqueous medium suitable for production of hyperpolarized contrast agents for biomedical use. Detection of PHIP hyperpolarized gas by low-field NMR is demonstrated here for the first time.

  8. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    NASA Astrophysics Data System (ADS)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  9. Long-Term Behavior of the Tritides Formed by Nickel-Based Intermetallic Compounds

    SciTech Connect

    Bowman, Jr., R. C.; Steinmeyer, R. H.; Matson, L. K.; Attalla, A.; Craft, B. D.

    1985-04-01

    Some properties of the tritide phases formed by the intermetallic compounds Mg2Ni, ZrNi, and LaNi5 have been studied. Whereas ZrNiT3 will retain its stoichiometry indefinitely when sufficient gaseous tritium is available, the stoichiometries of Mg2NiT4 and LaNi5T6.9 decrease with time. Although all three intermetallic tritides can retain large quantities of the helium-3 tritium decay daughter product in the solid phase, irreversible release of helium begins after several hundred days for ZrNiTx and Mg2NiTx. However, LaNi5Tx retains all of the helium generated in the solid for at least 2400 days. NMR measurements for ZrNiTx and Mg2NiTx imply that helium is retained in microscopic bubbles as previously observed in several binary metal tritides.

  10. Spectral-domain measurement of the strain sensitivity of phase modal birefringence of polarization-maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Cezary

    2016-09-01

    The paper presents a new and simple method of measuring the strain sensitivity of phase modal birefringence (dΔn/dε) of polarization maintaining fibers (PMFs). The method is based on measuring the spectral strain sensitivity of a strain sensor in the configuration of a Sagnac interferometer with a PMF. The measured spectral strain sensitivity of the sensor is used to determine the strain sensitivity of phase modal birefringence and the polarimetric strain sensitivity of the PMF. In addition, a new procedure for determining the sign of the strain sensitivity of phase and group modal birefringence of a PMF. Using this method, measurements of the strain sensitivity of modal birefringence of PMFs were performed: a PM-PCF and a Bow-Tie fiber, in the wavelength range 1460-1600 nm. A comparison of the results of these measurements with results obtained using other methods for the same types of fibers is presented.

  11. Concerted spatial-frequency and polarization-phase filtering of laser images of polycrystalline networks of blood plasma smears

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu A.

    2012-11-01

    The complex technique of concerted polarization-phase and spatial-frequency filtering of blood plasma laser images is suggested. The possibility of obtaining the coordinate distributions of phases of linearly and circularly birefringent protein networks of blood plasma separately is presented. The statistical (moments of the first to fourth orders) and scale self-similar (logarithmic dependences of power spectra) structure of phase maps of different types of birefringence of blood plasma of two groups of patients-healthy people (donors) and those suffering from rectal cancer-is investigated. The diagnostically sensitive parameters of a pathological change of the birefringence of blood plasma polycrystalline networks are determined. The effectiveness of this technique for detecting change in birefringence in the smears of other biological fluids in diagnosing the appearance of cholelithiasis (bile), operative differentiation of the acute and gangrenous appendicitis (exudate), and differentiation of inflammatory diseases of joints (synovial fluid) is shown.

  12. Metal thin-film optical polarizers for space applications, phase 2

    NASA Technical Reports Server (NTRS)

    Slocum, Robert E.

    1991-01-01

    A light polarizing material was developed for wavelengths in the visible and near infrared spectral band (400 to 3,000 nm). The material is comprised of ellipsoidal silver particles uniformly distributed and aligned on the surface of an optical material. A method is set forth for making polarizing material by evaporatively coating a smooth glass surface with ellipsoidal silver particles. The wavelength of peak absorption is chosen by selecting the aspect ratio of the ellipsoidal metal particles and the refractive index of the material surrounding the metal particles. The wavelength of peak absorption can be selected to fall at a desired wavelength in the range from 400 to 3,000 nm by control of the deposition process. This method is demonstrated by evaporative deposition of silver particles directly on to a smooth optical surface. By applying a multilayer silver coating of a glass disc, a contrast of greater than 40,000 was achieved at 590 nm. A polarizing filter was designed, fabricated, and assembled which achieved contrast of 100,00 at 59 nm and can serve as a replacement for crystal polarizers.

  13. Ferroelectric-Antiferroelectric Phase Control: Interplay Between Octahedral Tilt, Polarization, and Chemistry at BFO-LSMO Interfaces

    NASA Astrophysics Data System (ADS)

    Kim, Young-Min; Yu, Pu; Chu, Ying-Hao; Pennycook, Stephen; Kalinin, Sergei; Borisevich, Albina

    2012-02-01

    Atomically-defined interfaces between complex oxides offer a paradigm of novel electronic and coupled functionalities. Here, we report the stabilization of the ferroelectric and antiferroelectric phases at the BFO-LSMO interface though termination control and reveal associated atomic-scale mechanisms with the help of aberration-corrected scanning transmission electron microscopy combined with Electron Energy Loss Spectroscopy. The BFO thin film grown on MnO2-terminated surface of LSMO exhibits stabilized ferroelectric phase at the interface. The interfacial and bulk polarization are antiparallel, giving rise to head to head ferroelectric domain wall mostly parallel to the interface. In comparison, the film grown on (Sr,La)O-terminated surface of LSMO exhibits antiferroelectric phase in the vicinity of the interface, with associated ferroelectric-antiferroelectric domain wall in the bulk. Details of tilt and polarization behavior, as well as electronic properties at the interfaces including charged domain walls and FE-AFE walls, will be presented. These results imply that the structural parameters such as octahedral tilt and ferroelectricity in BFO can be directly controlled by modifying the interface structure.

  14. Microstructural evolution and intermetallic formation in Al-8wt% Si-0.8wt% Fe alloy due to grain refiner and modifier additions

    NASA Astrophysics Data System (ADS)

    Hassani, Amir; Ranjbar, Khalil; Sami, Sattar

    2012-08-01

    An alloy of Al-8wt% Si-0.8wt% Fe was cast in a metallic die, and its microstructural changes due to Ti-B refiner and Sr modifier additions were studied. Apart from usual refinement and modification of the microstructure, some mutual influences of the additives took place, and no mutual poisoning effects by these additives, in combined form, were observed. It was noticed that the dimensions of the iron-rich intermetallics were influenced by the additives causing them to become larger. The needle-shaped intermetallics that were obtained from refiner addition became thicker and longer when adding the modifier. It was also found that α-Al and eutectic silicon phases preferentially nucleate on different types of intermetallic compounds. The more iron content of the intermetallic compounds and the more changes in their dimensions occurred. Formation of the shrinkage porosities was also observed.

  15. Miniaturized silicon photonic integrated swept source OCT receiver with dual polarization, dual balanced, in-phase and quadrature detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Lee, Hsiang-Chieh; Chen, Long; Vermeulen, Diedrik; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2016-03-01

    Miniaturization and cost reduction of OCT systems are important for enabling many new clinical applications as well as accelerating the development of existing applications. Silicon photonics is an important low-cost, high-volume, multi-functional platform for integrated optics because it can benefit from existing semiconductor fabrication techniques to integrate many advanced optical functions onto a single microchip. We present a miniaturized silicon photonic integrated swept source OCT receiver, measuring 3×4mm2, with advanced functionalities including dual polarization, dual balanced, in-phase and quadrature detection, essentially enabling the detection of the full vector field (amplitude, phase, and polarization) of the optical signal. With this integrated receiver, we demonstrate full-range OCT for complex conjugate artifact suppression, polarization diversity detection for removing polarization fading artifact, and polarization sensitive OCT for tissue birefringence imaging. The silicon photonic integrated receiver is a key advance towards developing a miniaturized, multi-functional swept source OCT system.

  16. Preparation and properties of the Ni-Al/Fe-Al intermetallics composite coating produced by plasma cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Min; Liu, Bang-Wu; Sun, Dong-Bai

    2011-12-01

    A novel approach to produce an intermetallic composite coating was put forward. The microstructure, microhardness, and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) analysis, microhardness test, and ball-on-disc wear experiment. XRD results indicate that some new phases FeAl, Fe0.23Ni0.77Al, and Ni3Al exit in the composite coating with the Al2O3 addition. SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures. The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating. The formation mechanism of the intermetallic compounds was also investigated.

  17. DOE-EPSCoR. Exchange interactions in epitaxial intermetallic layered systems

    SciTech Connect

    LeClair, Patrick R.; Gary, Mankey J.

    2015-05-25

    The goal of this research is to develop a fundamental understanding of the exchange interactions in epitaxial intermetallic alloy thin films and multilayers, including films and multilayers of Fe-Pt, Co-Pt and Fe-P-Rh alloys deposited on MgO and Al2O3 substrates. Our prior results have revealed that these materials have a rich variety of ferromagnetic, paramagnetic and antiferromagnetic phases which are sensitive functions of composition, substrate symmetry and layer thickness. Epitaxial antiferromagnetic films of FePt alloys exhibit a different phase diagram than bulk alloys. The antiferromagnetism of these materials has both spin ordering transitions and spin orienting transitions. The objectives include the study of exchange-inversion materials and the interface of these materials with ferromagnets. Our aim is to formulate a complete understanding of the magnetic ordering in these materials, as well as developing an understanding of how the spin structure is modified through contact with a ferromagnetic material at the interface. The ultimate goal is to develop the ability to tune the phase diagram of the materials to produce layered structures with tunable magnetic properties. The alloy systems that we will study have a degree of complexity and richness of magnetic phases that requires the use of the advanced tools offered by the DOE-operated national laboratory facilities, such as neutron and x-ray scattering to measure spin ordering, spin orientations, and element-specific magnetic moments. We plan to contribute to DOE’s mission of producing “Materials by Design” with properties determined by alloy composition and crystal structure. We have developed the methods for fabricating and have performed neutron diffraction experiments on some of the most interesting phases, and our work will serve to answer questions raised about the element-specific magnetizations using the magnetic x-ray dichroism techniques and interface magnetism in layered structures

  18. The Stability Limits of the Surface Phases at the Polarized Interface of a Liquid Electrode with an Electrolyte Solution

    NASA Astrophysics Data System (ADS)

    Kuklin, Rudolf N.

    2004-03-01

    The thermodynamic stability limits of specific adsorption at the polarized liquid metal/ electrolyte solution interface are studied. Here the reversible starting and disappearance of the electroadsorption effects at a threshold potential are revealed, which are the result of Gibbs stability violation. The stability limits are determined by the bifurcation manifold of the critical states for which determinant of matrix of a second differential of the surface pressure equals zero. The equations of the critical states are equivalent to the spinodal equations used in the theory of phase transitions. The conception developed beneath will help provide to interpretate the anomalies of electrocapillary effects through the catastrophe theory.

  19. Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2016-04-01

    An optical phase interrogation is proposed to study reflection-induced linear polarization rotation in a common-path homodyne interferometer. This optical methodology can also be applied to the measurement of the refractive index variation of a liquid solution. The performance of the refractive index sensing structure is discussed theoretically, and the experimental results demonstrated a very good ability based on the proposed schemes. Compared with a conventional common-path heterodyne interferometer, the proposed homodyne interferometer with only a single channel reduced the usage of optic elements. PMID:27192320

  20. Two-dimensional thin-layer chromatography of selected Polygonum sp. extracts on polar-bonded stationary phases.

    PubMed

    Hawrył, Mirosław A; Waksmundzka-Hajnos, Monika

    2011-05-13

    Two-dimensional thin-layer chromatographic systems on cyano-bonded polar stationary phases were used for the separation of some phenolic compounds extracted from two species of Polygonum: Polygonum hydropiper L. and Polygonum cuspidatum L. Non-aqueous solvents were used in the first direction and aqueous solvents were used in the second direction on CN silica TLC plates. For the separation of phenolics' standards optimal chromatographic systems were chosen from the retention data collected in one-dimensional TLC experiments by plotting graphs of R(F) vs. R(F) dependencies. Using above described method the satisfactory results of separations were obtained.

  1. Intermetallic strengthened alumina-forming austenitic steels for energy applications

    NASA Astrophysics Data System (ADS)

    Hu, Bin

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, materials required are strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe 2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. This research starts with microstructural and microchemical analyses of these intermetallic strengthened alumina-forming austenitic steels in a scanning electron microscope. The microchemistry of precipitates, as determined by energy-dispersive x-ray spectroscopy and transmission electron microscope, is also studied. Different thermo-mechanical treatments were carried out to these stainless steels in an attempt to further improve their mechanical properties. The microstructural and microchemical analyses were again performed after the thermo-mechanical processing. Synchrotron X-ray diffraction was used to measure the lattice parameters of these steels after different thermo-mechanical treatments. Tensile tests at both room and elevated temperatures were performed to study mechanical behaviors of this novel alloy system; the deformation mechanisms were studied by strain rate jump tests at elevated temperatures. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these alumina-forming austenitic steels after creep tests. Experiments were carried out to study the effects of boron and carbon additions in the aged alumina-forming austenitic steels.

  2. ⁵⁷Fe polarization-dependent synchrotron Mössbauer spectroscopy using a diamond phase plate and an iron borate nuclear Bragg monochromator.

    PubMed

    Mitsui, Takaya; Imai, Yasuhiko; Masuda, Ryo; Seto, Makoto; Mibu, Ko

    2015-03-01

    Energy-domain (57)Fe polarization-dependent synchrotron radiation Mössbauer spectroscopy was developed by using a diamond X-ray phase plate and an iron borate nuclear Bragg monochromator. The former controls the polarization of the incident synchrotron radiation X-rays and the latter filters the (57)Fe-Mössbauer radiation with a narrow bandwidth of ∼3.4 Γ0 (Γ0 ≃ 4.7 neV: natural linewidth of the (57)Fe nucleus) from the broadband synchrotron radiation. The developed nuclear diffraction optics allowed (57)Fe-Mössbauer studies to be performed with various polarization states, i.e. linear polarization, circular polarization and non-polarization. In this paper, the spectrometer system, beam characterization, performance-test experiments and a grazing-incidence Mössbauer measurement of an isotope-enriched ((57)Fe: 95%) iron thin film are described. PMID:25723944

  3. Simulation of the polarization effects induced by the bilayer absorber alternating phase-shift mask in conical diffraction

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Li, Yanqiu; Liu, Ke

    2013-09-01

    Hyper numerical aperture (NA) and off-axis illumination enable extension of ArF lithography for 45 nm technology node and beyond. Also, rigorous electromagnetic field modeling is taken into account for the optical and topographical properties of the mask. A rigorous three-dimensional mask model for bilayer absorber alternating phase shift mask (AltPSM) with the rigorous coupled-wave analysis (RCWA) is established. First, the harmonic waves are expanded based on the least common multiple of the periods in order to model the diffraction of multiple grating layers with different periods. Second, Lalanne's formulation is used to improve the convergence of RCWA for multiple grating layers in conical diffraction. Third, the enhanced transmittance matrix approach is also extended to conical diffraction to avoid the numerical instability. Given the chromium oxide/chromium AltPSM, the change of polarization state as a function of mask and incident light properties is investigated. When the linewidth is below 30 nm, the mask acts as a transverse magnetic field polarizer, which is not preferred in terms of image quality, so the mask-induced polarization effects must be considered in the hyper NA lithography.

  4. Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time.

    PubMed

    Chen, Yan-Han; Wang, Chun-Ta; Yu, Chin-Ping; Lin, Tsung-Hsien

    2011-12-01

    This work demonstrates a polarization-independent electrically tunable Fabry-Pérot (FP) filter that is based on polymer-stabilized blue phase liquid crystals (PSBPLCs). An external vertical electric field can be applied to modulate the effective refractive index of the PSBPLCs along the optical axis. Therefore, the wavelength-tuning property of the FP filter is completely independent of the polarization state of the incident light. The change in the birefringence in PSBPLCs is governed by Kerr effect-induced isotropic-to-anisotropic transition, and so the PSBPLCs based FP filter has a short response time. The measured tunability and free spectral range of the FP filter are 0.092 nm/ V and 16nm in the visible region, and 0.12nm/ V and 97nm in the NIR region, respectively, and the response time is in sub-millisecond range. The fast-responding polarization-independent electrically tunable FP filter has substantial potential for practical applications.

  5. Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase.

    PubMed

    Atkin, Rob; Warr, Gregory G

    2007-08-01

    Microemulsions of nonionic alkyl oligoethyleneoxide (CiEj) surfactants, alkanes, and ethylammonium nitrate (EAN), a room-temperature ionic liquid, have been prepared and characterized. Studies of phase behavior reveal that EAN microemulsions have many features in common with corresponding aqueous systems, the primary difference being that higher surfactant concentrations and longer surfactant tailgroups are required to offset the decreased solvophobicity the surfactant molecules in EAN compared with water. The response of the EAN microemulsions to variation in the length of the alkane, surfactant headgroup, and surfactant tailgroup has been found to parallel that observed in aqueous systems in most instances. EAN microemulsions exhibit a single broad small-angle X-ray scattering peak, like aqueous systems. These are well described by the Teubner-Strey model. A lamellar phase was also observed for surfactants with longer tails at lower temperatures. The scattering peaks of both microemulsion and lamellar phases move to lower wave vector on increasing temperature. This is ascribed to a decrease in the interfacial area of the surfactant layer. Phase behavior, small-angle X-ray scattering, and conductivity experiments have allowed the weakly to strongly structured transition to be identified for EAN systems. PMID:17636975

  6. Exploring the Impact of Tail Polarity on the Phase Behavior of Single Component and Mixed Lipid Monolayers Using a MARTINI Coarse-Grained Force Field.

    PubMed

    Eftaiha, Ala'a F; Wanasundara, Surajith N; Paige, Matthew F; Bowles, Richard K

    2016-08-11

    Coarse-grained molecular dynamics simulations have been used to investigate the effect of dipalmitoylphosphatidylcholine (DPPC) tail group polarity on the structural and phase behavior of both single component and binary mixed monolayers using the MARTINI force field. Surface pressure-area isotherms of single component systems indicate that DPPC monolayers become more expanded as a function of increasing tail group polarity, as observed in experimental measurements in the literature. A combination of radial distribution functions and tilt angle measurements indicate that increasing tail group polarity results in the formation of increasingly disordered monolayers. For the mixed monolayer systems, the time dependence of the radial distribution function as well as average cluster size measurements indicate that phase separation takes place between components of different tail group polarity when the monolayers undergo phase transition into disordered configurations.

  7. Synthesis, crystal structure, and magnetic properties of novel intermetallic compounds R2Co2SiC (R = Pr, Nd).

    PubMed

    Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E

    2014-06-16

    The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments. PMID:24898034

  8. Synthesis, crystal structure, and magnetic properties of novel intermetallic compounds R2Co2SiC (R = Pr, Nd).

    PubMed

    Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E

    2014-06-16

    The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments.

  9. Simultaneous calorimetric and polarization microscopy investigations of light induced changes over phase transitions in a liquid crystal-napthopyran mixture

    NASA Astrophysics Data System (ADS)

    Paoloni, S.; Mercuri, F.; Marinelli, M.; Pizzoferrato, R.; Zammit, U.; Kosa, T.; Sukhomlinova, L.; Taheri, B.

    2015-10-01

    We have studied the specific heat and the thermal conductivity in a 4-(n-octyl)-4'-cyanobiphenyl liquid crystal (LC)-photochromic molecules mixture, before, during, and after the photo-activation of the dispersed photochromic molecules, over both the smectic A-nematic and the nematic-isotropic phase transitions. The evaluation of the specific heat has enabled the determination of the changes of the phase transition characteristics induced by the photochromic molecules photoisomerization, while that of the thermal conductivity could be used to monitor the modifications induced in the average LC molecular orientation. The polarization microscopy imaging of the sample texture constituted a valuable support for the interpretation of the obtained thermal conductivity results.

  10. Joint mitigation of laser phase noise and fiber nonlinearity for polarization-multiplexed QPSK and 16-QAM coherent transmission systems.

    PubMed

    Morsy-Osman, Mohamed; Zhuge, Qunbi; Chen, Lawrence R; Plant, David V

    2011-12-12

    We propose the use of pilot-aided (PA) transmission, enabled by single-sideband-subcarrier modulation of both quadratures in the DSP-domain, in single-carrier systems to mitigate jointly laser phase noise and fiber nonlinearity. In addition to tolerance against laser phase noise, we show that the proposed scheme also improves the nonlinear tolerance of both polarization-division-multiplexed (PDM) QPSK and 16-QAM coherent transmission systems by increasing the maximum allowable launch power by 1 dB and 1.5 dB, respectively. The improved nonlinear performance of both systems also manifests itself as an increase in the maximum reach by 720 km and 480 km, respectively. Finally, when digital-to-analog converters (DACs) with lower bit resolutions are used at the transmitter, PA transmission is shown to preserve the same performance improvement over the non-PA case.

  11. Multi-component analysis of polar water pollutants using sequential solid-phase extraction followed by LC-ESI-MS.

    PubMed

    Loos, Robert; Hanke, Georg; Eisenreich, Steven J

    2003-06-01

    A multi-component screening analysis method for polar to medium-polar water pollutants was developed. Sample clean-up and group separation are performed by sequential solid-phase extraction (SSPE) using automated SPE with C18 and polymeric sorbent materials. Analyses are performed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) using a single-quadrupole instrument. More than 90 priority compounds of environmental interest--comprising the most important chemical and substance classes: phenols, carboxylic acids, aromatic sulfonates, aromatic amines, pharmaceuticals, surfactants, dyes, and pesticides--have been chosen for the experiments. The compounds are divided by the SSPE procedure into 3 different polarity classes. The extraction recoveries were determined in the 3 fractions for every single substance, and were for most of the analytes in the range of 50-100%. A mixture of hexane-dichloromethane was used for the elution of nonpolar compounds like alkylphenols from C18. Methanol and acetone are well suited for the elution of more polar substances. The limits of detection (LODs) were determined for all compounds. Effluents from municipal and industrial wastewater treatment plants (WWTPs) treating waste water from textile industries; and the corresponding receiving waters (rivers and lakes) have been analysed with the developed method. Urban and industrial pollution was observed in rivers and streams in the area north of Milan, Italy. In the water samples different phenols (nitrophenols, bisphenol A, nonylphenol), alkylphenol ethoxylate surfactants, their metabolites with endocrine disrupting potential, aromatic sulfonates, linear alkylbenzenesulfonate surfactants, dyes, pesticides, pharmaceuticals, and a dichlorobenzidine compound were identified.

  12. Multi-component analysis of polar water pollutants using sequential solid-phase extraction followed by LC-ESI-MS.

    PubMed

    Loos, Robert; Hanke, Georg; Eisenreich, Steven J

    2003-06-01

    A multi-component screening analysis method for polar to medium-polar water pollutants was developed. Sample clean-up and group separation are performed by sequential solid-phase extraction (SSPE) using automated SPE with C18 and polymeric sorbent materials. Analyses are performed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) using a single-quadrupole instrument. More than 90 priority compounds of environmental interest--comprising the most important chemical and substance classes: phenols, carboxylic acids, aromatic sulfonates, aromatic amines, pharmaceuticals, surfactants, dyes, and pesticides--have been chosen for the experiments. The compounds are divided by the SSPE procedure into 3 different polarity classes. The extraction recoveries were determined in the 3 fractions for every single substance, and were for most of the analytes in the range of 50-100%. A mixture of hexane-dichloromethane was used for the elution of nonpolar compounds like alkylphenols from C18. Methanol and acetone are well suited for the elution of more polar substances. The limits of detection (LODs) were determined for all compounds. Effluents from municipal and industrial wastewater treatment plants (WWTPs) treating waste water from textile industries; and the corresponding receiving waters (rivers and lakes) have been analysed with the developed method. Urban and industrial pollution was observed in rivers and streams in the area north of Milan, Italy. In the water samples different phenols (nitrophenols, bisphenol A, nonylphenol), alkylphenol ethoxylate surfactants, their metabolites with endocrine disrupting potential, aromatic sulfonates, linear alkylbenzenesulfonate surfactants, dyes, pesticides, pharmaceuticals, and a dichlorobenzidine compound were identified. PMID:12833980

  13. Deformation-Induced Amorphization of Copper-Titanium Intermetallics

    NASA Astrophysics Data System (ADS)

    Askenazy, Philip Douglas

    Two methods of inducing amorphization in Cu-Ti intermetallic compounds by mechanical means have been investigated. Ingots of compositions Cu_{35}Ti _{65} and Cu_ {33.3}Ti_{66.7} were rapidly quenched into ribbons. The microstructure consisted largely of microcrystals in an amorphous matrix, which were either quenched in or grown by annealing. The ribbons were cold-rolled, which reduced their effective thickness by a factor of about 8. The status of the intermetallic compound CuTi_2 was monitored by x-ray diffraction and transmission electron microscopy (TEM). The crystals were found to amorphize as rolling progressed. This behavior was not reproduced in polycrystalline samples that had no amorphous matrix present initially. The presence of the amorphous phase is thus necessary for amorphization of the crystal: it eliminates the need to nucleate the new glass, and it prevents the ribbon from disintegrating at high deformation stages. It may also change the deformation mechanism that occurs in the crystals, retarding the onset of amorphization. Diffuse scattering in close-packed directions is similar to that seen in electron irradiation experiments. It is postulated that the chemical disorder present in antiphase boundaries caused by deformation raises the free energy of the crystal higher than that of the amorphous phase. Ingots of the same compound were worn against each other in a custom-built wear apparatus. The design eliminates iron contamination of the wear sample and requires relatively small quantities of material. Alteration of the surface structure was monitored by plane-view and cross -sectional TEM. Larger subsurface crystals exhibit diffuse scattering, similar to that found in the rolled samples. A wide range of grain sizes was observed, due to the inhomogeneous nature of the wear process. An unusual phase was observed at the surface, consisting of a nanometer-scale mixture of aligned nanocrystalline regions and disordered areas. Some amorphous phase is

  14. Enhanced resolution of Mentha piperita volatile fraction using a novel medium-polarity ionic liquid gas chromatography stationary phase.

    PubMed

    Ragonese, Carla; Sciarrone, Danilo; Grasso, Elisa; Dugo, Paola; Mondello, Luigi

    2016-02-01

    The evaluation of a novel medium-polarity ionic-liquid-based gas chromatography column, SLB-IL60, towards the analysis of a complex essential oil, namely, a peppermint essential oil sample, is reported. The SLB-IL60 30 m column was subjected to bleeding measurements, by means of conventional gas chromatography with mass spectrometry. The SLB-IL60 column was then evaluated in the analysis of pure standard compounds, chosen as typical constituents of peppermint essential oil. Resolution and peak symmetry (expressed as tailing factors at 10% of peak height) were measured and the results were compared to those obtained on the most widely used columns in such an application, namely a medium-polarity [100% poly(ethyleneglycol)] stationary phase, and an apolar 5% diphenyl/95% dimethyl siloxane. The final part of the evaluation was dedicated to the gas chromatography with mass spectrometry analysis of a peppermint essential oil sample and again the data were compared to those obtained on the 100% poly(ethyleneglycol) and the 5% diphenyl/95% dimethyl siloxane phase. Linear retention indices were determined for all the identified components on the ionic liquid capillary.

  15. Enhanced resolution of Mentha piperita volatile fraction using a novel medium-polarity ionic liquid gas chromatography stationary phase.

    PubMed

    Ragonese, Carla; Sciarrone, Danilo; Grasso, Elisa; Dugo, Paola; Mondello, Luigi

    2016-02-01

    The evaluation of a novel medium-polarity ionic-liquid-based gas chromatography column, SLB-IL60, towards the analysis of a complex essential oil, namely, a peppermint essential oil sample, is reported. The SLB-IL60 30 m column was subjected to bleeding measurements, by means of conventional gas chromatography with mass spectrometry. The SLB-IL60 column was then evaluated in the analysis of pure standard compounds, chosen as typical constituents of peppermint essential oil. Resolution and peak symmetry (expressed as tailing factors at 10% of peak height) were measured and the results were compared to those obtained on the most widely used columns in such an application, namely a medium-polarity [100% poly(ethyleneglycol)] stationary phase, and an apolar 5% diphenyl/95% dimethyl siloxane. The final part of the evaluation was dedicated to the gas chromatography with mass spectrometry analysis of a peppermint essential oil sample and again the data were compared to those obtained on the 100% poly(ethyleneglycol) and the 5% diphenyl/95% dimethyl siloxane phase. Linear retention indices were determined for all the identified components on the ionic liquid capillary. PMID:26613675

  16. Investigation of the paramagnetic phase of bcc iron using polarized neutron scattering. [Fe (4%-Si)

    SciTech Connect

    Wicksted, J.P.; Shirane, G.; Steinsvoll, O.

    1983-01-01

    Recent neutron scattering experiments on Ni and Fe (4%-Si) above T/sub c/ have demonstrated that a simple paramagnetic scattering function S(Q..omega..) proportional to 1/(kappa/sub 1//sup 2/ + q/sup 2/).GAMMA/(GAMMA/sup 2/ + ..omega../sup 2/) can explain the persistent spin wave ridges previously reported by Lynn and Mook. We present our new polarized beam results on pure Fe and describe in some detail the special problems associated with the unpolarized beam studies of magnetic cross sections at high temperatures.

  17. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    SciTech Connect

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-09-15

    Plate impact experiments were conducted on a {gamma}-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics.

  18. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    SciTech Connect

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  19. Synthesis and densification of Ni{sub 3}(Si, Ti) intermetallics by hot isostatic pressing

    SciTech Connect

    Van Dyck, S.; Delaey, L.; Froyen, L.; Buekenhout, L.

    1996-12-31

    The production of complex parts from Ni{sub 3}(Si, Ti) intermetallic materials by reactive powder metallurgy offers significant advantages over more conventional processing techniques. The main problem associated with reactive powder metallurgy is controlling the exothermic reaction accompanying the synthesis of the intermetallic compound. The uncontrolled release of heat during the conversion of the reactants into nickel silicide leads to unacceptable deformation and melting of the part. The thermal evolution of a part during reactive synthesis of the intermetallic phase is described based on kinetic and heat transfer equations, giving the temperature and phase change as a function of the applied temperature cycle and the mass and size of the part under consideration. From this model, methods for controlling the exothermic reaction during synthesis are derived. When preparing nickel silicides by reactive powder metallurgy, the application of external pressure is required to eliminate porosity and to obtain good mechanical properties. The properties of materials produced by hot isostatic pressing, with different methods of reaction control, are compared to materials prepared from prealloyed powders. It is shown that by reactive HIP, materials can be obtained with a fracture strength exceeding 2,000 MPa.

  20. Prediction of Host-Guest Na-Fe Intermetallics at High Pressures.

    PubMed

    Zhou, Yuanyuan; Wang, Hui; Zhu, Chunye; Liu, Hanyu; Tse, John S; Ma, Yanming

    2016-07-18

    High pressure can fundamentally alter the electronic structure of elemental metals, leading to the unexpected formation of intermetallics with unusual structural features. In the present study, the phase stabilities and structural changes of Na-Fe intermetallics under pressure were studied using unbiased structure searching methods, combined with density functional theory calculations. Two intermetallics with stoichiometries Na3Fe and Na4Fe are found to be thermodynamically stable at pressures above 120 and 155 GPa, respectively. An interesting structural feature is that both have form a host-guest-like structure with Na sublattices constructed from small and large polygons similar to the host framework of the self-hosting incommensurate phases observed in Group I and II elements. Apart from the one-dimensional (1D) Fe chains running through the large channels, more interestingly, electrides are found to localize in the small channels between the layers. Electron topological analysis shows secondary bonding interactions between the Fe atoms and the interstitial electrides help to stabilize these structures. PMID:27341197

  1. Polarization Splay as the Origin of Modulation in the B1 and B7 Smectic Phases of Bent-Core Molecules

    SciTech Connect

    Coleman,D.; Jones, C.; Nakata, M.; Clark, N.; Walba, D.; Weissflog, W.; Fodor-Csorba, K.; Watanabe, J.; Novotna, V.; Hamplova, V.

    2008-01-01

    We report a generalized scenario for the formation of modulated smectic phases of bent-core molecules based on locally ferroelectric layering and spontaneous splay of the polarization. Twelve phases are proposed, distinguished by neighboring splay stripes with either syn- or antiorder of the polarization and undulation slope, in addition to layer continuity versus layer discontinuity at the intervening defects. We outline the experimental techniques necessary to differentiate among the phases and interpret previous results in the present context, using high resolution x-ray scattering diffraction and block and undulation models of the layer organization to distinguish among the three 2D lattice types which emerge.

  2. The polar phase response property of monopolar ECG voltages using a Computer-Aided Design and Drafting (CAD)-based data acquisition system.

    PubMed

    Goswami, B; Mitra, M; Nag, B; Mitra, T K

    1993-11-01

    The present paper discusses a Computer-Aided Design and Drafting (CAD) based data acquisition and polar phase response study of the ECG. The scalar ECG does not show vector properties although such properties are embedded in it. In the present paper the polar phase response property of monopolar chest lead (V1 to V6) ECG voltages has been studied. A software tool has been used to evaluate the relative phase response of ECG voltages. The data acquisition of monopolar ECG records of chest leads V1 to V6 from the chart recorder has been done with the help of the AutoCAD application package. The spin harmonic constituents of ECG voltages are evaluated at each harmonic plane and the polar phase responses are studied at each plane. Some interesting results have been observed in some typical cases which are discussed in the paper. PMID:8307653

  3. 293 W, GHz narrow-linewidth, polarization maintaining nanosecond fiber amplifier with SBS suppression employing simultaneous phase and intensity modulation.

    PubMed

    Ran, Yang; Su, Rongtao; Ma, Pengfei; Wang, Xiaolin; Lv, Haibin; Zhou, Pu; Si, Lei

    2015-10-01

    We present a new method of SBS suppression in fiber amplifier system by employing simultaneously phase and intensity modulation. In this way, a GHz narrow-linewidth polarization-maintaining (PM) all-fiber pulsed laser is obtained based on a master oscillator power amplifier (MOPA) configuration. The pulsed seed is generated from a single-frequency continuous wave (CW) laser at 1064 nm by simultaneous modulation using an electro-optic intensity modulator (EOIM) and an electro-optic phase modulator (EOPM). Theoretical model is built and simulation framework has been established to estimate the SBS threshold of the pulsed amplifier system before and after modulation. In experiment, in order to suppress SBS effectively, the pulse width is set to be 4 ns and the phase modulation voltage is set to be 5 V. After amplifying by the amplifier chain, a ~3.5 ns pulsed laser with average/peak power of 293 W/3.9 kW is obtained at intensity repetition rate of 20 MHz and phase repetition rate of 100MHz, showing good agreement with simulation results. The linewidth of the output laser is ~4.5 GHz, the M(2) factor at maximal output power is measured to be ~1.1 and the slope efficiency is ~86%.This method provides some references to suppress the SBS in narrow linewidth pulsed amplifier systems. PMID:26480104

  4. Recent advances in nanocrystalline intermetallic tin compounds for the negative electrode of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Alcántara, Ricardo; Nwokeke, Uche G.; Nacimiento, Francisco; Lavela, Pedro; Tirado, José L.

    2011-06-01

    Intermetallic compounds of tin and first-row transition metals have been considered as potential anode materials for Li-ion batteries that could improve the performance of pure tin. Particularly, the solids dispersed at the nano scale provide interesting behavior. Thus CoSn, FeSn2 and CoSn3 nanocrystalline samples have been obtained at low temperatures. As compared with micrometric particles of CoSn, significantly higher reversible capacities are found for nanocrystalline CoSn. For nanocrystalline CoSn3 maximum reversible capacities of 690 mAh g-1 were observed in lithium test cells. Nanocrystalline products in the series CoSn2-FeSn2 could be prepared by chemical reduction in polyol solvents using a "one-pot" method. Superparamagnetic nanocrystalline FeSn2 delivers reversible capacities of ca. 600 mAhg-1 by the formation of LixSn phases and superparamagnetic iron nanoparticles. A comparison between the properties of nano- FeSn2 and micro-FeSn2 shows a significantly better electrochemical behavior and electrode stability for the nanocrystalline material. For Fe1-xCoxSn2 solid solutions with x= 0.25, 0.3, 0.5, 0.6 and 0.8, particle diameters of about 20 nm and different morphologies were obtained. The substitution of iron by cobalt induces a contraction of the unit cell volume and the hyperfine parameters of the 57Fe Mössbauer spectra reveal a superparamagnetic behavior. The intermediate compositions exhibit better electrochemical performance than the limit compositions CoSn2 and FeSn2. To improve the performance of CoSnx intermetallics, composites in which the nanocrystalline intermetallic material is embedded in an amorphous layer based on the polyacrylonitrile (PAN) polymer were used. The PAN shell contributes to stabilize the intermetallic phases upon electrochemical cycling.

  5. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-01

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternary alloying additions in DO3 Fe3Al, Co3Al, and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO3 lattice. An important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.

  6. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    DOE PAGES

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less

  7. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-08-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  8. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-10-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  9. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du Yong

    2012-12-15

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  10. Choosing the polarity of the phase-encoding direction in diffusion MRI: Does it matter for group analysis?

    PubMed

    Kennis, M; van Rooij, S J H; Kahn, R S; Geuze, E; Leemans, A

    2016-01-01

    Notorious for degrading diffusion MRI data quality are so-called susceptibility-induced off-resonance fields, which cause non-linear geometric image deformations. While acquiring additional data to correct for these distortions alleviates the adverse effects of this artifact drastically - e.g., by reversing the polarity of the phase-encoding (PE) direction - this strategy is often not an option due to scan time constraints. Especially in a clinical context, where patient comfort and safety are of paramount importance, acquisition specifications are preferred that minimize scan time, typically resulting in data obtained with only one PE direction. In this work, we investigated whether choosing a different polarity of the PE direction would affect the outcome of a specific clinical research study. To address this methodological question, fractional anisotropy (FA) estimates of FreeSurfer brain regions were obtained in civilian and combat controls, remitted posttraumatic stress disorder (PTSD) patients, and persistent PTSD patients before and after trauma-focused therapy and were compared between diffusion MRI data sets acquired with different polarities of the PE direction (posterior-to-anterior, PA and anterior-to-posterior, AP). Our results demonstrate that regional FA estimates differ on average in the order of 5% between AP and PA PE data. In addition, when comparing FA estimates between different subject groups for specific cingulum subdivisions, the conclusions for AP and PA PE data were not in agreement. These findings increase our understanding of how one of the most pronounced data artifacts in diffusion MRI can impact group analyses and should encourage users to be more cautious when interpreting and reporting study outcomes derived from data acquired along a single PE direction. PMID:27158586

  11. Choosing the polarity of the phase-encoding direction in diffusion MRI: Does it matter for group analysis?

    PubMed Central

    Kennis, M.; van Rooij, S.J.H.; Kahn, R.S.; Geuze, E.; Leemans, A.

    2016-01-01

    Notorious for degrading diffusion MRI data quality are so-called susceptibility-induced off-resonance fields, which cause non-linear geometric image deformations. While acquiring additional data to correct for these distortions alleviates the adverse effects of this artifact drastically – e.g., by reversing the polarity of the phase-encoding (PE) direction – this strategy is often not an option due to scan time constraints. Especially in a clinical context, where patient comfort and safety are of paramount importance, acquisition specifications are preferred that minimize scan time, typically resulting in data obtained with only one PE direction. In this work, we investigated whether choosing a different polarity of the PE direction would affect the outcome of a specific clinical research study. To address this methodological question, fractional anisotropy (FA) estimates of FreeSurfer brain regions were obtained in civilian and combat controls, remitted posttraumatic stress disorder (PTSD) patients, and persistent PTSD patients before and after trauma-focused therapy and were compared between diffusion MRI data sets acquired with different polarities of the PE direction (posterior-to-anterior, PA and anterior-to-posterior, AP). Our results demonstrate that regional FA estimates differ on average in the order of 5% between AP and PA PE data. In addition, when comparing FA estimates between different subject groups for specific cingulum subdivisions, the conclusions for AP and PA PE data were not in agreement. These findings increase our understanding of how one of the most pronounced data artifacts in diffusion MRI can impact group analyses and should encourage users to be more cautious when interpreting and reporting study outcomes derived from data acquired along a single PE direction. PMID:27158586

  12. Titanium aluminide intermetallic alloys with improved wear resistance

    DOEpatents

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  13. Thermal barrier coating system with intermetallic overlay bond coat

    SciTech Connect

    Duderstadt, E.C.; Nagaraj, B A.

    1993-08-24

    A superalloy article is described having a thermal barrier coating system thereon, comprising: a substrate made of a material selected from the group consisting of a nickel-based superalloy and a cobalt-based superalloy; and a thermal barrier coating system on the substrate, the thermal barrier coating system including an intermetallic bond coat overlying the substrate, the bond coat being selected from the group consisting of a nickel aluminide and a platinum aluminide intermetallic compound, a thermally grown aluminum oxide layer overlying the intermetallic bond coat, and a ceramic topcoat overlying the aluminum oxide layer.

  14. Substantial Cd-Cd Bonding in Ca6PtCd11: A Condensed Intermetallic Phase Built of Pentagonal Cd7 and Rectangular Cd4/2Pt Pyramids

    SciTech Connect

    Gulo, Fakhili; Samal, Saroj L.; Corbett, John D.

    2013-08-19

    The new trail-breaking compound Ca6PtCd11 has been synthesized and its structural and bonding properties investigated. This unusual phase features an unprecedented degree of cadmium aggregation, including linear chains, novel Cd7 PBP aggregates, and edge-shared chains of PtCd4/2 square pyramids. Manifestations of this chemistry elsewhere has evidently been precluded in earlier work by the inclusion of larger amounts of the strong d-metal bonding Au or Pt. Under the right conditions Cd seems quite effective as an open s,p-band metal.

  15. Total electron content and l-band amplitude and phase scintillation measurements in the polar-cap ionosphere

    SciTech Connect

    Klobuchar, J.A.; Bishop, G.J.; Doherty, P.H.

    1987-03-30

    The first measurements of absolute Total Electron Content (TEC) and L-band amplitude and phase scintillation was made from Thule, Greenland, a polar cap station, in early 1984. These measurements were made using signals transmitted from the Global Positioning System (GPS) satellites. The variability of the TEC, especially during the afternoon to pre-midnight hours, is large, with increases in TEC above the background values of greater than 100% not uncommon. During one disturbed time, quasi-periodic TEC enhancements having periods as short as ten minutes and amplitudes equal to the background TEC were observed for over two hours. The TEC during some of the disturbed periods in the dark Thule ionosphere exceeded mid-latitude daytime values. Amplitude scintillations were small, not exceeding 3 dB peak to peak during the entire observing period, but they were associated with the times of TEC enhancements, with some evidence for stronger scintillation occurring during the negative gradients of the TEC enhancements. Phase scintillations were highest during some of the times of enhanced TEC, and depend critically upon the phase detrend internal used.

  16. The Interaction Between Dynamics and Chemistry of Ozone in the Set-Up Phase of the Northern Hemisphere Polar Vortex

    NASA Technical Reports Server (NTRS)

    Kawa, S.R.; Douglass, A. R.; Bevilacqua, R.; Margitan, J. J.; Sen, B.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding stratospheric ozone loss to the point of accurately predicting ozone in the future requires correctly distinguishing chemical from transport-induced changes in ozone. For example, evaluating the impact of chlorine reduction in controlling stratospheric ozone loss requires estimating the amount of ozone lost in chemical reactions in the polar winter and spring. The Northern Hemisphere winter polar region is a particularly crucial and interesting area because it appears that the Northern vortex may currently be poised near the threshold of extreme ozone destruction such as that which now occurs annually in the Antarctic ozone "hole." In this presentation we explore the interaction of ozone transport and chemistry through the Northern late summer and fall seasons as the vortex circulation becomes established. This phase of the seasonal cycle determines the starting point for heterogeneous processes and chlorine-driven loss that take control in the winter vortex. Using a combination of profile data from POAM, HALOE, and in situ measurements, we show that relatively low ozone at high latitudes in the middle stratosphere is associated with vortex airmasses and that these ozone abundances evolve photochemically from characteristically higher values at the end of the summer. The zonal variance of ozone mixing ratio also increases greatly at this time consistent with increasing wave-driven transport. Comparison with a three-dimensional chemistry-transport model is used to generalize the findings from the limited set of observations and quantify the relative roles of transport and chemistry in determining the ozone mixing ratio distributions.

  17. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Meng; Yang, Mingchao; Shi, Li-Jie; Deng, Luogen; Yang, Huai

    2016-09-01

    In this paper, we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals. Two groups of lasing peaks, of which the full widith at half maximum is about 0.3 nm, are clearly observed. The shorter- and longer-wavelength modes are associated with the excitation of the single laser dye (DCM) monomers and dimers respectively. The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light. When the polarization of the pump light is rotated from 0° to 90°, the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases. In addition, a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474021 and 51333001), the Key Program for International S&T Cooperation Projects of China (Grant No. 2013DFB50340), the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001130005), and the Key (Key Grant) Project of Chinese Ministry of Education (Grant No. 313002).

  18. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wang, Meng; Yang, Mingchao; Shi, Li-Jie; Deng, Luogen; Yang, Huai

    2016-09-01

    In this paper, we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals. Two groups of lasing peaks, of which the full widith at half maximum is about 0.3 nm, are clearly observed. The shorter- and longer-wavelength modes are associated with the excitation of the single laser dye (DCM) monomers and dimers respectively. The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light. When the polarization of the pump light is rotated from 0° to 90°, the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases. In addition, a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474021 and 51333001), the Key Program for International S&T Cooperation Projects of China (Grant No. 2013DFB50340), the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120001130005), and the Key (Key Grant) Project of Chinese Ministry of Education (Grant No. 313002).

  19. Roles of Titanium-Intermetallic Compound Layer

    NASA Astrophysics Data System (ADS)

    Lee, Chii-Chang

    Four different configurations have been tested: Al-Cu, Ti/Al-Cu, Al-Cu/Ti, and Ti/Al-Cu/Ti to evaluate the possible contributions of Ti-intermetallic compound layer(s) to enhancement of the lifetime to failure. Basically, the proposed mechanisms can be classified into two groups: shunting effect and effects limited to changes in Al-Cu conducting layer(s). A resistance monitoring technique was adopted to supplement lifetime measurement to separate these two effects. By correlating the first resistance jump (spike) to the happening of a complete open across Al-Cu layer, it was found that the shunting effect contributes to enhancement of the lifetime by 4 times in Ti/Al-Cu, 2 times in Al-Cu/Ti, and 2 times in Ti/Al-Cu/Ti. A Ti underlayer was found to contribute mainly the shunting effect. However, from drift velocity measurements and failure mode analysis, it is possible to deduce that a Ti overlayer contributes not only the shunting effect but also another effect that acts to diminish the grain boundary mass transport rate by a factor of about 76. It is believed that the latter effect is a consequence of the high compressive yield stength conferred by the Ti-intermetallic compound overlayer to the Al-Cu layer. Finally, an important non-destructive technique, based on the characteristic x-rays generated by energetic electrons, to characterize the mass divergences in multilayer interconnects, was developed in this research, called SMEISIS, representing Simultaneous Multiple Elements Intensity Scanning of Interconnecting Stripes. This technique was proved to be capable of revealing detail about the shapes, nature, and location of mass divergence that cannot be revealed by thermal wave image technique and that requires time consuming multiple sectioning in TEM and SEM methods.

  20. In-situ neutron diffraction analysis of deformation behavior of ductile rare-earth intermetallic yttrium-copper

    NASA Astrophysics Data System (ADS)

    Williams, Scott H.

    Intermetallic compounds exhibit favorable properties for numerous diverse engineering applications. Many intermetallic compounds possess high strength and high stiffness at elevated temperature, excellent corrosion resistance, and low density, making them potentially useful in a wide range of applications. However, several drawbacks, limited ductility in particular, have prevented these compounds from achieving wide-spread application. In order to make full use of potential of intermetallic compounds, these limitations must be better understood and overcome. In the search for improved ductility in intermetallics, recent findings from an Ames Laboratory research group have uncovered an entire family of compounds possessing the B2 structure which exhibit room temperature tensile ductility. These materials do not require third-element additions, off-stoichiometric chemistry, disordering, or elaborate environmental testing conditions to enhance ductility. Previous studies have investigated various structural and physical properties of this family of compounds, yet the mechanisms for ductility remain uncertain. Low temperature phase transformations are known to occur in several of these compounds. Suggestions for possible mechanisms have included stress-induced phase transformation, as well as the deformation accommodated through crystallographic twinning. In-situ neutron diffraction allows for observations of structural changes and the relationship to macroscopic physical properties. Using this investigation technique, experiments have been conducted to examine rare-earth intermetallic YCu for evidence of phase transformation, twinning, or indications of other deformation behavior. Results give insight into the crystal structure of the compound, indicating a high degree of crystal lattice coherency, and resulting dynamical diffraction behavior not commonly observed in engineering materials.

  1. Measurement of the Second Order Non-linear Susceptibility of Collagen using Polarization Modulation and Phase-sensitive Detection

    SciTech Connect

    Stoller, P; Kim, B-M; Rubenchik, A M; Reiser, K M; Da Silva, L B

    2001-03-03

    The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation (SHG) in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter {gamma} related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.

  2. The Effects of Thermal and Polarization Fluctuations on a Phase Sensitive Strain Monitoring System Utilizing a 3x3 Coupler

    NASA Astrophysics Data System (ADS)

    Wiener, Timothy; Seaver, Mark; Todd, Michael

    2002-03-01

    Recently, Todd et al. introduced a novel fiber Bragg grating (FBG) interrogation system based on a scanning fiber Fabry-Perot (FFP) filter, a Mach-Zehnder interferometer, and a 3x3 coupler for passive demodulation using an intensity-fluctuation independent algorithm [1]. The phase resolution and accuracy of the system is heavily dependent upon a variety of both optical and electronic factors. This paper presents an experimental investigation of variations in the scattering matrix of a 3x3 coupler resulting from variations in temperature and input state-of-polarization (SOP). Results are described in terms of sensitivities of the coupler complex matrix elements to each of the effects, and conclusions regarding sensor system performance are drawn. [1] M. D. Todd et al, "A Novel Bragg Grating Sensor Interrogation System Utilizing a Scanning Filter, a Mach-Zehnder Inteferometer, and a 3x3 Coupler," Meas. Sci. and Technol., Vol. 12, 771-777, 2001.

  3. TiNiSn: A gateway to the (1,1,1) intermetallic compounds

    SciTech Connect

    Cook, B.A.; Harringa, J.L.; Tan, Z.S.; Jesser, W.A.

    1996-06-01

    Recent awareness of the transport properties of Skutterudite pnictides has stimulated an interest in numerous other intermetallic compounds having a gap in the density of states at the Fermi level including the MNiSn compounds where M = (Ti, Zr, Hf). These intermetallic half-Heusler compounds are characterized by high Seebeck coefficients ({minus}150 to {minus}300 {micro}V/deg.) and reasonable carrier mobilities (30 to 50 cm{sup 2}/V-s) at room temperature which make them attractive candidates for intermediate temperature thermoelectric applications. Samples of TiNiSn were prepared by arc melting and homogenized by heat treatment. The temperature dependence of the electrical resistivity, Seebeck coefficient, and thermal diffusivity of these samples was characterized between 22 C and 900 C. The electrical resistivity and thermopower both decrease with temperature although the resistivity decreases at a faster rate. Electrical power factors in excess of 25 {micro}W/cm-C{sup 2} were observed in nearly single phase alloys within a 300 to 600 C temperature range. A brief survey of other selected ternary intermetallic compounds is also presented.

  4. Use of Brazilian disk test to determine properties of metallic-intermetallic laminate composites

    NASA Astrophysics Data System (ADS)

    Jiang, Fengchun; Kulin, Robb M.; Vecchio, Kenneth S.

    2010-01-01

    Metallic-intermetallic laminate (MIL) composites based on Ti-Al3Ti offer a unique combination of structural and ballistic/blast performance capabilities for many defense related platforms. In this study, the Brazilian splitting test was employed, under quasi-static and dynamic loading conditions, using disk specimens cut from the laminate plates in orientations perpendicular (in-plane) and parallel (through-thickness) to the layers. Tests were conducted to evaluate the overall tensile mechanical properties of the Ti-Al3Ti MIL composite, both to determine in-plane tensile properties, as well as the more challenging through-thickness tensile properties. Experimental results indicate that when loaded parallel to the layers, the tensile strength in the through-thickness orientation, determined by Brazilian splitting test, is low, which is not surprising since it is only evaluating the tensile behavior of the brittle intermetallic phase. When loaded perpendicular to the layers, the in-plane tensile strength of the Ti-Al3Ti MIL composites is high due to the contribution of the reinforcement Ti plus the intermetallic component.

  5. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  6. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    SciTech Connect

    Kohashi, Teruo Motai, Kumi; Nishiuchi, Takeshi; Hirosawa, Satoshi

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  7. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.

    PubMed

    Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A

    2015-05-29

    In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively.

  8. Experimental investigation of 84-Gb/s and 112-Gb/s polarization-switched quadrature phase-shift keying signals.

    PubMed

    Fischer, Johannes Karl; Molle, Lutz; Nölle, Markus; Gross, Dirk-Daniel; Schmidt-Langhorst, Carsten; Schubert, Colja

    2011-12-12

    We experimentally investigate 28-GBd (84-Gb/s) and 37.3-GBd (112-Gb/s) polarization-switched quadrature phase-shift keying (PS-QPSK) signals. In single-channel transmission experiments over up to 12500 km ultra large effective area fiber, we compare their performance to that of polarization-division multiplexing quadrature phase-shift keying (PDM-QPSK) signals at the same bit rates. The experimental results show that PS-QPSK not only benefits from its better sensitivity but also offers an increased tolerance to intra-channel nonlinearities. PMID:22274086

  9. A Gate-tunable Polarized Phase of Two-Dimensional Electrons at the LaAlO3/SrTiO3 Interface

    NASA Astrophysics Data System (ADS)

    Joshua, Arjun; Ruhman, Jonathan; Pecker, Sharon; Altman, Ehud; Ilani, Shahal

    2013-03-01

    We show using anisotropic magnetoresistance and anomalous Hall effect measurements that the LaAlO3/SrTiO3 interface has an unconventional phase diagram in the space of electron density and magnetic field. At high densities and fields we observe a polarized phase with crystalline anisotropy. Surprisingly, below a density-dependent critical field the polarization and anisotropy vanish and the resistivity sharply rises. This behavior, unobserved in other magnetic systems, indicates strong coupling between itinerant electrons and localized magnetic moments, enabling gate-tunable magnetism at this interface.

  10. Experimental investigation of 84-Gb/s and 112-Gb/s polarization-switched quadrature phase-shift keying signals.

    PubMed

    Fischer, Johannes Karl; Molle, Lutz; Nölle, Markus; Gross, Dirk-Daniel; Schmidt-Langhorst, Carsten; Schubert, Colja

    2011-12-12

    We experimentally investigate 28-GBd (84-Gb/s) and 37.3-GBd (112-Gb/s) polarization-switched quadrature phase-shift keying (PS-QPSK) signals. In single-channel transmission experiments over up to 12500 km ultra large effective area fiber, we compare their performance to that of polarization-division multiplexing quadrature phase-shift keying (PDM-QPSK) signals at the same bit rates. The experimental results show that PS-QPSK not only benefits from its better sensitivity but also offers an increased tolerance to intra-channel nonlinearities.

  11. SH-SV Polarization Anisotropy:Interpretation of Experimentally Measured Love and Rayleigh Wave Phase Velocities

    NASA Astrophysics Data System (ADS)

    Gurung, G.; Schwab, F. A.; Jo, B. G.; Lee, W. D.; Oh, C. W. W.

    2015-12-01

    It is sometimes not possible to find a single isotropic structure whose computed phase velocities fit both the experimental, fundamental-mode Love and Rayleigh wave data, for earth models that are perfectly elastic and are composed of thick, low contrast layers. Usually, velocity anisotropy of the body waves is applied to the earth models to fit the data. A few early studies used thin, high contrast layers in perfectly-elastic isotropic models to obtain approximate fit to the experimental data; here, we improve and expand this successful isotropic modelling by generalizing to realistic, anelastic layers, and by also requiring a fit to the fundamental-mode Love and Rayleigh wave amplitude-attenuation data. We treat the Love and Rayleigh wave data from the central United States, where this Love-Rayleigh "discrepancy" was discovered by McEvilly. Using only the experimental phase-velocity data, with the insertion of a thin, high contrast LVZ in each of the granitic, basaltic-grabbroic, and olivine regions, we find a continuum of isotropic models that give successful fits to the experimental data. Then by adding experimental amplitude-attenuation to the data, we attempt to reduce this huge volume of isotropic solutions: with the three thin LVZs, we successfully restricted the solutions by simultaneously fitting the experimental data for both Love and Rayleigh wave, phase-velocity and amplitude-attenuation dispersions. However, in the solution the body-wave velocities and Q values of these thin layers are improbably low, and these single-layer LVZs can only be considered effective representations; the true, physical situation requires the replacement of any one of these single-layer LVZs by a vertical distribution of N layers, each having the same thickness as the original thin layer. A simple scaling of the single-layer, seismic velocities and Qs then provides completely reasonable values for these parameters in the N-layer representation (which yields the same

  12. Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves.

    PubMed

    Li, Zhuolin; Li, Mingyu; Xiao, Yong; Wang, Chunqing

    2014-05-01

    Homogeneous intermetallic compound joints are demanded by the semiconductor industry because of their high melting point. In the present work, ultrasonic vibration was applied to Cu/Sn foil/Cu interconnection system at room temperature to form homogeneous Cu6Sn5 and Cu3Sn joints. Compared with other studies based on transient-liquid-phase soldering, the processing time of our method was dramatically reduced from several hours to several seconds. This ultrarapid intermetallic phase formation process resulted from accelerated interdiffusion kinetics, which can be attributed to the sonochemical effects of acoustic cavitation at the interface between the liquid Sn and the solid Cu during the ultrasonic bonding process.

  13. Strengthening by intermetallic nanoprecipitation in Fe–Cr–Al–Ti alloy

    DOE PAGES

    Capdevila, C.; Aranda, M. M.; Rementeria, R.; Chao, J.; Urones-Garrote, E.; Aldazabal, J.; Miller, Michael K.

    2016-02-05

    In this paper, the strengthening mechanism observed during ageing at temperatures of 435 and 475 °C in the oxide dispersion strengthened (ODS) Fe–Cr–Al–Ti system has been investigated. Atom probe tomography (APT) and high-resolution transmission electron microscopy (HRTEM) analyses determined that the alloy undergoes simultaneous precipitation of Cr-rich (α' phase) and nanoscale precipitation of TiAl-rich intermetallic particles (β' phase). APT indicated that the composition of the intermetallic β' phase is Fe2AlTi0.6Cr0.4, and the evolving composition of α' phase with ageing time was also determined. The results obtained from HRTEM analyses allow us to confirm that the β' precipitates exhibit a cubicmore » structure and hence their crystallography is related to the Heusler-type Fe2AlTi (L21) structure. Finally, the strengthening could be explained on the basis of two hardening effects that occur simultaneously: the first is due to the α-α' phase separation through the modulus effect, and the second mechanism is due to the interaction of nanoscale β' particles with dislocations.« less

  14. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light.

    PubMed

    Chen, Gang; Zhang, Kun; Yu, Anping; Wang, Xianyou; Zhang, Zhihai; Li, Yuyan; Wen, Zhongquan; Li, Chen; Dai, Luru; Jiang, Senling; Lin, Feng

    2016-05-16

    Planar lenses are attractive photonic devices due to its minimized size and easy to integrate. However, planar lenses designed in traditional ways are restricted by the diffraction limit. They have difficulties in further reducing the focal spot size beyond the diffraction limit. Super-oscillation provides a possible way to solve the problem. However, lenses based on super-oscillation have always been affected by huge sidelobes, which resulted in limited field of view and difficulties in real applications. To address the problem, in the paper, a far-field sub-diffraction lens based on binary amplitude-phase mask was demonstrated under illumination of linearly polarized plane wave at wavelength 632.8 nm. The lens realized a long focal length of 148λ (94 µm), and the full width at half maximum of the focal line was 0.406λ, which was super-oscillatory. More important is that such a flat lens has small sidelobes and wide field of view. Within the measured range of [-132λ, + 120λ], the maximum sidelobe observed on the focal plane was less than 22% of the central peak. Such binary amplitude-phase planar lens can also be extended to long focal length far-field sub-diffraction focusing lens for other spectrum ranges.

  15. Enantiomer-selective photolysis of cold gas-phase tryptophan in L-serine clusters with linearly polarized light.

    PubMed

    Fujihara, Akimasa; Maeda, Naoto; Hayakawa, Shigeo

    2014-04-01

    Photostability of cold gas-phase tryptophan (Trp) enantiomers in L-serine (L-Ser) clusters at 8 K as a model for interstellar molecular clouds was examined using a tandem mass spectrometer containing a cold ion trap to investigate the hypothesis that homochirality in gas-phase Ser clusters promotes the enantiomeric enrichment of other amino acids via enantiomer-selective photolysis with linearly polarized light. In the UV excitation of heterochiral H(+) (L-Ser) 3(D-Trp), the CO2-eliminated product in the cluster was observed. In contrast, the photodissociation mass spectrum of homochiral H(+)(L-Ser)3(L-Trp) showed that photolysis of amino acids in the cluster did not occur due to the evaporation of L-Ser molecules. In the spectra of the homochiral H(+)(L-Ser) (L-Trp) and heterochiral H(+)(L-Ser) (D-Trp), the evaporation of L-Ser was the primary reaction pathway, and no difference between the L- and D-enantiomers was observed. The findings confirm that when 3 L-Ser units are present in the cluster, the photolytic decomposition of Trp is enantiomerically selective.

  16. Molecular assembly and organic film growth on complex intermetallic surfaces

    NASA Astrophysics Data System (ADS)

    Al-Mahboob, Abdullah; Sharma, Hem Raj; Sadowski, Jerzy T.; Ledieu, Julian; Fournée, Vincent; McGrath, Ronan

    We extensively studied the role of molecular symmetry and symmetry/structures of wide ranges of substrate-surfaces from non-periodic to periodic to quasi-crystalline in nucleation, growth and phase transition in films made of organic molecular materials. Recently, most interest in quasicrystals is due to the generalization of aperiodic ordering to several classes of systems. Compared to periodic materials, these provide a closer approximation to an isotropic first Brillouin zone, which is of great importance to the design of new functional materials. Here, we present results obtained from our ongoing study of interface mediated molecular assembly extended on complex intermetallic surfaces with specific examples of C60 and Zn-phthalocyanine on quasicrystalline and approximant surfaces. We employed in-situ real-time low-energy electron microscopy (LEEM) for investigation of the processes in assembly and film growth and post-growth STM study and DFT calculations to understand structural details and growth mechanism. Research were carried out in part at the Center for Functional Nanomaterials, Brookhaven National Lab, USA; partly at Institut Jean Lamour, Université de Lorraine, France; and partly at the Surface Science Research Centre, University of Liverpool, UK.

  17. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    SciTech Connect

    DiSalvo, Francis J.

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  18. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation

    DOE PAGES

    Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; Goh, Tian Wei; Wang, Lin -Lin; Gustafson, Jeffrey; Pei, Yuchen; Qi, Zhiyuan; Johnson, Duane D.; Zhang, Shiran; Tao, Franklin; et al

    2016-01-28

    In this paper, intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similarmore » activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces.« less

  19. Dual-polarity GaN micropillars grown by metalorganic vapour phase epitaxy: Cross-correlation between structural and optical properties

    SciTech Connect

    Coulon, P. M.; Mexis, M.; Teisseire, M.; Vennéguès, P.; Leroux, M.; Zuniga-Perez, J.; Jublot, M.

    2014-04-21

    Self-assembled catalyst-free GaN micropillars grown on (0001) sapphire substrates by metal organic vapor phase epitaxy are investigated. Transmission electron microscopy, as well as KOH etching, shows the systematic presence of two domains of opposite polarity within each single micropillar. The analysis of the initial growth stages indicates that such double polarity originates at the micropillar/substrate interface, i.e., during the micropillar nucleation, and it propagates along the micropillar. Furthermore, dislocations are also generated at the wire/substrate interface, but bend after several hundreds of nanometers. This leads to micropillars several tens of micrometers in length that are dislocation-free. Spatially resolved cathodoluminescence and microphotoluminescence show large differences in the optical properties of each polarity domain, suggesting unequal impurity/dopant/vacancy incorporation depending on the polarity.

  20. Spatially resolved study of polarized micro-photoluminescence spectroscopy on single GaAs nanowires with mixed zincblende and wurtzite phases

    SciTech Connect

    Mukherjee, Amlan; Ghosh, Sandip; Breuer, Steffen; Jahn, Uwe; Geelhaar, Lutz; Grahn, Holger T.

    2015-02-07

    Localized and polarized photoluminescence spectra are observed in single GaAs nanowires with mixed zincblende and wurtzite phases, grown using molecular beam epitaxy. For low excitation intensities, the photoluminescence emission exhibits narrow spectral features predominantly polarized perpendicular to the nanowire axis. For high excitation intensities, the photoluminescence spectra transform into dominant broadened features, which exhibit different peak energies and polarization properties. The strongly polarized emission at high excitation intensities is identified as being due to a spatially direct transition in wurtzite sections of the nanowires. The analysis, including band structure calculations suggests that carriers in the wurtzite sections diffuse into regions where the average low-temperature peak emission energy and crystal field parameter are 1.535 eV and 20 meV, respectively.

  1. Influence of non-aqueous phase liquid configuration on induced polarization parameters: Conceptual models applied to a time-domain field case study

    NASA Astrophysics Data System (ADS)

    Johansson, Sara; Fiandaca, Gianluca; Dahlin, Torleif

    2015-12-01

    Resistivity and induced polarization (IP) measurements on soil contaminated with non-aqueous phase liquids (NAPLs) show a great variety in results in previous research. Several laboratory studies have suggested that the presence of NAPLs in soil samples generally decrease the magnitude of the IP-effect, while others have indicated the opposite. A number of conceptual models have been proposed suggesting that NAPLs can alter the pore space in different ways, e.g. by coating the grain surfaces and thus inhibiting grain polarization, or by changing the pore throat size and thus affecting the membrane polarization mechanism. The main aim of this paper is to review previously published conceptual models and to introduce some new concepts of possible residual NAPL configurations in the pore space. Time domain induced polarization measurements were performed at a NAPL contaminated field site, and the data were inverted using the Constant Phase Angle (CPA) model and the Cole-Cole model respectively. No significant phase anomalies were observed in the source area of the contamination when the CPA inverted profiles were compared with soil sampling results of free-phase contaminant concentrations. However, relatively strong phase and normalized phase anomalies appeared next to the source area, where residual free-phase presence could be expected according to the chemical data. We conclude that depending on the NAPL configuration, different spectral IP responses can be expected. In previous research, the NAPL configurations in different samples or field sites are often unknown, and this may to some extent explain why different results have been achieved by different authors. In our field case, we believe that the NAPL forms a more or less continuous phase in the pore space of the source zone leading to an absence of IP anomalies. The increase in phase and normalized phase angle observed next to the source zone is interpreted as a degradation zone. The ongoing biodegradation

  2. Polarization induced water molecule dissociation below the first-order electronic-phase transition temperature.

    PubMed

    Das Arulsamy, Andrew; Kregar, Zlatko; Eleršič, Kristina; Modic, Martina; Subramani, Uma Shankar

    2011-09-01

    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature.

  3. Amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots.

    PubMed

    Kyhm, Kwangseuk; Je, Koo-Chul; Taylor, Robert A

    2012-08-27

    We propose an amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots. When the local surface plasmon of a spherical Au quantum dot is in resonance with the exciton energy level of a CdSe quantum dot, a significant enhancement of the linear and nonlinear refractive index is found in both the real and imaginary terms via the interaction with the dipole field of the local surface plasmon. Given a gating pulse intensity, an elliptical polarization induced by the phase retardation is described in terms of elliptical and rotational angles. In the case that a larger excitation than the bleaching intensity is applied, the signal light can be amplified due to the presence of gain in the CdSe quantum dot. This enables a longer propagation of the signal light relative to the metal loss, resulting in more feasible polarization modulation.

  4. Methods for polynuclear aromatic hydrocarbon determination in air samples using polar-bonded phase HPLC and GC-MS with application to oil refinery samples

    SciTech Connect

    Karlesky, K.L.

    1985-01-01

    Particle samples were collected using high volume air samplers fitted with glass fiber filters or with a cascade impactor containing paper filters. They were then cleaned using either extraction with dimethylsulfoxide and pentane or utilizing a small cartridge containing a diamine polar-bonded phase material, the second method being more effective. Vapor phase PAH were sampled using an apparatus designed in the laboratory. After collection, the resins were desorbed with solvent and the PAH content was determined. The suitability of the resins decrease in the following order: Amberlite XAD-2, Chromosorb 105, Tenax GC, coconut charcoal, and Ambesorb XE-348. High performance liquid chromatography (HPLC) was used to determine the behavior of PAH in the normal and reversed phase on polar-bonded phases containing amine, diamine, and pyrrolidone substrates. Results support the proposed mechanism in the normal phase and indicate that both a partitioning and liquid-solid adsorption mechanism takes place in the reversed phase depending upon the mobile phase. Occasionally, these polar-bonded phases can be deactivated by the formation of amine-carbonyl complexes from polar aldehydes or ketones in the solvent or sample. Deactivation can be reversed by flushing with water to hydrolyze the Schiff's base imine back to the amine. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze air samples from oil refineries in Port Arthur, collected over a period of three years. The analytical procedures are applied to the collected samples to determine if they contain detectable amounts of PAH. The GC-MS analysis was adequate for this study but the use of SIM detection is preferred because of the greater sensitivity for PAH.

  5. Surface and finite size effects impact on the phase diagrams, polar, and dielectric properties of (Sr,Bi)Ta2O9 ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Eliseev, E. A.; Semchenko, A. V.; Fomichov, Y. M.; Glinchuk, M. D.; Sidsky, V. V.; Kolos, V. V.; Pleskachevsky, Yu. M.; Silibin, M. V.; Morozovsky, N. V.; Morozovska, A. N.

    2016-05-01

    In the framework of the thermodynamic approach Landau-Ginzburg-Devonshire (LGD) combined with the equations of electrostatics, we investigated the effect of polarization surface screening on finite size effects of the phase diagrams, polar, and dielectric properties of ferroelectric nanoparticles of different shapes. We obtained and analyzed the analytical results for the dependences of the ferroelectric phase transition temperature, critical size, spontaneous polarization, and thermodynamic coercive field on the shape and size of the nanoparticles. The pronounced size effect of these characteristics on the scaling parameter, the ratio of the particle characteristic size to the length of the surface screening, was revealed. Also our modeling predicts a significant impact of the flexo-chemical effect (that is a joint action of flexoelectric effect and chemical pressure) on the temperature of phase transition, polar, and dielectric properties of nanoparticles when their chemical composition deviates from the stoichiometric one. We showed on the example of the stoichiometric nanosized SrBi2Ta2O9 particles that except the vicinity of the critical size, where the system splitting into domains has an important role, results of analytical calculation of the spontaneous polarization have a little difference from the numerical ones. We revealed a strong impact of the flexo-chemical effect on the phase transition temperature, polar, and dielectric properties of SryBi2+xTa2O9 nanoparticles when the ratio Sr/Bi deviates from the stoichiometric value of 0.5 within the range from 0.35 to 0.65. From the analysis of experimental data, we derived the parameters of the theory, namely, the coefficients of expansion of the LGD functional, the contribution of flexo-chemical effect, and the length of the surface screening.

  6. A solid phase extraction procedure for determination of triazine herbicides and polar metabolites in natural waters

    SciTech Connect

    Young, M.S.

    1996-11-01

    Atrazine and related triazine herbicides are used in great quantities throughout the world for pre-emergence weed control. In the central United States, for example, millions of kilograms of triazines are applied each year. In areas of heavy usage, surface water supplies are often affected by runoff of these substances and their transformation products. Therefore, a number of these compounds are routinely monitored in drinking water in the United States, particularly in agricultural areas such as the Mississippi river valley. There is also significant interest regarding the fate and transport of the triazine herbicides in the natural environment. In Europe, where groundwater is utilized for a high proportion of drinking water supplies, the EC has established more stringent limits than has the US EPA. Currently, the US limit is 3 {mu}g/L for atrazine; the European limit is 0.1 {mu}g/L for atrazine or any individual regulated pesticide, and 0.5 {mu}g/L for the sum of all pesticides. Because groundwater levels in agricultural areas were consistently above this limit, Germany banned the use of Atrazine in 1991, and has recommended banning the use of this herbicide throughout the European Community (EC). Clearly, a rugged method for determination of the triazine herbicides is desirable with detection limits in the part per trillion range. Because direct determination at these levels is not usually possible, sample enrichment techniques, such as solid phase extraction (SPE), must be employed. In this study, Porapak RDX Sep-Pak{reg_sign} cartridges were used for trace enrichment of triazines and metabolites.

  7. Scanning force microscopy study of phase segregation in fuel cell membrane materials as a function of solvent polarity and relative humidity

    SciTech Connect

    Hawley, Marilyn Emily; Kim, Yu S; Hjelm, Rex P

    2010-01-01

    Scanning force microscopy (SFM) phase imaging provides a powerful method for directly studying and comparing phase segregation in fuel cell membrane materials due to different preparation and under different temperature and hwnidity exposures. In this work, we explored two parameters that can influence phase segregation: the properties of the solvents used in casting membrane films and how these solvents alter phase segregation after exposure to boiling water as a function of time. SFM was used under ambient conditions to image phase segregation in Nafion samples prepared using five different solvents. Samples were then subjected to water vapor maintained at 100C for periods ranging from 30 minutes to three hours and re-imaged using the same phase imaging conditions. SFM shows what appears to be an increase in phase segregation as a function of solvent polarity that changes as a function of water exposure.

  8. SCB ignition of pyrotechnics, thermites and intermetallics

    SciTech Connect

    Bickes, R.W. Jr.; Grubelich, M.C.

    1996-09-01

    We investigated ignition of pyrotechnics, metal-fuel/metal-oxide compositions (thermites), and exothermic alloy compositions (intermetallics) using a semiconductor bridge (SCB). It was shown that these materials could be ignited at low energy levels with an appropriately designed SCB, proper loading density, and good thermal isolation. Materials tested included Al/CuO, B/BaCrO{sub 4}, TiH{sub 1.65}/KClO{sub 4}, Ti/KClO{sub 4}, Zr/BaCrO{sub 4}, Zr/CuO, Zr/Fe{sub 2}O{sub 3}, Zr/KClO{sub 4}, and 100-mesh Al/Pd. Firing set was a capacitor discharge unit with charge capacitors ranging from 3 to 20,000 {mu}F at charge voltages 5-50 V. Devices functioned a few miliseconds after onset of current pulse at input energies as low as 3 mJ. We also report on a thermite torch design.

  9. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  10. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  11. Thermal stress effects in intermetallic matrix composites

    NASA Astrophysics Data System (ADS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-09-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  12. Effect of solvent strength and temperature on retention for a polar-endcapped, octadecylsiloxane-bonded silica stationary phase with methanol-water mobile phases.

    PubMed

    Kiridena, Waruna; Poole, Colin F; Koziol, Wladyslaw W

    2004-12-10

    Synergi Hydro-RP is a new type of polar-endcapped, octadecylsiloxane-bonded silica packing for reversed-phase liquid chromatography. Its retention properties as a function of solvent strength and temperature are evaluated from the change in retention factors over the composition range (0-70% v/v methanol) and temperature range (25-65 degrees C) using the solvation parameter model and response surface methodologies. The main factors that affect retention are solute size and hydrogen-bond basicity, with minor contributions from solute hydrogen-bond acidity, dipole-type and electron lone pair interactions. Within the easily accessible range for both temperature and solvent strength, the ability to change selectivity is much greater for solvent strength than temperature. Also, a significant portion of the effect of increasing temperature is to reduce retention without changing selectivity. Response surfaces for the system constants are smooth and non-linear, except for cavity formation and dispersion interactions (v system constant), which is linear. Modeling of the response surfaces suggests that solvent strength and temperature are not independent factors for the b, s and e system constants and for the model intercept (c term). PMID:15628160

  13. Oblique incidence effect on steering efficiency of liquid crystal polarization gratings used for optical phased array beam steering amplification

    NASA Astrophysics Data System (ADS)

    Xiangjie, Zhao; Jiazhu, Duan; Dayong, Zhang; Cangli, Liu; Yongquan, Luo

    2016-10-01

    A liquid crystal polarization grating (LCPG) is proposed that amplifies the steering angle of a liquid crystal optical phased array for non-mechanical beam steering, taking advantage of its high steering efficiency under normal incidence. However, oblique incidence may play an important role in the overall steering efficiency. The effect of oblique incidence on steering efficiency of a LCPG was analyzed by numerically solving the extended Jones matrix and considering propagation crosstalk. The results indicate that the outgoing laser beam is amplitude-modulated under the effect of oblique incidence and behaves as a sinusoidal-modulated amplitude grating, which diffracts certain energies to non-blazed orders. Over-oblique incidence may even eliminate the steering effect of the incident beam. The modulation depth of the induced amplitude grating was found to be proportional to the product of sinusoidal value of oblique incidence angle and the LC layer thickness, and inversely proportional to the periodic pitch length of the LCPG. Both in-plane incidence and out-of-plane incidence behave similarly to influence the steering efficiency. Finally, the overall steering efficiency for cascaded LCPGs was analyzed and a difference of up to 11 % steering efficiency can be induced between different LCPG configurations, even without considering the over-oblique incidence effect. Both the modulation depth and final steering efficiency can be optimized by varying the LC birefringence and layer thickness.

  14. Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control.

    PubMed

    Rodrigo, Peter John; Pedersen, Christian

    2010-03-01

    Optimization of signal-to-noise ratio is an important aspect in the design of optical heterodyne detection systems such as a coherent Doppler lidar (CDL). In a CDL, optimal performance is achieved when the noise in the detector signal is dominated by local oscillator shot-noise. Most modern CDL systems are built using rugged and cost-efficient fiber optic components. Unfortunately, leakage signals such as residual reflections inherent within fiber components (e.g. circulator) can introduce phase-induced intensity noise (PIIN) to the Doppler spectrum in a CDL. Such excess noise may be a few orders of magnitude above the shot-noise level within the relevant CDL frequency bandwidth--corrupting the measurement of typically weak backscattered signals. In this study, observation of PIIN in a fiber-based CDL with a master-oscillator power-amplifier tapered semiconductor laser source is reported. Furthermore, we experimentally demonstrate what we believe is a newly proposed method using a simple polarization scheme to reduce PIIN by more than an order of magnitude.

  15. Oblique incidence effect on steering efficiency of liquid crystal polarization gratings used for optical phased array beam steering amplification

    NASA Astrophysics Data System (ADS)

    Xiangjie, Zhao; Jiazhu, Duan; Dayong, Zhang; Cangli, Liu; Yongquan, Luo

    2016-07-01

    A liquid crystal polarization grating (LCPG) is proposed that amplifies the steering angle of a liquid crystal optical phased array for non-mechanical beam steering, taking advantage of its high steering efficiency under normal incidence. However, oblique incidence may play an important role in the overall steering efficiency. The effect of oblique incidence on steering efficiency of a LCPG was analyzed by numerically solving the extended Jones matrix and considering propagation crosstalk. The results indicate that the outgoing laser beam is amplitude-modulated under the effect of oblique incidence and behaves as a sinusoidal-modulated amplitude grating, which diffracts certain energies to non-blazed orders. Over-oblique incidence may even eliminate the steering effect of the incident beam. The modulation depth of the induced amplitude grating was found to be proportional to the product of sinusoidal value of oblique incidence angle and the LC layer thickness, and inversely proportional to the periodic pitch length of the LCPG. Both in-plane incidence and out-of-plane incidence behave similarly to influence the steering efficiency. Finally, the overall steering efficiency for cascaded LCPGs was analyzed and a difference of up to 11 % steering efficiency can be induced between different LCPG configurations, even without considering the over-oblique incidence effect. Both the modulation depth and final steering efficiency can be optimized by varying the LC birefringence and layer thickness.

  16. Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control.

    PubMed

    Rodrigo, Peter John; Pedersen, Christian

    2010-03-01

    Optimization of signal-to-noise ratio is an important aspect in the design of optical heterodyne detection systems such as a coherent Doppler lidar (CDL). In a CDL, optimal performance is achieved when the noise in the detector signal is dominated by local oscillator shot-noise. Most modern CDL systems are built using rugged and cost-efficient fiber optic components. Unfortunately, leakage signals such as residual reflections inherent within fiber components (e.g. circulator) can introduce phase-induced intensity noise (PIIN) to the Doppler spectrum in a CDL. Such excess noise may be a few orders of magnitude above the shot-noise level within the relevant CDL frequency bandwidth--corrupting the measurement of typically weak backscattered signals. In this study, observation of PIIN in a fiber-based CDL with a master-oscillator power-amplifier tapered semiconductor laser source is reported. Furthermore, we experimentally demonstrate what we believe is a newly proposed method using a simple polarization scheme to reduce PIIN by more than an order of magnitude. PMID:20389545

  17. Pressure tuning of competing magnetic interactions in intermetallic CeFe2

    SciTech Connect

    Wang, Jiyang; Feng, Yejun; Jaramillo, R.; van Wezel, Jasper; Canfield, Paul C.; Rosenbaum, T.F.

    2012-07-20

    We use high-pressure magnetic x-ray diffraction and numerical simulation to determine the low-temperature magnetic phase diagram of stoichiometric CeFe2. Near 1.5 GPa we find a transition from ferromagnetism to antiferromagnetism, accompanied by a rhombohedral distortion of the cubic Laves crystal lattice. By comparing pressure and chemical substitution we find that the phase transition is controlled by a shift of magnetic frustration from the Ce-Ce to the Fe-Fe sublattice. Notably the dominant Ce-Fe magnetic interaction, which sets the temperature scale for the onset of long-range order, remains satisfied throughout the phase diagram but does not determine the magnetic ground state. Our results illustrate the complexity of a system with multiple competing magnetic energy scales and lead to a general model for magnetism in cubic Laves phase intermetallic compounds.

  18. Polarizing phase shifting interferometry of total internal reflection light for measurement of refractive index and its spatial variation in liquid samples

    NASA Astrophysics Data System (ADS)

    Das, Tania; Bhattacharya, Kallol

    2016-07-01

    It is well known that the phase change in total internal reflection (TIR) is a function of the refractive indices of the pair of media involved. The spatial phase variations in a totally internally reflected beam are accurately measured using a Mach Zehnder interferometer employing polarization phase shifting technique. The evaluated phase change is then related to the refractive index variations of the rarer medium. One of the salient features of the proposed technique is that, unlike most interferometric methods where the measured phase is a function of the sample thickness, TIR phase is independent of the sample thickness as long as the evanescent wave field is fully confined within the sample. The theory of the technique is discussed and experimental results showing the three-dimensional profiles of the measured refractive indices and its spatial variations are presented.

  19. Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films

    NASA Astrophysics Data System (ADS)

    Park, Min Hyuk; Kim, Han Joon; Lee, Young Hwan; Kim, Yu Jin; Moon, Taehwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong

    2016-07-01

    The broken ferroelectric hysteresis loop achieved from a Hf0.4Zr0.6O2 film was interpreted based on the first order phase transition theory. The two-step polarization switching, which was expected from the theory, could be observed by dynamic pulse switching measurement. The variations in the interfacial capacitance values along with switching time and number of switching cycles could also be estimated from the pulse switching test. Being different from the one-step polarization switching in other ferroelectric films, two-step polarization switching produced two slanted plateau regions where the estimated interfacial capacitance values were different from each other. This could be understood based on the quantitative model of the two-step polarization switching with the involvement of an intermediate nonpolar phase. The Hf0.4Zr0.6O2 film was changed from antiferroelectric-like to ferroelectric-like with the increasing number of electric field cycles, which could be induced by the field driven phase change.

  20. Nondiffracting transversally polarized beam.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-09-01

    Generation of a nondiffracting transversally polarized beam by means of transmitting an azimuthally polarized beam through a multibelt spiral phase hologram and then highly focusing by a high-NA lens is presented. A relatively long depth of focus (∼4.84λ) of the electric field with only radial and azimuthal components is achieved. The polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the polarization is spatially varying and entirely transversally polarized, and the polarization singularity disappears at the beam center, which makes the central bright channel possible. PMID:21886250

  1. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a birefringent nonlinear PCF.

    PubMed

    Mahmood, T; Cannon, B M; Astar, W; Carter, G M

    2014-12-29

    Polarization-insensitive (PI) all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK was successfully demonstrated in a birefringent nonlinear photonic crystal fiber (PCF), by utilizing cross-phase modulation (XPM) and the inherent birefringence of the device, for the first time. PI operation was achieved by launching the probe and one pump off-axis while the state of polarization (SOP) of the other pump was randomized. Optimum pump-probe detuning, all within the C-Band, was also utilized to reduce the polarization-induced power fluctuation. Receiver sensitivity penalty at 10-9 bit-error-rate was < 5.5 dB in PI operation, relative to the FPGA-precoded RZ-DQPSK baseline. PMID:25607146

  2. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a birefringent nonlinear PCF.

    PubMed

    Mahmood, T; Cannon, B M; Astar, W; Carter, G M

    2014-12-29

    Polarization-insensitive (PI) all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK was successfully demonstrated in a birefringent nonlinear photonic crystal fiber (PCF), by utilizing cross-phase modulation (XPM) and the inherent birefringence of the device, for the first time. PI operation was achieved by launching the probe and one pump off-axis while the state of polarization (SOP) of the other pump was randomized. Optimum pump-probe detuning, all within the C-Band, was also utilized to reduce the polarization-induced power fluctuation. Receiver sensitivity penalty at 10-9 bit-error-rate was < 5.5 dB in PI operation, relative to the FPGA-precoded RZ-DQPSK baseline.

  3. Micromechanisms of monotonic and cyclic subcritical crack growth in advanced high-melting-point low-ductility intermetallics. Annual report No. 1, 15 Apr 90-14 Apr 91

    SciTech Connect

    Rao, K.T.; Murugesh, L.; DeJonghe, L.C.

    1991-05-01

    The next generation of high-performance jet engines will require markedly stiffer materials, operating at higher stress levels and capable of withstanding temperatures of up to 1650 C. Prime candidates for such applications include ordered intermetallics, ceramics and composites based on metal, intermetallic and ceramic or carbon matrices, all of which are currently of limited use due to their low ductility and fracture properties. Moreover, there is a lack of fundamental understanding on the micromechanisms influencing crack growth in these materials, particularly intermetallics. Accordingly, the present study is aimed at exploring the potential of intermetallic alloys and their composites as advanced structural materials by identifying the critical factors influencing the crack-propagation resistance under monotonic and cyclic loads. Attention is focused on the Nb{sub 3}Al and TiAl intermetallic systems. In both cases, the principal mechanism of toughening is to impede crack advance from crack bridging by ductile second phase particles. Reactive sintering and vacuum hot pressing techniques are successful is processing Nb{sub 3}Al intermetallics and duplex Nb/Nb{sub 3}Al microstructure with a stringy niobium phase can be achieved through thermal treatments. Characterization of mechanical properties will commence in the second year.

  4. Explosive reaction pressing of intermetallic compounds from stoichiometric powder mixtures

    SciTech Connect

    Kochsiek, D.; Pruemmer, R.; Brunold, A.

    1995-09-01

    Intermetallic NiAl, TiAl, and TiAl{sub 3} were synthesized by shock compression experiments from stoichiometric powder mixtures of nickel and aluminium as well as of titanium and aluminium. Good consolidation and complete intermetallic reaction were achieved by the direct method of explosive compaction. For each powder mixture, a certain individual threshold pressure has to be exceeded in order to initiate intermetallic reaction. The reacting compounds melted completely with subsequent rapid solidification during the passage of the shock wave. The new material shows high hardness. Pores are formed by gaseous reaction products in the NiAl and TiAl{sub 3} compacts. The TiAl structure is fully-dense and dendritic.

  5. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1996-01-01

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  6. Intermetallic alloy welding wires and method for fabricating the same

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  7. Behavior of alloys of the PtPd intermetallic compound with Hf and Zr in the electrosynthesis of peroxo salts

    SciTech Connect

    Toroptseva, N.T.; Vaseva, A.Yu.

    1988-08-10

    The objective of this study was to investigate the behavior of anodes made of alloys of the PtPd intermetallic compound with Hf and Zr in the synthesis of potassium peroxodicarbonates and peroxoborates. The investigations were based on polarization measurements in different regimes on stationary and rotating electrodes, the determination of the current yield of active oxygen in galvano- and potentiostatic syntheses, and the study of the kinetics of catalytic decomposition of peroxide solutions in the presence of the electrode in the range 289-308 K.

  8. Modeling of Substitutional Site Preference in Ordered Intermetallic Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    1998-01-01

    We investigate the site substitution scheme of specific alloying elements in ordered compounds and the dependence of site occupancy on compound stoichiometry, alloy concentration. This basic knowledge, and the interactions with other alloying additions are necessary in order to predict and understand the effect of various alloying schemes on the physical properties of a material, its response to various temperature treatments, and the resulting mechanical properties. Many theoretical methods can provide useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. With this in mind, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed to overcome these limitations, with the intent of providing an useful tool for the theoretical prediction of fundamental properties and structure of complex systems. After a brief description of the BFS method, its use for the determination of site substitution schemes for individual as well as collective alloying additions to intermetallic systems is described, including results for the concentration dependence of the lattice parameter. Focusing on B2 NiAl, FeAl and CoAl alloys, the energetics of Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W alloying additions are surveyed. The effect of single additions as well as the result of two simultaneous additions, discussing the interaction between additions and their influence on site preference schemes is considered. Finally, the BFS analysis is extended to ternary L1(sub 2) (Heusler phase) alloys. A comparison between experimental and theoretical results for the limited number of cases for which experimental data is available is also included.

  9. Up-and-coming IMCs. [Intermetallic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bowman, Randy; Noebe, Ronald

    1989-01-01

    While the good oxidation and environmental resistance, high melting points, and comparatively low densities of such ordered intermetallics as Ti3Al, NiAl, FeAl, and NbAl3 render them good candidates for advanced aerospace structures, their poor toughness at low temperatures and low strength at elevated temperatures have prompted the development of fiber-reinforced intermetallic-matrix composites (IMCs) with more balanced characteristics. Fabrication methods for continuous-fiber IMCs under development include the P/M 'powder cloth' method, the foil/fiber method, and thermal spraying. The ultimate success of IMCs depends on fibers truly compatible with the matrix materials.

  10. ESCA studies of methanation catalysts derived from intermetallic compounds

    SciTech Connect

    Chin, R.L.; Elattar, A.; Wallace, W.E.; Hercules, D.M.

    1980-10-30

    Studies of methanation catalysts derived from intermetallic compounds provided evidence that the high activity previously reported for ThNi/sub 5/ for the methanation reaction was due to a surface enrichment of the catalyst with nickel during reduction in hydrogen at 300/sup 0/C or during the reaction of carbon monoxide with hydrogen. The less active thorium oxide/nickel catalyst prepared by a conventional impregnation method had a much lower surface concentration of metallic nickel. The deactivation of the ThCo/sub 5/ intermetallic compound by deposition of graphitic carbon was also confirmed.

  11. Controlling the polarity of metalorganic vapor phase epitaxy-grown GaP on Si(111) for subsequent III-V nanowire growth

    SciTech Connect

    Paszuk, A.; Steidl, M.; Zhao, W.; Dobrich, A.; Kleinschmidt, P.; Brückner, S.; Supplie, O.; Hannappel, T.; Prost, W.

    2015-06-08

    Nanowire growth on heteroepitaxial GaP/Si(111) by metalorganic vapor phase epitaxy requires the [-1-1-1] face, i.e., GaP(111) material with B-type polarity. Low-energy electron diffraction (LEED) allows us to identify the polarity of GaP grown on Si(111), since (2×2) and (1×1) surface reconstructions are associated with GaP(111)A and GaP(111)B, respectively. In dependence on the pre-growth treatment of the Si(111) substrates, we were able to control the polarity of the GaP buffers. GaP films grown on the H-terminated Si(111) surface exhibited A-type polarity, while GaP grown on Si surfaces terminated with arsenic exhibited a (1×1) LEED pattern, indicating B-type polarity. We obtained vertical GaAs nanowire growth on heteroepitaxial GaP with (1×1) surface reconstruction only, in agreement with growth experiments on homoepitaxially grown GaP(111)

  12. Degradation behavior of Ca-Mg-Zn intermetallic compounds for use as biodegradable implant materials.

    PubMed

    Hagihara, Koji; Shakudo, Shuhei; Fujii, Kenta; Nakano, Takayoshi

    2014-11-01

    With the goal of developing new biodegradable implant materials, we have investigated the degradation behavior of (Ca, Mg)-based intermetallic compounds. The degradation behavior of the compounds within the Ca-Mg-Zn system was roughly classified into four groups, and their behaviors were strongly influenced by the compositions of the compounds. For example, the Ca3MgxZn(15-x) compound exhibited a large solubility region with varying the Mg/Zn ratio, and the Ca3Mg12Zn3 phase alloy with the lowest Zn content was rapidly broken apart within 6h of immersion. Alternatively, the Ca3Mg4.6Zn10.4 phase alloy with the highest Zn content retained the bulk shape even after 250 h of immersion. These varying degradation behaviors were ascribed to the difference in the formability of Zn oxide as a protective layer against corrosion on the specimen surfaces, depending on the Zn content. The gained results suggest that there is a feasibility on developing new biodegradable materials based on intermetallic compounds in which the degradation rate can be controlled by their compositions.

  13. Controlling the cation distribution and electric polarization with epitaxial strain in Aurivillius-phase Bi5FeTi3O15

    NASA Astrophysics Data System (ADS)

    Birenbaum, Axiel Yaël; Ederer, Claude

    2016-02-01

    This work explores the impact of in-plane bi-axial (epitaxial) strain on the cation distribution and electric polarization of the Aurivillius-phase compound Bi5FeTi3O15 using first-principles electronic structure calculations. Our calculations indicate that the site preference of the Fe3+ cation can be controlled via epitaxial strain. Tensile strain enhances the preference for the inner sites within the perovskite-like layers of the Aurivillius-phase structure, whereas compressive strain favors occupation of the outer sites, i.e., the sites close to the Bi2O2 layer. Controlling the distribution of the magnetic cations offers the possibility to control magnetic order in this magnetically dilute system. Furthermore, the magnitude of the electric polarization is strongly strain-dependent, increasing under tensile strain and decreasing under compressive strain. We find strongly anomalous Born effective charges, both of the Bi3+ and the Ti4+ cations.

  14. Evaluation of non-conventional polar modifiers on immobilized chiral stationary phases for improved resolution of enantiomers by supercritical fluid chromatography.

    PubMed

    DaSilva, Jimmy O; Coes, Brandyce; Frey, Lisa; Mergelsberg, Ingrid; McClain, Ray; Nogle, Lisa; Welch, Christopher J

    2014-02-01

    An evaluation of the use of non-conventional polar modifiers for the supercritical fluid chromatographic separation of enantiomers on immobilized chiral stationary phases is presented. The resolution of a group of nine commercially available racemates is studied on the Chiralpak IA, IB, IC, ID, IE, and IF chiral stationary phases using CO2-based eluents containing non-conventional polar modifiers such as dichloromethane, chloroform, tetrahydrofuran, 2-methyl tetrahydrofuran, methyl tert-butyl ether, cyclopentyl methyl ether, acetone, ethyl acetate, toluene, 2,2,2-trifluoroethanol, and N,N-dimethylformamide. Screening experiments and method development for the commercial racemates on the immobilized columns with the non-conventional solvents demonstrated an ability to adjust the retention and improve resolution. From these results we were able to assign a general eluotropic relationship between the non-conventional solvents and methanol. A general ability to selectively adjust chromatographic retention while improving analyte solubility can lead to improved preparative chromatographic performance. PMID:24456706

  15. Determining factor of median diameter in intermetallic compound nanoparticles prepared by pulsed wire discharge

    NASA Astrophysics Data System (ADS)

    Nagasawa, Shinobu; Koishi, Tetsuya; Tokoi, Yoshinori; Suzuki, Tsuneo; Nakayama, Tadachika; Suematsu, Hisayuki; Niihara, Koichi

    2014-02-01

    The preparation of NiAl intermetallic compound nanoparticles was carried out by pulsed wire discharge (PWD) using twisted pure Ni and Al wires in N2 ambient gas with varying number of turns of the wire (Nt), energy ratio (K), and ambient gas pressure (P). From the voltage and current waveforms during the wire heating, the energy deposition ratio up to the voltage peak (Kp) was calculated. It increased with an increase in Nt to 0.4 turns/mm and with increases in K and P. Under all the conditions, with an increase in Kp, the Ni composition ratio of the prepared particles (CNi) became closer to that of the wire (= 51.2 mol %). Furthermore, the collection rate (Rc) increased and the median particle diameter (d50) decreased. In particular, the change in d50 due to the change in Nt was not predicted by the relationship of d50 and Dth in our previous report. Single-phase NiAl intermetallic compound nanoparticles were successfully prepared under the condition in which Nt is 0.4 turns/mm, K is 3.4, and P is 100 kPa, where relatively high value of Kp was obtained. From these results, Kp was determined to be an important factor that determines the composition, collection rate, and median diameter of intermetallic compound nanoparticles synthesized by PWD using different kinds of twisted wires under various experimental conditions. This may be because of the selective wire heating in high-resistance parts that are associated with the introduction of lattice defects and/or necks by overwinding.

  16. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.

    PubMed

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J

    2015-02-01

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  17. SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio

    2015-05-01

    Plates of Al-(a)Si-(b)Cu-Mg-(c)Fe alloys with varying content of (mass pct) Si ( a = 3, 4.5, 7.5, 9, 10, or 11), Cu ( b = 0, 1, or 4), and Fe ( c = 0.2, 0.5 or 0.8) were cast in sand molds with a heavy chill at one end to ensure quasi-directional solidification over a wide range of Secondary Dendrite Arm Spacing (SDAS). Statistical analysis on the size of the β-Al5FeSi, α-Al8Fe2Si, or Al2Cu intermetallics on Backscattered Electron images showed that a high Si content reduced the size of the β platelets in alloys with up to 0.5 Fe content regardless of the SDAS, whereas at small SDAS the refining effect extended up to 0.8 Fe, and involved α-phase intermetallics which replaced the beta platelets at those concentrations. At low Si contents, a high Cu level appeared to have similar refining effects as increased Si, through the formation of α-phase particles in the post-eutectic stage which agglomerated with the Al2Cu intermetallics. A high content of Si appears to make the overall refining process less critical in terms of SDAS/cooling rate.

  18. New insight into probe-location dependent polarity and hydration at lipid/water interfaces: comparison between gel- and fluid-phases of lipid bilayers.

    PubMed

    Singh, Moirangthem Kiran; Shweta, Him; Khan, Mohammad Firoz; Sen, Sobhan

    2016-09-21

    Environment polarity and hydration at lipid/water interfaces play important roles in membrane biology, which are investigated here using a new homologous series of 4-aminophthalimide-based fluorescent molecules (4AP-Cn; n = 2-10, 12) having different lipophilicities (octanol/water partition coefficient - log P). We show that 4AP-Cn molecules probe a peculiar stepwise polarity (E) profile at the lipid/water interface of the gel-phase (Lβ') DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature, which was not anticipated in earlier studies. However, the same molecules probe only a subtle but continuous polarity change at the interface of water and the fluid-phase (Lα) DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayer at room temperature. Fluorescence quenching experiments indicate that solutes with different log P values adsorb at different depths across DPPC/water and DOPC/water interfaces, which correlate with the polarity profiles observed at the interfaces. Molecular dynamics simulations performed on eight probe-lipid systems (four in each of the DPPC and DOPC bilayers - a total run of 2.6 μs) support experimental results, providing further information on the relative position and angle distributions as well as hydration of probes at the interfaces. Simulation results indicate that besides positions, probe orientations also play an important role in defining the local dielectric environment by controlling the probes' exposure to water at the interfaces especially of the gel-phase DPPC bilayer. The results suggest that 4AP-Cn probes are well suited for studying solvation properties at lipid/water interfaces of gel- and fluid-phases simultaneously. PMID:27147404

  19. New insight into probe-location dependent polarity and hydration at lipid/water interfaces: comparison between gel- and fluid-phases of lipid bilayers.

    PubMed

    Singh, Moirangthem Kiran; Shweta, Him; Khan, Mohammad Firoz; Sen, Sobhan

    2016-09-21

    Environment polarity and hydration at lipid/water interfaces play important roles in membrane biology, which are investigated here using a new homologous series of 4-aminophthalimide-based fluorescent molecules (4AP-Cn; n = 2-10, 12) having different lipophilicities (octanol/water partition coefficient - log P). We show that 4AP-Cn molecules probe a peculiar stepwise polarity (E) profile at the lipid/water interface of the gel-phase (Lβ') DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature, which was not anticipated in earlier studies. However, the same molecules probe only a subtle but continuous polarity change at the interface of water and the fluid-phase (Lα) DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayer at room temperature. Fluorescence quenching experiments indicate that solutes with different log P values adsorb at different depths across DPPC/water and DOPC/water interfaces, which correlate with the polarity profiles observed at the interfaces. Molecular dynamics simulations performed on eight probe-lipid systems (four in each of the DPPC and DOPC bilayers - a total run of 2.6 μs) support experimental results, providing further information on the relative position and angle distributions as well as hydration of probes at the interfaces. Simulation results indicate that besides positions, probe orientations also play an important role in defining the local dielectric environment by controlling the probes' exposure to water at the interfaces especially of the gel-phase DPPC bilayer. The results suggest that 4AP-Cn probes are well suited for studying solvation properties at lipid/water interfaces of gel- and fluid-phases simultaneously.

  20. The rich phase behavior of the thermopolarization of water: from a reversal in the polarization, to enhancement near criticality conditions.

    PubMed

    Iriarte-Carretero, Irene; Gonzalez, Miguel A; Armstrong, Jeff; Fernandez-Alonso, Felix; Bresme, Fernando

    2016-07-20

    We investigate using non-equilibrium molecular dynamics simulations the polarization of water induced by thermal gradients using the accurate TIP4P/2005 water model. The full dependence of the polarization covering a wide range of thermodynamic states, from near supercritical to ambient conditions, is reported. Our results show a strong dependence of the thermo-polarization field with the thermodynamic state. The field features a strong enhancement near the critical point, which can be rationalized in terms of the large increase and ultimately the divergence of the thermal expansion of the fluid at the critical temperature. We also show that the TIP4P/2005 model features a reversal in the sign of the thermal polarization at densities ∼1 g cm(-3). The latter result is consistent with the recent observation of this reversal phenomenon in SPC/E water and points the existence of this general physical phenomenon in water. PMID:27397622

  1. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  2. All-optical generation of binary phase-coded microwave signal based on cross-polarization modulation in a highly nonlinear fiber.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Zhu, Ning Hua

    2014-03-15

    We report a novel all-optical approach to generate a binary phase-coded microwave signal based on a cross-polarization modulation effect in a highly nonlinear fiber. The carrier frequency of the binary phase-coded microwave signal is widely tunable. Moreover, the precise π phase shift of the microwave signal is independent of the optical power of the control beam. The proposed approach is theoretically analyzed and experimentally verified. For a proof-of-concept demonstration, the binary phase-coded microwave signals with a carrier frequency of 20 GHz at a coding rate of 5  Gb/s and with a carrier frequency of 30 GHz at a coding rate of 7.5  Gb/s are experimentally generated. The pulse compression capability of the system is also evaluated. The measured and simulated results fit well with each other.

  3. Unique intermetallic compounds prepared by shock wave synthesis

    NASA Technical Reports Server (NTRS)

    Otto, G.; Reece, O. Y.; Roy, U.

    1971-01-01

    Technique compresses fine ground metallic powder mixture beyond crystal fusion point. Absence of vapor pressure voids and elimination of incongruous effects permit application of technique to large scale fabrication of intermetallic compounds with specific characteristics, e.g., semiconduction, superconduction, or magnetic properties.

  4. Cell polarity

    PubMed Central

    Romereim, Sarah M

    2011-01-01

    Despite extensive genetic analysis of the dynamic multi-phase process that transforms a small population of lateral plate mesoderm into the mature limb skeleton, the mechanisms by which signaling pathways regulate cellular behaviors to generate morphogenetic forces are not known. Recently, a series of papers have offered the intriguing possibility that regulated cell polarity fine-tunes the morphogenetic process via orienting cell axes, division planes and cell movements. Wnt5a-mediated non-canonical signaling, which may include planar cell polarity, has emerged as a common thread in the otherwise distinct signaling networks that regulate morphogenesis in each phase of limb development. These findings position the limb as a key model to elucidate how global tissue patterning pathways direct local differences in cell behavior that, in turn, generate growth and form. PMID:22064549

  5. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    SciTech Connect

    Priyotomo, Gadang Nuraini, Lutviasari; Kaneno, Yasuyuki

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  6. The effect of pH on the corrosion behavior of intermetallic compounds Ni3(Si,Ti) and Ni3(Si,Ti) + 2Mo in sodium chloride solutions

    NASA Astrophysics Data System (ADS)

    Priyotomo, Gadang; Nuraini, Lutviasari; Kaneno, Yasuyuki

    2015-12-01

    The corrosion behavior of the intermetallic compounds, Ni3(Si,Ti) (L12: single phase) and Ni3(Si,Ti) + 2Mo (L12 and (L12 + Niss) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m3 NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni3(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni3(Si,Ti)+2Mo had the preferential dissolution of L12 compared to (L12 + Niss) mixture region at lower pH, while pitting attack occurred in (L12 + Niss) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni3(Si,Ti)+2Mo is lower than that of Ni3(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  7. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection

    PubMed Central

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications. PMID:26203382

  8. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    PubMed

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  9. Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials

    SciTech Connect

    Nie, Anmin; Gan, Li-yong; Cheng, Yingchun; Tao, Xinyong; Yuan, Yifei; Sharifi-Asl, Soroosh; He, Kun; Asayesh-Ardakani, Hasti; Vasiraju, Venkata; Lu, Jun; Mashayek, Farzad; Klie, Robert; Vaddiraju, Sreeram; Schwingenschlögl, Udo; Shahbazian-Yassar, Reza

    2015-12-17

    The progress on sodium-ion battery technology faces many grand challenges, one of which is the considerably lower rate of sodium insertion/deinsertion in electrode materials due to the larger size of sodium (Na) ions and complicated redox reactions compared to the lithium-ion systems. Here, it is demonstrated that sodium ions can be reversibly stored in Zn-Sb intermetallic nanowires at speeds that can exceed 295 nm s-1. Remarkably, these values are one to three orders of magnitude higher than the sodiation rate of other nanowires electrochemically tested with in situ transmission electron micro­scopy. It is found that the nanowires display about 161% volume expansion after the first sodiation and then cycle with an 83% reversible volume expansion. Despite their massive expansion, the nanowires can be cycled without any cracking or facture during the ultrafast sodiation/desodiation process. Additionally, most of the phases involved in the sodiation/desodiation process possess high electrical conductivity. More specifically, the NaZnSb exhibits a layered structure, which provides channels for fast Na+ diffusion. This observation indicates that Zn-Sb intermetallic nanomaterials offer great promise as high rate and good cycling stability anodic materials for the next generation of sodium-ion batteries.

  10. Properties Evaluation and Studying Production Mechanism of Nanocrystalline NiAl Intermetallic Compound by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Khajesarvi, Ali; Akbari, Golamhossein

    2016-04-01

    Ni50Al50 intermetallic compound was synthesized by mechanical alloying (MA) of elemental mixtures of Ni and Al powders in a planetary ball mill. After 16 hours of milling and obtaining crystallites with a critical size, the initial NiAl compound was formed along with the combustive reaction after opening the vial lid. In the time interval of 16 to 128 hours, the reaction from combustive state reached the explosive state. Finally, after 128 hours of milling, the initial powders were wholly transformed into NiAl before completion of the milling time. Structural changes of powder particles during MA were studied by X-ray diffractometry and scanning electron microscopy. The crystallite size measurements revealed that the grain size of the NiAl phase decreased from 155 to 26 nm with increasing MA time from 8 to 128 hours. Microhardness for nanocrystalline Ni50Al50 intermetallic compound produced after 128 hours of milling was measured as about 350 Hv.

  11. Structural evolution of an intermetallic Pd-Zn catalyst selective for propane dehydrogenation.

    PubMed

    Gallagher, James R; Childers, David J; Zhao, Haiyan; Winans, Randall E; Meyer, Randall J; Miller, Jeffrey T

    2015-11-14

    We report the structural evolution of Pd-Zn alloys in a 3.6% Pd-12% Zn/Al2O3 catalyst which is selective for propane dehydrogenation. High signal-to-noise, in situ synchrotron X-ray diffraction (XRD) was used quantitatively, in addition to in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) and extended X-ray absorption fine structure (EXAFS) to follow the structural changes in the catalyst as a function of reduction temperature. XRD in conjunction with DRIFTS of adsorbed CO indicated that the β1-PdZn intermetallic alloy structure formed at reduction temperatures as low as 230 °C, likely first at the surface, but did not form extensively throughout the bulk until 500 °C which was supported by in situ EXAFS. DRIFTS results suggested there was little change in the surfaces of the nanoparticles above 325 °C. The intermetallic alloy which formed was Pd-rich at all temperatures but became less Pd-rich with increasing reduction temperature as more Zn incorporated into the structure. In addition to the β1-PdZn alloy, a solid solution phase with face-center cubic structure (α-PdZn) was present in the catalyst, also becoming more Zn-rich with increasing reduction temperature.

  12. Observations of a dynamical-to-kinematic diffraction transition in plastically deformed polycrystalline intermetallic YCu

    SciTech Connect

    Williams, Scott H.; Brown, Donald W.; Clausen, Bjorn; Russell, Alan; Gschneidner Jr., Karl A.

    2014-03-01

    Unlike most intermetallic compounds, polycrystalline YCu, a B2 (CsCl-type) intermetallic, is ductile at room temperature. The mechanisms for this behavior are not fully understood. In situ neutron diffraction was used to investigate whether a stress-induced phase transformation or twinning contribute to the ductility; however, neither mechanism was found to be active in YCu. Surprisingly, this study revealed that the intensities of the diffraction peaks increased after plastic deformation. It is thought that annealing the samples created nearly perfect crystallinity, and subsequent deformation reduced this high degree of lattice coherency, resulting in a modified mosaic structure that decreased or eliminated the extinction effect. Analysis of changes in diffraction peak intensity showed a region of primary plasticity that exhibits significant changes in diffraction behavior. Fully annealed samples initially contain diffracting volumes large enough to follow the dynamical theory of diffraction. When loaded beyond the yield point, dislocation motion disrupts the lattice perfection, and the diffracting volume is reduced to the point that diffraction follows the kinematic theory of diffraction. Since the sample preparation and deformation mechanisms present in this study are common in numerous material systems, this dynamical to kinematic diffraction transition should also be considered in other diffraction experiments. These measurements also suggest the possibility of a new method of investigating structural characteristics. (C) 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  13. Understanding and optimizing microstrip patch antenna cross polarization radiation on element level for demanding phased array antennas in weather radar applications

    NASA Astrophysics Data System (ADS)

    Vollbracht, D.

    2015-11-01

    The antenna cross polarization suppression (CPS) is of significant importance for the accurate calculation of polarimetric weather radar moments. State-of-the-art reflector antennas fulfill these requirements, but phased array antennas are changing their CPS during the main beam shift, off-broadside direction. Since the cross polarization (x-pol) of the array pattern is affected by the x-pol element factor, the single antenna element should be designed for maximum CPS, not only at broadside, but also for the complete angular electronic scan (e-scan) range of the phased array antenna main beam positions. Different methods for reducing the x-pol radiation from microstrip patch antenna elements, available from literature sources, are discussed and summarized. The potential x-pol sources from probe fed microstrip patch antennas are investigated. Due to the lack of literature references, circular and square shaped X-Band radiators are compared in their x-pol performance and the microstrip patch antenna size variation was analyzed for improved x-pol pattern. Furthermore, the most promising technique for the reduction of x-pol radiation, namely "differential feeding with two RF signals 180° out of phase", is compared to single fed patch antennas and thoroughly investigated for phased array applications with simulation results from CST MICROWAVE STUDIO (CST MWS). A new explanation for the excellent port isolation of dual linear polarized and differential fed patch antennas is given graphically. The antenna radiation pattern from single fed and differential fed microstrip patch antennas are analyzed and the shapes of the x-pol patterns are discussed with the well-known cavity model. Moreover, two new visual based electromagnetic approaches for the explanation of the x-pol generation will be given: the field line approach and the surface current distribution approach provide new insight in understanding the generation of x-pol component in microstrip patch antenna radiation

  14. Polarization Considerations

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene

    1998-01-01

    As light passes through a optical system the reflections and refractions will in general change the polarization state of the light. If we assume that all of the materials in the thin film coatings and substrate are isotropic and homogeneous then calculating the amount of "instrumental" polarization is a relatively straight forward task. In the following sections we will present a of the steps required to perform a 'polarization ray trace' calculation for a single ray and monochromatic and hence polarized light. The thin film portion of the calculation is also shown. The reason for explicitly showing the thin film equations is that there are sign conventions imposed on the boundary value equations by the orientation and handedness of the various coordinate frames which are attached to the geometric rays. The attenuation of light through a optical system, is relatively simple, and requires at the very least a lens (average) reflectivity or transmissivity. Determining the polarization sensitivity of a optical system is still relatively straight forward requiring at least a knowledge of the behavior of the "s" and "p" components at each interface for the chief ray. Determining the thin film induced aberrations of a optical system are somewhat more demanding. Questions about the arithmetic sign of the phase factors and how this relates to the overall "OPD" of a ray are ubiquitous. Many rays are required to construct a wavefront. Thin film codes which modify the OPD's of rays are a requirement for this last mentioned computation. This requires a consistent scheme of coordinate frames and sign conventions and is probably the most demanding task of a polarization ray trace. Only the electric field will used in the discussion. This is not a restriction as the Stokes parameters are functions of the electric field. The following does not attempt to explain, but only to present all of the required concepts and formulas.

  15. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver.

    PubMed

    Portuondo-Campa, Erwin; Buchs, Gilles; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-12-14

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz at 10 MHz offset frequency has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs' timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the phase-noise limitations in the system. PMID:26699033

  16. CP-conserving unparticle phase effects on the unpolarized and polarized direct CP asymmetry in b{yields}dl{sup +}l{sup -} transition

    SciTech Connect

    Bashiry, V.

    2008-05-01

    We examine the unparticle CP-conserving phase effects on the direct CP asymmetry for both polarized and unpolarized leptons in the inclusive b{yields}dl{sup +}l{sup -} transition, where the flavor-changing neutral currents are forbidden at tree level but are induced by one-loop penguin diagrams. The averaged polarized and unpolarized CP asymmetries depict strong dependency on the unparticle parameters. In particular, a sizable discrepancy corresponding to the standard model is achieved when the scale dimension value is 1

  17. Analysis of interface formation mechanism in GaN double-polarity selective-area growth by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kuze, Kenta; Osumi, Noriyuki; Fujita, Yohei; Inoue, Yoku; Nakano, Takayuki

    2016-05-01

    The fabrication of quasi-phase-matching (QPM) crystals by selective-area growth on the two asymmetrically polar surfaces of GaN is examined. We attempted the fabrication of GaN-QPM crystals by one-time growth using a carbon mask. For GaN double-polarity selective-area growth (DP-SAG), we investigated the effect of varied nitriding times of the Al2O3 templates patterned with the carbon mask. We optimized the nitriding conditions for the DP-SAG process, and evaluated the substrate fabricated by the optimized DP-SAG process. In addition, we examined the interface formation mechanism of DP-GaN fabricated by GaN DP-SAG process. We determined that it is possible to fabricate DP-GaN with a sharp interface by optimizing the growth conditions.

  18. Capillary electrochromatography with polyacrylamide monolithic stationary phases having bonded dodecyl ligands and sulfonic acid groups: evaluation of column performance with alkyl phenyl ketones and neutral moderately polar pesticides.

    PubMed

    Zhang, M; El Rassi, Z

    2001-08-01

    In this report, we describe the preparation of porous polyacrylamide-based monolithic columns via vinyl polymerization. These monoliths possess in their structures bonded dodecyl ligands and sulfonic acid groups. While the sulfonic acid groups are meant to support the electroosmotic flow (EOF) necessary for moving the mobile phase through the monolithic capillary, the dodecyl ligands are introduced to provide the nonpolar sites for chromatographic retention. However, incorporating the sulfonic acid groups in the monoliths does not only support the EOF but also exhibit hydrophilic interaction with moderately polar compounds such as urea herbicides and carbamates insecticides. Consequently, mixed-mode (reversed-phase/normal phase) retention behavior is observed with neutral and moderately polar pesticides. The amount of sulfonic acid group in the monolith can be conveniently adjusted by changing the amount of vinylsulfonic acid added to the polymerization reaction. Optimum EOF velocity and adequate chromatographic retention are obtained when 15% vinylsulfonic acid is added to the reaction mixture. Under these conditions, rapid separation and high plate counts reaching greater than 400000 plates/m are readily obtained.

  19. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface.

    PubMed

    Joshua, Arjun; Ruhman, Jonathan; Pecker, Sharon; Altman, Ehud; Ilani, Shahal

    2013-06-11

    Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable.

  20. Polarization of poly(vinylidene fluoride) and poly(vinylidene fluoride-trifluoroethylene) thin films revealed by emission spectroscopy with computational simulation during phase transition

    NASA Astrophysics Data System (ADS)

    Bystrov, Vladimir S.; Paramonova, Ekaterina V.; Dekhtyar, Yuri; Pullar, Robert C.; Katashev, Aleksey; Polyaka, Natalie; Bystrova, Anna V.; Sapronova, Alla V.; Fridkin, Vladimir M.; Kliem, Herbert; Kholkin, Andrei L.

    2012-05-01

    The electronic structure and self-polarization of P(VDF-TrFE) Langmuir-Blodgett nanofilms were analyzed under temperature-driven phase transitions, according to their thickness, composition, and structural conformation. Both thermo-stimulated exoelectron emission (TSEE) spectroscopy and computational simulation, including quantum-chemical calculations from first principles, were carried out. PVDF and composite P(VDF-TrFE) (70:30) molecular chains as Trans and Gauche conformers, as well as crystal cells, were modeled for these TSEE analyses. The quantum-chemical calculations and the computational simulation were based on the density functional theory (DFT) as well as semi-empirical (PM3) methods. It was demonstrated that the energy of electron states, as well as the total energies of the studied P(VDF-TrFE) molecular clusters during phase transformation, is influenced by electron work function and electron affinity. Analysis was performed by combining TSEE experimental data with the computational data of the molecular models, demonstrating the effectiveness of this joint approach. For the first time, TSEE was used for contactless measurements of nanofilm polarization, and characterization of the phase transition. The proposed new method can be widely applied in nanobiomedicine, particularly in development of new bone bio-implants, including built-in sensors (new smart nanotechnology).

  1. Silicon-containing polyphilic bent-core molecules: the importance of nanosegregation for the development of chirality and polar order in liquid crystalline phases formed by achiral molecules.

    PubMed

    Keith, Christina; Reddy, R Amaranatha; Hauser, Anton; Baumeister, Ute; Tschierske, Carsten

    2006-03-01

    Polyphilic molecules composed of a bent aromatic core, oligo(siloxane) units, and alkyl segments were synthesized, and the self-organization of these molecules was investigated. Most materials organize into polar smectic liquid crystalline phases. The switching process of these mesophases changes from antiferroelectric for the nonsilylated compounds via superparaelectric to surface-stabilized ferroelectric with increasing segregation of the silylated segments. It is proposed that the siloxane sublayers stabilize a polar synclinic ferroelectric (SmC(s)P(F)) structure, and the escape from a macroscopic polar order as well as steric effects leads to a deformation of the layers with formation of disordered microdomains, giving rise to optical isotropy. Another striking feature is the spontaneous formation of chiral domains with opposite handedness. For two compounds, a temperature-dependent inversion of the optical rotation of these domains was found, and this is associated with an increase of the tilt angle of the molecules from < 45 degrees to > 50 degrees. This observation confirms the recently proposed concept of layer optical chirality (Hough, L. E.; Clark, N. A. Phys. Rev. Lett. 2005, 95, 107802), which is a new source of optical activity in supramolecular systems. With increasing length of the alkyl chains, segregation is lost and a transition from smectic to a columnar phase is found. In the columnar phase, the switching process is antiferroelectric and takes place by rotation of the molecules around the long axes, which reverses the layer chirality; that is, the racemic ground-state structure is switched into a homogeneous chiral structure upon application of an electric field.

  2. Current activated tip sintering of Ni-Ti intermetallics

    NASA Astrophysics Data System (ADS)

    Sharma, Nitin

    This thesis investigated the current activated tip-sintering of reactive mixtures of nickel and titanium to form Ni-Ti intermetallics. The effect of elemental powder composition, heating profile and micro-jet inert gas pressures on the developed macro- and microstructure was investigated. The heating profile brought upon by selective electric current application was found to have a significant effect on whether the reaction is a volumetric combustion or a self-propagating high temperature one. The best results in terms of homogeneity and Ni-Ti intermetallics yield, were obtained for an inert gas pressure of 4 psi under for the nickel rich composition. In addition, surprising results at the higher inert gas pressures show the formation of hollow products, which can give rise future exploration of this technique for combustion synthesizing hollow products of different shapes.

  3. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  4. Hybrid polarity SAR architecture

    NASA Astrophysics Data System (ADS)

    Raney, R. Keith

    2009-05-01

    A space-based synthetic aperture radar (SAR) designed to provide quantitative information on a global scale implies severe requirements to maximize coverage and to sustain reliable operational calibration. These requirements are best served by the hybrid-polarity architecture, in which the radar transmits in circular polarization, and receives on two orthogonal linear polarizations, coherently, retaining their relative phase. This paper summarizes key attributes of hybrid-polarity dual- and quadrature-polarized SARs, reviews the associated advantages, formalizes conditions under which the signal-to-noise ratio is conserved, and describes the evolution of this architecture from first principles.

  5. An intermetallic forming steel under radiation for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hofer, C.; Stergar, E.; Maloy, S. A.; Wang, Y. Q.; Hosemann, P.

    2015-03-01

    In this work we investigated the formation and stability of intermetallics formed in a maraging steel PH 13-8 Mo under proton radiation up to 2 dpa utilizing nanoindentation, microcompression testing and atom probe tomography. A comprehensive discussion analyzing the findings utilizing rate theory is introduced, comparing the aging process to radiation induced diffusion. New findings of radiation induced segregation of undersize solute atoms (Si) towards the precipitates are considered.

  6. Discovery of phase-locked variable polarization in an RS Canum Venaticorum-like star, HR 5110

    NASA Technical Reports Server (NTRS)

    Barbour, M. S.; Kemp, J. C.

    1981-01-01

    Using measurements on 79 nights in 1980 January-August, it is established that the polarization in the ultraviolet (U band) varies synchronously on the known binary period of 2.6132 days, with a peak-to-peak amplitude of 0.03%. The pattern is mainly second harmonic in character, as typical of binary star examples such as Algol and Upsilon Her. Reflection by the cooler star, by a plasma concentration, or both, is suggested. The scale of the polarization seems to be consistent with Rayleigh scattering by neutral hydrogen on the cooler star, and a roughly lambda to the -4th wavelength dependence should be searched for. The QU curve suggests a sizeable inclination for the system, of about 45 deg, but this is preliminary. Separately, a possible weak periodicity might be present on a subsidiary period, conceivably related to a rotating star spot.

  7. Switchable polarity solvent for liquid phase microextraction of Cd(II) as pyrrolidinedithiocarbamate chelates from environmental samples.

    PubMed

    Yilmaz, Erkan; Soylak, Mustafa

    2015-07-30

    A switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO2 (Dry ice) via proton transfer reaction has been used for the microextraction of cadmium(II) as pyrrolidinedithiocarbamate (APDC) chelate. Cd(II)-APDC chelate was extracted into the switchable polarity solvent drops by adding 2 mL 10 M sodium hydroxide solution. Analytical parameters affecting the complex formation and microextraction efficiency such as pH, amount of ligand, volume of switchable polarity solvent and NaOH, sample volume were optimized. The effects of foreign ions were found tolerably. Under optimum conditions, the detection limit was 0.16 μg L(-1) (3Sb/m, n = 7) and the relative standard deviation was 5.4% (n = 7). The method was validated by the analysis of certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SPS-WW2 waste water, 1573a Tomato Leaves and Oriental Basma Tobacco Leaves (INCT-OBTL-5)) and addition/recovery tests. The method was successfully applied to determination of cadmium contents of water, vegetable, fruit and cigarette samples. PMID:26320638

  8. Multiconfigurational nature of 5f orbitals in uranium and plutonium and their intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Booth, Corwin

    2013-03-01

    The structural, electronic, and magnetic properties of U and Pu elements and intermetallics remain poorly understood despite decades of effort, and currently represent an important scientific frontier toward understanding matter. The last decade has seen great progress both due to the discovery of superconductivity in PuCoGa5 and advances in theory that finally can explain fundamental ground state properties in elemental plutonium, such as the phonon dispersion curve, the non-magnetic ground state, and the volume difference between the α and δ phases. A new feature of the recent calculations is the presence not only of intermediate valence of the Pu 5f electrons, but of multiconfigurational ground states, where the different properties of the α and δ phases are primarily governed by the different relative weights of the 5f4, 5f5, and 5f6 electronic configurations. The usual method for measuring multiconfigurational states in the lanthanides is to measure the lanthanide LIII-edge x-ray absorption near-edge structure (XANES), a method that is severely limited for the actinides because the spectroscopic features are not well enough separated. Advances in resonant x-ray emission spectroscopy (RXES) have now allowed for spectra with sufficient resolution to resolve individual resonances associated with the various actinide valence states. Utilizing a new spectrometer at the Stanford Synchrotron Radiation Lightsource (SSRL), RXES data have been collected that show, for the first time, spectroscopic signatures of each of these configurations and their relative changes in various uranium and plutonium intermetallic compounds. In combination with conventional XANES spectra on related compounds, these data indicate such states may be ubiquitous in uranium and plutonium intermetallics, providing a new framework toward understanding properties ranging from heavy fermion behavior, superconductivity, and intermediate valence to mechanical and fundamental bonding behavior in

  9. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    PubMed

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  10. Growth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method

    SciTech Connect

    Griffiths, J. T.; Zhu, T.; Oehler, F.; Emery, R. M.; Fu, W. Y.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A.; Reid, B. P. L.; Taylor, R. A.

    2014-12-01

    Non-polar (11-20) InGaN quantum dots (QDs) were grown by metal organic vapour phase epitaxy. An InGaN epilayer was grown and subjected to a temperature ramp in a nitrogen and ammonia environment before the growth of the GaN capping layer. Uncapped structures with and without the temperature ramp were grown for reference and imaged by atomic force microscopy. Micro-photoluminescence studies reveal the presence of resolution limited peaks with a linewidth of less than ∼500 μeV at 4.2 K. This linewidth is significantly narrower than that of non-polar InGaN quantum dots grown by alternate methods and may be indicative of reduced spectral diffusion. Time resolved photoluminescence studies reveal a mono-exponential exciton decay with a lifetime of 533 ps at 2.70 eV. The excitonic lifetime is more than an order of magnitude shorter than that for previously studied polar quantum dots and suggests the suppression of the internal electric field. Cathodoluminescence studies show the spatial distribution of the quantum dots and resolution limited spectral peaks at 18 K.

  11. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    PubMed

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs. PMID:27534473

  12. Metallic and intermetallic-bonded ceramic composites

    SciTech Connect

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  13. Focused ion beam induced microstructural alterations: texture development, grain growth, and intermetallic formation.

    PubMed

    Michael, Joseph R

    2011-06-01

    Copper, gold, and tungsten thin films have been exposed to 30 kV Ga+ ion irradiation, and the resulting microstructural modifications are studied as a function of ion dose. The observed microstructural changes include texture development with respect to the easy channeling direction in the target, and in the case of Cu, an additional intermetallic phase is produced. Texture development in these target materials is a function of the starting materials grain size, and these changes are not observed in large grained materials. The accepted models of differential damage driven grain growth are not supported by the results of this study. The implications of this study to the use of focused ion beam tools for sample preparation are discussed. PMID:21466753

  14. Comparison of the Thermal Expansion Behavior of Several Intermetallic Silicide Alloys Between 293 and 1523 K

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2015-03-01

    Thermal expansion measurements were conducted on hot-pressed CrSi2, TiSi2, WSi2 and a two-phase Cr-Mo-Si intermetallic alloy between 303 and 1523 K during three heat-cool cycles. The corrected thermal expansion, (Δ L/ L 0)thermal, varied with the absolute temperature, T, as where, A, B, C, and D are regression constants. Excellent reproducibility was observed for most of the materials after the first heat-up cycle. In some cases, the data from first heat-up cycle deviated from those determined in the subsequent cycles. This deviation was attributed to the presence of residual stresses developed during processing, which are relieved after the first heat-up cycle.

  15. Focused ion beam induced microstructural alterations: texture development, grain growth, and intermetallic formation.

    PubMed

    Michael, Joseph R

    2011-06-01

    Copper, gold, and tungsten thin films have been exposed to 30 kV Ga+ ion irradiation, and the resulting microstructural modifications are studied as a function of ion dose. The observed microstructural changes include texture development with respect to the easy channeling direction in the target, and in the case of Cu, an additional intermetallic phase is produced. Texture development in these target materials is a function of the starting materials grain size, and these changes are not observed in large grained materials. The accepted models of differential damage driven grain growth are not supported by the results of this study. The implications of this study to the use of focused ion beam tools for sample preparation are discussed.

  16. Intermetallic Compound Formation Mechanisms for Cu-Sn Solid-Liquid Interdiffusion Bonding

    NASA Astrophysics Data System (ADS)

    Liu, H.; Wang, K.; Aasmundtveit, K. E.; Hoivik, N.

    2012-09-01

    Cu-Sn solid-liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu3Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.

  17. Comparison of the Thermal Expansion Behavior of Several Intermetallic Silicide Alloys Between 293 and 1523 K

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2014-01-01

    Thermal expansion measurements were conducted on hot-pressed CrSi(sub 2), TiSi(sub 2), W Si(sub 2) and a two-phase Cr-Mo-Si intermetallic alloy between 293 and 1523 K during three heat-cool cycles. The corrected thermal expansion, (L/L(sub 0)(sub thermal), varied with the absolute temperature, T, as (deltaL/L(sub 0)(sub thermal) = A(T-293)(sup 3) + B(T-293)(sup 2) + C(T-293) + D, where A, B, C and D are regression constants. Excellent reproducibility was observed for most of the materials after the first heat-up cycle. In some cases, the data from the first heatup cycle deviated from those determined in the subsequent cycles. This deviation was attributed to the presence of residual stresses developed during processing, which are relieved after the first heat-up cycle.

  18. On the formation of Al{sub 3}Ni{sub 2} intermetallic compound by aluminothermic reduction of nickel oxide

    SciTech Connect

    Parsa, M.R.; Soltanieh, M.

    2011-07-15

    Simultaneous reduction of NiO and formation of Al{sub 3}Ni{sub 2} intermetallic compound at 880, 940 and 1000 deg. C were investigated by means of the thermal reduction method. The optimal Ni contents for the starting samples were determined at different times and temperatures through the compositional analysis. The microstructure of the metallic quenched samples was observed by scanning electron microscope. Moreover, the X-ray diffraction analysis and energy disperse spectrometry were applied to characterize the formation of the phases. The results showed that the metallic samples consisted of Al{sub 3}Ni{sub 2}, Al{sub 3}Ni and Al phases and that there was no trace of Ni, NiO and Al{sub 2}O{sub 3}. It was found that after 10 min at the applied temperatures, the reaction completed. For the longer time, the dispersed Al{sub 3}Ni{sub 2} nuclei were grown and its continuous network formed. By increasing the temperature, the thickness of the Al{sub 3}Ni precipitation around Al{sub 3}Ni{sub 2} phase is enhanced in the samples with the same Ni content. A model was proposed for these reactions. - Research Highlights: {yields} Simultaneous reduction of NiO, and Al{sub 3}Ni{sub 2} intermetallics formation at temperatures lower than Ni melting point. {yields} Presently a mechanism for such a process. {yields} Parametric study of microstructure and formed phases.

  19. Tri-halide vapor-phase epitaxy of GaN using GaCl3 on polar, semipolar, and nonpolar substrates

    NASA Astrophysics Data System (ADS)

    Iso, Kenji; Takekawa, Nao; Matsuda, Karen; Hikida, Kazuhiro; Hayashida, Naoto; Murakami, Hisashi; Koukitu, Akinori

    2016-10-01

    Homoepitaxial tri-halide vapor-phase epitaxy (THVPE) growth on polar, semipolar, and nonpolar bulk GaN substrates was demonstrated using GaCl3 as the precursor. The influence of the surface orientation of the substrate on GaN growth by THVPE was compared with that observed for GaN grown by hydride vapor-phase epitaxy. The dependence of the GaN growth on the surface orientation of the substrate was confirmed; GaN could be grown on (10\\bar{1}0), (30\\bar{3}\\bar{1}), (20\\bar{2}\\bar{1}), (10\\bar{1}\\bar{1}), and (000\\bar{1}) but not on (0001), (10\\bar{1}1), (20\\bar{2}1), or (30\\bar{3}1). This behavior was explained to be due to the changes in adsorption energy, the magnitudes of which were estimated by theoretical calculations.

  20. Characterization of a chiral phase in an achiral bent-core liquid crystal by polarization studies of resonant x-ray forbidden reflections

    SciTech Connect

    Ponsinet, V.; Pindak, R.; Barois, P.; Pan, L.; Wang, S.; Huang, C.C.; Wang, S.T.; Baumeister, U. and Weissflog, W.

    2011-07-15

    The chiral antiferroelectric structure of an achiral bent-core liquid crystal is characterized by resonant x-ray scattering at chlorine K edge. The 'forbidden' reflections resulting from the glide or screw symmetry elements are restored by the anisotropy of the tensor structure factor, which we calculate for two possible structural models. A careful analysis of the polarization states of the restored 'forbidden' reflections enables an unambiguous identification of a chiral structure (i.e., the so-called anticlinic, antiferroelectric smectic-C or Sm-C{sub A}P{sub A}) coexisting with the achiral synclinic antiferroelectric smectic-C or Sm-C{sub S}P{sub A}. The method proves to be quite powerful as it identifies the chiral structure within coexisting phases despite an imperfect orientation of the sample. The volume fraction of the chiral phase and the distribution of alignment are extracted from the data.