Science.gov

Sample records for polar-auxin-transport efflux carrier

  1. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis.

    PubMed

    Drdová, Edita Janková; Synek, Lukáš; Pečenková, Tamara; Hála, Michal; Kulich, Ivan; Fowler, John E; Murphy, Angus S; Zárský, Viktor

    2013-03-01

    In land plants polar auxin transport is one of the substantial processes guiding whole plant polarity and morphogenesis. Directional auxin fluxes are mediated by PIN auxin efflux carriers, polarly localized at the plasma membrane. The polarization of exocytosis in yeast and animals is assisted by the exocyst: an octameric vesicle-tethering complex and an effector of Rab and Rho GTPases. Here we show that rootward polar auxin transport is compromised in roots of Arabidopsis thaliana loss-of-function mutants in the EXO70A1 exocyst subunit. The recycling of PIN1 and PIN2 proteins from brefeldin-A compartments is delayed after the brefeldin-A washout in exo70A1 and sec8 exocyst mutants. Relocalization of PIN1 and PIN2 proteins after prolonged brefeldin-A treatment is largely impaired in these mutants. At the same time, however, plasma membrane localization of GFP:EXO70A1, and the other exocyst subunits studied (GFP:SEC8 and YFP:SEC10), is resistant to brefeldin-A treatment. In root cells of the exo70A1 mutant, a portion of PIN2 is internalized and retained in specific, abnormally enlarged, endomembrane compartments that are distinct from VHA-a1-labelled early endosomes or the trans-Golgi network, but are RAB-A5d positive. We conclude that the exocyst is involved in PIN1 and PIN2 recycling, and thus in polar auxin transport regulation.

  2. Evidence for regulation of polar auxin transport at the efflux carrier in maize coleoptile sections

    SciTech Connect

    Vesper, M.J. )

    1989-04-01

    Previously we have shown that conditions which result in an increased auxin-induced growth response in maize (Zea mays L.) coleoptile sections also result in a decrease in the velocity of polar auxin transport. Coleoptile sections given conditions which result in slower transport of IAA have different kinetics for net IAA accumulation compared to sections given conditions which result in faster transport. In further experiments, sections were loaded with 30 nM ({sup 3}H)IAA in the presence of increasing unlabeled IAA at low pH. Efflux of ({sup 3}H)IAA was then followed as a function of unlabeled IAA. Saturation of efflux appears to occur at a lower conc. of IAA in sections showing slower transport.

  3. The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development.

    PubMed

    Forestan, Cristian; Varotto, Serena

    2012-07-01

    In plants, proper seed development and the continuing post-embryonic organogenesis both require that different cell types are correctly differentiated in response to internal and external stimuli. Among internal stimuli, plant hormones and particularly auxin and its polar transport (PAT) have been shown to regulate a multitude of plant physiological processes during vegetative and reproductive development. Although our current auxin knowledge is almost based on the results from researches on the eudicot Arabidopsis thaliana, during the last few years, many studies tried to transfer this knowledge from model to crop species, maize in particular. Applications of auxin transport inhibitors, mutant characterization, and molecular and cell biology approaches, facilitated by the sequencing of the maize genome, allowed the identification of genes involved in auxin metabolism, signaling, and particularly in polar auxin transport. PIN auxin efflux carriers have been shown to play an essential role in regulating PAT during both seed and post-embryonic development in maize. In this review, we provide a summary of the recent findings on PIN-mediated polar auxin transport during maize development. Similarities and differences between maize and Arabidopsis are analyzed and discussed, also considering that their different plant architecture depends on the differentiation of structures whose development is controlled by auxins. PMID:22186966

  4. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    NASA Technical Reports Server (NTRS)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  5. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    PubMed Central

    Chen, Rujin; Hilson, Pierre; Sedbrook, John; Rosen, Elizabeth; Caspar, Timothy; Masson, Patrick H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589–1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes. PMID:9844024

  6. Polar auxin transport: controlling where and how much

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; DeLong, A.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin is transported through plant tissues, moving from cell to cell in a unique polar manner. Polar auxin transport controls important growth and developmental processes in higher plants. Recent studies have identified several proteins that mediate polar auxin transport and have shown that some of these proteins are asymmetrically localized, paving the way for studies of the mechanisms that regulate auxin transport. New data indicate that reversible protein phosphorylation can control the amount of auxin transport, whereas protein secretion through Golgi-derived vesicles and interactions with the actin cytoskeleton might regulate the localization of auxin efflux complexes.

  7. Regulation of polar auxin transport by protein and lipid kinases

    PubMed Central

    Jaillais, Yvon

    2016-01-01

    The directional transport of auxin, known as polar auxin transport, allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima and gradients that are instrumental in both organ initiation and shape determination. As such, polar auxin transport is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell-to-cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the ‘non-genomic’ regulation of auxin transport, putting an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some Receptor-Like Kinases (RLK) and two-component histidine kinase receptors in polar auxin transport, noticing that there are likely RLKs involved in coordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition as well as root gravitropism and shoot phototropism. PMID:27242371

  8. Polar auxin transport is essential for gall formation by Pantoea agglomerans on Gypsophila.

    PubMed

    Chalupowicz, Laura; Weinthal, Dan; Gaba, Victor; Sessa, Guido; Barash, Isaac; Manulis-Sasson, Shulamit

    2013-02-01

    The virulence of the bacterium Pantoea agglomerans pv. gypsophilae (Pag) on Gypsophila paniculata depends on a type III secretion system (T3SS) and its effectors. The hypothesis that plant-derived indole-3-acetic acid (IAA) plays a major role in gall formation was examined by disrupting basipetal polar auxin transport with the specific inhibitors 2,3,5-triiodobenzoic acid (TIBA) and N-1-naphthylphthalamic acid (NPA). On inoculation with Pag, galls developed in gypsophila stems above but not below lanolin rings containing TIBA or NPA, whereas, in controls, galls developed above and below the rings. In contrast, TIBA and NPA could not inhibit tumour formation in tomato caused by Agrobacterium tumefaciens. The colonization of gypsophila stems by Pag was reduced below, but not above, the lanolin-TIBA ring. Following Pag inoculation and TIBA treatment, the expression of hrpL (a T3SS regulator) and pagR (a quorum-sensing transcriptional regulator) decreased four-fold and that of pthG (a T3SS effector) two-fold after 24 h. Expression of PIN2 (a putative auxin efflux carrier) increased 35-fold, 24 h after Pag inoculation. However, inoculation with a mutant in the T3SS effector pthG reduced the expression of PIN2 by two-fold compared with wild-type infection. The results suggest that pthG might govern the elevation of PIN2 expression during infection, and that polar auxin transport-derived IAA is essential for gall initiation.

  9. Polar auxin transport: an early invention.

    PubMed

    Boot, Kees J M; Libbenga, Kees R; Hille, Sander C; Offringa, Remko; van Duijn, Bert

    2012-06-01

    In higher plants, cell-to-cell polar auxin transport (PAT) of the phytohormone auxin, indole-3-acetic acid (IAA), generates maxima and minima that direct growth and development. Although IAA is present in all plant phyla, PAT has only been detected in land plants, the earliest being the Bryophytes. Charophyta, a group of freshwater green algae, are among the first multicellular algae with a land plant-like phenotype and are ancestors to land plants. IAA has been detected in members of Charophyta, but its developmental role and the occurrence of PAT are unknown. We show that naphthylphthalamic acid (NPA)-sensitive PAT occurs in internodal cells of Chara corallina. The relatively high velocity (at least 4-5 cm/h) of auxin transport through the giant (3-5 cm) Chara cells does not occur by simple diffusion and is not sensitive to a specific cytoplasmic streaming inhibitor. The results demonstrate that PAT evolved early in multicellular plant life. The giant Chara cells provide a unique new model system to study PAT, as Chara allows the combining of real-time measurements and mathematical modelling with molecular, developmental, cellular, and electrophysiological studies.

  10. Close relationships between polar auxin transport and graviresponse in plants.

    PubMed

    Ueda, J; Miyamoto, K; Uheda, E; Oka, M; Yano, S; Higashibata, A; Ishioka, N

    2014-01-01

    Gravitational force on Earth is one of the major environmental factors affecting plant growth and development. Spacecraft and the International Space Station (ISS), and a three-dimensional (3-D) clinostat have been available to clarify the effects of gravistimulation on plant growth and development in space and on ground conditions, respectively. Under a stimulus-free environment such as space conditions, plants show a growth and developmental habit designated as 'automorphosis' or 'automorphogenesis'. Recent studies in hormonal physiology, together with space and molecular biology, have demonstrated the close relationships between automorphosis and polar auxin transport. Reduced polar auxin transport in space conditions, or induced by the application of polar auxin transport inhibitors, substantially induced automorphosis or automorphosis-like growth and development, indicating that polar auxin transport is responsible for graviresponse in plants. This concise review covers graviresponse in plants and automorphosis observed in space conditions, and polar auxin transport related to graviresponse in etiolated Alaska and ageotropum pea seedlings. Molecular aspects of polar auxin transport clarified in recent studies are also described. PMID:24128007

  11. Regulation of polar auxin transport by protein and lipid kinases.

    PubMed

    Armengot, Laia; Marquès-Bueno, Maria Mar; Jaillais, Yvon

    2016-07-01

    The directional transport of auxin, known as polar auxin transport (PAT), allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima, and gradients that are instrumental in both organ initiation and shape determination. As such, PAT is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell to cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the 'non-genomic' regulation of auxin transport, placing an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability, and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK, and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some receptor-like kinases (RLKs) and two-component histidine kinase receptors in PAT, noting that there are probably RLKs involved in co-ordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition, as well as root gravitropism and shoot phototropism. PMID:27242371

  12. A Major Facilitator Superfamily Transporter Plays a Dual Role in Polar Auxin Transport and Drought Stress Tolerance in Arabidopsis[W

    PubMed Central

    Remy, Estelle; Cabrito, Tânia R.; Baster, Pawel; Batista, Rita A.; Teixeira, Miguel C.; Friml, Jiri; Sá-Correia, Isabel; Duque, Paula

    2013-01-01

    Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H+-coupled K+ transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells. PMID:23524662

  13. VLN2 Regulates Plant Architecture by Affecting Microfilament Dynamics and Polar Auxin Transport in Rice[OPEN

    PubMed Central

    Wu, Shengyang; Xie, Yurong; Guo, Xiuping; Sheng, Peike; Wang, Juan; Wu, Chuanyin; Wang, Haiyang; Wan, Jianmin

    2015-01-01

    As a fundamental and dynamic cytoskeleton network, microfilaments (MFs) are regulated by diverse actin binding proteins (ABPs). Villins are one type of ABPs belonging to the villin/gelsolin superfamily, and their function is poorly understood in monocotyledonous plants. Here, we report the isolation and characterization of a rice (Oryza sativa) mutant defective in VILLIN2 (VLN2), which exhibits malformed organs, including twisted roots and shoots at the seedling stage. Cellular examination revealed that the twisted phenotype of the vln2 mutant is mainly caused by asymmetrical expansion of cells on the opposite sides of an organ. VLN2 is preferentially expressed in growing tissues, consistent with a role in regulating cell expansion in developing organs. Biochemically, VLN2 exhibits conserved actin filament bundling, severing and capping activities in vitro, with bundling and stabilizing activity being confirmed in vivo. In line with these findings, the vln2 mutant plants exhibit a more dynamic actin cytoskeleton network than the wild type. We show that vln2 mutant plants exhibit a hypersensitive gravitropic response, faster recycling of PIN2 (an auxin efflux carrier), and altered auxin distribution. Together, our results demonstrate that VLN2 plays an important role in regulating plant architecture by modulating MF dynamics, recycling of PIN2, and polar auxin transport. PMID:26486445

  14. Posttranslational modification and trafficking of PIN auxin efflux carriers.

    PubMed

    Löfke, Christian; Luschnig, Christian; Kleine-Vehn, Jürgen

    2013-01-01

    Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment. The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.

  15. Cytokinin treatments affect the apical-basal patterning of the Arabidopsis gynoecium and resemble the effects of polar auxin transport inhibition

    PubMed Central

    Zúñiga-Mayo, Victor M.; Reyes-Olalde, J. Irepan; Marsch-Martinez, Nayelli; de Folter, Stefan

    2014-01-01

    The apical-basal axis of the Arabidopsis gynoecium is established early during development and is divided into four elements from the bottom to the top: the gynophore, the ovary, the style, and the stigma. Currently, it is proposed that the hormone auxin plays a critical role in the correct apical-basal patterning through a concentration gradient from the apical to the basal part of the gynoecium, as chemical inhibition of polar auxin transport through 1-N-naphtylphtalamic acid (NPA) application, severely affects the apical-basal patterning of the gynoecium. In this work, we show that the apical-basal patterning of gynoecia is also sensitive to exogenous cytokinin (benzyl amino purine, BAP) application in a similar way as to NPA. BAP and NPA treatments were performed in different mutant backgrounds where either cytokinin perception or auxin transport and perception were affected. We observed that cytokinin and auxin signaling mutants are hypersensitive to NPA treatment, and auxin transport and signaling mutants are hypersensitive to BAP treatment. BAP effects in apical-basal gynoecium patterning are very similar to the effects of NPA, therefore, it is possible that BAP affects auxin transport in the gynoecium. Indeed, not only the cytokinin-response TCS::GFP marker, but also the auxin efflux carrier PIN1 (PIN1::PIN1:GFP) were both affected in BAP-induced valveless gynoecia, suggesting that the BAP treatment producing the morphological changes has an impact on both in the response pattern to cytokinin and on auxin transport. In summary, we show that cytokinin affects proper apical-basal gynoecium patterning in Arabidopsis in a similar way to the inhibition of polar auxin transport, and that auxin and cytokinin mutants and markers suggest a relation between both hormones in this process. PMID:24860582

  16. Cytokinin treatments affect the apical-basal patterning of the Arabidopsis gynoecium and resemble the effects of polar auxin transport inhibition.

    PubMed

    Zúñiga-Mayo, Victor M; Reyes-Olalde, J Irepan; Marsch-Martinez, Nayelli; de Folter, Stefan

    2014-01-01

    The apical-basal axis of the Arabidopsis gynoecium is established early during development and is divided into four elements from the bottom to the top: the gynophore, the ovary, the style, and the stigma. Currently, it is proposed that the hormone auxin plays a critical role in the correct apical-basal patterning through a concentration gradient from the apical to the basal part of the gynoecium, as chemical inhibition of polar auxin transport through 1-N-naphtylphtalamic acid (NPA) application, severely affects the apical-basal patterning of the gynoecium. In this work, we show that the apical-basal patterning of gynoecia is also sensitive to exogenous cytokinin (benzyl amino purine, BAP) application in a similar way as to NPA. BAP and NPA treatments were performed in different mutant backgrounds where either cytokinin perception or auxin transport and perception were affected. We observed that cytokinin and auxin signaling mutants are hypersensitive to NPA treatment, and auxin transport and signaling mutants are hypersensitive to BAP treatment. BAP effects in apical-basal gynoecium patterning are very similar to the effects of NPA, therefore, it is possible that BAP affects auxin transport in the gynoecium. Indeed, not only the cytokinin-response TCS::GFP marker, but also the auxin efflux carrier PIN1 (PIN1::PIN1:GFP) were both affected in BAP-induced valveless gynoecia, suggesting that the BAP treatment producing the morphological changes has an impact on both in the response pattern to cytokinin and on auxin transport. In summary, we show that cytokinin affects proper apical-basal gynoecium patterning in Arabidopsis in a similar way to the inhibition of polar auxin transport, and that auxin and cytokinin mutants and markers suggest a relation between both hormones in this process. PMID:24860582

  17. Modelling the dynamics of polar auxin transport in inflorescence stems of Arabidopsis thaliana

    PubMed Central

    Boot, Kees J.M.; Hille, Sander C.; Libbenga, Kees R.; Peletier, Lambertus A.; van Spronsen, Paulina C.; van Duijn, Bert; Offringa, Remko

    2016-01-01

    The polar transport of the plant hormone auxin has been the subject of many studies, several involving mathematical modelling. Unfortunately, most of these models have not been experimentally verified. Here we present experimental measurements of long-distance polar auxin transport (PAT) in segments of inflorescence stems of Arabidopsis thaliana together with a descriptive mathematical model that was developed from these data. It is based on a general advection–diffusion equation for auxin density, as suggested by the chemiosmotic theory, but is extended to incorporate both immobilization of auxin and exchange with the surrounding tissue of cells involved in PAT, in order to account for crucial observations. We found that development of the present model assisted effectively in the analysis of experimental observations. As an example, we discuss the analysis of a quadruple mutant for all four AUX1/LAX1–LAX3 influx carriers genes. We found a drastic change in the parameters governing the exchange of PAT channels with the surrounding tissue, whereas the velocity was still of the order of magnitude of the wild type. In addition, the steady-state flux of auxin through the PAT system of the mutant did not exhibit a saturable component, as we found for the wild type, suggesting that the import carriers are responsible for the saturable component in the wild type. In the accompanying Supplementary data available at JXB online, we describe in more detail the data-driven development of the model, review and derive predictions from a mathematical model of the chemiosmotic theory, and explore relationships between parameters in our model and processes and parameters at the cellular level. PMID:26531101

  18. Modelling the dynamics of polar auxin transport in inflorescence stems of Arabidopsis thaliana.

    PubMed

    Boot, Kees J M; Hille, Sander C; Libbenga, Kees R; Peletier, Lambertus A; van Spronsen, Paulina C; van Duijn, Bert; Offringa, Remko

    2016-02-01

    The polar transport of the plant hormone auxin has been the subject of many studies, several involving mathematical modelling. Unfortunately, most of these models have not been experimentally verified. Here we present experimental measurements of long-distance polar auxin transport (PAT) in segments of inflorescence stems of Arabidopsis thaliana together with a descriptive mathematical model that was developed from these data. It is based on a general advection-diffusion equation for auxin density, as suggested by the chemiosmotic theory, but is extended to incorporate both immobilization of auxin and exchange with the surrounding tissue of cells involved in PAT, in order to account for crucial observations. We found that development of the present model assisted effectively in the analysis of experimental observations. As an example, we discuss the analysis of a quadruple mutant for all four AUX1/LAX1-LAX3 influx carriers genes. We found a drastic change in the parameters governing the exchange of PAT channels with the surrounding tissue, whereas the velocity was still of the order of magnitude of the wild type. In addition, the steady-state flux of auxin through the PAT system of the mutant did not exhibit a saturable component, as we found for the wild type, suggesting that the import carriers are responsible for the saturable component in the wild type. In the accompanying Supplementary data available at JXB online, we describe in more detail the data-driven development of the model, review and derive predictions from a mathematical model of the chemiosmotic theory, and explore relationships between parameters in our model and processes and parameters at the cellular level.

  19. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis.

    PubMed

    Li, Li; Xu, Jian; Xu, Zhi-Hong; Xue, Hong-Wei

    2005-10-01

    Brassinosteroids (BRs) are important plant growth regulators in multiple developmental processes. Previous studies have indicated that BR treatment enhanced auxin-related responses, but the underlying mechanisms remain unknown. Using (14)C-labeled indole-3-acetic acid and Arabidopsis thaliana plants harboring an auxin-responsive reporter construct, we show that the BR brassinolide (BL) stimulates polar auxin transport capacities and modifies the distribution of endogenous auxin. In plants treated with BL or defective in BR biosynthesis or signaling, the transcription of PIN genes, which facilitate functional auxin transport in plants, was differentially regulated. In addition, BL enhanced plant tropistic responses by promoting the accumulation of the PIN2 protein from the root tip to the elongation zone and stimulating the expression and dispersed localization of ROP2 during tropistic responses. Constitutive overexpression of ROP2 results in enhanced polar accumulation of PIN2 protein in the root elongation region and increased gravitropism, which is significantly affected by latrunculin B, an inhibitor of F-actin assembly. The ROP2 dominant negative mutants (35S-ROP2-DA/DN) show delayed tropistic responses, and this delay cannot be reversed by BL addition, strongly supporting the idea that ROP2 modulates the functional localization of PIN2 through regulation of the assembly/reassembly of F-actins, thereby mediating the BR effects on polar auxin transport and tropistic responses.

  20. The polar auxin transport inhibitor TIBA inhibits endoreduplication in dark grown spinach hypocotyls.

    PubMed

    Amijima, Makoto; Iwata, Yuji; Koizumi, Nozomu; Mishiba, Kei-Ichiro

    2014-08-01

    We addressed the question of whether an additional round of endoreduplication in dark-grown hypocotyls is a common feature in dicotyledonous plants having endopolyploid tissues. Ploidy distributions of hypocotyl tissues derived from in vitro-grown spinach (Spinacia oleracea L. cv. Atlas) seedlings grown under different light conditions were analyzed by flow cytometry. An additional round of endoreduplication (represented by 32C cells) was found in the dark-grown hypocotyl tissues. This response was inhibited by light, the intensity of which is a crucial factor for the inhibition of endoreduplication. The higher ploidy cells in cortical tissues of the dark-grown hypocotyls had larger cell sizes, suggesting that the additional round of endoreduplication contributes to hypocotyl elongation. More importantly, a polar auxin transport inhibitor, 2,3,5-triiodobenzoic acid (TIBA), strongly inhibits endoreduplication, not only in spinach but also in Arabidopsis. Because other polar auxin transport inhibitors or an auxin antagonist show no or mild effects, TIBA may have a specific feature that inhibits endoreduplication.

  1. Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root.

    PubMed

    Tan, Xiaoyun; Feng, Yihong; Liu, Yulong; Bao, Yiqun

    2016-09-01

    Polar auxin transport, which is critical for land plant pattern formation and directional growth, is largely depended on asymmetric distribution of PIN proteins at the plasma membrane (PM). Endocytosis and recycling processes play important roles in regulating PIN protein distribution and abundance at the PM. Two subunits (SEC8, EXO70A1) of exocyst, an octameric vesicle-tethering complex, have been reported to be involved in PIN protein recycling in Arabidopsis. However, the function of exocyst complex in PIN protein recycling and polar auxin transport remains incompletely understood. In this study, we utilized two SEC6 down-regulation mutants (PRsec6-1 and PRsec6-2) to investigate the role of exocyst subunit SEC6 in the primary root development, polar auxin transport and PIN proteins recycling. We found that in PRsec6 mutants: 1. Primary root growth was retarded, and lateral root initiation were compromised. 2. Primary roots were sensitive to exogenous auxin 1-napthalene acetic acid (NAA) but not 2,4-dichlorophenoxy (2.4-D). 3. Recycling of PIN1 and PIN2 proteins from the Brefeldin A (BFA) compartment to the PM was delayed. 4. Vesicles accumulated in the primary root tip cells, especially accumulated in the cytosol closed to the PM. These results further demonstrated that the exocyst complex plays an important role in PIN protein recycling and polar auxin transport in Arabidopsis primary root.

  2. Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root.

    PubMed

    Tan, Xiaoyun; Feng, Yihong; Liu, Yulong; Bao, Yiqun

    2016-09-01

    Polar auxin transport, which is critical for land plant pattern formation and directional growth, is largely depended on asymmetric distribution of PIN proteins at the plasma membrane (PM). Endocytosis and recycling processes play important roles in regulating PIN protein distribution and abundance at the PM. Two subunits (SEC8, EXO70A1) of exocyst, an octameric vesicle-tethering complex, have been reported to be involved in PIN protein recycling in Arabidopsis. However, the function of exocyst complex in PIN protein recycling and polar auxin transport remains incompletely understood. In this study, we utilized two SEC6 down-regulation mutants (PRsec6-1 and PRsec6-2) to investigate the role of exocyst subunit SEC6 in the primary root development, polar auxin transport and PIN proteins recycling. We found that in PRsec6 mutants: 1. Primary root growth was retarded, and lateral root initiation were compromised. 2. Primary roots were sensitive to exogenous auxin 1-napthalene acetic acid (NAA) but not 2,4-dichlorophenoxy (2.4-D). 3. Recycling of PIN1 and PIN2 proteins from the Brefeldin A (BFA) compartment to the PM was delayed. 4. Vesicles accumulated in the primary root tip cells, especially accumulated in the cytosol closed to the PM. These results further demonstrated that the exocyst complex plays an important role in PIN protein recycling and polar auxin transport in Arabidopsis primary root. PMID:27457987

  3. Role for Apyrases in Polar Auxin Transport in Arabidopsis1[C][W][OA

    PubMed Central

    Liu, Xing; Wu, Jian; Clark, Greg; Lundy, Stacey; Lim, Minhui; Arnold, David; Chan, Jing; Tang, Wenqiang; Muday, Gloria K.; Gardner, Gary; Roux, Stanley J.

    2012-01-01

    Recent evidence indicates that extracellular nucleotides regulate plant growth. Exogenous ATP has been shown to block auxin transport and gravitropic growth in primary roots of Arabidopsis (Arabidopsis thaliana). Cells limit the concentration of extracellular ATP in part through the activity of ectoapyrases (ectonucleoside triphosphate diphosphohydrolases), and two nearly identical Arabidopsis apyrases, APY1 and APY2, appear to share this function. These findings, plus the fact that suppression of APY1 and APY2 blocks growth in Arabidopsis, suggested that the expression of these apyrases could influence auxin transport. This report tests that hypothesis. The polar movement of [3H]indole-3-acetic acid in both hypocotyl sections and primary roots of Arabidopsis seedlings was measured. In both tissues, polar auxin transport was significantly reduced in apy2 null mutants when they were induced by estradiol to suppress the expression of APY1 by RNA interference. In the hypocotyl assays, the basal halves of APY-suppressed hypocotyls contained considerably lower free indole-3-acetic acid levels when compared with wild-type plants, and disrupted auxin transport in the APY-suppressed roots was reflected by their significant morphological abnormalities. When a green fluorescent protein fluorescence signal encoded by a DR5:green fluorescent protein construct was measured in primary roots whose apyrase expression was suppressed either genetically or chemically, the roots showed no signal asymmetry following gravistimulation, and both their growth and gravitropic curvature were inhibited. Chemicals that suppress apyrase activity also inhibit gravitropic curvature and, to a lesser extent, growth. Taken together, these results indicate that a critical step connecting apyrase suppression to growth suppression is the inhibition of polar auxin transport. PMID:23071251

  4. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport.

    PubMed

    Shi, Ya-Fei; Wang, Da-Li; Wang, Chao; Culler, Angela Hendrickson; Kreiser, Molly A; Suresh, Jayanti; Cohen, Jerry D; Pan, Jianwei; Baker, Barbara; Liu, Jian-Zhong

    2015-09-01

    Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant.

  5. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport.

    PubMed

    Shi, Ya-Fei; Wang, Da-Li; Wang, Chao; Culler, Angela Hendrickson; Kreiser, Molly A; Suresh, Jayanti; Cohen, Jerry D; Pan, Jianwei; Baker, Barbara; Liu, Jian-Zhong

    2015-09-01

    Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant. PMID:25917173

  6. Polar auxin transport in relation to long-distance transport of nutrients in the Charales.

    PubMed

    Raven, John A

    2013-01-01

    This paper examines the significance of the recent demonstration of polar auxin transport (PAT) in the green macroalga Chara (Charophyceae: Charales) and, especially, options for explaining some features of PAT in the Charales. The occurrence of PAT in the Charales shows that PAT originated in the algal ancestors of the embryophytes (liverworts, mosses, hornworts, and vascular plants), although it is not yet known if PAT occurs elsewhere in the Charophyceae or in other algae. While in the embryophytes PAT occurs in parenchymatously constructed structures which commonly also have xylem and phloem (or their bryophyte analogues) as long-distance transport processes in parallel to PAT, in Chara corallina PAT shares the pathway for long-distance transport of nutrients though the parenchymatously constructed nodal complexes and the single giant cells of the internode. The speed of auxin movement of PAT is much more rapid than that attributable to diffusion and of the same order as the rate of cytoplasmic streaming in the giant internodal cells, yet complete inhibition of streaming by the inhibitor cytochalasin H does not slow down auxin transport. Explanations for this phenomenon are sought in the operation of other mechanochemical motors, dynein-tubulin and kinesin-tubulin, as alternatives to the myosin-actin system which powers cytoplasmic streaming. Experiments in which microtubules are disrupted, for example by colchicine, could show if one of the tubulin-based motors is involved. If these motors are involved, some mechanism is needed to amplify the speeds known for the motors to explain the order of magnitude higher speeds seen for auxin transport.

  7. ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis.

    PubMed

    Huang, Jia-bao; Liu, Huili; Chen, Min; Li, Xiaojuan; Wang, Mingyan; Yang, Yali; Wang, Chunling; Huang, Jiaqing; Liu, Guolan; Liu, Yuting; Xu, Jian; Cheung, Alice Y; Tao, Li-zhen

    2014-09-01

    ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.

  8. ABCB19-mediated polar auxin transport modulates Arabidopsis hypocotyl elongation and the endoreplication variant of the cell cycle.

    PubMed

    Wu, Guosheng; Carville, Jacqueline S; Spalding, Edgar P

    2016-01-01

    Elongation of the Arabidopsis hypocotyl pushes the shoot-producing meristem out of the soil by rapid expansion of cells already present in the embryo. This elongation process is shown here to be impaired by as much as 35% in mutants lacking ABCB19, an ATP-binding cassette membrane protein required for polar auxin transport, during a limited time of fast growth in dim white light beginning 2.5 days after germination. The discovery of high ectopic expression of a cyclin B1;1-based reporter of mitosis throughout abcb19 hypocotyls without an equivalent effect on mitosis prompted investigations of the endoreplication variant of the cell cycle. Flow cytometry performed on nuclei isolated from upper (growing) regions of 3-day-old hypocotyls showed ploidy levels to be lower in abcb19 mutants compared with wild type. CCS52A2 messenger RNA encoding a nuclear protein that promotes a shift from mitosis to endoreplication was lower in abcb19 hypocotyls, and fluorescence microscopy showed the CCS52A2 protein to be lower in the nuclei of abcb19 hypocotyls compared with wild type. Providing abcb19 seedlings with nanomolar auxin rescued their low CCS52A2 levels, endocycle defects, aberrant cyclin B1;1 expression, and growth rate defect. The abcb19-like growth rate of ccs52a2 mutants was not rescued by auxin, placing CCS52A2 after ABCB19-dependent polar auxin transport in a pathway responsible for a component of ploidy-related hypocotyl growth. A ccs52A2 mutation did not affect the level or pattern of cyclin B1;1 expression, indicating that CCS52A2 does not mediate the effect of auxin on cyclin B1;1. PMID:26662023

  9. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects

    NASA Technical Reports Server (NTRS)

    Ruegger, M.; Dewey, E.; Hobbie, L.; Brown, D.; Bernasconi, P.; Turner, J.; Muday, G.; Estelle, M.

    1997-01-01

    Polar auxin transport plays a key role in the regulation of plant growth and development. To identify genes involved in this process, we have developed a genetic procedure to screen for mutants of Arabidopsis that are altered in their response to auxin transport inhibitors. We recovered a total of 16 independent mutants that defined seven genes, called TRANSPORT INHIBITOR RESPONSE (TIR) genes. Recessive mutations in one of these genes, TIR3, result in altered responses to transport inhibitors, a reduction in polar auxin transport, and a variety of morphological defects that can be ascribed to changes in indole-3-acetic acid distribution. Most dramatically, tir3 seedlings are strongly deficient in lateral root production, a process that is known to depend on polar auxin transport from the shoot into the root. In addition, tir3 plants display a reduction in apical dominance as well as decreased elongation of siliques, pedicels, roots, and the inflorescence. Biochemical studies indicate that tir3 plants have a reduced number of N-1-naphthylphthalamic (NPA) binding sites, suggesting that the TIR3 gene is required for expression, localization, or stabilization of the NPA binding protein (NBP). Alternatively, the TIR3 gene may encode the NBP. Because the tir3 mutants have a substantial defect in NPA binding, their phenotype provides genetic evidence for a role for the NBP in plant growth and development.

  10. Disruption of the Polar Auxin Transport System in Cotton Seedlings following Treatment with the Defoliant Thidiazuron.

    PubMed

    Suttle, J C

    1988-01-01

    The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of (14)C-IAA transport in petiole segments isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDZ response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of (14)C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment. PMID:16665874

  11. Disruption of the Polar Auxin Transport System in Cotton Seedlings following Treatment with the Defoliant Thidiazuron.

    PubMed

    Suttle, J C

    1988-01-01

    The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of (14)C-IAA transport in petiole segments isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDZ response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of (14)C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment.

  12. The role of Arabidopsis Actin-Related Protein 3 in amyloplast sedimentation and polar auxin transport in root gravitropism

    PubMed Central

    Zou, Jun-Jie; Zheng, Zhong-Yu; Xue, Shan; Li, Han-Hai; Wang, Yu-Ren; Le, Jie

    2016-01-01

    Gravitropism is vital for shaping directional plant growth in response to the forces of gravity. Signals perceived in the gravity-sensing cells can be converted into biochemical signals and transmitted. Sedimentation of amyloplasts in the columella cells triggers asymmetric auxin redistribution in root tips, leading to downward root growth. The actin cytoskeleton is thought to play an important role in root gravitropism, although the molecular mechanism has not been resolved. DISTORTED1 (DIS1) encodes the ARP3 subunit of the Arabidopsis Actin-Related Protein 2/3 (ARP2/3) complex, and the ARP3/DIS1 mutant dis1-1 showed delayed root curvature after gravity stimulation. Microrheological analysis revealed that the high apparent viscosity within dis1-1 central columella cells is closely associated with abnormal movement trajectories of amyloplasts. Analysis using a sensitive auxin input reporter DII-VENUS showed that asymmetric auxin redistribution was reduced in the root tips of dis1-1, and the actin-disrupting drug Latrunculin B increased the asymmetric auxin redistribution. An uptake assay using the membrane-selective dye FM4-64 indicated that endocytosis was decelerated in dis1-1 root epidermal cells. Treatment and wash-out with Brefeldin A, which inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, showed that cycling of the auxin-transporter PIN-FORMED (PIN) proteins to the plasma membrane was also suppressed in dis1-1 roots. The results reveal that ARP3/DIS1 acts in root gravitropism by affecting amyloplast sedimentation and PIN-mediated polar auxin transport through regulation of PIN protein trafficking. PMID:27473572

  13. The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention.

    PubMed

    Else, Mark A; Stankiewicz-Davies, Anna P; Crisp, Carol M; Atkinson, Christopher J

    2004-09-01

    It was investigated whether premature fruit abscission in Prunus avium L. was triggered by a reduction in polar auxin transport (PAT). The capacity of pedicels to transport tritiated IAA ([3H]-IAA) via the PAT pathway was measured at intervals throughout flower and fruit development. The extent of passive diffusion, assessed by concurrent applications of [14C]-benzoic acid ([14C]-BA), was negligible. Transported radioactivity recovered from agar blocks eluted at the same retention time as authentic [3H]-IAA during HPLC fractionation. The capacity for PAT was already high 7 d before anthesis and increased further following the fertilization of flowers at anthesis. PAT intensity was greatest immediately following fertilization and at the beginning of the cell expansion phase of fruit growth; the transport intensity in fruitlets destined to abscind was negligible. The amount of endogenous IAA moving through the PAT pathway was greatest during the first 3 weeks after fertilization and was again high at the beginning of the fruit expansion stage. IAA export in the phloem increased following fertilization then declined below detectable levels. ABA export in the phloem increased markedly during stone formation and at the onset of fruit expansion. TIBA applied to pedicels of fruit in situ promoted fruitlet abscission in 2000 but not in 2001, despite PAT capacity being reduced by over 98% in the treated pedicels. The application of TIBA to pedicels did not affect fruit expansion. The role of PAT and IAA in relation to the development and retention of Prunus avium fruit is discussed. PMID:15310825

  14. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.

    PubMed

    Li, Yun-He; Zou, Ming-Hong; Feng, Bi-Hong; Huang, Xia; Zhang, Zhi; Sun, Guang-Ming

    2012-06-01

    Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments.

  15. Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots

    PubMed Central

    Yin, Ruohe; Han, Kerstin; Heller, Werner; Albert, Andreas; Dobrev, Petre I; Zažímalová, Eva; Schäffner, Anton R

    2014-01-01

    Polar auxin transport (PAT) plays key roles in the regulation of plant growth and development. Flavonoids have been implicated in the inhibition of PAT. However, the active flavonoid derivative(s) involved in this process in vivo has not yet been identified. Here, we provide evidence that a specific flavonol bis-glycoside is correlated with shorter plant stature and reduced PAT. Specific flavonoid-biosynthetic or flavonoid-glycosylating steps were genetically blocked in Arabidopsis thaliana. The differential flavonol patterns established were analyzed by high-performance liquid chromatography (HPLC) and related to altered plant stature. PAT was monitored in stem segments using a radioactive [3H]-indole-3-acetic acid tracer. The flavonoid 3-O-glucosyltransferase mutant ugt78d2 exhibited a dwarf stature in addition to its altered flavonol glycoside pattern. This was accompanied by reduced PAT in ugt78d2 shoots. The ugt78d2-dependent growth defects were flavonoid dependent, as they were rescued by genetic blocking of flavonoid biosynthesis. Phenotypic and metabolic analyses of a series of mutants defective at various steps of flavonoid formation narrowed down the potentially active moiety to kaempferol 3-O-rhamnoside-7-O-rhamnoside. Moreover, the level of this compound was negatively correlated with basipetal auxin transport. These results indicate that kaempferol 3-O-rhamnoside-7-O-rhamnoside acts as an endogenous PAT inhibitor in Arabidopsis shoots. PMID:24251900

  16. The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes.

    PubMed

    Effendi, Yunus; Rietz, Steffen; Fischer, Urs; Scherer, Günther F E

    2011-01-01

    AUXIN-BINDING PROTEIN 1 (ABP1) is not easily accessible for molecular studies because the homozygous T-DNA insertion mutant is embryo-lethal. We found that the heterozygous abp1/ABP1 insertion mutant has defects in auxin physiology-related responses: higher root slanting angles, longer hypocotyls, agravitropic roots and hypocotyls, aphototropic hypocotyls, and decreased apical dominance. Heterozygous plants flowered earlier than wild-type plants under short-day conditions. The length of the main root, the lateral root density and the hypocotyl length were little altered in the mutant in response to auxin. Compared to wild-type plants, transcription of early auxin-regulated genes (IAA2, IAA11, IAA13, IAA14, IAA19, IAA20, SAUR9, SAUR15, SAUR23, GH3.5 and ABP1) was less strongly up-regulated in the mutant by 0.1, 1 and 10 μm IAA. Surprisingly, ABP1 was itself an early auxin-up-regulated gene. IAA uptake into the mutant seedlings during auxin treatments was indistinguishable from wild-type. Basipetal auxin transport in young roots was slower in the mutant, indicating a PIN2/EIR1 defect, while acropetal transport was indistinguishable from wild-type. In the eir1 background, three of the early auxin-regulated genes tested (IAA2, IAA13 and ABP1) were more strongly induced by 1 μm IAA in comparison to wild-type, but eight of them were less up-regulated in comparison to wild-type. Similar but not identical disturbances in regulation of early auxin-regulated genes indicate tight functional linkage of ABP1 and auxin transport regulation. We hypothesize that ABP1 is involved in the regulation of polar auxin transport, and thus affects local auxin concentration and early auxin gene regulation. In turn, ABP1 itself is under the transcriptional control of auxin.

  17. ZmPIN1a and ZmPIN1b Encode Two Novel Putative Candidates for Polar Auxin Transport and Plant Architecture Determination of Maize1[W

    PubMed Central

    Carraro, Nicola; Forestan, Cristian; Canova, Sabrina; Traas, Jan; Varotto, Serena

    2006-01-01

    Shoot apical meristems produce organs in a highly stereotypic pattern that involves auxin. Auxin is supposed to be actively transported from cell to cell by influx (AUXIN/LIKE AUXIN proteins) and efflux (PIN-FORMED proteins) membrane carriers. Current hypotheses propose that, at the meristem surface, PIN proteins create patterns of auxin gradients that, in turn, create patterns of gene expression and morphogenesis. These hypotheses are entirely based on work in Arabidopsis (Arabidopsis thaliana). To verify whether these models also apply to other species, we studied the behavior of PIN proteins during maize (Zea mays) development. We identified two novel putative orthologs of AtPIN1 in maize and analyzed their expression pattern during development. The expression studies were complemented by immunolocalization studies using an anti-AtPIN1 antibody. Interestingly, the maize proteins visualized by this antibody are almost exclusively localized in subepidermal meristematic layers. Both tassel and ear were characterized by a compact group of cells, just below the surface, carrying PIN. In contrast to or to complement what was shown in Arabidopsis, these results point to the importance of internally localized cells in the patterning process. We chose the barren inflorescence2 (bif2) maize mutant to study the role of auxin polar fluxes in inflorescence development. In severe alleles of bif2, the tassel and the ear present altered ZmPIN1a and ZmPIN1b protein expression and localization patterns. In particular, the compact groups of cells in the tassel and ear of the mutant were missing. We conclude that BIF2 is important for PIN organization and could play a role in the establishment of polar auxin fluxes in maize inflorescence, indirectly modulating the process of axillary meristem formation and development. PMID:16844839

  18. Solute carrier 41A3 encodes for a mitochondrial Mg2+ efflux system

    PubMed Central

    Mastrototaro, Lucia; Smorodchenko, Alina; Aschenbach, Jörg R.; Kolisek, Martin; Sponder, Gerhard

    2016-01-01

    The important role of magnesium (Mg2+) in normal cellular physiology requires flexible, yet tightly regulated, intracellular Mg2+ homeostasis (IMH). However, only little is known about Mg2+ transporters of subcellular compartments such as mitochondria, despite their obvious importance for the deposition and reposition of intracellular Mg2+ pools. In particular, knowledge about mechanisms responsible for extrusion of Mg2+ from mitochondria is lacking. Based on circumstantial evidence, two possible mechanisms of Mg2+ release from mitochondria were predicted: (1) Mg2+ efflux coupled to ATP translocation via the ATP-Mg/Pi carrier, and (2) Mg2+ efflux via a H+/Mg2+ exchanger. Regardless, the identity of the H+-coupled Mg2+ efflux system is unknown. We demonstrate here that member A3 of solute carrier (SLC) family 41 is a mitochondrial Mg2+ efflux system. Mitochondria of HEK293 cells overexpressing SLC41A3 exhibit a 60% increase in the extrusion of Mg2+ compared with control cells. This efflux mechanism is Na+-dependent and temperature sensitive. Our data identify SLC41A3 as the first mammalian mitochondrial Mg2+ efflux system, which greatly enhances our understanding of intracellular Mg2+ homeostasis. PMID:27302215

  19. The Signal Transducer NPH3 Integrates the Phototropin1 Photosensor with PIN2-Based Polar Auxin Transport in Arabidopsis Root Phototropism[C][W

    PubMed Central

    Wan, Yinglang; Jasik, Jan; Wang, Li; Hao, Huaiqing; Volkmann, Dieter; Menzel, Diedrik; Mancuso, Stefano; Baluška, František; Lin, Jinxing

    2012-01-01

    Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone. PMID:22374399

  20. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. [Gossypium hirsutum L. cv LG102

    SciTech Connect

    Suttle, J.C.

    1988-01-01

    The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of /sup 14/C-IAA transport in petiole segment isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDA response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of /sup 14/C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment.

  1. Sequential induction of auxin efflux and influx carriers regulates lateral root emergence.

    PubMed

    Péret, Benjamin; Middleton, Alistair M; French, Andrew P; Larrieu, Antoine; Bishopp, Anthony; Njo, Maria; Wells, Darren M; Porco, Silvana; Mellor, Nathan; Band, Leah R; Casimiro, Ilda; Kleine-Vehn, Jürgen; Vanneste, Steffen; Sairanen, Ilkka; Mallet, Romain; Sandberg, Göran; Ljung, Karin; Beeckman, Tom; Benkova, Eva; Friml, Jiří; Kramer, Eric; King, John R; De Smet, Ive; Pridmore, Tony; Owen, Markus; Bennett, Malcolm J

    2013-01-01

    In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell-wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three-dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required--later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes. PMID:24150423

  2. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells

    NASA Astrophysics Data System (ADS)

    Dorier, M.; Brun, E.; Veronesi, G.; Barreau, F.; Pernet-Gallay, K.; Desvergne, C.; Rabilloud, T.; Carapito, C.; Herlin-Boime, N.; Carrière, M.

    2015-04-01

    TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken

  3. Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem?

    PubMed

    Renton, Michael; Hanan, Jim; Ferguson, Brett J; Beveridge, Christine A

    2012-05-01

    • This paper presents two models of carrier-dependent long-distance auxin transport in stems that represent the process at different scales. • A simple compartment model using a single constant auxin transfer rate produced similar data to those observed in biological experiments. The effects of different underlying biological assumptions were tested in a more detailed model representing cellular and intracellular processes that enabled discussion of different patterns of carrier-dependent auxin transport and signalling. • The output that best fits the biological data is produced by a model where polar auxin transport is not limited by the number of transporters/carriers and hence supports biological data showing that stems have considerable excess capacity to transport auxin. • All results support the conclusion that auxin depletion following apical decapitation in pea (Pisum sativum) occurs too slowly to be the initial cause of bud outgrowth. Consequently, changes in auxin content in the main stem and changes in polar auxin transport/carrier abundance in the main stem are not correlated with axillary bud outgrowth. PMID:22443265

  4. Strigolactone Inhibition of Branching Independent of Polar Auxin Transport.

    PubMed

    Brewer, Philip B; Dun, Elizabeth A; Gui, Renyi; Mason, Michael G; Beveridge, Christine A

    2015-08-01

    The outgrowth of axillary buds into branches is regulated systemically via plant hormones and the demand of growing shoot tips for sugars. The plant hormone auxin is thought to act via two mechanisms. One mechanism involves auxin regulation of systemic signals, cytokinins and strigolactones, which can move into axillary buds. The other involves suppression of auxin transport/canalization from axillary buds into the main stem and is enhanced by a low sink for auxin in the stem. In this theory, the relative ability of the buds and stem to transport auxin controls bud outgrowth. Here, we evaluate whether auxin transport is required or regulated during bud outgrowth in pea (Pisum sativum). The profound, systemic, and long-term effects of the auxin transport inhibitor N-1-naphthylphthalamic acid had very little inhibitory effect on bud outgrowth in strigolactone-deficient mutants. Strigolactones can also inhibit bud outgrowth in N-1-naphthylphthalamic acid-treated shoots that have greatly diminished auxin transport. Moreover, strigolactones can inhibit bud outgrowth despite a much diminished auxin supply in in vitro or decapitated plants. These findings demonstrate that auxin sink strength in the stem is not important for bud outgrowth in pea. Consistent with alternative mechanisms of auxin regulation of systemic signals, enhanced auxin biosynthesis in Arabidopsis (Arabidopsis thaliana) can suppress branching in yucca1D plants compared with wild-type plants, but has no effect on bud outgrowth in a strigolactone-deficient mutant background. PMID:26111543

  5. Strigolactone Inhibition of Branching Independent of Polar Auxin Transport.

    PubMed

    Brewer, Philip B; Dun, Elizabeth A; Gui, Renyi; Mason, Michael G; Beveridge, Christine A

    2015-08-01

    The outgrowth of axillary buds into branches is regulated systemically via plant hormones and the demand of growing shoot tips for sugars. The plant hormone auxin is thought to act via two mechanisms. One mechanism involves auxin regulation of systemic signals, cytokinins and strigolactones, which can move into axillary buds. The other involves suppression of auxin transport/canalization from axillary buds into the main stem and is enhanced by a low sink for auxin in the stem. In this theory, the relative ability of the buds and stem to transport auxin controls bud outgrowth. Here, we evaluate whether auxin transport is required or regulated during bud outgrowth in pea (Pisum sativum). The profound, systemic, and long-term effects of the auxin transport inhibitor N-1-naphthylphthalamic acid had very little inhibitory effect on bud outgrowth in strigolactone-deficient mutants. Strigolactones can also inhibit bud outgrowth in N-1-naphthylphthalamic acid-treated shoots that have greatly diminished auxin transport. Moreover, strigolactones can inhibit bud outgrowth despite a much diminished auxin supply in in vitro or decapitated plants. These findings demonstrate that auxin sink strength in the stem is not important for bud outgrowth in pea. Consistent with alternative mechanisms of auxin regulation of systemic signals, enhanced auxin biosynthesis in Arabidopsis (Arabidopsis thaliana) can suppress branching in yucca1D plants compared with wild-type plants, but has no effect on bud outgrowth in a strigolactone-deficient mutant background.

  6. Evidence that amphetamine and Na+ gradient reversal increase striatal synaptosomal dopamine synthesis through carrier-mediated efflux of dopamine.

    PubMed

    Connor, C E; Kuczenski, R

    1986-09-15

    Amphetamine (AMPH) releases dopamine (DA) from striatal synaptosomes and concomitantly increases DA synthesis. Since AMPH may release DA through carrier-mediated diffusion via reversal of the DA uptake system, the increase in DA synthesis might depend on a functioning uptake carrier. Consistent with such a mechanism, the uptake inhibitors nomifensine (NMF) and benztropine (BZT) completely prevented the AMPH-induced increase in DA synthesis at concentrations known to inhibit DA uptake. Changes in the Na+ gradient across the synaptosomal membrane also promote DA release, since DA and Na+ are cotransported by the neuronal uptake carrier. Incubation of synaptosomes in medium containing decreasing Na+ increased DA synthesis inversely proportional to Na+ over the range 128 to 20 mM. Similarly, incubations in the presence of 10(-4) M ouabain to inhibit Na+, K+-ATPase and allow intracellular accumulation of Na+ also increased DA synthesis. These changes in DA synthesis could also be prevented by BZT and were non-additive with the AMPH-induced increase in DA synthesis. However, a concentration of ouabain (10(-6) M) which by itself did not increase DA synthesis, and does not promote DA release, potentiated the AMPH-induced increase in DA synthesis. Further, the increased DA synthesis promoted by all three manipulations was only marginally dependent on the presence of Ca2+ in the incubation medium. However, at 5 and 10 mM Na+, a second component of increased DA synthesis was observed which was insensitive to BZT, but was prevented by Ca2+ removal. These results suggest that the increase in DA synthesis, and presumably DA release promoted by AMPH, lowered Na+, and ouabain, depend on the availability of the DA carrier at the internal face of the neuronal membrane and the intracellular content of Na+. The second component of increased DA synthesis which is evident at 5 and 10 mM Na+ is discussed in terms of a possible Ca2+-mediated change in DA synthesis which is independent of

  7. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  8. Tricho- and atrichoblast cell files show distinct PIN2 auxin efflux carrier exploitations and are jointly required for defined auxin-dependent root organ growth.

    PubMed

    Löfke, Christian; Scheuring, David; Dünser, Kai; Schöller, Maria; Luschnig, Christian; Kleine-Vehn, Jürgen

    2015-08-01

    The phytohormone auxin is a vital growth regulator in plants. In the root epidermis auxin steers root organ growth. However, the mechanisms that allow adjacent tissues to integrate growth are largely unknown. Here, the focus is on neighbouring epidermal root tissues to assess the integration of auxin-related growth responses. The pharmacologic, genetic, and live-cell imaging approaches reveal that PIN2 auxin efflux carriers are differentially controlled in tricho- and atrichoblast cells. PIN2 proteins show lower abundance at the plasma membrane of trichoblast cells, despite showing higher rates of intracellular trafficking in these cells. The data suggest that PIN2 proteins display distinct cell-type-dependent trafficking rates to the lytic vacuole for degradation. Based on this insight, it is hypothesized that auxin-dependent processes are distinct in tricho- and atrichoblast cells. Moreover, genetic interference with epidermal patterning supports this assumption and suggests that tricho- and atrichoblasts have distinct importance for auxin-sensitive root growth and gravitropic responses.

  9. Tricho- and atrichoblast cell files show distinct PIN2 auxin efflux carrier exploitations and are jointly required for defined auxin-dependent root organ growth.

    PubMed

    Löfke, Christian; Scheuring, David; Dünser, Kai; Schöller, Maria; Luschnig, Christian; Kleine-Vehn, Jürgen

    2015-08-01

    The phytohormone auxin is a vital growth regulator in plants. In the root epidermis auxin steers root organ growth. However, the mechanisms that allow adjacent tissues to integrate growth are largely unknown. Here, the focus is on neighbouring epidermal root tissues to assess the integration of auxin-related growth responses. The pharmacologic, genetic, and live-cell imaging approaches reveal that PIN2 auxin efflux carriers are differentially controlled in tricho- and atrichoblast cells. PIN2 proteins show lower abundance at the plasma membrane of trichoblast cells, despite showing higher rates of intracellular trafficking in these cells. The data suggest that PIN2 proteins display distinct cell-type-dependent trafficking rates to the lytic vacuole for degradation. Based on this insight, it is hypothesized that auxin-dependent processes are distinct in tricho- and atrichoblast cells. Moreover, genetic interference with epidermal patterning supports this assumption and suggests that tricho- and atrichoblasts have distinct importance for auxin-sensitive root growth and gravitropic responses. PMID:26041320

  10. Tricho- and atrichoblast cell files show distinct PIN2 auxin efflux carrier exploitations and are jointly required for defined auxin-dependent root organ growth

    PubMed Central

    Löfke, Christian; Scheuring, David; Dünser, Kai; Schöller, Maria; Luschnig, Christian; Kleine-Vehn, Jürgen

    2015-01-01

    The phytohormone auxin is a vital growth regulator in plants. In the root epidermis auxin steers root organ growth. However, the mechanisms that allow adjacent tissues to integrate growth are largely unknown. Here, the focus is on neighbouring epidermal root tissues to assess the integration of auxin-related growth responses. The pharmacologic, genetic, and live-cell imaging approaches reveal that PIN2 auxin efflux carriers are differentially controlled in tricho- and atrichoblast cells. PIN2 proteins show lower abundance at the plasma membrane of trichoblast cells, despite showing higher rates of intracellular trafficking in these cells. The data suggest that PIN2 proteins display distinct cell-type-dependent trafficking rates to the lytic vacuole for degradation. Based on this insight, it is hypothesized that auxin-dependent processes are distinct in tricho- and atrichoblast cells. Moreover, genetic interference with epidermal patterning supports this assumption and suggests that tricho- and atrichoblasts have distinct importance for auxin-sensitive root growth and gravitropic responses. PMID:26041320

  11. Origin and evolution of PIN auxin transporters in the green lineage.

    PubMed

    Viaene, Tom; Delwiche, Charles F; Rensing, Stefan A; Friml, Jiří

    2013-01-01

    Polarized auxin transport is crucial for many developmental processes in flowering plants and requires the PIN-FORMED (PIN) family of auxin efflux carriers. However, the impact of polar auxin transport and PIN proteins on the development of non-seed plant species and green algal lineages is largely unknown. Using recently available sequence information from streptophyte algae and other non-seed plant species, we have constructed a preliminary phylogenetic framework and present several hypotheses for PIN protein evolution. We postulate that PIN proteins originated in streptophyte algae at the endoplasmic reticulum (ER) and that plasma membrane localization was acquired during land plant evolution. We also suggest that PIN proteins are evolutionarily distinct from another family of auxin transporters at the ER, the PIN-LIKES (PILS) proteins. PMID:22981345

  12. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls

    NASA Technical Reports Server (NTRS)

    Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.

    1998-01-01

    The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.

  13. Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide (NO) and auxin phytohormone cross talk has been implicated in plant development and growth. Addition and removal of NO to cysteine residues of proteins, is termed S-nitrosylation and de-nitrosylation, respectively and functions as an on/off switch of protein activity. This dynamic proce...

  14. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport.

    PubMed

    Tang, Wenqiang; Brady, Shari R; Sun, Yu; Muday, Gloria K; Roux, Stanley J

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  15. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  16. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport.

    PubMed

    Tang, Wenqiang; Brady, Shari R; Sun, Yu; Muday, Gloria K; Roux, Stanley J

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed. PMID:12529523

  17. S-nitrosylation mediates nitric oxide -auxin crosstalk in auxin signaling and polar auxin transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide (NO) and auxin phytohormone cross talk has been implicated in plant development and growth. Addition and removal of NO moieties to cysteine residues of proteins, is termed S-nitrosylation and de-nitrosylation, respectively and functions as an on/off switch of protein activity. This dyna...

  18. Influences of polar auxin transport on polarity of adventitious bud formation in hybrid populas

    SciTech Connect

    Kim, Myung Won ); Hackett, W. )

    1989-04-01

    The role of auxin and cytokinin distribution of polar regeneration of adventitious bud has been investigated. Explants from leaf midvein were labelled with {sup 14}C-NAA and {sup 14}C-BA and the radioactivity in proximal, mid, and distal portions was counted after 24h and 48h. Explants showing polar regeneration of buds on the proximal end showed a clear polar distribution of {sup 14}CNAA. Auxin transport inhibitors (NPA, TIBA) eliminated polar distribution of auxin and reduced polarity of bud formation and the total number of buds formed, but did not reduce callus formation. Increased concentration of Ca(NO{sub 3}){sub 2} decreased polarity of bud formation and increased the number of buds formed but did not affect the distribution of auxin of cytokinin. Some factor in addition to polar distribution of auxin or cytokinin-auxin ratio appears to influence the polarity of adventitious bud formation.

  19. Strigolactone Inhibition of Branching Independent of Polar Auxin Transport1[OPEN

    PubMed Central

    Brewer, Philip B.; Dun, Elizabeth A.; Gui, Renyi; Mason, Michael G.; Beveridge, Christine A.

    2015-01-01

    The outgrowth of axillary buds into branches is regulated systemically via plant hormones and the demand of growing shoot tips for sugars. The plant hormone auxin is thought to act via two mechanisms. One mechanism involves auxin regulation of systemic signals, cytokinins and strigolactones, which can move into axillary buds. The other involves suppression of auxin transport/canalization from axillary buds into the main stem and is enhanced by a low sink for auxin in the stem. In this theory, the relative ability of the buds and stem to transport auxin controls bud outgrowth. Here, we evaluate whether auxin transport is required or regulated during bud outgrowth in pea (Pisum sativum). The profound, systemic, and long-term effects of the auxin transport inhibitor N-1-naphthylphthalamic acid had very little inhibitory effect on bud outgrowth in strigolactone-deficient mutants. Strigolactones can also inhibit bud outgrowth in N-1-naphthylphthalamic acid-treated shoots that have greatly diminished auxin transport. Moreover, strigolactones can inhibit bud outgrowth despite a much diminished auxin supply in in vitro or decapitated plants. These findings demonstrate that auxin sink strength in the stem is not important for bud outgrowth in pea. Consistent with alternative mechanisms of auxin regulation of systemic signals, enhanced auxin biosynthesis in Arabidopsis (Arabidopsis thaliana) can suppress branching in yucca1D plants compared with wild-type plants, but has no effect on bud outgrowth in a strigolactone-deficient mutant background. PMID:26111543

  20. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth.

    PubMed

    Leitner, Johannes; Petrášek, Jan; Tomanov, Konstantin; Retzer, Katarzyna; Pařezová, Markéta; Korbei, Barbara; Bachmair, Andreas; Zažímalová, Eva; Luschnig, Christian

    2012-05-22

    Cross-talk between plant cells and their surroundings requires tight regulation of information exchange at the plasma membrane (PM), which involves dynamic adjustments of PM protein localization and turnover to modulate signal perception and solute transport at the interface between cells and their surroundings. In animals and fungi, turnover of PM proteins is controlled by reversible ubiquitylation, which signals endocytosis and delivery to the cell's lytic compartment, and there is emerging evidence for related mechanisms in plants. Here, we describe the fate of Arabidopsis PIN2 protein, required for directional cellular efflux of the phytohormone auxin, and identify cis- and trans-acting mediators of PIN2 ubiquitylation. We demonstrate that ubiquitin acts as a principal signal for PM protein endocytosis in plants and reveal dynamic adjustments in PIN2 ubiquitylation coinciding with variations in vacuolar targeting and proteolytic turnover. We show that control of PIN2 proteolytic turnover via its ubiquitylation status is of significant importance for auxin distribution in root meristems and for environmentally controlled adaptations of root growth. Moreover, we provide experimental evidence indicating that PIN2 vacuolar sorting depends on modification specifically by lysine(63)-linked ubiquitin chains. Collectively, our results establish lysine(63)-linked PM cargo ubiquitylation as a regulator of polar auxin transport and adaptive growth responses in higher plants.

  1. Calcium Efflux from Barnacle Muscle Fibers

    PubMed Central

    Russell, J. M.; Blaustein, M. P.

    1974-01-01

    Calcium-45 was injected into single giant barnacle muscle fibers, and the rate of efflux was measured under a variety of conditions. The rate constant (k) for 45Ca efflux into standard seawater averaged 17 x 10–4 min–1 which corresponds to an efflux of about 1–2 pmol/cm2·s. Removal of external Ca (Cao) reduced the efflux by 50%. In most fibers about 40% of the 45Ca efflux into Ca-free seawater was dependent on external Na (Nao); treatment with 3.5 mM caffeine increased the magnitude of the Nao-dependent efflux. In a few fibers removal of Nao, in the absence of Cao, either had no effect or increased k; caffeine (2–3.5 mM) unmasked an Nao-dependent efflux in these fibers. The Nao-dependent Ca efflux had a Q10 of about 3.7. The data are consistent with the idea that a large fraction of the Ca efflux may be carrier-mediated, and may involve both Ca-Ca and Na-Ca counterflow. The relation between the Nao-dependent Ca efflux and the external Na concentration is sigmoid, and suggests that two, or more likely three, external Na+ ions may activate the efflux of one Ca+2. With a three-for-one Na-Ca exchange, the Na electrochemical gradient may be able to supply sufficient energy to maintain the Ca gradient in these fibers. Other, more complex models are not excluded, however, and may be required to explain some puzzling features of the Ca efflux such as the variable Nao-dependence. PMID:4812633

  2. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton

    NASA Technical Reports Server (NTRS)

    Muday, G. K.

    2000-01-01

    In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.

  3. Isolation and characterization of a cDNA clone encoding an auxin influx carrier in carnation cuttings. Expression in different organs and cultivars and its relationship with cold storage.

    PubMed

    Oliveros-Valenzuela, María Del Rocío; Reyes, David; Sánchez-Bravo, José; Acosta, Manuel; Nicolás, Carlos

    2008-12-01

    Polar auxin transport (PAT) is necessary for the formation of adventitious roots in the base of leafy stem cuttings, as has been demonstrated in several studies in which the application of PAT inhibitors strongly inhibited the rooting of cuttings. However, unlike in the case of lateral roots, there is almost no information on the molecular mechanism that controls PAT in the formation of adventitious roots. A novel cDNA encoding an auxin influx carrier has been isolated and characterized from carnation (Dianthus caryophyllus) cuttings. The full length of DcAUX1 was obtained and the deduced aminoacid sequence revealed a high degree of identity with the corresponding auxin carrier proteins from several species. The expression of this gene depended on the organ, the carnation cultivar and the length of time cuttings had been stored in a cold chamber. As a rule, expression was higher in stem than in leaves, in the basal than in the first internode and in mature than in young leaves irrespective of the cultivar and the duration of the storage. This pattern of expression agrees with the results of a previous study showing that auxin from mature leaves was essential for rooting, while exogenous auxin applied to mature leaves was polarly transported in the stem and accumulated in the basal internode (the rooting zone). Variations in the expression observed during storage (depending of the cultivar) might be related to the variation in PAT and rooting reported in previous studies.

  4. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases

    NASA Technical Reports Server (NTRS)

    Shin, Heungsop; Shin, Hwa-Soo; Guo, Zibiao; Blancaflor, Elison B.; Masson, Patrick H.; Chen, Rujin

    2005-01-01

    Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.

  5. Gravitropism of Arabidopsis thaliana Roots Requires the Polarization of PIN2 toward the Root Tip in Meristematic Cortical Cells[C][W

    PubMed Central

    Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I.

    2010-01-01

    In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response. PMID:20562236

  6. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.).

    PubMed

    Zhao, Heming; Ma, Tengfei; Wang, Xin; Deng, Yingtian; Ma, Haoli; Zhang, Rongsheng; Zhao, Jie

    2015-11-01

    Polar auxin transport, mediated by influx and efflux transporters, controls many aspects of plant growth and development. The auxin influx carriers in Arabidopsis have been shown to control lateral root development and gravitropism, but little is known about these proteins in rice. This paper reports on the functional characterization of OsAUX1. Three OsAUX1 T-DNA insertion mutants and RNAi knockdown transgenic plants reduced lateral root initiation compared with wild-type (WT) plants. OsAUX1 overexpression plants exhibited increased lateral root initiation and OsAUX1 was highly expressed in lateral roots and lateral root primordia. Similarly, the auxin reporter, DR5-GUS, was expressed at lower levels in osaux1 than in the WT plants, which indicated that the auxin levels in the mutant roots had decreased. Exogenous 1-naphthylacetic acid (NAA) treatment rescued the defective phenotype in osaux1-1 plants, whereas indole-3-acetic acid (IAA) and 2,4-D could not, which suggested that OsAUX1 was a putative auxin influx carrier. The transcript levels of several auxin signalling genes and cell cycle genes significantly declined in osaux1, hinting that the regulatory role of OsAUX1 may be mediated by auxin signalling and cell cycle genes. Overall, our results indicated that OsAUX1 was involved in polar auxin transport and functioned to control auxin-mediated lateral root initiation in rice.

  7. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices

    PubMed Central

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Sawchuk, Megan G.; Scarpella, Enrico; Ljung, Karin

    2016-01-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS. PMID:27119525

  8. Auxin Stimulates Its Own Transport by Shaping Actin Filaments1

    PubMed Central

    Nick, Peter; Han, Min-Jung; An, Gyeunhung

    2009-01-01

    The directional transport of the plant hormone auxin has been identified as central element of axis formation and patterning in plants. This directionality of transport depends on gradients, across the cell, of auxin-efflux carriers that continuously cycle between plasma membrane and intracellular compartments. This cycling has been proposed to depend on actin filaments. However, the role of actin for the polarity of auxin transport has been disputed. The organization of actin, in turn, has been shown to be under control of auxin. By overexpression of the actin-binding protein talin, we have generated transgenic rice (Oryza sativa) lines, where actin filaments are bundled to variable extent and, in consequence, display a reduced dynamics. We show that this bundling of actin filaments correlates with impaired gravitropism and reduced longitudinal transport of auxin. We can restore a normal actin configuration by addition of exogenous auxins and restore gravitropism as well as polar auxin transport. This rescue is mediated by indole-3-acetic acid and 1-naphthyl acetic acid but not by 2,4-dichlorophenoxyacetic acid. We interpret these findings in the context of a self-referring regulatory circuit between polar auxin transport and actin organization. This circuit might contribute to the self-amplification of auxin transport that is a central element in current models of auxin-dependent patterning. PMID:19633235

  9. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices.

    PubMed

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Waldie, Tanya; Sawchuk, Megan G; Scarpella, Enrico; Ljung, Karin; Leyser, Ottoline

    2016-04-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS.

  10. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices.

    PubMed

    Bennett, Tom; Hines, Geneviève; van Rongen, Martin; Waldie, Tanya; Sawchuk, Megan G; Scarpella, Enrico; Ljung, Karin; Leyser, Ottoline

    2016-04-01

    The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS. PMID:27119525

  11. [Efflux systems in Serratia marcescens].

    PubMed

    Mardanova, A M; Bogomol'naia, L M; Romanova, Iu D; Sharipova, M R

    2014-01-01

    A widespread bacterium Serratia marcescens (family Enterobacteriaceae) is an opportunistic and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from pathogen and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from the cells by efflux systems is one of the mechanisms responsible for microbial resistance to these compounds. Among enterobacteria, efflux systems of Escherichia coli and Salmonella enterica var. Typhimurium have been studied most extensively. Few efflux systems that belong to different families have been reported for S. marcescens. In this review, we analyzed available literature about S. marcescens efflux systems and carried out the comparative analysis of the genes encoding the RND type systems in different Serratia species and in other enterobacteria. Bioinformatical analysis of the S. marcescens genome allowed us to identify the previously unknown efflux systems based on their homology with the relevant E. coli genes. Identification of additional efflux systems in S. marcescens genome will promote our understanding of physiology of these bacteria, will detect new molecular mechanisms of resistance and will reveal their resistance potential.

  12. Development of chitosan-SLN microparticles for chemotherapy: in vitro approach through efflux-transporter modulation.

    PubMed

    Dharmala, Kiran; Yoo, Jin Wook; Lee, Chi H

    2008-11-12

    Drug efflux-transporters serve as a major barrier to anticancer drugs at the target site. One strategy to enhance the therapeutic efficacy of drugs against cancer is to increase their available concentrations at the target site by suppressing or modulating efflux-transporters. This manuscript deals with the development and evaluation of the particle type drug delivery system made of stearic acid (Solid Lipid Nanoparticle - SLN) and chitosan for the delivery of Phenethyl Isothiocyanate (PEITC), a tumor-suppressive agent, through the pulmonary route. The rationale behind the particle type drug delivery system involves a prior release of the efflux-transporter inhibitors, such as tamoxifen, verapamil HCl or nifedipine, to suppress or modulate the efflux activity of ABC transporters followed by the release of the efflux-transporter substrate, PEITC. The efficacy of Chitosan-SLN Microparticles (CSM) as a carrier for PEITC was evaluated by investigating the release profiles of PEITC loaded in CSM and its cytotoxicity in the presence or absence of the efflux-transporter inhibitors. An initial burst release of the inhibitors, followed by gradual, sustained release of PEITC and subsequent increase in cytotoxicity was observed. This finding indicated that the efflux transporter inhibitors significantly affected the PEITC uptake rate by Calu-3 cells. Judging from these results, CSM can be an efficient drug delivery system for the substrates susceptible to the efflux-transporters. PMID:18723057

  13. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  14. Proton-dependent multidrug efflux systems.

    PubMed Central

    Paulsen, I T; Brown, M H; Skurray, R A

    1996-01-01

    Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also

  15. Efflux-Mediated Antifungal Drug Resistance†

    PubMed Central

    Cannon, Richard D.; Lamping, Erwin; Holmes, Ann R.; Niimi, Kyoko; Baret, Philippe V.; Keniya, Mikhail V.; Tanabe, Koichi; Niimi, Masakazu; Goffeau, Andre; Monk, Brian C.

    2009-01-01

    Summary: Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps. PMID:19366916

  16. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  17. Sodium efflux from perfused giant algal cells.

    PubMed

    Clint, G M; Macrobbie, E A

    1987-06-01

    Internodal cells of the giant alga Chara corallina were perfused internally to replace the native cytoplasm, tonoplast and vacuole with artificial cytoplasm. Sodium efflux from perfused cells, measured by including (22)Na in the perfusion media, was increased by increasing the internal sodium concentration and by decreasing the external pH, and was inhibited by external application of the renal diuretic amiloride. The sodium efflux was markedly ATP-dependent, with a 50-fold decrease in efflux observed after perfusion with media lacking ATP. Efflux in the presence of ATP was reduced by 33% by inclusion of 10 μM N,N'-dicyclohexylcarbodiimide in the perfusion medium. The membrane potential of the perfused cells approximated that of intact cells from the same culture. It is suggested that sodium efflux in perfused Chara cells proceeds via a secondary antiporter with protons, regulated by ATP in a catalytic role and with the proton motive force acting as the energy source.

  18. On the mechanism of A23187-induced potassium efflux in rat liver mitochondria.

    PubMed

    Dordick, R S; Brierley, G P; Garlid, K D

    1980-11-10

    1. Rat liver mitochondria undergo a spontaneous, respiration-dependent K+ extrusion which is accelerated by citrate. This K+ efflux is electroneutral and is considered to occur on an endogenous K/H exchanger. The spontaneous efflux, but not nigericin-induced K/H exchange, is always preceded by a lag phase, suggesting that the lag phase is a characteristic property of the endogenous exchange reaction. 2. K+ extrusion induced by ionophore A23187 also has the characteristics of K/H exchange. The rate of K+ efflux is faster and the lag time is shorter when compared to endogenous K+ efflux. The effects of A23187 on the lag phase suggest that the ionophore acts by unmasking the endogenous exchanger. This conclusion is supported by the finding that K+ efflux rates reach a maximum which cannot be exceeded by increasing the dose of A23187 but is exceeded by adding nigericin. 3. Steady state perturbation studies were carried out on respiring mitochondria in which electrophoretic K+ influx was balanced by electroneutral K+ efflux. These steady states were appropriately shifted in opposite directions by additions of nigericin or valinomycin. In contrast, addition of A23187 had no effect. It is concluded that A23187 is incapable of transporting K+ in rat liver mitochondria. 4. These results are consistent with a model in which free matrix Mg2+ acts as a K/H carrier "brake." The proposed role of this carrier-brake mechanism is to provide volume homeostasis with minimal energy expenditure. According to this model, both citrate and A23187 stimulate K/H exchange by reducing Mg2+ activity within the matrix. Citrate acts by complexation of Mg2+, while A23187 acts by transporting Mg2+ out of the matrix.

  19. The energy requirements for the basal efflux of 3H-noradrenaline from sympathetically innervated organs.

    PubMed

    Russ, H; Schömig, E; Trendelenburg, U

    1991-09-01

    In the rat vas deferens (preloaded with 3H-noradrenaline, catechol-O-methyl transferase inhibited, calcium-free solution) ouabain, glucose deprivation or the combination of hypoxia plus presence of lactate were found to induce a carrier-mediated (desipramine-sensitive) outward transport of the 3H-amine. Glucose deprivation additionally increased the efflux of deaminated 3H-metabolites, as a consequence of an increased net leakage of vesicular 3H-noradrenaline; moreover, 3H-dihydroxymandelic acid then became the predominant neuronal metabolite. The simultaneous lack of oxygen and glucose resulted in a very pronounced release of the 3H-amine. Moreover, during spontaneous efflux more outward transport of 3H-noradrenaline was observed in the absence than in the presence of extracellular calcium. In rat atria (under the same experimental conditions) the contribution by carrier-mediated outward transport to the spontaneous efflux of tritium exceeded that in vasa deferentia. Moreover, the efflux of lactate (as an index of hypoxia of the tissue) exceeded that observed in vasa deferentia, under aerobic and anaerobic conditions. It is proposed that the greater contribution by outward transport of 3H-noradrenaline to spontaneous efflux in atria than in vasa deferentia does not reflect any basic difference between the varicosities in two different organs. It is likely that the less heterogeneous distribution of the 3H-amine in atria than in vasa deferentia is responsible for storage of the exogenous amine in atrial varicosities that are subject to some hypoxia, to an increased extracellular lactate level and to perhaps a minor degree of glucose deficiency; these factors may well be responsible for the difference with regard to outward transport of 3H-noradrenaline during spontaneous efflux. Thus, in addition to the heterogeneity of the distribution of 3H-noradrenaline, an additional heterogeneity with regard to the energy supply must be expected for incubated organs.

  20. Biochemistry of Bacterial Multidrug Efflux Pumps

    PubMed Central

    Kumar, Sanath; Varela, Manuel F.

    2012-01-01

    Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, these active multi-drug efflux mechanisms remain a major area of intense study, so that ultimately measures may be discovered to inhibit these active multi-drug efflux pumps. PMID:22605991

  1. Multidrug Efflux Pumps in the Genus Erwinia: Physiology and Regulation of Efflux Pump Gene Expression.

    PubMed

    Thekkiniath, J; Ravirala, R; San Francisco, M

    2016-01-01

    Plant pathogens belonging to the genus Erwinia cause diseases in several economically important plants. Plants respond to bacterial infection with a powerful chemical arsenal and signaling molecules to rid themselves of the microbes. Although our understanding of how Erwinia initiate infections in plants has become clear, a comprehensive understanding of how these bacteria rid themselves of noxious antimicrobial agents during the infection is important. Multidrug efflux pumps are key factors in bacterial resistance toward antibiotics by reducing the level of antimicrobial compounds in the bacterial cell. Erwinia induce the expression of efflux pump genes in response to plant-derived antimicrobials. The capability of Erwinia to co-opt plant defense signaling molecules such as salicylic acid to trigger multidrug efflux pumps might have developed to ensure bacterial survival in susceptible host plants. In this review, we discuss the developments in Erwinia efflux pumps, focusing in particular on efflux pump function and the regulation of efflux pump gene expression. PMID:27571694

  2. Pharmacokinetic modeling of the sinusoidal efflux of anionic ligands from the isolated perfused rat liver: the influence of albumin.

    PubMed

    Proost, J H; Nijssen, H M; Strating, C B; Meijer, D K; Groothuis, G M

    1993-08-01

    concentrations, the net sinusoidal efflux rate is association rate-limited: A large fraction of the ligand effluxed from the cell into the median is taken up by the hepatocyte before binding to the proteins occurs. Higher kon and koff values predicted by the model might indicate altered DBSP-albumin binding characteristics upon passage through the liver but alternatively can be explained by an intrinsic effect of albumin on the carrier-mediated efflux process. Efflux experiments showed a marked stimulatory effect of the protein on sinusoidal efflux but only a moderate effect on biliary excretion, despite a strong decrease in liver content. These patterns indicate that sinusoidal efflux and biliary excretion occur from two different intracellular compartments that equilibrate slowly.

  3. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps

    PubMed Central

    Tintino, Saulo R.; Morais-Tintino, Cícera D.; Campina, Fábia F.; Pereira, Raimundo L.; Costa, Maria do S.; Braga, Maria Flaviana B.M.; Limaverde, Paulo W.; Andrade, Jacqueline C.; Siqueira-Junior, José P.; Coutinho, Henrique Douglas Melo; Balbino, Valdir Q.; Leal-Balbino, Tereza C.; Ribeiro-Filho, Jaime; Quintans-Júnior, Lucindo J.

    2016-01-01

    Alpha-tocopherol is one the most abundant and biologically active isoforms of vitamin E. This compound is a potent antioxidant and one of most studied isoforms of vitamin E. Vitamin D3 (cholecalciferol) is an important nutrient for calcium homeostasis and bone health, that has also been recognized as a potent modulator of the immune response. Methicillin-resistant Staphylococcus aureus (MRSA) is the most important causative agent of both nosocomial and community-acquired infections. The aim of this study was to evaluate the inhibitory effect of alpha-tocopherol and cholecalciferol on both S. aureus and multidrug resistant S. aureus efflux pumps. The RN4220 strain has the plasmid pUL5054 that is the carrier of gene that encodes the macrolide resistance protein (an efflux pump) MsrA; the IS-58 strain possesses the TetK tetracycline efflux protein in its genome and the 1199B strain resists to hydrophilic fluoroquinolones via a NorA-mediated mechanism. The antibacterial activity was evaluated by determining the Minimal Inhibitory Concentration (MIC) and a possible inhibition of efflux pumps was associated to a reduction of the MIC. In this work we observed that in the presence of the treatments there was a decrease in the MIC for the RN4220 and IS-58 strains, suggesting that the substances presented an inhibitory effect on the efflux pumps of these strains. Significant efforts have been done to identify efflux pump inhibitors (EPIs) from natural sources and, therefore, the antibacterial properties of cholecalciferol and alpha-tocopherol might be attributed to a direct effect on the bacterial cell depending on their amphipathic structure. PMID:27298617

  4. Pathways of Arsenic Uptake and Efflux

    PubMed Central

    Yang, Hung-Chi; Fu, Hsueh-Liang; Lin, Yung-Feng; Rosen, Barry P.

    2015-01-01

    Arsenic is the most prevalent environmental toxic substance and ranks first on the U.S. Environmental Protection Agency’s Superfund List. Arsenic is a carcinogen and a causative agent of numerous human diseases. Paradoxically arsenic is used as a chemotherapeutic agent for treatment of acute promyelocytic leukemia. Inorganic arsenic has two biological important oxidation states: As(V) (arsenate) and As(III) (arsenite). Arsenic uptake is adventitious because the arsenate and arsenite are chemically similar to required nutrients. Arsenate resembles phosphate and is a competitive inhibitor of many phosphate-utilizing enzymes. Arsenate is taken up by phosphate transport systems. In contrast, at physiological pH, the form of arsenite is As(OH)3, which resembles organic molecules such as glycerol. Consequently, arsenite is taken into cells by aquaglyceroporin channels. Arsenic efflux systems are found in nearly every organism and evolved to rid cells of this toxic metalloid. These efflux systems include members of the multidrug resistance protein family and the bacterial exchangers Acr3 and ArsB. ArsB can also be a subunit of the ArsAB As(III)-translocating ATPase, an ATP-driven efflux pump. The ArsD metallochaperone binds cytosolic As(III) and transfers it to the ArsA subunit of the efflux pump. Knowledge of the pathways and transporters for arsenic uptake and efflux is essential for understanding its toxicity and carcinogenicity and for rational design of cancer chemotherapeutic drugs. PMID:23046656

  5. Pathways of arsenic uptake and efflux.

    PubMed

    Yang, Hung-Chi; Fu, Hsueh-Liang; Lin, Yung-Feng; Rosen, Barry P

    2012-01-01

    Arsenic is the most prevalent environmental toxic substance and ranks first on the U.S. Environmental Protection Agency's Superfund List. Arsenic is a carcinogen and a causative agent of numerous human diseases. Paradoxically arsenic is used as a chemotherapeutic agent for treatment of acute promyelocytic leukemia. Inorganic arsenic has two biological important oxidation states: As(V) (arsenate) and As(III) (arsenite). Arsenic uptake is adventitious because the arsenate and arsenite are chemically similar to required nutrients. Arsenate resembles phosphate and is a competitive inhibitor of many phosphate-utilizing enzymes. Arsenate is taken up by phosphate transport systems. In contrast, at physiological pH, the form of arsenite is As(OH)(3), which resembles organic molecules such as glycerol. Consequently, arsenite is taken into cells by aquaglyceroporin channels. Arsenic efflux systems are found in nearly every organism and evolved to rid cells of this toxic metalloid. These efflux systems include members of the multidrug resistance protein family and the bacterial exchangers Acr3 and ArsB. ArsB can also be a subunit of the ArsAB As(III)-translocating ATPase, an ATP-driven efflux pump. The ArsD metallochaperone binds cytosolic As(III) and transfers it to the ArsA subunit of the efflux pump. Knowledge of the pathways and transporters for arsenic uptake and efflux is essential for understanding its toxicity and carcinogenicity and for rational design of cancer chemotherapeutic drugs.

  6. Top consumer abundance influences lake methane efflux

    PubMed Central

    Devlin, Shawn P.; Saarenheimo, Jatta; Syväranta, Jari; Jones, Roger I.

    2015-01-01

    Lakes are important habitats for biogeochemical cycling of carbon. The organization and structure of aquatic communities influences the biogeochemical interactions between lakes and the atmosphere. Understanding how trophic structure regulates ecosystem functions and influences greenhouse gas efflux from lakes is critical to understanding global carbon cycling and climate change. With a whole-lake experiment in which a previously fishless lake was divided into two treatment basins where fish abundance was manipulated, we show how a trophic cascade from fish to microbes affects methane efflux to the atmosphere. Here, fish exert high grazing pressure and remove nearly all zooplankton. This reduction in zooplankton density increases the abundance of methanotrophic bacteria, which in turn reduce CH4 efflux rates by roughly 10 times. Given that globally there are millions of lakes emitting methane, an important greenhouse gas, our findings that aquatic trophic interactions significantly influence the biogeochemical cycle of methane has important implications. PMID:26531291

  7. Bacterial multi-drug efflux transporters

    PubMed Central

    Delmar, Jared A.; Su, Chih-Chia; Yu, Edward W.

    2016-01-01

    Infections caused by bacteria remain a leading cause of death worldwide. While antibiotics remain a key clinical therapy, their effectiveness has been severely compromised by the development of drug resistance in these pathogens. A common and powerful resistance mechanism, multi-drug efflux transporters are capable of extruding a number of structurally unrelated antimicrobials from the bacterial cell, including antibiotics and toxic heavy metal ions, facilitating their survival in noxious environments. Those transporters belonging to the resistance-nodulation-cell division (RND) superfamily typically assemble as tripartite efflux complexes, spanning the inner and outer membranes of the cell envelope. In Escherichia coli, the CusCFBA complex, which mediates resistance to copper(I) and silver(I) ions, is the only known RND transporter with a specificity for heavy metals. Herein, we describe the current knowledge of individual pump components of the Cus system, a paradigm for efflux machinery, and speculate on how RND pumps assemble to fight diverse antimicrobials. PMID:24702006

  8. Top consumer abundance influences lake methane efflux.

    PubMed

    Devlin, Shawn P; Saarenheimo, Jatta; Syväranta, Jari; Jones, Roger I

    2015-01-01

    Lakes are important habitats for biogeochemical cycling of carbon. The organization and structure of aquatic communities influences the biogeochemical interactions between lakes and the atmosphere. Understanding how trophic structure regulates ecosystem functions and influences greenhouse gas efflux from lakes is critical to understanding global carbon cycling and climate change. With a whole-lake experiment in which a previously fishless lake was divided into two treatment basins where fish abundance was manipulated, we show how a trophic cascade from fish to microbes affects methane efflux to the atmosphere. Here, fish exert high grazing pressure and remove nearly all zooplankton. This reduction in zooplankton density increases the abundance of methanotrophic bacteria, which in turn reduce CH4 efflux rates by roughly 10 times. Given that globally there are millions of lakes emitting methane, an important greenhouse gas, our findings that aquatic trophic interactions significantly influence the biogeochemical cycle of methane has important implications. PMID:26531291

  9. Microbial Efflux Pump Inhibition: Tactics and Strategies

    PubMed Central

    Tegos, George P.; Haynes, Mark; Strouse, J. Jacob; Khan, Mohiuddin Md. T.; Bologa, Cristian G.; Oprea, Tudor I.; Sklar, Larry A.

    2013-01-01

    Traditional antimicrobials are increasingly suffering from the emergence of multidrug resistance among pathogenic microorganisms. To overcome these deficiencies, a range of novel approaches to control microbial infections are under investigation as potential alternative treatments. Multidrug efflux is a key target of these efforts. Efflux mechanisms are broadly recognized as major components of resistance to many classes of chemotherapeutic agents as well as antimicrobials. Efflux occurs due to the activity of membrane transporter proteins widely known as Multidrug Efflux Systems (MES). They are implicated in a variety of physiological roles other than efflux and identifying natural substrates and inhibitors is an active and expanding research discipline. One plausible alternative is the combination of conventional antimicrobial agents/antibiotics with small molecules that block MES known as multidrug efflux pump inhibitors (EPIs). An array of approaches in academic and industrial research settings, varying from high-throughput screening (HTS) ventures to bioassay guided purification and determination, have yielded a number of promising EPIs in a series of pathogenic systems. This synergistic discovery platform has been exploited in translational directions beyond the potentiation of conventional antimicrobial treatments. This venture attempts to highlight different tactical elements of this platform, identifying the need for highly informative and comprehensive EPI-discovery strategies. Advances in assay development genomics, proteomics as well as the accumulation of bioactivity and structural information regarding MES facilitates the basis for a new discovery era. This platform is expanding drastically. A combination of chemogenomics and chemoinformatics approaches will integrate data mining with virtual and physical HTS ventures and populate the chemical-biological interface with a plethora of novel chemotypes. This comprehensive step will expedite the

  10. Modified host cells with efflux pumps

    DOEpatents

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2016-08-30

    The present invention provides for a modified host cell comprising a heterologous expression of an efflux pump capable of transporting an organic molecule out of the host cell wherein the organic molecule at a sufficiently high concentration reduces the growth rate of or is lethal to the host cell.

  11. An overview of bacterial efflux pumps and computational approaches to study efflux pump inhibitors.

    PubMed

    Jamshidi, Shirin; Sutton, J Mark; Rahman, Khondaker M

    2016-01-01

    Micro-organisms express a wide range of transmembrane pumps known as multidrug efflux pumps that improve the micro-organism's ability to survive in severe environments and contribute to resistance against antibiotic and antimicrobial agents. There is significant interest in developing efflux inhibitors as an adjunct to treatment with current and next generation of antibiotics. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. We summarize some structural and functional data that could provide insights into the inhibition of transport mechanisms of these intricate molecular nanomachines with a focus on the advances in computational approaches. PMID:26824720

  12. An overview of bacterial efflux pumps and computational approaches to study efflux pump inhibitors.

    PubMed

    Jamshidi, Shirin; Sutton, J Mark; Rahman, Khondaker M

    2016-01-01

    Micro-organisms express a wide range of transmembrane pumps known as multidrug efflux pumps that improve the micro-organism's ability to survive in severe environments and contribute to resistance against antibiotic and antimicrobial agents. There is significant interest in developing efflux inhibitors as an adjunct to treatment with current and next generation of antibiotics. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. We summarize some structural and functional data that could provide insights into the inhibition of transport mechanisms of these intricate molecular nanomachines with a focus on the advances in computational approaches.

  13. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells.

    PubMed

    Seifertová, Daniela; Skůpa, Petr; Rychtář, Jan; Laňková, Martina; Pařezová, Markéta; Dobrev, Petre I; Hoyerová, Klára; Petrášek, Jan; Zažímalová, Eva

    2014-03-15

    Polar auxin transport is a crucial process for control and coordination of plant development. Studies of auxin transport through plant tissues and organs showed that auxin is transported by a combination of phloem flow and the active, carrier-mediated cell-to-cell transport. Since plant organs and even tissues are too complex for determination of the kinetics of carrier-mediated auxin uptake and efflux on the cellular level, simplified models of cell suspension cultures are often used, and several tobacco cell lines have been established for auxin transport assays. However, there are very few data available on the specificity and kinetics of auxin transport across the plasma membrane for Arabidopsis thaliana suspension-cultured cells. In this report, the characteristics of carrier-mediated uptake (influx) and efflux for the native auxin indole-3-acetic acid and synthetic auxins, naphthalene-1-acetic and 2,4-dichlorophenoxyacetic acids (NAA and 2,4-D, respectively) in A. thaliana ecotype Landsberg erecta suspension-cultured cells (LE line) are provided. By auxin competition assays and inhibitor treatments, we show that, similarly to tobacco cells, uptake carriers have high affinity towards 2,4-D and that NAA is a good tool for studies of auxin efflux in LE cells. In contrast to tobacco cells, metabolic profiling showed that only a small proportion of NAA is metabolized in LE cells. These results show that the LE cell line is a useful experimental system for measurements of kinetics of auxin carriers on the cellular level that is complementary to tobacco cells.

  14. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps

    PubMed Central

    Blair, Jessica M. A.

    2016-01-01

    ABSTRACT Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity. PMID:27381291

  15. Efflux transporters of the human placenta.

    PubMed

    Young, Amber M; Allen, Courtni E; Audus, Kenneth L

    2003-01-21

    The use of pharmaceuticals during pregnancy is often a necessity for the health of the mother. Until recently, the placenta was viewed as a passive organ through which molecules are passed indiscriminately between mother and fetus. In reality, the placenta contains a plethora of transporters, some of which appear to be specifically dedicated to removal of xenobiotics and toxic endogenous compounds. Drug efflux transporters such as P-glycoprotein (P-gp), several multidrug resistant associated proteins (MRPs) and breast cancer resistant protein (BCRP) may provide mechanisms that protect the developing fetus. Bile acid transporters may also play a role in exporting compounds back into the maternal compartment. Steroid hormones directly influence the level of expression and function in some of these transporters. Investigating the link between the hormones of pregnancy and these drug efflux transporters is one possible key in developing strategies to deliver drugs to the mother with minimal fetal risk. PMID:12535577

  16. Potent and selective mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K; Johansson, Jan

    2015-03-24

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  17. Multidrug Efflux Systems in Helicobacter cinaedi

    PubMed Central

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2012-01-01

    Helicobacter cinaedi causes infections, such as bacteremia, diarrhea and cellulitis in mainly immunocompromised patients. This pathogen is often problematic to analyze, and insufficient information is available, because it grows slowly and poorly in subculture under a microaerobic atmosphere. The first-choice therapy to eradicate H. cinaedi is antimicrobial chemotherapy; however, its use is linked to the development of resistance. Although we need to understand the antimicrobial resistance mechanisms of H. cinaedi, unfortunately, sufficient genetic tools for H. cinaedi have not yet been developed. In July 2012, the complete sequence of H. cinaedi strain PAGU 611, isolated from a case of human bacteremia, was announced. This strain possesses multidrug efflux systems, intrinsic antimicrobial resistance mechanisms and typical mutations in gyrA and the 23S rRNA gene, which are involved in acquired resistance to fluoroquinolones and macrolides, respectively. Here, we compare the organization and properties of the efflux systems of H. cinaedi with the multidrug efflux systems identified in other bacteria. PMID:27029418

  18. CO₂ efflux from shrimp ponds in Indonesia.

    PubMed

    Sidik, Frida; Lovelock, Catherine E

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere. PMID:23755306

  19. Efflux-Mediated Drug Resistance in Bacteria: an Update

    PubMed Central

    Li, Xian-Zhi; Nikaido, Hiroshi

    2010-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past five years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria. PMID:19678712

  20. 5 prime -Azido-(3,6- sup 3 H sub 2 )-1-naphthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: Identification of a 23-kDa protein from maize coleoptile plasma membranes

    SciTech Connect

    Zettl, R.; Feldwisch, J.; Schell, J.; Palme, K. ); Boland, W. )

    1992-01-15

    1-Naphthylphthalamic acid (NPA) is a specific inhibitor of polar auxin transport that blocks carrier mediated auxin efflux from plant cells. To allow identification of the NPA receptor thought to be part of the auxin efflux carrier, the authors have synthesized a tritiated, photolabile NPA analogue, 5{prime}-azido-(3,6-{sup 3}H{sub 2})NPA (({sup 3}H{sub 2})N{sub 3}NPA). This analogue was used to identify NPA-binding proteins in fractions highly enriched for plasma membrane vesicles isolated from maize coleoptiles (Zea mays L.). Competition studies showed that binding of ({sup 3}H{sub 2})N{sub 3}NPA to maize plasma membrane vesicles was blocked by nonradioactive NPA but not by benzoic acid. After incubation of plasma membrane vesicles with ({sup 3}H{sub 2})N{sub 3}NPA and exposure to UV light, they observed specific photoaffinity labeling of a protein with an apparent molecular mass of 23 kDa. Pretreatment of the plasma membrane vesicles with indole-3-acetic acid or with the auxin-transport inhibitors NPA and 2,3,5-triiodobenzoic acid strongly reduced specific labeling of this protein. This 23-kDa protein was also labeled by addition of 5-azido-(7-{sup 3}H)indole-3-acetic acid to plasma membranes prior to exposure to UV light. The 23-kDa protein was solubilized from plasma membranes by 1% Triton X-100. The possibility that this 23-kDa polypeptide is part of the auxin efflux carrier system is discussed.

  1. Carrier rockets

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. A.; Vladimirov, V. V.; Dmitriev, R. D.; Osipov, S. O.

    This book takes into consideration domestic and foreign developments related to launch vehicles. General information concerning launch vehicle systems is presented, taking into account details of rocket structure, basic design considerations, and a number of specific Soviet and American launch vehicles. The basic theory of reaction propulsion is discussed, giving attention to physical foundations, the various types of forces acting on a rocket in flight, basic parameters characterizing rocket motion, the effectiveness of various approaches to obtain the desired velocity, and rocket propellants. Basic questions concerning the classification of launch vehicles are considered along with construction and design considerations, aspects of vehicle control, reliability, construction technology, and details of structural design. Attention is also given to details of rocket motor design, the basic systems of the carrier rocket, and questions of carrier rocket development.

  2. Targeting efflux pumps to overcome antifungal drug resistance.

    PubMed

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566

  3. Effect of angiotensin II, ATP, and ionophore A23187 on potassium efflux in adrenal glomerulosa cells

    SciTech Connect

    Lobo, M.V.; Marusic, E.T.

    1986-02-01

    Angiotensin II stimulus on perifused bovine adrenal glomerulosa cells elicited an increase in 86Rb efflux from cells previously equilibrated with the radioisotope. When 45Ca fluxes were measured under similar conditions, it was observed that Ca and Rb effluxes occurred within the first 30 s of the addition of the hormone and were independent of the presence of external Ca. The 86Rb efflux due to angiotensin II was inhibited by quinine and apamin. The hypothesis that the angiotensin II response is a consequence of an increase in the K permeability of the glomerulosa cell membrane triggered by an increase in cytosolic Ca is supported by the finding that the divalent cation ionophore A23187 also initiated 86Rb or K loss (as measured by an external K electrode). This increased K conductance was also seen with 10(-4) M ATP. Quinine and apamin greatly reduced the effect of ATP or A23187 on 86Rb or K release in adrenal glomerulosa cells. The results suggest that Ca-dependent K channels or carriers are present in the membranes of bovine adrenal glomerulosa cells and are sensitive to hormonal stimulus.

  4. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications.

    PubMed

    Jang, Soojin

    2016-01-01

    Antibiotic resistance is rapidly spreading among bacteria such as Staphylococcus aureus, an opportunistic bacterial pathogen that causes a variety of diseases in humans. For the last two decades, bacterial multidrug efflux pumps have drawn attention due to their potential association with clinical multidrug resistance. Numerous researchers have demonstrated efflux-mediated resistance in vitro and in vivo and found novel multidrug transporters using advanced genomic information about bacteria. This article aims to provide a concise summary of multidrug efflux pumps and their important clinical implications, focusing on recent findings concerning S. aureus efflux pumps.

  5. Natural and Synthetic Polymers as Inhibitors of Drug Efflux Pumps

    PubMed Central

    2007-01-01

    Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed. PMID:17896100

  6. Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump.

    PubMed Central

    Liu, J; Takiff, H E; Nikaido, H

    1996-01-01

    The lfrA gene cloned from chromosomal DNA of quinolone-resistant Mycobacterium smegmatis mc2-552 conferred low-level resistance to fluoroquinolones when present on multicopy plasmids. Sequence analysis suggested that lfrA encodes a membrane efflux pump of the major facilitator family (H. E. Takiff, M. Cimino, M. C. Musso, T. Weisbrod, R. Martinez, M. B. Delgado, L Salazar, B. R. Bloom, and W. R. Jacbos, Jr., Proc. Natl. Acad. Sci. USA 93:362-366, 1996). In this work, we studied the role of LfrA in the accumulation of fluoroquinolones by M. smegmatis. The steady-state accumulation level of a hydrophilic quinolone, norfloxacin, by M. smegmatis harboring a plasmid carrying the lfrA gene was about 50% of that by the parent strain but was increased to the same level as that of the parent strain by addition of a proton conductor, carbonyl cyanide m-chorophenylhydrazone. Norfloxacin efflux mediated by LfrA was competed for strongly by ciprofloxacin but not by nalidixic acid. Furthermore, we showed that portions of norfloxacin accumulated by starved cells were pumped out upon reenergization of the cells, and the rates of this efflux showed evidence of saturation at higher intracellular concentrations of the drug. These results suggest that the LfrA polypeptide catalyzes the active efflux of several quinolones. PMID:8682782

  7. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    PubMed

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety.

  8. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    PubMed

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety. PMID:27247772

  9. Tripartite assembly of RND multidrug efflux pumps

    PubMed Central

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier

    2016-01-01

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB–OprM and Escherichia coli AcrAB–TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA–MexB–TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components. PMID:26867482

  10. ArsP: a methylarsenite efflux permease

    PubMed Central

    Chen, Jian; Madegowda, Mahendra; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2015-01-01

    Trivalent organoarsenic compounds are far more toxic than either pentavalent organoarsenicals or inorganic arsenite. Many microbes methylate inorganic arsenite (As(III)) to more toxic and carcinogenic methylarsenite (MAs(III)). Additionally, monosodium methylarsenate (MSMA or MAs(V)) has been used widely as an herbicide and is reduced by microbial communities to MAs(III). Roxarsone (3-nitro-4-hydroxybenzenearsonic acid) is a pentavalent aromatic arsenical that is used as antimicrobial growth promoter for poultry and swine, and its active form is the trivalent species Rox(III). A bacterial permease, ArsP, from Campylobacter jejuni, was recently shown to confer resistance to roxarsone. In this study C. jejuni arsP was expressed in Escherichia coli and shown to confer resistance to MAs(III) and Rox(III) but not to inorganic As(III) or pentavalent organoarsenicals. Cells of E. coli expressing arsP did not accumulate trivalent organoarsenicals. Everted membrane vesicles from those cells accumulated MAs(III)>Rox(III) with energy supplied by NADH oxidation, reflecting efflux from cells. The vesicles did not transport As(III), MAs(V) or pentavalent roxarsone. Mutation or modification of the two conserved cysteine residues resulted in loss of transport activity, suggesting that they play a role in ArsP function. Thus ArsP is the first identified efflux system specific for trivalent organoarsenicals. PMID:26234817

  11. Tripartite assembly of RND multidrug efflux pumps

    NASA Astrophysics Data System (ADS)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier

    2016-02-01

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  12. Probing the actin-auxin oscillator

    PubMed Central

    2010-01-01

    The directional transport of the plant hormone auxin depends on transcellular gradients of auxin-efflux carriers that continuously cycle between plasma membrane and intracellular compartments. This cycling has been proposed to depend on actin filaments. However, the role of actin for the polarity of auxin transport has been disputed. To get insight into this question, actin bundling was induced by overexpression of the actin-binding domain of talin in tobacco BY-2 cells and in rice plants. This bundling can be reverted by addition of auxins, which allows to address the role of actin organization on the flux of auxin. In both systems, the reversion of a normal actin configuration can be restored by addition of exogenous auxins and this fully restores the respective auxin-dependent functions. These findings lead to a model of a self-referring regulatory circuit between polar auxin transport and actin organization. To further dissect the actin-auxin oscillator, we used photoactivated release of caged auxin in tobacco cells to demonstrate that auxin gradients can be manipulated at a subcellular level. PMID:20023411

  13. Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1

    PubMed Central

    Feng, Mingxiao; Kim, Jae-Yean

    2015-01-01

    It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCFTIR1/AFB) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCFTIR1/AFB auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research. PMID:26467289

  14. Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1.

    PubMed

    Feng, Mingxiao; Kim, Jae-Yean

    2015-10-01

    It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCF(TIR1/AFB)) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCF(TIR1/AFB) auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

  15. Sodium efflux in plant roots: what do we really know?

    PubMed

    Britto, D T; Kronzucker, H J

    2015-08-15

    The efflux of sodium (Na(+)) ions across the plasma membrane of plant root cells into the external medium is surprisingly poorly understood. Nevertheless, Na(+) efflux is widely regarded as a major mechanism by which plants restrain the rise of Na(+) concentrations in the cytosolic compartments of root cells and, thus, achieve a degree of tolerance to saline environments. In this review, several key ideas and bodies of evidence concerning root Na(+) efflux are summarized with a critical eye. Findings from decades past are brought to bear on current thinking, and pivotal studies are discussed, both "purely physiological", and also with regard to the SOS1 protein, the only major Na(+) efflux transporter that has, to date, been genetically characterized. We find that the current model of rapid transmembrane sodium cycling (RTSC), across the plasma membrane of root cells, is not adequately supported by evidence from the majority of efflux studies. An alternative hypothesis cannot be ruled out, that most Na(+) tracer efflux from the root in the salinity range does not proceed across the plasma membrane, but through the apoplast. Support for this idea comes from studies showing that Na(+) efflux, when measured with tracers, is rarely affected by the presence of inhibitors or the ionic composition in saline rooting media. We conclude that the actual efflux of Na(+) across the plasma membrane of root cells may be much more modest than what is often reported in studies using tracers, and may predominantly occur in the root tips, where SOS1 expression has been localized.

  16. The Relationship between auxin transport and maize branching.

    PubMed

    Gallavotti, Andrea; Yang, Yan; Schmidt, Robert J; Jackson, David

    2008-08-01

    Maize (Zea mays) plants make different types of vegetative or reproductive branches during development. Branches develop from axillary meristems produced on the flanks of the vegetative or inflorescence shoot apical meristem. Among these branches are the spikelets, short grass-specific structures, produced by determinate axillary spikelet-pair and spikelet meristems. We investigated the mechanism of branching in maize by making transgenic plants expressing a native expressed endogenous auxin efflux transporter (ZmPIN1a) fused to yellow fluorescent protein and a synthetic auxin-responsive promoter (DR5rev) driving red fluorescent protein. By imaging these plants, we found that all maize branching events during vegetative and reproductive development appear to be regulated by the creation of auxin response maxima through the activity of polar auxin transporters. We also found that the auxin transporter ZmPIN1a is functional, as it can rescue the polar auxin transport defects of the Arabidopsis (Arabidopsis thaliana) pin1-3 mutant. Based on this and on the groundbreaking analysis in Arabidopsis and other species, we conclude that branching mechanisms are conserved and can, in addition, explain the formation of axillary meristems (spikelet-pair and spikelet meristems) that are unique to grasses. We also found that BARREN STALK1 is required for the creation of auxin response maxima at the flanks of the inflorescence meristem, suggesting a role in the initiation of polar auxin transport for axillary meristem formation. Based on our results, we propose a general model for branching during maize inflorescence development.

  17. Requirement for the gravity-controlled transport of auxin for a negative gravitropic response of epicotyls in the early growth stage of etiolated pea seedlings.

    PubMed

    Hoshino, Tomoki; Miyamoto, Kensuke; Ueda, Junichi

    2006-11-01

    Gravity-controlled transport of auxin was studied for a negative gravitropic response in the early growth stage of etiolated pea (Pisum sativum L. cv. Alaska) seedlings, in which epicotyl bending was observed near the cotyledon nodes of the seedlings grown continuously from seeds germinated in a horizontal or an inclined position. Increased expression of an auxin-inducible gene, PsIAA4/5, was observed in the elongated side of epicotyls grown in a horizontal or an inclined position. Regardless of the conditions of seed germination, polar auxin transport in the proximal side of the first internodes of the seedlings was significantly higher than in the distal side. Polar auxin transport in the proximal side of epicotyls grown in an inclined position was significantly lower than in those grown in a horizontal position. In contrast, lateral auxin distribution from the proximal to distal sides in epicotyls grown in an inclined position was significantly higher than in epicotyls grown in a horizontal position. Accumulation of PsPIN1 mRNA encoding a putative auxin efflux facilitator, which was observed in vascular tissue, cortex and epidermis in the proximal and distal sides of epicotyls, was markedly influenced by gravistimulation. These results strongly suggest that gravistimulation induces changeable polar auxin transport and one-way lateral auxin distribution in epicotyls as well as asymmetric auxin accumulation in the proximal and distal sides of epicotyls, resulting in a negative gravitropic response of epicotyls in the early growth stage of pea seedlings. PMID:17008444

  18. Requirement for the gravity-controlled transport of auxin for a negative gravitropic response of epicotyls in the early growth stage of etiolated pea seedlings.

    PubMed

    Hoshino, Tomoki; Miyamoto, Kensuke; Ueda, Junichi

    2006-11-01

    Gravity-controlled transport of auxin was studied for a negative gravitropic response in the early growth stage of etiolated pea (Pisum sativum L. cv. Alaska) seedlings, in which epicotyl bending was observed near the cotyledon nodes of the seedlings grown continuously from seeds germinated in a horizontal or an inclined position. Increased expression of an auxin-inducible gene, PsIAA4/5, was observed in the elongated side of epicotyls grown in a horizontal or an inclined position. Regardless of the conditions of seed germination, polar auxin transport in the proximal side of the first internodes of the seedlings was significantly higher than in the distal side. Polar auxin transport in the proximal side of epicotyls grown in an inclined position was significantly lower than in those grown in a horizontal position. In contrast, lateral auxin distribution from the proximal to distal sides in epicotyls grown in an inclined position was significantly higher than in epicotyls grown in a horizontal position. Accumulation of PsPIN1 mRNA encoding a putative auxin efflux facilitator, which was observed in vascular tissue, cortex and epidermis in the proximal and distal sides of epicotyls, was markedly influenced by gravistimulation. These results strongly suggest that gravistimulation induces changeable polar auxin transport and one-way lateral auxin distribution in epicotyls as well as asymmetric auxin accumulation in the proximal and distal sides of epicotyls, resulting in a negative gravitropic response of epicotyls in the early growth stage of pea seedlings.

  19. Efflux Systems in Bacteria and their Metabolic Engineering Applications

    PubMed Central

    Jones, Christopher M.; Hernández Lozada, Néstor J.; Pfleger, Brian F.

    2015-01-01

    The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates, however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes. PMID:26363557

  20. Cholesterol efflux capacity: An introduction for clinicians.

    PubMed

    Anastasius, Malcolm; Kockx, Maaike; Jessup, Wendy; Sullivan, David; Rye, Kerry-Anne; Kritharides, Leonard

    2016-10-01

    Epidemiologic studies have shown an inverse correlation between high-density lipoprotein (HDL) cholesterol (HDL-C) levels and cardiovascular disease outcomes. However, the hypothesis of a causal relationship between HDL-C and cardiovascular disease has been challenged by genetic and clinical studies. Serum cholesterol efflux capacity (CEC) is an important measure of HDL function in humans. Recent large clinical studies have shown a correlation between in vitro CEC and cardiovascular disease prevalence and incidence, which appears to be independent of HDL-C concentration. The present review summarizes recent large clinical studies and introduces important methodological considerations. Further studies are required to standardize and establish the reproducibility of this measure of HDL function and clarify whether modulating CEC will emerge as a useful therapeutic target. PMID:27659883

  1. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    PubMed

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics. PMID:27681908

  2. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    PubMed Central

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  3. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    PubMed

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  4. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    PubMed Central

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics. PMID:27681908

  5. Auxin Influx Carriers Control Vascular Patterning and Xylem Differentiation in Arabidopsis thaliana

    PubMed Central

    Siligato, Riccardo; Alonso, Jose M.; Swarup, Ranjan; Bennett, Malcolm J.; Mähönen, Ari Pekka; Caño-Delgado, Ana I.; Ibañes, Marta

    2015-01-01

    Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants. PMID:25922946

  6. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana.

    PubMed

    Fàbregas, Norma; Formosa-Jordan, Pau; Confraria, Ana; Siligato, Riccardo; Alonso, Jose M; Swarup, Ranjan; Bennett, Malcolm J; Mähönen, Ari Pekka; Caño-Delgado, Ana I; Ibañes, Marta

    2015-04-01

    Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.

  7. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    PubMed Central

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630

  8. What Is Carrier Screening?

    MedlinePlus

    ... you want to learn. Search form Search Carrier screening You are here Home Testing & Services Testing for ... help you make the decision. What Is Carrier Screening? Carrier screening checks if a person is a " ...

  9. AUX/LAX family of auxin influx carriers-an overview.

    PubMed

    Swarup, Ranjan; Péret, Benjamin

    2012-01-01

    Auxin regulates several aspects of plant growth and development. Auxin is unique among plant hormones for exhibiting polar transport. Indole-3-acetic acid (IAA), the major form of auxin in higher plants, is a weak acid and its intercellular movement is facilitated by auxin influx and efflux carriers. Polarity of auxin movement is provided by asymmetric localization of auxin carriers (mainly PIN efflux carriers). PIN-FORMED (PIN) and P-GLYCOPROTEIN (PGP) family of proteins are major auxin efflux carriers whereas AUXIN1/LIKE-AUX1 (AUX/LAX) are major auxin influx carriers. Genetic and biochemical evidence show that each member of the AUX/LAX family is a functional auxin influx carrier and mediate auxin related developmental programmes in different organs and tissues. Of the four AUX/LAX genes, AUX1 regulates root gravitropism, root hair development and leaf phyllotaxy whereas LAX2 regulates vascular development in cotyledons. Both AUX1 and LAX3 have been implicated in lateral root (LR) development as well as apical hook formation whereas both AUX1 and LAX1 and possibly LAX2 are required for leaf phyllotactic patterning.

  10. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells.

    PubMed

    Pu, Yingying; Zhao, Zhilun; Li, Yingxing; Zou, Jin; Ma, Qi; Zhao, Yanna; Ke, Yuehua; Zhu, Yun; Chen, Huiyi; Baker, Matthew A B; Ge, Hao; Sun, Yujie; Xie, Xiaoliang Sunney; Bai, Fan

    2016-04-21

    Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under β-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance.

  11. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells

    PubMed Central

    Pu, Yingying; Zhao, Zhilun; Li, Yingxing; Zou, Jin; Ma, Qi; Zhao, Yanna; Ke, Yuehua; Zhu, Yun; Chen, Huiyi; Baker, Matthew A.B.; Ge, Hao; Sun, Yujie; Xie, Xiaoliang Sunney; Bai, Fan

    2016-01-01

    Summary Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under β-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance. PMID:27105118

  12. PI3K signaling supports amphetamine-induced dopamine efflux.

    PubMed

    Lute, Brandon J; Khoshbouei, Habibeh; Saunders, Christine; Sen, Namita; Lin, Richard Z; Javitch, Jonathan A; Galli, Aurelio

    2008-08-01

    The dopamine (DA) transporter (DAT) is a major molecular target of the psychostimulant amphetamine (AMPH). AMPH, as a result of its ability to reverse DAT-mediated inward transport of DA, induces DA efflux thereby increasing extracellular DA levels. This increase is thought to underlie the behavioral effects of AMPH. We have demonstrated previously that insulin, through phosphatidylinositol 3-kinase (PI3K) signaling, regulates DA clearance by fine-tuning DAT plasma membrane expression. PI3K signaling may represent a novel mechanism for regulating DA efflux evoked by AMPH, since only active DAT at the plasma membrane can efflux DA. Here, we show in both a heterologous expression system and DA neurons that inhibition of PI3K decreases DAT cell surface expression and, as a consequence, AMPH-induced DA efflux.

  13. Identification of a Cyanobacterial RND-Type Efflux System Involved in Export of Free Fatty Acids.

    PubMed

    Kato, Akihiro; Takatani, Nobuyuki; Use, Kazuhide; Uesaka, Kazuma; Ikeda, Kazutaka; Chang, Yajun; Kojima, Kouji; Aichi, Makiko; Ihara, Kunio; Nakahigashi, Kenji; Maeda, Shin-Ichi; Omata, Tatsuo

    2015-12-01

    An RND (resistance-nodulation-division)-type transporter having the capacity to export free fatty acids (FFAs) was identified in the cyanobacterium Synechococcus elongatus strain PCC 7942 during characterization of a mutant strain engineered to produce FFAs. The basic strategy for construction of the FFA-producing mutant was a commonly used one, involving inactivation of the endogenous acyl-acyl carrier protein synthetase gene (aas) and introduction of a foreign thioesterase gene ('tesA), but a nitrate transport mutant NA3 was used as the parental strain to achieve slow, nitrate-limited growth in batch cultures. Also, a nitrogen-regulated promoter PnirA was used to drive 'tesA to maximize thioesterase expression during the nitrate-limited growth. The resulting mutant (dAS2T) was, however, incapable of growth under the conditions of nitrate limitation, presumably due to toxicity associated with FFA overproduction. Incubation of the mutant culture under the non-permissive conditions allowed for isolation of a pseudorevertant (dAS2T-pr1) capable of growth on nitrate. Genome sequence and gene expression analyses of this strain suggested that expression of an RND-type efflux system had rescued growth on nitrate. Targeted inactivation of the RND-type transporter genes in the wild-type strain resulted in loss of tolerance to exogenously added FFAs including capric, lauric, myristic, oleic and linolenic acids. Overexpression of the genes in dAS2T, on the other hand, enhanced FFA excretion and cell growth in nitrate-containing medium, verifying that the genes encode an efflux pump for FFAs. These results demonstrate the importance of the efflux system in efficient FFA production using genetically engineered cyanobacteria. PMID:26468506

  14. Cadmium induced potassium efflux from Scenedesmus quadricauda

    SciTech Connect

    Reddy, G.N.; Prasad, M.N.V.

    1992-10-01

    Plants, algae and bacteria respond to heavy metal toxicity by inducing different enzymes, ion influx/efflux for ionic balance and synthesize small peptides such as poly({gamma}-glutamyl cysteinyl) glycines called phytochelatins (PCs) mainly consisting of glutamate, cysteine and glycine. These peptides bind metal ions and reduce toxicity. The uptake of metal ions comprises two phases. The first phase consists of a quick and nonspecific binding of the cations to negatively-charged membrane components located at the cell surface. The second phase consists of energy-dependent intracellular uptake of the metal ions. During uptake of Co{sup 2+} by yeast cells, an electroneutral 2:1 exchange with K{sup +} was found. Cd{sup 2+} uptake by yeast also caused loss of cell K{sup +}, however, there was no electroneutral exchange of K{sup +}. The molar ratio of K{sup +} released and Cd{sup 2+} accumulated by yeast in the initial stage of incubation is 22 and seems to be independent of the Cd concentration. Disruption of the cell membrane of part of the cells, according to an all-or-none process, by Cd{sup 2+} may explain the disproportional loss of cell K{sup +} during Cd{sup 2+} uptake. This paper examines the exchange of K{sup +} with Cd{sup 2+} uptake in Scenedesmus quadricauda, and whether it follows an electroneutral 2:1 exchange or an all-or-none process. 11 refs., 2 figs.

  15. Experimental investigation of charged liquid jet efflux from a capillary

    NASA Astrophysics Data System (ADS)

    Zhakin, A. I.; Belov, P. A.; Kuz'ko, A. E.

    2013-03-01

    The shapes and electrical characteristics of charged liquid (water, ethanol, glycerol, castor oil) jets emitted from a metal capillary have been experimentally studied depending on the applied high voltage. A map of efflux regimes in the flow velocity-applied voltage coordinates is constructed for water. The effects of medium viscosity, surface tension, and charge relaxation time on the laws of jet efflux are analyzed.

  16. Sodium efflux in plant roots: what do we really know?

    PubMed

    Britto, D T; Kronzucker, H J

    2015-08-15

    The efflux of sodium (Na(+)) ions across the plasma membrane of plant root cells into the external medium is surprisingly poorly understood. Nevertheless, Na(+) efflux is widely regarded as a major mechanism by which plants restrain the rise of Na(+) concentrations in the cytosolic compartments of root cells and, thus, achieve a degree of tolerance to saline environments. In this review, several key ideas and bodies of evidence concerning root Na(+) efflux are summarized with a critical eye. Findings from decades past are brought to bear on current thinking, and pivotal studies are discussed, both "purely physiological", and also with regard to the SOS1 protein, the only major Na(+) efflux transporter that has, to date, been genetically characterized. We find that the current model of rapid transmembrane sodium cycling (RTSC), across the plasma membrane of root cells, is not adequately supported by evidence from the majority of efflux studies. An alternative hypothesis cannot be ruled out, that most Na(+) tracer efflux from the root in the salinity range does not proceed across the plasma membrane, but through the apoplast. Support for this idea comes from studies showing that Na(+) efflux, when measured with tracers, is rarely affected by the presence of inhibitors or the ionic composition in saline rooting media. We conclude that the actual efflux of Na(+) across the plasma membrane of root cells may be much more modest than what is often reported in studies using tracers, and may predominantly occur in the root tips, where SOS1 expression has been localized. PMID:26318642

  17. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia

    PubMed Central

    Perez, Dominique R.; Smagley, Yelena; Garcia, Matthew; Carter, Mark B.; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S.; Sklar, Larry A.; Chigaev, Alexandre

    2016-01-01

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3′-5′-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing. PMID:27129155

  18. Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria

    PubMed Central

    Piddock, Laura J. V.

    2006-01-01

    Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed. PMID:16614254

  19. Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae.

    PubMed

    Peters, Theodore W; Miller, Aaron W; Tourette, Cendrine; Agren, Hannah; Hubbard, Alan; Hughes, Robert E

    2015-11-19

    Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes.

  20. Current Advances in Developing Inhibitors of Bacterial Multidrug Efflux Pumps.

    PubMed

    Mahmood, Hannah Y; Jamshidi, Shirin; Sutton, J Mark; Rahman, Khondaker M

    2016-01-01

    Antimicrobial resistance represents a significant challenge to future healthcare provision. An acronym ESKAPEE has been derived from the names of the organisms recognised as the major threats although there are a number of other organisms, notably Neisseria gonorrhoeae, that have become equally challenging to treat in the clinic. These pathogens are characterised by the ability to rapidly develop and/or acquire resistance mechanisms in response to exposure to different antimicrobial agents. A key part of the armoury of these pathogens is a series of efflux pumps, which effectively exclude or reduce the intracellular concentration of a large number of antibiotics, making the pathogens significantly more resistant. These efflux pumps are the topic of considerable interest, both from the perspective of basic understanding of efflux pump function, and its role in drug resistance but also as targets for the development of novel adjunct therapies. The necessity to overcome antimicrobial resistance has encouraged investigations into the characterisation of resistance-modifying efflux pump inhibitors to block the mechanisms of drug extrusion, thereby restoring antibacterial susceptibility and returning existing antibiotics into the clinic. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. This review discusses different bacterial EPIs originating from both natural source and chemical synthesis and examines the challenges to designing successful EPIs that can be useful against multidrug resistant bacteria. PMID:26947776

  1. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    PubMed Central

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  2. Auxin Biosynthesis, Accumulation, Action and Transport are Involved in Stress-Induced Microspore Embryogenesis Initiation and Progression in Brassica napus.

    PubMed

    Rodríguez-Sanz, Héctor; Solís, María-Teresa; López, María-Fernanda; Gómez-Cadenas, Aurelio; Risueño, María C; Testillano, Pilar S

    2015-07-01

    Isolated microspores are reprogrammed in vitro by stress, becoming totipotent cells and producing embryos and plants via a process known as microspore embryogenesis. Despite the abundance of data on auxin involvement in plant development and embryogenesis, no data are available regarding the dynamics of auxin concentration, cellular localization and the expression of biosynthesis genes during microspore embryogenesis. This work involved the analysis of auxin concentration and cellular accumulation; expression of TAA1 and NIT2 encoding enzymes of two auxin biosynthetic pathways; expression of the PIN1-like efflux carrier; and the effects of inhibition of auxin transport and action by N-1-naphthylphthalamic acid (NPA) and α-(p-chlorophenoxy) isobutyric acid (PCIB) during Brassica napus microspore embryogenesis. The results indicated de novo auxin synthesis after stress-induced microspore reprogramming and embryogenesis initiation, accompanying the first cell divisions. The progressive increase of auxin concentration during progression of embryogenesis correlated with the expression patterns of TAA1 and NIT2 genes of auxin biosynthetic pathways. Auxin was evenly distributed in early embryos, whereas in heart/torpedo embryos auxin was accumulated in apical and basal embryo regions. Auxin efflux carrier PIN1-like gene expression was induced in early multicellular embryos and increased at the globular/torpedo embryo stages. Inhibition of polar auxin transport (PAT) and action, by NPA and PCIB, impaired embryo development, indicating that PAT and auxin action are required for microspore embryo progression. NPA also modified auxin embryo accumulation patterns. These findings indicate that endogenous auxin biosynthesis, action and polar transport are required in stress-induced microspore reprogramming, embryogenesis initiation and progression.

  3. Auxin Biosynthesis, Accumulation, Action and Transport are Involved in Stress-Induced Microspore Embryogenesis Initiation and Progression in Brassica napus.

    PubMed

    Rodríguez-Sanz, Héctor; Solís, María-Teresa; López, María-Fernanda; Gómez-Cadenas, Aurelio; Risueño, María C; Testillano, Pilar S

    2015-07-01

    Isolated microspores are reprogrammed in vitro by stress, becoming totipotent cells and producing embryos and plants via a process known as microspore embryogenesis. Despite the abundance of data on auxin involvement in plant development and embryogenesis, no data are available regarding the dynamics of auxin concentration, cellular localization and the expression of biosynthesis genes during microspore embryogenesis. This work involved the analysis of auxin concentration and cellular accumulation; expression of TAA1 and NIT2 encoding enzymes of two auxin biosynthetic pathways; expression of the PIN1-like efflux carrier; and the effects of inhibition of auxin transport and action by N-1-naphthylphthalamic acid (NPA) and α-(p-chlorophenoxy) isobutyric acid (PCIB) during Brassica napus microspore embryogenesis. The results indicated de novo auxin synthesis after stress-induced microspore reprogramming and embryogenesis initiation, accompanying the first cell divisions. The progressive increase of auxin concentration during progression of embryogenesis correlated with the expression patterns of TAA1 and NIT2 genes of auxin biosynthetic pathways. Auxin was evenly distributed in early embryos, whereas in heart/torpedo embryos auxin was accumulated in apical and basal embryo regions. Auxin efflux carrier PIN1-like gene expression was induced in early multicellular embryos and increased at the globular/torpedo embryo stages. Inhibition of polar auxin transport (PAT) and action, by NPA and PCIB, impaired embryo development, indicating that PAT and auxin action are required for microspore embryo progression. NPA also modified auxin embryo accumulation patterns. These findings indicate that endogenous auxin biosynthesis, action and polar transport are required in stress-induced microspore reprogramming, embryogenesis initiation and progression. PMID:25907568

  4. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana.

    PubMed

    Zádníková, Petra; Petrásek, Jan; Marhavy, Peter; Raz, Vered; Vandenbussche, Filip; Ding, Zhaojun; Schwarzerová, Katerina; Morita, Miyo T; Tasaka, Masao; Hejátko, Jan; Van Der Straeten, Dominique; Friml, Jirí; Benková, Eva

    2010-02-01

    The apical hook of dark-grown Arabidopsis seedlings is a simple structure that develops soon after germination to protect the meristem tissues during emergence through the soil and that opens upon exposure to light. Differential growth at the apical hook proceeds in three sequential steps that are regulated by multiple hormones, principally auxin and ethylene. We show that the progress of the apical hook through these developmental phases depends on the dynamic, asymmetric distribution of auxin, which is regulated by auxin efflux carriers of the PIN family. Several PIN proteins exhibited specific, partially overlapping spatial and temporal expression patterns, and their subcellular localization suggested auxin fluxes during hook development. Genetic manipulation of individual PIN activities interfered with different stages of hook development, implying that specific combinations of PIN genes are required for progress of the apical hook through the developmental phases. Furthermore, ethylene might modulate apical hook development by prolonging the formation phase and strongly suppressing the maintenance phase. This ethylene effect is in part mediated by regulation of PIN-dependent auxin efflux and auxin signaling.

  5. Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier.

    PubMed

    Sancho-Andrés, Gloria; Soriano-Ortega, Esther; Gao, Caiji; Bernabé-Orts, Joan Miquel; Narasimhan, Madhumitha; Müller, Anna Ophelia; Tejos, Ricardo; Jiang, Liwen; Friml, Jiří; Aniento, Fernando; Marcote, María Jesús

    2016-07-01

    In contrast with the wealth of recent reports about the function of μ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding μ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different μ-adaptins in vitro. However, only Phe-165, which binds μA(μ2)- and μD(μ3)-adaptin, was found to be essential for PIN1 trafficking and localization in vivo. The PIN1:GFP-F165A mutant showed reduced endocytosis but also localized to intracellular structures containing several layers of membranes and endoplasmic reticulum (ER) markers, suggesting that they correspond to ER or ER-derived membranes. While PIN1:GFP localized normally in a μA (μ2)-adaptin mutant, it accumulated in big intracellular structures containing LysoTracker in a μD (μ3)-adaptin mutant, consistent with previous results obtained with mutants of other subunits of the AP-3 complex. Our data suggest that Phe-165, through the binding of μA (μ2)- and μD (μ3)-adaptin, is important for PIN1 endocytosis and for PIN1 trafficking along the secretory pathway, respectively. PMID:27208248

  6. Hydroxypropyl-sulfobutyl-β-cyclodextrin improves the oral bioavailability of edaravone by modulating drug efflux pump of enterocytes.

    PubMed

    Rong, Wen-Ting; Lu, Ya-Peng; Tao, Qing; Guo, Miao; Lu, Yu; Ren, Yong; Yu, Shu-Qin

    2014-02-01

    The objective of the study was to evaluate the effect of hydroxypropyl-sulfobutyl-β-cyclodextrin (HP-SBE-βCD) on the bioavailability and intestinal absorption of edaravone, and identify its mechanism of action. We devised HP-SBE-βCD as a carrier and modulator of P-glycoprotein (Pgp) efflux pump, and edaravone as a model drug, and prepared edaravone/HP-SBE-βCD inclusion complex. HP-SBE-βCD improved the water solubility and enhanced the bioavailability of edaravone by 10.3-fold in rats. Then, in situ single-pass intestinal perfusion showed that HP-SBE-βCD had an effect of improving the permeability and inhibiting the efflux of edaravone. Furthermore, the effects of HP-SBE-βCD on Pgp were achieved through interfering with the lipid raft and depleting the cholesterol of enterocytes membrane. From the results, we presented the novel mechanisms. First, edaravone/HP-SBE-βCD had a lower release from the inclusion compound to protect edaravone from the low pH of the stomach. Then, HP-SBE-βCD modulated the membrane microenvironment of intestinal absorption epithelial cells. At last, the result was that HP-SBE-βCD enhanced the absorption of edaravone by interfering with Pgp. In conclusion, HP-SBE-βCD improves the bioavailability of drug not only because of its enhancing water solubility of the drug, but also because it modulates the Pgp-mediated efflux from enterocytes.

  7. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier.

    PubMed Central

    Halestrap, A P

    1976-01-01

    The kinetics and activation energy of entry of pyruvate and lactate into the erythrocyte were studied at concentrations below 4 and 15mM respectively. The Km and Vmax. values for both substrates are reported, and it is shown that pyruvate inhibits competitively with respect to lactate and vice versa. In both cases the Km for the carboxylate as a substrate was the same as its Ki as an inhibitor. Alpha-Cyano-4-hydroxycinnamate and its analogues inhibited the uptake of both lactate and pyruvate competitively. Inhibition was also produced by treatment of cells with fluorodinitrobenzene but not with the thiol reagents or Pronase. At high concentrations of pyruvate or lactate (20mM), uptake of the carboxylate was accompanied by an efflux of Cl-ions. This efflux of Cl- was inhibited by alpha-cyano-4-hydroxycinnamate and picrate and could be totally abolished by very low (less than 10 muM) concentrations of the inhibitor of Cl- transport, 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid. This inhibitor titrated out the chlordie efflux induced by pyruvate, bicarbonate, formate and fluoride, in each case total inhibition becoming apparent when approximately 1.2x10(6) molecules of inhibitor were present per erythrocyte, that is, about one inhibitor molecule per molecule of the Cl- carrier. Evan when Cl- efflux was totally blocked pyruvate and lactate uptake occurred. Kinetic evidence is presented which suggests that the Cl- carrier can transport pyruvate and lactate with a high Km and high Vmax., but that an additional carrier with a low Km and a low Vmax. also exists. This carrier catalyses the exchange of small carboxylate anions with intracellular lactate, is competitively inhibited by alpha-cyano-4-hydroxycinnamate and non-competitively inhibited by picrate. The Cl- carrier shows a reverse pattern of inhibition. It is concluded that net efflux of lactic acid from the cell must occur on the Cl- carrier and involve exchange with HCO3 - followed by loss of CO2. The low Km

  8. First evidence for the presence of efflux pump in the earthworm Eisenia andrei.

    PubMed

    Hackenberger, Branimir K; Velki, Mirna; Stepić, Sandra; Hackenberger, Davorka K

    2012-01-01

    Efflux pumps are transport proteins involved in the extrusion of toxic substrates from cells to the external environment. Activities of efflux pumps have been found in many organisms, however such activity has not been evidenced in earthworms. Adult Eisenia andrei earthworms were exposed to efflux modulators - verapamil (a known inhibitor of efflux pump protein) and dexamethasone (a known inducer of efflux activity) - and the amount of absorbed fluorescent dye rhodamine B was measured. The results showed that verapamil inhibited efflux activity and decreased removal of rhodamine B, whereas dexamethasone induced efflux activity and increased removal of rhodamine B. This is the first evidence of the presence of efflux pump in earthworm Eisenia andrei. Since earthworms are often used as test organisms due to their sensitive reactions towards environmental influences, the discovery of efflux pump activity can contribute to the better understanding of toxicity of certain pollutants.

  9. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.

    PubMed

    Yan, Changzhou; Wang, Zhenhong; Luo, Zhuanxi

    2014-01-01

    Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h) and extended (13 d) depuration periods under phosphate enriched (+P) and phosphate depleted (-P) treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA) were found to be the two predominant arsenic species detected in solutions under -P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels. PMID:25549253

  10. Effects of neurotransmitters on calcium efflux from cultured glioma cells

    SciTech Connect

    Lazarewicz, J.W.; Kanje, M.

    1981-01-01

    The effects of various neurotransmitters and cyclic nucleotides on 45Ca2+ efflux in cultured human glioma cells were investigated. Glutamate and glycine, but not GABA, stimulated 45Ca2+ release from the cells. Stimulation of beta-adrenergic receptors but not alpha-adrenergic receptors also increased 45Ca2+ efflux. Cholinergic receptor stimulation by carbachol had the same effect. The stimulatory effect of carbachol was abolished in the presence of either atropine or hexamethonium. C-AMP and c-GMP increased the 45Ca2+ efflux, suggesting that these agents are involved in the transmitter-stimulated release of 45Ca2+ from the cell. Kinetic analysis of the efflux revealed four calcium compartments. The carbachol-stimulated efflux represented a net release of calcium and could be ascribed to the slowest compartment. The physiological role of the transmitter-stimulated calcium release is discussed in terms of calcium-regulated stimulus-response coupling in glial-neural interaction during excitation.

  11. Putative mycobacterial efflux inhibitors from the seeds of Aframomum melegueta.

    PubMed

    Gröblacher, Barbara; Maier, Veronika; Kunert, Olaf; Bucar, Franz

    2012-07-27

    In order to identify new putative efflux pump inhibitors that represent an appropriate target in antimycobacterial chemotherapy, nine paradol- and gingerol-related compounds (1-9) isolated from the seeds of Aframomum melegueta were assessed for their potential to inhibit ethidium bromide (EtBr) efflux in a Mycobacterium smegmatis model. Five of the compounds from A. melegueta and NMR spectroscopic data of the diketone 6-gingerdione (2) and its enolic tautomers, methyl-6-gingerol (5) and rac-6-dihydroparadol (7), are presented herein for the first time. After determination of their antimycobacterial activities and modulatory effects on the MIC of antibiotics as well as their synergistic effects in combination with antibiotics against M. smegmatis mc(2) 155, their impact on EtBr accumulation and efflux was evaluated using a microtiter plate-based fluorometric assay. The compounds exhibited moderate to weak antimycobacterial activities, and the best modulators induced a 4- to 16-fold decrease of the MICs of EtBr and rifampicin as well as a reduction of the MIC of isoniazid with fractional inhibitory concentration index values indicating synergistic activities in some cases. 6-Paradol (3), 8-gingerol (6), and rac-6-dihydroparadol (7) were the most potent EtBr efflux inhibitors in M. smegmatis mc(2) 155, displaying EtBr efflux inhibiting activities comparable to reference inhibitors.

  12. Arsenic Efflux from Microcystis aeruginosa under Different Phosphate Regimes

    PubMed Central

    Yan, Changzhou; Wang, Zhenhong; Luo, Zhuanxi

    2014-01-01

    Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h) and extended (13 d) depuration periods under phosphate enriched (+P) and phosphate depleted (−P) treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA) were found to be the two predominant arsenic species detected in solutions under −P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels. PMID:25549253

  13. Efflux Pump Control Alters Synthetic Gene Circuit Function.

    PubMed

    Diao, Junchen; Charlebois, Daniel A; Nevozhay, Dmitry; Bódi, Zoltán; Pál, Csaba; Balázsi, Gábor

    2016-07-15

    Synthetic biology aims to design new biological systems for predefined purposes, such as the controlled secretion of biofuels, pharmaceuticals, or other chemicals. Synthetic gene circuits regulating an efflux pump from the ATP-binding cassette (ABC) protein family could achieve this. However, ABC efflux pumps can also drive out intracellular inducer molecules that control the gene circuits. This will introduce an implicit feedback that could alter gene circuit function in ways that are poorly understood. Here, we used two synthetic gene circuits inducible by tetracycline family molecules to regulate the expression of a yeast ABC pump (Pdr5p) that pumps out the inducer. Pdr5p altered the dose-responses of the original gene circuits substantially in Saccharomyces cerevisiae. While one aspect of the change could be attributed to the efflux pumping function of Pdr5p, another aspect remained unexplained. Quantitative modeling indicated that reduced regulator gene expression in addition to efflux pump function could fully explain the altered dose-responses. These predictions were validated experimentally. Overall, we highlight how efflux pumps can alter gene circuit dynamics and demonstrate the utility of mathematical modeling in understanding synthetic gene circuit function in new circumstances.

  14. Rapid efflux of Ca2+ from heart mitochondria in the presence of inorganic pyrophosphate.

    PubMed

    Vercesi, A; Lehninger, A L

    1984-01-13

    Inorganic pyrophosphate (PPi) in the intracellular concentration range causes rapid efflux of Ca2+ from rat heart mitochondria oxidizing pyruvate + malate in a low Na+ medium. Half-maximal rates of Ca2+ efflux were given by 20 microM PPi. During and after PPi-stimulated Ca2+ efflux the mitochondria retain their structural integrity and complete respiratory control. Carboxyatractyloside inhibits PPi-stimulated Ca2+ efflux, indicating PPi must enter the matrix in order to promote Ca2+ efflux. Heart mitochondria have a much higher affinity for PPi uptake and PPi-induced Ca2+ efflux than liver mitochondria.

  15. Subcutaneous administration of carrier erythrocytes: slow release of entrapped agent

    SciTech Connect

    DeLoach, J.R.; Corrier, D.E.

    1988-08-01

    Carrier erythrocytes administered subcutaneously in mice release encapsulated molecules at the injection site and through cells that escape the injection site. One day postinjection, the efflux of encapsulated (/sup 14/C)sucrose, (/sup 3/H)inulin, and /sup 51/Cr-hemoglobin from the injection site was 45, 55, and 65%, respectively. Intact carrier erythrocytes escaped the injection site and entered the blood circulation carrying with them the encapsulated molecules. Most of the encapsulated (/sup 3/H)inulin that reached whole blood circulated within erythrocytes. Small but measurable numbers of encapsulated molecules were trapped within lymph nodes. Subcutaneous injection of carrier erythrocytes may allow for limited extravascular tissue targeting of drugs.

  16. Calcium Efflux from Internally Dialyzed Squid Giant Axons

    PubMed Central

    Dipolo, Reinaldo

    1973-01-01

    Calcium efflux has been studied in squid giant axons under conditions in which the internal composition was controlled by means of a dialysis perfusion technique. The mean calcium efflux from axons dialyzed with 0.3 µM calcium and 5 mM ATP was 0.26 pmol/cm2·s at 22°C. The curve relating the Ca efflux with the internal Ca concentration had a slope of about one for [Ca]i lower than 0.3µM and a slope smaller than one for higher concentrations. Under the above conditions replacement of [Na]o and [Ca]o by Tris and Mg causes an 80% fall in the calcium efflux. When the axons were dialyzed with a medium free of ATP and containing 2 mM cyanide plus 5µg/ml oligomycin, analysis of the perfusion effluent gave values of 1–4 µM ATP. Under this low ATP condition, replacement of external sodium and calcium causes the same drop in the calcium efflux. The same effect was observed at higher [Ca]i, (80 µM). These results suggest that the Na-Ca exchange component of the calcium efflux is apparently not dependent on the amounts of ATP in the axoplasm. Axons previously depleted of ATP show a significant transient drop in the calcium efflux when ATP is added to the dialysis medium. This effect probably represents the sequestering of calcium by the mitochondrial system. The consumption of calcium by the mitochondria of the axoplasm in dialyzed axons was determined to be of the order of 6.0 x 10-7 mol Ca++/mg of protein with an initial rate of 2.6 x 10-8 mol Ca++/min·mg of protein. Axons dialyzed with 2 mM cyanide after 8–10-min delays show a rise in the calcium efflux in the presence of "normal" amounts of exogenous ATP. This effect seems to indicate that cyanide, per se, can release calcium ions from internal sources. PMID:4751386

  17. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    PubMed

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux.

  18. Molecular Components of Nitrate and Nitrite Efflux in Yeast

    PubMed Central

    Cabrera, Elisa; González-Montelongo, Rafaela; Giraldez, Teresa; de la Rosa, Diego Alvarez

    2014-01-01

    Some eukaryotes, such as plant and fungi, are capable of utilizing nitrate as the sole nitrogen source. Once transported into the cell, nitrate is reduced to ammonium by the consecutive action of nitrate and nitrite reductase. How nitrate assimilation is balanced with nitrate and nitrite efflux is unknown, as are the proteins involved. The nitrate assimilatory yeast Hansenula polymorpha was used as a model to dissect these efflux systems. We identified the sulfite transporters Ssu1 and Ssu2 as effective nitrate exporters, Ssu2 being quantitatively more important, and we characterize the Nar1 protein as a nitrate/nitrite exporter. The use of strains lacking either SSU2 or NAR1 along with the nitrate reductase gene YNR1 showed that nitrate reductase activity is not required for net nitrate uptake. Growth test experiments indicated that Ssu2 and Nar1 exporters allow yeast to cope with nitrite toxicity. We also have shown that the well-known Saccharomyces cerevisiae sulfite efflux permease Ssu1 is also able to excrete nitrite and nitrate. These results characterize for the first time essential components of the nitrate/nitrite efflux system and their impact on net nitrate uptake and its regulation. PMID:24363367

  19. Recent advances toward a molecular mechanism of efflux pump inhibition

    PubMed Central

    Opperman, Timothy J.; Nguyen, Son T.

    2015-01-01

    Multidrug resistance (MDR) in Gram-negative pathogens, such as the Enterobacteriaceae and Pseudomonas aeruginosa, poses a significant threat to our ability to effectively treat infections caused by these organisms. A major component in the development of the MDR phenotype in Gram-negative bacteria is overexpression of Resistance-Nodulation-Division (RND)-type efflux pumps, which actively pump antibacterial agents and biocides from the periplasm to the outside of the cell. Consequently, bacterial efflux pumps are an important target for developing novel antibacterial treatments. Potent efflux pump inhibitors (EPIs) could be used as adjunctive therapies that would increase the potency of existing antibiotics and decrease the emergence of MDR bacteria. Several potent inhibitors of RND-type efflux pump have been reported in the literature, and at least three of these EPI series were optimized in a pre-clinical development program. However, none of these compounds have been tested in the clinic. One of the major hurdles to the development of EPIs has been the lack of biochemical, computational, and structural methods that could be used to guide rational drug design. Here, we review recent reports that have advanced our understanding of the mechanism of action of several potent EPIs against RND-type pumps. PMID:25999939

  20. Modeling radionuclide effluxes from agricultural and natural ecosystems in Belarus.

    PubMed

    Zhuchenko, Yu M; Firsakova, S K; Voigt, G

    2002-06-01

    A mathematical model is described which is appropriately constructed to calculate effluxes of radionuclides from agricultural and natural ecosystems. The application of this model is demonstrated by estimating effluxes in the Bragin region and in the Narovlya region in the Republic of Belarus both highly affected by the Chernobyl accident fallout. Depending on the nature of the area and the deposition, the total efflux and the exported radioactivity are calculated. It is shown that the exported radioactivity for natural foodstuffs represents more than 64% (Bragin region) and 86% (Narovlya region) of the total 137Cs efflux, and for agricultural products 2.7% and 2.3%, respectively. The contribution of the different foodstuffs deriving from natural and agricultural used land to the individual and collective dose for 137Cs and 90Sr are estimated and presented. In the Bragin region for the collective annual dose the highest contribution is due to milk and meat consumption (137Cs) and flour and milk (90Sr), for individual annual dose milk and mushrooms (137Cs), and milk and flour (90Sr) contribute most. In the Narovlya region this contribution for the collective and individual annual dose is due to milk and mushroom consumption (137Cs) and flour and milk (90Sr).

  1. Multidrug efflux pumps of Gram-positive bacteria.

    PubMed

    Schindler, Bryan D; Kaatz, Glenn W

    2016-07-01

    Gram-positive organisms are responsible for some of the most serious of human infections. Resistance to front-line antimicrobial agents can complicate otherwise curative therapy. These organisms possess multiple drug resistance mechanisms, with drug efflux being a significant contributing factor. Efflux proteins belonging to all five transporter families are involved, and frequently can transport multiple structurally unrelated compounds resulting in a multidrug resistance (MDR) phenotype. In addition to clinically relevant antimicrobial agents, MDR efflux proteins can transport environmental biocides and disinfectants which may allow persistence in the healthcare environment and subsequent acquisition by patients or staff. Intensive research on MDR efflux proteins and the regulation of expression of their genes is ongoing, providing some insight into the mechanisms of multidrug recognition and transport. Inhibitors of many of these proteins have been identified, including drugs currently being used for other indications. Structural modifications guided by structure-activity studies have resulted in the identification of potent compounds. However, lack of broad-spectrum pump inhibition combined with potential toxicity has hampered progress. Further work is required to gain a detailed understanding of the multidrug recognition process, followed by application of this knowledge in the design of safer and more highly potent inhibitors. PMID:27449594

  2. HDL-Mediated Cellular Cholesterol Efflux Assay Method.

    PubMed

    Hafiane, Anouar; Genest, Jacques

    2015-01-01

    Biomarkers of high-density lipoprotein (HDL) function may provide mechanistic insights and better cardiovascular risk discrimination than HDL-cholesterol mass. The purpose of this work is to describe a simplified experimental protocol that can be used in the determination of cholesterol efflux from macrophages cultured cells and be brought to a medium throughput volume. The cellular cholesterol efflux assay is designed to quantify the rate of cholesterol efflux from cultured cells to an acceptor particle or to plasma. This assay is multi step, cell based assay. Various factors, if not carefully controlled may influence the accuracy and reproducibility of the assay. Attempts were made to address factors influencing this assay and to provide a standardized method that is relatively rapid and scalable. We demonstrate that further centrifugation of the HDL fraction is necessary to avoid apolipoprotein B contamination when using polyethylene glycol (PEG) method. We demonstrate also no effect on cholesterol efflux efficiency when using PEG with plasma or serum. This method has been previously applied in our laboratory in context of cardiovascular research, cardiovascular disease and pharmacologic therapies. PMID:26663796

  3. Direct measurement of efflux in Pseudomonas aeruginosa using an environment-sensitive fluorescent dye.

    PubMed

    Iyer, Ramkumar; Erwin, Alice L

    2015-01-01

    Resistance-Nodulation-Division (RND) family pumps AcrB and MexB are the major efflux routes in Escherichia coli and Pseudomonas aeruginosa respectively. Fluorescent environment-sensitive dyes provide a means to study efflux pump function in live bacterial cells in real-time. Recently, we demonstrated the utility of this approach using the dye Nile Red to quantify AcrB-mediated efflux and measured the ability of antibiotics and other efflux pump substrates to compete with efflux of Nile Red, independent of antibacterial activity. Here, we extend this method to P. aeruginosa and describe a novel application that permits the comparison and rank-ordering of bacterial strains by their inherent efflux potential. We show that glucose and l-malate re-energize Nile Red efflux in P. aeruginosa, and we highlight differences in the glucose dependence and kinetics of efflux between P. aeruginosa and E. coli. We quantify the differences in efflux among a set of P. aeruginosa laboratory strains, which include PAO1, the hyper-sensitive strain ATCC 35151 and its parent, ATCC 12055. Efflux of Nile Red in P. aeruginosa is mediated by MexAB-OprM and is slower than in E. coli. In conclusion, we describe an efflux measurement tool for use in antibacterial drug discovery and basic research on P. aeruginosa efflux pumps.

  4. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand.

    PubMed

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-10-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration "hot spots", an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific activity of ants, the nest soil environment, and nest structure.

  5. Sucrose transport and phloem unloading in stem of Vicia faba: possible involvement of a sucrose carrier and osmotic regulation

    SciTech Connect

    Aloni, B.; Wyse, R.E.; Griffith, S.

    1986-06-01

    After pulse labeling of a source leaf with /sup 14/CO/sub 2/, stem sections of Vicia faba plants were cut and the efflux characteristics of /sup 14/C-labeled sugars into various buffered solutions were determined. Radiolabeled sucrose was shown to remain localized in the phloem and adjacent phloem parenchyma tissues after a 2-hour chase. Therefore, sucrose leakage from stem segments prepared following a 75-minute chase period was assumed to be characteristic of phloem unloading. The efflux of /sup 14/C assimilates from the phloem was enhanced by 1 millimolar p-chloromercuribenzene sulfonic acid (PCMBS) and by 5 micromolar carbonyl cyanide m-chlorophenly hydrazone (CCCP). However, PCMBS inhibited and CCCP enhanced general leakage of nonradioactive sugars from the stem segments. Sucrose at concentrations of 50 millimolar in the free space increased efflux of (/sup 14/C)sucrose, presumably through an exchange mechanism. This exchange was inhibited by PCMBS and abolished by 0.2 molar mannitol. Increasing the osmotic concentration of the efflux medium with mannitol reduced (/sup 14/C)sucrose efflux. However, this inhibition seems not to be specific to sucrose unloading since leakage of total sugars, nonlabeled sucrose, glucose, and amino acids from the bulk of the tissue was reduced in a similar manner. The data suggest that phloem unloading in cut stem segments is consistent with passive efflux of sucrose from the phloem to the apoplast and that sucrose exchange via a membrane carrier may be involved.

  6. Carrier-mediated transport of riboflavin in Ashbya gossypii.

    PubMed

    Förster, C; Revuelta, J L; Krämer, R

    2001-01-01

    The filamentous hemiascomycete Ashbya gossypii is used for industrial riboflavin production. We examined riboflavin uptake and excretion at the plasma membrane using riboflavin auxotrophic and overproducing mutants. The riboflavin uptake system had low activity [Vmax = 20 +/- 4 nmol min(-1) g(-1) mycelial dry weight (dw)] and high affinity (KM = 40 +/- 12 microM). Inhibitor studies with the analogs FMN and FAD revealed high specificity of the uptake system. Excretion of riboflavin was not the consequence of non-specific permeability of the plasma membrane. Excretion rates in the mid-production phase were determined to be 2.5 nmol min(-1) g(-1) dw for wild-type cells and 66.7 nmol min(-1) g(-1) dw for an overproducing mutant, respectively. Inhibition of the reverse reaction, riboflavin uptake, led to an increase in apparent riboflavin efflux in the early production phase, indicating the presence of a separate excretion carrier. Riboflavin accumulation in A. gossypii vacuoles leading to product retention was found to be a secondary transport process. To address the question of whether a flux from the vacuoles back into the cytoplasm is present, we characterized efflux in hyphae in which the plasma membrane was permeabilized with digitonin. Efflux kinetics across the vacuolar membrane were unaffected by the lack of vacuolar H+ATPase activity and ATP, suggesting a passive mechanism. Based on the characterization of riboflavin transport processes in this study, the design of new production strains with improved riboflavin excretion may be possible. PMID:11234964

  7. Role of the Mmr Efflux Pump in Drug Resistance in Mycobacterium tuberculosis

    PubMed Central

    Rodrigues, Liliana; Villellas, Cristina; Bailo, Rebeca; Viveiros, Miguel

    2013-01-01

    Efflux pumps are membrane proteins capable of actively transporting a broad range of substrates from the cytoplasm to the exterior of the cell. Increased efflux activity in response to drug treatment may be the first step in the development of bacterial drug resistance. Previous studies showed that the efflux pump Mmr was significantly overexpressed in strains exposed to isoniazid. In the work to be described, we constructed mutants lacking or overexpressing Mmr in order to clarify the role of this efflux pump in the development of resistance to isoniazid and other drugs in M. tuberculosis. The mmr knockout mutant showed an increased susceptibility to ethidium bromide, tetraphenylphosphonium, and cetyltrimethylammonium bromide (CTAB). Overexpression of mmr caused a decreased susceptibility to ethidium bromide, acriflavine, and safranin O that was obliterated in the presence of the efflux inhibitors verapamil and carbonyl cyanide m-chlorophenylhydrazone. Isoniazid susceptibility was not affected by the absence or overexpression of mmr. The fluorometric method allowed the detection of a decreased efflux of ethidium bromide in the knockout mutant, whereas the overexpressed strain showed increased efflux of this dye. This increased efflux activity was inhibited in the presence of efflux inhibitors. Under our experimental conditions, we have found that efflux pump Mmr is mainly involved in the susceptibility to quaternary compounds such as ethidium bromide and disinfectants such as CTAB. The contribution of this efflux pump to isoniazid resistance in Mycobacterium tuberculosis still needs to be further elucidated. PMID:23165464

  8. Fragment-Based Strategy for Investigating and Suppressing the Efflux of Bioactive Small Molecules.

    PubMed

    Compton, Corey L; Carney, Daniel W; Groomes, Patrice V; Sello, Jason K

    2015-01-01

    Membrane protein-mediated drug efflux is a phenomenon that compromises our ability to treat both infectious diseases and cancer. Accordingly, there is much interest in the development of strategies for suppression of the mechanisms by which therapeutic agents are effluxed. Here, using resistance to the cyclic acyldepsipeptide (ADEP) antibacterial agents as a model, we demonstrate a new counter-efflux strategy wherein a fragment of an actively exported bioactive compound competitively interferes with its efflux and potentiates its activity. A fragment comprising the N-heptenoyldifluorophenylalanine side chain of the pharmacologically optimized ADEPs potentiates the antibacterial activity of the ADEPs against actinobacteria to a greater extent than reserpine, a well-known efflux inhibitor. Beyond their validation of a new approach to studying molecular recognition by drug efflux pumps, our findings have important implications for killing Mycobacterium tuberculosis with ADEPs and reclaiming the efficacies of therapeutic agents whose activity has been compromised by efflux pumps. PMID:27620145

  9. Assembly and operation of bacterial tripartite multidrug efflux pumps.

    PubMed

    Du, Dijun; van Veen, Hendrik W; Luisi, Ben F

    2015-05-01

    Microorganisms encode several classes of transmembrane pumps that can expel an enormous range of toxic substances, thereby improving their fitness in harsh environments and contributing to resistance against antimicrobial agents. In Gram-negative bacteria these pumps can take the form of tripartite assemblies that actively efflux drugs and other harmful compounds across the cell envelope. We describe recent structural and functional data that have provided insights into the transport mechanisms of these intricate molecular machines.

  10. Old carbon efflux from tropical peat swamp drainage waters

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Waldron, Susan; Evers, Stephanie; Garnett, Mark; Newton, Jason

    2014-05-01

    Tropical peatlands constitute ~12% of the global peatland carbon pool, and of this 10% is in Malaysia1. Due to rising demand for food and biofuels, large areas of peat swamp forest ecosystems have been converted to plantation in Southeast Asia and are being subjected to degradation, drainage and fire, changing their carbon fluxes eg.2,3. Dissolved organic carbon (DOC) lost from disturbed tropical peat can be derived from deep within the peat column and be aged from centuries to millennia4 contributing to aquatic release and cycling of old carbon. Here we present the results of a field campaign to the Raja Musa Peat Swamp Forest Reserve in N. Selangor Malaysia, which has been selectively logged for 80 years before being granted timber reserve status. We measured CO2 and CH4efflux rates from drainage systems with different treatment history, and radiocarbon dated the evasion CO2 and associated [DOC]. We also collected water chemistry and stable isotope data from the sites. During our sampling in the dry season CO2 efflux rates ranged from 0.8 - 13.6 μmol m-2 s-1. Sediments in the channel bottom contained CH4 that appeared to be primarily lost by ebullition, leading to sporadic CH4 efflux. However, dissolved CH4 was also observed in water samples collected from these systems. The CO2 efflux was aged up to 582±37 years BP (0 BP = AD 1950) with the associated DOC aged 495±35 years BP. Both DOC and evasion CO2 were most 14C-enriched (i.e. younger) at the least disturbed site, and implied a substantial component of recently fixed carbon. In contrast, CO2 and DOC from the other sites had older 14C ages, indicating disturbance as the trigger for the loss of old carbon. 1Page et al., 2010 2Hooijer et al., 2010 3Kimberly et al., 2012 4Moore et al., 2013

  11. Proteasome Regulator Marizomib (NPI-0052) Exhibits Prolonged Inhibition, Attenuated Efflux, and Greater Cytotoxicity than Its Reversible Analogs

    PubMed Central

    Obaidat, Amanda; Weiss, Jeffrey; Wahlgren, Brett; Manam, Rama R.; Macherla, Venkat R.; McArthur, Katherine; Chao, Ta-Hsiang; Palladino, Michael A.; Lloyd, G. Kenneth; Potts, Barbara C.; Enna, Salvatore J.; Neuteboom, Saskia T. C.

    2011-01-01

    The present study was undertaken to compare the cellular transport characteristics of [3H]NPI-0052 (1R,4R,5S)-4-(2-chloroethyl)-1-((S)-((S)-cyclohex-2-enyl)(hydroxy)methyl)-5-methyl-6-oxa-2-azabicyclo[3.2.0]heptane-3,7-dione (marizomib; salinosporamide A) and [3H]NPI-0047 (1R,4R, 5S)-1-((S)-((S)-cyclohex-2-enyl)(hydroxy)methyl)-4-ethyl-5-methyl-6-oxa-2-azabicyclo[3.2.0]heptane-3,7-dione in RPMI 8226 multiple myeloma and PC-3 prostate adenocarcinoma cells to determine whether these properties explain differences in the cytotoxic potencies of these chemical analogs. The results indicate that marizomib, which possesses a chemical-leaving group, is more cytotoxic to both cell lines and inhibits proteasome activity more completely at lower concentrations than NPI-0047, a nonleaving-group analog. Moreover, it was found that both compounds accumulate in these cells by simple diffusion and the same carrier-mediated transport system. Although the rate of uptake is similar, the cellular efflux, which does not seem to be mediated by a major ATP-binding cassette (ABC)-efflux transporter, is more rapid for NPI-0047 than for marizomib. Experiments revealed that the irreversible binding of marizomib to the proteasome is responsible for its slower efflux, longer duration of action, and greater cytotoxicity compared with NPI-0047. The discovery that major ABC transporters of the multidrug resistance-associated protein family do not seem to be involved in the accumulation or removal of these agents suggests they may not be affected by multidrug resistance mechanisms during prolonged administration. PMID:21303921

  12. Common Carrier Services.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    After outlining the Federal Communications Commission's (FCC) responsibility for regulating interstate common carrier communication (non-broadcast communication whose carriers are required by law to furnish service at reasonable charges upon request), this information bulletin reviews the history, technological development, and current…

  13. Accumulation and efflux of polychlorinated biphenyls in Escherichia coli.

    PubMed

    Geng, Shen; Fang, Jun; Turner, Kendrick B; Daunert, Sylvia; Wei, Yinan

    2012-06-01

    Polychlorinated biphenyls (PCBs) are environmental pollutants that have been associated with numerous adverse health effects in human and animals. Hydroxylated PCBs (HPCBs) are the product of the oxidative metabolism of PCBs. The presence of hydroxyl groups in HPCBs makes these compounds more hydrophilic than the parent PCBs. One of the best approaches to break down and remove these contaminants is bioremediation; an environmentally friendly process that uses microorganisms to degrade hazardous chemicals into non-toxic ones. In this study, we investigated the cellular accumulation and toxicity of selected PCBs and HPCBs in Gram-negative bacteria, using Escherichia coli as a model organism. We found that none of the five PCBs tested were toxic to E. coli, presumably due to their limited bioavailability. Nevertheless, different HPCBs tested showed different levels of toxicity. Furthermore, we demonstrated that the primary multidrug efflux system in E. coli, AcrAB-TolC, facilitated the efflux of HPCBs out of the cell. Since AcrAB-TolC is constitutively expressed in E. coli and is conserved in all sequenced Gram-negative bacterial genomes, our results suggest that the efflux activities of multidrug resistant pumps may affect the accumulation and degradation of PCBs in Gram-negative bacteria.

  14. Danshensu Promotes Cholesterol Efflux in RAW264.7 Macrophages.

    PubMed

    Gao, Hui; Li, Lingyan; Li, Lan; Gong, Bo; Dong, Pengzhi; Fordjour, Patrick Asare; Zhu, Yan; Fan, Guanwei

    2016-09-01

    Contemporary research suggests that macrophage foam cell and cholesterol efflux defect play pivotal role in atherogenesis. We reported on the heretofore unknown therapeutic effect of Danshensu (DSS) in reducing intracellular cholesterol level and unraveled the mechanism of DSS promotes cholesterol efflux. Oxidized low-density lipoprotein stimulation of Raw264.7 cells into foam cells, which were treated with DSS and co-treated with Simvastatin and Rosiglitazone. PPARγ, ABCA1, ABCG1, SR-BI, CD36, and LXR-α mRNA were quantified by Real-Time PCR. Western blotting was used to determine protein expression of PPARγ, ABCA1 and CD36. Cellular cholesterol handling was studied by measurement of intracellular lipid droplets concentration and cholesterol efflux. DSS significantly reduced scavenger receptor CD36 and its orthologue SR-BI. In addition, DSS stimulated the upregulation of cellular cholesterol exporters ABCA1 and ABCG1 to reduce intracellular lipid accumulation. DSS can reduce lipid deposition in Raw264.7 foam cells by balancing CD36 and ABCA1 protein expression. PMID:27514857

  15. On the physics of multidrug efflux through a biomolecular complex

    NASA Astrophysics Data System (ADS)

    Mishima, Hirokazu; Oshima, Hiraku; Yasuda, Satoshi; Amano, Ken-ichi; Kinoshita, Masahiro

    2013-11-01

    Insertion and release of a solute into and from a vessel comprising biopolymers is a fundamental function in a biological system. A typical example is found in a multidrug efflux transporter. "Multidrug efflux" signifies that solutes such as drug molecules with diverse properties can be handled. In our view, the mechanism of the multidrug efflux is not chemically specific but rather has to be based on a physical factor. In earlier works, we showed that the spatial distribution of the solute-vessel potential of mean force (PMF) induced by the solvent plays imperative roles in the insertion/release process. The PMF can be decomposed into the energetic and entropic components. The entropic component, which originates from the translational displacement of solvent molecules, is rather insensitive to the solute-solvent and vessel inner surface-solvent affinities. This feature is not shared with the energetic component. When the vessel inner surface is neither solvophobic nor solvophilic, the solvents within the vessel cavity and in the bulk offer almost the same environment to any solute with solvophobicity or solvophilicity, and the energetic component becomes much smaller than the entropic component (i.e., the latter predominates over the former). Our idea is that the multidrug efflux can be realized if the insertion/release process is accomplished by the entropic component exhibiting the insensitivity to the solute properties. However, we have recently argued that the entropic release of the solute is not feasible as long as the vessel geometry is fixed. Here we consider a model of TolC, a cylindrical vessel possessing an entrance at one end and an exit at the other end for the solute. The spatial distribution of the PMF is calculated by employing the three-dimensional integral equation theory with rigid-body models in which the constituents interact only through hard-body potentials. Since the behavior of these models is purely entropic in origin, our analysis is

  16. The carrier AUXIN RESISTANT (AUX1) dominates auxin flux into Arabidopsis protoplasts.

    PubMed

    Rutschow, Heidi L; Baskin, Tobias I; Kramer, Eric M

    2014-11-01

    The ability of the plant hormone auxin to enter a cell is critical to auxin transport and signaling. Auxin can cross the cell membrane by diffusion or via auxin-specific influx carriers. There is little knowledge of the magnitudes of these fluxes in plants. Radiolabeled auxin uptake was measured in protoplasts isolated from roots of Arabidopsis thaliana. This was done for the wild-type, under treatments with additional unlabeled auxin to saturate the influx carriers, and for the influx carrier mutant auxin resistant 1 (aux1). We also used flow cytometry to quantify the relative abundance of cells expressing AUX1-YFP in the assayed population. At pH 5.7, the majority of auxin influx into protoplasts - 75% - was mediated by the influx carrier AUX1. An additional 20% was mediated by other saturable carriers. The diffusive influx of auxin was essentially negligible at pH 5.7. The influx of auxin mediated by AUX1, expressed as a membrane permeability, was 1.5 ± 0.3 μm s(-1) . This value is comparable in magnitude to estimates of efflux permeability. Thus, auxin-transporting tissues can sustain relatively high auxin efflux and yet not become depleted of auxin.

  17. Exogenously produced CO2 doubles the CO2 efflux from three north temperate lakes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Grace M.; Buelo, Cal D.; Cole, Jonathan J.; Pace, Michael L.

    2016-03-01

    It is well established that lakes are typically sources of CO2 to the atmosphere. However, it remains unclear what portion of CO2 efflux is from endogenously processed organic carbon or from exogenously produced CO2 transported into lakes. We estimated high-frequency CO2 and O2 efflux from three north temperate lakes in summer to determine the proportion of the total CO2 efflux that was exogenously produced. Two of the lakes were amended with nutrients to experimentally enhance endogenous CO2 uptake. In the unfertilized lake, 50% of CO2 efflux was from exogenous sources and hydrology had a large influence on efflux. In the fertilized lakes, endogenous CO2 efflux was negative (into the lake) yet exogenous CO2 made the lakes net sources of CO2 to the atmosphere. Shifts in hydrologic regimes and nutrient loading have the potential to change whether small lakes act primarily as reactors or vents in the watershed.

  18. Composite carrier bar device

    SciTech Connect

    Felder, D.W.

    1981-09-01

    A composite carrier bar is disclosed for oil well pumping units that utilize sucker rod to operate bottom hole pumps. The bar includes a recessed cavity for receiving a hydraulic ram to operate as a polish rod jack and also a secondary carrier bar for receiving a secondary polish rod clamp for use in respacing bottom hole pumps and serve as a safety clamp during operation.

  19. Antimony uptake, efflux and speciation in arsenic hyperaccumulator Pteris vittata.

    PubMed

    Tisarum, Rujira; Lessl, Jason T; Dong, Xiaoling; de Oliveira, Letuzia M; Rathinasabapathi, Bala; Ma, Lena Q

    2014-03-01

    Even though antimony (Sb) and arsenic (As) are chemical analogs, differences exist on how they are taken up and translocated in plants. We investigated 1) Sb uptake, efflux and speciation in arsenic hyperaccumulator Pteris vittata after 1 d exposure to 1.6 or 8 mg/L antimonite (SbIII) or antimonate (SbV), 2) Sb uptake by PV accessions from Florida, China, and Brazil after 7 d exposure to 8 mg/L SbIII, and 3) Sb uptake and oxidation by excised PV fronds after 1 d exposure to 8 mg/L SbIII or SbV. After 1 d exposure, P. vittata took 23-32 times more SbIII than SbV, with all Sb being accumulated in the roots with the highest at 4,192 mg/kg. When exposed to 8 mg/L SbV, 98% of Sb existed as SbV in the roots. In comparison, when exposed to 8 mg/L SbIII, 81% of the total Sb remained as SbIII and 26% of the total Sb was effluxed out into the media. The three PV accessions had a similar ability to accumulate Sb at 12,000 mg/kg in the roots, with >99% of total Sb in the roots. Excised PV fronds translocated SbV more efficiently from the petioles to pinnae than SbIII and were unable to oxidize SbIII. Overall, P. vittata displayed efficient root uptake and efflux of SbIII with limited ability to translocate and transform in the roots.

  20. The Cus efflux system removes toxic ions via a methionine shuttle.

    PubMed

    Su, Chih-Chia; Long, Feng; Yu, Edward W

    2011-01-01

    Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel diverse toxic compounds from the cell. These efflux systems span the entire cell envelope to mediate the phenomenon of bacterial multidrug resistance. The three parts of the efflux complexes are: (1) a membrane fusion protein (MFP) connecting (2) a substrate-binding inner membrane transporter to (3) an outer membrane-anchored channel in the periplasmic space. One such efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. We recently determined the crystal structures of both the inner membrane transporter CusA and MFP CusB of the CusCBA tripartite efflux system from E. coli. These are the first structures of the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here, we summarize the structural information of these two efflux proteins and present the accumulated evidence that this efflux system utilizes methionine residues to bind and export Cu(I)/Ag(I). Genetic and structural analyses suggest that the CusA pump is capable of picking up the metal ions from both the periplasm and cytoplasm. We propose a stepwise shuttle mechanism for this pump to extrude metal ions from the cell.

  1. Peptides having reduced toxicity that stimulate cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan; Danho, Waleed

    2016-08-16

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABCA1 that parallels that of full-length apolipoproteins. Further, the peptides of the invention have little or no toxicity when administered at therapeutic and higher doses. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  2. Volatilization and Efflux of Mercury from Biologically Productive Ocean Regions.

    NASA Astrophysics Data System (ADS)

    Kim, Jonathan Philip

    Mercury volatilization and oceanic evasion to the atmosphere were investigated in the tropical Pacific Ocean with emphasis on the biologically productive equatorial region. Further studies were conducted at two stations in the oligiotrophic North Pacific gyre, and in the estuarine mesocosms at the Marine Ecosystems Research Laboratory (MERL), University of Rhode Island. Dissolved gaseous Hg (DGM) in the tropical Pacific along 150^circ W at 4 stations (10^circ N, 0^ circ, 5^circ S, 12^circ S) ranged from 35-85 femtomoles per liter (fM) in surface waters and from 105-185 fM in deeper waters (350-400 meters). Speciation experiments indicated that Hg^circ was the dominant form in surface waters, while evidence for (CH_3)_2Hg was found at depth. The increases of DGM with depth are consistent with a volatile Hg source in deeper waters. A significant correlation between DGM and apparent oxygen utilization (n = 23, r = 0.694) suggested bacterial methylation of Hg in the oxygen minimum zone. In equatorial Pacific surface waters (155-95 ^circ W), DGM varied between 60 and 225 fM. Elemental Hg appears to comprise the major fraction of DGM. Elevated DGM concentrations corresponded with increased chlorophyll a levels and cooler, nutrient-rich waters. These results suggest that phytoplankton might volatilize Hg in surface seawater or bacteria could produce Hg^circ in deeper waters which upwell to the sea surface. Surface waters of the equatorial Pacific were supersaturated with respect to Hg^circ (179-1769%). Local Hg effluxes, estimated with a thin-film gas exchange model, were between 225 and 1050 pmoles/m^2day. The anual Hg efflux from the equatorial Pacific, 1.6 +/- 1.3 times 10^{+6 } moles (megamoles), was estimated at 4-5% of the total global Hg flux to the atmosphere. When normalized to primary production, a yearly Hg efflux of 14 +/- 9 megamoles was predicted for the oceans. This is about 35% of the annual atmospheric Hg flux and is comparable to human-derived Hg

  3. ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation.

    PubMed

    Boutté, Yohann; Jonsson, Kristoffer; McFarlane, Heather E; Johnson, Errin; Gendre, Delphine; Swarup, Ranjan; Friml, Jirí; Samuels, Lacey; Robert, Stéphanie; Bhalerao, Rishikesh P

    2013-10-01

    The plant hormone indole-acetic acid (auxin) is essential for many aspects of plant development. Auxin-mediated growth regulation typically involves the establishment of an auxin concentration gradient mediated by polarly localized auxin transporters. The localization of auxin carriers and their amount at the plasma membrane are controlled by membrane trafficking processes such as secretion, endocytosis, and recycling. In contrast to endocytosis or recycling, how the secretory pathway mediates the localization of auxin carriers is not well understood. In this study we have used the differential cell elongation process during apical hook development to elucidate the mechanisms underlying the post-Golgi trafficking of auxin carriers in Arabidopsis. We show that differential cell elongation during apical hook development is defective in Arabidopsis mutant echidna (ech). ECH protein is required for the trans-Golgi network (TGN)-mediated trafficking of the auxin influx carrier AUX1 to the plasma membrane. In contrast, ech mutation only marginally perturbs the trafficking of the highly related auxin influx carrier LIKE-AUX1-3 or the auxin efflux carrier PIN-FORMED-3, both also involved in hook development. Electron tomography reveals that the trafficking defects in ech mutant are associated with the perturbation of secretory vesicle genesis from the TGN. Our results identify differential mechanisms for the post-Golgi trafficking of de novo-synthesized auxin carriers to plasma membrane from the TGN and reveal how trafficking of auxin influx carriers mediates the control of differential cell elongation in apical hook development. PMID:24043780

  4. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus

    PubMed Central

    2011-01-01

    Background Antimicrobial resistance mediated by efflux systems is still poorly characterized in Staphylococcus aureus, despite the description of several efflux pumps (EPs) for this bacterium. In this work we used several methodologies to characterize the efflux activity of 52 S. aureus isolates resistant to ciprofloxacin collected in a hospital in Lisbon, Portugal, in order to understand the role played by these systems in the resistance to fluoroquinolones. Results Augmented efflux activity was detected in 12 out of 52 isolates and correlated with increased resistance to fluoroquinolones. Addition of efflux inhibitors did not result in the full reversion of the fluoroquinolone resistance phenotype, yet it implied a significant decrease in the resistance levels, regardless of the type(s) of mutation(s) found in the quinolone-resistance determining region of grlA and gyrA genes, which accounted for the remaining resistance that was not efflux-mediated. Expression analysis of the genes coding for the main efflux pumps revealed increased expression only in the presence of inducing agents. Moreover, it showed that not only different substrates can trigger expression of different EP genes, but also that the same substrate can promote a variable response, according to its concentration. We also found isolates belonging to the same clonal type that showed different responses towards drug exposure, thus evidencing that highly related clinical isolates may diverge in the efflux-mediated response to noxious agents. The data gathered by real-time fluorometric and RT-qPCR assays suggest that S. aureus clinical isolates may be primed to efflux antimicrobial compounds. Conclusions The results obtained in this work do not exclude the importance of mutations in resistance to fluoroquinolones in S. aureus, yet they underline the contribution of efflux systems for the emergence of high-level resistance. All together, the results presented in this study show the potential role

  5. Coupled Na/K/Cl efflux. "Reverse" unidirectional fluxes in squid giant axons

    PubMed Central

    1987-01-01

    Studies of unidirectional Cl-, Na+, and K+ effluxes were performed on isolated, internally dialyzed squid giant axons. The studies were designed to determine whether the coupled Na/K/Cl co-transporter previously identified as mediating influxes (Russell. 1983. Journal of General Physiology. 81:909-925) could also mediate the reverse fluxes (effluxes). We found that 10 microM bumetanide blocked 7-8 pmol/cm2 X s of Cl- efflux from axons containing ATP, Na+, and K+. However, if any one of these solutes was removed from the internal dialysis fluid, Cl- efflux was reduced by 7-8 pmol/cm2 X s and the remainder was insensitive to bumetanide. About 5 pmol/cm2 X s of Na+ efflux was inhibited by 10 microM bumetanide in the continuous presence of 10(-5) M ouabain and 10(-7) M tetrodotoxin if Cl-, K+, and ATP were all present in the internal dialysis fluid. However, the omission of Cl- or K+ or ATP reduced the Na+ efflux, leaving it bumetanide insensitive. K+ efflux had to be studied under voltage-clamp conditions with the membrane potential held at -90 mV because the dominant pathway for K+ efflux (the delayed rectifier) has a high degree of voltage sensitivity. Under this voltage-clamped condition, 1.8 pmol/cm2 X s of K+ efflux could be inhibited by 10 microM bumetanide. All of these results are consistent with a tightly coupled Na/K/Cl co-transporting efflux mechanism. Furthermore, the requirements for cis-side co-ions and intracellular ATP are exactly like those previously described for the coupled Na/K/Cl influx process. We propose that the same transporter mediates both influx and efflux, hence demonstrating "reversibility," a necessary property for an ion-gradient-driven transport process. PMID:3598557

  6. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.

    PubMed

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  7. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine

    PubMed Central

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  8. MexXY multidrug efflux system of Pseudomonas aeruginosa

    PubMed Central

    Morita, Yuji; Tomida, Junko; Kawamura, Yoshiaki

    2012-01-01

    Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologs such as Achromobacter xylosoxidans and various Burkholderia species (e.g., Burkholderia pseudomallei and B. cepacia complexes), but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance) of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA) of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention. PMID:23233851

  9. Engineering microbial biofuel tolerance and export using efflux pumps.

    PubMed

    Dunlop, Mary J; Dossani, Zain Y; Szmidt, Heather L; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D; Hadi, Masood Z; Mukhopadhyay, Aindrila

    2011-05-10

    Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes.

  10. [Role of HDL in Cholesterol Efflux and Reverse Cholesterol Transport].

    PubMed

    Ayaori, Makoto

    2016-01-01

    Low plasma levels of HDL-cholesterol (HDL-C) have been consistently associated with an increased risk of atherosclerotic cardiovascular diseases (CVD), and it is thus considered to be an anti-atherogenic lipoprotein. The development of novel therapies to enhance the atheroprotective properties of HDL may have the potential to further reduce the residual risk. Reverse cholesterol transport (RCT) is believed to be a primary atheroprotective property of HDL and its major protein, apolipoprotein A-I(apoA-I). HDL and apoA-I have been shown to promote the efflux of excess cholesterol from macrophage-derived foam cells via the cholesterol transporters, ATP-binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor class B, type I (SR-BI), and then transport it back to the liver for excretion into bile and eventually into the feces. In this regard, a validated murine assay that quantifies macrophage RCT may be a better predictor of atherosclerosis than the steady-state plasma concentration of HDL-C. Indeed, a recent clinical study demonstrated that the ability of serum HDL to mediate cholesterol efflux from macrophages was independently and negatively associated with the CVD risk even after adjustment for HDL-C levels, suggesting that HDL functionality is more important than its quantity. Therefore, the future development of HDL-targeted therapy should take both aspects into consideration to further reduce the residual risk.

  11. Engineering microbial biofuel tolerance and export using efflux pumps

    PubMed Central

    Dunlop, Mary J; Dossani, Zain Y; Szmidt, Heather L; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D; Hadi, Masood Z; Mukhopadhyay, Aindrila

    2011-01-01

    Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes. PMID:21556065

  12. [Role of HDL in Cholesterol Efflux and Reverse Cholesterol Transport].

    PubMed

    Ayaori, Makoto

    2016-01-01

    Low plasma levels of HDL-cholesterol (HDL-C) have been consistently associated with an increased risk of atherosclerotic cardiovascular diseases (CVD), and it is thus considered to be an anti-atherogenic lipoprotein. The development of novel therapies to enhance the atheroprotective properties of HDL may have the potential to further reduce the residual risk. Reverse cholesterol transport (RCT) is believed to be a primary atheroprotective property of HDL and its major protein, apolipoprotein A-I(apoA-I). HDL and apoA-I have been shown to promote the efflux of excess cholesterol from macrophage-derived foam cells via the cholesterol transporters, ATP-binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor class B, type I (SR-BI), and then transport it back to the liver for excretion into bile and eventually into the feces. In this regard, a validated murine assay that quantifies macrophage RCT may be a better predictor of atherosclerosis than the steady-state plasma concentration of HDL-C. Indeed, a recent clinical study demonstrated that the ability of serum HDL to mediate cholesterol efflux from macrophages was independently and negatively associated with the CVD risk even after adjustment for HDL-C levels, suggesting that HDL functionality is more important than its quantity. Therefore, the future development of HDL-targeted therapy should take both aspects into consideration to further reduce the residual risk. PMID:27192798

  13. As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli.

    PubMed

    Meng, Yu-Ling; Liu, Zijuan; Rosen, Barry P

    2004-04-30

    The toxicity of the metalloids arsenic and antimony is related to uptake, whereas detoxification requires efflux. In this report we show that uptake of the trivalent inorganic forms of arsenic and antimony into cells of Escherichia coli is facilitated by the aquaglyceroporin channel GlpF and that transport of Sb(III) is catalyzed by the ArsB carrier protein; everted membrane vesicles accumulated Sb(III) with energy supplied by NADH oxidation, reflecting efflux from intact cells. Dissipation of either the membrane potential or the pH gradient did not prevent Sb(III) uptake, whereas dissipation of both completely uncoupled the carrier protein, suggesting that transport is coupled to either the electrical or the chemical component of the electrochemical proton gradient. Reciprocally, Sb(III) transport via ArsB dissipated both the pH gradient and the membrane potential. These results strongly indicate that ArsB is an antiporter that catalyzes metalloid-proton exchange. Unexpectedly, As(III) inhibited ArsB-mediated Sb(III) uptake, whereas Sb(III) stimulated ArsB-mediated As(III) transport. We propose that the actual substrate of ArsB is a polymer of (AsO)(n), (SbO)(n), or a co-polymer of the two metalloids.

  14. Transport of gemifloxacin, a 4th generation quinolone antibiotic, in the Caco-2 and engineered MDCKII cells, and potential involvement of efflux transporters in the intestinal absorption of the drug.

    PubMed

    Jin, Hyo-Eon; Song, Boran; Kim, Sang-Bum; Shim, Won-Sik; Kim, Dae-Duk; Chong, Saeho; Chung, Suk-Jae; Shim, Chang-Koo

    2013-04-01

    The oral (po) bioavailability of gemifloxacin mesylate in rats and its possible association with efflux transporters was investigated. The apparent permeabilities (Papp) of gemifloxacin across the Caco-2 cell monolayer were 1.20 ± 0.09 × 10(-5) cm/s for apical to basal (absorptive) transport, and 2.13 ± 0.6 × 10(-5) cm/s for basal to apical (secretory) transport for a 5-500 μM concentration range, suggesting the involvement of a carrier-mediated efflux in the secretory transport. The secretory transport in Caco-2 cells was significantly decreased by MRP2 (MK571) and BCRP (Ko143) inhibitors. The secretory transport was distinct in MDCKII/P-gp, MDCKII/MRP2 and MDCKII/BCRP cells, and the affinity was highest for MRP2, followed by BCRP and P-gp. The efflux was significantly decreased by verapamil and Ko143, but not significantly by MK571. The comparative po bioavailability in rats was increased by the preadministration of Ko143 (four-fold), MK571 (two-fold) and verapamil (two-fold). Efflux transporters appeared to significantly limit the bioavailability of gemifloxacin in rats, suggesting their possible contribution to the low bioavailability of the drug in the human (70%).

  15. Kinetic analysis of receptor-controlled tracer efflux from sealed membrane fragments

    PubMed Central

    Bernhardt, Julius; Neumann, Eberhard

    1978-01-01

    A detailed kinetic analysis is presented for activator-receptor-mediated efflux of tracer substances from vesicular membrane systems in general and from sealed fragments of excitable membranes in particular. Rate constants and amplitudes, as the primary measurable quantities of the efflux kinetics, are expressed in terms of fundamental properties of vesicular membrane systems containing receptors of chemical gating systems. The experimental determination and theoretical analysis of single contributions to a complex receptor-controlled efflux has been treated for the acetylcholine receptor system; also the effect of “pharmacological densensitization” on efflux is explicitly formulated. The dependence of the measured efflux parameters on the concentration of activators can be used to derive the kinetic and thermodynamic constants for receptor activation and inactivation processes; a general kinetic scheme and two limiting cases are analyzed. The efflux of 22Na from “excitable microsacs” of Torpedo marmorata is treated as an example, and the power of the rigorous analytical method is demonstrated. In particular, the analysis of efflux amplitudes from only a few data points offers an alternative to the longer lasting measurements for obtaining efflux curves when a safety factor is involved, as in the case of tracer ions like 22Na. PMID:16592553

  16. Cholesterol efflux monitoring in macrophage form cells by using fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Song, Young Sik; Lee, Sang Hak; Park, Byoung Hee; Kim, Soo Hyeok; Hwang, Won Sang; Kim, Dug Young

    2015-03-01

    Macrophages play a key role in atherosclerotic plaque destabilization and rupture, since they accumulate large amounts of lipid through the uptake of modified lipoproteins which results in foam cell formation. Cholesterol efflux is the process of removing cholesterol from macrophages in the subintima of the vessel wall, and efflux mechanism in a cell is one of the critical issues for the prevention of cardiovascular diseases. High density lipoproteins (HDL) stimulate cholesterol efflux from macrophage foam cells in the arterial wall. Radioisotope-labeled cholesterol analysis method is well known conventional method for observing cholesterol efflux. The major drawback of this method is its long and complicated process. Fluorescence intensity imaging schemes are replacing the radioisotope-labeled method in recent years for cholesterol efflux monitoring. Various spectroscopic methods are also adapted for cholesterol efflux imaging. Here we present a fluorescence lifetime imaging method for more quantitative observation of cholesterol efflux process in macrophages, which enables us to observe cholesterol level changes with various conditions. We used J774 macrophage cell and 25-NBD-cholesterol which is a famous cholesterol specific dye. Our lifetime imaging results clearly show cholesterol efflux rate very effectively. We believe that fluorescence lifetime analysis is new and very powerful for cholesterol imaging or monitoring.

  17. The Ferroportin Metal Efflux Proteins Function in Iron and Cobalt Homeostasis in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relatively little is known about how metals such as iron are effluxed from cells, a necessary step for transport from the root to the shoot. Ferroportin is the sole iron efflux transporter in animals, and there are two closely related orthologs in Arabidopsis, FPN1 and FPN2. FPN1 localizes to the pl...

  18. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  19. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence

    PubMed Central

    Alcalde-Rico, Manuel; Hernando-Amado, Sara; Blanco, Paula; Martínez, José L.

    2016-01-01

    Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance), or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance). Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant processes of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals’ and plants’ pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial–host interactions during infection. PMID:27708632

  20. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Escherichia coli.

    PubMed

    Paltansing, Sunita; Tengeler, Anouk C; Kraakman, Margriet E M; Claas, Eric C J; Bernards, Alexandra T

    2013-12-01

    Resistance to ciprofloxacin in Escherichia coli is increasing parallel to increased use of fluoroquinolones both in The Netherlands and in other European countries. The objective was to investigate the contribution of active efflux and expression of outer membrane proteins (OMPs) in a collection of clinical E. coli isolates collected at a clinical microbiology department in a Dutch hospital. Forty-seven E. coli isolates a wide range of ciprofloxacin minimum inhibitory concentrations and known mutations in the quinolone resistance determining region were included. A fluorometric determination of bisbenzimide efflux was used two different efflux pump inhibitors and compared to quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for the expression levels of acrA, acrB, tolC, yhiV, and mdfA efflux pump genes and the OMPs ompF and ompX. Six isolates (12.7%) showed increased efflux. Although in 35 isolates (76%), overexpression of ≥1 efflux pump genes using qRT-PCR was present. Only the combined overexpression of acrAB-TolC and mdfA correlated with the phenotypic efflux assay using glucose/carbonyl cyanide m-chlorophenylhydrazone with glucose. Thus, efflux was involved in ciprofloxacin resistance in a limited number of E. coli isolates collected at a clinical microbiology department in a Dutch hospital complementing other resistance mechanisms.

  1. Communication—Microelectrode Detection of Cholesterol Efflux from the Human Buccel Mucosa

    PubMed Central

    Yu, Xiaochun; Kelley, Thomas J.; Chiel, Hillel J.; Burgess, James D.

    2016-01-01

    It has previously demonstrated that cholesterol efflux from the cell plasma membrane is increased in a mouse model of cystic fibrosis (CF) compared to a wild-type control. A noninvasive means of characterizing plasma membrane cholesterol efflux at the surface of airway tissue of CF patients is needed to extend the trends found in animal models of CF to the human disease state. Microelectrode-induced cholesterol efflux from the plasma membrane of cells at the surface of tissue is proposed as a strategy to demonstrate increased cholesterol efflux for CF in human subjects. Data demonstrating detection of cholesterol efflux from the human buccal mucosa is reported as proof-of-concept for an in vivo diagnostic assay. PMID:27546897

  2. Common Carrier Services.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This bulletin outlines the Federal Communications Commission's (FCC) responsibilities in regulating the interstate and foreign common carrier communication via electrical means. Also summarized are the history, technological development, and current capabilities and prospects of telegraph, wire telephone, radiotelephone, satellite communications,…

  3. Preconception Carrier Screening

    MedlinePlus

    ... What can the results of a carrier screening test tell me? A genetic counselor or your health care provider will use the results to calculate the ... the publisher. Related FAQs Genetic Disorders (FAQ094) Screening Tests for Birth Defects ... Education & Events Annual Meeting CME Overview CREOG ...

  4. Prognostic Usefulness of Serum Cholesterol Efflux Capacity in Patients With Coronary Artery Disease.

    PubMed

    Zhang, Jianhua; Xu, Jia; Wang, Jingfeng; Wu, Changhao; Xu, Yan; Wang, Yueguo; Deng, Fengfeng; Wang, Zhe; Chen, Xuhua; Wu, Mengzuo; Chen, Yangxin

    2016-02-15

    Cholesterol efflux capacity has been shown to have an inverse relation with coronary artery disease (CAD) and may overcome the limitations of high-density lipoprotein (HDL) cholesterol levels as a predictor for CAD risks. We investigated the predictive value of cholesterol efflux capacity for the prognosis of CAD. Serum cholesterol efflux capacity in 313 patients newly diagnosed with CAD by coronary angiography was measured, and all patients completed a 3-year follow-up. The primary clinical end points were nonfatal myocardial infarction, nonfatal stroke, and cardiovascular mortality. The secondary clinical end points were class IV heart failure requiring hospitalization and coronary artery revascularization. Cholesterol efflux capacity was lower in patients with CAD compared with control group, and decreased cholesterol efflux capacity was associated with an increased risk of acute coronary syndrome (odds ratios, 0.25; 95% confidence interval, 0.14 to 0.46; p <0.01). There was no association between cholesterol efflux capacity and serum HDL cholesterol levels. Follow-up data showed that patients with CAD with lower cholesterol efflux capacity had higher primary clinical end point events (26 of 158 vs 8 of 155, p <0.01). Cox regression and Kaplan-Meier analysis further showed that a decreased cholesterol efflux capacity was associated with an increased risk of the primary end point events regardless of adjustment. There was no association between cholesterol efflux capacity and the secondary end point events. In conclusion, the results provide the important clinical evidence that cholesterol efflux capacity is a predictive index for plaque stability and the prognosis of CAD, independent of HDL cholesterol levels.

  5. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    PubMed Central

    Coelho, Tatiane; Machado, Diana; Couto, Isabel; Maschmann, Raquel; Ramos, Daniela; von Groll, Andrea; Rossetti, Maria L.; Silva, Pedro A.; Viveiros, Miguel

    2015-01-01

    Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA) to study single combinations between antituberculosis drugs and efflux inhibitors (EIs) against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC) indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates. PMID:25972842

  6. Nitrogen Fertilization Modifies the Phenology of Ground CO2 Efflux in a Boreal Scots Pine Forest

    NASA Astrophysics Data System (ADS)

    Marshall, J. D.; Näsholm, T.; Linder, S.; Tarvainen, L.; Peichl, M.; Lundmark, T.

    2015-12-01

    Problems with the extraction of ecosystem respiration rates from eddy covariance data have led to renewed interest in chamber-based estimates of CO2 efflux from near the ground surface. However, chamber measurements frequently have their own issues. Here we describe the results of a study using large (≈2 m radius), transparent chambers over intact ground vegetation to describe the net efflux of CO2 and its environmental controls during the growing season at Rosinedal, a research site in northern Sweden. Measurements were made at thirty-minute intervals over the course of three growing seasons in a heavily fertilized and an unfertilized Scots pine stand. Ammonium nitrate was added at rates of 100 kg N ha-1 for the first five years, after which the rate was halved but the additions continued. The CO2 efflux results were simultaneously fitted to a nonlinear model describing the exponential increase in dark efflux with temperature, the Michaelis-Menten saturation of light-driven CO2 uptake in photosynthesis, the reduction in efflux due to soil drying, and a residual term that we ascribe to weekly shifts in the photosynthate partitioning of canopy trees to belowground processes. We found the expected exponential increase in dark efflux with temperature, however the net efflux in daytime was often negative, reflecting the high GPP of the ground vegetation, especially in dense canopies of bilberry (Vaccinium myrtillus L.). There was a clear reduction in dark efflux under dry conditions. The empirical phenology parameters increased sharply in early July, around the time that leaf expansion and rapid cambial growth were completed. This increase was more pronounced on the control plot than on the fertilized plot, consistent with expectations based on the notion that N fertilization should favor aboveground partitioning. The empirical "partitioning coefficient" shifted net efflux by nearly as much as the seasonal temperature range. Dark efflux of CO2 was nearly halved as a

  7. Efflux time of soap bubbles and liquid spheres.

    PubMed

    Grosse, A V

    1967-06-01

    The efflux time, T, of gas from soap bubbles of radius, R, through their blow tube of length, 1, and radius, p, is given by the equation see pdf for equation where eta is the viscosity of the gas and omicron the surface tension of the bubble solution, all in centimeter-gram-second units. Similar relations between time and diameter were established for the flow from one bubble to another or from one bubble within another. The same relations hold for the flow of liquid spheres, suspended in another liquid of equal density, following Plateau's classic method. They have been extended to the flow of spheres to cylinders and catenoids of rotation. In all these cases the driving force is the surface or interfacial tension, creating an excess pressure as defined by Laplace's equation. PMID:17792780

  8. Sealed substrate carrier for electroplating

    DOEpatents

    Ganti, Kalyana Bhargava

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  9. Energy Metabolism and Drug Efflux in Mycobacterium tuberculosis

    PubMed Central

    Black, Philippa A.; Warren, Robin M.; Louw, Gail E.; van Helden, Paul D.; Victor, Thomas C.

    2014-01-01

    The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed. PMID:24614376

  10. Volatilization and efflux of mercury from biologically productive ocean regions

    SciTech Connect

    Kim, J.P.

    1987-01-01

    Mercury volatilization and oceanic evasion to the atmosphere were investigated in the tropical Pacific Ocean with emphasis on the biologically productive equatorial region. Further studies were conducted at two stations in the oligiotrophic North Pacific gyre, and in the estuarine mesocosms at the Marine Ecosystems Research Laboratory (MERL), University of Rhode Island. Dissolved gaseous Hg (DGM) in the tropical Pacific along 150/degree/ W at 4 stations ranged from 35-85 femtomoles per liter (fM) in surface waters and from 105-185 fM in deeper waters. Speciation experiments indicated that Hg/degree/was the dominant form in surface waters, while evidence for (CH/sub 3/)/sub 2/Hg was found at depth. In equatorial Pacific surface waters, DGM varied between 60 and 225 fM. Elemental Hg appears to comprise the major fraction of DGM. Elevated DGM concentrations corresponded with increased chlorophyll a levels and cooler, nutrient-rich waters. Surface waters of the equatorial Pacific were supersaturated with respect to Hg/degree/. Local Hg effluxes, estimated with a thin-film gas exchange model, were between 225 and 1050 pmoles/m/sup 2/ day. The annual Hg efflux from the equatorial Pacific, 1.6 /+-/ 1.3 /times/ 10/sup +6/ moles, was estimated at 4-5% of the total global Hg flux to the atmosphere. Dissolved gaseous Hg in the MERL mesocosms ranged from less than or equal to30 to 185 fM. In general, Hg/degree/ was the principal species, although (CH/sub 3/)/sub 2/minus// Hg was detected twice. Supersaturated levels of Hg/degrees/ corresponded with phytoplankton blooms of Cerataulina pelagica, Leptocylindrus danicus, Leptocylindrus mimimus, and Phaeocystis poucheti, suggesting that these phytoplankton could volatilize Hg in estuarine waters.

  11. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots.

    PubMed

    Ryan, Peter R; Raman, Harsh; Gupta, Sanjay; Horst, Walter J; Delhaize, Emmanuel

    2009-01-01

    The first confirmed mechanism for aluminum (Al) resistance in plants is encoded by the wheat (Triticum aestivum) gene, TaALMT1, on chromosome 4DL. TaALMT1 controls the Al-activated efflux of malate from roots, and this mechanism is widespread among Al-resistant genotypes of diverse genetic origins. This study describes a second mechanism for Al resistance in wheat that relies on citrate efflux. Citrate efflux occurred constitutively from the roots of Brazilian cultivars Carazinho, Maringa, Toropi, and Trintecinco. Examination of two populations segregating for this trait showed that citrate efflux was controlled by a single locus. Whole-genome linkage mapping using an F(2) population derived from a cross between Carazinho (citrate efflux) and the cultivar EGA-Burke (no citrate efflux) identified a major locus on chromosome 4BL, Xce(c), which accounts for more than 50% of the phenotypic variation in citrate efflux. Mendelizing the quantitative variation in citrate efflux into qualitative data, the Xce(c) locus was mapped within 6.3 cM of the microsatellite marker Xgwm495 locus. This linkage was validated in a second population of F(2:3) families derived from a cross between Carazinho and the cultivar Egret (no citrate efflux). We show that expression of an expressed sequence tag, belonging to the multidrug and toxin efflux (MATE) gene family, correlates with the citrate efflux phenotype. This study provides genetic and physiological evidence that citrate efflux is a second mechanism for Al resistance in wheat.

  12. Prominent Expression of Xenobiotic Efflux Transporters in Mouse Extraembryonic Fetal Membranes Compared to Placenta

    PubMed Central

    Aleksunes, Lauren M.; Cui, Yue; Klaassen, Curtis D.

    2008-01-01

    Fetal exposure to xenobiotics can be restricted by transporters at the interface between maternal and fetal circulation. Previous work identified transporters in the placenta, however, less is known about the presence of these transporters in the fetal membranes (i.e., yolk sac and amniotic membranes). The purpose of this study was to quantify mRNA and protein expression of xenobiotic transporters in mouse placenta and fetal membranes during mid- to late-gestation. Concepti (placenta and fetal membranes, gestation day 11) or placenta and fetal membranes (gestation days 14 and 17) were collected from pregnant mice and analyzed for expression of multidrug resistance-associated proteins (Mrps), multidrug resistance proteins (Mdr), multidrug and toxin extrusion proteins (Mate), breast cancer resistance protein (Bcrp), and organic anion transporting polypeptides (Oatps). Maternal liver and kidneys were also collected at day 14 for mRNA and immunohistochemical analysis. mRNA expression of Mrp, Mdr, Bcrp, Mate-1, Oatp isoforms was detected at day 11. The uptake carriers Oatp2a1, 3a1, 4a1, and 5a1 showed placenta-predominant expression. At days 14 and 17, fetal membranes expressed higher mRNA levels of the efflux transporters Mrp2 (7-fold), Mrp4 (5-fold), Mrp5 (3-fold), Mrp6 (12-fold), Bcrp (2-fold), and Mate-1 (7-fold) compared to placenta. Western blot of Mrp2, Mrp4, Mrp6, and Bcrp confirmed higher expression in fetal membranes. Immunostaining revealed apical (Mrp2 and Bcrp) and basolateral (Mrp4, 5, and 6) cellular localization in epithelial cells of the yolk sac. In conclusion, xenobiotic transporters in the fetal membranes may provide an additional route to protect the fetus against endogenous chemicals and xenobiotics. PMID:18566041

  13. Yarn carrier with clutch

    NASA Technical Reports Server (NTRS)

    Doyne, Richard A. (Inventor); Benson, Rio H. (Inventor); El-Shiekh, Aly (Inventor)

    1994-01-01

    A yarn carrier apparatus particularly suited for use in braiding machinery or the like due to its capability of continuous yarn feeding and retraction of long lengths of yarn. The yarn carrier apparatus comprises a yarn supply spool which is rotatably mounted within the housing, a spring motor also mounted within the housing and operatively connected to the yarn supply spool through a mechanical transmission assembly which is adapted to multiply rotational movement between the first element of the gear assembly operatively connected to the spring motor and the final element of the gear assembly operatively connected to the yarn supply spool. The spring motor is adapted to tension the yarn during both feeding and retraction thereof, and it is further adapted to periodically rotatably slip within the housing and partially unwind so as to allow for continuous withdrawal of a long length of yarn without the spring motor becoming fully wound and preventing further yarn retraction.

  14. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells[S

    PubMed Central

    Sankaranarayanan, Sandhya; de la Llera-Moya, Margarita; Drazul-Schrader, Denise; Phillips, Michael C.; Kellner-Weibel, Ginny; Rothblat, George H.

    2013-01-01

    An important mechanism contributing to cell cholesterol efflux is aqueous transfer in which cholesterol diffuses from cells into the aqueous phase and becomes incorporated into an acceptor particle. Some compounds can enhance diffusion by acting as shuttles transferring cholesterol to cholesterol acceptors, which act as cholesterol sinks. We have examined whether particles in serum can enhance cholesterol efflux by acting as shuttles. This task was accomplished by incubating radiolabeled J774 cells with increasing concentrations of lipoprotein-depleted sera (LPDS) or components present in serum as shuttles and a constant amount of LDL, small unilamellar vesicles, or red blood cells (RBC) as sinks. Synergistic efflux was measured as the difference in fractional efflux in excess of that predicted by the addition of the individual efflux values of sink and shuttle alone. Synergistic efflux was obtained when LPDS was incubated with cells and LDL. When different components of LPDS were used as shuttles, albumin produced synergistic efflux, while apoA-I did not. A synergistic effect was also obtained when RBC was used as the sink and albumin as shuttle. The previously observed negative association of albumin with coronary artery disease might be linked to reduced cholesterol shuttling that would occur when serum albumin levels are low. PMID:23288948

  15. Inducer expulsion in Streptococcus pyogenes: properties and mechanism of the efflux reaction

    SciTech Connect

    Sutrina, S.L.; Reizer, J.; Saier, M.H Jr.

    1988-04-01

    Expulsion of preaccumulated methyl-..beta..-D-thiogalactoside-phosphate (TMG-P) from Streptococcus pyogenes is a two-step process comprising intracellular dephosphorylation of TMG-P followed by rapid efflux of the intracellularly formed free galactoside. The present study identifies the mechanism and the order and characterizes the temperature dependency of the efflux step. Unidirectional efflux of the intracellularly formed (/sup 14/C)TMG was only slightly affected when measured in the presence of unlabeled TMG (25 to 400 mM) in the extracellular medium. In contrast, pronounced inhibition of net efflux was observed in the presence of relatively low concentrations (1 to 16 mM) of extracellular (/sup 14/C)TMG. Since net efflux was nearly arrested when the external concentration of (/sup 14/C)TMG approached the intracellular concentration of this sugar, we propose that a facilitated diffusion mechanism is responsible for efflux and equilibration of TMG between the intracellular and extracellular milieus. The exit reaction was markedly dependent upon temperature, exhibited a high energy of activation (23 kcal (ca. 96 kJ) per mol), and followed first-order kinetics, indicating that the permease mediating this efflux was not saturated under the conditions of expulsion employed.

  16. HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity

    PubMed Central

    Borja, Mark S.; Ng, Kit F.; Irwin, Angela; Hong, Jaekyoung; Wu, Xing; Isquith, Daniel; Zhao, Xue-Qiao; Prazen, Bryan; Gildengorin, Virginia; Oda, Michael N.; Vaisar, Tomáš

    2015-01-01

    HDL is the primary mediator of cholesterol mobilization from the periphery to the liver via reverse cholesterol transport (RCT). A critical first step in this process is the uptake of cholesterol from lipid-loaded macrophages by HDL, a function of HDL inversely associated with prevalent and incident cardiovascular disease. We hypothesized that the dynamic ability of HDL to undergo remodeling and exchange of apoA-I is an important and potentially rate-limiting aspect of RCT. In this study, we investigated the relationship between HDL-apoA-I exchange (HAE) and serum HDL cholesterol (HDL-C) efflux capacity. We compared HAE to the total and ABCA1-specific cholesterol efflux capacity of 77 subjects. We found that HAE was highly correlated with both total (r = 0.69, P < 0.0001) and ABCA1-specific (r = 0.47, P < 0.0001) efflux, and this relationship remained significant after adjustment for HDL-C or apoA-I. Multivariate models of sterol efflux capacity indicated that HAE accounted for approximately 25% of the model variance for both total and ABCA1-specific efflux. We conclude that the ability of HDL to exchange apoA-I and remodel, as measured by HAE, is a significant contributor to serum HDL efflux capacity, independent of HDL-C and apoA-I, indicating that HDL dynamics are an important factor in cholesterol efflux capacity and likely RCT. PMID:26254308

  17. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    PubMed Central

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2013-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data indicate an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological level, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may open the way to rationally develop an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. PMID:21707670

  18. High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata.

    PubMed

    Chen, Yanshan; Fu, Jing-Wei; Han, Yong-He; Rathinasabapathi, Bala; Ma, Lena Q

    2016-02-01

    Arsenite (AsIII) efflux is an important mechanism for arsenic (As) detoxification in plants. Low AsIII efflux has been observed in As-hyperaccumulator Pteris vittata, which may contribute to its highly efficient As translocation and accumulation; however, the results may be compromised by microbial AsIII oxidation, relatively low As concentration in the medium and short-term As exposure. Here, sterile P. vittata sporophytes were cultivated in sterile medium containing 10, 200 and 500 µM arsenate (AsV) for 28 d. Arsenite efflux to the growth medium and As speciation in P. vittata was investigated. Low AsIII efflux at 12% of AsV uptake was observed at 10 µM AsV, but high AsIII efflux (36-76%) was observed at 200 and 500 µM AsV, with 1987-2397 mg kg(-1) As being accumulated in the fronds. This is the first report to show efficient AsIII efflux in P. vittata. This study showed that P. vittata may use high AsIII efflux to cope with As toxicity under high As exposure, which may be necessary to sustain growth while accumulating As. PMID:26595313

  19. HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity.

    PubMed

    Borja, Mark S; Ng, Kit F; Irwin, Angela; Hong, Jaekyoung; Wu, Xing; Isquith, Daniel; Zhao, Xue-Qiao; Prazen, Bryan; Gildengorin, Virginia; Oda, Michael N; Vaisar, Tomáš

    2015-10-01

    HDL is the primary mediator of cholesterol mobilization from the periphery to the liver via reverse cholesterol transport (RCT). A critical first step in this process is the uptake of cholesterol from lipid-loaded macrophages by HDL, a function of HDL inversely associated with prevalent and incident cardiovascular disease. We hypothesized that the dynamic ability of HDL to undergo remodeling and exchange of apoA-I is an important and potentially rate-limiting aspect of RCT. In this study, we investigated the relationship between HDL-apoA-I exchange (HAE) and serum HDL cholesterol (HDL-C) efflux capacity. We compared HAE to the total and ABCA1-specific cholesterol efflux capacity of 77 subjects. We found that HAE was highly correlated with both total (r = 0.69, P < 0.0001) and ABCA1-specific (r = 0.47, P < 0.0001) efflux, and this relationship remained significant after adjustment for HDL-C or apoA-I. Multivariate models of sterol efflux capacity indicated that HAE accounted for approximately 25% of the model variance for both total and ABCA1-specific efflux. We conclude that the ability of HDL to exchange apoA-I and remodel, as measured by HAE, is a significant contributor to serum HDL efflux capacity, independent of HDL-C and apoA-I, indicating that HDL dynamics are an important factor in cholesterol efflux capacity and likely RCT.

  20. Efflux of 86Rb from rat and mouse pancreatic islets: the role of membrane depolarization.

    PubMed Central

    Matthews, E. K.; Shotton, P. A.

    1984-01-01

    The efflux of 86Rb from rat or mouse perifused islets preloaded with the isotope has been used as an index of the potassium permeability of the islet beta-cell membrane. Cellular transmembrane potentials were altered by changing [K]O or by direct electrical stimulation and the effects on potassium permeability examined. Omission of KCl from the medium perifusing rat islets induced a biphasic change in 86Rb efflux, a brief decline being superseded by a pronounced increase in efflux. Re-introduction of KCl, 4.7 mM, caused a further increase in 86Rb efflux preceding a return to control values. Increasing [K]O from 4.7 mM to 10 mM, 20 mM or 47 mM caused a phasic increase in 86Rb efflux with the magnitude of both the peak and average rate of efflux being dependent upon the extent of the change in [K]O. The increase in 86Rb efflux produced by [K]O, 47 mM, was attenuated by Co2+, 2.56 mM (51% inhibition) or quinine, 10 microM (47% inhibition), but efflux remained significantly (P less than 0.001) above control values. Electrical stimulation of single microdissected mouse pancreatic islets by currents of 0.1 to 0.5 mA evoked a rapid, phasic increase in 86Rb efflux. The magnitude of the response was unaffected by EGTA, 2 mM, or nupercaine, 100 microM. These observations are discussed in relation to the mechanisms controlling the potassium permeability, membrane potential and insulin secretion of the pancreatic islet beta-cell.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6391599

  1. Identification of Acinetobacter baumannii serum-associated antibiotic efflux pump inhibitors.

    PubMed

    Blanchard, Catlyn; Barnett, Pamela; Perlmutter, Jessamyn; Dunman, Paul M

    2014-11-01

    Adaptive antibiotic resistance is a newly described phenomenon by which Acinetobacter baumannii induces efflux pump activity in response to host-associated environmental cues that may, in part, account for antibiotic treatment failures against clinically defined susceptible strains. To that end, during adaptation to growth in human serum, the organism induces approximately 22 putative efflux-associated genes and displays efflux-mediated minocycline tolerance at antibiotic concentrations corresponding to patient serum levels. Here, we show that in addition to minocycline, growth in human serum elicits A. baumannii efflux-mediated tolerance to the antibiotics ciprofloxacin, meropenem, tetracycline, and tigecycline. Moreover, using a whole-cell high-throughput screen and secondary assays, we identified novel serum-associated antibiotic efflux inhibitors that potentiated the activities of antibiotics toward serum-grown A. baumannii. Two compounds, Acinetobacter baumannii efflux pump inhibitor 1 (ABEPI1) [(E)-4-((4-chlorobenzylidene)amino)benezenesulfonamide] and ABEPI2 [N-tert-butyl-2-(1-tert-butyltetrazol-5-yl)sulfanylacetamide], were shown to lead to minocycline accumulation within A. baumannii during serum growth and inhibit the efflux potential of the organism. While both compounds also inhibited the antibiotic efflux properties of the bacterial pathogen Pseudomonas aeruginosa, they did not display significant cytotoxicity toward human cells or mammalian Ca(2+) channel inhibitory effects, suggesting that ABEPI1 and ABEPI2 represent promising structural scaffolds for the development of new classes of bacterial antibiotic efflux pump inhibitors that can be used to potentiate the activities of current and future antibiotics for the therapeutic intervention of Gram-negative bacterial infections.

  2. Modulation of Bacterial Multidrug Resistance Efflux Pumps of the Major Facilitator Superfamily

    PubMed Central

    Kumar, Sanath; Mukherjee, Mun Mun; Varela, Manuel F.

    2013-01-01

    Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is one of the largest groups of solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS. PMID:25750934

  3. Measurement of sputtered efflux from 5-, 8-, and 30-cm diameter mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Mirtich, M. J.

    1975-01-01

    A study was undertaken to investigate the sputtered efflux from 5-, 8-, and 30-cm diameter mercury ion thrusters. Quartz crystal microbalances and fused silica samples were used to analyze the sputtered flux. Spectral transmittance measurements and spectrographic analysis of the samples were made after they were exposed to different thruster effluence by operating the thrusters at various conditions and durations of time. These measurements were used to locate the source of the efflux and determine its accumulated effect at various locations near the thruster. Comparisons of in situ and ex situ transmittance measurements of samples exposed to thruster efflux are also presented.

  4. Modafinil does not affect serotonin efflux from rat frontal cortex synaptosomes: comparison with known serotonergic drugs.

    PubMed

    Ferraro, L; Tanganelli, S; Fuxe, K; Bebe, B W; Tomasini, M C; Rambert, F A; Antonelli, T

    2001-03-16

    Modafinil did not affect spontaneous and K(+)-evoked [3H]5-HT efflux from cortical synaptosomes while it increased K(+)-evoked tritium efflux from cortical slices, an action that became stronger in the presence of paroxetine. In contrast, DL-fenfluramine and fluoxetine were able to enhance spontaneous and/or K(+)-evoked tritium efflux from synaptosomes and slices. These results suggest that modafinil does not affect 5-HT transmission from cortical synaptosomes and that its 5-HT releasing action is different from that of DL-fenfluramine and fluoxetine.

  5. Boosting Effect of 2-Phenylquinoline Efflux Inhibitors in Combination with Macrolides against Mycobacterium smegmatis and Mycobacterium avium.

    PubMed

    Machado, Diana; Cannalire, Rolando; Santos Costa, Sofia; Manfroni, Giuseppe; Tabarrini, Oriana; Cecchetti, Violetta; Couto, Isabel; Viveiros, Miguel; Sabatini, Stefano

    2015-12-11

    The identification of efflux inhibitors to be used as adjuvants alongside existing drug regimens could have a tremendous value in the treatment of any mycobacterial infection. Here, we investigated the ability of four 2-(4'-propoxyphenyl)quinoline Staphylococcus aureus NorA efflux inhibitors (1-4) to reduce the efflux activity in Mycobacterium smegmatis and Mycobacterium avium strains. All four compounds were able to inhibit efflux pumps in both mycobacterial species; in particular, O-ethylpiperazinyl derivative 2 showed an efflux inhibitory activity comparable to that of verapamil, the most potent mycobacterial efflux inhibitor reported to date, and was able to significantly reduce the MIC values of macrolides against different M. avium strains. The contribution of the M. avium efflux pumps MAV_1406 and MAV_1695 to clarithromycin resistance was proved because they were found to be overexpressed in two M. avium 104 isogenic strains showing high-level clarithromycin resistance. These results indicated a correlation between increased expression of efflux pumps, increased efflux, macrolide resistance, and reduction of resistance by efflux pump inhibitors such as compound 2. Additionally, compound 2 showed synergistic activity with clarithromycin, at a concentration below the cytotoxicity threshold, in an ex vivo experiment against M. avium 104-infected macrophages. In summary, the 2-(4'-propoxyphenyl)quinoline scaffold is suitable to obtain compounds endowed with good efflux pump inhibitory activity against both S. aureus and nontuberculous mycobacteria. PMID:27623057

  6. Identification of efflux proteins using efficient radial basis function networks with position-specific scoring matrices and biochemical properties.

    PubMed

    Ou, Yu-Yen; Chen, Shu-An; Chang, Yun-Min; Velmurugan, Devadasan; Fukui, Kazuhiko; Michael Gromiha, M

    2013-09-01

    Efflux proteins are membrane proteins, which are involved in the transportation of multidrugs. The annotation of efflux proteins in genomic sequences would aid to understand the function. Although the percentage of membrane proteins in genomes is estimated to be 25-30%, there is no information about the content of efflux proteins. For annotating such class of proteins it is necessary to develop a reliable method to identify efflux proteins from amino acid sequence information. In this work, we have developed a method based on radial basis function networks using position specific scoring matrices (PSSM) and amino acid properties. We noticed that the C-terminal domain of efflux proteins contain vital information for discrimination. Our method showed an accuracy of 78 and 92% in discriminating efflux proteins from transporters and membrane proteins, respectively using fivefold cross-validation. We utilized our method for annotating the genomes E. coli and P. aeruginosa and it predicted 8.7 and 9.2% of proteins as efflux proteins in these genomes, respectively. The predicted efflux proteins have been compared with available experimental data and we observed a very good agreement between them. Further, we developed a web server for classifying efflux proteins and it is freely available at http://rbf.bioinfo.tw/∼sachen/EFFLUXpredict/Efflux-RBF.php. We suggest that our method could be an effective tool for annotating efflux proteins in genomic sequences.

  7. Suppression of asymmetric acid efflux and gravitropism in maize roots treated with auxin transport inhibitors of sodium orthovanadate

    NASA Technical Reports Server (NTRS)

    Mulkey, T. J.; Evans, M. L.

    1982-01-01

    In gravitropically stimulated roots of maize (Zea mays L., hybrid WF9 x 38MS), there is more acid efflux on the rapidly growing upper side than on the slowly growing lower side. In light of the Cholodny/Went hypothesis of gravitropism which states that gravitropic curvature results from lateral redistribution of auxin, the effects of auxin transport inhibitors on the development of acid efflux asymmetry and curvature in gravistimulated roots were examined. All the transport inhibitors tested prevented both gravitropism and the development of asymmetric acid efflux in gravistimulated roots. The results indicate that auxin redistribution may cause the asymmetry of acid efflux, a finding consistent with the Cholodny/Went hypothesis of gravitropism. As further evidence that auxin-induced acid efflux asymmetry may mediate gravitropic curvature, sodium orthovanadate, an inhibitor of auxin-induced H+ efflux was found to prevent both gravitropism and the development of asymmetric acid efflux in gravistimulated roots.

  8. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  9. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  10. Maintainable substrate carrier for electroplating

    DOEpatents

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma; Diana Xiaobing

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  11. Genetical approach to gravitropism

    NASA Astrophysics Data System (ADS)

    Boonsirichai, K.; Chen, R.; Guan, C.; Rosen, E.; Young, L.; Masson, P.

    Gravitropism guides the growth of plant organs at a defined angle from the gravity vector. Accordingly, most roots grow downward, undergoing positive gravitropism. Gravity perception by roots appears to involve the sedimentation of amyloplasts within the columella cells of the cap. Amyloplast sedimentation triggers a signal transduction pathway that promotes the development of an auxin gradient across the root tip. This gradient is then transmitted to the elongation zones where it promotes a differential cellular elongation, partly responsible for the development of a root-tip curvature. To better understand the mechanisms involved in gravity signal transduction, we have identified and characterized several Arabidopsis thaliana mutants that show specific defects in root gravitropism. Several of these genes were characterized. ARG1 functions in gravity signal transduction, and encodes a dnaJ-like protein whose structure suggests an interaction with the cytoskeleton. Two other genes encode similar proteins (ARL1 and ARL2) in Arabidopsis. One of them (ARL2) also appears to function in gravity signal transduction. Because loss-of-function mutations in ARG1 result in partial alterations of gravitropism, we were able to identify and characterize two genetic enhancers of arg1-2: mar1-1 and mar2-1. These enhancers increased the gravitropism defect of arg1-2 roots and hypocotyls, and changed its orientation. Hence, MAR1 and MAR2 also appear to function in gravity signal transduction. AGR1, on the other hand, encodes a transmembrane component of the auxin efflux carrier complex involved in polar auxin transport through the elongation zones of Arabidopsis root tips. It belongs to a large gene family, several members of which are expressed in the root cap. Upon gravistimulation, the AGR3 protein appears to quickly relocate within the columella cells, accumulating in membranes at the new physical bottom. Hence, the gravity signal transduction pathway that includes the ARG1, ARL

  12. Dual action antifungal small molecule modulates multidrug efflux and TOR signaling.

    PubMed

    Shekhar-Guturja, Tanvi; Gunaherath, G M Kamal B; Wijeratne, E M Kithsiri; Lambert, Jean-Philippe; Averette, Anna F; Lee, Soo Chan; Kim, Taeyup; Bahn, Yong-Sun; Tripodi, Farida; Ammar, Ron; Döhl, Katja; Niewola-Staszkowska, Karolina; Schmitt, Lutz; Loewith, Robbie J; Roth, Frederick P; Sanglard, Dominique; Andes, David; Nislow, Corey; Coccetti, Paola; Gingras, Anne-Claude; Heitman, Joseph; Gunatilaka, A A Leslie; Cowen, Leah E

    2016-10-01

    There is an urgent need for new strategies to treat invasive fungal infections, which are a leading cause of human mortality. Here, we establish two activities of the natural product beauvericin, which potentiates the activity of the most widely deployed class of antifungal against the leading human fungal pathogens, blocks the emergence of drug resistance, and renders antifungal-resistant pathogens responsive to treatment in mammalian infection models. Harnessing genome sequencing of beauvericin-resistant mutants, affinity purification of a biotinylated beauvericin analog, and biochemical and genetic assays reveals that beauvericin blocks multidrug efflux and inhibits the global regulator TORC1 kinase, thereby activating the protein kinase CK2 and inhibiting the molecular chaperone Hsp90. Substitutions in the multidrug transporter Pdr5 that enable beauvericin efflux impair antifungal efflux, thereby impeding resistance to the drug combination. Thus, dual targeting of multidrug efflux and TOR signaling provides a powerful, broadly effective therapeutic strategy for treating fungal infectious disease that evades resistance.

  13. Dual action antifungal small molecule modulates multidrug efflux and TOR signaling.

    PubMed

    Shekhar-Guturja, Tanvi; Gunaherath, G M Kamal B; Wijeratne, E M Kithsiri; Lambert, Jean-Philippe; Averette, Anna F; Lee, Soo Chan; Kim, Taeyup; Bahn, Yong-Sun; Tripodi, Farida; Ammar, Ron; Döhl, Katja; Niewola-Staszkowska, Karolina; Schmitt, Lutz; Loewith, Robbie J; Roth, Frederick P; Sanglard, Dominique; Andes, David; Nislow, Corey; Coccetti, Paola; Gingras, Anne-Claude; Heitman, Joseph; Gunatilaka, A A Leslie; Cowen, Leah E

    2016-10-01

    There is an urgent need for new strategies to treat invasive fungal infections, which are a leading cause of human mortality. Here, we establish two activities of the natural product beauvericin, which potentiates the activity of the most widely deployed class of antifungal against the leading human fungal pathogens, blocks the emergence of drug resistance, and renders antifungal-resistant pathogens responsive to treatment in mammalian infection models. Harnessing genome sequencing of beauvericin-resistant mutants, affinity purification of a biotinylated beauvericin analog, and biochemical and genetic assays reveals that beauvericin blocks multidrug efflux and inhibits the global regulator TORC1 kinase, thereby activating the protein kinase CK2 and inhibiting the molecular chaperone Hsp90. Substitutions in the multidrug transporter Pdr5 that enable beauvericin efflux impair antifungal efflux, thereby impeding resistance to the drug combination. Thus, dual targeting of multidrug efflux and TOR signaling provides a powerful, broadly effective therapeutic strategy for treating fungal infectious disease that evades resistance. PMID:27571477

  14. Efficiency of N use by wheat as a function of influx and efflux of NO3

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1990-01-01

    Since N assimilation is one of the most costly functions of a plant, its efflux before assimilation results in a serious energy cost and loss in efficiency which could decrease yields. Efficient crop production is critical to the Closed Ecology Life Support System (CELSS). The objective is to determine the extent of efflux of the N species NO3(-), NH4(+), NO2(-), and urea after uptake, and possible means of regulation. Researchers found that NO3 efflux became serious as its substrate level increased. Efflux/Influx (E/I) of NO3(-) was greater in darkness (35 percent) than in light (14 percent), and the ratio greatly increased with substrate NO3 (-), (up to 45 percent at 10 mM). It seems advantageous to use the lowest possible nutrient concentration of NO3(-). The feasibility of using ClO3(-) was assessed and its toxicity determined.

  15. Phenylpropanoids of Alpinia galanga as efflux pump inhibitors in Mycobacterium smegmatis mc² 155.

    PubMed

    Roy, Somendu K; Pahwa, Sonika; Nandanwar, Hemraj; Jachak, Sanjay M

    2012-10-01

    The first and second line drugs used for the treatment of tuberculosis are now becoming ineffective due to emergence of resistant strains. Efflux pump provokes resistance in mycobacterium and hence could be explored as a new target for the discovery of anti-TB agents. In search of efflux pump inhibitors, MIC and modulation factor of phenylpropanoids isolated from A. galanga rhizome were determined prior to the accumulation and efflux assay. Phenylpropanoid compounds viz. 1'-S-1'-acetoxychavicol acetate, trans-p-coumaryl diacetate and 1'-S-1'-acetoxyeugenol acetate were found to be potent modulators and decreased the MIC of ethidium bromide by 64 fold at the concentration of 2.5, 6.25 and 5.0 mg/L respectively. 1'-S-1'-acetoxyeugenol acetate enhanced the accumulation and inhibited the efflux of EtBr in Mycobacterium smegmatis mc² 155 cells.

  16. 49 CFR 369.2 - Classification of carriers-motor carriers of property, household goods carriers, and dual...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contract motor carriers of property are grouped into the following three classes: Class I. Carriers having... applying the revenue deflator formula in Note A. Class II. Carriers having annual carrier operating... applying the revenue deflator formula in Note A. Class III. Carriers having annual carrier...

  17. Impact of repeated dry-wet cycles on soil CO2 efflux in a beech forest

    NASA Astrophysics Data System (ADS)

    Leitner, Sonja; Saronjic, Nermina; Kobler, Johannes; Holtermann, Christian; Zechmeister-Boltenstern, Sophie; Zimmermann, Michael

    2015-04-01

    Climate change research predicts that both frequency and intensity of weather extremes such as severe droughts and heavy rainfall events will increase in mid Europe over the next decades. Because soil moisture is one of the major factors controlling microbially-driven soil processes, a changed moisture regime will impact soil organic matter (SOM) decomposition and nutrient cycling. This in turn can lead to feedback effects between altered precipitation and changed soil CO2 fluxes which can intensify climate change. Soil microorganisms can go into a state of dormancy or form inactive cysts to protect themselves from osmotic stress during soil drying. However, severe droughts increase microbial mortality which slows down SOM decomposition and decreases soil CO2 efflux. The rewetting of dry soil, on the other hand, causes large CO2 emissions, which is also known as the "Birch effect". Until today it is not clear whether these CO2 peaks outweigh the drought-induced decrease of total CO2 efflux. To investigate the impact of repeated dry-wet cycles on soil CO2 efflux we are conducting a precipitation manipulation experiment in a temperate Austrian beech forest. Roofs exclude rainfall and simulate drought periods, and heavy rainfall events are simulated with a sprinkler system. We apply repeated dry-wet cycles in two intensities: one treatment receives 6 cycles of 1 month drought followed by 75mm irrigation, and a parallel treatment receives 3 cycles of 2 months drought followed by 150mm irrigation. Soil CO2 efflux is constantly monitored with an automated flux chamber system, and environmental parameters are recorded via dataloggers. Our results show that droughts significantly reduce soil CO2 effluxes, and that the reductions depend on the length of the drought periods, with longer droughts leading to stronger reductions of CO2 effluxes. In the first 24 to 48h after rewetting, CO2 emissions strongly increased, and then slowly decreased again. Soil CO2 efflux was

  18. Structural basis for the blockade of MATE multidrug efflux pumps

    DOE PAGES

    Radchenko, Martha; Symersky, Jindrich; Nie, Rongxin; Lu, Min

    2015-08-06

    Multidrug and toxic compound extrusion (MATE) transporters underpin multidrug resistance by using the H+ or Na+ electrochemical gradient to extrude different drugs across cell membranes. MATE transporters can be further parsed into the DinF, NorM and eukaryotic subfamilies based on their amino-acid sequence similarity. Here we report the 3.0 Å resolution X-ray structures of a protonation-mimetic mutant of an H+-coupled DinF transporter, as well as of an H+-coupled DinF and a Na+-coupled NorM transporters in complexes with verapamil, a small-molecule pharmaceutical that inhibits MATE-mediated multidrug extrusion. Combining structure-inspired mutational and functional studies, we confirm the biological relevance of our crystalmore » structures, reveal the mechanistic differences among MATE transporters, and suggest how verapamil inhibits MATE-mediated multidrug efflux. Our findings offer insights into how MATE transporters extrude chemically and structurally dissimilar drugs and could inform the design of new strategies for tackling multidrug resistance.« less

  19. Structural basis for the blockade of MATE multidrug efflux pumps

    SciTech Connect

    Radchenko, Martha; Symersky, Jindrich; Nie, Rongxin; Lu, Min

    2015-08-06

    Multidrug and toxic compound extrusion (MATE) transporters underpin multidrug resistance by using the H+ or Na+ electrochemical gradient to extrude different drugs across cell membranes. MATE transporters can be further parsed into the DinF, NorM and eukaryotic subfamilies based on their amino-acid sequence similarity. Here we report the 3.0 Å resolution X-ray structures of a protonation-mimetic mutant of an H+-coupled DinF transporter, as well as of an H+-coupled DinF and a Na+-coupled NorM transporters in complexes with verapamil, a small-molecule pharmaceutical that inhibits MATE-mediated multidrug extrusion. Combining structure-inspired mutational and functional studies, we confirm the biological relevance of our crystal structures, reveal the mechanistic differences among MATE transporters, and suggest how verapamil inhibits MATE-mediated multidrug efflux. Our findings offer insights into how MATE transporters extrude chemically and structurally dissimilar drugs and could inform the design of new strategies for tackling multidrug resistance.

  20. Responses of methane effluxes and soil methane concentrations to compaction.

    NASA Astrophysics Data System (ADS)

    Plain, C.; Delogu, E.; Longdoz, B.; Epron, D.; Ranger, J.

    2015-12-01

    Forest soils host methanotrophic bacterial communities that make them a major methane sink worldwide. Soil compaction resulting from mechanization of forest operations is first affecting soil macroporosity, and thus gas and water transfer within the soil, leading to a reduced oxygenation of the soil. This reduction of soil aeration is expected to reduce the methanotrophic activity leading thus to less CH4 oxidation and more CH4 production, affecting the overall soil CH4budget. Compaction was applied in 2007 and had created linear ruts. We measured continuously since September 2014, in three different situations (compacted-mound, compacted hollow and control), soil CO2 and CH4 effluxes using closed chamber coupled to a cavity ring down spectrometer in an young oak plantation. Since December 2015, in addition to these measurements, we have implanted hydrophobic tubes to measure vertical soil profiles of CH4, O2 and CO2 concentrations in the 3 situations. The soil acts as CH4 sink, with no significant difference in net CH4uptake between control and both hollow and mound in the compacted treatment. However, the uptake of CH4 was significantly lower for the hollows than for the mounds resulting from both a lower diffusion of CH4 within soil and a higher production of CH4 in deeper layer when the soil is water saturated.

  1. Structural basis for the blockade of MATE multidrug efflux pumps

    NASA Astrophysics Data System (ADS)

    Radchenko, Martha; Symersky, Jindrich; Nie, Rongxin; Lu, Min

    2015-08-01

    Multidrug and toxic compound extrusion (MATE) transporters underpin multidrug resistance by using the H+ or Na+ electrochemical gradient to extrude different drugs across cell membranes. MATE transporters can be further parsed into the DinF, NorM and eukaryotic subfamilies based on their amino-acid sequence similarity. Here we report the 3.0 Å resolution X-ray structures of a protonation-mimetic mutant of an H+-coupled DinF transporter, as well as of an H+-coupled DinF and a Na+-coupled NorM transporters in complexes with verapamil, a small-molecule pharmaceutical that inhibits MATE-mediated multidrug extrusion. Combining structure-inspired mutational and functional studies, we confirm the biological relevance of our crystal structures, reveal the mechanistic differences among MATE transporters, and suggest how verapamil inhibits MATE-mediated multidrug efflux. Our findings offer insights into how MATE transporters extrude chemically and structurally dissimilar drugs and could inform the design of new strategies for tackling multidrug resistance.

  2. Volume-dependent osmolyte efflux from neural tissues

    PubMed Central

    Fisher, Stephen K.; Cheema, Tooba A.; Foster, Daniel J.; Heacock, Anne M.

    2008-01-01

    The CNS is particularly vulnerable to reductions in plasma osmolarity, such as occurr during hyponatremia, the most commonly encountered electrolyte disorder in clinical practice. In response to a lowered plasma osmolarity, neural cells initially swell but then are able to restore their original volume through the release of osmolytes, both inorganic and organic, and the exit of osmotically obligated water. Given the importance of the maintenance of cell volume within the CNS, mechanisms underlying the release of osmolytes assume major significance. In this context, we review recent evidence obtained from our laboratory and others that indicates that the activation of specific G-protein-coupled receptors can markedly enhance the volume-dependent release of osmolytes from neural cells. Of particular significance is the observation that receptor activation significantly lowers the osmotic threshold at which osmolyte release occurs, thereby facilitating the ability of the cells to respond to small, more physiologically relevant, reductions in osmolarity. The mechanisms underlying G-protein-coupled receptor-mediated osmolyte release and the possibility that this efflux can result in both physiologically beneficial and potentially harmful pathophysiological consequences are discussed. PMID:18518929

  3. Effects of toxicologically relevant xenobiotics and the lipid-derived electrophile 4-hydroxynonenal on macrophage cholesterol efflux: silencing carboxylesterase 1 has paradoxical effects on cholesterol uptake and efflux.

    PubMed

    Ross, Matthew K; Borazjani, Abdolsamad; Mangum, Lee C; Wang, Ran; Crow, J Allen

    2014-10-20

    Cholesterol cycles between free cholesterol (unesterified) found predominantly in membranes and cholesteryl esters (CEs) stored in cytoplasmic lipid droplets. Only free cholesterol is effluxed from macrophages via ATP-binding cassette (ABC) transporters to extracellular acceptors. Carboxylesterase 1 (CES1), proposed to hydrolyze CEs, is inactivated by oxon metabolites of organophosphorus pesticides and by the lipid electrophile 4-hydroxynonenal (HNE). We assessed the ability of these compounds to reduce cholesterol efflux from foam cells. Human THP-1 macrophages were loaded with [(3)H]-cholesterol/acetylated LDL and then allowed to equilibrate to enable [(3)H]-cholesterol to distribute into its various cellular pools. The cholesterol-engorged cells were then treated with toxicants in the absence of cholesterol acceptors for 24 h, followed by a 24 h efflux period in the presence of toxicant. A concentration-dependent reduction in [(3)H]-cholesterol efflux via ABCA1 (up to 50%) was found for paraoxon (0.1-10 μM), whereas treatment with HNE had no effect. A modest reduction in [(3)H]-cholesterol efflux via ABCG1 (25%) was found after treatment with either paraoxon or chlorpyrifos oxon (10 μM each) but not HNE. No difference in efflux rates was found after treatments with either paraoxon or HNE when the universal cholesterol acceptor 10% (v/v) fetal bovine serum was used. When the re-esterification arm of the CE cycle was disabled in foam cells, paraoxon treatment increased CE levels, suggesting the neutral CE hydrolysis arm of the cycle had been inhibited by the toxicant. However, paraoxon also partially inhibited lysosomal acid lipase, which generates cholesterol for efflux, and reduced the expression of ABCA1 protein. Paradoxically, silencing CES1 expression in macrophages did not affect the percent of [(3)H]-cholesterol efflux. However, CES1 mRNA knockdown markedly reduced cholesterol uptake by macrophages, with SR-A and CD36 mRNA reduced 3- and 4-fold

  4. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    PubMed

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  5. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    PubMed

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  6. Relationship of soil CO2 efflux and water table in the wetland

    NASA Astrophysics Data System (ADS)

    Darenova, E.; Pavelka, M.

    2012-04-01

    Wetlands are an important reserve of carbon due to slow decomposition caused by a high water table. Possible climate changes (such as temperature or rainfall distribution) can significantly affect wetland ecosystems and their carbon balance. Continuous measurements of soil CO2 efflux, soil temperature in the depth of 1.5 cm and water table were carried out during six days in September 2010 on wetland Mokre louky in the South Bohemia. The wetland is situated in the inundation area of a large human-made lake Rozmberk. The measurements of soil CO2 efflux were carried out using automated chamber. That was placed between hummocks of Carex tussocks For five days of measurements the water table slowly decreased from 0.4 cm above the soil surface up to 8.0 cm below the soil surface. Simultaneously soil CO2 efflux and R10 (soil CO2 efflux normalized for temperature of 10 ° C) gradually increased. Then the heavy rain caused an increase in water table over 4 cm above the soil surface. This was followed by a fast decrease in soil CO2 efflux up to nearly zero. On the base of measured soil CO2 efflux, soil temperature and water table a model of soil CO2 efflux was created to predict changes of soil CO2 efflux in dependence on external factors. The difference in cumulative CO2 production got from measured and modeled data was only 1.2 %. Acknowledgements This work was supported by projects CzechGlobe (CZ.1.05/1.1.00/02.0073) and CzeCOS (LM2010007)

  7. The Heterodimeric ABC Transporter EfrCD Mediates Multidrug Efflux in Enterococcus faecalis

    PubMed Central

    Hürlimann, Lea M.; Corradi, Valentina; Hohl, Michael; Bloemberg, Guido V.; Tieleman, D. Peter

    2016-01-01

    Nosocomial infections with Enterococcus faecalis are an emerging health problem. However, drug efflux pumps contributing to intrinsic drug resistance are poorly studied in this Gram-positive pathogen. In this study, we functionally investigated seven heterodimeric ABC transporters of E. faecalis that are annotated as drug efflux pumps. Deletion of ef0789-ef0790 on the chromosome of E. faecalis resulted in increased susceptibility to daunorubicin, doxorubicin, ethidium, and Hoechst 33342, and the corresponding transporter was named EfrCD. Unexpectedly, the previously described heterodimeric multidrug ABC transporter EfrAB contributes marginally to drug efflux in the endogenous context of E. faecalis. In contrast, heterologous expression in Lactococcus lactis revealed that EfrAB, EfrCD, and the product of ef2226-ef2227 (EfrEF) mediate the efflux of fluorescent substrates and confer resistance to multiple dyes and drugs, including fluoroquinolones. Four of seven transporters failed to exhibit drug efflux activity for the set of drugs and dyes tested, even upon overexpression in L. lactis. Since all seven transporters were purified as heterodimers after overexpression in L. lactis, a lack of drug efflux activity is not attributed to poor expression or protein aggregation. Reconstitution of the purified multidrug transporters EfrAB, EfrCD, and EfrEF in proteoliposomes revealed functional coupling between ATP hydrolysis and drug binding. Our analysis creates an experimental basis for the accurate prediction of drug efflux transporters and indicates that many annotated multidrug efflux pumps might be incapable of drug transport and thus might fulfill other physiological functions in the cell. PMID:27381387

  8. Sphingomyelin Depletion Impairs Anionic Phospholipid Inward Translocation and Induces Cholesterol Efflux*

    PubMed Central

    Gulshan, Kailash; Brubaker, Gregory; Wang, Shuhui; Hazen, Stanley L.; Smith, Jonathan D.

    2013-01-01

    The phosphatidylserine (PS) floppase activity (outward translocation) of ABCA1 leads to plasma membrane remodeling that plays a role in lipid efflux to apolipoprotein A-I (apoAI) generating nascent high density lipoprotein. The Tangier disease W590S ABCA1 mutation has defective PS floppase activity and diminished cholesterol efflux activity. Here, we report that depletion of sphingomyelin by inhibitors or sphingomyelinase caused plasma membrane remodeling, leading to defective flip (inward translocation) of PS, higher PS exposure, and higher cholesterol efflux from cells by both ABCA1-dependent and ABCA1-independent mechanisms. Mechanistically, sphingomyelin was connected to PS translocation in cell-free liposome studies that showed that sphingomyelin increased the rate of spontaneous PS flipping. Depletion of sphingomyelin in stably transfected HEK293 cells expressing the Tangier disease W590S mutant ABCA1 isoform rescued the defect in PS exposure and restored cholesterol efflux to apoAI. Liposome studies showed that PS directly increased cholesterol accessibility to extraction by cyclodextrin, providing the mechanistic link between cell surface PS and cholesterol efflux. We conclude that altered plasma membrane environment conferred by depleting sphingomyelin impairs PS flip and promotes cholesterol efflux in ABCA1-dependent and -independent manners. PMID:24220029

  9. Transpiration alters the contribution of autotrophic and heterotrophic components of soil CO2 efflux.

    PubMed

    Grossiord, Charlotte; Mareschal, Louis; Epron, Daniel

    2012-05-01

    • An unbiased partitioning of autotrophic and heterotrophic components of soil CO(2) efflux is important to estimate forest carbon budgets and soil carbon sequestration. The contribution of autotrophic sources to soil CO(2) efflux (F(A)) may be underestimated during the daytime as a result of internal transport of CO(2) produced by root respiration through the transpiration stream. • Here, we tested the hypothesis that carbon isotope composition of soil CO(2) efflux (δ(FS)) in a Eucalyptus plantation grown on a C(4) soil is enriched during the daytime, which will indicate a decrease in F(A) during the periods of high transpiration. • Mean δ(FS) of soil CO(2) efflux decreased to -25.7‰ during the night and increased to -24.7‰ between 11:00 and 15:00 h when the xylem sap flux density was at its maximum. • Our results indicate a decrease in the contribution of root respiration to soil CO(2) efflux during the day that may be interpreted as a departure of root-produced CO(2) in the transpiration stream, leading to a 17% underestimation of autotrophic contribution to soil CO(2) efflux on a daily timescale. PMID:22356353

  10. Applicability of soil column incubation experiments to measure CO2 efflux

    NASA Astrophysics Data System (ADS)

    Guo, Linlin; Nishimura, Taku; Imoto, Hiromi; Sun, Zhigang

    2015-10-01

    Accurate measurements of CO2 efflux from soils are essential to understand dynamic changes in soil carbon storage. Column incubation experiments are commonly used to study soil water and solute transport; however, the use of column incubation experiments to study soil CO2 efflux has seldom been reported. In this study, a 150-day greenhouse experiment with two treatments (no-tillage and tillage soils) was conducted to evaluate the applicability of soil column incubation experiments to study CO2 efflux. Both the chamber measurement and the gradient method were used, and results from the two methods were consistent: tillage increased soil cumulative CO2 efflux during the incubation period. Compared with fieldwork, incubation experiments can create or precisely control experimental conditions and thus have advantages for investigating the influence of climate factors or human activities on CO2 efflux. They are superior to bottle incubation because soil column experiments maintain a soil structure that is almost the same as that in the field, and thus can facilitate analyses on CO2 behaviour in the soil profile and more accurate evaluations of CO2 efflux. Although some improvements are still required for column incubation experiments, wider application of this method to study soil CO2 behaviour is expected.

  11. Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump

    PubMed Central

    Ohene-Agyei, Thelma; Mowla, Rumana; Rahman, Taufiq; Venter, Henrietta

    2014-01-01

    Drug efflux pumps confer resistance upon bacteria to a wide range of antibiotics from various classes. The expression of efflux pumps are also implicated in virulence and biofilm formation. Moreover, organisms can only acquire resistance in the presence of active drug efflux pumps. Therefore, efflux pump inhibitors (EPIs) are attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. We investigated the potential of pure compounds isolated from plants to act as EPIs. In silico screening was used to predict the bioactivity of plant compounds and to compare that with the known EPI, phe-arg-β-naphthylamide (PAβN). Subsequently, promising products have been tested for their ability to inhibit efflux. Plumbagin nordihydroguaretic acid (NDGA) and to a lesser degree shikonin, acted as sensitizers of drug-resistant bacteria to currently used antibiotics and were able to inhibit the efflux pump-mediated removal of substrate from cells. We demonstrated the feasibility of in silico screening to identify compounds that potentiate the action of antibiotics against drug-resistant strains and which might be potentially useful lead compounds for an EPI discovery program. PMID:25224951

  12. Transpiration alters the contribution of autotrophic and heterotrophic components of soil CO2 efflux.

    PubMed

    Grossiord, Charlotte; Mareschal, Louis; Epron, Daniel

    2012-05-01

    • An unbiased partitioning of autotrophic and heterotrophic components of soil CO(2) efflux is important to estimate forest carbon budgets and soil carbon sequestration. The contribution of autotrophic sources to soil CO(2) efflux (F(A)) may be underestimated during the daytime as a result of internal transport of CO(2) produced by root respiration through the transpiration stream. • Here, we tested the hypothesis that carbon isotope composition of soil CO(2) efflux (δ(FS)) in a Eucalyptus plantation grown on a C(4) soil is enriched during the daytime, which will indicate a decrease in F(A) during the periods of high transpiration. • Mean δ(FS) of soil CO(2) efflux decreased to -25.7‰ during the night and increased to -24.7‰ between 11:00 and 15:00 h when the xylem sap flux density was at its maximum. • Our results indicate a decrease in the contribution of root respiration to soil CO(2) efflux during the day that may be interpreted as a departure of root-produced CO(2) in the transpiration stream, leading to a 17% underestimation of autotrophic contribution to soil CO(2) efflux on a daily timescale.

  13. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials.

    PubMed

    Hernando-Amado, Sara; Blanco, Paula; Alcalde-Rico, Manuel; Corona, Fernando; Reales-Calderón, Jose A; Sánchez, María B; Martínez, José L

    2016-09-01

    Multidrug efflux pumps constitute a group of transporters that are ubiquitously found in any organism. In addition to other functions with relevance for the cell physiology, efflux pumps contribute to the resistance to compounds used for treating different diseases, including resistance to anticancer drugs, antibiotics or antifungal compounds. In the case of antimicrobials, efflux pumps are major players in both intrinsic and acquired resistance to drugs currently in use for the treatment of infectious diseases. One important aspect not fully explored of efflux pumps consists on the identification of effectors able to induce their expression. Indeed, whereas the analysis of clinical isolates have shown that mutants overexpressing these resistance elements are frequently found, less is known on the conditions that may trigger expression of efflux pumps, hence leading to transient induction of resistance in vivo, a situation that is barely detectable using classical susceptibility tests. In the current article we review the structure and mechanisms of regulation of the expression of bacterial and fungal efflux pumps, with a particular focus in those for which a role in clinically relevant resistance has been reported. PMID:27620952

  14. The effect of N-acetylcysteine on chloride efflux from airway epithelial cells.

    PubMed

    Varelogianni, Georgia; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

    2010-03-01

    Defective chloride transport in epithelial cells increases mucus viscosity and leads to recurrent infections with high oxidative stress in patients with CF (cystic fibrosis). NAC (N-acetylcysteine) is a well known mucolytic and antioxidant drug, and an indirect precursor of glutathione. Since GSNO (S-nitrosoglutathione) previously has been shown to be able to promote Cl- efflux from CF airway epithelial cells, it was investigated whether NAC also could stimulate Cl- efflux from CF and non-CF epithelial cells and through which mechanisms. CFBE (CF bronchial epithelial cells) and normal bronchial epithelial cells (16HBE) were treated with 1 mM, 5 mM, 10 mM or 15 mM NAC for 4 h at 37 degrees C. The effect of NAC on Cl- transport was measured by Cl- efflux measurements and by X-ray microanalysis. Cl- efflux from CFBE cells was stimulated by NAC in a dose-dependent manner, with 10 mM NAC causing a significant increase in Cl- efflux with nearly 80% in CFBE cells. The intracellular Cl- concentration in CFBE cells was significantly decreased up to 60% after 4 h treatment with 10 mM NAC. Moreover immunocytochemistry and Western blot experiments revealed expression of CFTR channel on CFBE cells after treatment with 10 mM NAC. The stimulation of Cl- efflux by NAC in CF airway epithelial cells may improve hydration of the mucus and thereby be beneficial for CF patients. PMID:19947928

  15. Uptake, efflux, and mass transfer coefficient of fluorescent PAMAM dendrimers into pancreatic cancer cells.

    PubMed

    Opitz, Armin W; Czymmek, Kirk J; Wickstrom, Eric; Wagner, Norman J

    2013-02-01

    Targeted delivery of imaging agents to cells can be optimized with the understanding of uptake and efflux rates. Cellular uptake of macromolecules is studied frequently with fluorescent probes. We hypothesized that the internalization and efflux of fluorescently labeled macromolecules into and out of mammalian cells could be quantified by confocal microscopy to determine the rate of uptake and efflux, from which the mass transfer coefficient is calculated. The cellular influx and efflux of a third generation poly(amido amine) (PAMAM) dendrimer labeled with an Alexa Fluor 555 dye was measured in Capan-1 pancreatic cancer cells using confocal fluorescence microscopy. The Capan-1 cells were also labeled with 5-chloromethylfluorescein diacetate (CMFDA) green cell tracker dye to delineate cellular boundaries. A dilution curve of the fluorescently labeled PAMAM dendrimer enabled quantification of the concentration of dendrimer in the cell. A simple mass transfer model described the uptake and efflux behavior of the PAMAM dendrimer. The effective mass transfer coefficient was found to be 0.054±0.043μm/min, which corresponds to a rate constant of 0.035±0.023min(-1) for uptake of the PAMAM dendrimer into the Capan-1 cells. The effective mass transfer coefficient was shown to predict the efflux behavior of the PAMAM dendrimer from the cell if the fraction of labeled dendrimer undergoing non-specific binding is accounted for. This work introduces a novel method to quantify the mass transfer behavior of fluorescently labeled macromolecules into mammalian cells.

  16. Effect of venlafaxine and desvenlafaxine on drug efflux protein expression and biodistribution in vivo.

    PubMed

    Bachmeier, Corbin; Levin, Gary M; Beaulieu-Abdelahad, David; Reed, Jon; Mullan, Michael

    2013-10-01

    Venlafaxine, and to a lesser extent desvenlafaxine, has previously been shown to induce the expression of the drug efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in whole cells and alter the cellular permeability of a known drug efflux probe (rhodamine 123). To validate these in vitro findings, wild-type mice were treated for 4 days with 10 mg/kg venlafaxine or desvenlafaxine, and drug efflux transporter expression was examined in the brain, liver, and intestine. P-gp and BCRP expression was significantly upregulated in the intestine, following a treatment with venlafaxine (2.6- and 6.7-fold, respectively) or desvenlafaxine (2.3- and 4.8-fold, respectively). In addition, venlafaxine increased the BCRP expression in the brain (40%) and liver (60%), whereas desvenlafaxine had no effect on drug efflux transporter levels in these tissues. Using the same treatment paradigm, we observed a minimal impact of either drug on the brain disposition of the known drug efflux probe, topotecan. However, in the periphery, venlafaxine treatment significantly reduced the topotecan oral bioavailability by nearly 40%, whereas the impact of desvenlafaxine on topotecan plasma levels was more modest (23%). These studies demonstrate an effect of venlafaxine on the drug efflux transport activity and the potential for clinical drug-drug interactions.

  17. The role of the rice aquaporin Lsi1 in arsenite efflux from roots.

    PubMed

    Zhao, Fang-Jie; Ago, Yukiko; Mitani, Namiki; Li, Ren-Ying; Su, Yu-Hong; Yamaji, Naoki; McGrath, Steve P; Ma, Jian Feng

    2010-04-01

    *When supplied with arsenate (As(V)), plant roots extrude a substantial amount of arsenite (As(III)) to the external medium through as yet unidentified pathways. The rice (Oryza sativa) silicon transporter Lsi1 (OsNIP2;1, an aquaporin channel) is the major entry route of arsenite into rice roots. Whether Lsi1 also mediates arsenite efflux was investigated. *Expression of Lsi1 in Xenopus laevis oocytes enhanced arsenite efflux, indicating that Lsi1 facilitates arsenite transport bidirectionally. *Arsenite was the predominant arsenic species in arsenate-exposed rice plants. During 24-h exposure to 5 mum arsenate, rice roots extruded arsenite to the external medium rapidly, accounting for 60-90% of the arsenate uptake. A rice mutant defective in Lsi1 (lsi1) extruded significantly less arsenite than the wild-type rice and, as a result, accumulated more arsenite in the roots. By contrast, Lsi2 mutation had little effect on arsenite efflux to the external medium. *We conclude that Lsi1 plays a role in arsenite efflux in rice roots exposed to arsenate. However, this pathway accounts for only 15-20% of the total efflux, suggesting the existence of other efflux transporters.

  18. The effect of N-acetylcysteine on chloride efflux from airway epithelial cells.

    PubMed

    Varelogianni, Georgia; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

    2010-01-27

    Defective chloride transport in epithelial cells increases mucus viscosity and leads to recurrent infections with high oxidative stress in patients with CF (cystic fibrosis). NAC (N-acetylcysteine) is a well known mucolytic and antioxidant drug, and an indirect precursor of glutathione. Since GSNO (S-nitrosoglutathione) previously has been shown to be able to promote Cl- efflux from CF airway epithelial cells, it was investigated whether NAC also could stimulate Cl- efflux from CF and non-CF epithelial cells and through which mechanisms. CFBE (CF bronchial epithelial cells) and normal bronchial epithelial cells (16HBE) were treated with 1 mM, 5 mM, 10 mM or 15 mM NAC for 4 h at 37 degrees C. The effect of NAC on Cl- transport was measured by Cl- efflux measurements and by X-ray microanalysis. Cl- efflux from CFBE cells was stimulated by NAC in a dose-dependent manner, with 10 mM NAC causing a significant increase in Cl- efflux with nearly 80% in CFBE cells. The intracellular Cl- concentration in CFBE cells was significantly decreased up to 60% after 4 h treatment with 10 mM NAC. Moreover immunocytochemistry and Western blot experiments revealed expression of CFTR channel on CFBE cells after treatment with 10 mM NAC. The stimulation of Cl- efflux by NAC in CF airway epithelial cells may improve hydration of the mucus and thereby be beneficial for CF patients.

  19. Why Does the Intestine Lack Basolateral Efflux Transporters for Cationic Compounds? A Provocative Hypothesis.

    PubMed

    Proctor, William R; Ming, Xin; Bourdet, David; Han, Tianxiang Kevin; Everett, Ruth S; Thakker, Dhiren R

    2016-02-01

    Transport proteins in intestinal epithelial cells facilitate absorption of nutrients/compounds that are organic anions, cations, and zwitterions. For two decades, we have studied intestinal absorption and transport of hydrophilic ionic compounds, with specific focus on transport properties of organic cations and their interactions with intestinal transporters and tight junction proteins. Our data reveal how complex interactions between a compound and transporters in intestinal apical/basolateral (BL) membranes and tight junction proteins define oral absorption, and that the BL membrane lacks an efflux transporter that can transport positively charged compounds. Based on our investigations of transport mechanisms of zwitterionic, anionic, and cationic compounds, we postulate that physicochemical properties of these ionic species, in relation to the intestinal micro pH environment, have exerted evolutionary pressure for development of transporters that can handle apical uptake/efflux of all 3 ionic species and BL efflux of anions and zwitterions, but such evolutionary pressure is lacking for development of a BL efflux transporter for cationic compounds. This review provides an overview of intestinal uptake/efflux transporters and describes our studies on intestinal transport of cationic, anionic, and zwitterionic drugs that led to hypothesize that there are no cation-selective BL efflux transporters in the intestine. PMID:26869413

  20. Snow-melting season CO2 efflux along the trans-Alaska pipeline

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Nakai, T.

    2011-12-01

    This research was conducted to estimate CO2 effluxes in exposed and snow-covered soils along the trans-Alaska pipeline (ca. 660 km) during snow-melting seasons of April 2010 and April-May 2011. In-situ CO2 efflux was measured with a dynamic chamber system that consisted of a chamber (22 cm in diameter and 6 cm high), pump, NDIR (CO2 analyzer), and a laptop computer. Soil temperature and snow depth were measured with a portable thermocouple and from snow pit-wall. The difference in snow-melting season CO2 efflux was remarkably showed in exposed and snow-covered soils of boreal forest and tundra, suggesting the distinctly latitudinal CO2 efflux gradient. Mean CO2 efflux was 0.88±0.51 and 2.4±3.4 gCO2-C/m2/day in soil temperature of -1.8±4.0 and -1.1±3.4 °C during the snow-melting period of 2010 and 2011, respectively. When the snow was disappeared, mean CO2 efflux was 1.3±0.3 and 5.4±3.7 gCO2-C/m2/day for 2010 and 2011; on the other hand, when the seasonal covered snow was melting, mean CO2 efflux was 0.2±0.2 and 0.3±0.3 gCO2-C/m2/day for both years. However, the coastal site near Arctic sea was not still melted, showing much lower CO2 efflux was 0.02±0.02 and 0.08±0.12 gCO2-C/m2/day in soil temperature of -12.4±2.2 and -12.9±3.4 °C for 2010 and 2011, respectively. A relationship between mean CO2 efflux at each site and mean soil temperature at 5 cm below the surface along the trans-Alaska pipeline is a good exponential, which the equation is as follows: CO2 efflux = 885×exp(0.335×Ts) (R2=0.86; p<0.001) and CO2 efflux = 888×exp(0.337×Ts) (R2=0.92; p<0.001) for 2010 and 2011, respectively. CO2 efflux in a white spruce forest during the snow-thawing season was measured in four directions from the bottom stem, suggesting that distinct differences of CO2 efflux between the exposed soil and the snow-covered soil in the four directions. This may be due to the fast decomposition of soil organic carbon and/or active root respiration in the exposed soil

  1. Spatial variation in spring CO2 efflux along the trans-Alaska pipeline, Alaska: Contribution of spring carbon

    NASA Astrophysics Data System (ADS)

    Kim, Y.

    2013-12-01

    Spring soil CO2 efflux-measurement was conducted in representative sites along the trans-Alaska pipeline during 2010 to 2012 for the understanding of spatial variation in spring CO2 efflux response to change in snow-melting timing. The sites is 3 tundra sites (coastal tundra, upland tundra, upland tundra, and sub-alpine tundra), 2 white spruce sites in tundra-boreal forest ecotone, and Gold Creek, and 3 black spruce sites in Coldfoot, upper and lower reaches of the Yukon River. Soil CO2 efflux-measurement, which is a portable manual chamber CO2 efflux system, was conducted during snow-covered and snow-melting periods, minimizing artificial effects. CO2 effluxes in snow-covered and exposed soils showed a significantly difference, suggesting that spring CO2 efflux is much higher than that in snow-covered soil. The efflux was measured at 4-direction due to the difference of exposed extent, implying the magnitude of CO2 production. Average diameter in breast height (DBH: 85 × 11 cm) of white spruce is much thicker than black spruce (DBH: 33 × 5 cm), suggesting the difference of heat uptake and emission capacity between both forests. Soil temperature at 5 cm below the surface is one of significant keys in determining soil CO2 efflux. The magnitude of spring CO2 efflux showed white spruce, black spruce, and tundra in turn, suggesting that spring CO2 efflux (> 8 gC/m2/day) of corresponds to summer soil CO2 efflux. Then, spring soil CO2 efflux should be not overlooked the contribution of annual soil carbon efflux in spite of difficulties in snow-disappeared timing and springtime.

  2. Personnel emergency carrier vehicle

    NASA Technical Reports Server (NTRS)

    Owens, Lester J. (Inventor); Fedor, Otto H. (Inventor)

    1987-01-01

    A personnel emergency carrier vehicle is disclosed which includes a vehicle frame supported on steerable front wheels and driven rear wheels. A supply of breathing air is connected to quick connect face mask coupling and umbilical cord couplings for supplying breathing air to an injured worker or attendant either with or without a self-contained atmospheric protection suit for protection against hazardous gases at an accident site. A non-sparking hydraulic motion is utilized to drive the vehicle and suitable direction and throttling controls are provided for controlling the delivery of a hydraulic driving fluid from a pressurized hydraulic fluid accumulator. A steering axis is steerable through a handle to steer the front wheels through a linkage assembly.

  3. Role of ceruloplasmin in macrophage iron efflux during hypoxia.

    PubMed

    Sarkar, Joydeep; Seshadri, Vasudevan; Tripoulas, Nicholas A; Ketterer, Michael E; Fox, Paul L

    2003-11-01

    The reticuloendothelial system has a central role in erythropoiesis and iron homeostasis. An important function of reticuloendothelial macrophages is phagocytosis of senescent red blood cells. The iron liberated from heme is recycled for delivery to erythrocyte precursors for a new round of hemoglobin synthesis. The molecular mechanism by which recycled iron is released from macrophages remains unresolved. We have investigated the mechanism of macrophage iron efflux, focusing on the role of ceruloplasmin (Cp), a copper protein with a potent ferroxidase activity that converts Fe2+ to Fe3+ in the presence of molecular oxygen. As shown by others, Cp markedly increased iron binding to apotransferrin at acidic pH; however, the physiological significance of this finding is uncertain because little stimulation was observed at neutral pH. Introduction of a hypoxic atmosphere resulted in marked Cp-stimulated binding of iron to apotransferrin at physiological pH. The role of Cp in cellular iron release was examined in U937 monocytic cells induced to differentiate to the macrophage lineage. Cp added at its normal plasma concentration increased the rate of 55Fe release from U937 cells by about 250%. The stimulation was absolutely dependent on the presence of apotransferrin and hypoxia. Cp-stimulated iron release was confirmed in mouse peritoneal macrophages. Stimulation of iron release required an intracellular "labile iron pool" that was rapidly depleted in the presence of Cp and apotransferrin. Ferroxidase-mediated loading of iron into apotransferrin was critical for iron release because ferroxidase-deficient Cp was inactive and because holotransferrin could not substitute for apotransferrin. The extracellular iron concentration was critical as shown by inhibition of iron release by exogenous free iron, and marked enhancement of release by an iron chelator. Together these data show that Cp stimulates iron release from macrophages under hypoxic conditions by a ferroxidase

  4. Efflux of RNA from resealed nuclear envelope ghosts.

    PubMed

    Prochnow, D; Thomson, M; Schröder, H C; Müller, W E; Agutter, P S

    1994-08-01

    mRNA translocation across the nuclear envelope and the appropriate signal-receptor interactions have been studied using resealed rat liver nuclear envelope ghosts (RNEG). We compared export kinetics of nonadenylated (tRNAs, histone-2 poly(A)- mRNA), and adenylated RNAs (poly(A)+ tRNAs, synthetic histone-2 poly(A) +mRNA, albumin mRNA, beta-globin poly(A) +mRNA and a total poly(A) + mRNA extract from rat liver cells). ATP-dependent export of mRNAs and of total poly(A)+ RNA was prevented by inhibitors of a nuclear envelope NTPase. All adenylated RNA species competed with each other for export, but nonadenylated RNAs did not. This indicates the existence of different translocation mechanisms for different RNA species with their appropriate nuclear envelope associated RNA receptors involved in export. The attachment of a poly(A)250 sequence at the 3'-end of tRNA or histone messenger masks the intrinsic RNA export signal of nonadenylated RNAs and results in efflux comparable to that of beta-globin poly(A)+ mRNA. The attachment on oligo(A)5 does not have any comparable effect of nonadenylated RNA translocation. Export of all polyadenylated RNAs from RNEGs is blocked by a monoclonal antibody, which is directed against an intranuclear envelope poly(A) binding protein. The results suggest that the pore complexes do not select RNAs for export to the cytoplasm and are therefore not responsible for nuclear restriction of mRNA precursors.

  5. A primary fish gill cell culture model to assess pharmaceutical uptake and efflux: evidence for passive and facilitated transport.

    PubMed

    Stott, Lucy C; Schnell, Sabine; Hogstrand, Christer; Owen, Stewart F; Bury, Nic R

    2015-02-01

    The gill is the principle site of xenobiotic transfer to and from the aqueous environment. To replace, refine or reduce (3Rs) the large numbers of fish used in in vivo uptake studies an effective in vitro screen is required that mimics the function of the teleost gill. This study uses a rainbow trout (Oncorhynchus mykiss) primary gill cell culture system grown on permeable inserts, which tolerates apical freshwater thus mimicking the intact organ, to assess the uptake and efflux of pharmaceuticals across the gill. Bidirectional transport studies in media of seven pharmaceuticals (propranolol, metoprolol, atenolol, formoterol, terbutaline, ranitidine and imipramine) showed they were transported transcellularly across the epithelium. However, studies conducted in water showed enhanced uptake of propranolol, ranitidine and imipramine. Concentration-equilibrated conditions without a concentration gradient suggested that a proportion of the uptake of propranolol and imipramine is via a carrier-mediated process. Further study using propranolol showed that its transport is pH-dependent and at very low environmentally relevant concentrations (ng L(-1)), transport deviated from linearity. At higher concentrations, passive uptake dominated. Known inhibitors of drug transport proteins; cimetidine, MK571, cyclosporine A and quinidine inhibited propranolol uptake, whilst amantadine and verapamil were without effect. Together this suggests the involvement of specific members of SLC and ABC drug transporter families in pharmaceutical transport.

  6. Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Pavelka, M.

    2012-04-01

    Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity

  7. Correlations between proton-efflux patterns and growth patterns during geotropism and phototropism in maize and sunflower.

    PubMed

    Mulkey, T J; Kuzmanoff, K M; Evans, M L

    1981-07-01

    By placing seedlings of sunflower (Helianthus annuus L.) or maize (Zea mays L.) on agar plates containing a pH indicator dye it is possible to observe surface pH patterns along the growing seedling by observing color changes of the indicator dye. Using this method we find that in geotropically stimulated sunflower hypocotyls or maize coleoptiles there is enhanced proton efflux on the lower surface of the organ prior to the initiation of curvature. As curvature develops the pattern of differential acid efflux becomes more intense. A similar phenomenon is observed when these organs are exposed to unilateral illumination, i.e. enhanced acid efflux occurs on the dark side of the organ prior to the initiation of phototropic curvature and the pattern of differential acid efflux intensifies as phototropic curvature develops. These observations indicate that differential acid efflux occurs in response to tropistic stimuli and that the acid efflux pattern may mediate the development of tropistic curvatures.

  8. 9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages.

    PubMed

    Bechor, Sapir; Zolberg Relevy, Noa; Harari, Ayelet; Almog, Tal; Kamari, Yehuda; Ben-Amotz, Ami; Harats, Dror; Shaish, Aviv

    2016-01-01

    Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages. PMID:27447665

  9. Responses of soil CO(2) efflux to precipitation pulses in two subtropical forests in southern China.

    PubMed

    Deng, Qi; Zhou, Guoyi; Liu, Shizhong; Chu, Guowei; Zhang, Deqiang

    2011-12-01

    This study was designed to examine the responses of soil CO(2) efflux to precipitation pulses of varying intensities using precipitation simulations in two subtropical forests [i.e., mixed and broadleaf forests (MF and BF)] in southern China. The artificial precipitation event was achieved by spraying a known amount of water evenly in a plot (50 × 50 cm(2)) over a 30 min period, with intensities ranging from 10, 20, 50 and 100 mm within the 30 min. The various intensities were simulated in both dry season (in December 2007) and wet (in May 2008) season. We characterized the dynamic patterns of soil CO(2) efflux rate and environmental factors over the 5 h experimental period. Results showed that both soil moisture and soil CO(2) efflux rate increased to peak values for most of the simulated precipitation treatments, and gradually returned to the pre-irrigation levels after irrigation in two forests. The maximum peak of soil CO(2) efflux rate occurred at the 10 mm precipitation event in the dry season in BF and was about 3.5 times that of the pre-irrigation value. The change in cumulative soil CO(2) efflux following precipitation pulses ranged from -0.68 to 1.72 g CO(2) m(-2) over 5 h compared to the pre-irrigation levels and was generally larger in the dry season than in the wet season. The positive responses of soil CO(2) efflux to precipitation pulses declined with the increases in precipitation intensity, and surprisingly turned to negative when precipitation intensity reached 50 and 100 mm in the wet season. These findings indicated that soil CO(2) efflux could be changed via pulse-like fluxes in subtropical forests in southern China as fewer but extreme precipitation events occur in the future. PMID:21822858

  10. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway

    SciTech Connect

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Highlights: •Arctigenin enhanced cholesterol efflux in oxLDL-loaded THP-1 macrophages. •The expression of ABCA1, ABCG1 and apoE was upregulated in arctigenin-treated cells. •Arctigenin promoted the expression of PPAR-γ and LXR-α. •Inhibition of PPAR-γ or LXR-α reversed arctigenin-mediated biological effects. •Arctigenin promotes cholesterol efflux via activation of PPAR-γ/LXR-α/ABCA1 pathway. -- Abstract: Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.

  11. Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests

    NASA Astrophysics Data System (ADS)

    Bulmer, R. H.; Lundquist, C. J.; Schwendenmann, L.

    2015-10-01

    Temperate mangrove forests in New Zealand have increased in area over recent decades. Expansion of temperate mangroves in New Zealand is associated with perceived loss of other estuarine habitats, and decreased recreational and amenity values, resulting in clearing of mangrove forests. In the tropics, changes in sediment characteristics and carbon efflux have been reported following mangrove clearance. This is the first study in temperate mangrove (Avicennia marina) forests investigating the impact of clearing on sediment CO2 efflux and associated biotic and abiotic factors. Sediment CO2 efflux rates from intact (168.5 ± 45.8 mmol m-2 d-1) and cleared (133.9 ± 37.2 mmol m-2 d-1) mangrove forests in New Zealand are comparable to rates measured in tropical mangrove forests. We did not find a significant difference in sediment CO2 efflux rates between intact and cleared temperate mangrove forests. Pre-shading the sediment for more than 30 min prior to dark chamber measurements was found to have no significant effect on sediment CO2 efflux. This suggests that the continuation of photosynthetic CO2 uptake by biofilm communities was not occurring after placement of dark chambers. Rather, above-ground mangrove biomass, sediment temperature and chlorophyll a concentration were the main factors explaining the variability in sediment CO2 efflux in intact mangrove forests. The main factors influencing sediment CO2 efflux in cleared mangrove forest sites were sediment organic carbon concentration, nitrogen concentration and sediment grain size. Our results show that greater consideration should be given regarding the rate of carbon released from mangrove forest following clearance and the relative contribution to global carbon emissions.

  12. 9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages

    PubMed Central

    Bechor, Sapir; Zolberg Relevy, Noa; Harari, Ayelet; Almog, Tal; Kamari, Yehuda; Ben-Amotz, Ami; Harats, Dror; Shaish, Aviv

    2016-01-01

    Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages. PMID:27447665

  13. Rototillage, disking, and subsequent irrigation: effects on soil nitrogen dynamics, microbial biomass, and carbon dioxide efflux.

    PubMed

    Calderón, Francisco J; Jackson, Louise E

    2002-01-01

    Spring and summer tillage are usually followed by irrigation before planting crops in California's summer-dry Mediterranean-type climate. Tillage treatments such as rototillage or disking are known to disturb the soil structure to different extents, but little is known about how the intensity of a tillage event and subsequent irrigation affect the microbial biomass, respiration, CO2 efflux, and mineral N of agricultural soils. We carried out an experiment with a Yolo silt loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent) with two tilled treatments (rototillage and disked and rolled) and a nontilled control. The soil was subsequently sampled throughout a 17-d period. Nine days after tillage, all treatments were lightly sprinkler-irrigated to bring the soil water potential above -10 kPa. After tillage, the soil ammonium and nitrate content increased rapidly relative to the control with highest increases in the disked soil. Mineral N remained higher in the tilled treatments after irrigation. Rototillage and disking increased the CO2 efflux of the soil within 24 h of the disturbance. The increase was higher in the disked soil, which was more than three times the CO2 efflux of the control soil at 0.25 h after tillage. This effect may be due to degassing of dissolved CO2 since microbial respiration did not increase in tilled soils. Irrigation increased the CO2 efflux of all treatments but this was most pronounced in the control soil, which had an order of magnitude increase in CO2 efflux after irrigation. An ancillary experiment carried out under similar conditions but with more frequent sampling showed that increases in CO2 efflux after irrigation were accompanied by increases in soil respiration. This study shows that different tillage implements affect CO2 efflux, nitrate accumulation, and microbial activity, and thus have different effects on soil and atmospheric environmental quality. PMID:12026078

  14. The ins and outs of RND efflux pumps in Escherichia coli

    PubMed Central

    Anes, João; McCusker, Matthew P.; Fanning, Séamus; Martins, Marta

    2015-01-01

    Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide

  15. Contribution of the biological crust to the soil CO2 efflux in a Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Morillas, Lourdes; Bellucco, Veronica; Lo Cascio, Mauro; Marras, Serena; Spano, Donatella; Mereu, Simone

    2016-04-01

    Lately, the important role of the soil biological crust (hereafter biocrust) in Mediterranean ecosystems is emerging from a multitude of articles. It is becoming apparent that the biocrust has an important role in regulating ecosystem functions and that it interacts with the woody and herbaceous vegetation to a degree depending on the availability of water among other factors. Here we present the first results of a wider project and focus on the contribution of the biocrust to soil CO2 efflux, and on how the respiration of the biocrust responds to soil water content and temperature. A manipulative experiment was performed in a Mediterranean shrubland ecosystem in Sardinia (Italy) to assess the contribution of the bicocrust to soil CO2 efflux and to identify the main environmental drivers of the CO2 efflux in this ecosystem. For 19 months,in situ soil CO2 efflux was measured over three different surfaces: soil deprived of biocrust (hereafter Soil), biocrust (hereafter BC) and intact soil (hereafter Soil+BC). For these surfaces, three different approaches were used to investigate the dependency of CO2 efflux on soil temperature and soil water content, e.g. a simple linear regression, a multi-linear equation, and a modified version of the most common used Lloyd and Taylor model (Lloyd and Taylor, 1994). Results showed that CO2 effluxes emitted by Soil, BC and Soil+BC were differently driven by soil moisture and temperature: BC respiration was mainly controlled by soil moisture at 5 cm depth, whereas both soil temperature and water content at 20 cm depth determined Soil CO2 efflux. Soil temperature and water content at 5 cm depth drove Soil+BC respiration. We also found that biocrust can contribute substantially (up to 60%) to the total soil respiration depending on its moisture content. This contribution persists even in periods in which deeper soil layers are inactive, as small water pulses can activate lichens, mosses and cyanobacteria associated to the biocrust as

  16. Chloroplast-generated ROS dominate NaCl- induced K+ efflux in wheat leaf mesophyll

    PubMed Central

    Wu, Honghong; Shabala, Lana; Zhou, Meixue; Shabala, Sergey

    2015-01-01

    Mesophyll K+ retention ability has been recently reported as an important component of salinity stress tolerance in wheat. In order to investigate the role of ROS in regulating NaCl-induced K+ efflux in wheat leaf mesophyll, a series of pharmacological experiments was conducted using MV (methyl viologen, superoxide radical inducer), DPI (an inhibitor of NADPH oxidase), H2O2 (to mimic apoplastic ROS), and EGCG ((−)-Epigallocatechin gallate, ROS scavenger). Mesophyll pre-treatment with 10 μM MV resulted in a significantly higher NaCl-induced K+ efflux in leaf mesophyll, while 50 μM EGCG pre-treatment alleviated K+ leakage under salt stress. No significant change in NaCl-induced K+ efflux in leaf mesophyll was found in specimens pre-treated by H2O2 and DPI, compared with the control. The highest NaCl-induced H+ efflux in leaf mesophyll was also found in samples pre-treated with MV, suggesting a futile cycle between increased H+-ATPase activity and ROS-induced K+ leak. Overall, it is suggested that, under saline stress, K+ efflux from wheat mesophyll is mediated predominantly by non-selective cation channels (NSCC) regulated by ROS produced in chloroplasts, at least in bread wheat. PMID:26039472

  17. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts.

    PubMed

    Ohvo, H; Olsio, C; Slotte, J P

    1997-11-15

    The hydrolysis of plasma membrane sphingomyelin is known to dramatically alter cellular cholesterol homeostasis in different ways, whereas the degradation of plasma membrane phosphatidylcholine has much less or no effects on cell cholesterol homeostasis [Pörn, Ares, Slotte, J. Lipid Res. 34 (1993) 1385-1392]. In this study, we used an efficient extracellular cholesterol acceptor (cyclodextrin) and determined the extent of cholesterol efflux from cultured fibroblasts in which plasma membrane sphingomyelin or phosphatidylcholine was degraded. Treatment of cells with sphingomyelinase reduced the cell sphingomyelin content by about 76% (about 13 nmol SM degraded), and dramatically increased the desorption of [3H]cholesterol from the plasma membrane to 2-hydroxypropyl-beta-cyclodextrin. The corresponding hydrolysis of cell surface phosphatidylcholine (about 12% reduction of the cellular phosphatidylcholine content, corresponding to about 12 nmol degraded PC) had almost no effect on cell [3H]cholesterol efflux. The stimulatory effect of sphingomyelin degradation on cell [3H]cholesterol efflux was reversible, since rates of [3H]cholesterol efflux dropped back to control levels when cells (in this case baby hamster kidney cells) were allowed to restore their sphingomyelin content by re-synthesis in the absence of sphingomyelinase. The findings of this study clearly demonstrate that plasma membrane sphingomyelin markedly affected the rate of cholesterol transfer between cells and an extracellular acceptor (i.e., cyclodextrin), whereas the effect of phosphatidylcholine on cholesterol efflux was much smaller.

  18. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    PubMed

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.

  19. The relationship between the rate of chelator-induced zinc efflux from erythrocytes and zinc status.

    PubMed

    Fischer, P W; Bettger, W J

    1992-09-01

    The rate of zinc (Zn) release from rat erythrocytes incubated in buffers containing a variety of chelators was measured. Only o-phenanthroline, 8-hydroxyquinoline-5-sulfonate, and EDTA caused detectable Zn release. The relationship between the rate of this release in the presence of o-phenanthroline and Zn status was determined in rats. Rats were fed one of the following: a modified AIN-76 diet providing 46 mumol (3 mg) Zn per kg of diet, a pair-fed diet providing 459 mumol (30 mg)/kg, or the previous diet fed ad lib. Animals were sacrificed at 2-wk intervals for 12 wk, and the Zn efflux rate, plasma, liver, and femur Zn concentrations were determined. The efflux rate was lower in erythrocytes taken from the rats fed the low-Zn diet. The efflux rate was also well correlated with femur Zn (r = 0.509, n = 98, p < 0.0001). A poorer correlation was observed with plasma Zn in the rats. Correlations also were determined between efflux rates and plasma Zn levels in human subjects. There was a significant correlation only in the males. In was concluded that the Zn efflux rate from erythrocytes incubated in the presence of o-phenanthroline is related to Zn status but is not sensitive enough to be a useful index of this status.

  20. Ferroportin and exocytoplasmic ferroxidase activity are required for brain microvascular endothelial cell iron efflux.

    PubMed

    McCarthy, Ryan C; Kosman, Daniel J

    2013-06-14

    The mechanism(s) of iron flux across the brain microvasculature endothelial cells (BMVEC) of the blood-brain barrier remains unknown. Although both hephaestin (Hp) and the ferrous iron permease ferroportin (Fpn) have been identified in BMVEC, their roles in iron efflux have not been examined. Using a human BMVEC line (hBMVEC), we have demonstrated that these proteins are required for iron efflux from these cells. Expression of both Hp and Fpn protein was confirmed in hBMVEC by immunoblot and indirect immunofluorescence; we show that hBMVEC express soluble ceruloplasmin (Cp) transcript as well. Depletion of endogenous Hp and Cp via copper chelation leads to the reduction of hBMVEC Fpn protein levels as well as a complete inhibition of (59)Fe efflux. Both hBMVEC Fpn protein and (59)Fe efflux activity are restored upon incubation with 6.6 nm soluble plasma Cp. These results are independent of the source of cell iron, whether delivered as transferrin- or non-transferrin-bound (59)Fe. Our results demonstrate that iron efflux from hBMVEC Fpn requires the action of an exocytoplasmic ferroxidase, which can be either endogenous Hp or extracellular Cp.

  1. Microbial Efflux Systems and Inhibitors: Approaches to Drug Discovery and the Challenge of Clinical Implementation

    PubMed Central

    Kourtesi, Christina; Ball, Anthony R; Huang, Ying-Ying; Jachak, Sanjay M; Vera, D Mariano A; Khondkar, Proma; Gibbons, Simon; Hamblin, Michael R; Tegos, George P

    2013-01-01

    Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconventional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Advances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic therapy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the challenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains unsolved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation and development, and underlines the need for highly informative and comprehensive translational approaches. PMID:23569468

  2. Action of the calcium antagonists cocaine and ethanol on contraction and potassium efflux of smooth muscle.

    PubMed

    HURWITZ, L; BATTLE, F; WEISS, G B

    1962-11-01

    Isolated longitudinal smooth muscle from guinea pig ileum exposed to a high potassium depolarizing medium exhibited a sustained increase in muscle tone and an increase in potassium efflux. When the concentration of calcium ion in the medium was elevated the increase in muscle tone was enhanced, but the change in potassium efflux was reduced slightly. Lowering the calcium concentration diminished the increase in muscle tone. Both cocaine and ethanol completely inhibited the sustained contraction of potassium-depolarized fibers. Addition of excess calcium ion reversed these inhibitions. Cocaine acted primarily like a competitive antagonist; and ethanol, like an indirect antagonist of calcium, ion. Under certain conditions acetylcholine potentiated the reversal by calcium ion of the drug-induced inhibitions. The two inhibitory drugs had dissimilar effects on potassium efflux from smooth muscle fibers immersed in Tyrode solution. Cocaine depressed and ethanol enhanced this membrane process. However, the increase in potassium efflux induced by acetylcholine was inhibited by ethanol. This inhibition also was reversed by increasing the concentration of calcium ion in the medium. The data suggested that calcium activates and cocaine and ethanol inhibit a cellular reaction which occurs beyond the point of membrane depolarization and is essential for smooth muscle contraction. Furthermore, calcium serves to depress membrane excitability, but appears to have a specific stimulatory role in the acetylcholine-induced increase in potassium efflux from longitudinal fibers.

  3. Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations.

    PubMed

    Saunders, Jaclyn K; Rocap, Gabrielle

    2016-01-01

    The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.

  4. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    PubMed

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α. PMID:24140409

  5. Enhanced placental cholesterol efflux by fetal HDL in Smith–Lemli–Opitz syndrome

    PubMed Central

    Jenkins, Katie T.; Merkens, Louise S.; Tubb, Matthew R.; Myatt, Leslie; Davidson, W. Sean; Steiner, Robert D.; Woollett, Laura A.

    2010-01-01

    Previous studies from this laboratory have shown that maternal-derived cholesterol can be effluxed from trophoblasts to fetal HDL and plasma. We had the opportunity to study for the first time the ability of HDL and plasma from a fetus with the Smith–Lemli–Opitz syndrome (SLOS) to efflux cholesterol from trophoblasts. It was unclear whether cholesterol could be effluxed to fetuses with SLOS since lipoprotein levels are often very low. To answer this question, cord blood was collected from the placentas of an SLOS fetus and unaffected fetuses just after delivery. Plasma cholesterol concentrations were very low in the affected fetus; cholesterol, 7-dehydrocholesterol, and 8-dehydocholesterol concentrations were 14.1, 4.5, and 5.2 mg/dl, respectively. The HDL from the fetal SLOS effluxed ≈50% more cholesterol from a trophoblast cell line, were smaller in size, and had a lower cholesterol to phospholipid ratio as compared to HDL from unaffected fetuses or adults. Plasma from the SLOS fetus effluxed cholesterol to a similar percentage as unaffected fetal plasma or adult plasma, possibly due to fewer HDL particles as demonstrated in previous SLOS patients. These novel data demonstrate that the cholesterol-deficient SLOS fetus is able to obtain cholesterol from trophoblasts at a time when cholesterol is playing a critical role in development, and has implications for design of treatments for cholesterol deficiency syndromes as well as understanding of prenatal cholesterol transport in humans. PMID:18346920

  6. Metalloproteinase-mediated Shedding of Integrin β2 Promotes Macrophage Efflux from Inflammatory Sites*

    PubMed Central

    Gomez, Ivan G.; Tang, Jingjing; Wilson, Carole L.; Yan, Wei; Heinecke, Jay W.; Harlan, John M.; Raines, Elaine W.

    2012-01-01

    Macrophage exiting from inflammatory sites is critical to limit the local innate immune response. With tissue insult, resident tissue macrophages rapidly efflux to lymph nodes where they modulate the adaptive immune response, and inflammatory macrophages attracted to the site of injury then exit during the resolution phase. However, the mechanisms that regulate macrophage efflux are poorly understood. This study has investigated soluble forms of integrin β2 whose levels are elevated in experimental peritonitis at times when macrophages are exiting the peritoneum, suggesting that its proteolytic shedding may be involved in macrophage efflux. Both constitutive and inducible metalloproteinase-dependent shedding of integrin β2 from mouse macrophages are demonstrated. Soluble integrin β2 is primarily released as a heterodimeric complex with αM that retains its ability to bind its ligands intracellular adhesion molecule-1, fibrin, and collagen and thus may serve as a soluble antagonist. In a model of accelerated exiting, administration of a metalloproteinase inhibitor prevents macrophage efflux by 50% and impedes loss of macrophage integrin β2 from the cell surface. Exiting of peritoneal macrophages in mice lacking integrin β2 is accelerated, and antibody disruption of integrin β2-substrate interactions can reverse 50% of the metalloprotease inhibitor blockade of macrophage exiting. Thus, our study demonstrates the ability of metalloproteinase-mediated shedding of integrin β2 to promote macrophage efflux from inflammatory sites, and the release of soluble integrin heterodimers may also limit local inflammation. PMID:22170060

  7. Differential Regulation of ABCA1 and Macrophage Cholesterol Efflux By Elaidic and Oleic Acids

    PubMed Central

    Shao, Fei; Ford, David A.

    2013-01-01

    Trans fatty acid consumption is associated with an increased risk of coronary heart disease. This increased risk has been attributed to decreased levels of HDL cholesterol and increased levels of LDL cholesterol. However, the mechanism by which trans fatty acid modulates cholesterol transit remains poorly defined. ATP-binding cassette transporter A1 (ABCA1)-mediated macrophage cholesterol efflux is the rate-limiting step initiating apolipoprotein A-I lipidation. In this study, elaidic acid, the most abundant trans fatty acid in partially hydrogenated vegetable oil, was shown to stabilize macrophage ABCA1 protein levels in comparison to that of its cis fatty acid isomer, oleic acid. The mechanism responsible for the disparate effects of oleic and elaidic acid on ABCA1 levels was through accelerated ABCA1 protein degradation in cells treated with oleic acid. In contrast, no apparent differences were observed in ABCA1 mRNA levels, and only minor changes were observed in Liver X receptor/Retinoic X receptor promoter activity in cells treated with elaidic and oleic acid. Efflux of both tracers and cholesterol mass revealed that elaidic acid slightly increased ABCA1-mediated cholesterol efflux, while oleic acid led to decreased ABCA1-mediated efflux. In conclusion, these studies sho that cis and trans structural differences in eighteen carbon n-9 monoenoic fatty acids variably impact cholesterol efflux through disparate effects on ABCA1 protein degradation. PMID:23800855

  8. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts.

    PubMed

    Ohvo, H; Olsio, C; Slotte, J P

    1997-11-15

    The hydrolysis of plasma membrane sphingomyelin is known to dramatically alter cellular cholesterol homeostasis in different ways, whereas the degradation of plasma membrane phosphatidylcholine has much less or no effects on cell cholesterol homeostasis [Pörn, Ares, Slotte, J. Lipid Res. 34 (1993) 1385-1392]. In this study, we used an efficient extracellular cholesterol acceptor (cyclodextrin) and determined the extent of cholesterol efflux from cultured fibroblasts in which plasma membrane sphingomyelin or phosphatidylcholine was degraded. Treatment of cells with sphingomyelinase reduced the cell sphingomyelin content by about 76% (about 13 nmol SM degraded), and dramatically increased the desorption of [3H]cholesterol from the plasma membrane to 2-hydroxypropyl-beta-cyclodextrin. The corresponding hydrolysis of cell surface phosphatidylcholine (about 12% reduction of the cellular phosphatidylcholine content, corresponding to about 12 nmol degraded PC) had almost no effect on cell [3H]cholesterol efflux. The stimulatory effect of sphingomyelin degradation on cell [3H]cholesterol efflux was reversible, since rates of [3H]cholesterol efflux dropped back to control levels when cells (in this case baby hamster kidney cells) were allowed to restore their sphingomyelin content by re-synthesis in the absence of sphingomyelinase. The findings of this study clearly demonstrate that plasma membrane sphingomyelin markedly affected the rate of cholesterol transfer between cells and an extracellular acceptor (i.e., cyclodextrin), whereas the effect of phosphatidylcholine on cholesterol efflux was much smaller. PMID:9421186

  9. Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food.

    PubMed

    Jiang, Xiaobing; Yu, Tao; Liang, Yu; Ji, Shengdong; Guo, Xiaowei; Ma, Jianmin; Zhou, Lijun

    2016-01-18

    In this study, efflux pump-mediated benzalkonium chloride (BC) resistance, including plasmid-encoded (Qac protein family and BcrABC) and chromosome-borne efflux pumps, was investigated in Listeria monocytogenes from retail food in China. Among the 59 L. monocytogenes strains, 13 (22.0%) strains were resistant to BC. The PCR results showed that bcrABC was harbored by 2 of 13 BC resistant strains. However, none of the qac genes were detected among the 59 strains. The bcrABC was absent in both of the plasmid cured strains, indicating that this BC resistance determinant was plasmid-encoded in the two bcrABC-positive strains. In the presence of reserpine, most of the bcrABC-negative strains had decreases in the MICs of BC, suggesting the existence of other efflux pumps and their role in BC resistance. After exposed to reserpine, the reduction in BC MICs was observed in the two cured strains, indicating that efflux pumps located on chromosome was also involved in BC resistance. Our findings suggest that food products may act as reservoirs for BC resistant isolates of L. monocytogenes and plasmid- and chromosome-encoded efflux pumps could mediate the BC resistance of L. monocytogenes, which is especially relevant to the adaption of this organism in food-related environments with frequent BC use. PMID:26513255

  10. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  11. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  12. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  13. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  14. UV-C induces K sup + efflux from bean but not from oat leaves

    SciTech Connect

    Huerta, A.J.; Gueltig, B.G. )

    1990-05-01

    Previous reports have shown that ultraviolet radiation (UV) induces a specific leakage of K{sup +} from cells in culture as well as from guard cells of bean leaves resulting in stomatal closure. In an effort to determine how general this response may be in photosynthetic leaf cells, we measured the UV-C-induced K{sup +} efflux from irradiated 10-14 day-old bean and oat leaf sections. Our results show that oat leaves do not respond to UV-C irradiation with K{sup +} efflux. However UV-C irradiated bean leaves leaked K{sup +} at a rate of approximately 47 nmoles cm{sup {minus}2} h{sup {minus}1} and the leakage was linear for at least 3.5 hours. The source cells for K{sup +} efflux and the possible mechanisms responsible for this difference in UV-sensitivity will be discussed.

  15. Vasopressin induced production of inositol trisphosphate and calcium efflux in a smooth muscle cell line

    SciTech Connect

    Doyle, V.M.; Rueegg, U.T.

    1985-08-30

    Phosphatidylinositol metabolism and /sup 45/Ca/sup 2 +/ efflux were examined in a vascular smooth muscle cell line (A7r5). (Arg 8)Vasopressin stimulated the rapid formation (measurable at 1 sec) of inositol phosphates in a concentration-dependent manner. The time course for formation of inositol phosphates was similar to that for /sup 45/Ca/sup 2 +/ efflux from preloaded cells. The efflux of /sup 45/Ca/sup 2 +/ in response to (Arg8)vasopressin could be inhibited by a vasopressin antagonist. This supports the hypothesis that inositol 1,4,5-trisphosphate plays a role in vasopressin stimulated calcium mobilization from an intracellular source in cultured vascular smooth muscle cells.

  16. LXR/RXR ligand activation enhances basolateral efflux of beta-sitosterol in CaCo-2 cells.

    PubMed

    Field, F Jeffrey; Born, Ella; Mathur, Satya N

    2004-05-01

    To examine whether intestinal ABCA1 was responsible for the differences observed between cholesterol and beta-sitosterol absorption, ABCA1-facilitated beta-sitosterol efflux was investigated in CaCo-2 cells following liver X receptor/retinoid X receptor (LXR/RXR) activation. Both the LXR agonist T0901317 and the natural RXR/LXR agonists 22-hydroxycholesterol and 9-cis retinoic acid enhanced the basolateral efflux of beta-sitosterol without altering apical efflux. LXR-mediated enhanced beta-sitosterol efflux occurred between 6 h and 12 h after activation, suggesting that transcription, protein synthesis, and trafficking was likely necessary prior to facilitating efflux. The transcription inhibitor actinomycin D prevented the increase in beta-sitosterol efflux by T0901317. Glybenclamide, an inhibitor of ABCA1 activity, and arachidonic acid, a fatty acid that interferes with LXR activation, also prevented beta-sitosterol efflux in response to the LXR ligand activation. Influx of beta-sitosterol mass did not alter the basolateral or apical efflux of the plant sterol, nor did it alter ABCA1, ABCG1, ABCG5, or ABCG8 gene expression or ABCA1 mass. Similar to results observed with intestinal ABCA1-facilitated cholesterol efflux, LXR/RXR ligand activation enhanced the basolateral efflux of beta-sitosterol without affecting apical efflux. The results suggest that ABCA1 does not differentiate between cholesterol and beta-sitosterol and thus is not responsible for the selectivity of sterol absorption by the intestine. ABCA1, however, may play a role in beta-sitosterol absorption.

  17. Distribution and expression of the Ade multidrug efflux systems in Acinetobacter baumannii clinical isolates.

    PubMed

    Pagdepanichkit, Sirawit; Tribuddharat, Chanwit; Chuanchuen, Rungtip

    2016-09-01

    One hundred Acinetobacter baumannii clinical isolates were examined for inhibitory effect of reserpine and carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the antimicrobial susceptibility and expression of 4 resistant-nodulation-cell division (RND)-type multidrug efflux systems, including AdeABC, AdeDE, AdeIJK, and AdeFGH, using RT-PCR. Ten A. baumannii isolates expressing AdeABC, AdeIJK, or AdeFGH were randomly selected for determination of transcription level and regulatory mutations. While all the isolates were resistant to multiple drugs, the reserpine and CCCP experiment showed that the multidrug resistance phenotype in most A. baumannii isolates was associated with efflux pumps. Most isolates expressed at least one of the RND-type efflux pumps tested (97%). AdeIJK expression was most common (97%), but none of the isolates produced AdeDE. Fifty-two percent of the A. baumannii isolates simultaneously produced up to 3 RND-type efflux systems (i.e., AdeABC, AdeFGH, and AdeIJK). No good correlation between the expression of RND-type efflux pumps and the type of antimicrobial resistance was observed. Overexpression of AdeABC, AdeIJK, and AdeFGH was not always related to the presence of mutations in their corresponding regulatory genes. This study highlights (i) the universal presence of the RND-type efflux pumps with variable levels of expression level among the A. baumannii in this collection and (ii) the complexity of their regulation of expression. PMID:27332787

  18. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux.

    PubMed

    Binda, Francesca; Dipace, Concetta; Bowton, Erica; Robertson, Sabrina D; Lute, Brandon J; Fog, Jacob U; Zhang, Minjia; Sen, Namita; Colbran, Roger J; Gnegy, Margaret E; Gether, Ulrik; Javitch, Jonathan A; Erreger, Kevin; Galli, Aurelio

    2008-10-01

    The soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein syntaxin 1A (SYN1A) interacts with and regulates the function of transmembrane proteins, including ion channels and neurotransmitter transporters. Here, we define the first 33 amino acids of the N terminus of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. Immunoprecipitation of DAT from the biotinylated fraction shows that the AMPH-induced increase in DAT/SYN1A association occurs at the plasma membrane. In a superfusion assay of DA efflux, cells overexpressing SYN1A exhibited significantly greater AMPH-induced DA release with respect to control cells. By combining the patch-clamp technique with amperometry, we measured DA release under voltage clamp. At -60 mV, a physiological resting potential, AMPH did not induce DA efflux in hDAT cells and DA neurons. In contrast, perfusion of exogenous SYN1A (3 microM) into the cell with the whole-cell pipette enabled AMPH-induced DA efflux at -60 mV in both hDAT cells and DA neurons. It has been shown recently that Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by AMPH and regulates AMPH-induced DA efflux. Here, we show that AMPH-induced association between DAT and SYN1A requires CaMKII activity and that inhibition of CaMKII blocks the ability of exogenous SYN1A to promote DA efflux. These data suggest that AMPH activation of CaMKII supports DAT/SYN1A association, resulting in a mode of DAT capable of DA efflux.

  19. Association between cholesterol efflux capacity and coronary restenosis after successful stent implantation.

    PubMed

    Imaizumi, Satoshi; Miura, Shin-Ichiro; Takata, Kohei; Takamiya, Yosuke; Kuwano, Takashi; Sugihara, Makoto; Ike, Amane; Iwata, Atsushi; Nishikawa, Hiroaki; Saku, Keijiro

    2016-08-01

    The measurement of high-density lipoprotein (HDL) functionality could be useful for identifying patients who have an increased risk of coronary restenosis after stent implantation. In the present study, we elucidates whether HDL functionality can predict restenosis. The participants included 48 consecutive patients who had stable angina and were successfully implanted with a drug-eluting stent (DES) or bare-metal stent. Follow-up coronary angiography was performed after 6-8 months of stenting. Cholesterol efflux and the anti-inflammatory capacity of HDL were measured before stenting (at baseline) and at follow-up. The mean age was 64 ± 11 years and the body mass index was 24 ± 3 kg/m(2). While HDL cholesterol (HDL-C) significantly increased from baseline to follow-up, there was no significant association between HDL-C level at baseline and in-stent late loss. Cholesterol efflux capacity was significantly increased from baseline to follow-up. The efflux capacity at baseline was negatively correlated with in-stent late loss, whereas the anti-oxidative activity of HDL at baseline was not associated with in-stent late loss. We analyzed the predictors of in-stent late loss using independent variables (efflux capacity and anti-oxidative capacity at baseline in addition to age, gender, HDL-C and low-density lipoprotein cholesterol at baseline, hypertension, diabetes mellitus, smoking, lesion length and DES implantation, history of myocardial infarction and prior percutaneous coronary intervention) by a multiple regression analysis. The efflux capacity at baseline was only independently associated with in-stent late loss. In conclusion, cholesterol efflux capacity at baseline could predict coronary restenosis in patients with successful stent implantation.

  20. Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype.

    PubMed

    Taylor, Janice M W; Allen, Anne-Marie; Graham, Annette

    2014-11-01

    The aim of the present study was to establish mitochondrial cholesterol trafficking 18 kDa translocator protein (TSPO) as a potential therapeutic target, capable of increasing macrophage cholesterol efflux to (apo)lipoprotein acceptors. Expression and activity of TSPO in human (THP-1) macrophages were manipulated genetically and by the use of selective TSPO ligands. Cellular responses were analysed by quantitative PCR (Q-PCR), immunoblotting and radiolabelling, including [3H]cholesterol efflux to (apo)lipoprotein A-I (apoA-I), high-density lipoprotein (HDL) and human serum. Induction of macrophage cholesterol deposition by acetylated low-density lipoprotein (AcLDL) increased expression of TSPO mRNA and protein, reflecting findings in human carotid atherosclerosis. Transient overexpression of TSPO enhanced efflux (E%) of [3H]cholesterol to apoA-I, HDL and human serum compared with empty vector (EV) controls, whereas gene knockdown of TSPO achieved the converse. Ligation of TSPO (using PK11195, FGIN-1-27 and flunitrazepam) triggered increases in [3H]cholesterol efflux, an effect that was amplified in TSPO-overexpressing macrophages. Overexpression of TSPO induced the expression of genes [PPARA (peroxisome-proliferator-activated receptor α), NR1H3 (nuclear receptor 1H3/liver X receptor α), ABCA1 (ATP-binding cassette A1), ABCG4 (ATP-binding cassette G4) and APOE (apolipoprotein E)] and proteins (ABCA1 and PPARα) involved in cholesterol efflux, reduced macrophage neutral lipid mass and lipogenesis and limited cholesterol esterification following exposure to AcLDL. Thus, targeting TSPO reduces macrophage lipid content and prevents macrophage foam cell formation, via enhanced cholesterol efflux to (apo)lipoprotein acceptors.

  1. Sediment CO2 efflux from cleared and intact temperate mangroves and tidal flats

    NASA Astrophysics Data System (ADS)

    Bulmer, R. H.; Schwendenmann, L.; Lundquist, C. J.

    2015-02-01

    Temperate mangroves in Southern Australia and New Zealand have been increasing in area over the past 50 years, whereas tropical mangroves have declined by 30-50% over a similar time frame. Tropical mangroves are understood to be an important carbon sink and carbon dioxide (CO2) emissions following clearance are estimated to be comparable or greater than CO2 emissions following the clearance of many terrestrial forest systems. Recreational and amenity values or perceived loss of other estuarine habitats due to expanding temperate mangrove forests have resulted in clearing of temperate mangroves. In this study, we investigated the impact of temperate mangrove clearance on CO2 efflux from the sediment to the atmosphere along with a range of other biotic and abiotic factors. Significantly higher CO2 efflux rates were measured in cleared (1.34 ± 0.46 μmol m2 s-1) and intact mangrove sites (2.31 ± 0.72 μmol m2 s-1) than in tidal flats (-0.23 ± 0.27 μmol m2 s-1). Site and sediment characteristics such as sediment carbon and nitrogen concentration, chlorophyll α concentration, grain size, mangrove height, macrofaunal abundance, sediment temperature and moisture were strongly correlated with sediment CO2 efflux. Our results suggest that carbon stored within temperate mangrove sediment is released over a period of years to decades after mangrove clearance. CO2 efflux from intact and cleared temperate mangroves was found to be comparable to rates observed in the tropics. Disturbance of the surface biofilm resulted in elevated CO2 efflux across all habitats, suggesting the important role of surface biofilm communities in mediating CO2 efflux.

  2. Summer storms trigger soil N2O efflux episodes in forested catchments

    NASA Astrophysics Data System (ADS)

    Enanga, E. M.; Creed, I. F.; Casson, N. J.; Beall, F. D.

    2016-01-01

    Climate change and climate-driven feedbacks on catchment hydrology and biogeochemistry have the potential to alter the aquatic versus atmospheric fate of nitrogen (N) in forests. This study investigated the hypothesis that during the forest growth season, topography redistributes water and water-soluble precursors (i.e., dissolved organic carbon and nitrate) for the formation of gaseous N species. Soil nitrous oxide (N2O) and nitrogen (N2) efflux and soil physical and chemical properties were measured in a temperate forest in Central Ontario, Canada from 2005 to 2010. Hotspots and hot moments of soil N2O and N2 efflux were observed in topographic positions that accumulate precipitation, which likely triggered the formation of redox conditions and in turn intercepted the conversion of nitrate N flowing to the stream by transforming it to N2O and N2. There was a strong relationship between precipitation and N2O efflux (y = 0.44x1.22, r2 = 0.618, p < 0.001 in the inner wetland; y = 1.30x1.16 r2 = 0.72, p < 0.001 in the outer wetland) and significantly different N2:N2O ratios in different areas of the wetland (19.6 in the inner wetland and 10.1 in the outer wetland). Soil N2O + N2 efflux in response to precipitation events accounted for 16.1% of the annual N input. A consequence of the higher frequency of extreme precipitation events predicted under climate change scenarios is the shift from an aquatic to atmospheric fate for N, resulting in a significant forest N efflux. This in turn creates feedbacks for even warmer conditions due to increased effluxes of potent greenhouse gases.

  3. Lack of evidence for reduced prefrontal cortical serotonin and dopamine efflux after acute tryptophan depletion

    PubMed Central

    Meerkerk, Dorie (T). J.; Lieben, Cindy K. J.; Blokland, Arjan; Feenstra, Matthijs G. P.

    2007-01-01

    Rationale Acute tryptophan depletion (ATD) is a widely used method to study the role of serotonin (5-HT) in affect and cognition. ATD results in a strong but transient decrease in plasma tryptophan and central 5-HT synthesis and availability. Although its use is widespread, the evidence that the numerous functional effects of ATD are caused by actual changes in 5-HT neuronal release is not very strong. Thus far, decreases in 5-HT efflux (thought to reflect synaptic release) were only reported after chronic tryptophan depletion or when ATD was combined with blockade of 5-HT reuptake. Objective With the current experiment, we aimed to study the validity of the method of ATD by measuring the extent to which it reduces the efflux of 5-HT (and dopamine) in the prefrontal cortex in the absence of reuptake blockage. Materials and methods We simultaneously measured in freely moving animals plasma tryptophan via a catheter in the jugular vein and 5-HT and DA efflux in the medial prefrontal cortex through microdialysis after ATD treatment. Results ATD reduced plasma tryptophan to less than 30% of control, without affecting 5-HT or DA efflux in the prefrontal cortex, indicating that even strong reductions of plasma tryptophan do not necessarily result in decreases in central 5-HT efflux. Conclusion The present experiment showed that reductions in plasma tryptophan, similar to values associated with behavioural effects, do not necessarily reduce 5-HT efflux and suggest that the cognitive and behavioural effects of ATD may not be (exclusively) due to alterations in 5-HT release. PMID:17713760

  4. Soil CO2 efflux among four coniferous forest types of Kashmir Himalaya, India.

    PubMed

    Dar, Javid Ahmad; Ganie, Khursheed Ahmad; Sundarapandian, Somaiah

    2015-11-01

    Soil CO2 efflux was measured in four different coniferous forest types (Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), and Abies pindrow (AP)) for a period of 2 years (April 2012 to December 2013). The monthly soil CO2 efflux ranged from 0.8 to 4.1 μmoles CO2 m(-2) s(-1) in 2012 and 1.01 to 5.48 μmoles CO2 m(-2) s(-1) in 2013. The soil CO2 efflux rate was highest in PW forest type in both the years, while it was lowest in MC and CD forest types during 2012 and 2013, respectively. Soil temperature (TS) at a depth of 10 cm ranged from 3.8 to 19.4 °C in 2012 and 3.5 to 19.1 °C in 2013 in all the four forest types. Soil moisture (MS) ranged from 19.8 to 58.6% in 2012 and 18.5 to 58.6% in 2013. Soil CO2 efflux rate was found to be significantly higher in summer than the other seasons and least during winter. Soil CO2 efflux showed a significant positive relationship with TS (R2=0.52 to 0.74), SOC% (R2=0.67), pH (R2=0.68), and shrub biomass (R2=0.51), whereas, only a weak positive relationship was found with soil moisture (R2=0.16 to 0.41), tree density (R2=0.25), tree basal area (R2=0.01), tree biomass (R2=0.07), herb biomass (R2=0.01), and forest floor litter (R2=0.02). Thus, the study indicates that soil CO2 efflux in high mountainous areas is greatly influenced by seasons, soil temperature, and other environmental factors.

  5. An assessment of some methodological criticisms of studies of RNA efflux from isolated nuclei.

    PubMed

    Agutter, P S

    1983-09-15

    RNA efflux from isolated nuclei can be studied either as a means of elucidating the general mechanism of nucleo-cytoplasmic RNA transport, or as part of an investigation of the processing and utilization of particular gene transcripts. The present paper describes an assessment of three methodological criticisms of RNA-efflux measurements that are made for the former reason: for such measurements, it is sufficient to show that the post-incubation supernatant RNA is similar overall to homologous cytoplasmic mRNA, rather than to nuclear RNA, that is nevertheless of intranuclear origin, and that alterations to the medium during experiments do not markedly perturb this general nuclear restriction. The results seem to justify the following conclusions. (1) Although degradation of the nuclear RNA occurs during incubation in vitro, this process does not account for the appearance of RNA in the postnuclear supernatant. The degradation can be largely prevented by the addition of serine-proteinase inhibitors without altering the RNA efflux rate. (2) Some adsorption of labelled cytoplasmic RNA to the nuclear surface occurs during both isolation and incubation of the nuclei, and some desorption occurs during incubation. However, these effects introduce errors of less than 10% into the measurements of efflux rates. (3) Exogenous acidic polymers, including polyribonucleotides, disrupt nuclei and increase the apparent RNA efflux rate by causing leakage of nuclear contents. However, this effect can largely be overcome by including the nuclear stabilizers spermidine, Ca2+ and Mn2+ in the medium. In terms of this assessment, it appears that RNA efflux from isolated nuclei in media containing nuclear stabilizers serves as a reasonable model for transport in vivo.

  6. An assessment of some methodological criticisms of studies of RNA efflux from isolated nuclei.

    PubMed Central

    Agutter, P S

    1983-01-01

    RNA efflux from isolated nuclei can be studied either as a means of elucidating the general mechanism of nucleo-cytoplasmic RNA transport, or as part of an investigation of the processing and utilization of particular gene transcripts. The present paper describes an assessment of three methodological criticisms of RNA-efflux measurements that are made for the former reason: for such measurements, it is sufficient to show that the post-incubation supernatant RNA is similar overall to homologous cytoplasmic mRNA, rather than to nuclear RNA, that is nevertheless of intranuclear origin, and that alterations to the medium during experiments do not markedly perturb this general nuclear restriction. The results seem to justify the following conclusions. (1) Although degradation of the nuclear RNA occurs during incubation in vitro, this process does not account for the appearance of RNA in the postnuclear supernatant. The degradation can be largely prevented by the addition of serine-proteinase inhibitors without altering the RNA efflux rate. (2) Some adsorption of labelled cytoplasmic RNA to the nuclear surface occurs during both isolation and incubation of the nuclei, and some desorption occurs during incubation. However, these effects introduce errors of less than 10% into the measurements of efflux rates. (3) Exogenous acidic polymers, including polyribonucleotides, disrupt nuclei and increase the apparent RNA efflux rate by causing leakage of nuclear contents. However, this effect can largely be overcome by including the nuclear stabilizers spermidine, Ca2+ and Mn2+ in the medium. In terms of this assessment, it appears that RNA efflux from isolated nuclei in media containing nuclear stabilizers serves as a reasonable model for transport in vivo. PMID:6194787

  7. Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy.

    PubMed

    Selvamuthukumar, Subramanian; Velmurugan, Ramaiyan

    2012-01-01

    Nanotechnology having developed exponentially, the aim has been on therapeutic undertaking, particularly for cancerous disease chemotherapy. Nanostructured lipid carriers have attracted expanding scientific and commercial vigilance in the last couple of years as alternate carriers for the pharmaceutical consignment, particularly anticancer pharmaceuticals. Shortcomings often came across with anticancer mixtures, such as poor solubility, normal tissue toxicity, poor specificity and steadiness, as well as the high incidence rate of pharmaceutical resistance and the rapid degradation, need of large-scale output procedures, a fast release of the pharmaceutical from its carrier scheme, steadiness troubles, the residues of the organic solvents utilized in the output method and the toxicity from the polymer with esteem to the carrier scheme are anticipated to be overcome through use of the Nanostructured Lipid Carrier. In this review the benefits, types, drug release modulations, steadiness and output techniques of NLCs are discussed. In supplement, the function of NLC in cancer chemotherapy is presented and hotspots in research are emphasized. It is foreseen that, in the beside future, nanostructured lipid carriers will be further advanced to consign cytotoxic anticancer compounds in a more efficient, exact and protected manner. PMID:23167765

  8. Solute carriers (SLCs) identified and characterized from kidney transcriptome of golden mahseer (Tor putitora) (Fam: Cyprinidae).

    PubMed

    Barat, Ashoktaru; Sahoo, Prabhati Kumari; Kumar, Rohit; Pande, Veena

    2016-10-01

    The solute carriers (SLC) are trans-membrane proteins, those regulate the transport of various substances (sugars, amino acids, nucleotides, inorganic cations/anions, metals, drugs etc.) across the cell membrane. There are more than 338 solute carriers (slc) reported in fishes that play crucial role in cellular influx and efflux. The study of solute carrier families may reveal many answers regarding the function of transporter genes in the species and their effect in the existing environment. Therefore, we performed RNA sequencing of kidney tissue of the golden mahseer (Tor putitora) using Illumina platform to identify the solute carrier families and characterized 24 putative functional genes under 15 solute carrier families. Out of 24 putative functional genes, 11 genes were differentially expressed in different tissues (head kidney, trunk kidney, spleen, liver, gill, muscle, intestine and brain) using qRT-PCR assay. The slc5a1, slc5a12, slc12a3, slc13a3, slc22a13 and slc26a6 were highly expressed in kidney. The slc15a2, slc25a47, slc33a1 and slc38a2 were highly expressed in brain and slc30a5 was over-expressed in gill. The unrooted phylogenetic trees of slc2, slc5, slc13 and slc33 were constructed using amino acid sequences of Homo sapiens, Salmo salar, Danio rerio, Cyprinus carpio and Tor putitora. It appears that all the putative solute carrier families are very much conserved in human and fish species including the present fish, golden mahseer. This study provides the first hand database of solute carrier families particularly transporter encoding proteins in the species. PMID:27287540

  9. Solute carriers (SLCs) identified and characterized from kidney transcriptome of golden mahseer (Tor putitora) (Fam: Cyprinidae).

    PubMed

    Barat, Ashoktaru; Sahoo, Prabhati Kumari; Kumar, Rohit; Pande, Veena

    2016-10-01

    The solute carriers (SLC) are trans-membrane proteins, those regulate the transport of various substances (sugars, amino acids, nucleotides, inorganic cations/anions, metals, drugs etc.) across the cell membrane. There are more than 338 solute carriers (slc) reported in fishes that play crucial role in cellular influx and efflux. The study of solute carrier families may reveal many answers regarding the function of transporter genes in the species and their effect in the existing environment. Therefore, we performed RNA sequencing of kidney tissue of the golden mahseer (Tor putitora) using Illumina platform to identify the solute carrier families and characterized 24 putative functional genes under 15 solute carrier families. Out of 24 putative functional genes, 11 genes were differentially expressed in different tissues (head kidney, trunk kidney, spleen, liver, gill, muscle, intestine and brain) using qRT-PCR assay. The slc5a1, slc5a12, slc12a3, slc13a3, slc22a13 and slc26a6 were highly expressed in kidney. The slc15a2, slc25a47, slc33a1 and slc38a2 were highly expressed in brain and slc30a5 was over-expressed in gill. The unrooted phylogenetic trees of slc2, slc5, slc13 and slc33 were constructed using amino acid sequences of Homo sapiens, Salmo salar, Danio rerio, Cyprinus carpio and Tor putitora. It appears that all the putative solute carrier families are very much conserved in human and fish species including the present fish, golden mahseer. This study provides the first hand database of solute carrier families particularly transporter encoding proteins in the species.

  10. Efflux Pump Overexpression in Multiple-Antibiotic-Resistant Mutants of Bacteroides fragilis

    PubMed Central

    Pumbwe, Lilian; Glass, Daniel; Wexler, Hannah M.

    2006-01-01

    Multidrug-resistant mutants of a wild-type Bacteroides fragilis strain (strain ADB77) and a quadruple resistance nodulation division family efflux pump deletion mutant (ADB77 ΔbmeB1 ΔbmeB3 ΔbmeB12 ΔbmeB15) were selected with antimicrobials. Ampicillin, doripenem, imipenem, levofloxacin, and metronidazole selected for mutants from both strains; cefoxitin selected for mutants from strain ADB77 only; and sodium dodecyl sulfate selected mutants from ADB77ΔbmeB1 ΔbmeB3 ΔbmeB12 ΔbmeB15 only. The mutants overexpressed one or more efflux pumps. PMID:16940115

  11. Three's company: component structures bring a closer view of tripartite drug efflux pumps.

    PubMed

    Eswaran, Jeyanthy; Koronakis, Eva; Higgins, Matthew K; Hughes, Colin; Koronakis, Vassilis

    2004-12-01

    Bacterial multidrug resistance is a serious clinical problem and is commonly conferred by tripartite efflux 'pumps' in the prokaryotic cell envelope. Crystal structures of the three components of a drug efflux pump have now been solved: the outer membrane TolC exit duct in the year 2000, the inner membrane AcrB antiporter in 2002 and the periplasmic adaptor MexA in 2004. These structures have enhanced our understanding of the principles underlying pump assembly and operation, and present pumps as new drug targets.

  12. 49 CFR 369.3 - Classification of carriers-motor carriers of passengers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Classification of carriers-motor carriers of...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS REPORTS OF MOTOR CARRIERS § 369.3 Classification of carriers—motor carriers of passengers....

  13. 49 CFR 369.3 - Classification of carriers-motor carriers of passengers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Classification of carriers-motor carriers of...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS REPORTS OF MOTOR CARRIERS § 369.3 Classification of carriers—motor carriers of passengers....

  14. Stable wafer-carrier system

    DOEpatents

    Rozenzon, Yan; Trujillo, Robert T; Beese, Steven C

    2013-10-22

    One embodiment of the present invention provides a wafer-carrier system used in a deposition chamber for carrying wafers. The wafer-carrier system includes a base susceptor and a top susceptor nested inside the base susceptor with its wafer-mounting side facing the base susceptor's wafer-mounting side, thereby forming a substantially enclosed narrow channel. The base susceptor provides an upward support to the top susceptor.

  15. Isolation of PsPIN2 and PsAUX1 from etiolated pea epicotyls and their expression on a three-dimensional clinostat

    NASA Astrophysics Data System (ADS)

    Hoshino, Tomoki; Hitotsubashi, Reiko; Miyamoto, Kensuke; Tanimoto, Eiichi; Ueda, Junichi

    We isolated novel cDNAs containing the complete open reading frames of a putative auxin influx carrier, PsAUX1, and a putative auxin efflux carrier, PsPIN2, from etiolated pea epicotyls. High levels of homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (Accession No. AY222857) and AtPINs. Phylogenetic analyses based on deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 and AtPIN7, while PsPIN1 belonged to the same clade as AtPIN1. The results were similar for PsAUX1 and AtAUX1, where PsAUX1 belongs to the same subclade as AtAUX1 and CS-AUX1. Expression of PsPIN1, PsPIN2 and PsAUX1 in pea epicotyl segments was promoted upon incubation of the segments with auxin (indole-3-acetic acid). In 3.5-d-old etiolated pea seedlings, relatively high expression of PsPIN1 and PsAUX1 was observed in the hook region, growing epicotyls and root tips as compared with those in mature regions of epicotyls and roots. Expression of PsPIN2 in roots was less than that in shoots. Simulated microgravity conditions on a three-dimensional clinostat remarkably increased gene expression of PsPIN1 and PsAUX1 in the hook and the internodes of pea epicotyls, but the increase in PsPIN2 was less. In contrast, polar auxin transport of pea epicotyls was substantially suppressed under simulated microgravity conditions on a 3D clinostat, similar to data from a space experiment on STS-95. These results suggest that PsPINs and PsAUX1 are auxin-inducible genes, and that the expression of PsPINs and PsAUX1 genes is sensitive to gravistimulation.

  16. [Investigation of mutations in transcription factors of efflux pump genes in fluconazole-resistant Candida albicans strains overexpressing the efflux pumps].

    PubMed

    Kalkandelen, Kemal Turan; Doluca Dereli, Mine

    2015-10-01

    In recent years, a significant rise in the number of immunocompromised patients have been observed due to cancer chemotherapy, organ transplantation and HIV infection. As a result of this, the frequency of Candida albicans infections in the clinics have been increased. Fluconazole, as being a well tolerated, easy to use drug with minor side effects, is often the first choice antifungal agent for this patient group, both for therapy and prophylaxis. Especially the long-term use of this drug, causes the selection of resistant strains and leads to the development of fluconazole resistance. The most frequently observed resistance mechanism against fluconazole in C.albicans strains is the transportation of the drug out of the cell via efflux pumps. The efflux pumps mainly involved are Cdr1, Cdr2 ve Mdr1 encoded by CDR1, CDR2 and MDR1 genes. It has been shown that, the overexpression of these efflux pump genes was caused by functional mutations in TAC1 and MRR1 genes which encode the transcription factors Tac1p and Mrr1p. This study was aimed to analyze TAC1 and MRR1 genes of 15 C.albicans strains which consist of six fluconazole-susceptible, four susceptible with trailing effect and five fluconazole-resistant isolates plus one resistant strain (DSY292), known to overexpress Mdr1 efflux pump due to P683H mutation in MRR1 gene and one fluconazole-sensitive ATCC 14053 C.albicans strain in terms of mutations with polymerase chain reaction and sequence analysis. Two of the fluconazole-resistant isolates which had overexpression of Cdr1 and Cdr2 pumps known to have overexpression of TAC1 gene, revealed R673Q and A736V mutations. A P683H point mutation, that overexpressed the Mdr1 pump was detected in a fluconazole-resistant strain, which was known to cause MRR1 overexpression. In conclusion, mutations in the transcription factors of the efflux pump genes may play an important role in the resistance against fluconazole among our selected C.albicans strains. PMID:26649419

  17. [Investigation of mutations in transcription factors of efflux pump genes in fluconazole-resistant Candida albicans strains overexpressing the efflux pumps].

    PubMed

    Kalkandelen, Kemal Turan; Doluca Dereli, Mine

    2015-10-01

    In recent years, a significant rise in the number of immunocompromised patients have been observed due to cancer chemotherapy, organ transplantation and HIV infection. As a result of this, the frequency of Candida albicans infections in the clinics have been increased. Fluconazole, as being a well tolerated, easy to use drug with minor side effects, is often the first choice antifungal agent for this patient group, both for therapy and prophylaxis. Especially the long-term use of this drug, causes the selection of resistant strains and leads to the development of fluconazole resistance. The most frequently observed resistance mechanism against fluconazole in C.albicans strains is the transportation of the drug out of the cell via efflux pumps. The efflux pumps mainly involved are Cdr1, Cdr2 ve Mdr1 encoded by CDR1, CDR2 and MDR1 genes. It has been shown that, the overexpression of these efflux pump genes was caused by functional mutations in TAC1 and MRR1 genes which encode the transcription factors Tac1p and Mrr1p. This study was aimed to analyze TAC1 and MRR1 genes of 15 C.albicans strains which consist of six fluconazole-susceptible, four susceptible with trailing effect and five fluconazole-resistant isolates plus one resistant strain (DSY292), known to overexpress Mdr1 efflux pump due to P683H mutation in MRR1 gene and one fluconazole-sensitive ATCC 14053 C.albicans strain in terms of mutations with polymerase chain reaction and sequence analysis. Two of the fluconazole-resistant isolates which had overexpression of Cdr1 and Cdr2 pumps known to have overexpression of TAC1 gene, revealed R673Q and A736V mutations. A P683H point mutation, that overexpressed the Mdr1 pump was detected in a fluconazole-resistant strain, which was known to cause MRR1 overexpression. In conclusion, mutations in the transcription factors of the efflux pump genes may play an important role in the resistance against fluconazole among our selected C.albicans strains.

  18. Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area.

    PubMed

    Butts, Kelly A; Phillips, Anthony G

    2013-09-01

    Enhanced dopamine (DA) efflux in the medial prefrontal cortex (mPFC) is a well-documented response to acute stress. We have previously shown that glucocorticoid receptors in the mPFC regulate stress-evoked DA efflux but the underlying mechanism is unknown. DA neurons in the ventral tegmental area (VTA) receive excitatory input from and send reciprocal projections to the mPFC. We hypothesize that blockade of prefrontal glucocorticoid receptors can reduce activity of descending glutamatergic input to the VTA, thereby attenuating stress-evoked DA efflux in the mPFC. Using in vivo microdialysis, we demonstrate that acute tail-pinch stress leads to a significant increase in glutamate efflux in the VTA. Blockade of prefrontal glucocorticoid receptors with the selective antagonist CORT 108297 attenuates stress-evoked glutamate efflux in the VTA together with DA efflux in the mPFC. Furthermore, blockade of ionotrophic glutamate receptors in the VTA attenuates stress-evoked DA efflux in the mPFC. We also examine the possible role of glucocorticoid-induced synthesis and release of endocannabinoids acting presynaptically via cannabinoid CB1 receptors to inhibit GABA release onto prefrontal pyramidal cells, thus enhancing descending glutamatergic input to the VTA leading to an increase in mPFC DA efflux during stress. However, administration of the cannabinoid CB1 receptor antagonist into the mPFC does not attenuate stress-evoked DA efflux in the mPFC. Taken together, our data indicate that glucocorticoids act locally within the mPFC to modulate mesocortical DA efflux by potentiation of glutamatergic drive onto DA neurons in the VTA. PMID:23590841

  19. Comparison of surficial CO2 efflux to other measures of subsurface crude oil degradation.

    PubMed

    Warren, Ean; Sihota, Natasha J; Hostettler, Frances D; Bekins, Barbara A

    2014-08-01

    At a spill site near Bemidji, Minnesota, crude oil at the water table has been undergoing anaerobic biodegradation for over 30years. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. To compare microbial activity measurement methods from multiple locations in the oil body, surficial carbon dioxide efflux, methanogen and methanotroph concentrations, and oil degradation state were collected. Carbon dioxide effluxes over the oil body averaged more than four times those at the background site. Methanotrophic bacteria concentrations measured using pmoA were over 10(5) times higher above the oil-contaminated sediments compared with the background site. Methanogenic archaea measured using mcrA ranged from 10(5) to over 10(7) in the oil and were below detection in the background. Methanogens correlated very well with methanotroph concentrations (r=0.99), n-alkylcyclohexane losses as a proxy for degradation state (r=-0.96), and somewhat less well with carbon dioxide efflux (r=0.92). Carbon dioxide efflux similarly correlated to methanotroph concentrations (r=0.90) and n-alkylcyclohexane losses (r=-0.91).

  20. ACTIVE EFFLUX OF ORGANIC SOLVENTS BY PSEUDOMONAS PUTIDA S12 IS INDUCED BY SOLVENTS

    EPA Science Inventory

    Induction of the membrane-associated organic solvent efflux system SrpABC of Pseudomonas putida S12 was examined by cloning a 312-bp DNA fragment, containing the srp promoter, in the broad-host-range reporter vector pKRZ-1. Compounds that are capable of inducing expression of the...

  1. Emergence of a Potent Multidrug Efflux Pump Variant That Enhances Campylobacter Resistance to Multiple Antibiotics

    PubMed Central

    Yao, Hong; Shen, Zhangqi; Wang, Yang; Deng, Fengru; Liu, Dejun; Naren, Gaowa; Dai, Lei; Su, Chih-Chia; Wang, Bing; Wang, Shaolin; Wu, Congming; Yu, Edward W.

    2016-01-01

    ABSTRACT Bacterial antibiotic efflux pumps are key players in antibiotic resistance. Although their role in conferring multidrug resistance is well documented, the emergence of “super” efflux pump variants that enhance bacterial resistance to multiple drugs has not been reported. Here, we describe the emergence of a resistance-enhancing variant (named RE-CmeABC) of the predominant efflux pump CmeABC in Campylobacter, a major zoonotic pathogen whose resistance to antibiotics is considered a serious antibiotic resistance threat in the United States. Compared to the previously characterized CmeABC transporters, RE-CmeABC is much more potent in conferring Campylobacter resistance to antibiotics, which was shown by increased MICs and reduced intracellular accumulation of antibiotics. Structural modeling suggests that sequence variations in the drug-binding pocket of CmeB possibly contribute to the enhanced efflux function. Additionally, RE-CmeABC expands the mutant selection window of ciprofloxacin, enhances the emergence of antibiotic-resistant mutants, and confers exceedingly high-level resistance to fluoroquinolones, an important class of antibiotics for clinical therapy of campylobacteriosis. Furthermore, RE-CmeABC is horizontally transferable, shifts antibiotic MIC distribution among clinical isolates, and is increasingly prevalent in Campylobacter jejuni isolates, suggesting that it confers a fitness advantage under antimicrobial selection. These findings reveal a new mechanism for enhanced multidrug resistance and an effective strategy utilized by bacteria for adaptation to selection from multiple antibiotics. PMID:27651364

  2. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria.

    PubMed

    Li, Xian-Zhi; Plésiat, Patrick; Nikaido, Hiroshi

    2015-04-01

    The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.

  3. IP/sub 3/ stimulates CA/sup + +/ efflux from fusogenic carrot protoplasts

    SciTech Connect

    Rincon, M.; Boss, W.F.

    1986-04-01

    Polyphosphoinositide breakdown plays an important role in signal transduction in animal cells (Berridge and Irvine, 1984, Nature, 312:315). Upon stimulation, phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP/sub 3/) and diacylglycerol both of which act as cellular second messengers. IP/sub 3/ mobilizes Ca/sup + +/ from internal stores, hence the cytosolic free Ca/sup + +/ concentration increases and those physiological activities regulated by Ca/sup + +/ are stimulated. To test if plant cells also responded to IP/sub 3/, Ca/sup + +/ efflux studies were done with fusogenic carrot protoplasts released in EGTA. The protoplasts were preloaded with /sup 45/Ca/sup + +/ placed in a Ca/sup + +/-free medium, and efflux determined as /sup 45/Ca/sup + +/ loss from the protoplasts. IP/sub 3/ (10-20..mu..M) caused enhanced /sup 45/Ca/sup + +/ efflux and the response was sustained for at least 15 min. In plants, as in animals, the observed IP/sub 3/-enhanced /sup 45/Ca/sup + +/ efflux suggested that IP/sub 3/ released Ca/sup + +/ from internal stores, and the increased free cytosolic Ca/sup + +/ activated Ca/sup + +/ pumping mechanisms which restored the Ca/sup + +/ concentration in the cytosol to the normal level.

  4. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A.

    PubMed

    Baucheron, Sylvie; Monchaux, Isabelle; Le Hello, Simon; Weill, François-Xavier; Cloeckaert, Axel

    2014-01-01

    Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e., in gyrA, gyrB, or parC) correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications.

  5. Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture.

    PubMed

    Dutta, S K; Ghosh, B; Blackman, C F

    1989-01-01

    To test the generality of radiofrequency radiation-induced changes in 45Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude-modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 W/kg. Significant 45Ca2+ efflux was obtained at SAR values of 0.05 and 0.005 W/kg. Enhanced efflux at 0.05 W/kg peaked at the 13-16 Hz and at the 57.5-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enhanced radiation-induced 45Ca2+ efflux at an SAR of 0.05 W/kg, using 147 MHz, AM at 16 Hz. These results confirm that amplitude-modulated radiofrequency radiation can induce responses in cells of nervous tissue origin from widely different animal species, including humans. The results are also consistent with the reports of similar findings in avian and feline brain tissues and indicate the general nature of the phenomenon. PMID:2540756

  6. Insight into determinants of substrate binding and transport in a multidrug efflux protein

    PubMed Central

    Alegre, Kamela O.; Paul, Stephanie; Labarbuta, Paola; Law, Christopher J.

    2016-01-01

    Multidrug resistance arising from the activity of integral membrane transporter proteins presents a global public health threat. In bacteria such as Escherichia coli, transporter proteins belonging to the major facilitator superfamily make a considerable contribution to multidrug resistance by catalysing efflux of myriad structurally and chemically different antimicrobial compounds. Despite their clinical relevance, questions pertaining to mechanistic details of how these promiscuous proteins function remain outstanding, and the role(s) played by individual amino acid residues in recognition, binding and subsequent transport of different antimicrobial substrates by multidrug efflux members of the major facilitator superfamily requires illumination. Using in silico homology modelling, molecular docking and mutagenesis studies in combination with substrate binding and transport assays, we identified several amino acid residues that play important roles in antimicrobial substrate recognition, binding and transport by Escherichia coli MdtM, a representative multidrug efflux protein of the major facilitator superfamily. Furthermore, our studies suggested that ‘aromatic clamps’ formed by tyrosine and phenylalanine residues located within the substrate binding pocket of MdtM may be important for antimicrobial substrate recognition and transport by the protein. Such ‘clamps’ may be a structurally and functionally important feature of all major facilitator multidrug efflux proteins. PMID:26961153

  7. Serum opacity factor enhances HDL-mediated cholesterol efflux, esterification and anti inflammatory effects.

    PubMed

    Tchoua, Urbain; Rosales, Corina; Tang, Daming; Gillard, Baiba K; Vaughan, Ashley; Lin, Hu Yu; Courtney, Harry S; Pownall, Henry J

    2010-12-01

    Serum opacity factor (SOF) is a streptococcal protein that disrupts the structure of human high density lipoproteins (HDL) releasing lipid-free apo A-I while forming a large cholesteryl ester-rich particle and a small neo HDL. Given its low cholesterol and high phospholipid contents, we tested the hypotheses that neo HDL is a better substrate for cholesterol esterification via lecithin:cholesterol acyltransferase (LCAT), better than HDL as an acceptor of THP-1 macrophage cholesterol efflux, and improves reduction of oxidized LDL-induced production of inflammatory markers. We observed that both cholesterol efflux and esterification were improved by recombinant (r)SOF treatment of whole plasma and that the underlying cause of the improved cholesterol esterification in plasma and macrophage cholesterol efflux to rSOF-treated plasma was due to the rSOF-mediated conversion of HDL to neo HDL. Moreover, the reduction of secretion of TNF-α and IL-6 by THP-1 cells by neo HDL was twice that of HDL. Studies in BHK cells overexpressing cholesterol transporters showed that efflux to neo HDL occurred primarily via ABCA1 not ABCG1. Thus, rSOF improves two steps in reverse cholesterol transport with a concomitant reduction in the release of macrophage markers of inflammation. We conclude that rSOF catalyzes a novel reaction that might be developed as a new therapy that prevents or reverses atherosclerosis via improved reverse cholesterol transport.

  8. Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma-LXRalpha-ABCA1 passway.

    PubMed

    Dong, Shao-zhuang; Zhao, Shui-ping; Wu, Zhi-hong; Yang, Jun; Xie, Xiang-zhu; Yu, Bi-lian; Nie, Sai

    2011-12-01

    Curcumin affects the functions of adipocytes. But it is not known whether curcumin has some effect on the cholesterol efflux process of adipocytes. Rabbit subcutaneous adipocytes were incubated with 5, 10 and 20 μg/ml curcumin for 24 h. The cholesterol efflux onto apoAI was assessed, and the peroxisome proliferators-activated receptor (PPAR) γ, liver X receptor (LXR) α and ATP-binding cassette transporter A1 (ABCA1) mRNA expression in adipocytes were quantified by reverse-transcription polymerase chain reaction (RT-PCR). Curcumin increased the cholesterol efflux from adipocytes in dose-dependent manner. The increased expression of PPARγ, LXRα and ABCA1 caused by curcumin were parallel. When the adipocytes were pre-treated by GW9662, the increased expression of PPARγ induced by curcumin was partially prevented, subsequent to the down-regulation of LXRα and ABCA1. Curcumin can affect the cholesterol efflux from adipocytes by regulating the PPARγ-LXR-ABCA1 passway.

  9. Comparison of models for determining soil-surface carbon dioxide effluxes in different agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-surface CO2 efflux (SCE) models are appealing due to expense and labor of fine temporal- and spatial-resolution field measurements. However, several simple SCE models are reported in the literature. Our objective was to compare and validate selected soil temperature (Ts)- and water content ('v)...

  10. Simultaneous Influx and Efflux of Nitrate during Uptake by Perennial Ryegrass 1

    PubMed Central

    Morgan, M. A.; Volk, R. J.; Jackson, W. A.

    1973-01-01

    Experiments with intact plants of Lolium perenne previously grown with 14NO3− revealed significant efflux of this isotopic species when the plants were transferred to solutions of highly enriched 15NO3−. The exuded 14NO3− was subsequently reabsorbed when the ambient solutions were not replaced. When they were frequently replaced, continual efflux of the 14NO3− was observed. Influx of 15NO3− was significantly greater than influx of 14NO3− from solutions of identical NO3− concentration. Transferring plants to 14NO3− solutions after a six-hour period in 15NO3− resulted in efflux of the latter. Presence of Mg2+, rather than Ca2+, in the ambient 15NO3− solution resulted in a decidedly increased rate of 14NO3− efflux and a slight but significant increase in 15NO3− influx. Accordingly, net NO3− influx was slightly depressed. A model in accordance with these observations is presented; its essential features include a passive bidirectional pathway, an active uptake mechanism, and a pathway for recycling of endogenous NO3− within unstirred layers from the passive pathway to the active uptake site. PMID:16658313

  11. The ABCG2 efflux transporter from rabbit placenta: Cloning and functional characterization.

    PubMed

    Halwachs, Sandra; Kneuer, Carsten; Gohlsch, Katrin; Müller, Marian; Ritz, Vera; Honscha, Walther

    2016-02-01

    In human placenta, the ATP-binding cassette efflux transporter ABCG2 is highly expressed in syncytiotrophoblast cells and mediates cellular excretion of various drugs and toxins. Hence, physiological ABCG2 activity substantially contributes to the fetoprotective placenta barrier function during gestation. Developmental toxicity studies are often performed in rabbit. However, despite its toxicological relevance, there is no data so far on functional ABCG2 expression in this species. Therefore, we cloned ABCG2 from placenta tissues of chinchilla rabbit. Sequencing showed 84-86% amino acid sequence identity to the orthologues from man, rat and mouse. We transduced the rabbit ABCG2 clone (rbABCG2) in MDCKII cells and stable rbABCG2 gene and protein expression was shown by RT-PCR and Western blot analysis. The rbABCG2 efflux activity was demonstrated with the Hoechst H33342 assay using the specific ABCG2 inhibitor Ko143. We further tested the effect of established human ABCG2 (hABCG2) drug substrates including the antibiotic danofloxacin or the histamine H2-receptor antagonist cimetidine on H33342 accumulation in MDCKII-rbABCG2 or -hABCG2 cells. Human therapeutic plasma concentrations of all tested drugs caused a comparable competitive inhibition of H33342 excretion in both ABCG2 clones. Altogether, we first showed functional expression of the ABCG2 efflux transporter in rabbit placenta. Moreover, our data suggest a similar drug substrate spectrum of the rabbit and the human ABCG2 efflux transporter. PMID:26907376

  12. Comparison of surficial CO2 efflux to other measures of subsurface crude oil degradation

    USGS Publications Warehouse

    Warren, Ean; Sihota, Natasha J.; Hostettler, Frances D.; Bekins, Barbara A.

    2014-01-01

    At a spill site near Bemidji, Minnesota, crude oil at the water table has been undergoing anaerobic biodegradation for over 30 years. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. To compare microbial activity measurement methods from multiple locations in the oil body, surficial carbon dioxide efflux, methanogen and methanotroph concentrations, and oil degradation state were collected. Carbon dioxide effluxes over the oil body averaged more than four times those at the background site. Methanotrophic bacteria concentrations measured using pmoA were over 105 times higher above the oil-contaminated sediments compared with the background site. Methanogenic archaea measured using mcrA ranged from 105 to over 107 in the oil and were below detection in the background. Methanogens correlated very well with methanotroph concentrations (r = 0.99), n-alkylcyclohexane losses as a proxy for degradation state (r = − 0.96), and somewhat less well with carbon dioxide efflux (r = 0.92). Carbon dioxide efflux similarly correlated to methanotroph concentrations (r = 0.90) and n-alkylcyclohexane losses (r = − 0.91).

  13. Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during imposed drought

    PubMed Central

    Querejeta, José Ignacio; Allen, Michael F

    2008-01-01

    Apart from improving plant and soil water status during drought, it has been suggested that hydraulic lift (HL) could enhance plant nutrient capture through the flow of mineral nutrients directly from the soil to plant roots, or by maintaining the functioning of mycorrhizal fungi. We evaluated the extent to which the diel cycle of water availability created by HL covaries with the efflux of HL water from the tips of extramatrical (external) mycorrhizal hyphae, and the possible effects on biogeochemical processes. Phenotypic mycorrhizal fungal variables, such as total and live hyphal lengths, were positively correlated with HL efflux from hyphae, soil water potential (dawn), and plant response variables (foliar 15N). The efflux of HL water from hyphae was also correlated with bacterial abundance and soil enzyme activity (P), and the moistening of soil organic matter. Such findings indicate that the efflux of HL water from the external mycorrhizal mycelia may be a complementary explanation for plant nutrient acquisition and survival during drought. PMID:19704776

  14. Matrix metalloproteinase 8 degrades apolipoprotein A-I and reduces its cholesterol efflux capacity.

    PubMed

    Salminen, Aino; Åström, Pirjo; Metso, Jari; Soliymani, Rabah; Salo, Tuula; Jauhiainen, Matti; Pussinen, Pirkko J; Sorsa, Timo

    2015-04-01

    Various cell types in atherosclerotic lesions express matrix metalloproteinase (MMP)-8. We investigated whether MMP-8 affects the structure and antiatherogenic function of apolipoprotein (apo) A-I, the main protein component of HDL particles. Furthermore, we studied serum lipid profiles and cholesterol efflux capacity in MMP-8-deficient mouse model. Incubation of apoA-I (28 kDa) with activated MMP-8 yielded 22 kDa and 25 kDa apoA-I fragments. Mass spectrometric analyses revealed that apoA-I was cleaved at its carboxyl-terminal part. Treatment of apoA-I and HDL with MMP-8 resulted in significant reduction (up to 84%, P < 0.001) in their ability to facilitate cholesterol efflux from cholesterol-loaded THP-1 macrophages. The cleavage of apoA-I by MMP-8 and the reduction in its cholesterol efflux capacity was inhibited by doxycycline. MMP-8-deficient mice had significantly lower serum triglyceride (TG) levels (P = 0.003) and larger HDL particles compared with wild-type (WT) mice. However, no differences were observed in the apoA-I levels or serum cholesterol efflux capacities between the mouse groups. Proteolytic modification of apoA-I by MMP-8 may impair the first steps of reverse cholesterol transport, leading to increased accumulation of cholesterol in the vessel walls. Eventually, inhibition of MMPs by doxycycline may reduce the risk for atherosclerotic vascular diseases.

  15. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria

    PubMed Central

    Plésiat, Patrick

    2015-01-01

    SUMMARY The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps. PMID:25788514

  16. Evolutionary patterns in trace metal (cd and zn) efflux capacity in aquatic organisms.

    PubMed

    Poteat, Monica D; Garland, Theodore; Fisher, Nicholas S; Wang, Wen-Xiong; Buchwalter, David B

    2013-07-16

    The ability to eliminate (efflux) metals is a physiological trait that acts as a major driver of bioaccumulation differences among species. This species-specific trait plays a large role in determining the metal loads that species will need to detoxify to persist in chronically contaminated environments and, therefore, contributes significantly to differences in environmental sensitivity among species. To develop a better understanding of how efflux varies within and among taxonomic groupings, we compared Cd and Zn efflux rate constants (ke values) among members of two species-rich aquatic insect families, Ephemerellidae and Hydropsychidae, and discovered that ke values strongly covaried across species. This relationship allowed us to successfully predict Zn efflux from Cd data gathered from aquatic species belonging to other insect orders and families. We then performed a broader, comparative analysis of Cd and Zn ke values from existing data for arthropods, mollusks, annelids, and chordates (77 species total) and found significant phylogenetic patterns. Taxonomic groups exhibited marked variability in ke magnitudes and ranges, suggesting that some groups are more constrained than others in their abilities to eliminate metals. Understanding broader patterns of variability can lead to more rational extrapolations across species and improved protectiveness in water-quality criteria and ecological assessment.

  17. The importance of active efflux systems in the quinolone resistance of clinical isolates of Salmonella spp.

    PubMed

    Escribano, Isabel; Rodríguez, Juan Carlos; Cebrian, Laura; Royo, Gloria

    2004-11-01

    The aim of this study was to determine the importance of the active elimination of antibiotics by active efflux systems, in the decrease in fluoroquinolone sensitivity of clinical isolates of Salmonella spp. as well as the intrinsic antibiotic activity of certain active efflux system inhibitors. The effect of the active efflux system on the decrease in sensitivity to nalidixic acid, ciprofloxacin, ofloxacin and sparfloxacin was studied by investigating the variation in the in vitro activity of these compounds when assayed in association with reserpine and MC 207.110. The active efflux systems inhibited by reserpine displayed low activity in the elimination of these compounds, whereas those inhibited by MC 207.110 showed high activity in the elimination of nalidixic acid and sparfloxacin, but were less effective in the elimination of ofloxacin and ciprofloxacin. These two compounds did not exhibit intrinsic inhibitory activity against Salmonella spp. at the concentrations assayed. These mechanisms of resistance to antibiotics are complex and vary depending on the chemical composition of the antibiotics used, and perhaps the inhibitors of these systems, although they do not exhibit any intrinsic antibiotic activity, may be used as adjuvants to increase the activity of certain antibiotics. These mechanisms complement the mutations in the gyrA gene and this supports the thesis that it is necessary to lower the breakpoint established by the NCCLS for ciprofloxacin, since the strains studied have resistance mechanisms that reduce the activity of this drug and may favour the emergence of resistant mutants during treatment.

  18. Import and efflux of flubendazole in Haemonchus contortus strains susceptible and resistant to anthelmintics.

    PubMed

    Bártíková, Hana; Vokřál, Ivan; Kubíček, Vladimír; Szotáková, Barbora; Prchal, Lukáš; Lamka, Jiří; Várady, Marián; Skálová, Lenka

    2012-07-01

    Drug entry into the body of a helminth is a key factor in the efficacy of anthelmintics. The present project was designed to study the ex vivo uptake and efflux of the benzimidazole anthelmintic flubendazole (FLU) in four strains of H. contortus: the ISE strain (fully susceptible to anthelmintics), the ISE-S strain (resistant to ivermectin), the BR strain (resistant to benzimidazoles) and the WR strain (multi-resistant). The transport of FLU between dead and living nematodes was also compared as well as the effect of verapamil, an inhibitor of the main efflux ABCB1 transporter (P-glycoprotein), on FLU accumulation in nematodes. The obtained results showed that FLU is able to effectively enter H. contortus adults due to high FLU lipophilicity. Passive diffusion is probably the only mechanism in both FLU import and efflux from nematodes. No differences in FLU transport were found among four H. contortus strains with different sensitivity to anthelmintics. No active FLU efflux from H. contortus and no effect of verapamil were observed, indicating that H. contortus cannot protect itself against FLU by the active removal of this anthelmintic from its body.

  19. BRACHIAL EFFLUX OF HYDROPHOBIC ORGANIC COMPOUNDS BY RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    EPA Science Inventory

    Data on the branchial elimination of hydrophobic compounds has been suggested as key information in the development of PBTK models for fish. The hypothesis is that branchial efflux of high log Kow compounds proceeds to an equilibrium between the afferent blood and expired water. ...

  20. RELATIVE EXPRESSION OF EFFLUX PUMPS IN MULTI DRUG RESISTANT PSEUDOMONAS AERUGINOSA.

    PubMed

    Azimi, Leila; Namvar, Amirmorteza Ebrahimzadeh; Jamali, Sadaf; Lari, Aida Rastegar; Bijari, Aslan; Lari, Abdolaziz Rastegar

    2015-01-01

    Pseudomonas aeruginosa is known as an important opportunistic pathogen, resistant to a high number of antibiotics. Efflux pumps are one of the main intrinsic antibiotics resistance mechanisms in P. aeruginosa. MexAB-OprM, MexCD-OprJ, and MexXY-OprM are the main efflux pumps involved in beta-lactam resistant strains which may cause cross resistance to different antimicrobial classes. The aim of this study was to detect relative gene expression in betalactam-resistant clinical P. aeruginosa strains. One hundred fourteen clinical strains of P. aeruginosa were identified by phenotypic and genotypic methods. Antibiotic susceptibility testing was conducted according to CLSI guideline. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used as an efflux pump inhibitor for phenotypic detection of efflux pump mechanism and q-RT PCR was conducted for relative gene expression detection. The highest rate of resistance was observed against cefotaxime and various relative gene expressions levels were observed in all isolates with positive phenotypic test results. PMID:27328522

  1. Comparison of surficial CO2 efflux to other measures of subsurface crude oil degradation

    NASA Astrophysics Data System (ADS)

    Warren, Ean; Sihota, Natasha J.; Hostettler, Frances D.; Bekins, Barbara A.

    2014-08-01

    At a spill site near Bemidji, Minnesota, crude oil at the water table has been undergoing anaerobic biodegradation for over 30 years. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. To compare microbial activity measurement methods from multiple locations in the oil body, surficial carbon dioxide efflux, methanogen and methanotroph concentrations, and oil degradation state were collected. Carbon dioxide effluxes over the oil body averaged more than four times those at the background site. Methanotrophic bacteria concentrations measured using pmoA were over 105 times higher above the oil-contaminated sediments compared with the background site. Methanogenic archaea measured using mcrA ranged from 105 to over 107 in the oil and were below detection in the background. Methanogens correlated very well with methanotroph concentrations (r = 0.99), n-alkylcyclohexane losses as a proxy for degradation state (r = - 0.96), and somewhat less well with carbon dioxide efflux (r = 0.92). Carbon dioxide efflux similarly correlated to methanotroph concentrations (r = 0.90) and n-alkylcyclohexane losses (r = - 0.91).

  2. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    SciTech Connect

    Crowe, Andrew Tan, Ai May

    2012-05-01

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of only 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially

  3. K(+)- and HCO3(-)-dependent acid-base transport in squid giant axons. I. Base efflux

    PubMed Central

    1995-01-01

    We used microelectrodes to monitor the recovery (i.e., decrease) of intracellular pH (pHi) after using internal dialysis to load squid giant axons with alkali to pHi values of 7.7, 8.0, or 8.3. The dialysis fluid (DF) contained 400 mM K+ but was free of Na+ and Cl-. The artificial seawater (ASW) lacked Na+, K+, and Cl-, thereby eliminating effects of known acid-base transporters on pHi. Under these conditions, halting dialysis unmasked a slow pHi decrease caused at least in part by acid-base transport we refer to as "base efflux." Replacing K+ in the DF with either NMDG+ or TEA+ significantly reduced base efflux and made membrane voltage (Vm) more positive. Base efflux in K(+)-dialyzed axons was stimulated by decreasing the pH of the ASW (pHo) from 8 to 7, implicating transport of acid or base. Although postdialysis acidifications also occurred in axons in which we replaced the K+ in the DF with Li+, Na+, Rb+, or Cs+, only with Rb+ was base efflux stimulated by low pHo. Thus, the base effluxes supported by K+ and Rb+ appear to be unrelated mechanistically to those observed with Li+, Na+, or Cs+. The combination of 437 mM K+ and 12 mM HCO3- in the ASW, which eliminates the gradient favoring a hypothetical K+/HCO3- efflux, blocked pHi recovery in K(+)-dialyzed axons. However, the pHi recovery was not blocked by the combination of 437 mM Na+, veratridine, and CO2/HCO3- in the ASW, a treatment that inverts electrochemical gradients for H+ and HCO3- and would favor passive H+ and HCO3- fluxes that would have alkalinized the axon. Similarly, the recovery was not blocked by K+ alone or HCO3- alone in the ASW, nor was it inhibited by the K-H pump blocker Sch28080 nor by the Na-H exchange inhibitors amiloride and hexamethyleneamiloride. Our data suggest that a major component of base efflux in alkali-loaded axons cannot be explained by metabolism, a H+ or HCO3- conductance, or by a K-H exchanger. However, this component could be mediated by a novel K/HCO3- cotransporter

  4. The contributions of nitrate uptake and efflux to isotope fractionation during algal nitrate assimilation

    NASA Astrophysics Data System (ADS)

    Karsh, K. L.; Trull, T. W.; Sigman, D. M.; Thompson, P. A.; Granger, J.

    2014-05-01

    In order to strengthen environmental application of nitrate N and O isotopes, we measured the N and O isotopic fractionation associated with cellular nitrate uptake and efflux in the nitrate-assimilating marine diatom Thalassiosira weissflogii. We isolated nitrate uptake and efflux from nitrate reduction by growing the cells in the presence of tungsten, which substitutes for molybdenum in assimilatory nitrate reductase, yielding an inactive enzyme. After growth on ammonium and then N starvation, cells were exposed to nitrate. Numerical models fit to the evolution of intracellular nitrate concentration and N and O isotopic composition yielded distinct N isotope effects (15ɛ) for nitrate uptake and nitrate efflux (2.0 ± 0.3‰ and 1.2 ± 0.4‰, respectively). The O isotope effects (18ɛ) for nitrate uptake and nitrate efflux were indistinguishable (2.8 ± 0.6‰), yielding a ratio of O to N isotopic fractionation for uptake of 1.4 ± 0.4 and for efflux of 2.3 ± 0.9. The 15ɛ for nitrate uptake can account for at most 40% of the organism-level N isotope effect (15ɛorg) measured in laboratory studies of T. weissflogii and in the open ocean (typically 5‰ or greater). This observation supports previous evidence that most isotope fractionation during nitrate assimilation is due to intracellular nitrate reduction, with nitrate efflux allowing the signal to be communicated to the environment. An O to N fractionation ratio (18ɛorg:15ɛorg) of ˜1 has been measured for nitrate assimilation in algal cultures and linked to the N and O isotope effects of nitrate reductase. Our results suggest that the ratios of O to N fractionation for both nitrate uptake and efflux may be distinct from a ratio of 1, to a degree that could cause the net 18ɛorg:15ɛorg to rise appreciably above 1 when 15ɛorg is low (e.g., yielding a ratio of 1.1 when 15ɛorg is 5‰). However, field and culture studies have consistently measured nearly equivalent fractionation of N and O isotopes in

  5. Helicobacter pylori uptake and efflux: basis for intrinsic susceptibility to antibiotics in vitro.

    PubMed

    Bina, J E; Alm, R A; Uria-Nickelsen, M; Thomas, S R; Trust, T J; Hancock, R E

    2000-02-01

    We previously demonstrated (M. M. Exner, P. Doig, T. J. Trust, and R. E. W. Hancock, Infect. Immun. 63:1567-1572, 1995) that Helicobacter pylori has at least one nonspecific porin, HopE, which has a low abundance in the outer membrane but forms large channels. H. pylori is relatively susceptible to most antimicrobial agents but less susceptible to the polycationic antibiotic polymyxin B. We demonstrate here that H. pylori is able to take up higher basal levels of the hydrophobic fluorescent probe 1-N-phenylnaphthylamine (NPN) than Pseudomonas aeruginosa or Escherichia coli, consistent with its enhanced susceptibility to hydrophobic agents. Addition of polymyxin B led to a further increase in NPN uptake, indicative of a self-promoted uptake pathway, but it required a much higher amount of polymyxin B to yield a 50% increase in NPN uptake in H. pylori (6 to 8 microg/ml) than in P. aeruginosa or E. coli (0.3 to 0.5 microg/ml), suggesting that H. pylori has a less efficient self-promoted uptake pathway. Since intrinsic resistance involves the collaboration of restricted outer membrane permeability and secondary defense mechanisms, such as periplasmic beta-lactamase (which H. pylori lacks) or efflux, we examined the possible role of efflux in antibiotic susceptibility. We had previously identified in H. pylori 11637 the presence of portions of three genes with homology to potential restriction-nodulation-division (RND) efflux systems. It was confirmed that H. pylori contained only these three putative RND efflux systems, named here hefABC, hefDEF, and hefGHI, and that the hefGHI system was expressed only in vivo while the two other RND systems were expressed both in vivo and in vitro. In uptake studies, there was no observable energy-dependent tetracycline, chloramphenicol, or NPN efflux activity in H. pylori. Independent mutagenesis of the three putative RND efflux operons in the chromosome of H. pylori had no effect on the in vitro susceptibility of H. pylori to 19

  6. AUCSIA

    PubMed Central

    Pandolfini, Tiziana; Molesini, Barbara; Spena, Angelo

    2013-01-01

    Aucsia is a green plant gene family. In Angiosperms, Aucsia genes control several aspects of auxin biology, including polar auxin transport. AUCSIA miniproteins are produced via splicing of three exons. The first two exons span the conserved AUCSIA motif, while the third exon(s) encodes the more variable carboxyterminal end. AUCSIA presence in green algae indicates that the Aucsia gene family predated the emergence of land plants and the complex auxin biology of Angiosperms. In algae, however, AUCSIA might have been involved in a primitive auxin biology, when auxin was just a simple metabolite, probably noxious at high concentrations, and consequently pump out via the ancestral auxin exporters, i.e., ABCB1/19 homologs. This speculative scenario implies that in green algae AUCSIA is involved in controlling the ABCB-dependent efflux of noxious metabolites, including auxin. Such speculative hypothesis might be tested in living green algae. PMID:23299419

  7. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution

    PubMed Central

    Adamowski, Maciek; Friml, Jiří

    2015-01-01

    Auxin participates in a multitude of developmental processes, as well as responses to environmental cues. Compared with other plant hormones, auxin exhibits a unique property, as it undergoes directional, cell-to-cell transport facilitated by plasma membrane-localized transport proteins. Among them, a prominent role has been ascribed to the PIN family of auxin efflux facilitators. PIN proteins direct polar auxin transport on account of their asymmetric subcellular localizations. In this review, we provide an overview of the multiple developmental roles of PIN proteins, including the atypical endoplasmic reticulum-localized members of the family, and look at the family from an evolutionary perspective. Next, we cover the cell biological and molecular aspects of PIN function, in particular the establishment of their polar subcellular localization. Hormonal and environmental inputs into the regulation of PIN action are summarized as well. PMID:25604445

  8. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole.

    PubMed

    Ahmad, Aijaz; Khan, Amber; Manzoor, Nikhat

    2013-01-23

    Thymol (THY) and carvacrol (CARV), the principal chemical components of thyme oil have long been known for their wide use in medicine due to antimicrobial and disinfectant properties. This study, however, draws attention to a possible synergistic antifungal effect of these monoterpenes with azole antimycotic-fluconazole. Resistance to azoles in Candida albicans involves over-expression of efflux-pump genes MDR1, CDR1, CDR2 or mutations and over-expression of target gene ERG11. The inhibition of drug efflux pumps is considered a feasible strategy to overcome clinical antifungal resistance. To put forward this approach, we investigated the combination effects of these monoterpenes and FLC against 38 clinically obtained FLC-sensitive, and eleven FLC-resistant Candida isolates. Synergism was observed with combinations of THY-FLC and CARV-FLC evaluated by checkerboard microdilution method and nature of the interactions was calculated by FICI. In addition, antifungal activity was assessed using agar-diffusion and time-kill curves. The drug efflux activity was determined using two dyes, Rhodamine6G (R6G) and fluorescent Hoechst 33342. No significant differences were observed in dye uptakes between FLC-susceptible and resistant isolates, incubated in glucose free buffer. However, a significantly higher efflux was recorded in FLC-resistant isolates when glucose was added. Both monoterpenes inhibited efflux by 70-90%, showing their high potency to block drug transporter pumps. Significant differences, in the expression levels of CDR1 and MDR1, induced by monoterpenes revealed reversal of FLC-resistance. The selectively fungicidal characteristics and ability to restore FLC susceptibility in resistant isolates signify a promising candidature of THY and CARV as antifungal agents in combinational treatments for candidiasis. PMID:23111348

  9. Amphipathic polyproline peptides stimulate cholesterol efflux by the ABCA1 transporter.

    PubMed

    Sviridov, D O; Drake, S K; Freeman, L A; Remaley, A T

    2016-03-18

    ApoA-I mimetics are short synthetic peptides that contain an amphipathic α-helix and stimulate cholesterol efflux by the ABCA1 transporter in a detergent-like extraction mechanism. We investigated the use of amphipathic peptides with a polypro helix for stimulating cholesterol efflux by ABCA1. Polypro peptides were synthesized with modified prolines, containing either a hydrophobic phenyl group (Prop) or a polar N-acetylgalactosamine (Prog) attached to the pyrrolidine ring and were designated as either PP-2, 3, 4, or 5, depending on the number of 3 amino acid repeat units (Prop-Prog-Prop). Based on molecular modeling, these peptides were predicted to be relatively rigid and to bind to a phospholipid bilayer. By CD spectroscopy, PP peptides formed a Type-II polypro helix in an aqueous solution. PP-2 was inactive in promoting cholesterol efflux, but peptides with more than 2 repeat units were active. PP-4 showed a similar Vmax as a much longer amphipathic α-helical peptide, containing 37 amino acids, but had a Km that was approximately 20-fold lower. PP peptides were specific in that they did not stimulate cholesterol efflux from cells not expressing ABCA1 and were also non-cytotoxic. Addition of PP-3, 4 and 5 to serum promoted the formation of smaller size HDL species (7 nM) and increased its capacity for ABCA1-dependent cholesterol efflux by approximately 20-35% (p < 0.05). Because of their relatively small size and increased potency, amphipathic peptides with a polypro helix may represent an alternative structural motif for the development of apoA-I mimetic peptides.

  10. THE ROLE OF GSH EFFLUX IN STAUROSPORINE-INDUCED APOPTOSIS IN COLONIC EPITHELIAL CELLS

    PubMed Central

    Circu, Magdalena L.; Stringer, Sarah; Rhoads, Carol Ann; Moyer, Mary Pat; Aw, Tak Yee

    2008-01-01

    Staurosporine (STP) was shown to induce cell apoptosis through formation of reactive oxygen species, but a role for cellular redox has not been defined. In this study, we report that STP (2μM) caused apoptosis (24±3% at 24h) of human colon adenocarcinoma epithelial cell line HT29 that was preceded by significant GSH and GSSG efflux (6h), but independent of changes in cellular GSH/GSSG redox status. The blockade of GSH efflux by γ-glutamyl glutamate (γ-GG) or ophthalmic acid was associated with apoptosis attenuation; however, γ-GG administration after peak GSH efflux (8h) did not confer cytoprotection. Moreover, lowering cellular GSH through inhibition of its synthesis prevented extracellular GSH accumulation and cell apoptosis, thus validating a link between cellular GSH export and the trigger of cell apoptosis. Inhibition of γ-glutamyl transferase (GGT1 EC 2.3.2.2)-catalyzed extracellular GSH degradation with acivicin significantly blocked GSH efflux, suggesting that GSH breakdown is a driving force for GSH export. Interestingly, acivicin treatment enhanced extracellular GSSG accumulation, consistent with GSH oxidation. STP-induced HT29 cell apoptosis was associated with caspase-3 activation independent of caspase-8 or caspase-9 activity; accordingly, inhibitors of the latter caspases were without effect on STP-induced apoptosis. STP similarly induced GSH efflux and apoptosis in a nonmalignant human NCM460 colonic cell line in association with caspase-3 activation. Collectively, our results demonstrate that STP induction of apoptosis in malignant and non-malignant colonic cells is temporally linked to the export of cellular GSH and the activation of caspase-3 without caspase-8 or -9 involvement. PMID:18840413

  11. MAPK1 of Leishmania donovani modulates antimony susceptibility by downregulating P-glycoprotein efflux pumps.

    PubMed

    Garg, Mansi; Goyal, Neena

    2015-07-01

    Emergence of resistance to pentavalent antimonials has become a severe obstacle in the treatment of visceral leishmaniasis (VL) in the Indian subcontinent. Mitogen-activated protein kinases (MAPKs) are well-known mediators of signal transduction of eukaryotes, regulating important processes, like proliferation, differentiation, stress response, and apoptosis. In Leishmania, MAPK1 has been shown to be consistently downregulated in antimony-resistant field isolates, suggesting that it has a role in antimony resistance. The present work investigates the molecular mechanism of MAPK1 in antimony resistance in Leishmania donovani. The L. donovani MAPK1 (LdMAPK1) single-allele replacement mutants exhibited increased resistance to Sb(III) (5.57-fold) compared to wild-type promastigotes, while overexpressing parasites became much more susceptible to antimony. The LdMAPK1-mediated drug sensitivity was directly related to antimony-induced apoptotic death of the parasite, as was evidenced by a 4- to 5-fold decrease in cell death parameters in deletion mutants and a 2- to 3-fold increase in MAPK1-overexpressing cells. LdMAPK1-underexpressing parasites also exhibited increased P-glycoprotein (P-gp)-mediated efflux pump activity, while a significant decrease in pump activity was observed in overexpressing cells. This change in efflux pump activity was directly related to expression levels of P-gp in all cell lines. However, episomal complementation of the gene restored normal growth, drug sensitivity, P-gp expression, and efflux pump activity. The data indicate that LdMAPK1 negatively regulates the expression of P-glycoprotein-type efflux pumps in the parasite. The decrease in efflux pump activity with an increase in LdMAPK1 expression may result in increased antimony accumulation in the parasite, making it more vulnerable to the drug.

  12. The Role of Efflux Pumps in Schistosoma mansoni Praziquantel Resistant Phenotype

    PubMed Central

    Armada, Ana; Belo, Silvana; Carrilho, Emanuel; Viveiros, Miguel; Afonso, Ana

    2015-01-01

    Background Schistosomiasis is a neglected disease caused by a trematode of the genus Schistosoma that is second only to malaria in public health significance in Africa, South America, and Asia. Praziquantel (PZQ) is the drug of choice to treat this disease due to its high cure rates and no significant side effects. However, in the last years increasingly cases of tolerance to PZQ have been reported, which has caused growing concerns regarding the emergency of resistance to this drug. Methodology/Principal Findings Here we describe the selection of a parasitic strain that has a stable resistance phenotype to PZQ. It has been reported that drug resistance in helminths might involve efflux pumps such as members of ATP-binding cassette transport proteins, including P-glycoprotein and multidrug resistance-associated protein families. Here we evaluate the role of efflux pumps in Schistosoma mansoni resistance to PZQ, by comparing the efflux pumps activity in susceptible and resistant strains. The evaluation of the efflux activity was performed by an ethidium bromide accumulation assay in presence and absence of Verapamil. The role of efflux pumps in resistance to PZQ was further investigated comparing the response of susceptible and resistant parasites in the absence and presence of different doses of Verapamil, in an ex vivo assay, and these results were further reinforced through the comparison of the expression levels of SmMDR2 RNA by RT-PCR. Conclusions/Significance This work strongly suggests the involvement of Pgp-like transporters SMDR2 in Praziquantel drug resistance in S. mansoni. Low doses of Verapamil successfully reverted drug resistance. Our results might give an indication that a combination therapy with PZQ and natural or synthetic Pgp modulators can be an effective strategy for the treatment of confirmed cases of resistance to PZQ in S. mansoni. PMID:26445012

  13. Importance of Non-Diffusive Transport for Soil CO2 Efflux in a Temperate Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Roland, Marilyn; Vicca, Sara; Bahn, Michael; Ladreiter-Knauss, Thomas; Schmitt, Michael; Janssens, Ivan A.

    2015-04-01

    A key focus in climate change is on the dynamics and predictions of the soil CO2 efflux (SCE) from terrestrial ecosystems. Limited knowledge of CO2 transport through the soil restricts our understanding of the various biotic and abiotic processes underlying these emissions. Diffusion is often thought to be the main transport mechanism for trace gases in soils, an assumption that is reflected in the increasing popularity of the flux-gradient approach (FGA). Based on Fick's law, the FGA calculates soil CO2 efflux from CO2 concentration profiles, given good estimates of the diffusion coefficient. The latter can be calculated via different commonly used models, and solid-state sensors allow continuous high-frequency measurements of soil CO2 concentrations with minimal disturbance to the soil conditions in a cost-effective way. Fast growing evidence of pressure pumping and advection, makes it impossible to disregard non-diffusive gas transport when evaluating diel and day-to-day dynamics of soil CO2 emissions. We have analyzed combined measurements from solid-state sensors and soil chambers to gain insight in the CO2 transport mechanisms in a grassland site in the Austrian Alps. The FGA-derived efflux underestimated the chamber efflux by 10 to 87% at our site, depending on which model was used for calculation of the diffusion coefficient. We found that the actual transport rates correlated well with irradiation and wind speed, even more when the soil moisture content was below 33%. These findings suggest that bulk soil air transport was enhanced by pressure changes induced by wind shear at the surface and by local heating of the soil surface. Considering the importance of non-diffusive transport processes is a prerequisite when using solid-state CO2 concentration measurements to estimate soil CO2 efflux at any given site.

  14. Experimental evaluation of an efflux-influx model of C exudation by individual apical root segments.

    PubMed

    Personeni, Emmanuelle; Nguyen, Christophe; Marchal, Patrice; Pagès, Loïc

    2007-01-01

    The aim of this study was to evaluate if a model describing the efflux and the influx of C through the root surface could be fitted to experimental short-term kinetics of carbon (C) exudation by individual apical root segments in maize (Zea mays L.). The efflux of C was set constant or modelled by a power function of the distance from the apex to simulate the greater release of C around the root tip commonly reported in the literature. The influx was proportional to the C concentration in the external solution to simulate the active re-uptake of exudates by the root. Plants were exposed to full light or to shade to manipulate C allocation to roots. The model with a constant efflux gave satisfactory fits to the kinetics of exudation (average R(2)=0.66). The average gross efflux was then 2.1 mug C cm(-2) root surface h(-1). The model was improved if exudation was set more intense towards the root apex (average R(2)=0.74). The estimated gross efflux decreased then from 5.2 mug C cm(-2) h(-1) at the apex to 1.8 mug C cm(-2) h(-1) for the region located 5-25 cm from the root tip. The decrease in net exudation of individual roots due to the shading of plants was weak, which may indicate that the import of C by the primary roots studied was not reduced significantly. By describing the exudation of an apical root segment of variable length and diameter, the model is a first step in linking exudation to root system architecture models and to whole plant functioning.

  15. Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA

    PubMed Central

    Lawler, A. J.; Ricci, V.; Busby, S. J. W.; Piddock, L. J. V.

    2013-01-01

    Objectives The transcriptional activator RamA regulates production of the multidrug resistance efflux AcrAB–TolC system in several Enterobacteriaceae. This study investigated factors that lead to increased expression of ramA. Methods In order to monitor changes in ramA expression, the promoter region of ramA was fused to a gfp gene encoding an unstable green fluorescence protein (GFP) on the reporter plasmid, pMW82. The ramA reporter plasmid was transformed into Salmonella Typhimurium SL1344 and a ΔacrB mutant. The response of the reporter to subinhibitory concentrations of antibiotics, dyes, biocides, psychotropic agents and efflux inhibitors was measured during growth over a 5 h time period. Results Our data revealed that the expression of ramA was increased in a ΔacrB mutant and also in the presence of the efflux inhibitors phenylalanine-arginine-β-naphthylamide, carbonyl cyanide m-chlorophenylhydrazone and 1-(1-naphthylmethyl)-piperazine. The phenothiazines chlorpromazine and thioridazine also increased ramA expression, triggering the greatest increase in GFP expression. However, inducers of Escherichia coli marA and soxS and 12 of 17 tested antibiotic substrates of AcrAB–TolC did not induce ramA expression. Conclusions This study shows that expression of ramA is not induced by most substrates of the AcrAB–TolC efflux system, but is increased by mutational inactivation of acrB or when efflux is inhibited. PMID:23493314

  16. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce...

  17. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce...

  18. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce...

  19. 29 CFR 1201.1 - Carrier.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Carrier. 1201.1 Section 1201.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD DEFINITIONS § 1201.1 Carrier. The term carrier includes any express company, sleeping car company, carrier by railroad, subject to the Interstate Commerce...

  20. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  1. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  2. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  3. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  4. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  5. Straddle carrier radiation portal monitoring

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O. Dennis

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  6. Straddle Carrier Radiation Portal Monitoring

    SciTech Connect

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O Dennis

    2005-08-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation’s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  7. Homologs of the Acinetobacter baumannii AceI Transporter Represent a New Family of Bacterial Multidrug Efflux Systems

    PubMed Central

    Liu, Qi; Henderson, Peter J. F.

    2015-01-01

    ABSTRACT Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. PMID:25670776

  8. Detergent-Mediated Phospholipidation of Plasma Lipoproteins Increases HDL Cholesterophilicity and Cholesterol Efflux Via SR-BI†

    PubMed Central

    Pownall, Henry J.

    2008-01-01

    Cellular cholesterol efflux is an early, obligatory step in reverse cholesterol transport, the putative antiatherogenic mechanism by which human plasma high density lipoproteins (HDL) transport cholesterol from peripheral tissue to the liver for recycling or disposal. HDL-phospholipid content is the essential cholesterol-binding component of lipoproteins and therefore a major determinant of cholesterol efflux. Thus, increased phospholipidation of lipoproteins, particularly HDL, is one strategy for increasing cholesterol efflux. This study validates a simple, new detergent perturbation method for the phospholipidation of plasma lipoproteins; we have quantified the cholesterophilicity of human plasma lipoproteins and the effects of lipoprotein phospholipidation on cholesterophilicity and cellular cholesterol efflux mediated by the class B type I scavenger receptor (SR-BI). We determined that low density lipoproteins (LDL) are more cholesterophilic than HDL and that LDL has a higher affinity for phospholipids than HDL whereas HDL has a higher phospholipid capacity than LDL. Phospholipidation of total human plasma lipoproteins enhances cholesterol efflux, an effect that occurs largely through the preferential phospholipidation of HDL. We conclude that increasing HDL phospholipid increases its cholesterophilicity thereby making it a better acceptor of cellular cholesterol efflux. Phospholipidation of lipoproteins by detergent perturbation is a simple way to increase HDL cholesterophilicity and cholesterol efflux in a way that may be clinically useful. PMID:16981711

  9. Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high density lipoprotein

    PubMed Central

    Luthi, Andrea J.; Lyssenko, Nicholas N.; Quach, Duyen; McMahon, Kaylin M.; Millar, John S.; Vickers, Kasey C.; Rader, Daniel J.; Phillips, Michael C.; Mirkin, Chad A.; Thaxton, C. Shad

    2015-01-01

    The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1. PMID:25652088

  10. Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat.

    PubMed

    Ryan, Peter R; James, Richard A; Weligama, Chandrakumara; Delhaize, Emmanuel; Rattey, Allan; Lewis, David C; Bovill, William D; McDonald, Glenn; Rathjen, Tina M; Wang, Enli; Fettell, Neil A; Richardson, Alan E

    2014-07-01

    Phosphorus (P) deficiency in some plant species triggers the release of organic anions such as citrate and malate from roots. These anions are widely suggested to enhance the availability of phosphate for plant uptake by mobilizing sparingly-soluble forms in the soil. Carazinho is an old wheat (Triticum aestivum) cultivar from Brazil, which secretes citrate constitutively from its root apices, and here we show that it also produces relatively more biomass on soils with low P availability than two recent Australian cultivars that lack citrate efflux. To test whether citrate efflux explains this phenotype, we generated two sets of near-isogenic lines that differ in citrate efflux and compared their biomass production in different soil types and with different P treatments in glasshouse experiments and field trials. Citrate efflux improved relative biomass production in two of six glasshouse trials but only at the lowest P treatments where growth was most severely limited by P availability. Furthermore, citrate efflux provided no consistent advantage for biomass production or yield in multiple field trials. Theoretical modeling indicates that the effectiveness of citrate efflux in mobilizing soil P is greater as the volume of soil into which it diffuses increases. As efflux from these wheat plants is restricted to the root apices, the potential for citrate to mobilize sufficient P to increase shoot biomass may be limited. We conclude that Carazinho has other attributes that contribute to its comparatively good performance in low-P soils.

  11. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant Enterobacter aerogenes.

    PubMed

    Martins, A; Spengler, G; Martins, M; Rodrigues, L; Viveiros, M; Davin-Regli, A; Chevalier, J; Couto, I; Pagès, J M; Amaral, L

    2010-10-01

    Enterobacter aerogenes predominates amongst Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum beta-lactamases. Although this mechanism of resistance to beta-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Amongst these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestingly, although knowledge of the genetic background behind efflux pumps is rapidly advancing, few studies assess the physiological nature of the overall efflux pump system of this, or for that matter any other, bacterium. The study reported here evaluates physiologically the efflux pump system of an E. aerogenes ATCC reference as well as two strains whose MDR phenotypes are mediated by overexpressed efflux pumps. The activities of the efflux pumps in these strains are modulated by pH and glucose, although the effects of the latter are essentially restricted to pH 8, suggesting the presence of two general efflux pump systems, i.e. proton-motive force-dependent and ABC transporter types, respectively.

  12. Residual Versus Suppressed-Carrier Coherent Communications

    NASA Astrophysics Data System (ADS)

    Simon, M. K.; Million, S.

    1996-07-01

    This article addresses the issue of when to suppress or not to suppress the transmitted carrier in designing a coherent communication system employing a carrier tracking loop for carrier synchronization. Assuming that a phase-locked loop (PLL) is used whenever there exists a residual carrier and a Costas loop is used whenever the carrier is suppressed, the regions of system parameters that delineate these two options are presented based on the desire to minimize the average probability of error of the system.

  13. Carrier sense data highway system

    DOEpatents

    Frankel, Robert

    1984-02-14

    A data transmission system includes a transmission medium which has a certain propagation delay time over its length. A number of data stations are successively coupled to the transmission medium for communicating with one another. Each of the data stations includes a transmitter for originating signals, each signal beginning with a carrier of a duration which is at least the propagation delay time of the transmission medium. Each data station also includes a receiver which receives other signals from other data stations and inhibits operation of the transmitter at the same data station when a carrier of another signal is received.

  14. Polarized cholesterol and phospholipid efflux in cultured gall-bladder epithelial cells: evidence for an ABCA1-mediated pathway.

    PubMed Central

    Lee, Jin; Shirk, Andrew; Oram, John F; Lee, Sum P; Kuver, Rahul

    2002-01-01

    Gall-bladder epithelial cells (GBEC) are exposed to high concentrations of cholesterol in bile. Whereas cholesterol absorption by GBEC is established, the fate of this absorbed cholesterol is not known. The aim of this study was to determine whether ABCA1 (ATP-binding cassette transporter A1) mediates cholesterol efflux in GBEC. Polarized canine GBEC were cultured on porous membrane filters allowing separate access to apical (AP) and basolateral (BL) compartments. After AP loading of cells with model bile and [14C]cholesterol, cholesterol efflux was measured. Cholesterol loading together with 8-bromo-cAMP treatment, which increased ABCA1 expression, led to a significant increase in cholesterol efflux with apolipoprotein A-I (apoA-I) as the acceptor. Cholesterol efflux was observed predominantly into the BL compartment. Similar results were found for phospholipid efflux. Confocal immunofluorescence microscopy showed a predominantly BL ABCA1 localization. Interestingly, apoA-I added to either the AP or the BL compartments elicited BL lipid efflux with cAMP treatment. No paracellular or transcellular passage of 125I-apoA-I occurred. Ligands for the nuclear hormone receptors liver X receptor alpha (LXRalpha) and retinoid X receptor (RXR) elicited AP and BL cholesterol efflux, suggesting the involvement of both ABCA1- and non-ABCA1-mediated pathways. In summary, BL cholesterol/phospholipid efflux consistent with an ABCA1-mediated mechanism occurs in GBEC. This efflux pathway is stimulated by cAMP and by LXRalpha/RXR ligands, and in the case of the cAMP pathway appears to involve a role for biliary apoA-I. PMID:12023891

  15. Seasonal Variations in CO2 Efflux, Vadose Zone Gas Concentrations, and Natural Attenuation Rates at a Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Trost, J.; Sihota, N.; Delin, G. N.; Warren, E.

    2014-12-01

    Accurate estimates of hydrocarbon source zone natural attenuation (SZNA) rates are important for managing contaminated sites but are difficult to measure. Moreover, SZNA rates may vary seasonally in response to climatic conditions. Previous research at a crude oil spill site near Bemidji, Minnesota, USA showed that SZNA rates in the summer can be estimated by subtracting background soil CO2 efflux from the total soil CO2 efflux above the contaminated source. In this study, seasonal variations in surficial CO2 efflux were evaluated with measurements of gas concentrations (including 14CO2), temperature, and volumetric water content in the vadose zone at the site during a 2-year period. Soil CO2 effluxes in the source zone were consistently greater than background CO2 effluxes, and the magnitude and areal extent of the increased efflux varied seasonally. In the source zone, the 14CO2 and the CO2 efflux data showed a larger proportion of soil CO2 was derived from SZNA in fall and winter (October - February) compared to the summer (June - August). Surficial CO2 effluxes and vadose zone CO2 and CH4 concentrations in the source (2 - 7 meters below land surface) were positively correlated with soil temperature, indicating seasonal variability in SZNA rates. However, peak surficial CO2 effluxes did not correspond with periods of highest CO2 or CH4 concentrations at the 2 - 7 meter depth, demonstrating the effects of physical attributes (such as soil depth, frost, and volumetric water content) on gas transport. Overall, results showed that SZNA rates, background soil respiration rates, and gas transport varied seasonally, and that biological and physical factors are important to consider for accurately estimating SZNA rates.

  16. Soil CO2 efflux in an old-growth southern conifer forest (Agathis australis) - magnitude, components and controls

    NASA Astrophysics Data System (ADS)

    Schwendenmann, Luitgard; Macinnis-Ng, Cate

    2016-08-01

    Total soil CO2 efflux and its component fluxes, autotrophic and heterotrophic respiration, were measured in a native forest in northern Aotearoa-New Zealand. The forest is dominated by Agathis australis (kauri) and is on an acidic, clay rich soil. Soil CO2 efflux, volumetric soil water content and soil temperature were measured bi-weekly to monthly at 72 sampling points over 18 months. Trenching and regression analysis was used to partition total soil CO2 efflux into heterotrophic and autotrophic respiration. The effect of tree structure was investigated by calculating an index of local contribution (Ic, based on tree size and distance to the measurement location) followed by correlation analysis between Ic and total soil CO2 efflux, root biomass, litterfall and soil characteristics. The measured mean total soil CO2 efflux was 3.47 µmol m-2 s-1. Autotrophic respiration accounted for 25 % (trenching) or 28 % (regression analysis) of total soil CO2 efflux. Using uni- and bivariate models showed that soil temperature was a poor predictor of the temporal variation in total soil CO2 efflux (< 20 %). In contrast, a stronger temperature sensitivity was found for heterotrophic respiration (around 47 %). We found significant positive relationships between kauri tree size (Ic) and total soil CO2 efflux, root biomass and mineral soil CN ratio within 5-6 m of the sampling points. Using multiple regression analysis revealed that 97 % of the spatial variability in total soil CO2 efflux in this kauri-dominated stand was explained by root biomass and soil temperature. Our findings suggest that biotic factors such as tree structure should be investigated in soil carbon related studies.

  17. SLC30A10 Is a Cell Surface-Localized Manganese Efflux Transporter, and Parkinsonism-Causing Mutations Block Its Intracellular Trafficking and Efflux Activity

    PubMed Central

    Leyva-Illades, Dinorah; Chen, Pan; Zogzas, Charles E.; Hutchens, Steven; Mercado, Jonathan M.; Swaim, Caleb D.; Morrisett, Richard A.; Bowman, Aaron B.

    2014-01-01

    Manganese (Mn) is an essential metal, but elevated cellular levels are toxic and may lead to the development of an irreversible parkinsonian-like syndrome that has no treatment. Mn-induced parkinsonism generally occurs as a result of exposure to elevated Mn levels in occupational or environmental settings. Additionally, patients with compromised liver function attributable to diseases, such as cirrhosis, fail to excrete Mn and may develop Mn-induced parkinsonism in the absence of exposure to elevated Mn. Recently, a new form of familial parkinsonism was reported to occur as a result of mutations in SLC30A10. The cellular function of SLC30A10 and the mechanisms by which mutations in this protein cause parkinsonism are unclear. Here, using a combination of mechanistic and functional studies in cell culture, Caenorhabditis elegans, and primary midbrain neurons, we show that SLC30A10 is a cell surface-localized Mn efflux transporter that reduces cellular Mn levels and protects against Mn-induced toxicity. Importantly, mutations in SLC30A10 that cause familial parkinsonism blocked the ability of the transporter to traffic to the cell surface and to mediate Mn efflux. Although expression of disease-causing SLC30A10 mutations were not deleterious by themselves, neurons and worms expressing these mutants exhibited enhanced sensitivity to Mn toxicity. Our results provide novel insights into the mechanisms involved in the onset of a familial form of parkinsonism and highlight the possibility of using enhanced Mn efflux as a therapeutic strategy for the potential management of Mn-induced parkinsonism, including that occurring as a result of mutations in SLC30A10. PMID:25319704

  18. Molecular Evidence and Functional Expression of a Novel Drug Efflux pump (ABCC2) in Human Corneal Epithelium and Rabbit Cornea and its role in Ocular drug efflux

    PubMed Central

    Karla, Pradeep K.; Pal, Dhananjay; Quinn, Tim; Mitra, Ashim K.

    2007-01-01

    Cornea is considered as a major barrier for ocular drug delivery. Low ocular bioavailability of drugs has been attributed primarily to low permeability across corneal epithelium thus leading to sub-therapeutic concentrations of drug in the eye and treatment failure. The role of drug efflux proteins, particularly the Pglycoprotein in ocular drug bioavailability has been reported. The objective of this research was to determine whether human corneal epithelium expresses multi drug resistance associated proteins contributing to drug efflux by employing both cultured corneal cells and freshly excised rabbit cornea. SV40 HCEC and rPCEC were selected for in-vitro testing. SV40-HCEC and freshly excised rabbit corneas were utilized for transport studies. [3H]-cyclosporine-A and [14C]-erythromycin which are known substrates for ABCC2 and MK-571, a specific inhibitor for MRP were applied in this study. RT-PCR indicated a unique and distinct band at ∼272 bp corresponding to ABCC2 in HCEC, SV40-HCEC, rabbit cornea, rPCEC and MDCKII-MRP2 cells. Also RT-PCR indicated a unique band ∼181 bp for HCEC and SV40-HCEC. Immunoprecipitation followed by Western Blot analysis revealed a specific band at ∼190-kDa in membrane fraction of SV40-HCEC, MDCKII-MRP2 and no band with isotype control. Uptake of [3H]-cyclosporine-A and [14C]-erythromycin in the presence of MK-571 was significantly enhanced than control in both SV40 HCEC and rPCEC. Similarly a significant elevation in (A→B) permeability of [3H]-cyclosporine-A and [14C]-erythromycin was observed in the presence of MK-571 in SV40-HCEC. A→B transport of [3H]-cyclosporine-A was elevated in the presence of MK-571 in freshly excised rabbit cornea indicating potential role of this efflux transporter and high clinical significance of this finding. PMID:17156953

  19. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Adoption of provisions of one carrier by another carrier. 221.204 Section 221.204 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of...

  20. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Adoption of provisions of one carrier by another carrier. 221.204 Section 221.204 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of...

  1. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Adoption of provisions of one carrier by another carrier. 221.204 Section 221.204 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of...

  2. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Adoption of provisions of one carrier by another carrier. 221.204 Section 221.204 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of...

  3. 14 CFR 221.204 - Adoption of provisions of one carrier by another carrier.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Adoption of provisions of one carrier by another carrier. 221.204 Section 221.204 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... Adoption of provisions of one carrier by another carrier. When one carrier adopts the tariffs of...

  4. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  5. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  6. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  7. 14 CFR 399.82 - Passing off of carrier identity by affiliation between carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Passing off of carrier identity by... Relating to Enforcement § 399.82 Passing off of carrier identity by affiliation between carriers. (a... points served by both carriers should preserve the identity of the individual carriers; (5) Where...

  8. 14 CFR 380.11 - Payment to direct air carrier(s).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... carrier(s). Except for air taxi operators and commuter air carriers (which are governed by 14 CFR 298.38) and Canadian charter air taxi operators (which are governed by 14 CFR 294.32), the direct air carrier(s) shall be paid in full for the cost of the charter transportation (for both legs, if a...

  9. Functional characterization of Brucella melitensis NorMI, an efflux pump belonging to the multidrug and toxic compound extrusion family.

    PubMed

    Braibant, Martine; Guilloteau, Laurence; Zygmunt, Michel S

    2002-09-01

    Two putative proteins (NorMI and NorMII) similar to the multidrug efflux protein NorM of Vibrio parahaemolyticus are encoded by the Brucella melitensis 16 M genome. We show that a drug-hypersusceptible Escherichia coli strain overexpressing NorMI displays increased resistance to norfloxacin, ciprofloxacin, gentamicin, tetraphenylphosphonium ion, acriflavine, and berberine. This elevated resistance was proven to be mediated by an energy-dependent efflux mechanism. NorMI belongs to the multidrug and toxic compound extrusion family and is the first multidrug efflux protein identified in Brucella spp.

  10. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that its Motor Carrier Safety Advisory Committee (MCSAC)...

  11. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces that the Agency's Motor Carrier Safety Advisory Committee...

  12. 76 FR 12214 - Motor Carrier Safety Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice: Announcement of Motor Carrier Safety Advisory Committee meeting; request for comment. SUMMARY: The Federal Motor Carrier Safety...

  13. Seasonal Variation in CO2 Efflux of Stems and Branches of Norway Spruce Trees

    PubMed Central

    Acosta, Manuel; Pavelka, Marian; Pokorný, Radek; Janouš, Dalibor; Marek, Michal V.

    2008-01-01

    Background and Aims Stem and branch respiration, important components of total forest ecosystem respiration, were measured on Norway spruce (Picea abies) trees from May to October in four consecutive years in order (1) to evaluate the influence of temperature on woody tissue CO2 efflux with special focus on variation in Q10 (change in respiration rate resulting from a 10 °C increase in temperature) within and between seasons, and (2) to quantify the contribution of above-ground woody tissue (stem and branch) respiration to the carbon balance of the forest ecosystem. Methods Stem and branch CO2 efflux were measured, using an IRGA and a closed gas exchange system, 3–4 times per month on 22-year-old trees under natural conditions. Measurements of ecosystem CO2 fluxes were also determined during the whole experiment by using the eddy covariance system. Stem and branch temperatures were monitored at 10-min intervals during the whole experiment. Key Results The temperature of the woody tissue of stems and branches explained up to 68 % of their CO2 efflux. The mean annual Q10 values ranged from 2·20 to 2·32 for stems and from 2·03 to 2·25 for branches. The mean annual normalized respiration rate, R10, for stems and branches ranged from 1·71 to 2·12 µmol CO2 m−2s −1 and from 0·24 to 0·31 µmol CO2 m−2 s−1, respectively. The annual contribution of stem and branch CO2 efflux to total ecosystem respiration were, respectively, 8·9 and 8·1 % in 1999, 9·2 and 9·2 % in 2000, 7·6 and 8·6 % in 2001, and 8·6 and 7·9 % in 2002. Standard deviation for both components ranged from 3 to 8 % of the mean. Conclusions Stem and branch CO2 efflux varied diurnally and seasonally, and were related to the temperature of the woody tissue and to growth. The proportion of CO2 efflux from stems and branches is a significant component of the total forest ecosystem respiration, approx. 8 % over the 4 years, and predictive models must take their contribution into account

  14. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals.

    PubMed

    Pearson, J P; Van Delden, C; Iglewski, B H

    1999-02-01

    Many gram-negative bacteria communicate by N-acyl homoserine lactone signals called autoinducers (AIs). In Pseudomonas aeruginosa, cell-to-cell signaling controls expression of extracellular virulence factors, the type II secretion apparatus, a stationary-phase sigma factor (sigmas), and biofilm differentiation. The fact that a similar signal, N-(3-oxohexanoyl) homoserine lactone, freely diffuses through Vibrio fischeri and Escherichia coli cells has led to the assumption that all AIs are freely diffusible. In this work, transport of the two P. aeruginosa AIs, N-(3-oxododecanoyl) homoserine lactone (3OC12-HSL) (formerly called PAI-1) and N-butyryl homoserine lactone (C4-HSL) (formerly called PAI-2), was studied by using tritium-labeled signals. When [3H]C4-HSL was added to cell suspensions of P. aeruginosa, the cellular concentration reached a steady state in less than 30 s and was nearly equal to the external concentration, as expected for a freely diffusible compound. In contrast, [3H]3OC12-HSL required about 5 min to reach a steady state, and the cellular concentration was 3 times higher than the external level. Addition of inhibitors of the cytoplasmic membrane proton gradient, such as azide, led to a strong increase in cellular accumulation of [3H]3OC12-HSL, suggesting the involvement of active efflux. A defined mutant lacking the mexA-mexB-oprM-encoded active-efflux pump accumulated [3H]3OC12-HSL to levels similar to those in the azide-treated wild-type cells. Efflux experiments confirmed these observations. Our results show that in contrast to the case for C4-HSL, P. aeruginosa cells are not freely permeable to 3OC12-HSL. Instead, the mexA-mexB-oprM-encoded efflux pump is involved in active efflux of 3OC12-HSL. Apparently the length and/or degree of substitution of the N-acyl side chain determines whether an AI is freely diffusible or is subject to active efflux by P. aeruginosa.

  15. Whey drying on porous carriers

    SciTech Connect

    Mitura, E.; Kaminski, W.

    1996-05-01

    Whey is treated very often as a waste which pollutes the natural environment. Whey which is a valuable source of protein, lacrose, vitamins and mineral salts should be utilized completely. The present paper is a proposal of whey drying on porous carriers. It is proved experimentally that the proposed drying method guarantees good product quality.

  16. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  17. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  18. Carrier-mediated placental transport of cimetidine and valproic acid across differentiating JEG-3 cell layers.

    PubMed

    Ikeda, K; Ueda, C; Yamada, K; Nakamura, A; Hatsuda, Y; Kawanishi, S; Nishii, S; Ogawa, M

    2015-07-01

    Human choriocarcinoma has been used as a model to study trophoblast transcellular drug transport in the placenta. Previous models had limitations regarding low molecular weight drug transport through the intracellular gap junction. The purpose of this study was to evaluate placental carrier-mediated transport across a differentiating JEG-3 choriocarcinoma cell (DJEGs) layer model in which the intracellular gap junction was restricted. Cimetidine is the substrate of an efflux transporter, breast cancer resistance protein (BCRP). BCRP highly expressed in the placenta, and its function in the DJEGs model was investigated. In addition, the placental drug transport of another efflux transporter, multidrug resistance-associated proteins (MRPs), and an influx transporter, monocarboxylate transporter (MCT), were examined with various substrates. Cimetidine permeated from the fetal side to the maternal side at significantly high levels and saturated in a dose-dependent manner. The permeability coefficient of a MRP substrate, fluorescein, across the DJEGs model was significantly increased by inhibiting MRP function with probenecid. On the other hand, permeation in the influx direction to the fetal side with a substrate of MCT, valproic acid, had a gentle dose-dependent saturation. These findings suggest that the DJEGs model could be used to evaluate transcellular placental drug transport mediated by major placental transporters.

  19. The accumulation and efflux of lead partly depend on ATP-dependent efflux pump-multidrug resistance protein 1 and glutathione in testis Sertoli cells.

    PubMed

    Huang, Shaoxin; Ye, Jingping; Yu, Jun; Chen, Li; Zhou, Langhuan; Wang, Hong; Li, Zhen; Wang, Chunhong

    2014-05-01

    Since lead accumulation is toxic to cells, its excretion is crucial for organisms to survive the toxicity. In this study, mouse testis sertoli (TM4) and Mrp1 lower-expression TM4-sh cells were used to explore the lead accumulation characteristics, and the role of ATP-dependent efflux pump-multidrug resistance protein 1 (Mrp1) in lead excretion. TM4 cells possess Mrp-like transport activity. The expression levels of mrp1 mRNA and Mrp1 increased after lead treatments at first and then decreased. The maximum difference of relative mRNA expression reached 10 times. In the presence of lead acetate, the amount of cumulative lead in TM4-sh was much higher than that in TM4. After the treatment with lead acetate at 10-40 μM for 12h or 24h, the differences were about 2-8 times. After with the switch to lead-free medium, the cellular lead content in TM4-sh remains higher than that in TM4 cells at 1,3, 6, and 9h time points (P<0.01). Energy inhibitor sodium azide, Mrp inhibitors MK571 and glutathione (GSH) biosynthesis inhibitor BSO could block lead efflux from TM4 cells significantly. These results indicate that lead excretion may be mediated by Mrp1 and GSH in TM4 cells. Mrp1 could be one of the important intervention points for lead detoxification.

  20. Hybrid Antibiotic Overcomes Resistance in P. aeruginosa by Enhancing Outer Membrane Penetration and Reducing Efflux.

    PubMed

    Gorityala, Bala Kishan; Guchhait, Goutam; Goswami, Sudeep; Fernando, Dinesh M; Kumar, Ayush; Zhanel, George G; Schweizer, Frank

    2016-09-22

    Therapeutic interventions to treat multidrug-resistant (MDR) Pseudomonas aeruginosa infections are severely limited and often require the use of colistin as drug of last resort. The major challenges impeding the development of novel antipseudomonal agents are the lack of cell penetration and extensive efflux. We have discovered a tobramycin-moxifloxacin hybrid core structure which enhances outer membrane permeability and reduces efflux by dissipating the proton motive force of the cytoplasmic membrane in P. aeruginosa. The optimized hybrid protects Galleria mellonella larvae from the lethal effects of MDR P. aeruginosa. Attempts to select for resistance over a period of 25 days resulted in a 2-fold increase in the minimal inhibitory concentration (MIC) for the hybrid, while moxifloxacin or tobramycin resulted in a 16- and 512-fold increase in MIC. Although the hybrid possesses potent activity against MDR, P. aeruginosa isolates the activity that can be synergized when used in combination with other classes of antibiotics.

  1. Sediment CO2 efflux from cleared and intact temperate mangrove and tidal flat habitat

    NASA Astrophysics Data System (ADS)

    Bulmer, Richard; Lundquist, Carolyn; Schwendenmann, Luitgard

    2015-04-01

    Temperate mangroves in Southern Australia and New Zealand have been increasing in extent over the past 50 years, whereas tropical mangroves have declined by 30-50% over a similar time frame to support development of aquaculture, land development and timber production. Tropical mangroves are understood to be an important carbon sink and carbon emissions following clearance are estimated to be significant; comparable or greater than clearance of many terrestrial forest systems. As temperate mangrove clearance is proposed and has already occurred at some locations, it is important to determine potential carbon emissions from temperate mangroves, as well as exploring the factors which may influence emission rates. Here, we investigated the impact of temperate mangrove clearance on CO2 efflux from the sediment to the atmosphere along with a range of other biotic and abiotic factors. Higher CO2 efflux rates were observed within cleared (1.34

  2. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology.

    PubMed

    Xue, Xue; Liang, Xing-Jie

    2012-02-01

    Multidrug resistance (MDR), which significantly decreases the efficacy of anticancer drugs and causes tumor recurrence, has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades. Several mechanisms of overcoming drug resistance have been postulated. Well known P-glycoprotein (P-gp) and other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells and causing chemotherapy failure. Innovative theranostic (therapeutic and diagnostic) strategies with nanoparticles are rapidly evolving and are anticipated to offer opportunities to overcome these limits. In this review, we discuss the mechanisms of drug efflux-mediated resistance and the application of multiple nanoparticle-based platforms to overcome chemoresistance and improve therapeutic outcome.

  3. Engineering bacterial efflux pumps for solar-powered bioremediation of surface waters.

    PubMed

    Kapoor, Vikram; Wendell, David

    2013-05-01

    Antibiotics are difficult to selectively remove from surface waters by present treatment methods. Bacterial efflux pumps have evolved the ability to discriminately expel antibiotics and other noxious agents via proton and ATP driven pathways. Here, we describe light-dependent removal of antibiotics by engineering the bacterial efflux pump AcrB into a proteovesicle system. We have created a chimeric protein with the requisite proton motive force by coupling AcrB to the light-driven proton pump Delta-rhodopsin (dR) via a glycophorin A transmembrane domain. This creates a solar powered protein material capable of selectively capturing antibiotics from bulk solutions. Using environmental water and direct sunlight, our AcrB-dR vesicles removed almost twice as much antibiotic as the treatment standard, activated carbon. Altogether, the AcrB-dR system provides an effective means of extracting antibiotics from surface waters as well as potential antibiotic recovery through vesicle solubilization. PMID:23581993

  4. Comparative Molecular Docking Studies with ABCC1 and Aquaporin 9 in the Arsenite Complex Efflux

    PubMed Central

    Poojan, Shiv; Dhasmana, Anupam; Jamal, Qazi Mohammad Sajid; Haneef, Mohd; Lohani, Mohtashim

    2014-01-01

    Arsenic is the most toxic metalloid present in the natural environment in both organic and inorganic arsenic forms. Inorganic arsenic is often more hazardous than the organic form. Arsenite and arsenate compounds are the major inorganic forms which are toxic causing severe human health dysfunction including cancer. Excretion of arsenic from the system is found elusive. Therefore, it is of interest to screen channel proteins with the arsenic complex in the different combination of arsenic, GSH (glutathione) and arsenic, selenium using docking methods. The mode of arsenic removal. The complex structure revealed the mode of arsenic binding efficiency with the receptor aquaporine 9 and ABCC1 channel protein. This provides insights to understand the mechanism of arsenic efflux. These inferences find application in the design, identification and development of novel nutracetucal or any other formulation useful in the balance of arsenic efflux. PMID:25258480

  5. Spectinamides: A New Class of Semisynthetic Anti-Tuberculosis Agents that Overcome Native Drug Efflux

    PubMed Central

    Vaddady, Pavan K; Zheng, Zhong; Qi, Jianjun; Akbergenov, Rashid; Das, Sourav; Madhura, Dora B.; Rathi, Chetan; Trivedi, Ashit; Villellas, Cristina; Lee, Robin. B.; Rakesh; Waidyarachchi, Samanthi L.; Sun, Dianqing; McNeil, Michael R.; Ainsa, Jose A.; Boshoff, Helena I.; Gonzalez-Juarrero, Mercedes

    2014-01-01

    Although the classical antibiotic spectinomycin is a potent bacterial protein synthesis inhibitor, poor antimycobacterial activity limits its clinical application for treating tuberculosis. Using structure-based design, a novel semisynthetic series of spectinomycin analogs was generated with selective ribosomal inhibition and excellent narrow-spectrum antitubercular activity. In multiple murine infection models, these spectinamides were well tolerated, significantly reduced lung mycobacterial burden and increased survival. In vitro studies demonstrated a lack of cross-resistance with existing tuberculosis therapeutics, activity against MDR/XDR-tuberculosis, and an excellent pharmacological profile. Key to their potent antitubercular properties was their structural modification to evade the Rv1258c efflux pump, which is upregulated in MDR strains and is implicated in macrophage induced drug tolerance. The antitubercular efficacy of spectinamides demonstrates that synthetic modifications to classical antibiotics can overcome the challenge of intrinsic efflux pump-mediated resistance and expands opportunities for target based tuberculosis drug discovery. PMID:24464186

  6. Comparative Molecular Docking Studies with ABCC1 and Aquaporin 9 in the Arsenite Complex Efflux.

    PubMed

    Poojan, Shiv; Dhasmana, Anupam; Jamal, Qazi Mohammad Sajid; Haneef, Mohd; Lohani, Mohtashim

    2014-01-01

    Arsenic is the most toxic metalloid present in the natural environment in both organic and inorganic arsenic forms. Inorganic arsenic is often more hazardous than the organic form. Arsenite and arsenate compounds are the major inorganic forms which are toxic causing severe human health dysfunction including cancer. Excretion of arsenic from the system is found elusive. Therefore, it is of interest to screen channel proteins with the arsenic complex in the different combination of arsenic, GSH (glutathione) and arsenic, selenium using docking methods. The mode of arsenic removal. The complex structure revealed the mode of arsenic binding efficiency with the receptor aquaporine 9 and ABCC1 channel protein. This provides insights to understand the mechanism of arsenic efflux. These inferences find application in the design, identification and development of novel nutracetucal or any other formulation useful in the balance of arsenic efflux.

  7. The mycobacterial P55 efflux pump is required for optimal growth on cholesterol.

    PubMed

    Ramón-García, Santiago; Stewart, Gordon R; Hui, Zhao Kun; Mohn, William W; Thompson, Charles J

    2015-01-01

    Cholesterol catabolism is thought to be a key factor contributing to the pathogenesis of Mycobacterium tuberculosis. Previous epistasis and mutant screening studies predicted that the P55 efflux pump (Rv1410c) positively interacts with the Mce4 transporter, a major cholesterol import system of M. tuberculosis and is needed for optimal growth in vitro, in macrophages, and in vivo. Using a combination of cell growth kinetic techniques, cholesterol consumption, and [4-(14)C]cholesterol uptake studies, we demonstrated that the Mycobacterium bovis BCG rv1410c gene indeed is needed for optimal in vitro growth on cholesterol and other carbon sources. Our data, together with previous predictions, support hypotheses that the P55 efflux pump functions in maintaining general metabolism or as a subunit of the Mce4 transport apparatus (catalyzing its assembly or providing cell wall integrity) to allow more efficient cholesterol uptake.

  8. Staphylococcus aureus MnhF Mediates Cholate Efflux and Facilitates Survival under Human Colonic Conditions

    PubMed Central

    Sannasiddappa, Thippeswamy H.; Hood, Graham A.; Hanson, Kevan J.; Costabile, Adele; Gibson, Glenn R.

    2015-01-01

    Resistance to the innate defenses of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common colonizer of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent antimicrobial activity. The mechanisms by which S. aureus is able to resist such defenses in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates the efflux of radiolabeled cholic acid both in S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated the survival of S. aureus in an anaerobic three-stage continuous-culture model of the human colon (gut model), which represents different anatomical areas of the large intestine. PMID:25824834

  9. Efflux in Fungi: La Pièce de Résistance

    PubMed Central

    Coleman, Jeffrey J.; Mylonakis, Eleftherios

    2009-01-01

    Pathogens must be able to overcome both host defenses and antimicrobial treatment in order to successfully infect and maintain colonization of the host. One way fungi accomplish this feat and overcome intercellular toxin accumulation is efflux pumps, in particular ATP-binding cassette transporters and transporters of the major facilitator superfamily. Members of these two superfamilies remove many toxic compounds by coupling transport with ATP hydrolysis or a proton gradient, respectively. Fungal genomes encode a plethora of members of these families of transporters compared to other organisms. In this review we discuss the role these two fungal superfamilies of transporters play in virulence and resistance to antifungal agents. These efflux transporters are responsible not only for export of compounds involved in pathogenesis such as secondary metabolites, but also export of host-derived antimicrobial compounds. In addition, we examine the current knowledge of these transporters in resistance of pathogens to clinically relevant antifungal agents. PMID:19557154

  10. Evidence for an increased rate of choline efflux across erythrocyte membranes in Alzheimer's disease.

    PubMed

    Butterfield, D A; Nicholas, M M; Markesbery, W R

    1985-07-01

    Alzheimer's disease (AD), the major dementing disorder of the elderly, is associated with cholinergic neuronal loss and decreased activity of choline acetyltransferase (CAT). Previous biophysical studies had suggested an altered conformation of membrane proteins in AD erythrocyte ghosts. Since erythrocytes have a choline transport system and cholinergic neurons are implicated in AD, the present experiments were undertaken to determine if the efflux rate of [14C]choline was altered in AD erythrocytes. The mean efflux rate constant was highly significantly increased (P less than 0.01) by greater than 25% in 9 drug-free AD patients compared to 9 sex-matched, drug-free controls of similar age. These results are discussed in terms of potential molecular mechanisms to account for cholinergic neuronal loss in AD.

  11. The plant alkaloid piperine as a potential inhibitor of ethidium bromide efflux in Mycobacterium smegmatis.

    PubMed

    Jin, Jing; Zhang, Jiyu; Guo, Na; Feng, Haihua; Li, Lei; Liang, Junchao; Sun, Kai; Wu, Xiuping; Wang, Xuelin; Liu, Mingyuan; Deng, Xuming; Yu, Lu

    2011-02-01

    Piperine, a major plant alkaloid found in black pepper (Piper nigrum) and long pepper (Piper longum), has shown potential for inhibiting the efflux pump (EP) of Staphylococcus aureus. In this study, a modulation assay showed that piperine could decrease the MIC of ethidium bromide (EtBr) twofold at 32 μg ml(-1) and fourfold at 64 μg ml(-1) against Mycobacterium smegmatis mc(2) 155 ATCC 700084. A real-time, 96-well plate fluorometric method was employed to evaluate the EP inhibition ability of piperine in M. smegmatis. Reserpine, chlorpromazine, verapamil and carbonyl cyanide m-chlorophenylhydrazone were used as positive controls. Piperine significantly enhanced accumulation and decreased the efflux of EtBr in M. smegmatis, which suggests that it has the ability to inhibit mycobacterial EPs.

  12. Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development.

    PubMed

    Moitra, K; Lou, H; Dean, M

    2011-04-01

    Stem cells possess the dual properties of self-renewal and pluripotency. Self-renewal affords these populations the luxury of self-propagation, whereas pluripotency allows them to produce the multitude of cell types found in the body. Protection of the stem cell population from damage or death is critical because these cells need to remain intact throughout the life of an organism. The principal mechanism of protection is through expression of multifunctional efflux transporters--the adenosine triphosphate-binding cassette (ABC) transporters that are the "guardians" of the stem cell population. Ironically, it has been shown that these ABC efflux pumps also afford protection to cancer stem cells (CSCs), shielding them from the adverse effects of chemotherapeutic insult. It is therefore imperative to gain a better understanding of the mechanisms involved in the resistance of stem cells to chemotherapy, which could lead to the discovery of new therapeutic targets and improvement of current anticancer strategies. PMID:21368752

  13. Leiurus quinquestriatus venom inhibits BRL 34915-induced /sup 86/Rb/sup +/ efflux from the rat portal vein

    SciTech Connect

    Quast, U.; Cook, N.S.

    1988-01-01

    The effect of the crude venom of the Israeli scorpion Leiurus quinquestriatus hebraeus on the /sup 86/Rb/sup +/ efflux stimulated by the K/sup +/ channel opener BRL 34915 in the rat portal vein was examined. Applied alone, the venom greatly increased the spontaneous mechanical activity of and the concomitant /sup 86/Rb/sup +/ efflux from the vessel. When the excitability of the vein was suppressed by the dihydropyridine calcium antagonist, PN 200-110, the /sup 86/Rb/sup +/ efflux stimulated by BRL 34915 could be shown to be inhibited by the venom. From the concentration dependence of this inhibition an IC/sub 50/ value of 0.17 +/- 0.01 mg/ml was estimated. This venom is thus the most potent blocker of BRL 34915-evoked /sup 86/Rb/sup +/ efflux reported so far. 17 references, 2 figures.

  14. Genotype-Dependent Effects of Dalcetrapib on Cholesterol Efflux and Inflammation

    PubMed Central

    Rhainds, David; Brodeur, Mathieu; Feroz Zada, Yassamin; Fouodjio, René; Provost, Sylvie; Boulé, Marie; Alem, Sonia; Grégoire, Jean C.; L’Allier, Philippe L.; Ibrahim, Reda; Guertin, Marie-Claude; Mongrain, Ian; Olsson, Anders G.; Schwartz, Gregory G.; Rhéaume, Eric

    2016-01-01

    Background— Dalcetrapib effects on cardiovascular outcomes are determined by adenylate cyclase 9 gene polymorphisms. Our aim was to determine whether these clinical end point results are also associated with changes in reverse cholesterol transport and inflammation. Methods and Results— Participants of the dal-OUTCOMES and dal-PLAQUE-2 trials were randomly assigned to receive dalcetrapib or placebo in addition to standard care. High-sensitivity C-reactive protein was measured at baseline and at end of study in 5243 patients from dal-OUTCOMES also genotyped for the rs1967309 polymorphism in adenylate cyclase 9. Cholesterol efflux capacity of high-density lipoproteins from J774 macrophages after cAMP stimulation was determined at baseline and 12 months in 171 genotyped patients from dal-PLAQUE-2. Treatment with dalcetrapib resulted in placebo-adjusted geometric mean percent increases in high-sensitivity C-reactive protein from baseline to end of trial of 18.1% (P=0.0009) and 18.7% (P=0.00001) in participants with the GG and AG genotypes, respectively, but the change was −1.0% (P=0.89) in those with the protective AA genotype. There was an interaction between the treatment arm and the genotype groups (P=0.02). Although the mean change in cholesterol efflux was similar among study arms in patients with GG genotype (mean: 7.8% and 7.4%), increases were 22.3% and 3.5% with dalcetrapib and placebo for those with AA genotype (P=0.005). There was a significant genetic effect for change in efflux for dalcetrapib (P=0.02), but not with placebo. Conclusions— Genotype-dependent effects on C-reactive protein and cholesterol efflux are supportive of dalcetrapib benefits on atherosclerotic cardiovascular outcomes in patients with the AA genotype at polymorphism rs1967309. Clinical Trials Registration— ClinicalTrials.gov; Unique Identifiers: NCT00658515 and NCT01059682. PMID:27418594

  15. Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines

    PubMed Central

    Galetti, Maricla; Petronini, Pier Giorgio; Fumarola, Claudia; Cretella, Daniele; La Monica, Silvia; Bonelli, Mara; Cavazzoni, Andrea; Saccani, Francesca; Caffarra, Cristina; Andreoli, Roberta; Mutti, Antonio; Tiseo, Marcello; Ardizzoni, Andrea; Alfieri, Roberta R.

    2015-01-01

    Background BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism. Aim The present study, performed in a panel of NSCLC cell lines expressing different ABCG2 plasma membrane levels, was designed to investigate the effect of the efflux transporter ABCG2 on intracellular gefitinib accumulation, by dissecting the contribution of uptake and efflux processes. Methods and Results Our findings indicate that gefitinib, in lung cancer cells, inhibits ABCG2 activity, as previously reported. In addition, we suggest that ABCG2 silencing or overexpression affects intracellular gefitinib content by modulating the uptake rather than the efflux. Similarly, overexpression of ABCG2 affected the expression of a number of drug transporters, altering the functional activities of nutrient and drug transport systems, in particular inhibiting MPP, glucose and glutamine uptake. Conclusions Therefore, we conclude that gefitinib is an inhibitor but not a substrate for ABCG2 and that ABCG2 overexpression may modulate the expression and activity of other transporters involved in the uptake of different substrates into the cells. PMID:26536031

  16. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa

    PubMed Central

    Askoura, Momen; Mottawea, Walid; Abujamel, Turki; Taher, Ibrahim

    2011-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen and one of the leading causes of nosocomial infections worldwide. The difficulty in treatment of pseudomonas infections arises from being multidrug resistant (MDR) and exhibits resistance to most antimicrobial agents due to the expression of different mechanisms overcoming their effects. Of these resistance mechanisms, the active efflux pumps in Pseudomonas aeruginosa that belong to the resistance nodulation division (RND) plays a very important role in extruding the antibiotics outside the bacterial cells providing a protective means against their antibacterial activity. Beside its role against the antimicrobial agents, these pumps can extrude biocides, detergents, and other metabolic inhibitors. It is clear that efflux pumps can be targets for new antimicrobial agents. Peptidomimetic compounds such as phenylalanine arginyl β-naphthylamide (PAβN) have been introduced as efflux pump inhibitors (EPIs); their mechanism of action is through competitive inhibition with antibiotics on the efflux pump resulting in increased intracellular concentration of antibiotic, hence, restoring its antibacterial activity. The advantage of EPIs is the difficulty to develop bacterial resistance against them, but the disadvantage is their toxic property hindering their clinical application. The structure activity relationship of these compounds showed other derivatives from PAβN that are higher in their activity with higher solubility in biological fluids and decreased toxicity level. This raises further questions on how can we compact Pseudomonas infections. Of particular importance, the recent resurgence in the use of older antibiotics such as polymyxins and probably applying stricter control measures in order to prevent their spread in clinical sittings. PMID:21594004

  17. Acetobacter aceti possesses a proton motive force-dependent efflux system for acetic acid.

    PubMed

    Matsushita, Kazunobu; Inoue, Taketo; Adachi, Osao; Toyama, Hirohide

    2005-07-01

    Acetic acid bacteria are obligate aerobes able to oxidize ethanol, sugar alcohols, and sugars into their corresponding acids. Among them, Acetobacter and Gluconacetobacter species have very high ethanol oxidation capacity, leading to accumulation of vast amounts of acetic acid outside the cell. Since these bacteria are able to grow in media with high concentrations of acetic acid, they must possess a specific mechanism such as an efflux pump by which they can resist the toxic effects of acetic acid. In this study, the efflux pump of Acetobacter aceti IFO 3283 was examined using intact cells and membrane vesicles. The accumulation of acetic acid/acetate in intact cells was increased by the addition of a proton uncoupler and/or cyanide, suggesting the presence of an energy-dependent efflux system. To confirm this, right-side-out and inside-out membrane vesicles were prepared from A. aceti IFO 3283, and the accumulation of acetic acid/acetate in the vesicles was examined. Upon the addition of a respiratory substrate, the accumulation of acetic acid/acetate in the right-side-out vesicles was largely decreased, while its accumulation was very much increased in the inside-out vesicles. These respiration-dependent phenomena observed in both types of membrane vesicles were all sensitive to a proton uncoupler. Acetic acid/acetate uptake in the inside-out membrane vesicles was dependent not on ATP but on the proton motive force. Furthermore, uptake was shown to be rather specific for acetic acid and to be pH dependent, because higher uptake was observed at lower pH. Thus, A. aceti IFO 3283 possesses a proton motive force-dependent efflux pump for acetic acid.

  18. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.

    PubMed

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.

  19. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux.

    PubMed

    Voloshyna, Iryna; Teboul, Isaac; Littlefield, Michael J; Siegart, Nicolle M; Turi, George K; Fazzari, Melissa J; Carsons, Steven E; DeLeon, Joshua; Reiss, Allison B

    2016-08-01

    Resveratrol is a bioactive molecule used in dietary supplements and herbal medicines and consumed worldwide. Numerous investigations by our group and others have indicated cardioprotective and anti-inflammatory properties of resveratrol. The present study explored potential atheroprotective actions of resveratrol on cholesterol efflux in cultured human macrophages exposed to plasma from systemic lupus erythematosus (SLE) patients. These results were confirmed in ApoE(-/-)Fas(-/-) double knockout mice, displaying a lupus profile with accelerated atherosclerosis. Resveratrol treatment attenuated atherosclerosis in these mice. THP-1 human macrophages were exposed to 10% pooled or individual plasma from patients who met diagnostic criteria for SLE. Expression of multiple proteins involved in reverse cholesterol transport (ABCA1, ABCG1, SR-B1, and cytochrome P450 27-hydroxylase) was assessed using QRT-PCR and Western blotting techniques. Ten-week-old ApoE(-/-)Fas(-/-) double knockout mice (n = 30) were randomly divided into two equal groups of 15, one of which received 0.01% resveratrol for 10 consecutive weeks. Atherosclerosis progression was evaluated in murine aortas. Bone marrow-derived macrophages (BMDM) were cultured and expression of cholesterol efflux proteins was analyzed in each group of mice. Our data indicate that inhibition of cholesterol efflux by lupus plasma in THP-1 human macrophages is rescued by resveratrol. Similarly, administration of resveratrol in a lupus-like murine model reduces plaque formation in vivo and augments cholesterol efflux in BMDM. This study presents evidence for a beneficial role of resveratrol in atherosclerosis in the specific setting of SLE. Therefore, resveratrol may merit investigation as an additional resource available to reduce lipid deposition and atherosclerosis in humans, especially in such vulnerable populations as lupus patients. PMID:27190277

  20. Human scavenger receptor class B type II (SR-BII) and cellular cholesterol efflux.

    PubMed Central

    Mulcahy, Jane V; Riddell, Dave R; Owen, James S

    2004-01-01

    Although studies in recombinant cells indicate that scavenger receptor class B, type I (SR-BI) can promote cholesterol efflux, investigations in transgenic mice overexpressing or deficient in SR-BI endorse its physiological function as selectively sequestering cholesteryl esters from high-density lipoproteins (HDLs). Less clear is the role of SR-BII, a splice variant of the SR-B gene that differs only in the C-terminal cytoplasmic domain. Here, we identify several putative signalling motifs in the C-terminus of human SR-BII, which are absent from SR-BI, and hypothesize that these motifs interact with signalling molecules to mobilize stored cholesteryl esters and/or promote the efflux of intracellular free cholesterol. 'Pull-down' assays using a panel of tagged SH3 (Src homology 3) domains showed that cytoplasmic SR-BII, but not cytoplasmic SR-BI, bound the SH3 domain of phospholipase C-gamma1; this interaction was not, however, detected under more physiological conditions. Specific anti-peptide antisera identified SR-BII in human monocyte/macrophage THP-1 cells and, in recombinant cells, revealed receptor localization to caveolae, a plasma membrane microdomain that concentrates signal-transducer molecules and acts as a conduit for cholesterol flux between cells and lipoproteins. Consistent with its caveolar localization, expression of human SR-BII in recombinant Chinese hamster ovary cells (CHO-SR-BII) was associated with increased HDL-mediated cholesterol efflux. Nevertheless, when CHO-SR-BII cells were pre-loaded with cholesteryl [(3)H]oleate and incubated with HDL, cholesteryl ester stores were not reduced compared with control cells. We conclude that although human SR-BII is expressed by macrophages, contains cytoplasmic signalling motifs and localizes to caveolae, its ability to stimulate cholesterol efflux does not reflect enhanced hydrolysis of stored cholesteryl esters. PMID:14570588

  1. Restoration of Chloride Efflux by Azithromycin in Airway Epithelial Cells of Cystic Fibrosis Patients▿

    PubMed Central

    Saint-Criq, Vinciane; Rebeyrol, Carine; Ruffin, Manon; Roque, Telma; Guillot, Loïc; Jacquot, Jacky; Clement, Annick; Tabary, Olivier

    2011-01-01

    Azithromycin (AZM) has shown promising anti-inflammatory properties in chronic obstructive pulmonary diseases, and clinical studies have presented an improvement in the respiratory condition of cystic fibrosis (CF) patients. The aim of this study was to investigate, in human airway cells, the mechanism by which AZM has beneficial effects in CF. We demonstrated that AZM did not have any anti-inflammatory effect on CF airway cells but restored Cl− efflux. PMID:21220528

  2. Induction of drug efflux protein expression by venlafaxine but not desvenlafaxine.

    PubMed

    Bachmeier, Corbin J; Beaulieu-Abdelahad, David; Ganey, Nowell J; Mullan, Michael J; Levin, Gary M

    2011-05-01

    Venlafaxine and its metabolite desvenlafaxine are serotonin-norepinephrine reuptake inhibitors currently prescribed for the treatment of depression. Previously, it was reported that venlafaxine is an inducer of MDR1, the gene responsible for P-glycoprotein (P-gp). The present study expanded upon these findings by examining the effect of venlafaxine and desvenlafaxine on the expression of both P-gp and the breast cancer resistance protein (BCRP) in human brain endothelial cells (HBMEC), an in vitro model of the blood-brain barrier (BBB). The HBMEC were treated for 1 h with various concentrations (500 nM to 50 µM) of venlafaxine and desvenlafaxine. Western blot analysis revealed treatment with venlafaxine significantly induced the expression of P-gp (2-fold) and BCRP (1.75-fold) in a dose-dependent manner, while treatment with desvenlafaxine had no effect on drug efflux transporter expression. To determine the functional significance of this effect, the permeability of a known drug efflux probe, rhodamine 123, across the BBB model and Caco-2 cells, a model of intestinal absorption, were examined. Treatment with venlafaxine (1-50 µM) for 1 h significantly reduced the apical-to-basolateral permeability of R123 across the BBB model (30%) and Caco-2 cell monolayers (25%), indicative of increased drug efflux transporter expression at the apical membrane. Conversely, desvenlafaxine had no effect on R123 permeability in either cellular model. These studies indicate that venlafaxine, but not desvenlafaxine is an inducer of drug efflux transporter expression, which consequently increases the potential for clinical drug-drug interactions. Therefore, based on these preliminary results, caution should be taken when prescribing venlafaxine with other P-gp substrates.

  3. Apolipoprotein M modulates erythrocyte efflux and tubular reabsorption of sphingosine-1-phosphate

    PubMed Central

    Sutter, Iryna; Park, Rebekka; Othman, Alaa; Rohrer, Lucia; Hornemann, Thorsten; Stoffel, Markus; Devuyst, Olivier; von Eckardstein, Arnold

    2014-01-01

    Sphingosine-1-phosphate (S1P) mediates several cytoprotective functions of HDL. apoM acts as a S1P binding protein in HDL. Erythrocytes are the major source of S1P in plasma. After glomerular filtration, apoM is endocytosed in the proximal renal tubules. Human or murine HDL elicited time- and dose-dependent S1P efflux from erythrocytes. Compared with HDL of wild-type (wt) mice, S1P efflux was enhanced in the presence of HDL from apoM transgenic mice, but not diminished in the presence of HDL from apoM knockout (Apom−/−) mice. Artificially reconstituted and apoM-free HDL also effectively induced S1P efflux from erythrocytes. S1P and apoM were not measurable in the urine of wt mice. Apom−/− mice excreted significant amounts of S1P. apoM was detected in the urine of mice with defective tubular endocytosis because of knockout of the LDL receptor-related protein, chloride-proton exchanger ClC-5 (Clcn5−/−), or the cysteine transporter cystinosin. Urinary levels of S1P were significantly elevated in Clcn5−/− mice. In contrast to Apom−/− mice, these mice showed normal plasma concentrations for apoM and S1P. In conclusion, HDL facilitates S1P efflux from erythrocytes by both apoM-dependent and apoM-independent mechanisms. Moreover, apoM facilitates tubular reabsorption of S1P from the urine, however, with no impact on S1P plasma concentrations. PMID:24950692

  4. CraA, a Major Facilitator Superfamily Efflux Pump Associated with Chloramphenicol Resistance in Acinetobacter baumannii▿

    PubMed Central

    Roca, I.; Marti, S.; Espinal, P.; Martínez, P.; Gibert, I.; Vila, J.

    2009-01-01

    Acinetobacter baumannii has been increasingly associated with hospital-acquired infections, and the presence of multidrug resistance strains is of great concern to clinicians. A. baumannii is thought to possess a great deal of intrinsic resistance to several antimicrobial agents, including chloramphenicol, although the mechanisms involved in such resistance are not well understood. In this work, we have identified a major facilitator superfamily efflux pump present in most A. baumannii strains, displaying strong substrate specificity toward chloramphenicol. PMID:19581458

  5. Drug efflux by a small multidrug resistance protein is inhibited by a transmembrane peptide.

    PubMed

    Poulsen, Bradley E; Deber, Charles M

    2012-07-01

    Drug-resistant bacteria use several families of membrane-embedded transporters to remove antibiotics from the cell. One such family is the small multidrug resistance proteins (SMRs) that, because of their relatively small size (ca. 110 residues with four transmembrane [TM] helices), must form (at least) dimers to efflux drugs. Here, we use a Lys-tagged synthetic peptide with exactly the same sequence as TM4 of the full-length SMR Hsmr from Halobacterium salinarum [TM4 sequence: AcA(Sar)(3)-VAGVVGLALIVAGVVVLNVAS-KKK (Sar = N-methylglycine)] to compete with and disrupt the native TM4-TM4 interactions believed to constitute the locus of Hsmr dimerization. Using a cellular efflux assay of the fluorescent SMR substrate ethidium bromide, we determined that bacterial cells containing Hsmr are able to remove cellular ethidium via first-order exponential decay with a rate constant (k) of 10.1 × 10(-3) ± 0.7 × 10(-3) s(-1). Upon treatment of the cells with the TM4 peptide, we observed a saturable ~60% decrease in the efflux rate constant to 3.7 × 10(-3) ± 0.2 × 10(-3) s(-1). In corresponding experiments with control peptides, including scrambled sequences and a sequence with d-chirality, a decrease in ethidium efflux either was not observed or was marginal, likely from nonspecific effects. The designed peptides did not evoke bacterial lysis, indicating that they act via the α-helicity and membrane insertion propensities of the native TM4 helix. Our overall results suggest that this approach could conceivably be used to design hydrophobic peptides for disruption of key TM-TM interactions of membrane proteins and represent a valuable route to the discovery of new therapeutics.

  6. Inflammatory Regulation of ATP Binding Cassette Efflux Transporter Expression and Function in Microglia

    PubMed Central

    Gibson, Christopher J.; Hossain, Muhammad M.; Richardson, Jason R.

    2012-01-01

    ATP-binding cassette (ABC) efflux transporters, including multidrug resistance protein 1 (Mdr1), breast cancer resistance protein (Bcrp), and multidrug resistance-associated proteins (Mrps) extrude chemicals from the brain. Although ABC transporters are critical for blood-brain barrier integrity, less attention has been placed on the regulation of these proteins in brain parenchymal cells such as microglia. Prior studies demonstrate that inflammation after lipopolysaccharide (LPS) treatment alters transporter expression in the livers of mice. Here, we sought to determine the effects of inflammation on the expression and function of transporters in microglia. To test this, the expression and function of ABC efflux transport proteins were quantified in mouse BV-2 microglial cells in response to activation with LPS. Intracellular retention of fluorescent rhodamine 123, Hoechst 33342, and calcein acetoxymethyl ester was increased in LPS-treated microglia, suggesting that the functions of Mdr1, Bcrp, and Mrps were decreased, respectively. LPS reduced Mdr1, Bcrp, and Mrp4 mRNA and protein expression between 40 and 70%. Conversely, LPS increased expression of Mrp1 and Mrp5 mRNA and protein. Immunofluorescent staining confirmed reduced Bcrp and Mrp4 and elevated Mrp1 and Mrp5 protein in activated microglia. Pharmacological inhibition of nuclear factor κB (NF-κB) transcriptional signaling attenuated down-regulation of Mdr1a mRNA and potentiated up-regulation of Mrp5 mRNA in LPS-treated cells. Together, these data suggest that LPS stimulates microglia and impairs efflux of prototypical ABC transporter substrates by altering mRNA and protein expression, in part through NF-κB signaling. Decreased transporter efflux function in microglia may lead to the retention of toxic chemicals and aberrant cell-cell communication during neuroinflammation. PMID:22942241

  7. AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii.

    PubMed

    Ruzin, Alexey; Keeney, David; Bradford, Patricia A

    2005-02-01

    Transposon mutagenesis of a clinical isolate of Morganella morganii, G1492 (tigecycline MIC of 4 microg/ml), yielded two insertion knockout mutants for which tigecycline MICs were 0.03 microg/ml. Transposon insertions mapped to acrA, which is constitutively overexpressed in G1492, suggesting a role of the AcrAB efflux pump in decreased susceptibility to tigecycline in M. morganii.

  8. Structure and function of efflux pumps that confer resistance to drugs.

    PubMed Central

    Borges-Walmsley, M Ines; McKeegan, Kenneth S; Walmsley, Adrian R

    2003-01-01

    Resistance to therapeutic drugs encompasses a diverse range of biological systems, which all have a human impact. From the relative simplicity of bacterial cells, fungi and protozoa to the complexity of human cancer cells, resistance has become problematic. Stated in its simplest terms, drug resistance decreases the chance of providing successful treatment against a plethora of diseases. Worryingly, it is a problem that is increasing, and consequently there is a pressing need to develop new and effective classes of drugs. This has provided a powerful stimulus in promoting research on drug resistance and, ultimately, it is hoped that this research will provide novel approaches that will allow the deliberate circumvention of well understood resistance mechanisms. A major mechanism of resistance in both microbes and cancer cells is the membrane protein-catalysed extrusion of drugs from the cell. Resistant cells exploit proton-driven antiporters and/or ATP-driven ABC (ATP-binding cassette) transporters to extrude cytotoxic drugs that usually enter the cell by passive diffusion. Although some of these drug efflux pumps transport specific substrates, many are transporters of multiple substrates. These multidrug pumps can often transport a variety of structurally unrelated hydrophobic compounds, ranging from dyes to lipids. If we are to nullify the effects of efflux-mediated drug resistance, we must first of all understand how these efflux pumps can accommodate a diverse range of compounds and, secondly, how conformational changes in these proteins are coupled to substrate translocation. These are key questions that must be addressed. In this review we report on the advances that have been made in understanding the structure and function of drug efflux pumps. PMID:13678421

  9. Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy

    PubMed Central

    Hoosain, Famida G.; Choonara, Yahya E.; Tomar, Lomas K.; Kumar, Pradeep; Tyagi, Charu; du Toit, Lisa C.; Pillay, Viness

    2015-01-01

    The efficient noninvasive treatment of neurodegenerative disorders is often constrained by reduced permeation of therapeutic agents into the central nervous system (CNS). A vast majority of bioactive agents do not readily permeate into the brain tissue due to the existence of the blood-brain barrier (BBB) and the associated P-glycoprotein efflux transporter. The overexpression of the MDR1 P-glycoprotein has been related to the occurrence of multidrug resistance in CNS diseases. Various research outputs have focused on overcoming the P-glycoprotein drug efflux transporter, which mainly involve its inhibition or bypassing mechanisms. Studies into neurodegenerative disorders have shown that the P-glycoprotein efflux transporter plays a vital role in the progression of schizophrenia, with a noted increase in P-glycoprotein function among schizophrenic patients, thereby reducing therapeutic outcomes. In this review, we address the hypothesis that methods employed in overcoming P-glycoprotein in cancer and other disease states at the level of the BBB and intestine may be applied to schizophrenia drug delivery system design to improve clinical efficiency of drug therapies. In addition, the current review explores polymers and drug delivery systems capable of P-gp inhibition and modulation. PMID:26491671

  10. Role of Novel Multidrug Efflux Pump Involved in Drug Resistance in Klebsiella pneumoniae

    PubMed Central

    Srinivasan, Vijaya Bharathi; Singh, Bharat Bhushan; Priyadarshi, Nitesh; Chauhan, Neeraj Kumar; Rajamohan, Govindan

    2014-01-01

    Background Multidrug resistant Klebsiella pneumoniae have caused major therapeutic problems worldwide due to the emergence of the extended-spectrum β-lactamase producing strains. Although there are >10 major facilitator super family (MFS) efflux pumps annotated in the genome sequence of the K. pneumoniae bacillus, apparently less is known about their physiological relevance. Principal Findings Insertional inactivation of kpnGH resulting in increased susceptibility to antibiotics such as azithromycin, ceftazidime, ciprofloxacin, ertapenem, erythromycin, gentamicin, imipenem, ticarcillin, norfloxacin, polymyxin-B, piperacillin, spectinomycin, tobramycin and streptomycin, including dyes and detergents such as ethidium bromide, acriflavine, deoxycholate, sodium dodecyl sulphate, and disinfectants benzalkonium chloride, chlorhexidine and triclosan signifies the wide substrate specificity of the transporter in K. pneumoniae. Growth inactivation and direct fluorimetric efflux assays provide evidence that kpnGH mediates antimicrobial resistance by active extrusion in K. pneumoniae. The kpnGH isogenic mutant displayed decreased tolerance to cell envelope stressors emphasizing its added role in K. pneumoniae physiology. Conclusions and Significance The MFS efflux pump KpnGH involves in crucial physiological functions besides being an intrinsic resistance determinant in K. pneumoniae. PMID:24823362

  11. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance

    PubMed Central

    Fernández, Lucía

    2012-01-01

    Summary: The substantial use of antibiotics in the clinic, combined with a dearth of new antibiotic classes, has led to a gradual increase in the resistance of bacterial pathogens to these compounds. Among the various mechanisms by which bacteria endure the action of antibiotics, those affecting influx and efflux are of particular importance, as they limit the interaction of the drug with its intracellular targets and, consequently, its deleterious effects on the cell. This review evaluates the impact of porins and efflux pumps on two major types of resistance, namely, mutational and adaptive types of resistance, both of which are regarded as key phenomena in the global rise of antibiotic resistance among pathogenic microorganisms. In particular, we explain how adaptive and mutational events can dramatically influence the outcome of antibiotic therapy by altering the mechanisms of influx and efflux of antibiotics. The identification of porins and pumps as major resistance markers has opened new possibilities for the development of novel therapeutic strategies directed specifically against these mechanisms. PMID:23034325

  12. Fibroblast growth factor 21 enhances cholesterol efflux in THP-1 macrophage-derived foam cells.

    PubMed

    Shang, Wei; Yu, Xuejing; Wang, Honglian; Chen, Tielin; Fang, Ying; Yang, Xianggui; Zhou, Puhui; Nie, Fang; Zhou, Qin; Zhou, Jianzhong

    2015-01-01

    Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator. The present study aimed to investigate the effect of FGF21 on cholesterol efflux and the expression of ATP binding cassette (ABC) A1 and G1 in human THP-1 macrophage-derived foam cells. Furthermore, the present study aimed to investigate the role of the liver X receptor (LXR) α in this process. A model of oxidized low-density lipoprotein-induced foam cells from human THP-1 cells was established. The effect of FGF21 on cholesterol efflux was analyzed using a liquid scintillation counter. The expression of ABCA1 and ABCG1 was determined using quantitative polymerase chain reaction and western blot analyses. FGF21 was found to enhance apolipoprotein A1- and high-density lipoprotein-mediated cholesterol efflux. FGF21 was also observed to increase the mRNA and protein expression of ABCA1 and ABCG1. Furthermore, LXRα-short interfering RNA attenuated the stimulatory effects induced by FGF21. These findings suggest that FGF21 may have a protective effect against atherosclerosis by enhancing cholesterol efflux through the induction of LXRα-dependent ABCA1 and ABCG1 expression.

  13. Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae

    PubMed Central

    Rosch, Jason W.; Gao, Geli; Ridout, Granger; Wang, Yong-Dong; Tuomanen, Elaine I.

    2009-01-01

    Summary The ability of bacteria to sense and respond to both environmental and intracellular metal concentrations plays an important role in pathogenesis. The acquisition of manganese is vital for the virulence of several bacterial species. Although manganese uptake systems have been well studied in bacteria, no manganese efflux system has yet been identified. In this study we have identified a cation diffusion facilitator (CDF) protein (Sp1552) of unknown substrate specificity that functions as a manganese export system in Streptococcus pneumoniae. We designated the gene for this manganese efflux system mntE and found that the mutant strain was highly sensitive to manganese stress. Although the mutant was more resistant to oxidative stress and produced more H2O2 and pili, it had reduced virulence in a murine model of infection, indicating that manganese export plays a role in host pathogenesis. There was a distinct differential transcriptional response to extracellular and intracellular manganese accumulation. Our study indicates that manganese efflux is required for invasive disease and may provide a useful antimicrobial target to devise future therapeutics. PMID:19226324

  14. Oxygen-dependent proton efflux in cyanobacteria (blue-green algae). [Anabaena variabilis

    SciTech Connect

    Scherer, S.; Stuerzl, E.; Boeger, P.

    1984-05-01

    The oxygen-dependent proton efflux (in the dark) of intact cells of Anabaena variabilis and four other cyanobacteria (blue-green algae) was investigated. In contrast to bacteria and isolated mitochondria, an H/sup +//e ratio (= protons translocated per electron transported) of only 0.23 to 0.35 and a P/e ratio of 0.8 to 1.5 were observed, indicative of respiratory electron transport being localized essentially on the thylakoids, not on the cytoplasmic membrane. Oxygen-induced acidification of the medium was sensitive to cyanide and the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Inhibitors such as 2,6-dinitrophenol and vanadate exhibited a significant decrease in the H/sup +//e ratio. After the oxygen pulse, electron transport started immediately, but proton efflux lagged 40 to 60 s behind, a period also needed before maximum ATP pool levels were attained. The authors suggest that proton efflux in A. variabilis is due to a proton-translocating ATP hydrolase (ATP-consuming ATPase) rather than to respiratory electron transport located on the cytoplasmic membrane.

  15. Membrane protein CNNM4–dependent Mg2+ efflux suppresses tumor progression

    PubMed Central

    Funato, Yosuke; Yamazaki, Daisuke; Mizukami, Shin; Du, Lisa; Kikuchi, Kazuya; Miki, Hiroaki

    2014-01-01

    Intracellular Mg2+ levels are strictly regulated; however, the biological importance of intracellular Mg2+ levels and the pathways that regulate them remain poorly understood. Here, we determined that intracellular Mg2+ is important in regulating both energy metabolism and tumor progression. We determined that CNNM4, a membrane protein that stimulates Mg2+ efflux, binds phosphatase of regenerating liver (PRL), which is frequently overexpressed in malignant human cancers. Biochemical analyses of cultured cells revealed that PRL prevents CNNM4-dependent Mg2+ efflux and that regulation of intracellular Mg2+ levels by PRL and CNNM4 is linked to energy metabolism and AMPK/mTOR signaling. Indeed, treatment with the clinically available mTOR inhibitor rapamycin suppressed the growth of cancer cells in which PRL was overexpressed. In ApcΔ14/+ mice, which spontaneously form benign polyps in the intestine, deletion of Cnnm4 promoted malignant progression of intestinal polyps to adenocarcinomas. IHC analyses of tissues from patients with colon cancer demonstrated an inverse relationship between CNNM4 expression and colon cancer malignancy. Together, these results indicate that CNNM4-dependent Mg2+ efflux suppresses tumor progression by regulating energy metabolism. PMID:25347473

  16. Efflux of potassium from isolated rod outer segments: a photic effect

    PubMed Central

    Cavaggioni, A.; Sorbi, R. T.; Turini, S.

    1973-01-01

    1. Illumination of the isolated outer segments of rod photoreceptors loaded with 42K or 86Rb reduces the efflux of these ions. 2. During the perfusion of the isolated rod outer segments with a solution containing only 2·36 mM-Na the effect of light is absent, and the amplitude of the photic effect is linearly related to the logarithm of the extracellular Na concentration. 3. In darkness, raising the concentration of K in the fluid of perfusion gives an increase of the efflux of 86Rb and increasing the extracellular concentration of Ca yields a retention. The efflux of 86Rb and 42K is greater in darkness when sucrose or choline substitute for Na. 4. It is suggested that in darkness the isolated outer segments are permeable both to Na and to K. Light appears to decrease the permeability for Na ions. There is no evidence that the permeability for K ions is modified by light. PMID:4543342

  17. Retinoid regulated macrophage cholesterol efflux involves the steroidogenic acute regulatory protein

    PubMed Central

    Manna, Pulak R.

    2016-01-01

    Elimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317). The data presented in this article evaluate the importance of the steroidogenic acute regulatory protein (StAR) in retinoid mediated macrophage cholesterol efflux. Overexpression of StAR in mouse RAW 264.7 macrophages increased the effects of both all-trans retinoic acid (atRA) and 9-cis RA on cholesterol efflux, suggesting StAR enhances the efficacy of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) ligands. Additional data revealed that atRA enhances (Bu)2cAMP induced StAR and ATP-binding cassette transporter A1 protein levels. Treatment of macrophages transfected with an LXRE reporter plasmid (pLXREx3-Luc) was found to induce the effects of RAR and RXR analogs on LXR activity. PMID:27081671

  18. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens.

    PubMed

    Andersen, Jody L; He, Gui-Xin; Kakarla, Prathusha; K C, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F

    2015-02-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.

  19. Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake.

    PubMed

    Mitani-Ueno, Namiki; Yamaji, Naoki; Ma, Jian Feng

    2011-07-01

    The accumulation of silicon (Si) differs greatly with plant species and cultivars due to different ability of the roots to take up Si. In Si accumulating plants such as rice, barley and maize, Si uptake is mediated by the influx (Lsi1) and efflux (Lsi2) transporters. Here we report isolation and functional analysis of two Si efflux transporters (CmLsi2-1 and CmLsi2-2) from two pumpkin (Cucurbita moschata Duch.) cultivars contrasting in Si uptake. These cultivars are used for rootstocks of bloom and bloomless cucumber, respectively. Different from mutations in the Si influx transporter CmLsi1, there was no difference in the sequence of either CmLsi2 between two cultivars. Both CmLsi2-1 and CmLsi2-2 showed an efflux transport activity for Si and they were expressed in both the roots and shoots. These results confirm our previous finding that mutation in CmLsi1, but not in CmLsi2-1 and CmLsi2-2 are responsible for bloomless phenotype resulting from low Si uptake.

  20. Double Potential Pulse Chronocoulometry for Detection of Plasma Membrane Cholesterol Efflux at Disk Platinum Microelectrodes

    PubMed Central

    West, Richard H.; Lu, Hui; Shaw, Kendrick; Chiel, Hillel J.; Kelley, Thomas J.; Burgess, James D.

    2016-01-01

    A double potential pulse scheme is reported for observation of cholesterol efflux from the plasma membrane of a single neuron cell. Capillary Pt disk microelectrodes having a thin glass insulator allow the 10 μm diameter electrode and cell to be viewed under optical magnification. The electrode, covalently functionalized with cholesterol oxidase, is positioned in contact with the cell surface resulting in enzyme catalyzed cholesterol oxidation and efflux of cholesterol from the plasma membrane at the electrode contact site. Enzymatically generated hydrogen peroxide accumulates at the electrode/cell interface during a 5 s hold-time and is oxidized during application of a potential pulse. A second, replicate potential pulse is applied 0.5 s after the first potential pulse to gauge background charge prior to significant accumulation of hydrogen peroxide. The difference in charge passed between the first and second potential pulse provides a measure of hydrogen peroxide generated by the enzyme and is an indication of the cholesterol efflux. Control experiments for bare Pt microelectrodes in contact with the cell plasma membrane show difference charge signals in the range of about 7–10 pC. Enzyme-modified electrodes in contact with the plasma membrane show signals in the range of 16–26 pC. PMID:27330196

  1. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    PubMed Central

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  2. Pharmacophore generation of 2-substituted benzothiazoles as AdeABC efflux pump inhibitors in A. baumannii.

    PubMed

    Yilmaz, S; Altinkanat-Gelmez, G; Bolelli, K; Guneser-Merdan, D; Over-Hasdemir, M U; Yildiz, I; Aki-Yalcin, E; Yalcin, I

    2014-01-01

    RND family efflux pumps are important for multidrug resistance in Gram-negative bacteria. To date no efflux pump inhibitors for clinical use have been found, so developing the specific inhibitors of this pump system will be beneficial for the treatment of infections caused by these multidrug-resistant pathogens. A set of BSN-coded 2-substituted benzothiazoles were tested alone and in combination with ciprofloxacin (CIP) against the RND family efflux pump AdeABC overexpressor Acinetobacter baumannii SbMox-2 strain. The results indicated that the BSN compounds did not have antimicrobial activity when tested alone. However, if they were applied in combination with CIP, it was observed that the antibiotic had antimicrobial activity against the tested pathogen, possessing a minimum inhibitory concentration value that could be utilized in clinical treatment. A 3D-common features pharmacophore model was applied by using the HipHop method and the generated pharmacophore hypothesis revealed that the hydrogen bond acceptor property of nitrogen in the thiazole ring and the oxygen of the amide substituted at the second position of the benzothiazole ring system were significant for binding to the target protein. Moreover, three hydrophobic aromatic features were found to be essential for inhibitory activity. PMID:24905472

  3. Iron efflux from oligodendrocytes is differentially regulated in gray and white matter.

    PubMed

    Schulz, Katrin; Vulpe, Chris D; Harris, Leah Z; David, Samuel

    2011-09-14

    Accumulation of iron occurs in the CNS in several neurodegenerative diseases. Iron is essential for life but also has the ability to generate toxic free radicals if not properly handled. Iron homeostasis at the cellular level is therefore important to maintain proper cellular function, and its dysregulation can contribute to neurodegenerative diseases. Iron export, a key mechanism to maintain proper levels in cells, occurs via ferroportin, a ubiquitously expressed transmembrane protein that partners with a ferroxidase. A membrane-bound form of the ferroxidase ceruloplasmin is expressed by astrocytes in the CNS and regulates iron efflux. We now show that oligodendrocytes use another ferroxidase, called hephaestin, which was first identified in enterocytes in the gut. Mice with mutations in the hephaestin gene (sex-linked anemia mice) show iron accumulation in oligodendrocytes in the gray matter, but not in the white matter, and exhibit motor deficits. This was accompanied by a marked reduction in the levels of the paranodal proteins contactin-associated protein 1 (Caspr) and reticulon-4 (Nogo A). We show that the sparing of iron accumulation in white matter oligodendrocytes in sex-linked anemia mice is due to compensatory upregulation of ceruloplasmin in these cells. This was further confirmed in ceruloplasmin/hephaestin double-mutant mice, which show iron accumulation in both gray and white matter oligodendrocytes. These data indicate that gray and white matter oligodendrocytes can use different iron efflux mechanisms to maintain iron homeostasis. Dysregulation of such efflux mechanisms leads to iron accumulation in the CNS. PMID:21917813

  4. Fibroblast growth factor 21 enhances cholesterol efflux in THP-1 macrophage-derived foam cells.

    PubMed

    Shang, Wei; Yu, Xuejing; Wang, Honglian; Chen, Tielin; Fang, Ying; Yang, Xianggui; Zhou, Puhui; Nie, Fang; Zhou, Qin; Zhou, Jianzhong

    2015-01-01

    Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator. The present study aimed to investigate the effect of FGF21 on cholesterol efflux and the expression of ATP binding cassette (ABC) A1 and G1 in human THP-1 macrophage-derived foam cells. Furthermore, the present study aimed to investigate the role of the liver X receptor (LXR) α in this process. A model of oxidized low-density lipoprotein-induced foam cells from human THP-1 cells was established. The effect of FGF21 on cholesterol efflux was analyzed using a liquid scintillation counter. The expression of ABCA1 and ABCG1 was determined using quantitative polymerase chain reaction and western blot analyses. FGF21 was found to enhance apolipoprotein A1- and high-density lipoprotein-mediated cholesterol efflux. FGF21 was also observed to increase the mRNA and protein expression of ABCA1 and ABCG1. Furthermore, LXRα-short interfering RNA attenuated the stimulatory effects induced by FGF21. These findings suggest that FGF21 may have a protective effect against atherosclerosis by enhancing cholesterol efflux through the induction of LXRα-dependent ABCA1 and ABCG1 expression. PMID:25334019

  5. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders.

    PubMed

    Qosa, Hisham; Miller, David S; Pasinelli, Piera; Trotti, Davide

    2015-12-01

    The strength of the blood-brain barrier (BBB) in providing protection to the central nervous system from exposure to circulating chemicals is maintained by tight junctions between endothelial cells and by a broad range of transporter proteins that regulate exchange between CNS and blood. The most important transporters that restrict the permeability of large number of toxins as well as therapeutic agents are the ABC transporters. Among them, P-gp, BCRP, MRP1 and MRP2 are the utmost studied. These efflux transporters are neuroprotective, limiting the brain entry of neurotoxins; however, they could also restrict the entry of many therapeutics and contribute to CNS pharmacoresistance. Characterization of several regulatory pathways that govern expression and activity of ABC efflux transporters in the endothelium of brain capillaries have led to an emerging consensus that these processes are complex and contain several cellular and molecular elements. Alterations in ABC efflux transporters expression and/or activity occur in several neurological diseases. Here, we review the signaling pathways that regulate expression and transport activity of P-gp, BCRP, MRP1 and MRP2 as well as how their expression/activity changes in neurological diseases. This article is part of a Special Issue entitled SI: Neuroprotection.

  6. Pharmacophore generation of 2-substituted benzothiazoles as AdeABC efflux pump inhibitors in A. baumannii.

    PubMed

    Yilmaz, S; Altinkanat-Gelmez, G; Bolelli, K; Guneser-Merdan, D; Over-Hasdemir, M U; Yildiz, I; Aki-Yalcin, E; Yalcin, I

    2014-01-01

    RND family efflux pumps are important for multidrug resistance in Gram-negative bacteria. To date no efflux pump inhibitors for clinical use have been found, so developing the specific inhibitors of this pump system will be beneficial for the treatment of infections caused by these multidrug-resistant pathogens. A set of BSN-coded 2-substituted benzothiazoles were tested alone and in combination with ciprofloxacin (CIP) against the RND family efflux pump AdeABC overexpressor Acinetobacter baumannii SbMox-2 strain. The results indicated that the BSN compounds did not have antimicrobial activity when tested alone. However, if they were applied in combination with CIP, it was observed that the antibiotic had antimicrobial activity against the tested pathogen, possessing a minimum inhibitory concentration value that could be utilized in clinical treatment. A 3D-common features pharmacophore model was applied by using the HipHop method and the generated pharmacophore hypothesis revealed that the hydrogen bond acceptor property of nitrogen in the thiazole ring and the oxygen of the amide substituted at the second position of the benzothiazole ring system were significant for binding to the target protein. Moreover, three hydrophobic aromatic features were found to be essential for inhibitory activity.

  7. Focus on the Outer Membrane Factor OprM, the Forgotten Player from Efflux Pumps Assemblies

    PubMed Central

    Phan, Gilles; Picard, Martin; Broutin, Isabelle

    2015-01-01

    Antibiotics have been used extensively during several decades and we are now facing the emergence of multidrug resistant strains. It has become a major public concern, urging the need to discover new strategies to combat them. Among the different ways used by bacteria to resist antibiotics, the active efflux is one of the main mechanisms. In Gram-negative bacteria the efflux pumps are comprised of three components forming a long edifice crossing the complete cell wall from the inside to the outside of the cell. Blocking these pumps would permit the restoration of the effectiveness of the current antibiotherapy which is why it is important to increase our knowledge on the different proteins involved in these complexes. A tremendous number of experiments have been performed on the inner membrane protein AcrB from Escherichia coli and, to a lesser extent, the protein partners forming the AcrAB-TolC pump, but less information is available concerning the efflux pumps from other virulent Gram-negative bacteria. The present review will focus on the OprM outer membrane protein from the MexAB-OprM pump of Pseudomonas aeruginosa, highlighting similarities and differences compare to the archetypal AcrAB-TolC in terms of structure, function, and assembly properties. PMID:27025640

  8. An Arg-Gly-Asp peptide stimulates Ca2+ efflux from osteoclast precursors through a novel mechanism

    NASA Technical Reports Server (NTRS)

    Yamakawa, K.; Duncan, R.; Hruska, K. A.

    1994-01-01

    We examined the effect of a peptide containing the Arg-Gly-Asp (RGD) sequence on 45Ca2+ efflux from osteoclast precursors. 45Ca(2+)-loaded osteoclast precursors were treated with GRGDSP (170 microM) for 10 min after 30 min of basal perfusion with a bicarbonate-containing buffer. GRGDSP significantly increased fractional efflux of Ca2+ from treated cells compared with vehicle-treated cells (P < 0.01) or cells treated with up to 200 micrograms/ml of a control peptide containing GRGESP. The effect of RGD was sustained for 15 min after the peptide was removed from the perfusate, but control levels of Ca2+ efflux returned by 1 h. The Ca2+ efflux effect of GRGDSP was most likely due to activation of the plasma membrane Ca(2+)-adenosinetriphosphatase (Ca(2+)-ATPase) pump, as indicated by its inhibition with vanadate and a calmodulin antagonist, N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide, and the absence of an effect of Na+/Ca2+ exchange inhibition. An inhibitor of cyclic nucleotide-dependent protein kinases, N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (0.1 mM), failed to inhibit GRGDSP-stimulated Ca2+ efflux. However, genistein and herbimycin A, inhibitors of protein-tyrosine kinases, blocked Ca2+ efflux stimulated by GRGDSP. The results indicate that RGD sequences of matrix proteins may stimulate Ca2+ efflux from osteoclasts through activation of protein-tyrosine kinases and suggest that GRGDSP-stimulated Ca2+ efflux is mediated via the plasma membrane Ca(2+)-ATPase.

  9. Fluorescence-Based Flow Sorting in Parallel with Transposon Insertion Site Sequencing Identifies Multidrug Efflux Systems in Acinetobacter baumannii

    PubMed Central

    Cain, Amy K.; Huang, TaoTao; Liu, Qi; Elbourne, Liam D. H.; Boinett, Christine J.; Brzoska, Anthony J.; Li, Liping; Ostrowski, Martin; Nhu, Nguyen Thi Khanh; Nhu, Tran Do Hoang; Baker, Stephen; Paulsen, Ian T.

    2016-01-01

    ABSTRACT Multidrug efflux pumps provide clinically significant levels of drug resistance in a number of Gram-negative hospital-acquired pathogens. These pathogens frequently carry dozens of genes encoding putative multidrug efflux pumps. However, it can be difficult to determine how many of these pumps actually mediate antimicrobial efflux, and it can be even more challenging to identify the regulatory proteins that control expression of these pumps. In this study, we developed an innovative high-throughput screening method, combining transposon insertion sequencing and cell sorting methods (TraDISort), to identify the genes encoding major multidrug efflux pumps, regulators, and other factors that may affect the permeation of antimicrobials, using the nosocomial pathogen Acinetobacter baumannii. A dense library of more than 100,000 unique transposon insertion mutants was treated with ethidium bromide, a common substrate of multidrug efflux pumps that is differentially fluorescent inside and outside the bacterial cytoplasm. Populations of cells displaying aberrant accumulations of ethidium were physically enriched using fluorescence-activated cell sorting, and the genomic locations of transposon insertions within these strains were determined using transposon-directed insertion sequencing. The relative abundance of mutants in the input pool compared to the selected mutant pools indicated that the AdeABC, AdeIJK, and AmvA efflux pumps are the major ethidium efflux systems in A. baumannii. Furthermore, the method identified a new transcriptional regulator that controls expression of amvA. In addition to the identification of efflux pumps and their regulators, TraDISort identified genes that are likely to control cell division, cell morphology, or aggregation in A. baumannii. PMID:27601573

  10. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    PubMed

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect.

  11. [Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field].

    PubMed

    Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua

    2015-01-01

    A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.

  12. Blockade of voltage-dependent sup 42 K efflux from rat brain synaptosome by minaprine and tetrahydroaminoacridine

    SciTech Connect

    Chaki, Shigeyuki; Muramatsu, Makoto; Otomo, Susumu )

    1991-01-01

    The effect of minaprine (3-(2-morpholinoethylamino)-4-methyl-6-phenylpyridazine) on the K{sup +} channels was studied by means of {sup 42}K efflux from rat brain synaptosomes, comparing the effects of 4-aminopyridine and 9-amino-1,2,3,4-tetrahydroacridine (THA). {sup 42}K efflux from rat brain synaptosomes was classified into five components: a resting component (R), a rapidly inactivating, voltage-dependent component (T), a slowly inactivating, voltage-dependent component (S) and a voltage-dependent, Ca{sup 2+}-dependent component which is divided into a fast phase (C{sub T}) and a slower phase (C{sub S}). 4-Aminopyridine selectively inhibited {sup 42}K efflux of component T. THA blocked both S and T components. The inhibitory effect of THA on the {sup 42}K efflux of component S was quite pronounced compared with that of component T. Minaprine inhibited the {sup 42}K efflux of components S and T but the inhibitory effect on component S was observed with a lower dose of minaprine than that needed for the effect on component T. Minaprine had no effect on the Ca{sup 2+}-dependent component while THA blocked component C{sub T}. {sup 42}K efflux of the resting component was not changed by minaprine, THA or 4-aminopyridine. These results suggest that minaprine blocks Ca{sup 2+} independent voltage-dependent K{sup +} channel is involved in the pharmacological actions of minaprine.

  13. 14 CFR 271.4 - Carrier costs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... place will be evaluated: (1) For costs attributable to the carrier's flying operations (direct expenses... altitude at which the carrier must fly to the designated hub; and (v) Other operational elements...

  14. Natural Carriers for siRNA Delivery.

    PubMed

    Karunaratne, D Nedra; Jafari, Mousa; Ranatunga, R J K Udayana; Siriwardhana, Asitha

    2015-01-01

    This review is based on carriers of natural origin such as polysaccharides, proteins, and cell derived entities which have been used for delivery of siRNA. To realize the therapeutic potential of a delivery system, the role of the carrier is of utmost importance. Historical aspects of viral vectors, the first carriers of genes are briefly outlined. Chitosan, one of the extensively experimented carriers, alginates and other polysaccharides have shown success in siRNA delivery. Peptides of natural origin and mimics thereof have emerged as another versatile carrier. Exosomes and mini cells of cellular origin are the newest entrants to the area of siRNA delivery and probably the closest one can get to a natural carrier. In many of the carriers, modifications have provided better efficiency in delivery. The salient features of the carriers and their advantages and disadvantages are also reviewed.

  15. Soil CO2 efflux in a sand grassland: contribution by root, mycorrhizal and basal respiration components

    NASA Astrophysics Data System (ADS)

    Papp, Marianna; Balogh, János; Pintér, Krisztina; Cserhalmi, Dóra; Nagy, Zoltán

    2014-05-01

    Grasslands play an important role in global carbon cycle because of their remarkable extension and carbon storage capacity. Soil respiration takes a major part in the carbon cycle of the ecosystems; ratio of its autotrophic and heterotrophic components is important also when considering their sensitivity to environmental drivers. The aim of the study was to estimate the contribution by root, mycorrhizal and basal components to total soil CO2 efflux. The study was carried out in the semi-arid sandy grassland dominated by Festuca pseudovina at the Kiskunság National Park in Hungary (Bugac site) where C-flux measurements have been going on since 2002. The soil CO2 effluxes were measured in the following treatments: a./ control, b./ root-exclusion, c./ root and mycorrhiza exclusion by using 80 cm long 15 cm inner diameter PVC tubes and micro-pore inox meshes. Inox mesh was used to exclude roots, but let the mycorrhiza filaments to grow into the tubes. 10 soil cores were excavated, sieved, then root-free soil was packed back layer by layer into the cores giving 6 and 4 repetitions in b and c treatments respectively. Basal respiration is referred to as the heterotrophic respiration without influence of roots or mycorrhiza. Difference between root-exclusion and root and mycorrhiza exclusion treatment gave the value of mycorrhizal respiration and control (non-disturbed) plots the total soil CO2 efflux. The contribution by the above components was evaluated. Soil CO2 efflux was measured continuously by using an automated open system of 10 soil respiration chambers. Data was collected in every two hours from each treatment (one of the chambers recorded basal respiration, 3 chambers were settled on root-excluded treatments and 6 chambers measured control plots). Chambers were moved in every 2 weeks between the repetitions of the treatments. Soil CO2 efflux (mycorrhiza-free, root free, control) data were fitted using a soil respiration model, where soil temperature, soil

  16. Nek7 is an essential mediator of NLRP3 activation downstream of potassium efflux

    PubMed Central

    He, Yuan; Zeng, Melody Y.; Yang, Dahai; Motro, Benny; Núñez, Gabriel

    2016-01-01

    Inflammasomes are intracellular protein complexes that drive the activation of inflammatory caspases1. To date, four inflammasomes involving NLRP1, NLRP3, NLRC4 and AIM2 have been described that recruit the common adaptor ASC to activate caspase-1, leading to the secretion of mature IL-1β and IL-182,3. The NLRP3 inflammasome has been implicated in the pathogenesis of several acquired inflammatory diseases4,5 as well as Cryopyrin-associated periodic fever syndromes (CAPS) caused by inherited NLRP3 mutations6,7. Potassium efflux is a common step that is essential for NLRP3 inflammasome activation induced by multiple stimuli8,9. Despite extensive investigation, the molecular mechanism leading to NLRP3 activation in response to potassium efflux remains unknown. We report here the identification of Nek7, a member of the family of mammalian NIMA-related kinases (Neks)10, as an NLRP3-binding protein that acts downstream of potassium efflux to regulate NLRP3 oligomerization and activation. In the absence of Nek7, caspase-1 activation and IL-1β release were abrogated in response to signals that activate NLRP3, but not NLRC4 or AIM2 inflammasome. NLRP3-activating stimuli promoted the NLRP3-Nek7 interaction in a process dependent on potassium efflux. NLRP3 associated with the catalytic domain of Nek7, but the catalytic activity of Nek7 was dispensable for activation of the NLRP3 inflammasome. Activated macrophages formed a high-molecular-mass NLRP3-Nek7 complex, which along with ASC oligomerization and ASC speck formation were abrogated in the absence of Nek7. Nek7 was required for macrophages harboring the CAPS-associated NLRP3R258W activating mutation to activate caspase-1. Mouse chimeras reconstituted with wild-type, Nek7−/− or Nlrp3−/− hematopoietic cells revealed that Nek7 was required for NLRP3 inflammasome activation in vivo. These studies demonstrate that Nek7 is an essential protein that acts downstream of potassium efflux to mediate NLRP3 inflammasome

  17. Protein carriers of conjugate vaccines

    PubMed Central

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  18. New mitochondrial carriers: an overview.

    PubMed

    Arco, A Del; Satrústegui, J

    2005-10-01

    The transport of metabolites, nucleotides and cofactors across the mitochondrial inner membrane is performed by members of mitochondrial carrier family (MCF). These proteins share marked structural features that have made feasible the functional characterization of numerous MCs in the last years. The MCs responsible for transport activities in mitochondria known for decades such as glutamate uptake or ATP-Mg/Pi exchange have recently been identified as well as novel carriers such as those involved in S-adenosylmethionine or thiamine pyrophosphate uptake. Here, after a brief review of the novel data on structural characteristics and import mechanisms of MCF members, we present an exhaustive compilation of human MC sequences, including previously characterized carriers, together with their respective Saccharomyces cerevisiae orthologues, ordered according to the phylogenetic analysis of el Moualij and co-workers [Yeast (1997) 13: 573-581]. We have detected the existence of at least 49 human MC sequences, including those of yet unknown function. An overview of novel MCF members functionally characterized in recent years in mammals and in yeast genomes is presented.

  19. Spacelab carrier complement thermal design and performance

    NASA Astrophysics Data System (ADS)

    Bancroft, S.; Key, R.; Kittredge, S.

    1992-07-01

    The present discussion of the Spacelab carrier complement, which encompasses a Module Carrier, a Module-Pallet Carrier, and a Multiplexer/Demultiplexer Pallet, gives attention to both active and passive thermal performance capabilities, and presents ground testing and analytical results obtained to date. An account is given of the prospective use of a Spacelab Multipurpose Experiment Support Structure.

  20. 8 CFR 217.6 - Carrier agreements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under...

  1. 8 CFR 217.6 - Carrier agreements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under...

  2. 8 CFR 217.6 - Carrier agreements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under...

  3. 8 CFR 217.6 - Carrier agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under...

  4. 8 CFR 217.6 - Carrier agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Carrier agreements. 217.6 Section 217.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS VISA WAIVER PROGRAM § 217... may notify a carrier of the existence of a basis for termination of a carrier agreement under...

  5. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF TRANSPORTATION RULES OF PRACTICE PROCEDURES IN MOTOR CARRIER REVENUE PROCEEDINGS Intercity Bus... calendar year, the dollar amounts of total system operating revenues for each such carrier shall be arrayed... total issue traffic revenue is to its total system revenues, and the percent that each carrier's...

  6. Responsible implementation of expanded carrier screening

    PubMed Central

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-01-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105

  7. 14 CFR 221.2 - Carrier's duty.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS TARIFFS General § 221.2 Carrier's duty. (a) Must file tariffs. (1) Except as provided in paragraph... carrier or foreign air carrier, when through service and through rates shall have been established, and... collect or receive a greater or less or different compensation for foreign air transportation or for...

  8. Spacelab carrier complement thermal design and performance

    NASA Technical Reports Server (NTRS)

    Bancroft, S.; Key, R.; Kittredge, S.

    1992-01-01

    The present discussion of the Spacelab carrier complement, which encompasses a Module Carrier, a Module-Pallet Carrier, and a Multiplexer/Demultiplexer Pallet, gives attention to both active and passive thermal performance capabilities, and presents ground testing and analytical results obtained to date. An account is given of the prospective use of a Spacelab Multipurpose Experiment Support Structure.

  9. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Study carriers. 1139.21 Section 1139.21... Industry § 1139.21 Study carriers. (a) For the purposes of this proceeding the “study carriers” shall... and/or charges. (b) To corroborate the selection of the above study carriers, and to provide a...

  10. 49 CFR 1139.21 - Study carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Study carriers. 1139.21 Section 1139.21... Industry § 1139.21 Study carriers. (a) For the purposes of this proceeding the “study carriers” shall... and/or charges. (b) To corroborate the selection of the above study carriers, and to provide a...

  11. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  12. Non-permeable substrate carrier for electroplating

    DOEpatents

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  13. Non-permeable substrate carrier for electroplating

    SciTech Connect

    Abas, Emmanuel Chua; Chen, Chen-an; Ma, Diana Xiaobing; Ganti, Kalyana; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor

    2015-12-29

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  14. The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli.

    PubMed

    Zhang, Yiliang; Xiao, Minfeng; Horiyama, Tsukasa; Zhang, Yinfeng; Li, Xuechen; Nishino, Kunihiko; Yan, Aixin

    2011-07-29

    Drug efflux represents an important protection mechanism in bacteria to withstand antibiotics and environmental toxic substances. Efflux genes constitute 6-18% of all transporters in bacterial genomes, yet the expression and functions of only a handful of them have been studied. Among the 20 efflux genes encoded in the Escherichia coli K-12 genome, only the AcrAB-TolC system is constitutively expressed. The expression, activities, and physiological functions of the remaining efflux genes are poorly understood. In this study we identified a dramatic up-regulation of an additional efflux pump, MdtEF, under the anaerobic growth condition of E. coli, which is independent of antibiotic exposure. We found that expression of MdtEF is up-regulated more than 20-fold under anaerobic conditions by the global transcription factor ArcA, resulting in increased efflux activity and enhanced drug tolerance in anaerobically grown E. coli. Cells lacking mdtEF display a significantly decreased survival rate under the condition of anaerobic respiration of nitrate. Deletion of the genes responsible for the biosynthesis of indole, tnaAB, or replacing nitrate with fumarate as the terminal electron acceptor during the anaerobic respiration restores the decreased survival of ΔmdtEF cells. Moreover, ΔmdtEF cells are susceptible to indole nitrosative derivatives, a class of toxic byproducts formed and accumulated within E. coli when the bacterium respires nitrate under anaerobic conditions. Taken together, we conclude that the multidrug efflux pump MdtEF is up-regulated during the anaerobic physiology of E. coli to protect the bacterium from nitrosative damage through expelling the nitrosyl indole derivatives out of the cells.

  15. A Fluorescent Microplate Assay Quantifies Bacterial Efflux and Demonstrates Two Distinct Compound Binding Sites in AcrB

    PubMed Central

    Ferrari, Annette; Rijnbrand, R.; Erwin, Alice L.

    2015-01-01

    A direct assay of efflux by Escherichia coli AcrAB-TolC and related multidrug pumps would have great value in discovery of new Gram-negative antibiotics. The current understanding of how efflux is affected by the chemical structure and physical properties of molecules is extremely limited, derived from antibacterial data for compounds that inhibit growth of wild-type E. coli. We adapted a previously described fluorescent efflux assay to a 96-well microplate format that measured the ability of test compounds to compete for efflux with Nile Red (an environment-sensitive fluor), independent of antibacterial activity. We show that Nile Red and the lipid-sensitive probe DiBAC4-(3) [bis-(1,3-dibutylbarbituric acid)-trimethine oxonol] can quantify efflux competition in E. coli. We extend the previous findings that the tetracyclines compete with Nile Red and show that DiBAC4-(3) competes with macrolides. The extent of the competition shows a modest correlation with the effect of the acrB deletion on MICs within the compound sets for both dyes. Crystallographic studies identified at least two substrate binding sites in AcrB, the proximal and distal pockets. High-molecular-mass substrates bound the proximal pocket, while low-mass substrates occupied the distal pocket. As DiBAC4-(3) competes with macrolides but not with Nile Red, we propose that DiBAC4-(3) binds the proximal pocket and Nile Red likely binds the distal site. In conclusion, competition with fluorescent probes can be used to study the efflux process for diverse chemical structures and may provide information as to the site of binding and, in some cases, enable rank-ordering a series of related compounds by efflux. PMID:25645845

  16. Development of a Cell-Based, High-Throughput Screening Assay for Cholesterol Efflux Using a Fluorescent Mimic of Cholesterol

    PubMed Central

    Zhang, Jun; Cai, Sutang; Peterson, Blake R.; Kris-Etherton, Penny M.

    2011-01-01

    Abstract Reverse cholesterol transport is the process by which extrahepatic cells, including macrophage-derived foam cells in arterial atherosclerotic plaque, transport excessive cholesterol back to the liver for bile acid synthesis and excretion, thus lowering the peripheral lipid burden. Cholesterol efflux from peripheral cells is the first step in this process, and finding drugs and interventions that promote this event is an important endeavor. Radioisotope-labeled cholesterol traditionally has been employed in measuring efflux efficiency, but this reagent has limitations for high-throughput screening. We developed an alternative method to measure cholesterol efflux in macrophage-derived foam cells using a novel fluorescent cholesterol mimic comprising the Pennsylvania Green fluorophore, attached by a linker containing a glutamic acid residue, to a derivative of N-alkyl-3β-cholesterylamine. Compared with the traditional radioisotope-based assay, this fluorescence-based assay gave similar results in the presence of known modulators of cholesterol efflux, such as cyclic AMP, and different cholesterol acceptors. When the fluorescent probe was employed in a high-throughput screening format, a variety of chemicals and bioactive compounds with known and unknown effects on cholesterol efflux could be tested simultaneously by plate-reader in a short period of time. Treatment of THP-1-derived macrophages with inhibitors of the membrane transporter ATP-binding cassette A1, such as glyburide or a specific antibody, significantly reduced the export of this fluorescent compound, indicating that ATP-binding cassette A1 represents the primary mediator of its cellular efflux. This fluorescent mimic of cholesterol provides a safe, sensitive, and reproducible alternative to radioactive assays in efflux experiments and has great potential as a valuable tool when incorporated into a drug discovery program. PMID:21050070

  17. Assessment of 5-hydroxytryptamine efflux in rat brain during a mild, moderate and severe serotonin-toxicity syndrome.

    PubMed

    Zhang, Gongliang; Krishnamoorthy, Swapna; Ma, Zhiyuan; Vukovich, Nick P; Huang, Xupei; Tao, Rui

    2009-08-01

    Serotonin (5-hydroxytryptamine; 5-HT)-toxicity syndrome, an iatrogenic brain disorder induced by excessive efflux of 5-HT, has received much attention because of increasing incidents of serotonergic antidepressants. However, the neural mechanism by which extracellular 5-HT is elevated to a toxic level for the syndrome remains to be determined. The goal of the present study was to test the hypothesis that extracellular 5-HT is composed of two component effluxes responsible for distinct aspects of the syndrome. The first set of experiments was to characterize the syndrome by measuring changes in neuromuscular signs, body-core temperature and mortality rate. Our results indicate that the syndrome severity can be categorized into mild, moderate and severe levels. The second set of experiments was to determine a threshold of extracellular 5-HT for induction of each level of the syndrome. Our results demonstrate that there were an 11-fold increase in the mild syndrome and an over 55-fold increase in the severe syndrome. In the last series of experiments, the excessive increases in 5-HT were pharmacologically separated into primary and secondary component effluxes with the 5-HT2A receptor antagonists cyproheptadine and ketanserin and NMDA receptor antagonist (+)-MK-801. Our results suggest that the primary component efflux was caused by direct drug effects on 5-HT biosynthetic and metabolic pathways and secondary efflux ascribed to indirect drug effect on a positive-feedback circuit involving 5-HT2A and NMDA receptors. In summary, the primary efflux could be an initial cause for the induction of the syndrome while the secondary efflux might involve deterioration of the syndrome.

  18. Comparison of effects of cromakalim and pinacidil on mechanical activity and 86Rb efflux in dog coronary arteries

    SciTech Connect

    Masuzawa, K.; Asano, M.; Matsuda, T.; Imaizumi, Y.; Watanabe, M. )

    1990-05-01

    Effects of two K+ channel openers, cromakalim and pinacidil, on mechanical activity and on 86Rb efflux were compared in strips of dog coronary arteries. Cromakalim and pinacidil produced the relaxation in 20.9 mM K(+)-contracted strips with a pD2 of 6.53 and 5.95, respectively. In 65.9 mM K(+)-contracted strips, high concentrations of pinacidil, but not cromakalim, produced relaxation. Ca+(+)-induced contractions in 80 mM K(+)-depolarized strips were also inhibited by pinacidil but not by cromakalim. Glibenclamide, a blocker of ATP-regulated K+ (KATP) channels, competitively antagonized the relaxant responses to cromakalim with a pA2 value of 7.62. However, the antagonism by glibenclamide of the relaxant responses to pinacidil was not a typical competitive type, suggesting the contribution of other effects than the KATP channel opening activity to the relaxant effects of pinacidil. In resting strips preloaded with 86Rb, cromakalim and pinacidil increased the basal 86Rb efflux in a dose-dependent manner. The increase in the 86Rb efflux induced by cromakalim was greater than that by pinacidil. When the effects of cromakalim and pinacidil on the 86Rb efflux were determined in the 20.9 or 65.9 mM K(+)-contracted strips, both drugs increased the 86Rb efflux. Under the same conditions nifedipine, a Ca(+)+ channel blocker, produced the relaxation that is accompanied by the decrease in 86Rb efflux. The increase in the 86Rb efflux induced by cromakalim was much greater than that by pinacidil.

  19. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    PubMed

    Saigusa, Tadashi; Aono, Yuri; Sekino, Reiko; Uchida, Takuya; Takada, Koji; Oi, Yoshiyuki; Koshikawa, Noriaki; Cools, Alexander R

    2009-12-10

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular dopamine pool and the alpha-methyl-para-tyrosine-sensitive cytosolic dopamine pool. Given the similarities between dexamphetamine and SKF38393, we hypothesized that both types of pool also contribute to the striatally applied SKF38393-induced dopamine efflux. Using in vivo microdialysis technique, we analysed the contribution of these pools to the SKF38393-induced striatal dopamine efflux in freely moving rats. The increase of dopamine efflux induced by 1.5 microg SKF38393 was largely prevented by either reserpine (5mg/kg i.p., given 24h earlier) or alpha-methyl-para-tyrosine (250 mg/kg i.p., given 2h earlier), showing that both the vesicular dopamine pool and the cytosolic dopamine pool contribute to the SKF38393-induced increase in striatal dopamine efflux. The sum of the amounts of dopamine that was sensitive to either reserpine or alpha-methyl-para-tyrosine, was greater than 100%, namely 137.6% of the basal dopamine level and 143.9% of the SKF38393-induced dopamine level, suggesting that striatally applied SKF38393 promotes the redistribution of dopamine from vesicles to the cytosol, and vice versa. The finding that the combined treatment of reserpine and alpha-methyl-para-tyrosine only inhibited the SKF38393-induced striatal dopamine efflux till 86.0% of the control, is ascribed to the notion that SKF38393 can also inhibit the re-uptake of dopamine. The latter conclusion has far-reaching consequences for studies in which the effects of SKF38393 are simply ascribed to its dopamine D1 receptor stimulation capacity.

  20. Biocheese: A Food Probiotic Carrier

    PubMed Central

    Castro, J. M.; Tornadijo, M. E.; Fresno, J. M.; Sandoval, H.

    2015-01-01

    This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The physicochemical and technological parameters influencing the quality of these products have also to be measured so as to obtain a process optimization. PMID:25802862

  1. Biocheese: a food probiotic carrier.

    PubMed

    Castro, J M; Tornadijo, M E; Fresno, J M; Sandoval, H

    2015-01-01

    This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The physicochemical and technological parameters influencing the quality of these products have also to be measured so as to obtain a process optimization. PMID:25802862

  2. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Federal Motor Carrier Safety Administration Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Announcement of advisory... Committee that provides the Agency with advice and recommendations on motor carrier safety programs...

  3. Precipitation pulse dynamics of carbon sequestration and efflux in highly weatherable soils

    NASA Astrophysics Data System (ADS)

    Barron-Gafford, G.; Minor, R.; Van Haren, J. L.; Dontsova, K.; Troch, P. A.

    2013-12-01

    Soils are the primary pool for terrestrial carbon on Earth, and loss of that carbon to the atmosphere or hydrosphere represents a significant efflux that can impact a host of other downstream processes. Soil respiration (Rsoil), the efflux of CO2 to the atmosphere, represents the major pathway by which carbon is lost from the soil system in more weathered soils. However, in newly formed soils, chemical weathering can significantly deplete soil CO2 concentrations. As vegetation colonizes these soils, multiple interacting and contradictory pathways evolve such that soil CO2 concentrations increase in response to plant inputs but are decreased through chemical reactions. Furthermore, abiotic drivers of soil temperature and moisture likely differentially affect these processes. Understanding the bio-geo-chemical drivers and feedbacks associated with soil CO2 production and efflux in the critical zone necessitates an integrated science approach, drawing on input from plant physiologists, bio- and geochemists, and hydrologists. Here, we created a series of 1-meter deep mesocosms filled with granular basalt that supported either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Use of multiple plant functional types allowed us to explore the impacts of plant structure (primarily rooting profiles) on critical zone function in terms of water and carbon exchange surrounding precipitation pulse dynamics. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 efflux in response to rainfall events of varying magnitude and intervening periods of drought. Five replicates of each were maintained under current ambient or projected (+4oC) air temperatures. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall and confirm differences among plant types and collected

  4. Characterization of a Novel Pyranopyridine Inhibitor of the AcrAB Efflux Pump of Escherichia coli

    PubMed Central

    Kwasny, Steven M.; Kim, Hong-Suk; Nguyen, Son T.; Houseweart, Chad; D'Souza, Sanjay; Walker, Graham C.; Peet, Norton P.; Nikaido, Hiroshi; Bowlin, Terry L.

    2014-01-01

    Members of the resistance-nodulation-division (RND) family of efflux pumps, such as AcrAB-TolC of Escherichia coli, play major roles in multidrug resistance (MDR) in Gram-negative bacteria. A strategy for combating MDR is to develop efflux pump inhibitors (EPIs) for use in combination with an antibacterial agent. Here, we describe MBX2319, a novel pyranopyridine EPI with potent activity against RND efflux pumps of the Enterobacteriaceae. MBX2319 decreased the MICs of ciprofloxacin (CIP), levofloxacin, and piperacillin versus E. coli AB1157 by 2-, 4-, and 8-fold, respectively, but did not exhibit antibacterial activity alone and was not active against AcrAB-TolC-deficient strains. MBX2319 (3.13 μM) in combination with 0.016 μg/ml CIP (minimally bactericidal) decreased the viability (CFU/ml) of E. coli AB1157 by 10,000-fold after 4 h of exposure, in comparison with 0.016 μg/ml CIP alone. In contrast, phenyl-arginine-β-naphthylamide (PAβN), a known EPI, did not increase the bactericidal activity of 0.016 μg/ml CIP at concentrations as high as 100 μM. MBX2319 increased intracellular accumulation of the fluorescent dye Hoechst 33342 in wild-type but not AcrAB-TolC-deficient strains and did not perturb the transmembrane proton gradient. MBX2319 was broadly active against Enterobacteriaceae species and Pseudomonas aeruginosa. MBX2319 is a potent EPI with possible utility as an adjunctive therapeutic agent for the treatment of infections caused by Gram-negative pathogens. PMID:24247144

  5. High-Density Lipoprotein Function Measurement in Human Studies: Focus on Cholesterol Efflux Capacity.

    PubMed

    Rohatgi, Anand

    2015-01-01

    A low plasma level of high-density lipoprotein (HDL) cholesterol (HDL-C) is a major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). However, several observations have highlighted the shortcomings of using cholesterol content as the sole reflection of HDL metabolism. In particular, several large randomized controlled trials of extended release niacin and cholesteryl-ester transfer protein (CETP) inhibitors on background statin therapy have failed to show improvement in ASCVD outcomes despite significant increases in HDL-C. Reverse cholesterol transport (RCT) is the principal HDL function that impacts macrophage foam cell formation and other functions such as endothelial activation of endothelial nitric oxide synthase, monocyte adhesion, and platelet aggregation. Cholesterol efflux from macrophages to plasma/serum reflects the first critical step of RCT and is considered a key anti-atherosclerotic function of HDL. Whether this function is operative in humans remains to be seen, but recent studies assessing cholesterol efflux in humans suggest that the cholesterol efflux capacity (CEC) of human plasma or serum is a potent marker of ASCVD risk. This review describes the methodology of measuring CEC ex vivo from human samples and the findings to date linking CEC to human disease. Studies to date confirm that CEC can be reliably measured using stored human blood samples as cholesterol acceptors and suggest that CEC may be a promising new biomarker for atherosclerotic and metabolic diseases. Further studies are needed to standardize measurements and clarify the role CEC may play in predicting risk of developing disease and response to therapies. PMID:25968932

  6. Efflux of glutathione and glutathione complexes from human erythrocytes in response to inorganic arsenic exposure.

    PubMed

    Yildiz, Deniz; Cakir, Yeliz

    2012-12-01

    The objective of the present study was to investigate if arsenic exposure results in glutathione efflux from human erythrocytes. Arsenite significantly depleted intracellular nonprotein thiol level in a time- and concentration-dependent manner. The intracellular nonprotein thiol level was decreased to 0.767 ± 0.0017 μmol/ml erythrocyte following exposure to 10 mM of arsenite for 4 h. Extracellular nonprotein thiol level was increased concomitantly with the intracellular decrease and reached to 0.481 ± 0.0005 μmol/ml erythrocyte in 4 h. In parallel with the change in extracellular nonprotein thiol levels, significant increases in extracellular glutathione levels were detected. Extracellular glutathione levels reached to 0.122 ± 0.0013, 0.226 ± 0.003, and 0.274 ± 0.004 μmol/ml erythrocyte with 1, 5, and 10 mM of arsenite, respectively. Dimercaptosuccinic acid treatment of supernatants significantly increased the glutathione levels measured in the extracellular media. Utilization of MK571 and verapamil, multidrug resistance-associated protein 1 and Pgp inhibitors, decreased the rate of glutathione efflux from erythrocytes suggesting a role for these membrane transporters in the process. The results of the present study indicate that human erythrocytes efflux glutathione in reduced free form and in conjugated form or forms that can be recovered with dimercaptosuccinic acid when exposed to arsenite. PMID:22890881

  7. Lactose uptake driven by galactose efflux in Streptococcus thermophilus: Evidence for a galactose-lactose antiporter

    SciTech Connect

    Hutkins, R.W.; Ponne, C. )

    1991-04-01

    Galactose-nonfermenting (Gal{sup {minus}}) Streptococcus thermophilus TS2 releases galactose into the extracellular medium when grown in medium containing excess lactose. Starved and de-energized Gal{sup {minus}} cells, however, could be loaded with galactose to levels approximately equal to the extracellular concentration (0 to 50 mM). When loaded cells were separated from the medium and resuspended in fresh broth containing 5 mM lactose, galactose efflux occurred. De-energized, galactose-loaded cells, resuspended in buffer or medium, accumulated ({sup 14}C)lactose at a greater rate and to significantly higher intracellular concentrations than unloaded cells. Uptake of lactose by loaded cells was inhibited more than that by unloaded cells in the presence of extracellular galactose, indicating that a galactose gradient was involved in the exchange system. When de-energized, galactose-loaded cells were resuspended in carbohydrate-free medium at pH 6.7, a proton motive force ({Delta}p) of 86 to 90 mV was formed, whereas de-energized, nonloaded cells maintained a {Delta}p of about 56 mV. However, uptake of lactose by loaded cells occurred when the proton motive force was abolished by the addition of an uncoupler or in the presence of a proton-translocating ATPase inhibitor. These results support the hypothesis that galactose efflux in Gal{sup {minus}} S. thermophilus is electrogenic and that the exchange reaction (lactose uptake and galactose efflux) probably occurs via an antiporter system.

  8. A novel nanoparticle formulation overcomes multiple types of membrane efflux pumps in human breast cancer cells.

    PubMed

    Prasad, Preethy; Cheng, Ji; Shuhendler, Adam; Rauth, Andrew M; Wu, Xiao Yu

    2012-04-01

    Multidrug resistance (MDR) in cancer cells can involve overexpression of different types of membrane drug efflux pumps and other drug resistance mechanisms. Hence, inhibition of one resistance mechanism may not be therapeutically effective. Previously we demonstrated a new polymer lipid hybrid nanoparticle (PLN) system was able to circumvent drug resistance of P-glycoprotein (P-gp) overexpressing breast cancer cells. The objectives of the present study were 2-fold: (1) to evaluate the ability of the PLN system to overcome two other membrane efflux pumps-multidrug resistance protein 1 (MRP1+) and breast cancer resistance protein (BCRP+) overexpressed on human breast cancer cell lines MCF7 VP (MRP1+) and MCF7 MX (BCRP+); and (2) to evaluate possible synergistic effects of doxorubicin (Dox)-mitomycin C (MMC) in these cell lines. These objectives were accomplished by measuring in vitro cellular uptake, intracellular trafficking, and cytotoxicity (using a clonogenic assay and median effect analysis), of Dox, MMC, or Dox-MMC co-loaded PLN. Treatment of MDR cells with PLN encapsulating single anticancer agents significantly enhanced cell kill compared to free Dox or MMC solutions. Dox-MMC co-loaded PLN were 20-30-folds more effective in killing MDR cells than free drugs. Co-encapsulated Dox-MMC was more effective in killing MDR cells than single agent-encapsulated PLN. Microscopic images showed perinuclear localization of fluorescently labelled PLN in all cell lines. These results are consistent with our previous results for P-gp overexpressing breast cancer cells suggesting the PLN system can overcome multiple types of membrane efflux pumps increasing the cytotoxicity of Dox-MMC at significantly lower doses than free drugs. PMID:25786718

  9. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments

    PubMed Central

    Lenstra, Wytze; Jong, Dirk; Meysman, Filip J. R.; Sapart, Célia J.; van der Veen, Carina; Röckmann, Thomas; Gonzalez, Santiago; Slomp, Caroline P.

    2016-01-01

    Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2–0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50–170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments. PMID:27560511

  10. High-Density Lipoprotein Function Measurement in Human Studies: Focus on Cholesterol Efflux Capacity

    PubMed Central

    Rohatgi, Anand

    2015-01-01

    A low plasma level of high-density lipoprotein (HDL) cholesterol (HDL-C) is a major risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). However, several observations have highlighted the shortcomings of using cholesterol content as the sole reflection of HDL metabolism. In particular, several large randomized controlled trials of extended release niacin and cholesteryl-ester transfer protein (CETP) inhibitors on background statin therapy have failed to show improvement in ASCVD outcomes despite significant increases in HDL-C. Reverse cholesterol transport (RCT) is the principal HDL function that impacts macrophage foam cell formation and other functions such as endothelial activation of endothelial nitric oxide synthase, monocyte adhesion, and platelet aggregation. Cholesterol efflux from macrophages to plasma/serum reflects the first critical step of RCT and is considered a key anti-atherosclerotic function of HDL. Whether this function is operative in humans remains to be seen, but recent studies assessing cholesterol efflux in humans suggest that the cholesterol efflux capacity (CEC) of human plasma or serum is a potent marker of ASCVD risk. This review describes the methodology of measuring CEC ex vivo from human samples and the findings to date linking CEC to human disease. Studies to date confirm that CEC can be reliably measured using stored human blood samples as cholesterol acceptors and suggest that CEC may be a promising new biomarker for atherosclerotic and metabolic diseases. Further studies are needed to standardize measurements and clarify the role CEC may play in predicting risk of developing disease and response to therapies. PMID:25968932

  11. Clonal relatedness is a predictor of spontaneous multidrug efflux pump gene overexpression in Staphylococcus aureus.

    PubMed

    Schindler, Bryan D; Jacinto, Pauline L; Buensalido, Joseph Adrian L; Seo, Susan M; Kaatz, Glenn W

    2015-05-01

    Increased expression of genes encoding multidrug resistance efflux pumps (MDR-EPs) contributes to antimicrobial agent and biocide resistance in Staphylococcus aureus. Previously identified associations between norA overexpression and spa type t002 meticillin-resistant S. aureus (MRSA), and a similar yet weaker association between mepA overexpression and type t008 meticillin-susceptible S. aureus (MSSA), in clinical isolates are suggestive of clonal dissemination. It is also possible that related strains are prone to mutations resulting in overexpression of specific MDR-EP genes. Exposure of non-MDR-EP-overexpressing clinical isolates to biocides and dyes can select for MDR-EP-overexpressing mutants. spa types t002 and t008 isolates are predominated by multilocus sequencing typing sequence types (STs) 5 and 8, respectively. In this study, non-MDR-EP gene-overexpressing clinical isolates (MRSA and MSSA) representing ST5 and ST8 were subjected to single exposures of ethidium bromide (EtBr) to select for EtBr-resistant mutants. Measurements of active EtBr transport among mutants were used to demonstrate an efflux-proficient phenotype. Using quantitative reverse-transcription PCR, it was found that EtBr-resistant mutants of ST5 and ST8 parental strains predominantly overexpressed mepA (100%) and mdeA (83%), respectively, regardless of meticillin sensitivity. Associations between clonal lineage and MDR-EP gene overexpression differed from those previously observed and suggest the latter is due to clonal spread of efflux-proficient strains. The predilection of in vitro-selected mutants of related strains to overexpress the same MDR-EP gene indicates the presence of a consistent mutational process.

  12. IRAK regulates macrophage foam cell formation by modulating genes involved in cholesterol uptake and efflux.

    PubMed

    Rana, Minakshi; Kumar, Amit; Tiwari, Rajiv Lochan; Singh, Vishal; Chandra, Tulika; Dikshit, Madhu; Barthwal, Manoj Kumar

    2016-07-01

    Interleukin-1 receptor-associated kinase-1 (IRAK1) is linked to the pathogenesis of atherosclerosis; however, its role in macrophage foam cell formation is not known. Therefore, the present study investigated the role of IRAK1 in lipid uptake, biosynthesis, and efflux in THP-1 derived macrophages and human monocyte-derived macrophages (HMDMs). Ox-LDL (40 μg/mL, 15 minutes-48 hours) treatment induced time-dependent increase in IRAK1, IRAK4, and Stat1 activation in THP-1 derived macrophages. IRAK1/4 inhibitor (INH) or IRAK1 siRNA significantly attenuated cholesterol accumulation, DiI-Ox-LDL binding, and uptake while cholesterol efflux to apoAI and HDL was enhanced in THP-1 derived macrophages and HMDMs. Ox-LDL treatment significantly increased the mRNA expression of CD36, LOX-1, SR-A, ABCA1, ABCG1, Caveolin-1, CYP27A1 while that of SR-BI was decreased. IRAK1/4 inhibition or IRAK1 knockdown, however, attenuated Ox-LDL-induced CD36 expression; augmented ABCA1 and ABCG1 expression while expression of others was unaffected in THP-1 derived macrophages and HMDMs. Moreover, IRAK1/4 inhibition had no significant effect on genes involved in lipid biosynthesis. In IRAK1/4 INH pre-treated THP-1 derived macrophages Ox-LDL-induced Stat1 phosphorylation and its binding to CD36 promoter was significantly attenuated while LXRα expression and its binding to the ABCA1/ABCG1 locus, NFATc2 activation and its binding to ABCA1 locus was enhanced. The present study thus demonstrates that IRAK regulates lipid accumulation by modulating CD36-mediated uptake and ABCA1-, ABCG1-dependent cholesterol efflux. Therefore, IRAK1 can be a potential target for preventing macrophage foam cell formation. PMID:27270491

  13. Importance of nondiffusive transport for soil CO2 efflux in a temperate mountain grassland

    NASA Astrophysics Data System (ADS)

    Roland, Marilyn; Vicca, Sara; Bahn, Michael; Ladreiter-Knauss, Thomas; Schmitt, Michael; Janssens, Ivan A.

    2015-03-01

    Soil respiration and its biotic and abiotic drivers have been an important research topic in recent years. While the bulk of these efforts has focused on the emission of CO2 from soils, the production and subsequent transport of CO2 from soil to atmosphere received far less attention. However, to understand processes underlying emissions of CO2 from terrestrial ecosystems, both processes need to be fully evaluated. In this study, we tested to what extent the transport of CO2 in a grassland site in the Austrian Alps could be modeled based on the common assumption that diffusion is the main transport mechanism for trace gases in soils. Therefore, we compared the CO2 efflux calculated from the soil CO2 concentration gradient with the CO2 efflux from chamber measurements. We used four commonly used diffusion-driven models for the flux-gradient approach. Models generally underestimated the soil chamber effluxes and their amplitudes, indicating that processes other than diffusion were responsible for the transport of CO2. We further observed that transport rates correlated well with irradiation and, below a soil moisture content of 33%, with wind speed. This suggests that mechanisms such as bulk soil air transport, due to pressure pumping or thermal expansio