Science.gov

Sample records for polarimetric interferometric sar

  1. Polarimetric Interferometric SAR: Literature Review and an Assessment of its Utility for DND: TIF Project Memorandum

    DTIC Science & Technology

    2003-09-01

    SAR : Literature Review and an Assessment of its utility for DND TIF Project.Memorandum Karim E. Mattar, Maureen L. Yeremy and Chuck Livingstone...September 2003 Canada 20031119 057 Polarimetric Interferometric SAR : Literature Review and an Assessment of its utility for DND TIF Project Memorandum Karim...Radar ( SAR ) is a recent area of research that has had significant attention from the mid-1990s. This area of research has combined the utility of two SAR

  2. Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rosen, P.; Lavalle, M.; Pi, X.; Buckley, S.; Szeliga, W.; Zebker, H.; Gurrola, E.

    2011-01-01

    The InSAR Scientific Computing Environment (ISCE) is a flexible, extensible software tool designed for the end-to-end processing and analysis of synthetic aperture radar data. ISCE inherits the core of the ROI_PAC interferometric tool, but contains improvements at all levels of the radar processing chain, including a modular and extensible architecture, new focusing approach, better geocoding of the data, handling of multi-polarization data, radiometric calibration, and estimation and correction of ionospheric effects. In this paper we describe the characteristics of ISCE with emphasis on the ionospheric modules. To detect ionospheric anomalies, ISCE implements the Faraday rotation method using quadpolarimetric images, and the split-spectrum technique using interferometric single-, dual- and quad-polarimetric images. The ability to generate co-registered time series of quad-polarimetric images makes ISCE also an ideal tool to be used for polarimetric-interferometric radar applications.

  3. Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rosen, P.; Lavalle, M.; Pi, X.; Buckley, S.; Szeliga, W.; Zebker, H.; Gurrola, E.

    2011-01-01

    The InSAR Scientific Computing Environment (ISCE) is a flexible, extensible software tool designed for the end-to-end processing and analysis of synthetic aperture radar data. ISCE inherits the core of the ROI_PAC interferometric tool, but contains improvements at all levels of the radar processing chain, including a modular and extensible architecture, new focusing approach, better geocoding of the data, handling of multi-polarization data, radiometric calibration, and estimation and correction of ionospheric effects. In this paper we describe the characteristics of ISCE with emphasis on the ionospheric modules. To detect ionospheric anomalies, ISCE implements the Faraday rotation method using quadpolarimetric images, and the split-spectrum technique using interferometric single-, dual- and quad-polarimetric images. The ability to generate co-registered time series of quad-polarimetric images makes ISCE also an ideal tool to be used for polarimetric-interferometric radar applications.

  4. Validation of Forested Inundation Extent Revealed by L-Band Polarimetric and Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Chapman, Bruce; Celi, Jorge; Hamilton, Steve; McDonald, Kyle

    2013-01-01

    UAVSAR, NASA's airborne Synthetic Aperture Radar (SAR), conducted an extended observational campaign in Central and South America in March 2013, primarily related to volcanic deformations along the Andean Mountain Range but also including a large number of flights studying other scientific phenomena. During this campaign, the L-Band SAR collected data over the Napo River in Ecuador. The objectives of this experiment were to acquire polarimetric and interferometric L-Band SAR data over an inundated tropical forest in Ecuador simultaneously with on-the-ground field work ascertaining the extent of inundation, and to then derive from this data a quantitative estimate for the error in the SAR-derived inundation extent. In this paper, we will first describe the processing and preliminary analysis of the SAR data. The polarimetric SAR data will be classified by land cover and inundation state. The interferometric SAR data will be used to identify those areas where change in inundation extent occurred, and to measure the change in water level between two observations separated by a week. Second, we will describe the collection of the field estimates of inundation, and have preliminary comparisons of inundation extent measured in the field field versus that estimated from the SAR data.

  5. EcoSAR: NASA's P-band fully polarimetric single pass interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Rincon, R. F.; Fatoyinbo, T. E.; Lee, S. K.; Sun, G.; Daniyan, O.; Harcum, M. E.

    2014-12-01

    EcoSAR is a new airborne synthetic aperture radar imaging system, developed at the NASA Goddard Space Flight Center. It is a P-band sensor that employs a non-conventional and innovative design. The EcoSAR system was designed as a multi-disciplinary instrument to image the 3-dimensional surface of the earth from a single pass platform with two antennas. EcoSAR's principal mission is to penetrate the forest canopy to return vital information about the canopy structure and estimate biomass. With a maximum bandwidth of 200 MHz in H and 120 MHz in V polarizations it can provide sub-meter resolution imagery of the study area. EcoSAR's dual antenna, 32 transmit and receive channel architecture provides a test-bed for developing new algorithms in InSAR data processing such as single pass interferometry, full polarimetry, post-processing synthesis of multiple beams, simultaneous measurement over both sides of the flight track, selectable resolution and variable incidence angle. The flexible architecture of EcoSAR will create new opportunities in radar remote sensing of forest biomass, permafrost active layer thickness, and topography mapping. EcoSAR's first test flight occurred between March 27th and April 1st, 2014 over the Andros Island in Bahamas and Corcovado and La Selva National Parks in Costa Rica. The 32 channel radar system collected about 6 TB of radar data in about 12 hours of data collection. Due to the existence of radio and TV communications in the operational frequency band, acquired data contains strong radar frequency interference, which had to be removed prior to beamforming and focusing. Precise locations of the antennas are tracked using high-rate GPS and inertial navigation units, which provide necessary information for accurate processing of the imagery. In this presentation we will present preliminary imagery collected during the test campaign, show examples of simultaneous dual track imaging, as well as a single pass interferogram. The

  6. Three-Dimensional Road Network by Fusion of Polarimetric and Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Gamba, P.; Houshmand, B.

    1998-01-01

    In this paper a fuzzy classification procedure is applied to polarimetric radar measurements, and street pixels are detected. These data are successively grouped into consistent roads by means of a dynamic programming approach based on the fuzzy membership function values. Further fusion of the 2D road network extracted and 3D TOPSAR measurements provides a powerful way to analyze urban infrastructures.

  7. Characterizing Levees using Polarimetric and Interferometric Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Dabbiru, L.; Aanstoos, J. V.; Mahrooghy, M.; Gokaraju, B.; Nobrega, R. A.; Younan, N. H.

    2011-12-01

    Monitoring the physical condition of levees is vital in order to protect them from flooding. The dynamics of subsurface water events can cause damage on levee structures which could lead to slough slides, sand boils or through seepage. Synthetic Aperture Radar (SAR) technology, due to its high spatial resolution and soil penetration capability, is a good choice to identify such problem areas so that they can be treated to avoid possible catastrophic failure. The radar polarimetric and interferometric data is capable of identifying variations in soil properties of the areas which might cause levee failure. The study area encompasses portion of levees of the lower Mississippi river in the United States. The methodology of this research is mainly categorized into two streams: 1) polarimetric data analysis and classification, and 2) interferometric analysis. Two sources of SAR imagery are used: a) quad-polarized, L-band data from Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) for polarimetric classification, and b) high resolution dual-polarized Terrasar-X data for interferometric analysis. NASA's UAVSAR imagery acquired between 2009 and 2011 are used for the analysis. The polarimetric classification is performed based on the decomposition parameters: entropy (H), anisotropy (A) and alpha (α) and the results detected slough slides on the levees and potential future slides. In the interferometric approach, the Terrasar-X SAR images acquired at different times in the year 2011 are combined into pairs to exploit the phase difference of the signals. The interferometric information is used to find evidence of potential small-scale deformations which could be pre-cursors to levee failure.

  8. Effect of Medium Symmetries on Limiting the Number of Parameters Estimated with Polarimetric SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.

    1999-01-01

    The addition of interferometric backscattering pairs to the conventional polarimetric synthetic aperture radar (SAR) data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of parameters.

  9. Effect of Medium Symmetries on Limiting the Number of Parameters Estimated with Polarimetric SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.

    1999-01-01

    The addition of interferometric backscattering pairs to the conventional polarimetric synthetic aperture radar (SAR) data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of parameters.

  10. Millimeter-wave interferometric SAR and polarimetry

    NASA Astrophysics Data System (ADS)

    Boehmsdorff, Stephan; Essen, Helmut; Schimpf, Hartmuf; Wahlen, Alfred

    1998-07-01

    Using synthetic aperture radars with appropriate signal processing algorithms is a recognized technique for remote sensing applications. A wide spectrum of radar frequencies is used and a high degree of sophistication implies polarimetric and further multichannel approaches. Each frequency band used, exhibits special sensitivities to features of the earth's surface or man-made targets. This is mostly due to the coupling of the electromagnetic waves to backscattering geometries which are related to the radarwavelength. A part of the spectrum which has been covered not very intensely is the millimeterwave region. This may be mostly due to the relatively high atmospheric absorption at millimeterwaves which obstructs the use of such sensors for long range applications. On the other hand for military applications IR-imaging sensors are widely used which suffer even more from adverse transmission properties of the atmosphere. Application of multichannel techniques as polarimetry, multifrequency techniques and interferometry are also done with more ease due to compactness of the hardware and simplicity of processing. As there exist no data which would allow to investigate the potential of multifrequency polarimetric and interferometric mmW-SAR the Millimeterwave Experimental Multifrequency Polarimetric High Resolution Interferometric Imaging System was installed into an aircraft C-160 `Transall' to gather respective data over different land scenarios. The off-line evaluation of the radar data starts with off-line track, calibration and reformatting procedures. Afterwards synthetic aperture processing is applied to these data to generate radar images for co- and cross-polarization at 35 GHz and 94 GHz. As already mentioned above, SAR-processing at millimeterwavelengths requires a considerable lower amount of sophistication in comparison with algorithms applied at lower radar-frequencies. This can mainly be attributed to the short aperture length at mm-wave frequencies

  11. Potentials of polarimetric SAR interferometry for agriculture monitoring

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Juan M.; Ballester-Berman, J. David

    2009-04-01

    This paper is aimed to define the main specifications and system requirements of a future spaceborne synthetic aperture radar (SAR) mission with polarimetric and interferometric capabilities, to be applied in agriculture monitoring. Firstly, a previous discussion concerning the applications of remote sensing to agriculture and the requirements demanded by end users is introduced. Then, a review of polarimetric SAR and interferometric SAR techniques employed in agriculture is performed in order to explore and justify the potential contributions to crop parameter retrieval of polarimetric SAR interferometry (PolInSAR). The current status of the research about PolInSAR when applied to the retrieval of biophysical parameters of agricultural crops is also addressed, covering recent advances in theoretical modeling aspects (both direct and inverse models), the validation carried out so far with indoor data, and complementary information provided by other different but related experiments. From this experience, we describe some system specifications that will be important for the success of this technique. Among them it is emphasized the need of baselines larger than usual, medium-high frequency band, and a mandatory single-pass mode for overcoming temporal decorrelation. Finally, a set of future experiments is also proposed for additional testing and confirmation of observations made so far regarding minimum baseline requirements, temporal evolution of observables and modeling issues, among others.

  12. Forest stand structure from airborne polarimetric InSAR

    NASA Astrophysics Data System (ADS)

    Balzter, H.; Saich, P.; Luckman, A. J.; Skinner, L.; Grant, J.

    2002-01-01

    Interferometric SAR at short wavelengths can be used to retrieve stand height of forests. We evaluate the precision of tree height estimation from airborne single-pass interferometric E-SAR data at X-band VV polarisation and repeat-pass L-band polarimetric data. General yield class curves were used to estimate tree height from planting year, tree species and yield class data provided by the Forest Enterprise. The data were compared to tree height estimates from X-VV single-pass InSAR and repeat-pass polarimetric InSAR at L-band acquired by DLR's E-SAR during the SHAC campaign 2000. The effect of gap structure and incidence angle on retrieval precision of tree height from interferometric SAR is analysed. Appropriate correction methods to improve tree height retrieval are proposed. The coherent microwave model CASM is used with a Lindenmayer system tree model to simulate the observed underestimation of stand height in the presence of gaps.

  13. Polarimetric differential SAR interferometry in an arid natural environment

    NASA Astrophysics Data System (ADS)

    Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred; Perissin, Daniele

    2017-07-01

    Ground deformation measurements have contributed to a better understanding of the processes and mechanisms involved in natural hazards. Those include landslides, subsidence, earthquakes and volcanic eruptions. Spaceborne Differential Interferometric Synthetic Aperture RADAR (DInSAR) is a well studied technique for measuring ground deformation. Quality of deformation measurements, however, is often degraded by decorrelation. With the advent of fully polarimetric SAR satellite sensors, polarimetric optimization techniques exploiting polarimetric diversity improve the phase quality of interferograms. In this paper, we analyzed three polarimetric optimization methods to determine the optimal one for application in an arid natural environment. We considered coherence decomposition in single and double phase center scenarios. Coherence estimation bias associated with each optimization method has been analyzed. We compared the derived displacement values with terrestrial GPS measurements. The study shows that polarimetric optimization increases the number of coherent pixels by upto 6.89% as compared with a single polarization channel. The study concludes that polarimetric optimization coupled with DInSAR analysis yields more reliable deformation results in a low coherence region.

  14. Registration of interferometric SAR images

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Vesecky, John F.; Zebker, Howard A.

    1992-01-01

    Interferometric synthetic aperture radar (INSAR) is a new way of performing topography mapping. Among the factors critical to mapping accuracy is the registration of the complex SAR images from repeated orbits. A new algorithm for registering interferometric SAR images is presented. A new figure of merit, the average fluctuation function of the phase difference image, is proposed to evaluate the fringe pattern quality. The process of adjusting the registration parameters according to the fringe pattern quality is optimized through a downhill simplex minimization algorithm. The results of applying the proposed algorithm to register two pairs of Seasat SAR images with a short baseline (75 m) and a long baseline (500 m) are shown. It is found that the average fluctuation function is a very stable measure of fringe pattern quality allowing very accurate registration.

  15. Applications of Polarimetric and Interferometric SAR to Environmental Remote Sensing and its Activities: Recent Advances in Extrawideband Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing and its Applications

    DTIC Science & Technology

    2007-02-01

    Microwave Multi - band (polarimetric) Radio-altimeters and Hyper-spectral Optical plus UWB -POL-IN/TOMO-SAR systems - - is strictly required [205-207, 243...index of refraction (or permittivity, magnetic permeability, and conductivity), the polarization state of a narrow- band (single-frequency) wave is... multi - band imaging data sets require to be fused across the entire pertinent electromagnetic spectrum [107-112, 120] within which the pertinent

  16. Unsupervised Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Dubois, Pascale; Van Zyl, Jakob; Kwok, Ronald; Chellappa, Rama

    1994-01-01

    Method of unsupervised segmentation of polarimetric synthetic-aperture-radar (SAR) image data into classes involves selection of classes on basis of multidimensional fuzzy clustering of logarithms of parameters of polarimetric covariance matrix. Data in each class represent parts of image wherein polarimetric SAR backscattering characteristics of terrain regarded as homogeneous. Desirable to have each class represent type of terrain, sea ice, or ocean surface distinguishable from other types via backscattering characteristics. Unsupervised classification does not require training areas, is nearly automated computerized process, and provides nonsubjective selection of image classes naturally well separated by radar.

  17. Unsupervised Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Dubois, Pascale; Van Zyl, Jakob; Kwok, Ronald; Chellappa, Rama

    1994-01-01

    Method of unsupervised segmentation of polarimetric synthetic-aperture-radar (SAR) image data into classes involves selection of classes on basis of multidimensional fuzzy clustering of logarithms of parameters of polarimetric covariance matrix. Data in each class represent parts of image wherein polarimetric SAR backscattering characteristics of terrain regarded as homogeneous. Desirable to have each class represent type of terrain, sea ice, or ocean surface distinguishable from other types via backscattering characteristics. Unsupervised classification does not require training areas, is nearly automated computerized process, and provides nonsubjective selection of image classes naturally well separated by radar.

  18. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; hide

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  19. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  20. Forest Structure Characterization Using JPL's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  1. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  2. Forest Structure Characterization Using JPL's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  3. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Boerner, Wolfgang-Martin

    2005-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  4. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Boerner, Wolfgang-Martin

    2005-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  5. Calibration of a polarimetric imaging SAR

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.

    1991-01-01

    Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.

  6. Unsupervised segmentation of polarimetric SAR data using the covariance matrix

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Chellappa, Rama; Dubois, Pascale C.

    1992-01-01

    A method for unsupervised segmentation of polarimetric synthetic aperture radar (SAR) data into classes of homogeneous microwave polarimetric backscatter characteristics is presented. Classes of polarimetric backscatter are selected on the basis of a multidimensional fuzzy clustering of the logarithm of the parameters composing the polarimetric covariance matrix. The clustering procedure uses both polarimetric amplitude and phase information, is adapted to the presence of image speckle, and does not require an arbitrary weighting of the different polarimetric channels; it also provides a partitioning of each data sample used for clustering into multiple clusters. Given the classes of polarimetric backscatter, the entire image is classified using a maximum a posteriori polarimetric classifier. Four-look polarimetric SAR complex data of lava flows and of sea ice acquired by the NASA/JPL airborne polarimetric radar (AIRSAR) are segmented using this technique. The results are discussed and compared with those obtained using supervised techniques.

  7. Polarimetric SAR Interferometry Evaluation in Mangroves

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  8. Measurement of Pancharatnam's phase by robust interferometric and polarimetric methods

    SciTech Connect

    Loredo, J. C.; Ortiz, O.; De Zela, F.; Weingaertner, R.

    2009-07-15

    We report on theoretical calculations and experimental observations of Pancharatnam's phase originating from arbitrary SU(2) transformations applied to polarization states of light. We have implemented polarimetric and interferometric methods, which allow us to cover the full Poincare sphere. As a distinctive feature, our interferometric array is robust against mechanical and thermal disturbances, showing that the polarimetric method is not inherently superior over the interferometric one, as previously assumed. Our strategy effectively amounts to feeding an interferometer with two copropagating beams that are orthogonally polarized with respect to each other. It can be applied to different types of standard arrays, such as a Michelson, a Sagnac, or a Mach-Zehnder interferometer. We exhibit the versatility of our arrangement by performing measurements of Pancharatnam's phases and fringe visibilities that closely fit the theoretical predictions. Our approach can be easily extended to deal with mixed states and to study decoherence effects.

  9. Software For Calibration Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce

    1994-01-01

    POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.

  10. A new method to extract forest height from repeat-pass polarimetric and interferometric radar data

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Hensley, S.; Dubayah, R.

    2012-12-01

    The objective of this paper is to present a new remote sensing method and a new physical model that will potentially enable estimating forest height and vegetation 3D structure using radar technology. The method is based on repeat-pass polarimetric-interferometric radar technique; the model is termed random-motion-over-ground (RMoG) model [1, 2]. We will describe a step-by-step procedure that will help the ecosystem community to monitor ecosystems at regional and global scale using radar data available from the forthcoming radar missions. We will show first results of forest height estimated from UAVSAR data and compared against LVIS data. We will quantify the error associated to our method. We will also discuss the improvements that we plan on including in future works. Our ultimate goal is to measure low and large biomass stocks using the large amount of radar data that will be available in the near future. The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a fully polarimetric L-band airborne radar developed at the Jet Propulsion Laboratory (JPL). UAVSAR acquires repeat-pass interferometric data for measuring vegetation structure and monitoring crustal deformations. The UAVSAR team at JPL has acquired and processed several polarimetric-interferometric (Pol-InSAR) datasets over the Harvard Forest in Massachusetts (United States) that allows testing repeat-pass Pol-InSAR technique. Pol-InSAR technique was proposed 15 years ago to estimate vegetation biomass and overcome the inherent saturation of radar backscatter versus biomass [3]. The advantage of Pol-InSAR is the ability to estimate the 3D structure of vegetation using a small number of interferometric acquisitions. In order to extract vegetation properties from Pol-InSAR UAVSAR data, we use a model of temporal-volumetric coherence, the RMoG model, suitable for repeat-pass interferometry. In the RMoG model the vegetation is idealized as a two-layer scattering scenario constituted by a

  11. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    NASA Astrophysics Data System (ADS)

    Pottier, E.

    2010-06-01

    . In order to promote the exploitation of Polarimetric Spaceborne data, as it is starting today to proliferate with the launch of these Polarimetric SAR sensors, the PolSARpro Software, developed under contract to ESA and that is a toolbox for the scientific exploitation of Polarimetric SAR and Polarimetric-Interferometric data and a tool for high-level education in radar polarimetry, has been expanded and refined to include all elements necessary for the demonstration of a number of key applications. The PolSARpro Software, that already was supporting an important range of airborne and spaceborne polarimetric data sources, supports now the following additional data sources: ALOS-PALSAR (Dual-Pol fine mode and Quad-Pol mode), TerraSAR-X (Dual-pol mode) and Radarsat-2 (Dual-Pol fine mode and Quad-Pol fine and standard modes), by offering a platform dedicated interface for E.O Scientific Investigator. A number of illustrations of key applications has been developed for the demonstration and the promotion of the Polarimetric Spaceborne missions, that are consistent with the activities incorporated in the GMES Services Element (GSE). The aim of this communication is to present the current state of the art in SAR Polarimetry ranging from theory to applications, with special emphasis in the analysis of data provided by the new Polarimetric Spaceborne SAR sensors, and samples of real polarimetric data will be presented for use in real-life examples of key applications.

  12. Remote topographic sensing using polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Schuler, Dale L.; Ainsworth, Thomas L.; Lee, Jong-Sen; Grunes, Mitchell R.; de Grandi, Gianfranco D.

    1997-12-01

    A new remote sensing technique using polarimetric synthetic aperture radar (SAR) data has been developed which can measure terrain slopes in the azimuthal, or along-track, direction. Terrain elevation maps can then be generated by integrating these slopes. The processing of both single- pass, and orthogonal two-pass, datasets is investigated. When single-pass SAR data is used elevation groundtruth must be available for at least one point of each profile formed in the azimuthal direction. When orthogonal two-pass slope data is employed, the elevation surface may be generated as an iterative solution of the Poisson equation and only a single elevation tie-point is required. The study presented uses orthogonal two-pass NASA/JPL AIRSAR P-band data as a test of the Poisson equation approach for an area in Death Valley National Park, California. The orthogonal two-pass results have been compared with a co-registered, conventional, U.S. Geological Survey product. Technique accuracy and potential applications are discussed.

  13. Polarimetric SAR Interferometry to Monitor Land Subsidence in Tehran

    NASA Astrophysics Data System (ADS)

    Sadeghi, Zahra; Valadan Zoej, Mohammad Javad; Muller, Jan-Peter

    2016-08-01

    This letter uses a combination of ADInSAR with a coherence optimization method. Polarimetric DInSAR is able to enhance pixel phase quality and thus coherent pixel density. The coherence optimization method is a search-based approach to find the optimized scattering mechanism introduced by Navarro-Sanchez [1]. The case study is southwest of Tehran basin located in the North of Iran. It suffers from a high-rate of land subsidence and is covered by agricultural fields. Usually such an area would significantly decorrelate but applying polarimetric ADInSAR it is possible to obtain a more coherent pixel coverage. A set of dual-pol TerraSAR-X images was ordered for polarimetric ADInSAR procedure. The coherence optimization method is shown to have increased the density and phase quality of coherent pixels significantly.

  14. Experiments of Tomography-Based SAR Techniques with P-Band Polarimetric Data

    NASA Astrophysics Data System (ADS)

    Lombardini, F.; Pardini, M.

    2009-04-01

    New opportunities are arising in the synthetic aperture radar (SAR) observation of forest scenarios, especially with decimetric and metric radio wavelengths, which possess the capability of penetrating into volumes. Given its capabilities in the three-dimensional imaging of the scattering properties of the observed scene, SAR Tomography (Tomo-SAR) constitutes a good candidate for the analysis of the vertical structure of the forest. In this work, the results are presented of the application of tomography-based SAR techniques to P-band airborne data over a boreal forest from the ESA BioSAR-1 project. Results of an adaptive tomographic analysis are presented, also with a low resolution dataset, which emulates a satellite acquisition. In order to mitigate the geometric perspective effects due to the poor range resolution, the principle is introduced of the application of a common band pre-filtering to tomography. Then, a coherent layer canceller is derived to possibly apply interferometric techniques conceived for single layer scenarios to two layer scenarios. Finally, a stabilized adaptive polarimetric Tomo-SAR (PolTomo-SAR) method is proposed for estimating the 3D polarimetric scattering mechanism of the scene with low distorsions.

  15. Compact polarimetric SAR product and calibration considerations for target analysis

    NASA Astrophysics Data System (ADS)

    Sabry, Ramin

    2016-10-01

    Compact polarimetric (CP) data exploitation is currently of growing interest considering the new generation of such Synthetic Aperture Radar (SAR) systems. These systems offer target detection and classification capabilities comparable to those of polarimetric SARs (PolSAR) with less stringent requirements. A good example is the RADARSAT Constellation Mission (RCM). In this paper, some characteristic CP products are described and effects of CP mode deviation from ideal circular polarization transmit on classifications are modeled. The latter is important for operation of typical CP modes (e.g., RCM). The developed model can be used to estimate the ellipticity variation from CP measured data, and hence, calibrate the classification products.

  16. Forest Height Inversion Using Dual-pol Polarimetric SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Fu, W. X.; Guo, H. D.; Xie, C.; Lu, Y. C.; Li, X. W.

    2014-03-01

    Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) has been extensively applied for forest parameter inversion over different frequencies and polarimetric conditions. So far, most research was based on full-pol SAR images with relatively small coverage. A spaceborne SAR system will have the potential for PolInSAR applications used for global forest monitoring. Spaceborne dual-pol SAR images usually have higher resolution and larger swath than full-pol mode. In this paper, forest height retrieval was attempted by PolInSAR from a L-band spaceborne dual-pol SAR pairs using HH and HV channels. The random volume over ground (RVoG) model was used to retrieve the height and the coherence optimization method was extended to the dual-pol PolInSAR, which makes use of polarimetry to enhance the quality of SAR interferograms. The three-stage process is also used in the dual-pol PolInSAR technique. Finally, the experimental test was performed for forest height estimation on the dual-pol L-band SAR data of the Saihanba forest acquired by the ALOS PALSAR sensor in 2009.

  17. MAX-91: Polarimetric SAR results on Montespertoli site

    NASA Technical Reports Server (NTRS)

    Baronti, S.; Luciani, S.; Moretti, S.; Paloscia, S.; Schiavon, G.; Sigismondi, S.

    1993-01-01

    The polarimetric Synthetic Aperture Radar (SAR) is a powerful sensor for high resolution ocean and land mapping and particularly for monitoring hydrological parameters in large watersheds. There is currently much research in progress to assess the SAR operational capability as well as to estimate the accuracy achievable in the measurements of geophysical parameters with the presently available airborne and spaceborne sensors. An important goal of this research is to improve our understanding of the basic mechanisms that control the interaction of electro-magnetic waves with soil and vegetation. This can be done both by developing electromagnetic models and by analyzing statistical relations between backscattering and ground truth data. A systematic investigation, which aims at a better understanding of the information obtainable from the multi-frequency polarimetric SAR to be used in agro-hydrology, is in progress by our groups within the framework of SIR-C/X-SAR Project and has achieved a most significant milestone with the NASA/JPL Aircraft Campaign named MAC-91. Indeed this experiment allowed us to collect a large and meaningful data set including multi-temporal multi-frequency polarimetric SAR measurements and ground truth. This paper presents some significant results obtained over an agricultural flat area within the Montespertoli site, where intensive ground measurements were carried out. The results are critically discussed with special regard to the information associated with polarimetric data.

  18. X-SAR as high-performance interferometric SAR

    NASA Astrophysics Data System (ADS)

    Werner, Marian U.; Schandl, Josef

    1995-11-01

    In April and October 1994 the X-SAR radar has been flown twice onboard the Space Shuttle, as part of the Space Radar Laboratory (SRL-1 and SRL-2). This radar payload is the first synthetic aperture radar (SAR) system of its kind in space, with three frequencies, multi- polarization, variable incidence angle and variable modes of operation. SIR-C/X-SAR, the new generation of imaging microwave remote sensing sensors from space, demonstrated successfully repeat pass interferometry in all three frequencies with a one day repeat as well as a six month repeat orbit. The major problems with the repeat orbit interferometry are the temporal target decorrelation, unsuitable baseline and different squint angles for the two passes to be processed. Therefore, for the third mission of the Space Radar Lab which shall be called SRTM (shuttle radar topographic mapper), single pass interferometry with a second receive antenna is proposed to generate a topographic map of all land surfaces between +60 degrees and -56 degrees latitude. X-SAR's 12 meter long and 40 cm wide main transmit and receive antenna is mounted directly to a tiltable part of the SIR-C antenna truss structure in the Shuttle cargo bay. The second receive antenna is 6 meters long and is mounted together with the second C-band antenna to a 31 meter long deployable boom structure perpendicular to the velocity direction to build the baseline. X-SAR is not capable of operating in a scan SAR model like SIR-C to allow continuous coverage, but will operate in a high resolution mode with a swath width of 30 - 35 km. The engineering design of the interferometric configuration for X-SAR, the requirement specifications, and the predicted performance as well as the mission operation aspects are described in this paper. SIR-C/X- SAR is a cooperative project. The SIR-C instrument was developed by NASA's Jet Propulsion Laboratory (JPL). The X-band radar (X-SAR) was developed by the Dornier and Alenia Spazio Companies for the German

  19. Derivation of terrain slope from SAR interferometric phase gradient

    NASA Technical Reports Server (NTRS)

    Wegmueller, Urs; Werner, Charles L.; Rosen, Paul A.

    1994-01-01

    The relationship between the gradient of the interferometric phase and the terrain slope, which, it is thought, would allow a derivation of the terrain slopes without phase unwrapping, is presented. A linear relationship between the interferometric phase gradient and the terrain slopes was found. A quantitative error analysis showed that only very small errors are introduced by these approximations for orbital Synthetic Aperture Radar (SAR) geometries. An example of a slope map for repeat pass interferometry from ERS-1 SAR data is given. A number of direct and indirect applications of the terrain slope are indicated: erosion and avalanche hazard studies, radiometric calibration of SAR data, and normalization of the interferometric correlation coefficient.

  20. Two microstrip arrays for interferometric SAR applications

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1993-01-01

    Two types of C-band aircraft interferometric Synthetic Aperture Radar (SAR) are being developed at JPL to measure the ocean wave characteristics. Each type requires two identical antennas with each having a long rectangular aperture to radiate fan-shaped beam(s). One type of these radars requires each of its antennas to radiate a broadside beam that will measure the target's cross-track velocity. The other type, having each of its antennas to radiate two off-broadside pointed beams, will allow the measurement of both the cross-track and the along-track velocities of the target. Because flush mounting of the antenna on the aircraft fuselage is desirable, microstrip patch array is selected for these interferometric SAR antennas. To meet the radar system requirement, each array needs a total of 76 microstrip patches which are arranged in a 38 x 2 rectangular aperture with a physical size of 1.6m x 16.5cm. To minimize the insertion loss and physical real estate of this relatively long array, a combined series/parallel feed technique is used. Techniques to suppress cross-pol radiation and to effectively utilize the RF power are also implemented. Cross-pol level of lower than -30 dB from the co-pol peak and low insertion loss of 0.36 dB have been achieved for both types of arrays. For the type of radar that requires two off-braodside pointed beams, a simple phasing technique is used to achieve this dual-beam capability with adequate antenna gain (20 dBi) and sidelobe level (-14 dB). Both radar arrays have been flight tested on aircraft with excellent antenna performance demonstrated.

  1. From Maxwell's Equations to Polarimetric SAR Images: A Simulation Approach.

    PubMed

    Sant'Anna, Sidnei J S; Da S Lacava, J C; Fernandes, David

    2008-11-19

    A new electromagnetic approach for the simulation of polarimetric SAR images is proposed. It starts from Maxwell's equations, employs the spectral domain full-wave technique, the moment method, and the stationary phase method to compute the far electromagnetic fields scattered by multilayer structures. A multilayer structure is located at each selected position of a regular rectangular grid of coordinates, which defines the scene area under imaging. The grid is determined taking into account the elementary scatter size and SAR operational parameters, such as spatial resolution, pixel spacing, look angle and platform altitude. A two-dimensional separable "sinc" function to represent the SAR spread point function is also considered. Multifrequency sets of single-look polarimetric SAR images are generated, in L-, C- and X-bands and the images are evaluated using several measurements commonly employed in SAR data analysis. The evaluation shows that the proposed simulation process is working properly, since the obtained results are in accordance with those presented in the literature. Therefore, this new approach becomes suitable for carrying out theoretical and practical studies using polarimetric SAR images.

  2. From Maxwell's Equations to Polarimetric SAR Images: A Simulation Approach

    PubMed Central

    Sant'Anna, Sidnei J. S.; da S. Lacava, J. C.; Fernandes, David

    2008-01-01

    A new electromagnetic approach for the simulation of polarimetric SAR images is proposed. It starts from Maxwell's equations, employs the spectral domain full-wave technique, the moment method, and the stationary phase method to compute the far electromagnetic fields scattered by multilayer structures. A multilayer structure is located at each selected position of a regular rectangular grid of coordinates, which defines the scene area under imaging. The grid is determined taking into account the elementary scatter size and SAR operational parameters, such as spatial resolution, pixel spacing, look angle and platform altitude. A two-dimensional separable “sinc” function to represent the SAR spread point function is also considered. Multifrequency sets of single-look polarimetric SAR images are generated, in L-, C- and X-bands and the images are evaluated using several measurements commonly employed in SAR data analysis. The evaluation shows that the proposed simulation process is working properly, since the obtained results are in accordance with those presented in the literature. Therefore, this new approach becomes suitable for carrying out theoretical and practical studies using polarimetric SAR images. PMID:27873935

  3. Land cover classification comparisons among dual polarimetric, pseudo-fully polarimetric, and fully polarimetric SAR imagery

    NASA Astrophysics Data System (ADS)

    Mishra, Bhogendra; Susaki, Junichi

    2012-10-01

    In this paper, an approach is proposed that predicts fully polarimetric data from dual polarimetric data, and then applies selected supervised algorithm for dual polarimetric, pseudo-fully polarimetric and fully polarimetric dataset for the land cover classification comparison. A regression model has been developed to predict the complex variables of VV polarimetric component and amplitude independently using corresponding complex variables and amplitude in HH and HV bands. Support vector machine (SVM)is implemented for the land cover classification. Coherency matrix and amplitude were used for all dataset for the land cover classification independently.They are used to compare the data from different perspective. Finally, a post processing technique is implemented to remove the isolated pixels appeared as a noise. AVNIR-2 optical data over the same area is used as ground truth data to access the classification accuracy.The result from SVM indicates that the fully polarimetric mode gives the maximum classification accuracy followed by pseudo-fully polarimetric and dual polarimetric datasets using coherency matrix input for fully polarimetric image and pseudo-fully polarimetric image and covariance matrix input for dual polarimetric image. Additionally, it is observed that pseudo-fully polarimetric image with amplitude input does not show the significant improvement over dual polarimetric image with same input.

  4. Initial assessment of an airborne Ku-band polarimetric SAR.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  5. Applications of interferometrically derived terrain slopes: Normalization of SAR backscatter and the interferometric correlation coefficient

    NASA Technical Reports Server (NTRS)

    Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.

    1994-01-01

    Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.

  6. Quad-Polarimetric SAR for Detection and Characterization of Icebergs

    NASA Astrophysics Data System (ADS)

    Akbari, V.; Brekke, C.; Doulgeris, A. P.; Storvold, R.; Silvertsen, A.

    2016-08-01

    This paper evaluates the performance of fully polarimetric SAR data in iceberg detection and characterization. The study aims to explore the potential of RADARSAT- 2 SAR data to detect icebergs and growlers in Svalbard that have broken off from the glaciers nearby. To be able to detect iceberg/growlers in a SAR image, a significant contrast between iceberg and background clutter is required. The sublook cross-correlation magnitude (SCM) is extracted from the complex cross-correlation between subapeture images and contrast between iceberg and sea clutter is measured. The results of target-to-clutter ratio from the SCM indicate that the sublook analysis has an impact on detection performance.

  7. Ensemble polarimetric SAR image classification based on contextual sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Lamei; Wang, Xiao; Zou, Bin; Qiao, Zhijun

    2016-05-01

    Polarimetric SAR image interpretation has become one of the most interesting topics, in which the construction of the reasonable and effective technique of image classification is of key importance. Sparse representation represents the data using the most succinct sparse atoms of the over-complete dictionary and the advantages of sparse representation also have been confirmed in the field of PolSAR classification. However, it is not perfect, like the ordinary classifier, at different aspects. So ensemble learning is introduced to improve the issue, which makes a plurality of different learners training and obtained the integrated results by combining the individual learner to get more accurate and ideal learning results. Therefore, this paper presents a polarimetric SAR image classification method based on the ensemble learning of sparse representation to achieve the optimal classification.

  8. Monitoring Surface Deformation using Polarimetric Ground Based Interferometric Radar

    NASA Astrophysics Data System (ADS)

    Legarsky, J. J.; Gomez, F.; Rosenblad, B.; Loehr, E.; Cherukumilli, S.; Deng, H.; Held, B.; Jenkins, W.

    2012-12-01

    Surface deformation monitoring using ground based interferometric radar (GBIR) measurements may be desirable for a number of applications in the earth sciences. The University of Missouri (MU) research team has ongoing efforts to use the MU GBIR for monitoring surface deformation at a number of sites. Measurements have been collected at sites requiring access by various transportation means such as using off-road vehicle, hiking, and helicopter. Once on site, initial setup takes about 10 minutes. After setup, an image may be acquired by azimuth scan about every 20 seconds. The highly portable system lends itself to rapid deployment in remote environments and repeat survey sites. The MU GBIR's high portability and fast imaging capabilities allow rapid surveying and long-term surveying potential of surface deformation. Imagery may be formed in near real time for initial quick looks. After data collection, imagery data may be further enhanced by radiometric calibration, polarimetric calibration, and time-series analysis. Imaging may be acquired at the electromagnetic spectral bands of C-band and Ku-band. Prior demonstration of millimeter and better sensitivity to deformation over the course of a day of data collects has been performed using the MU GBIR. In addition, the MU GBIR can be removed and re-positioned at the same point with geodetic-grade precision for repeat surveys. Study results and additional development progress will be presented. This project is sponsored by a grant from the National Science Foundation.

  9. Determining the coherence matrix for single look polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Geaga, Jorge V.

    2017-05-01

    The coherence matrix from the scattering matrix of a single look polarimetric SAR pixel will have an entropy of zero with the main eigenvalue being equal to the span and the other two eigenvalues being equal to zero. Each scattering matrix element from terrain scatter is a coherent sum from a large number of scatterers in a resolution cell. Entropy/alpha decomposition is only possible where the coherency matrix elements are determined from ensemble covariances. This is the case for multilook polarimetric SAR data where covariances from the exact same collection of scatterers are averaged using separate extraction filters in the SAR doppler direction. We report interesting observations from analysis of multilook SIR-C data at L and C bands from different oceans around the globe. We present a strategy for segmenting single look polarimetric TerraSAR ocean data using an algorithm we have previously developed with the averaging of the resulting like pixels used to generate coherence matrices. We give a brief discussion of desert surfaces.

  10. Canopy Height and Vertical Structure from Multibaseline Polarimetric InSAR: First Results of the 2016 NASA/ESA AfriSAR Campaign

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Hensley, S.; Lou, Y.; Saatchi, S. S.; Pinto, N.; Simard, M.; Fatoyinbo, T. E.; Duncanson, L.; Dubayah, R.; Hofton, M. A.; Blair, J. B.; Armston, J.

    2016-12-01

    In this paper we explore the derivation of canopy height and vertical structure from polarimetric-interferometric SAR (PolInSAR) data collected during the 2016 AfriSAR campaign in Gabon. AfriSAR is a joint effort between NASA and ESA to acquire multi-baseline L- and P-band radar data, lidar data and field data over tropical forests and savannah sites to support calibration, validation and algorithm development in preparation for the NISAR, GEDI and BIOMASS missions. Here we focus on the L-band UAVSAR dataset acquired over the Lope National Park in Central Gabon to demonstrate mapping of canopy height and vertical structure using PolInSAR and tomographic techniques. The Lope site features a natural gradient of forest biomass from the forest-savanna boundary (< 100 Mg/ha) to dense undisturbed humid tropical forests (> 400 Mg/ha). Our dataset includes 9 long-baseline, full-polarimetric UAVSAR acquisitions along with field and lidar data from the Laser Vegetation Ice Sensor (LVIS). We first present a brief theoretical background of the PolInSAR and tomographic techniques. We then show the results of our PolInSAR algorithms to create maps of canopy height generated via inversion of the random-volume-over-ground (RVOG) and random-motion-over-ground (RVoG) models. In our approach multiple interferometric baselines are merged incoherently to maximize the interferometric sensitivity over a broad range of tree heights. Finally we show how traditional tomographic algorithms are used for the retrieval of the full vertical canopy profile. We compare our results from the different PolInSAR/tomographic algorithms to validation data derived from lidar and field data.

  11. Recent Advances In Radar Polarimetry And Polarimetric SAR Interferometry

    DTIC Science & Technology

    2007-02-01

    Microwave Multi - band (polarimetric) Radio-altimeters and Hyper-spectral Optical plus UWB -POL- IN/TOMO-SAR systems - - is strictly required [205-207, 243...changes in the index of refraction (or permittivity, magnetic permeability, and conductivity), the polarization state of a narrow- band (single-frequency...responsive [66-70, 107-112, 95], i. e., from the FUV to the HF spectral bands . These multi - band imaging data sets require to be fused across the entire

  12. G0-WISHART Distribution Based Classification from Polarimetric SAR Images

    NASA Astrophysics Data System (ADS)

    Hu, G. C.; Zhao, Q. H.

    2017-09-01

    Enormous scientific and technical developments have been carried out to further improve the remote sensing for decades, particularly Polarimetric Synthetic Aperture Radar(PolSAR) technique, so classification method based on PolSAR images has getted much more attention from scholars and related department around the world. The multilook polarmetric G0-Wishart model is a more flexible model which describe homogeneous, heterogeneous and extremely heterogeneous regions in the image. Moreover, the polarmetric G0-Wishart distribution dose not include the modified Bessel function of the second kind. It is a kind of simple statistical distribution model with less parameter. To prove its feasibility, a process of classification has been tested with the full-polarized Synthetic Aperture Radar (SAR) image by the method. First, apply multilook polarimetric SAR data process and speckle filter to reduce speckle influence for classification result. Initially classify the image into sixteen classes by H/A/α decomposition. Using the ICM algorithm to classify feature based on the G0-Wshart distance. Qualitative and quantitative results show that the proposed method can classify polaimetric SAR data effectively and efficiently.

  13. Classification of Polarimetric SAR Image Based on the Subspace Method

    NASA Astrophysics Data System (ADS)

    Xu, J.; Li, Z.; Tian, B.; Chen, Q.; Zhang, P.

    2013-07-01

    Land cover classification is one of the most significant applications in remote sensing. Compared to optical sensing technologies, synthetic aperture radar (SAR) can penetrate through clouds and have all-weather capabilities. Therefore, land cover classification for SAR image is important in remote sensing. The subspace method is a novel method for the SAR data, which reduces data dimensionality by incorporating feature extraction into the classification process. This paper uses the averaged learning subspace method (ALSM) method that can be applied to the fully polarimetric SAR image for classification. The ALSM algorithm integrates three-component decomposition, eigenvalue/eigenvector decomposition and textural features derived from the gray-level cooccurrence matrix (GLCM). The study site, locates in the Dingxing county, in Hebei Province, China. We compare the subspace method with the traditional supervised Wishart classification. By conducting experiments on the fully polarimetric Radarsat-2 image, we conclude the proposed method yield higher classification accuracy. Therefore, the ALSM classification method is a feasible and alternative method for SAR image.

  14. Polarimetric SAR Interferometry: Investigations using EC CV-580 SAR Data

    DTIC Science & Technology

    2005-03-01

    couverture foresti~ro, los b~itimonts. et l’environnement urbain , los structures artificielles isoldes et l’estimation do la vitesse. La plupart des...new polarimetric classification approach evaluated for agricultural crops," POL-INSAR Workshop, httrj://earth.esa.intpolinsar, Frascati, Italy

  15. Interferometric SAR imaging by transmitting stepped frequency chaotic noise signals

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhua; Gu, Xiang; Zhai, Wenshuai; Dong, Xiao; Shi, Xiaojin; Kang, Xueyan

    2015-10-01

    Noise radar has been applied in many fields since it was proposed more than 50 years ago. However, it has not been applied to interferometric SAR imaging yet as far as we know. This paper introduces our recent work on interferometric noise radar. An interferometric SAR system was developed which can transmit both chirp signal and chaotic noise signal (CNS) at multiple carrier frequencies. An airborne experiment with this system by transmitting both signals was carried out, and the data were processed to show the capability of interferometric SAR imaging with CNS. The results shows that although the interferometric phase quality of CNS is degraded due to the signal to noise ratio (SNR) is lower compared with that of chirp signal, we still can get satisfied DEM after multi-looking processing. Another work of this paper is to apply compressed sensing (CS) theory to the interferometric SAR imaging with CNS. The CS theory states that if a signal is sparse, then it can be accurately reconstructed with much less sampled data than that regularly required according to Nyquist Sampling Theory. To form a structured random matrix, if the transmitted signal is of fixed waveform, then random subsampling is needed. However, if the transmitted signal is of random waveform, then only uniform subsampling is needed. This is another advantage of noise signal. Both the interferometric phase images and the DEMs by regular method and by CS method are processed with results compared. It is shown that the degradation of interferometric phases due to subsampling is larger than that of amplitude image.

  16. Detection of land degradation with polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Farr, Tom G.; Van Zyl, Jakob J.

    1992-01-01

    Multispectral radar polarimeter data were collected over the Manix Basin Area of the Mojave desert using an airborne SAR. An analysis of the data reveals unusual polarization responses which are attributed to the formation of wind ripples on the surfaces of fields that have been abandoned for more than 5 years. This hypothesis has been confirmed through field observations, and a second-order perturbation model is shown to effectively model the polarization responses. The results demonstrate the usefulness of remote sensing techniques for the study of land degradation at synoptic scales.

  17. Classification And Monitoring Of Salt Marsh Habitats With Multi-Polarimetric Airborne SAR

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2013-12-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi- frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  18. Accounting For Gains And Orientations In Polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1992-01-01

    Calibration method accounts for characteristics of real radar equipment invalidating standard 2 X 2 complex-amplitude R (receiving) and T (transmitting) matrices. Overall gain in each combination of transmitting and receiving channels assumed different even when only one transmitter and one receiver used. One characterizes departure of polarimetric Synthetic Aperture Radar (SAR) system from simple 2 X 2 model in terms of single parameter used to transform measurements into format compatible with simple 2 X 2 model. Data processed by applicable one of several prior methods based on simple model.

  19. Process for combining multiple passes of interferometric SAR data

    DOEpatents

    Bickel, Douglas L.; Yocky, David A.; Hensley, Jr., William H.

    2000-11-21

    Interferometric synthetic aperture radar (IFSAR) is a promising technology for a wide variety of military and civilian elevation modeling requirements. IFSAR extends traditional two dimensional SAR processing to three dimensions by utilizing the phase difference between two SAR images taken from different elevation positions to determine an angle of arrival for each pixel in the scene. This angle, together with the two-dimensional location information in the traditional SAR image, can be transformed into geographic coordinates if the position and motion parameters of the antennas are known accurately.

  20. Interferometric SAR Persistent Scatterer Analysis of Mayon volcano, Albay, Philippines

    NASA Astrophysics Data System (ADS)

    Bato, M. P.; Lagmay, A. A.; Paguican, E. R.

    2011-12-01

    Persistent Scatterer Interferometry (PSInSAR) is a new method of interferometric processing that overcomes the limitations of conventional Synthetic Aperture Radar differential interferometry (DInSAR) and is capable of detecting millimeter scale ground displacements. PSInSAR eliminate anomalies due to atmospheric delays and temporal and geometric decorrelation eminent in tropical regions by exploiting the temporal and spatial characteristics of radar interferometric signatures derived from time-coherent point-wise targets. In this study, PSInSAR conducted in Mayon Volcano, Albay Province, Bicol, Philippines, reveal tectonic deformation passing underneath the volcano. Using 47 combined ERS and ENVISAT ascending and descending imageries, differential movement between the northern horst and graben on which Mayon volcano lies, is as much as 2.5 cm/year in terms of the line-of-sight (LOS) change in the radar signal. The northern horst moves in the northwest direction whereas the graben moves mostly downward. PSInSAR results when coupled with morphological interpretation suggest left-lateral oblique-slip movement of the northern bounding fault of the Oas graben. The PSInSAR results are validated with dGPS measurements. This work presents the functionality of PSInSAR in a humid tropical environment and highlights the probable landslide hazards associated with an oversteepened volcano that may have been further deformed by tectonic activity.

  1. Rice growth monitoring using simulated compact polarimetric C band SAR

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Li, Kun; Liu, Long; Shao, Yun; Brisco, Brian; Li, Weiguo

    2014-12-01

    In this study, a set of nine compact polarimetric (CP) images were simulated from polarimetric RADARSAT-2 data acquired over a test site containing two types of rice field in Jiangsu province, China. The types of rice field in the test site were (1) transplanted hybrid rice fields, and (2) direct-sown japonica rice fields. Both types have different yields and phenological stages. As a first step, the two types of rice field were distinguished with 94% and 86% accuracy respectively through analyzing CP synthetic aperture radar (SAR) observations and their behavior in terms of scattering mechanisms during the rice growth season. The focus was then on phenology retrieval for each type of rice field. A decision tree (DT) algorithm was built to fulfill the precise retrieval of rice phenological stages, in which seven phenological stages were discriminated. The key criterion for each phenological stage was composed of 1-4 CP parameters, some of which were first used for rice phenology retrieval and found to be very sensitive to rice phenological changes. The retrieval results were verified at parcel level for a set of 12 stands of rice and up to nine observation dates per stand. This gave an accuracy of 88-95%. Throughout the phenology retrieval process, only simulated CP data were used, without any auxiliary data. These results demonstrate the potential of CP SAR for rice growth monitoring applications.

  2. Design and calibration of the PHARUS polarimetric airborne SAR

    SciTech Connect

    Snoeij, P.; Hoogeboom, P.; Koomen, P.J.

    1996-11-01

    The PHARUS system uses a phased array antenna with solid state amplifiers. The project consisted of two phases, a definition phase and a realization phase. The definition phase consisted of the actual realization of a SAR research system called PHARS, which made its first successful testflight in November 1990. The research system is based on the concept of a wide beamwidth antenna, rigidly fixed to the aircraft. Pulse compression and a high PRF ensure sufficient sensitivity in this system, which is equipped with a 160 Watt peak pulse power solid state transmitter. The processing is done off-line. In the realization phase the polarimetric PHARUS system has been developed. The design is based on the experience gained with the PHARS system. The system uses a phased array with dual polarized patch radiators and is equipped with solid state amplifiers. This paper will give an overview of the PHARUS design and operational use. Apart from the use as an advanced polarimetric airborne SAR, there is the perspective of using PHARUS as a demonstrator for ESA`s future ASAR system. 2 refs., 2 figs., 1 tab.

  3. SAR Tomogrpahy Polarimetric Parameters Performance Enhancement by Compressed Sensing via Atomic Decomposition

    NASA Astrophysics Data System (ADS)

    Biondi, Filippo

    2015-04-01

    SAR Tomography is the extension of the conventional interferometric radar signal processing, where the radar image formation is extended in the height dimension. In order to improve the vertical resolution with respect to the classical Fourier methods, high resolution approaches, based on the Convex Optimization, has been implemented. This methods recast in the Compressed Sensing (CS) framework that optimizes tomographic smooth profiles via atomic decomposition, in order to retrieve the sparsity condition. The optimum solution has been estimated by Interior Point Methods. The problem for such kind of signal processing is the loss of the tomographic phase data, if optimizing by CS directly in the complex domain, so only the optimized energy information is available. In this paper a method to estimate an optimized spectra and phase information, is proposed by projecting both In phase and Quadrature (I-Q) vector components of each tomographic resolution cell spanned on the real and the imaginary components. The tomographic solutions has been estimated by processing sets of multi-baseline SAR data, in a full polarimetric configuration, acquired by the TropiSAR campaign in 2009 by ONERA. The performance enhancement of the principal decomposition parameters for the tomographic vertical planes analysis has been demonstrated.

  4. Relating Vegetation Aerodynamic Roughness Length to Interferometric SAR Measurements

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; Rodriquez, Ernesto

    1998-01-01

    In this paper, we investigate the feasibility of estimating aerodynamic roughness parameter from interferometric SAR (INSAR) measurements. The relation between the interferometric correlation and the rms height of the surface is presented analytically. Model simulations performed over realistic canopy parameters obtained from field measurements in boreal forest environment demonstrate the capability of the INSAR measurements for estimating and mapping surface roughness lengths over forests and/or other vegetation types. The procedure for estimating this parameter over boreal forests using the INSAR data is discussed and the possibility of extending the methodology over tropical forests is examined.

  5. Satellite SAR interferometric techniques applied to emergency mapping

    NASA Astrophysics Data System (ADS)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce

  6. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    NASA Astrophysics Data System (ADS)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest

  7. Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi

    2014-01-01

    The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.

  8. Sample Extraction Bsaed on Helix Scattering for Polarimetric SAR Calibratio

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Yang, J.; Li, P.; Zhao, L.; Shi, L.

    2017-09-01

    Polarimetric calibration (PolCAL) of Synthetic Aperture Radar (SAR) images is a significant preprocessing for further applications. Since the reflection symmetry property of distributed objects can provide stable constraints for PolCAL. It is reasonable to extract these reference samples before calibration. The helix scattering generally appears in complex urban area and disappears for a natural scatterer, making it a good measure to extract distributed objects. In this paper, a novel technique that extracts reflecting symmetry samples is proposed by using helix scattering. The helix scattering information is calculated by Yamaguchi four-component decomposition algorithm. An adaptive threshold selection algorithm based on generalized Gaussian distribution is also utilized to scale the helix scattering components automatically, getting rid of the problem of various numerical range. The extracting results will be taken as PolCAL reference samples and the Quegan method are utilized to calibrate these PolSAR images. A C-band airborne PolSAR data was taken as examples to evaluate its ability in improving calibration precision. Traditional method i.e. extracting samples with span power was also evaluated as contrast experiment. The results showed that the samples extracting method based on helix scattering can improve the Polcal precision preferably.

  9. The flight test of Pi-SAR(L) for the repeat-pass interferometric SAR

    NASA Astrophysics Data System (ADS)

    Nohmi, Hitoshi; Shimada, Masanobu; Miyawaki, Masanori

    2006-09-01

    This paper describes the experiment of the repeat pass interferometric SAR using Pi-SAR(L). The air-borne repeat-pass interferometric SAR is expected as an effective method to detect landslide or predict a volcano eruption. To obtain a high-quality interferometric image, it is necessary to make two flights on the same flight pass. In addition, since the antenna of the Pi-SAR(L) is secured to the aircraft, it is necessary to fly at the same drift angle to keep the observation direction same. We built a flight control system using an auto pilot which has been installed in the airplane. This navigation system measures position and altitude precisely with using a differential GPS, and the PC Navigator outputs a difference from the desired course to the auto pilot. Since the air density is thinner and the speed is higher than the landing situation, the gain of the control system is required to be adjusted during the repeat pass flight. The observation direction could be controlled to some extent by adjusting a drift angle with using a flight speed control. The repeat-pass flight was conducted in Japan for three days in late November. The flight was stable and the deviation was within a few meters for both horizontal and vertical direction even in the gusty condition. The SAR data were processed in time domain based on range Doppler algorism to make the complete motion compensation. Thus, the interferometric image processed after precise phase compensation is shown.

  10. Disaster debris estimation using high-resolution polarimetric stereo-SAR

    NASA Astrophysics Data System (ADS)

    Koyama, Christian N.; Gokon, Hideomi; Jimbo, Masaru; Koshimura, Shunichi; Sato, Motoyuki

    2016-10-01

    This paper addresses the problem of debris estimation which is one of the most important initial challenges in the wake of a disaster like the Great East Japan Earthquake and Tsunami. Reasonable estimates of the debris have to be made available to decision makers as quickly as possible. Current approaches to obtain this information are far from being optimal as they usually rely on manual interpretation of optical imagery. We have developed a novel approach for the estimation of tsunami debris pile heights and volumes for improved emergency response. The method is based on a stereo-synthetic aperture radar (stereo-SAR) approach for very high-resolution polarimetric SAR. An advanced gradient-based optical-flow estimation technique is applied for optimal image coregistration of the low-coherence non-interferometric data resulting from the illumination from opposite directions and in different polarizations. By applying model based decomposition of the coherency matrix, only the odd bounce scattering contributions are used to optimize echo time computation. The method exclusively considers the relative height differences from the top of the piles to their base to achieve a very fine resolution in height estimation. To define the base, a reference point on non-debris-covered ground surface is located adjacent to the debris pile targets by exploiting the polarimetric scattering information. The proposed technique is validated using in situ data of real tsunami debris taken on a temporary debris management site in the tsunami affected area near Sendai city, Japan. The estimated height error is smaller than 0.6 m RMSE. The good quality of derived pile heights allows for a voxel-based estimation of debris volumes with a RMSE of 1099 m3. Advantages of the proposed method are fast computation time, and robust height and volume estimation of debris piles without the need for pre-event data or auxiliary information like DEM, topographic maps or GCPs.

  11. Performance of Polarimetric Processing Techniques using NAWC P-3 SAR Imagery

    NASA Technical Reports Server (NTRS)

    Teti, J. G., Jr.; Lee, R. R.-Y.; Verdi, J. S.; Boerner, W.-M.

    1996-01-01

    The use of synthetic aperture radar (SAR) polarimetric processing for enhancing the detection, classification, and/or identification of scene scattering features is described. This paper describes and compares the results obtained from applying the polarimetric techniques that have been developed and/or advanced by researchers at MIT Lincoln Laboratory, and basic polarimetric match filter (PMF) techniques that have been modified to treat distributed scatterers. The paper describes the individual polarimetric processing techniques and the formulation used fro their application to polarimetric imagery obtained from the NAWC P-3 SAR. In all cases, the polarimetric techniques have been applied to enhance the detection of distributed scatterers in clutter The emphasis arises from considering most complex scatterers of interest (either man made or natural) as distributed scatterers consisting of multiple scattering centers, and many modern polarimetric radar systems have the resolution performance to resolve the multiple scattering centers. Furthermore, the individual scattering centers of a distributed target can often exhibit different polarimetric scattering characteristics, and consequently do not respond favorably to polarimetric processing techniques derived for individual point scatterers. The treatment of distributed scatterers also includes concepts for tuning the polarimetric ensemble response of individual scattering centers.

  12. Observation of Planetary Oceans with Fully Polarimetric Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Moon, Wooil M.

    waves observed in the western part of the East Sea test area were also estimated from more than 140 SAR images. On the other hand, very long wave patterns (13-10 km) were observed in two successively acquired ENVISAT ASAR images and interpreted as near-inertial internal waves based on the hydrographic data. The Along Track Interferometric SAR (ATI-SAR), utilizing two SAR antennas separated along the platform flight direction and combined interferometrically, was also tested and validated to derive ocean surface current and wave information. The phase of ATI-SAR is related to the line-of-sight velocity of the water scatterers. The surface current extraction from the ATI-SAR velocity is still an open question, because the Doppler shift is not simply proportional to the component of the mean surface current. It also includes other types of contributions associated with the phase velocity of the Bragg waves and orbital motions of all ocean waves that are longer than Bragg waves. For accurate current estimation, a new and practically useful method was developed using simultaneously measured L- and C-band ATI-SAR data. The influence of Bragg resonant waves and long ocean wave motions on the ATI-SAR velocity according to the radar-frequency was analyzed and effectively eliminated. The method was applied to NASA(JPL) L- and C-band ATI-SAR measurements. The resulting ocean surface current vectors were compared with in situ measurements collected by an RCM (Recording Current Meter). Furthermore, ocean surface wave information was extracted from the ATI-SAR data using a quasi-linear transform. The limitations of the transform were also discussed. The basic principles and the results of these multi-disciplinary observation approaches on the Earth's ocean may be extended to investigate other terrestrial planetary surface observation in the solar system. With recent launching of several fully polarimetric SAR systems such as ALOS, TerraSAR-X and RADARSAT-2, we now have the real

  13. Short-Term Surface Deformation on the Northern Hayward Fault, CA, and Nearby Landslides Using Polarimetric SAR Interferometry (PolInSAR)

    NASA Astrophysics Data System (ADS)

    Alipour, Samira; Tiampo, Kristy F.; Samsonov, Sergey V.; González, Pablo J.

    2015-08-01

    In this study, we analyze 25 RADARSAT-2 images from ascending and descending geometries to study the creep rate on the Hayward fault and landslide motions near Berkeley, CA. We applied a coherence optimization technique from polarimetric synthetic aperture radar interferometry (PolInSAR) to increase the accuracy of the measurements. We resolve 3-5 mm/year of motion along the Hayward fault, in agreement with earlier creep estimates. We identify a potential motion on secondary fault, northeast and parallel to the Hayward fault, which is creeping at a lower rate of ~1.5 mm/year. In addition, we identify a number of landslides along the hills east of the fault that agree with earlier results from advanced interferometric synthetic aperture radar (SAR) analysis and field investigations. We investigate four particular slope instabilities, one of which was marked as moderately active, and three as highly active, by earlier field investigations. The resolved along-hill slope displacement is estimated at ~23 mm/year. Our results demonstrate that PolInSAR is an effective method to increase the interferometric coherence and provide improved resolution of deformation features associated with natural hazards.

  14. Classification and Monitoring of Salt Marsh Habitats with Multi-Polarimetric and Multi-Frequency SAR

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair; Brown, Sarah

    2013-08-01

    Within GMES there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application for Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh habitats from can be identified from SAR remotely sensed data. Multi-frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by characterizing their botanical and structural composition, flooding regimes as well as fluctuations in soil moisture. Different SAR features as backscatter coefficient, band ratios and polarimetric decomposition are extracted.

  15. Oil Detection in a Coastal Marsh with Polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Ramsey, E., III; Rangoonwala, A.; Suzuoki, Y.; Bannister, T.

    2011-09-01

    The NASA UAVSAR was deployed June 2010 to support Deep Water Horizon oil spill response activities specifically, oil detection and characterization, oil extent mapping in wetlands, coastal resource impact detection, and ecosystem recovery. The UAVSAR platform demonstrated enhanced capability to act rapidly and provide targeted mapping response. Our research focused on the effectiveness of high spatial resolution and fully polarimetric L-band Synthetic Aperture Radar (PolSAR) for mapping oil in wetlands, specifically within Barataria Bay in eastern coastal Louisiana. Barataria Bay contained a numerous site observations confirming spatially extensive shoreline oil impacts, multiple oil spill UAVSAR collections, and a near anniversary 2009 collection. PolSAR oil detection relied on decomposition and subsequent classifications of the single look complex (SLC) calibrated radar cross sections representing the complex elements of the scattering matrix. Initial analyses results found that shoreline marsh structural damage as well as oil on marsh plants and sediments without canopy structural damage were exhibited as anomalous features on post-spill SLC scenes but were not evident on the pre-spill SLC scene collected in 2009. Pre-spill and post-spill Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions and the Wishart classifications seeded with the FD and CP classes (Wishart-FD) also highlighted these nearshore features as a change in dominate scatter from pre-spill to post-spill. SLC analyses also indicated penetration of oil ladened waters into interior marshes well past the immediate shorelines; however, these post-spill SLC analyses results could not be validated due to the lack of observational data and possible flooding in the pre-spill SLC scene.

  16. Alternative to Four-Component Decomposition for Polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Zhang, J. X.; Huang, G. M.; Wei, J. J.; Zhao, Z.

    2016-06-01

    There are more unknowns than equations to solve for previous four-component decomposition methods. In this case, the nonnegative power of each scattering mechanism has to be determined with some assumptions and physical power constraints. This paper presents a new decomposition scheme, which models the measured matrix after polarimetric orientation angle (POA) compensation as a linear sum of five scattering mechanisms (i.e., odd-bounce scattering, double-bounce scattering, diffuse scattering, volume scattering, and helix scattering). And the volume scattering power is calculated by a slight modified NNED method, owing to this method considering the external volume scattering model from oblique dihedral structure. After the helix and volume scattering powers have been determined sequentially, the other three scattering powers are estimated by combining the generalized similarity parameter (GSP) and the eigenvalue decomposition. Among them, due to POA compensation, the diffuse scattering induced from a dihedral with a relative orientation of 45º has negligible scattering power. Thus, the new method can be reduced as four-component decomposition automatically. And then the ALOS-2 PolSAR data covering Guiyang City, Guizhou Province, China were used to evaluate the performance of the new method in comparison with some classical decomposition methods (i.e. Y4R, S4R and G4U).

  17. A novel framework for change detection in bi-temporal polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Pirrone, Davide; Bovolo, Francesca; Bruzzone, Lorenzo

    2016-10-01

    Last years have seen relevant increase of polarimetric Synthetic Aperture Radar (SAR) data availability, thanks to satellite sensors like Sentinel-1 or ALOS-2 PALSAR-2. The augmented information lying in the additional polarimetric channels represents a possibility for better discriminate different classes of changes in change detection (CD) applications. This work aims at proposing a framework for CD in multi-temporal multi-polarization SAR data. The framework includes both a tool for an effective visual representation of the change information and a method for extracting the multiple-change information. Both components are designed to effectively handle the multi-dimensionality of polarimetric data. In the novel representation, multi-temporal intensity SAR data are employed to compute a polarimetric log-ratio. The multitemporal information of the polarimetric log-ratio image is represented in a multi-dimensional features space, where changes are highlighted in terms of magnitude and direction. This representation is employed to design a novel unsupervised multi-class CD approach. This approach considers a sequential two-step analysis of the magnitude and the direction information for separating non-changed and changed samples. The proposed approach has been validated on a pair of Sentinel-1 data acquired before and after the flood in Tamil-Nadu in 2015. Preliminary results demonstrate that the representation tool is effective and that the use of polarimetric SAR data is promising in multi-class change detection applications.

  18. Maximum Likelihood Shift Estimation Using High Resolution Polarimetric SAR Clutter Model

    NASA Astrophysics Data System (ADS)

    Harant, Olivier; Bombrun, Lionel; Vasile, Gabriel; Ferro-Famil, Laurent; Gay, Michel

    2011-03-01

    This paper deals with a Maximum Likelihood (ML) shift estimation method in the context of High Resolution (HR) Polarimetric SAR (PolSAR) clutter. Texture modeling is exposed and the generalized ML texture tracking method is extended to the merging of various sensors. Some results on displacement estimation on the Argentiere glacier in the Mont Blanc massif using dual-pol TerraSAR-X (TSX) and quad-pol RADARSAT-2 (RS2) sensors are finally discussed.

  19. Integrated Analysis of Interferometric SAR, Satellite Altimetry and Hydraulic Modeling to Quantify Louisiana Wetland Dynamics

    NASA Technical Reports Server (NTRS)

    Lee, Hyongki; Kim, Jin-woo; Lu, Zhong; Jung, Hahn Chul; Shum, C. K.; Alsdorf, Doug

    2012-01-01

    Wetland loss in Louisiana has been accelerating due primarily to anthropogenic and nature processes, and is being advocated as a problem with national importance. Accurate measurement or modeling of wetland-wide water level changes, its varying extent, its storage and discharge changes resulting in part from sediment loads, erosion and subsidence are fundamental to assessment of hurricane-induced flood hazards and wetland ecology. Here, we use innovative method to integrate interferometric SAR (InSAR) and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identi:fy double-bonnce backscattering areas in the wetland. Envisat radar altimeter-measured 18- Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (approx.40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-l C-band InSAR are then integrated with Envisat radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. Furthermore, we compare our water elevation changes with 2D flood modeling from LISFLOOD hydrodynamic model. Our study demonstrates that this new technique allows retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  20. Preliminary analysis results of the Sea Surface Observation by a High Resolution Along-Track Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Kojima, S.

    2013-12-01

    There are many requirements to detect the moving targets such as cars and ships in SAR images as well as to measure their speed. In particular, there are strongly requirements to detect ships and measure the ocean waves and the sea surface currents regardless of the time or the weather in the case of the ship accidents or the oil spill accidents because the rescue operation should be operated at the anytime. To satisfy these requirements, NICT developed the airborne along-track interferometric SAR (AT-InSAR) system in 2011. Kojima[1][2] carried out the preliminary experiments using a truck and ship to check its function and clarify its capability for the detection of the moving targets, and confirmed that its performance was satisfied with its specifications. The purpose of this study is to make clear the relationship between the phenomena on the sea surface such as the ocean waves and the velocity estimated from the AT-InSAR data, and the capability of the sea surface measurement by the AT-InSAR. In addition, the method to estimate wave directional spectra from AT-InSAR data is developed. The sea surface observation was carried out 3 km off the coast of Ooarai, the northeast of Tokyo, JAPAN on the 23th of August 2011. I observed the sea surface in the fine special resolution (0.3 m) and took a special average (1 m) to reduce noise. First of all, I estimated the wave velocity from the AT-InSAR images and calculated the 2D wave number spectra from it. And then, I estimated the directional wave spectra using the dispersion relation. As a result, it was clarified that the ocean waves could be measured by the AT-InSAR. In addition, it made clear that the bow waves and stern waves generated by a running ship could be detected by AT-InSAR. References [1] S. Kojima, T. Umehara, J. Uemoto, T. Kobayashi, M. Satake and S. Uratsuka, 'Development of Pi-SAR2 Along-Track Interferometric SAR System', IGARSS 2013, pp. 3159-3162, Aug. 2013. [2] S. Kojima, 'Evaluation of the Ship

  1. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  2. Detection and Monitoring of Inundation with Polarimetric L-Band SAR

    NASA Astrophysics Data System (ADS)

    Chapman, B. D.; Celi, J. E.; Hamilton, S. K.; McDonald, K. C.

    2014-12-01

    It has been known for decades that at wavelengths L-band or longer, SAR is a sensitive indicator of inundation underneath forest canopies. The high resolution detection of below-canopy inundation is difficult to accomplish at regional to continental scales using other types of remote sensing sensors, making it a compelling SAR measurement especially useful for studying wetland inundation dynamics, particularly in difficult-to-reach access, canopy-covered tropical forest environments. Most results have utilized spaceborne SAR observations with less than fully polarimetric data. Since one of the objectives of the NISAR mission is to characterize and understand the fundamental process that drives changes to ecosystems such as wetland inundated areas, we will discuss the sensitivity of L-band SAR to inundation. We will illustrate the detection of inundation using fully polarimetric L-band SAR data from UAVSAR, NASA's airborne SAR, over a tropical forest region in Ecuador and Peru. At the same time as the data collection, measurements were made on the ground to characterize vegetation and inundation characteristics. The field data were used to validate the results of classifying the vanZyl decomposition of the polarimetric data. We compare this classification with that possible with a reduced subset of the polarimetric observations.

  3. Use of airborne polarimetric SAR, optical and elevation data for mapping and monitoring of salt marsh vegetation habitats

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2014-10-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi-frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  4. Oil Detection in a Coastal Marsh with Polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Ramsey, E.; Rangoonwala, A.; Suzuoki, Y.; Bannister, T.

    2011-12-01

    The NASA UAVSAR was deployed June 2010 to support Deep Water Horizon oil spill response activities expressly, oil characterization, oil detection in wetlands, and coastal resource impact detection and recovery. The UAVSAR demonstrated enhanced capability to act rapidly and provide targeted mapping responses. Our research focused on the effectiveness of high spatial resolution and fully polarimetric L-band SAR for mapping oil in wetlands, specifically within Barataria Bay in eastern coastal Louisiana (Fig.). The Bay contained numerous site observations confirming spatially extensive shoreline oil impacts, multiple UAVSAR collections, and a near anniversary 2009 collection. PolSAR oil detection relied on decomposition and subsequent classifications of the single look complex (SLC) scenes. Initial analyses results found that shoreline marsh structural damage accompanied by oil occurrence were exhibited as anomalous features on post-spill SLC flightlines but were not evident on the pre-spill SLC flightline collected in 2009. Pre-spill and post-spill Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions and Wishart classifications seeded with the FD and CP classes (Wishart-FD, Wishart-CP)also highlighted these nearshore features as a change in dominate scatter. In addition, all decompositions and classifications identify a class of interior marshes within the central core of the study region that reproduce spatially extensive changes in backscatter exhibited on the pre-spill and post-spill SLC image comparisons and on all post-spill SLC images. The FD and CP decompositions revealed that the change is associated with a transform of dominant scatter from primarily surface or volume to double or even bounce. As a preponderance of evidence supports the penetration of oil-polluted waters into interior marshes, it is reasonable that marshes exhibiting different backscatter in the pre-spill and post-spill SLC renditions, identify interior marshes exposed to flushing

  5. Fitting a Two-Component Scattering Model to Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Freeman, A.

    1998-01-01

    Classification, decomposition and modeling of polarimetric SAR data has received a great deal of attention in the recent literature. The objective behind these efforts is to better understand the scattering mechanisms which give rise to the polarimetric signatures seen in SAR image data. In this Paper an approach is described, which involves the fit of a combination of two simple scattering mechanisms to polarimetric SAR observations. The mechanisms am canopy scatter from a cloud of randomly oriented oblate spheroids, and a ground scatter term, which can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, seen through a layer of vertically oriented scatterers. An advantage of this model fit approach is that the scattering contributions from the two basic scattering mechanisms can be estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. The model fit can be applied to polarimetric AIRSAR data at C-, L- and P-Band.

  6. Comparing the Behavior of Polarimetric SAR Imagery (TerraSAR-X and Radarsat-2) for Automated Sea Ice Classification

    NASA Astrophysics Data System (ADS)

    Ressel, Rudolf; Singha, Suman; Lehner, Susanne

    2016-08-01

    Arctic Sea ice monitoring has attracted increasing attention over the last few decades. Besides the scientific interest in sea ice, the operational aspect of ice charting is becoming more important due to growing navigational possibilities in an increasingly ice free Arctic. For this purpose, satellite borne SAR imagery has become an invaluable tool. In past, mostly single polarimetric datasets were investigated with supervised or unsupervised classification schemes for sea ice investigation. Despite proven sea ice classification achievements on single polarimetric data, a fully automatic, general purpose classifier for single-pol data has not been established due to large variation of sea ice manifestations and incidence angle impact. Recently, through the advent of polarimetric SAR sensors, polarimetric features have moved into the focus of ice classification research. The higher information content four polarimetric channels promises to offer greater insight into sea ice scattering mechanism and overcome some of the shortcomings of single- polarimetric classifiers. Two spatially and temporally coincident pairs of fully polarimetric acquisitions from the TerraSAR-X/TanDEM-X and RADARSAT-2 satellites are investigated. Proposed supervised classification algorithm consists of two steps: The first step comprises a feature extraction, the results of which are ingested into a neural network classifier in the second step. Based on the common coherency and covariance matrix, we extract a number of features and analyze the relevance and redundancy by means of mutual information for the purpose of sea ice classification. Coherency matrix based features which require an eigendecomposition are found to be either of low relevance or redundant to other covariance matrix based features. Among the most useful features for classification are matrix invariant based features (Geometric Intensity, Scattering Diversity, Surface Scattering Fraction).

  7. Exploring snow information content of interferometric SAR data

    NASA Astrophysics Data System (ADS)

    Esmaeily Gazkohani, Ali

    The objective of this research is to explore the information content of repeat-pass cross-track Interferometric SAR (InSAR) with regard to snow, in particular Snow Water Equivalent (SWE) and snow depth. The study is an outgrowth of earlier snow cover modeling and radar interferometry experiments at Schefferville, Quebec, Canada and elsewhere which has shown that for reasons of loss of coherence repeat-pass InSAR is not useful for the purpose of snow cover mapping, even when used in differential InSAR mode. Repeat-pass cross-track InSAR would overcome this problem. As at radar wavelengths dry snow is transparent, the main reflection is at the snow/ground interface. The high refractive index of ice creates a phase delay which is linearly related to the water equivalent of the snow pack. When wet, the snow surface is the main reflector, and this enables measurement of snow depth. Algorithms are elaborated accordingly. Field experiments were conducted at two sites and employ two different types of digital elevation models (DEM) produced by means of cross track InSAR. One was from the Shuttle Radar Topography Mission digital elevation model (SRTM DEM), flown in February 2000. It was compared to the photogrammetrically produced Canadian Digital Elevation Model (CDEM) to examine snow-related effects at a site near Schefferville, where snow conditions are well known from half a century of snow and permafrost research. The second type of DEM was produced by means of airborne cross track InSAR (TOPSAR). Several missions were flown for this purpose in both summer and winter conditions during NASA's Cold Land Processes Experiment (CLPX) in Colorado, USA. Differences between these DEM's were compared to snow conditions that were well documented during the CLPX field campaigns. The results are not straightforward. As a result of automated correction routines employed in both SRTM and AIRSAR DEM extraction, the snow cover signal is contaminated. Fitting InSAR DEM's to known

  8. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Samat, Alim; Waske, Björn; Liu, Sicong; Li, Zhenhong

    2015-07-01

    Fully Polarimetric Synthetic Aperture Radar (PolSAR) has the advantages of all-weather, day and night observation and high resolution capabilities. The collected data are usually sorted in Sinclair matrix, coherence or covariance matrices which are directly related to physical properties of natural media and backscattering mechanism. Additional information related to the nature of scattering medium can be exploited through polarimetric decomposition theorems. Accordingly, PolSAR image classification gains increasing attentions from remote sensing communities in recent years. However, the above polarimetric measurements or parameters cannot provide sufficient information for accurate PolSAR image classification in some scenarios, e.g. in complex urban areas where different scattering mediums may exhibit similar PolSAR response due to couples of unavoidable reasons. Inspired by the complementarity between spectral and spatial features bringing remarkable improvements in optical image classification, the complementary information between polarimetric and spatial features may also contribute to PolSAR image classification. Therefore, the roles of textural features such as contrast, dissimilarity, homogeneity and local range, morphological profiles (MPs) in PolSAR image classification are investigated using two advanced ensemble learning (EL) classifiers: Random Forest and Rotation Forest. Supervised Wishart classifier and support vector machines (SVMs) are used as benchmark classifiers for the evaluation and comparison purposes. Experimental results with three Radarsat-2 images in quad polarization mode indicate that classification accuracies could be significantly increased by integrating spatial and polarimetric features using ensemble learning strategies. Rotation Forest can get better accuracy than SVM and Random Forest, in the meantime, Random Forest is much faster than Rotation Forest.

  9. On evaluating the accuracy of SAR sea-ice classification using multifrequency polarimetric AIRSAR data

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Rignot, Eric

    1993-01-01

    We investigate how multifrequency and polarimetric synthetic aperture radar (SAR) imagery enhances present capability to discriminate different ice conditions in single-frequency, single-polarization satellite SAR data. Frequencies considered are C- (lambda = 5.6cm), L- (lambda = 24cm) and P- (lambda = 68cm) band. Radar backscatter characteristics of six radiometrically and polarimetrically distinct ice types are selected from a cluster analysis of the multifrequency polarimetric SAR data and used to classify SAR images. Validation of these ice conditions is based on information provided by aerial photos, weather and ice surface measurements acquired at an ice camp, together with airborne passive microwave imagery, and visual analysis of the SAR data. The six identified sea-ice types are: (1) multiyear sea-ice; (2) compressed first year ice; (3) first year rubble and ridges; (4) first year rough ice; (5) first year smooth ice; and (6) thin ice. Open water is absent in all analyzed data. Classification of the SAR imagery into those six ice types is performed using a Bayesian Maximum A Posteriori classifier. Two complete scenes acquired at different dates in different locations are classified. The scenes were chosen such that they are representative of typical ice conditions in the Beaufort Sea in March 1988 and because ancillary information is available for validating the segmentation of various ice surface conditions.

  10. The Potential of Polarimetric and Compact SAR Data in Rice Identification

    NASA Astrophysics Data System (ADS)

    Shao, Y.; Li, K.; Brisco, B.; Liu, L.; Yang, Z.

    2014-03-01

    Rice is a major food staple in the world, and provides food for more than one-third of the global population. The monitoring and mapping of paddy rice in a timely and efficient manner is very important for governments and decision makers. Synthetic Aperture Radar (SAR) has been proved to be a significant data source in rice monitoring. In this study, RADARSAT-2 polarimetric data were used to simulate compact polarimetry data. The simulated compact data and polarimetric data were then used to evaluate the information content for rice identification. The results indicate that polarimetric SAR can be used for rice identification based on the scattering mechanisms. The compact polarization RH and the RH/RL ratio are very promising for the discrimination of transplanted rice and direct-sown rice. These results require verification in further research.

  11. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN

    PubMed Central

    An, Jubai

    2017-01-01

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features. PMID:28792477

  12. Discrimination of Oil Slicks and Lookalikes in Polarimetric SAR Images Using CNN.

    PubMed

    Guo, Hao; Wu, Danni; An, Jubai

    2017-08-09

    Oil slicks and lookalikes (e.g., plant oil and oil emulsion) all appear as dark areas in polarimetric Synthetic Aperture Radar (SAR) images and are highly heterogeneous, so it is very difficult to use a single feature that can allow classification of dark objects in polarimetric SAR images as oil slicks or lookalikes. We established multi-feature fusion to support the discrimination of oil slicks and lookalikes. In the paper, simple discrimination analysis is used to rationalize a preferred features subset. The features analyzed include entropy, alpha, and Single-bounce Eigenvalue Relative Difference (SERD) in the C-band polarimetric mode. We also propose a novel SAR image discrimination method for oil slicks and lookalikes based on Convolutional Neural Network (CNN). The regions of interest are selected as the training and testing samples for CNN on the three kinds of polarimetric feature images. The proposed method is applied to a training data set of 5400 samples, including 1800 crude oil, 1800 plant oil, and 1800 oil emulsion samples. In the end, the effectiveness of the method is demonstrated through the analysis of some experimental results. The classification accuracy obtained using 900 samples of test data is 91.33%. It is here observed that the proposed method not only can accurately identify the dark spots on SAR images but also verify the ability of the proposed algorithm to classify unstructured features.

  13. Bistatic Polarimetric SAR Decomposition in Terms of Roll-Invariant Parameters

    NASA Astrophysics Data System (ADS)

    Bombrun, Lionel

    2011-03-01

    This paper introduces a new bistatic Polarimetric SAR decomposition in terms of roll-invariant parameters. The proposed decomposition is an extension of the Target Scattering Vector Model to the bistatic case, where the cross-polarization terms of the scattering matrix are not necessary equal.

  14. SAR Polarimetric Signatures for Urban Targets - Polarimetric Signature Calculation and Visualization

    NASA Astrophysics Data System (ADS)

    Vyas, A.; Sashtri, B.

    2012-08-01

    Various urban targets (land use) from Ahmedabad city were chosen, followed by generation of polarimetric signatures for each target using the developed tool. These polarimetric signatures were then studied and analyzed in detail. An attempt has been to develop a Polarimetric Signature Calculation and Visual Representation Tool assigned name "POLSIC", to generate Co-polarized and Cross polarized signatures, based on the calculation of Stokes Matrix and the backscattered power at various ellipticity and orientation angles. The input parameters required for the developed tool, are the amplitude and phase values of all the four polarizations, for each target using any quadpol radar imagery. In this study, RADARSAT-2 imagery has been used to obtain the amplitude and phase values of each target, in all four polarization states. Polarimetric signatures were generated for various urban targets using the developed tool. Vegetated land, built up in the city, built up within lake, and road were found to have an overall higher polarimetric response (backscattered power) as compared to grass lawn, fallow land and minimum in case of water body. Such Polarimetric responses were obtained due to factors like surface roughness and orientation of the target with respect to the radar look angle. The shape of the signature also indicates the scattering characteristics.

  15. Application of Polarimetric-Interferometric Phase Coherence Optimization (PIPCO) Procedure to SIR-C/X-SAR Tien-Shan Tracks 122.20(94 Oct. 08)/154.20(94 Oct. 09) Repeat-Orbit C/L-Band Pol-D-InSAR Imag

    NASA Technical Reports Server (NTRS)

    Boerner, W. M.; Mott, H.; Verdi, J.; Darizhapov, D.; Dorjiev, B.; Tsybjito, T.; Korsunov, V.; Tatchkov, G.; Bashkuyev, Y.; Cloude, S.; hide

    1998-01-01

    During the past decade, Radar Polarimetry has established itself as a mature science and advanced technology in high resolution POL-SAR imaging, image target characterization and selective image feature extraction.

  16. Application of Polarimetric-Interferometric Phase Coherence Optimization (PIPCO) Procedure to SIR-C/X-SAR Tien-Shan Tracks 122.20(94 Oct. 08)/154.20(94 Oct. 09) Repeat-Orbit C/L-Band Pol-D-InSAR Imag

    NASA Technical Reports Server (NTRS)

    Boerner, W. M.; Mott, H.; Verdi, J.; Darizhapov, D.; Dorjiev, B.; Tsybjito, T.; Korsunov, V.; Tatchkov, G.; Bashkuyev, Y.; Cloude, S.; Papathanassiou, K.; Pottier, E.; Lee, J.; Ainsworth, T.; Schuler, D.; Grandi, G.; Rosen, P.; Peltzer, G.

    1998-01-01

    During the past decade, Radar Polarimetry has established itself as a mature science and advanced technology in high resolution POL-SAR imaging, image target characterization and selective image feature extraction.

  17. Assessment of Polarimetric SAR Interferometry for Improving Ship Classification based on Simulated Data

    PubMed Central

    Margarit, Gerard; Mallorqui, Jordi J.

    2008-01-01

    This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR) in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels' geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS) and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA) working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions. PMID:27873954

  18. Assessment of Polarimetric SAR Interferometry for Improving Ship Classification based on Simulated Data.

    PubMed

    Margarit, Gerard; Mallorqui, Jordi J

    2008-12-02

    This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR) in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels' geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS) and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA) working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions.

  19. Separation of vegetation and rock signatures in Thematic Mapper and polarimetric SAR images

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Smith, Milton O.

    1991-01-01

    A technique for separating classes of surface roughness and vegetation in semiarid regions using polarimetric synthetic aperture radar (SAR) and Thematic Mapper data is developed. Polarimetric SAR data may be used to separate areas with less than 10 percent vegetation cover where one suite of model inversions may be applicable for derivation of surface roughness. In more vegetated regions, visible/near-infrared data provide a mechanism for determining the relative contribution of vegetation to multiple scattering in the SAR data. Thus, the synergistic use of the two data sets provides a more complete characterization of surface units and cover. This result is critical when trying to monitor dielectric constant variations related to changes in moisture content of soil and vegetation cover in arid to semiarid regions. A strategy for automating a procedure for measurement of surface roughness is proposed.

  20. Classification and monitoring of reed belts using dual-polarimetric TerraSAR-X time series

    NASA Astrophysics Data System (ADS)

    Heine, Iris; Jagdhuber, Thomas; Itzerott, Sibylle

    2016-04-01

    The shorelines of lakes in northeastern Germany are often covered by reed. These reed belts fulfill an important function as erosion protection, biotope for animals, carbon storage, and as cleaning filter for lake water. However, despite their importance for the limnic ecosystem, reed vegetation in northeastern Germany is not regularly monitored. In this research study we investigate the potential of synthetic aperture radar polarimetry (PolSAR) for seasonal monitoring of reed vegetation. SAR imagery enables sunlight- and (almost) weather-independent monitoring. Polarimetric decomposition techniques allow the physical characterization of the scattering scenario and the involved scatterers. Our study is based on 19 dual-polarimetric (HH/VV) TerraSAR-X images acquired between August 2014 and May 2015. We calculated different polarimetric indices comprising the HH and VV intensities, the dual-polarimetric coherency matrix with dominant and mean alpha scattering angles, entropy and anisotropy (normalized eigen-value difference) as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The reed areas in the TerraSAR-X images were classified using a random forest algorithm and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes in the double bounce sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles). Additionally, the dual-polarimetric coherence (amplitude), anisotropy, entropy, and anisotropy-entropy-combinations showed seasonal changes of reed. In summer, the reed areas are characterized within the X-band SAR data by volume scattering, whereas in winter double-bounce scattering dominates. The volume scattering in summer is caused predominantly by reed leaves. In autumn, the leaves start to wither and fall off, so that in winter predominately

  1. Estimating and Removing Ionospheric Effects From GESS Interferometric SAR Imagery

    NASA Astrophysics Data System (ADS)

    Freedman, A. P.; Madsen, S. N.

    2002-05-01

    Many users of differential interferometry report image artifacts that cannot be attributed to surface deformation or terrain mismodeling. These artifacts are often ascribed to propagation delays due to the atmosphere or ionosphere. When atmospheric (primarily wet troposphere) delays can be ruled out, the ionosphere is usually blamed for the artifacts. There is rarely sufficient knowledge of the ionosphere at the spatial and temporal scales to prove or refute this assumption, however. In present-day, focused-based processing, large-scale ionospheric effects are typically removed in the baseline correction process before image formation. The large-scale mapping envisioned for the Global Earthquake Satellite System (GESS) precludes the use of baseline correction for removing anything other than physical orbit errors. Thus any effects induced by the ionosphere will be present in full measure. The ionosphere is a dispersive medium and produces several frequency-dependent effects on a radar signal, affecting both the resulting single-channel Synthetic Aperture Radar (SAR) imagery and two-channel interferometric imagery in a number of distinct ways. The signal propagation or group delay slows down the radar pulse relative to free space, while the phase delay advances the phase relative to that of free space. The Faraday rotation alters the polarization of the return signal. One may take advantage of the frequency dependence of the group and phase delays to evaluate the magnitude of the ionospheric total electron count (TEC). Global and large-scale ionospheric fluctuations are associated with solar UV excitation, and are modulated diurnally and seasonally. These can cause propagation delays at L-band of typically 10 to 20 meters, but up to a hundred meters and more in rare instances. Intermediate-scale disturbances (tens to hundreds of kilometers in extent) include traveling ionospheric disturbances (TIDs) and gravity waves induced by a variety of phenomena. These can

  2. Urban area mapping from polarimetric SAR data using fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Asmeet; Manickam, Surendar; Bhattacharya, Avik; Porwal, Alok

    2016-05-01

    In this work, we present urban area mapping from full-polarimetric synthetic aperture radar (SAR) data using fuzzy inference system (FIS). In particular, our aim is to utilize the profound knowledge available about scattering mechanism from urban targets to delineate urban environment. In this approach, we have utilized the recently developed polarimetric SAR scattering power decomposition technique (SD-Y4O) given in Bhattacharya et. al. The improved powers along with some other polarimetric parameters were used in this study. A suitable normalization procedure was adapted to handle the skewness in the estimated parameters. The fuzzy if-then rules were constructed from the in-depth knowledge of scattering mechanisms from an urban environment. Suitable methods were introduced to define the fuzzy inference system. The defuzzified membership values were thresholded using an unsupervised clustering method (k-means). The pixels lying in the range [μmax-σ, μmax+σ] corresponds to urban areas where µmax is the largest cluster center and σ is the standard deviation of the cluster corresponding to µmax. The extracted urban area is in visually good agreement with the high resolution optical image. ALOS PALSAR full-polarimetric L-band SAR data has been used in this study.

  3. Improvement of PWF filter using wavelet thresholding for polarimetric SAR imagery

    NASA Astrophysics Data System (ADS)

    Boutarfa, S.; Smara, Y.; Fadel, H.; Bouguessa, N.

    2011-10-01

    The images acquired by polarimetric SAR radar systems are characterized by the presence of a noise named speckle. This noise, have a multiplicative nature, corrompt at the same time the amplitude and the phase which complicates the data interpretation, degrades the performance of segmentation and reduces the targets detectability. From where need to pretreate images by adapted filtering methods, before carrying out their analysis. In this article, we study the polarimetric wightening filter PWF of Novak and Burl which treats the polarimetric covariance matrix to produce a filtered intensity image. We propose two methods to improve the PWF filter: the first integrates the technique of Lee edge detection to improve the filter performance and detect fine details of the image. This method is called LSDPWF (Lee Structure Detection PWF). After detecting the edges, we filter the detected regions in the polarimetric channels by the PWF filter. The second combines the method of filtering by wavelet thresholding with PWF filter using the stationary wavelet transform SWT. This method is called EPWF (Enhanced PWF). In the wavelet thresholding, we use the soft thresholding which sets to zero the amplitudes of coefficients that are below a certain threshold. So we propose to extend the wavelet thresholding, to apply it in polarimetric SAR images and use the polarimetric information to calculate the threshold on the wavelet coefficients. We implemented these filters and applied them to RADARSAT-2 polarimetric images taken on the areas of Algiers, Algeria. A visual and statistical evaluation and a comparative study are performed. The performance evaluation of each filter is based on smoothing homogeneous areas and preserving edges.

  4. Moving from Temporal Coherence to Decorrelation Time of Interferometric Measurements Exploiting ESA's SAR Archive

    NASA Astrophysics Data System (ADS)

    Foumelis, Michael; Mitraka, Zina; Cuccu, Roberto; Desnos, Yves-Louis; Engdahl, Marcus

    2015-05-01

    Interferometric coherence can be considered as an expression of temporal decorrelation. It is understood that interferometric coherence decreases with time between SAR acquisitions because of changes in surface reflectivity, reducing the quality of SAR phase measurements. This is an intrinsic characteristic of the design of SAR systems that has a significant contribution at longer time scales. Although in the past there was not sufficient amount of SAR data to extract robust statistical metrics for decorrelation, in the present study it is demonstrated that tailored analysis of interferometric coherence exploiting the large SAR archive available by the European Space Agency (ESA), enables the accurate quantification of temporal decorrelation. A methodology to translate the observed rate of coherence loss into decorrelation times over a volcanic landscape, namely the Santorini volcanic complex is the subject treated in this study. Specifically, a sensitivity analysis was performed on a large data stack of interferometric pairs to quantify at a pixel level the time beyond which the interferometric phase becomes practically unusable due to the effect of decorrelation. Though the dependence of decorrelation on various land cover/use types is already documented the provision of additional information regarding the expected time of decorrelation is of practical use especially when EO data are utilized in operational activities. The performed analysis is viewed within the improved capacity of current and future SAR systems, while underlining the necessity for exploitation of archive data.

  5. Impact of focusing of Ground Based SAR data on the quality of interferometric SAR applications

    NASA Astrophysics Data System (ADS)

    Zonno, Mariantonietta; Mascolo, Luigi; Guccione, Pietro; Nico, Giovanni; Di Pasquale, Andrea

    2014-10-01

    A Ground-Based Synthetic Aperture Radar (GB-SAR) is nowadays employed in several applications. The processing of ground-based, space and airborne SAR data relies on the same physical principles. Nevertheless specific algorithms for the focusing of data acquired by GB-SAR system have been proposed in literature. In this work the impact of the main focusing methods on the interferometric phase dispersion and on the coherence has been studied by employing a real dataset obtained by carrying out an experiment. Several acquisitions of a scene with a corner reflector mounted on a micrometric screw have been made; before some acquisitions the micrometric screw has been displaced of few millimetres in the Line-of-Sight direction. The images have been first focused by using two different algorithms and correspondently, two different sets of interferograms have been generated. The mean and standard deviation of the phase values in correspondence of the corner reflector have been compared to those obtained by knowing the real displacement of the micrometric screw. The mean phase and its dispersion and the coherence values for each focusing algorithm have been quantified and both the precision and the accuracy of the interferometic phase measurements obtained by using the two different focusing methods have been assessed.

  6. A classification algorithm based on Cloude decomposition model for fully polarimetric SAR image

    NASA Astrophysics Data System (ADS)

    Xiang, Hongmao; Liu, Shanwei; Zhuang, Ziqi; Zhang, Naixin

    2016-11-01

    Remote sensing is an important technology for monitoring coastal zone, but it is difficult to get effective optical data in cloudy or rainy weather. SAR is an important data source for monitoring the coastal zone because it cannot be restricted in all-weather. Fully polarimetric SAR data is more abundant than single polarization and multi-polarization SAR data. The experiment selected the fully polarimetric SAR image of Radarsat-2, which covered the Yellow River Estuary. In view of the features of the study area, we carried out the H/ α unsupervised classification, the H/ α -Wishart unsupervised classification and the H/ α -Wishart unsupervised classification based on the results of Cloude decomposition. A new classification method is proposed which used the Wishart supervised classification based on the result of H/ α -Wishart unsupervised classification. The experimental results showed that the new method effectively overcome the shortcoming of unsupervised classification and improved the classification accuracy significantly. It was also shown that the classification result of SAR image had the similar precision with that of Landsat-7 image by the same classification method, SAR image had a better precision of water classification due to its sensitivity for water, and Landsat-7 image had a better precision of vegetation types.

  7. Detectability Analysis of Road Vehicles in Radarsat-2 Fully Polarimetric SAR Images for Traffic Monitoring

    PubMed Central

    Zhang, Bo; Wang, Chao; Zhang, Hong; Wu, Fan; Tang, Yi-Xian

    2017-01-01

    By acquiring information over a wide area regardless of weather conditions and solar illumination, space-borne Synthetic Aperture Radar (SAR) has the potential to be a promising application for traffic monitoring. However, the backscatter character of a vehicle in a SAR image is unstable and varies with image parameters, such as aspect and incidence angle. To investigate vehicle detectability in SAR images for traffic monitoring applications, images of four common types of vehicles in China were acquired using the fully polarimetric (FP) SAR of Radarsat-2 in our experiments. Methods for measuring a vehicle’s aspect angle and backscatter intensity are introduced. The experimental FP SAR images are used to analyze the detectability, which is affected by factors such as vehicle size, vehicle shape, and aspect angle. Moreover, a new metric to improve vehicle detectability in FP SAR images is proposed and compared with the well-known intensity metric. The experimental results show that shape is a crucial factor in affecting the backscatter intensity of vehicles, which also oscillates with varying aspect angle. If the size of a vehicle is smaller than the SAR image resolution, using the intensity metric would result in low detectability. However, it could be improved in an FP SAR image by using the proposed metric. Compared with the intensity metric, the overall detectability is improved from 72% to 90% in our experiments. Therefore, this study indicates that FP SAR images have the ability to detect stationary vehicles on the road and are meaningful for traffic monitoring. PMID:28178178

  8. Detectability Analysis of Road Vehicles in Radarsat-2 Fully Polarimetric SAR Images for Traffic Monitoring.

    PubMed

    Zhang, Bo; Wang, Chao; Zhang, Hong; Wu, Fan; Tang, Yi-Xian

    2017-02-06

    By acquiring information over a wide area regardless of weather conditions and solar illumination, space-borne Synthetic Aperture Radar (SAR) has the potential to be a promising application for traffic monitoring. However, the backscatter character of a vehicle in a SAR image is unstable and varies with image parameters, such as aspect and incidence angle. To investigate vehicle detectability in SAR images for traffic monitoring applications, images of four common types of vehicles in China were acquired using the fully polarimetric (FP) SAR of Radarsat-2 in our experiments. Methods for measuring a vehicle's aspect angle and backscatter intensity are introduced. The experimental FP SAR images are used to analyze the detectability, which is affected by factors such as vehicle size, vehicle shape, and aspect angle. Moreover, a new metric to improve vehicle detectability in FP SAR images is proposed and compared with the well-known intensity metric. The experimental results show that shape is a crucial factor in affecting the backscatter intensity of vehicles, which also oscillates with varying aspect angle. If the size of a vehicle is smaller than the SAR image resolution, using the intensity metric would result in low detectability. However, it could be improved in an FP SAR image by using the proposed metric. Compared with the intensity metric, the overall detectability is improved from 72% to 90% in our experiments. Therefore, this study indicates that FP SAR images have the ability to detect stationary vehicles on the road and are meaningful for traffic monitoring.

  9. Analysis of polarimetric SAR signatures of vegetated areas

    NASA Technical Reports Server (NTRS)

    French, Nancy H. F.; Bourgeau-Chavez, Laura L.; Kasischke, Eric S.; Sheen, Daniel R.

    1991-01-01

    Several techniques to quantitatively analyze the information in the polarimetric signature are discussed, including: (1) a shape (texture) parameter; (2) fractional polarization; (3) the phase difference signature; and (4) the correlation coefficient. These techniques are applied to airborne synthetic aperture radar imagery collected over several different vegetation communities, including a mangrove swamp, a mixed-age loblolly pine forest, and a flooded bald cypress forest.

  10. Interferometric synthetic aperture radar (InSAR) and its applications to study volcanoes, part 1: Principles of InSAR

    USGS Publications Warehouse

    Lu, Zhong; Zhang, Jixian; Zhang, Yonghong

    2006-01-01

    Interferometric synthetic aperture radar is an ability to measure the surface deformation of remote sensing technology, in a huge area, its deformation measurement with sub-centimeter accuracy, and spatial resolution in the tens of meters or less. In this paper, the basic theory of InSAR technology is reviewed, its working principle is clarified, and the related problems of surface deformation measurement using InSAR technology are discussed.

  11. Bayesian classification of polarimetric SAR images using adaptive a priori probabilities

    NASA Technical Reports Server (NTRS)

    Van Zyl, J. J.; Burnette, C. F.

    1992-01-01

    The problem of classifying earth terrain by observed polarimetric scattering properties is tackled with an iterative Bayesian scheme using a priori probabilities adaptively. The first classification is based on the use of fixed and not necessarily equal a priori probabilities, and successive iterations change the a priori probabilities adaptively. The approach is applied to an SAR image in which a single water body covers 10 percent of the image area. The classification accuracy for ocean, urban, vegetated, and total area increase, and the percentage of reclassified pixels decreases greatly as the iteration number increases. The iterative scheme is found to improve the a posteriori classification accuracy of maximum likelihood classifiers by iteratively using the local homogeneity in polarimetric SAR images. A few iterations can improve the classification accuracy significantly without sacrificing key high-frequency detail or edges in the image.

  12. Bayesian classification of polarimetric SAR images using adaptive a priori probabilities

    NASA Technical Reports Server (NTRS)

    Van Zyl, J. J.; Burnette, C. F.

    1992-01-01

    The problem of classifying earth terrain by observed polarimetric scattering properties is tackled with an iterative Bayesian scheme using a priori probabilities adaptively. The first classification is based on the use of fixed and not necessarily equal a priori probabilities, and successive iterations change the a priori probabilities adaptively. The approach is applied to an SAR image in which a single water body covers 10 percent of the image area. The classification accuracy for ocean, urban, vegetated, and total area increase, and the percentage of reclassified pixels decreases greatly as the iteration number increases. The iterative scheme is found to improve the a posteriori classification accuracy of maximum likelihood classifiers by iteratively using the local homogeneity in polarimetric SAR images. A few iterations can improve the classification accuracy significantly without sacrificing key high-frequency detail or edges in the image.

  13. Extraction of Benthic Fauna Habitat in Tidal Flats Using Multi-Frequency Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Choe, Byung-Hun; Kim, Duk-Jin; Hwang, Ji-Hwan; Moon, Wooil M.

    2011-03-01

    Benthic faunas form a relatively rough surface structure in tidal flats by their unique surface structure or their survival activities. In particular, oyster reefs are exposed and distributed intensively on those tidal flats at low tide. In this study, we investigated the microwave scattering signatures occurred by the regional distribution of oysters in tidal flats, applying polarimetric analysis techniques to fully polarimetric RADARSAT-2 (C-band) and ALOS PALSAR (L-band) data. Tidal flats of Jebu Island in the western coastal region of the Korean peninsula were selected for the investigation. The scattering mechanisms in tidal flats were analyzed by Freeman-Durden target decomposition and the target depolarization effects were quantitatively measured using the cross- polarized ratio, co-polarized correlation coefficient, and phase difference between HH and VV. From C-band SAR data, we observed strong volume (or multiple) scattering and depolarization effects in the oyster reefs, while only surface scattering was dominant in mud flat areas. These scattering signatures were also verified in-situ measurenments using a ground-based polarimetric scatterometer system. However, no difference was observed between the scattering signatures of oyster reefs and mud flat areas from L-band data, which have a relatively longer wavelength. In conclusion, this study suggests that multi-frequency polarimetric SAR measurements can be used to detect the naturally distributed oysters in tidal flats.

  14. Rapid Landslide Mapping by Means of Post-Event Polarimetric SAR Imagery

    NASA Astrophysics Data System (ADS)

    Plank, Simon; Martinis, Sandro; Twele, Andre

    2016-08-01

    Rapid mapping of landslides, quickly providing information about the extent of the affected area and type and grade of damage, is crucial to enable fast crisis response. Reviewing the literature shows that most synthetic aperture radar (SAR) data-based landslide mapping procedures use change detection techniques. However, the required very high resolution (VHR) pre-event SAR imagery, acquired shortly before the landslide event, is commonly not available. Due to limitations in onboard disk space and downlink transmission rates modern VHR SAR missions do not systematically cover the entire world. We present a fast and robust procedure for mapping of landslides, based on change detection between freely available and systematically acquired pre-event optical and post-event polarimetric SAR data.

  15. Change Detection in a Short Time Sequence of Polarimetric C-Band SAR Data

    NASA Astrophysics Data System (ADS)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2016-08-01

    Based on an omnibus likelihood ratio test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution and a factorization of this test statistic with associated p-values, change analysis in a time series of multilook, polarimetric SAR data in the covariance matrix representation is carried out. The omnibus test statistic and its factorization detect if and when change(s) occur. The technique is demonstrated on airborne EMISAR C-band data but may be applied to ALOS, COSMO-SkyMed, RadarSat-2 Sentinel-1, TerraSAR-X, and Yaogan data also.

  16. Processing of polarimetric SAR data for soil moisture estimation over Mahantango watershed area

    NASA Technical Reports Server (NTRS)

    Rao, K. S.; Teng, W. L.; Wang, J. R.

    1992-01-01

    Microwave remote sensing technique has a high potential for measuring soil moisture due to the large contrast in dielectric constant of dry and wet soils. Recent work by Pults et al. demonstrated the use of X/C-band data for quantitative surface soil moisture extraction from Airborne Synthetic Aperture Radar (SAR) system. Similar technique was adopted using polarimetric SAR data acquired with the JPL-AIRSAR system over the Mahantango watershed area in central Pennsylvania during July 1990. The data sets reported include C-, L-, and P-bands of 10, 13, 15, and 17 July 1990.

  17. Multitemporal RADARSAT-2 polarimetric SAR data for urban land-cover mapping

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Ban, Yifang

    2010-11-01

    The objective of this research is to evaluate the performance of multitemporal RADARSAT-2 polarimetric SAR data for urban land use/land-cover classification. Three dates of RADARSAT-2 polarimetric SAR data were acquired during the summer of 2008 over the rural-urban fringe of the Greater Toronto Area. The major land-cover types are residential areas, industry areas, bare land, golf courses, forest, and agricultural crops. The methodology used in this study follow the manner that first extracting the features and then carrying out the supervised classification taking the different feature combinations as an input. Support vectors machine is selected to be the classifier. SAR features including amplitude, intensity, long-term coherence, Freeman-Durden decomposition are extracted and compared by evaluating the classification abilities. Long-term coherence plays an important role in building discrimination in this study. The best classification results achieved by using the three dates HH, VH, HV amplitude layers and the coherence map. The overall accuracy is 82.3%. The results indicate that RADARSAT-2 polarimetric data has a potential to urban land-cover classification with the proper feature combinations.

  18. Multitemporal RADARSAT-2 polarimetric SAR data for urban land-cover mapping

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Ban, Yifang

    2009-09-01

    The objective of this research is to evaluate the performance of multitemporal RADARSAT-2 polarimetric SAR data for urban land use/land-cover classification. Three dates of RADARSAT-2 polarimetric SAR data were acquired during the summer of 2008 over the rural-urban fringe of the Greater Toronto Area. The major land-cover types are residential areas, industry areas, bare land, golf courses, forest, and agricultural crops. The methodology used in this study follow the manner that first extracting the features and then carrying out the supervised classification taking the different feature combinations as an input. Support vectors machine is selected to be the classifier. SAR features including amplitude, intensity, long-term coherence, Freeman-Durden decomposition are extracted and compared by evaluating the classification abilities. Long-term coherence plays an important role in building discrimination in this study. The best classification results achieved by using the three dates HH, VH, HV amplitude layers and the coherence map. The overall accuracy is 82.3%. The results indicate that RADARSAT-2 polarimetric data has a potential to urban land-cover classification with the proper feature combinations.

  19. Calibration of complex polarimetric SAR imagery using backscatter correlations

    NASA Technical Reports Server (NTRS)

    Klein, Jeffrey D.

    1992-01-01

    A new technique for calibration of multipolarization synthetic aperture radar (SAR) imagery is described. If scatterer reciprocity and lack of correlation between co- and cross-polarized radar echoes (for azimuthally symmetric distributed targets) is assumed, the effects of signal leakage between the radar data channels can be removed without the use of known ground targets. If known targets are available, all data channels may be calibrated relative to one another and radiometrically as well. The method is verified with simulations and application to airborne SAR data.

  20. Polarimetric Interferometry

    DTIC Science & Technology

    2007-02-01

    Comparison with conventional single- polarization estimates illustrates the significant processing gains that are possible if there is access to full...polarimetric interferometric data. A comparison with conventional single- polarization presented in former lectures illustrates the significant processing...gains that are possible if access to full polarimetric interferometric data is possible. The strong polarization dependence of the coherence will be

  1. Polarimetric radars and polarimetric SAR data in tasks of detection and identification of marine oil pollution

    NASA Astrophysics Data System (ADS)

    Sineva, A. A.; Ivanov, A. Yu.

    2016-12-01

    Detecting and distinguishing different kinds of oil pollution, including spills of crude oil on the sea surface, is one important problem of modern remote sensing. The wide use of imaging radars is not always effective. In this review paper, the main principles and methods of polarization radar imaging and radar data processing are discussed based on present theoretical and experimental approaches and ideas. The efficiency of polarimetric methods for oil-spill detection and accurate identification on the sea surface is demonstrated as well. As is shown, modern methods of multipolarimetric radar-signal processing is a powerful means for improving oil-pollution detection and discrimination algorithms.

  2. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    DTIC Science & Technology

    2005-02-01

    Cologne, Germany. Krieger, G., M. Wendler, J. Mittermayer ,, S. Buckreuss F. Witte, W. Keydel, A. Moreira, 2002, “Sector Imaging Radar for Enhanced...twentieth printing: 1997) Mittermayer , J., A. Moreira and O. Lofeld., 1999, "The frequency scaling algorithm for spotlight SAR data processing". IEEE

  3. Temporal Coherence as an Estimate of Decorrelation Time of SAR Interferometric Measurements

    NASA Astrophysics Data System (ADS)

    Foumelis, Michael

    2014-05-01

    Following a plethora of validations and demonstrations Interferometric SAR (InSAR) has been established as a mature space geodetic technique for providing valuable insights for various phenomena related to geohazards. One of the main advantages of space borne SAR systems with respect to GNSS is the continuous spatial coverage. However, the impact of temporal decorrelation especially in repeat-pass interferometry has been observed during the historical development of InSAR applications. Interferometric coherence is considered as the expression of temporal decorrelation. It is understood that interferometric coherence decreases with time between SAR acquisitions because of changes in surface reflectivity, reducing the accuracy and spatial coverage of SAR phase measurements. This is an intrinsic characteristic of the design of SAR systems that has a significant contribution at longer time scales. Since the majority of geohazards rely on long term observation scenarios, the effect of temporal decorrelation is evident as coherence becomes dominated by temporal changes. Although in the past there was not sufficient amount of SAR data to extract robust statistical metrics, in the present study it is demonstrated that tailored analysis of interferometric coherence by exploiting the large archive of SAR data available by the European Space Agency (ESA), enables the accurate quantification of temporal decorrelation. A methodology to translate the observed rate of coherence loss into decorrelation times over a volcanic landscape is the subject treated in this study. Specifically, a sensitivity analysis based on a large data stack of interferometric pairs in order to quantitatively estimate at a pixel level the time beyond which each interferometric phase becomes practically unusable is presented. The estimation and mapping of the spatial distribution of the temporal decorrelation times in an area without a necessary a priori knowledge of its surface characteristics is a

  4. A three-component method for timely detection of land cover changes using polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Qi, Zhixin; Yeh, Anthony Gar-On; Li, Xia; Zhang, Xiaohu

    2015-09-01

    This study proposes a new three-component method for timely detection of land cover changes using polarimetric synthetic aperture radar (PolSAR) images. The three components are object-oriented image analysis (OOIA), change vector analysis (CVA), and post-classification comparison (PCC). First, two PolSAR images acquired over the same area at different dates are segmented hierarchically to delineate land parcels (image objects). Then, parcel-based CVA is performed with the coherency matrices of the PolSAR data to detect changed parcels. Finally, PCC based on a parcel-based classification algorithm integrating polarimetric decomposition, decision tree algorithms, and support vector machines is used to determine the type of change for the changed parcels. Compared with conventional PCC based on the widely used Wishart supervised classification, the three-component method achieves much higher accuracy for land cover change detection with PolSAR images. The contribution of each component is evaluated by excluding it from the method. The integration of OOIA in the method greatly reduces the false alarms caused by speckle noise in PolSAR images as well as improves the accuracy of PolSAR image classification. CVA contributes to the method by significantly reducing the effect of the classification errors on the change detection. The use of PCC in the method not only identifies different types of land cover change but also reduces the false alarms introduced by the change in the environment. The three-component method is validated in land development detection, which is important to many developing countries that are confronting a growing problem of unauthorized construction land expansion. The results show that the three-component method is effective in detecting land developments with PolSAR images.

  5. Detection of oyster habitat in tidal flats using multi-frequency polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Choe, Byung-Hun; Kim, Duk-jin; Hwang, Ji-Hwan; Oh, Yisok; Moon, Wooil M.

    2012-01-01

    Exposed oyster reefs in tidal flats have complex and rough surfaces because of their unique surface texture, which are quite distinct from the surrounding mud or sand flats. Here we investigate the microwave signatures, backscattered from naturally distributed oyster reefs in tidal flats, utilizing the polarimetric analysis techniques to fully polarimetric RADARSAT-2 (C-band) and ALOS PALSAR (L-band) data. The study areas include the tidal flats around Jebu Island and Hampyung Bay on the west coast of the Korean peninsula. We analyzed the microwave scattering mechanisms associated with oyster reefs and surrounding areas using the polarimetric target decomposition theorem and quantitatively measu ρHHVV red target depolarization effects (the cross-polarized ratio (HV/VV), the co-polarized correlation coefficient ( ρHHVV), and the co-polarized phase difference between HH and VV). On the basis of a large increase in the cross-polarized backscattering (HV) in the C-band SAR data, one can observe strong volume (or multiple) scattering and depolarization effects over oyster reefs areas, whereas only surface scattering was dominant in most parts of the background tidal areas. In oyster reefs, the proportion of volume scattering and the cross-polarized ratio were greater than 0.7 and -8 dB, respectively. These scattering characteristics were also verified from in-situ measurements in the field using a ground-based polarimetric scatterometer system. However, almost no difference was observed between the scattering signatures of oyster reefs and background mudflat areas from L-band data, which have a considerably longer wavelength than C-band. The study clearly suggests that multi-frequency (C- and L-band) polarimetric SAR systems can be used to detect the naturally distributed oyster reefs in tidal flats.

  6. Kernel-machine-based classification in multi-polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Middelmann, Wolfgang; Ebert, Alfons; Thoennessen, Ulrich

    2005-05-01

    The focus of this paper is the classification of military vehicles in multi-polarimetric high-resolution spotlight SAR images in an ATR framework. Kernel machines as robust classification methods are the basis of our approach. A novel kernel machine the Relevance Vector Machine with integrated Generator (RVMG) controlling the trade-off between classification quality and computational effort is used. It combines the high classification quality of the Support Vector Machine by margin maximization and the low effort of the Relevance Vector Machine caused by the special statistical approach. Moreover multi-class classification capability is given by an efficient decision heuristic, an adaptive feature extraction based on Fourier coefficients allows the module to do real time execution, and a parameterized reject criterion is proposed in this paper. Investigations with a nine class data set from QinetiQ deal with fully polarimetric SAR data. The objective is to assess polarimetric features in combination with several kernel machines. Tests approve the high potential of RVMG. Moreover it is shown that polarimetric features can improve the classification quality for hard targets. Among these the simple energy based features prove more favorable than complex ones. Especially the two coplanar polarizations embody the essential information, but a better generalizability is caused by using all four channels. An important property of a classifier used in the ATR framework is the capability to reject objects not belonging to any of the trained classes. Therefore the QinetiQ data are divided into four training classes and five classes of confusion objects. The classification module with reject criterion is controlled by the reject parameter and the kernel parameter. Both parameters are varied to determine ROC curves related to different polarimetric features.

  7. Estimation of the Above Ground Biomass of Tropical Forests using Polarimetric and Tomographic SAR Data Acquired at P Band and 3-D Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Ferro-Famil, L.; El Hajj Chehade, B.; Ho Tong Minh, D.; Tebaldini, S.; LE Toan, T.

    2016-12-01

    Developing and improving methods to monitor forest biomass in space and time is a timely challenge, especially for tropical forests, for which SAR imaging at larger wavelength presents an interesting potential. Nevertheless, directly estimating tropical forest biomass from classical 2-D SAR images may reveal a very complex and ill-conditioned problem, since a SAR echo is composed of numerous contributions, whose features and importance depend on many geophysical parameters, such has ground humidity, roughness, topography… that are not related to biomass. Recent studies showed that SAR modes of diversity, i.e. polarimetric intensity ratios or interferometric phase centers, do not fully resolve this under-determined problem, whereas Pol-InSAR tree height estimates may be related to biomass through allometric relationships, with, in general over tropical forests, significant levels of uncertainty and lack of robustness. In this context, 3-D imaging using SAR tomography represents an appealing solution at larger wavelengths, for which wave penetration properties ensures a high quality mapping of a tropical forest reflectivity in the vertical direction. This paper presents a series of studies led, in the frame of the preparation of the next ESA mission BIOMASS, on the estimation of biomass over a tropical forest in French Guiana, using Polarimetric SAR Tomographic (Pol-TomSAR) data acquired at P band by ONERA. It is then shown that Pol-TomoSAR significantly improves the retrieval of forest above ground biomass (AGB) in a high biomass forest (200 up to 500 t/ha), with an error of only 10% at 1.5-ha resolution using a reflectivity estimates sampled at a predetermined elevation. The robustness of this technique is tested by applying the same approach over another site, and results show a similar relationship between AGB and tomographic reflectivity over both sites. The excellent ability of Pol-TomSAR to retrieve both canopy top heights and ground topography with an error

  8. Water-Body types identification in urban areas from radarsat-2 fully polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Xie, Lei; Zhang, Hong; Wang, Chao; Chen, Fulong

    2016-08-01

    This paper presents a novel method for supervised water-body extraction and water-body types identification from Radarsat-2 fully polarimetric (FP) synthetic aperture radar (SAR) data in complex urban areas. First, supervised water-body extraction using the Wishart classifier is performed, and the false alarms that are formed in built-up areas are removed using morphological processing methods and spatial contextual information. Then, the support vector machine (SVM), the classification and regression tree (CART), TreeBagger (TB), and random forest (RF) classifiers are introduced for water-body types (rivers, lakes, ponds) identification. In SAR images, certain other objects that are misclassified as water are also considered in water-body types identification. Several shape and polarimetric features of each candidate water-body are used for identification. Radarsat-2 PolSAR data that were acquired over Suzhou city and Dongguan city in China are used to validate the effectiveness of the proposed method, and the experimental results are evaluated at both the object and pixel levels. We compared the water-body types classification results using only shape features and the combination of shape and polarimetric features, the experimental results show that the polarimetric features can eliminate the misclassifications from certain other objects like roads to water areas, and the increasement of classification accuracy embodies at both the object and pixel levels. The experimental results show that the proposed methods can achieve satisfactory accuracies at the object level [89.4% (Suzhou), 95.53% (Dongguan)] and the pixel level [96.22% (Suzhou), 97.95% (Dongguan)] for water-body types classification, respectively.

  9. Development and Evaluation of Science and Technology Education Program Using Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Ikemitsu, H.; Nango, K.

    2016-06-01

    This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.

  10. Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery.

    PubMed

    Marapareddy, Ramakalavathi; Aanstoos, James V; Younan, Nicolas H

    2016-06-16

    Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We used L-band Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ₁, λ₂, and λ₃), we implemented several unsupervised classification algorithms for the identification of anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory's (JPL's) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers.

  11. Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery

    PubMed Central

    Marapareddy, Ramakalavathi; Aanstoos, James V.; Younan, Nicolas H.

    2016-01-01

    Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We used L-band Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ1, λ2, and λ3), we implemented several unsupervised classification algorithms for the identification of anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers. PMID:27322270

  12. Comparison of alternative parameters to dual polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Sugimoto, Mitsunobu; Ouchi, Kazuo

    2012-09-01

    The goal of this study is to examine the potential of deriving information comparable to quad-polarization synthetic aperture radar (SAR) data from dual-polarization data. Multi-polarization data have shown the potential to increase further the ability of extracting physical quantities of observation targets. Above all, quad-polarization data have more information than others, but they are relatively few in number compared with single or dual-polarization data. Although there are many SAR systems capable of quad-polarization observation, most of them are operated mainly on single or dual-polarization mode because of limited data transfer rate, area of coverage, required resolution, other system restriction, and so on. Thus, there is a certain trade- off between data availability and multi polarization. Therefore, we focused on dual-polarization as a good compromise between single and quad-polarization data. In this study, we investigated possible alternative parameters that can be derived from HH-VV dual-polarization data and can serve as substitutes for cross-polarization component in quad-polarization data. Experiments are performed using the Advanced Land Observation Satellite-Phased Array L-band SAR (ALOS-PALSAR) quad-polarization data. The cross polarization component in the data is used as benchmark for the alternative parameters.

  13. Random Forest Classification of Sediments on Exposed Intertidal Flats Using ALOS-2 Quad-Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Wang, W.; Yang, X.; Liu, G.; Zhou, H.; Ma, W.; Yu, Y.; Li, Z.

    2016-06-01

    Coastal zones are one of the world's most densely populated areas and it is necessary to propose an accurate, cost effective, frequent, and synoptic method of monitoring these complex ecosystems. However, misclassification of sediments on exposed intertidal flats restricts the development of coastal zones surveillance. With the advent of SAR (Synthetic Aperture Radar) satellites, polarimetric SAR satellite imagery plays an increasingly important role in monitoring changes in coastal wetland. This research investigated the necessity of combining SAR polarimetric features with optical data, and their contribution in accurately sediment classification. Three experimental groups were set to make assessment of the most appropriate descriptors. (i) Several SAR polarimetric descriptors were extracted from scattering matrix using Cloude-Pottier, Freeman-Durden and Yamaguchi methods; (ii) Optical remote sensing (RS) data with R, G and B channels formed the second feature combinations; (iii) The chosen SAR and optical RS indicators were both added into classifier. Classification was carried out using Random Forest (RF) classifiers and a general result mapping of intertidal flats was generated. Experiments were implemented using ALOS-2 L-band satellite imagery and GF-1 optical multi-spectral data acquired in the same period. The weights of descriptors were evaluated by VI (RF Variable Importance). Results suggested that optical data source has few advantages on sediment classification, and even reduce the effect of SAR indicators. Polarimetric SAR feature sets show great potentials in intertidal flats classification and are promising in classifying mud flats, sand flats, bare farmland and tidal water.

  14. Study on the polarimetric characteristics of the Lop Nur arid area using PolSAR data

    NASA Astrophysics Data System (ADS)

    Gao, Zhihong; Gong, Huaze; Zhou, Xu; Shao, Yun; Yuan, Minghuan; Wang, Longfei

    2014-01-01

    The quantitative study of the arid Lop Nur lake basin is significant to investigate the environmental changes in the arid area of northwestern China and extremely arid areas of Eurasia in general. Synthetic aperture radar (SAR) imagery, with its penetration capability and advantages for studying geological phenomena on a large spatial scale, is very suitable for analyzing the subsurface of the Lop Nur area. Based on the full polarimetric ALOS PALSAR data and field investigation, it was found that the two-layer scattering mechanism of the dry sediments is very special and complex. The scattering mechanism in the bright strips is more complex than that in the gray strips according to the co-polarization correlation analysis. The experimental results show that the Cloude-Pottier decomposition method is more appropriate for this area. Moreover, the polarimetric characteristics and Cloude-Pottier decomposition results are very important for the study of the past climatic change in Lop Nur area. In conclusion, full polarimetric SAR data and target decomposition theory provide a new technique for obtaining information and quantitatively studying the subsurface characteristics of arid areas.

  15. Estimating Forest Vertical Structure from Multialtitude, Fixed-Baseline Radar Interferometric and Polarimetric Data

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Siqueira, Paul R.

    2000-01-01

    Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem

  16. Characterization and classification of sea ice in polarimetric SAR data

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Drinkwater, M.; Pang, A.; Rignot, E.

    1991-01-01

    A more detailed characterization of the apparent thin ice types in the multifrequency, multipolarization synthetic aperture radar (SAR) dataset acquired during a campaign for validation of the DMSP SSM/I radiometer ice products is given. The emphasis is on providing a more detailed characterization of the signatures of apparent thin ice types observed in this data and the utility of these signatures for ice type classification purposes. The statistical characteristics of these signatures and their dependence on system calibration are summarized. Implications of these observations for sea ice scattering models are briefly discussed.

  17. Polarimetric millimetre wave SAR for precision farming applications

    NASA Astrophysics Data System (ADS)

    Essen, H.; Nüßler, D.; Krebs, C.; Schimpf, H.; Johannes, W.; Wahlen, A.

    2010-10-01

    A high resolution imaging millimetre wave SAR delivers three key parameters important for precision farming applications, namely range, reflectivity and polarization state. The reflectivity gives information upon the type of crop and its humidity. Especially in the millimeter wave region young growing green plants exhibit a considerably higher reflectivity than older, dry leaves. Dependent on the transmit-receive polarization also indications are given upon the humidity of the underlying soil. Polarimetry also allows to judge the ripeness of the grain as the geometry of the ear is changing during the ripening process.

  18. 3D Urban Remote Sensing Using Polarimetric SAR Tomography

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Wang, Chao; Zhang, Hong; Wu, Fan; Zhang, Bo

    2013-08-01

    During near decade, space-borne tomographic synthetic aperture radar (TomoSAR) has demonstrated unique capability in the retrieval of height location of reflectors. In this paper, we proposed a tomographic 3D reconstruction method with single bounce and double bounce scattering mechanism on the basis of the jointly sparsity of the two scattering patterns. The method has been applied to RADARSAT-2 Fine Quad Mode data with six baselines. The layover phenomenon within each resolution pixel has been analysed, together with the retrieval of the position of these points. The 3D structure of Suzhou Sports Stadium is also acquired the location of strong scattering points within each cell with layover.

  19. An Automated Mapping Processor using C-Band Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Rodriguez, E.; Michel, T. R.; Martin, J. M.; Houshmand, B.

    1996-01-01

    We describe a processor which has been implemented to generate map products starting from C-band interferometric data. The first stage of the processor consists of the conventional interferometric synthetic aperture radar (SAR) processing producing a digital elevation model (DEM) and a SAR brightness image in sensor coordinates. In the second stage of processing, a land use classification map is obtained by using the DEM, brightness, and interferometric correlation layers. Auxiliary layers which include a drainage layer, a height gradient layer, a height error layer, an estimated penetration layer, and a shaded relief layer are also computed. In the final step, all UTM collocated layers are combined in a geographical information system (GIS) which allows for both hard copy map products and digital applications.

  20. An Automated Mapping Processor Using C-Band Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Rodriguez, E.; Michel, T. R.; Martin, J. M.; Houshmand, B.

    1996-01-01

    We present the description of a processor which has been implemented to generate map products starting from C-band interferometric data. The first stage of the processor consists of the conventional interferometric SAR processing producing a Digital Elevation Model (DEMs) and a SAR brightness image in sensor coordinates. In the second stage of processing, a land use classification map is obtained by using the DEM, brightness, and interferometric correlation layers. Auxiliary layers which include a drainage layer, a height gradient layer, a height error layer, an estimated penetration layer, and a shaded relief layer are also computed. In the final step, all UTM collocated layers are combined in a GIS system which allows for both hard copy map products and for digital applications.

  1. Ground Displacement Measurement of the 2013 Balochistan Earthquake with interferometric TerraSAR-X ScanSAR data

    NASA Astrophysics Data System (ADS)

    Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.

    2014-12-01

    This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A

  2. Extracting DEM from airborne X-band data based on PolInSAR

    NASA Astrophysics Data System (ADS)

    Hou, X. X.; Huang, G. M.; Zhao, Z.

    2015-06-01

    Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.

  3. Polarimetric SAR Data for Urban Land Cover Classification Using Finite Mixture Model

    NASA Astrophysics Data System (ADS)

    Mahdianpari, Masoud; Akbari, Vahid; Mohammadimanesh, Fariba; Alioghli Fazel, Mohammad

    2013-04-01

    Image classification techniques play an important role in automatic analysis of remote sensing data. This paper demonstrates the potential of polarimetric synthetic aperture radar (PolSAR) for urban land cover mapping using an unsupervised classification approach. Analysis of PolSAR images often shows that non-Gaussian models give better representation of the scattering vector statistics. Hence, processing algorithms based on non-Gaussian statistics should improve performance, compared to complex Gaussian distributions. Several distributions could be used to model SAR image texture with different spatial correlation properties and various degrees of inhomogeneity [1-3]. Statistical properties are widely used for image segmentation and land cover classification of PolSAR data. The pixel-based approaches cluster individual pixels through analysis of their statistical properties. Those methods work well on the relatively coarse spatial resolution images. But classification results based on pixelwise analysis demonstrate the pepper-salt effect of speckle in medium and high resolution applications such as urban area monitoring [4]. Therefore, the expected improvement of the classification results is hindered by the increase of textural differences within a class. In such situation, enhancement could be made through exploring the contextual correlation among pixels by Markov random field (MRF) models [4, 5]. The potential of MRF models to retrieve spatial contextual information is desired to improve the accuracy and reliability of image classification. Unsupervised contextual polarimetric SAR image segmentation is addressed by combining statistical modeling and spatial context within an MRF framework. We employ the stochastic expectation maximization (SEM) algorithm [6] to jointly perform clustering of the data and parameter estimation of the statistical distribution conditioned to each image cluster and the MRF model. This classification method is applied on medium

  4. Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis

    NASA Astrophysics Data System (ADS)

    Kojima, S.; Hensley, S.

    2012-12-01

    There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume

  5. Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data

    USGS Publications Warehouse

    Gallant, Alisa L.; Kaya, Shannon G.; White, Lori; Brisco, Brian; Roth, Mark F.; Sadinski, Walter J.; Rover, Jennifer

    2014-01-01

    Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  6. Classification of High Resolution C-Band PolSAR Data on Polarimetric and Texture Features

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Chen, Erxue; Li, Zengyuan; Feng, Qi; Li, Lan

    2014-11-01

    PolSAR image classification is an important technique in the remote sensing area. For high resolution PolSAR image, polarimetric and texture features are equally important for the high resolution PolSAR image classification. The texture features are mainly extracted through Gray Level Co-occurrence Matrix (GLCM) method, but this method has some deficiencies. First, GLCM method can only work on gray-scale images; Secondly, the number of texture features extracted by GLCM method is generally up dozens, or even hundreds. Too many features may exist larger redundancy and will increase the complexity of classification. Therefore, this paper introduces a new texture feature factor-RK that derived from PolSAR image non-Gaussian statistic model.Using the domestic airborne C-band PolSAR image data, we completed classification combined the polarization and texture characteristics.The results showed that this new texture feature factor-RK can overcome the above drawbacks and can achieve same performance compared with GLCM method.

  7. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  8. Statistical modeling of targets and clutter in single-look non-polarimetric SAR imagery

    SciTech Connect

    Salazar, J.S.; Hush, D.R.; Koch, M.W.; Fogler, R.J.; Hostetler, L.D.

    1998-08-01

    This paper presents a Generalized Logistic (gLG) distribution as a unified model for Log-domain synthetic aperture Radar (SAR) data. This model stems from a special case of the G-distribution known as the G{sup 0}-distribution. The G-distribution arises from a multiplicative SAR model and has the classical K-distribution as another special case. The G{sup 0}-distribution, however, can model extremely heterogeneous clutter regions that the k-distribution cannot model. This flexibility is preserved in the unified gLG model, which is capable of modeling non-polarimetric SAR returns from clutter as well as man-made objects. Histograms of these two types of SAR returns have opposite skewness. The flexibility of the gLG model lies in its shape and shift parameters. The shape parameter describes the differing skewness between target and clutter data while the shift parameter compensates for movements in the mean as the shape parameter changes. A Maximum Likelihood (ML) estimate of the shape parameter gives an optimal measure of the skewness of the SAR data. This measure provides a basis for an optimal target detection algorithm.

  9. Analyzing C-band SAR polarimetric information for LAI and crop yield estimations

    NASA Astrophysics Data System (ADS)

    Molijn, Ramses A.; Iannini, Lorenzo; Mousivand, Ali; Hanssen, Ramon F.

    2014-10-01

    In this study, space remote sensing data and crop specific information from the ESA-led AgriSAR 2009 campaign are used for studying the profiles of C-band SAR backscatter signals and multispectral-based leaf area index (LAI) over the growth period of canola, pea and wheat. In addition, the correlations between radar backscatter parameters and the crop yields were analyzed, based on extracted statistics of temporal profiles. The results show that the HV backscatter and LAI are correlated differently before and after LAI peak. In addition, the coefficient of determination between peakrelated statistics from polarimetric indicator profiles and yield for pea fields can reach up to 0.68, and for canola and wheat up to 0.47 and 0.5, respectively. HV backscatter and coherence between HH and VV are most.

  10. Improvement of DEM quality derived by interferometric SAR by using multiple baseline data pairs

    NASA Astrophysics Data System (ADS)

    Takeuchi, S.; Oguro, Y.; Suga, Y.

    According to the study conducted by the authors on DEM generation by using InSAR with many JERS-1/SAR repeat-pass interferometric data pairs with different baseline lengths, it has been suggested that height accuracy and drawback rate are correlated to baseline better than to coherence. The drawback rate clearly decreases with smaller baseline lengths, and on the other hand, height accuracy tends to decrease with smaller baseline lengths and the range from 400 to 500 m in baseline lengths brings in the best accuracy, although the drawback rate is generally larger than that with smaller baseline length. These experimental results clearly indicate that it is basically impossible to obtain the best accuracy and drawback rate at once by a single repeat-pass data pair. One possible approach might be the use of multiple InSAR data pairs. Therefore, the authors attempt to improve the quality of DEM generated by L-band repeat-pass InSAR by using multiple InSAR data pairs with different baseline lengths. The multiple interferometric data pairs by JERS-1/SAR repeat-pass observation with different baseline lengths are used to generate DEM in several mountain test areas in Japan. After DEM generation by individual data pairs, they are merged into a final DEM product based on the regression analysis of them. The result indicates that the use of multiple baseline data pairs significantly improves DEM quality with a little increase of height error.

  11. Assessing Natural Disaster Impacts and Recovery Using Multifrequency, Fully-Polarimetric Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Czuchlewski, K. R.; Kim, Y.; Weissel, J. K.

    2003-04-01

    Many natural disasters involving landslides, volcanic eruptions, fires, or flo o ds entail terrain resurfacing, followed by subsequent recovery. Mo dern satellite and airborne remote sensing technologies, which combine broad spatial coverage and high spatial resolution with time-sequential site revisit capability, can provide important information on the extent and duration of ma jor landscape disturbance. In humid climate settings, these hazards temporarily remove or replace a natural vegetation cover and in doing so, mo dify the physical properties of the land surface. In optical remote sensing, removal of vegetation alters surface albedo in the visible - near infrared (V-NIR) waveband, particularly the high reflectance from vegetation in the NIR. For SAR remote sensing, removal of vegetation cover causes a change in dominant microwave scattering mechanism for the areas affected. SAR has operational advantages over optical sensors for rapid disaster assessment because of its day/night acquisition capability, the ability to "see through" smoke, clouds and dust, and the side-lo oking viewing geometry, which is an advantage whenever data collection directly above the site would prove dangerous. We show how multifrequency, fully-polarimetric airborne SAR data can be "inverted" for parameters that reflect scattering mechanism signatures diagnostic of different surface cover types. We apply a uniform approach to map landslides resulting from the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan and volcanic flows from the ma jor 1996 eruption of Manam volcano in Papua New Guinea. In addition, earlier work has shown that multifrequency SAR polarimetric backscatter is sensitive to total above-ground biomass. This attribute can be exploited to calculate vegetation loss during a disaster and for assessment of regrowth during the recovery phase.

  12. Inversion of Electromagnetic Models for Bare Soil Parameter Estimation from Multifrequency Polarimetric SAR Data

    PubMed Central

    Pierdicca, Nazzareno; Castracane, Paolo; Pulvirenti, Luca

    2008-01-01

    The potentiality of polarimetric SAR data for the estimation of bare soil geophysical parameters (i.e., roughness and soil moisture) is investigated in this work. For this purpose, two forward models available in the literature, able to simulate the measurements of a multifrequency radar polarimeter, have been implemented for use within an inversion scheme. A multiplicative noise has been considered in the multidimensional space of the elements of the polarimetric Covariance Matrix, by adopting a complex Wishart distribution to account for speckle effects. An additive error has been also introduced on the simulated measurements to account for calibration and model errors. Maximum a Posteriori Probability and Minimum Variance criteria have been considered to perform the inversion. As for the algorithms to implement the criteria, simple optimization/integration procedures have been used. A Neural Network approach has been adopted as well. A correlation between the roughness parameters has been also supposed in the simulation as a priori information, to evaluate its effect on the estimation accuracy. The methods have been tested on simulated data to compare their performances as function of number of looks, incidence angles and frequency bands, thus identifying the best radar configuration in terms of estimation accuracy. Polarimetric measurements acquired during MAC Europe and SIR-C campaigns, over selected bare soil fields, have been also used as validation data. PMID:27873982

  13. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    2007-01-01

    Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the

  14. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    2007-01-01

    Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the

  15. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  16. Forest Stand Volume Estimation Using Airborne LIDAR And Polarimetric SAR Over Hilly Region

    NASA Astrophysics Data System (ADS)

    Fan, Fengyun; Chen, Erxue; Li, Zengyuan; Liu, Qingwang; Li, Shiming; Ling, Feilong

    2010-10-01

    In order to investigate the potential capability of mapping forest stand volume using the multi-sources data, ALOS PALSAR, airborne LiDAR and high resolution CCD image in forest stand level, one test site located in the warm temperate hilly forest region of Shandong Province in China was established. Airborne LiDAR and CCD campaign was carried out in the end of May, 2005. One scene of ALOS PALSAR quad-polarization image was acquired in May 19th,2007. Ground forest plot data for Black Locust and Chinese Pine dominated forest stands were collected through field work from May to June of 2008. The correlations of forest stand volume to PALSAR backscattering coefficient of HH, HV, VH,VV, their ratio and some H-Alpha polarimetric decomposition parameters were analyzed in stand level through regression analysis. Mean forest stand volume of each polygons (forest stand) was finally estimated based on the regression model established using ground measured forest volume data and the corresponding parameters (polygon mean) derived from LiDAR CHM and polarimetric SAR data. Results show that it is feasible to combine low density LiDAR data, L-band SAR data and forest polygon data from high resolution CCD image for stand level forest volume estimation in hilly regions, the RMSE is 20.064m3/ha for Black Locust and 24.730m3/ha for Chinese Pine .

  17. Forest Stand Volume Estimation Using Airborne LIDAR And Polarimetric SAR Over Hilly Region

    NASA Astrophysics Data System (ADS)

    Fan, Fengyun; Chen, Erxue; Li, Zengyuan; Liu, Qingwang; Li, Shiming; Ling, Feilong; Pottier, Eric; Cloude, Shane

    2010-10-01

    In order to investigate the potential capability of mapping forest stand volume using the multi-sources data, ALOS PALSAR, airborne LiDAR and high resolution CCD image in forest stand level, one test site located in the warm temperate hilly forest region of Shandong Province in China was established. Airborne LiDAR and CCD campaign was carried out in the end of May, 2005. One scene of ALOS PALSAR quad-polarization image was acquired in May 19th,2007. Ground forest plot data for Black Locust and Chinese Pine dominated forest stands were collected through field work from May to June of 2008. The correlations of forest stand volume to PALSAR backscattering coefficient of HH, HV,VH,VV, their ratio and some H-Alpha polarimetric decomposition parameters were analyzed in stand level through regression analysis. Mean forest stand volume of each polygons (forest stand) was finally estimated based on the regression model established using ground measured forest volume data and the corresponding parameters (polygon mean) derived from LiDAR CHM and polarimetric SAR data. Results show that it is feasible to combine low density LiDAR data, L-band SAR data and forest polygon data from high resolution CCD image for stand level forest volume estimation in hilly regions, the RMSE is 20.064m3/ha for Black Locust and 24.730m3/ha for Chinese Pine .

  18. Fitting a three-component scattering model to polarimetric SAR data

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Durden, S.

    1992-01-01

    A new technique for fitting a three-component scattering mechanism model to the polarimetric synthetic aperture radar (SAR) data itself, without utilizing any ground truth measurements, is presented. The three scattering mechanism components included in the model are volume scatter from randomly oriented dipoles, first-order Bragg surface scatter and a dihedral scattering mechanism for two surfaces with different dielectric constants. The model fit yields an estimate of the contribution to the total backscatter of each of the three components. The backscatter contributions can also be compared to give the relative percentage weight of each. The model fit has an equal number of input parameters (the polarimetric radar backscatter measurements) and output parameters (the backscatter parameters describing them). The model can be applied to entire images or to small areas within an image to give a first-order estimate of the relevant scattering mechanisms. The model was applied to many C-, L- and P-band Airborne SAR (AIRSAR) images of different types of terrain. Results were presented at the workshop.

  19. Agricultural Land Classification Based on Statistical Analysis of Full Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Homayouni, S.; Fazel, M. A.; Mohammadimanesh, F.

    2013-09-01

    The discrimination capability of Polarimetric Synthetic Aperture Radar (PolSAR) data makes them a unique source of information with a significant contribution in tackling problems concerning environmental applications. One of the most important applications of these data is land cover classification of the earth surface. These data type, make more detailed classification of phenomena by using the physical parameters and scattering mechanisms. In this paper, we have proposed a contextual unsupervised classification approach for full PolSAR data, which allows the use of multiple sources of statistical evidence. Expectation-Maximization (EM) classification algorithm is basically performed to estimate land cover classes. The EM algorithm is an iterative algorithm that formalizes the problem of parameters estimation of a mixture distribution. To represent the statistical properties and integrate contextual information of the associated image data in the analysis process we used Markov random field (MRF) modelling technique. This model is developed by formulating the maximum posteriori decision rule as the minimization of suitable energy functions. For select optimum distribution which adapts the data more efficiently we used Mellin transform which is a natural analytical tool to study the distribution of products and quotients of independent random variables. Our proposed classification method is applied to a full polarimetric L-band dataset acquired from an agricultural region in Winnipeg, Canada. We evaluate the classification performance based on kappa and overall accuracies of the proposed approach and compared with other well-known classic methods.

  20. The polarimetric entropy classification of SAR based on the clustering and signal noise ration

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Jie; Lang, Fengkai

    2009-10-01

    Usually, Wishart H/α/A classification is an effective unsupervised classification method. However, the anisotropy parameter (A) is an unstable factor in the low signal noise ration (SNR) areas; at the same time, many clusters are useless to manually recognize. In order to avoid too many clusters to affect the manual recognition and the convergence of iteration and aiming at the drawback of the Wishart classification, in this paper, an enhancive unsupervised Wishart classification scheme for POLSAR data sets is introduced. The anisotropy parameter A is used to subdivide the target after H/α classification, this parameter has the ability to subdivide the homogeneity area in high SNR condition which can not be classified by using H/α. It is very useful to enhance the adaptability in difficult areas. Yet, the target polarimetric decomposition is affected by SNR before the classification; thus, the local homogeneity area's SNR evaluation is necessary. After using the direction of the edge detection template to examine the direction of POL-SAR images, the results can be processed to estimate SNR. The SNR could turn to a powerful tool to guide H/α/A classification. This scheme is able to correct the mistake judging of using A parameter such as eliminating much insignificant spot on the road and urban aggregation, even having a good performance in the complex forest. To convenience the manual recognition, an agglomerative clustering algorithm basing on the method of deviation-class is used to consolidate some clusters which are similar in 3by3 polarimetric coherency matrix. This classification scheme is applied to full polarimetric L band SAR image of Foulum area, Denmark.

  1. Role of Polarimetric SAR data for discrimination/biophysical parameters of crops based on canopy architecture

    NASA Astrophysics Data System (ADS)

    Haldar, D.; Chakraborty, M.; Manjunath, K. R.; Parihar, J. S.

    2014-11-01

    Synthetic Aperture Radar (SAR) sensors have great potential for a wide range of agricultural applications, owing to their capability of all-weather observation. It is particularly useful in tropical regions in Asia where most of the crops are grown in rainy season. The use of SAR images for the assessment of rice-planted area is in operational stage in Asian countries owing to its characteristic temporal signature however, applications of SAR images for the estimation of biophysical plant variables are challenging, especially for crop scattering and discrimination in case of other tropical crops. Canopy geometry and architecture mainly govern the interaction of microwave signal with the vegetation. In this study evaluation of C-band SAR data at different polarization combinations in linear as well as circular polarimetric imaging modes for rabi crops and other associated landuse has been attempted. Also understanding the scattering response of various crops based on canopy architecture was attempted. The scattering parameters were found to vary for planofiles and erectophiles, partitioning of scattering and absorption were determined.

  2. Study on interferometric combination for multi-temporal InSAR optimization

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Wang, Yanbing; Li, Xiaojuan; Chen, Yahui; Chen, Xin; Hong, Wei

    2014-11-01

    Differential synthetic aperture radar interferometry (InSAR) has already proven its potential for ground subsidence monitoring. In recent years Multi-Temporal InSAR technology has been rapid development. Coherence of interferogram is an important indicator to measure the interferometric phase in the Multi-Temporal InSAR system. This paper study the effect of the Spatial-Temporal baseline on coherence for SAR images in Multi-Temporal InSAR processing base on the aspect of statistics. on the basis of a large amount of data, a formula for calculating coherence for SAR images was deduced which it correspond to the relationship between Spatial-Temporal baseline and the coherence of interferogram. This formula can optimize the selection of interference image pairs during processing Multi-Temporal InSAR. To determine whether this formula is useful, two methods of interference image pairs selection was used, one is the formula to optimize the selection, another is the traditional fixed threshold method. The author compared the coherence of Interferogram to judge the merits of the two methods. The results indicate that the formula not only select more interferogram from interferogram stack, but also increase the number of highly coherent points. And use SBAS-InSAR technique to obtain the 2010-2013 Beijing urban land subsidence information, verification monitoring accuracy by comparing level monitoring result.

  3. Interferometric synthetic aperture radar (InSAR)—its past, present and future

    USGS Publications Warehouse

    Lu, Zhong; Kwoun, Oh-Ig; Rykhus, R.P.

    2007-01-01

    Very simply, interferometric synthetic aperture radar (InSAR) involves the use of two or more synthetic aperture radar (SAR) images of the same area to extract landscape topography and its deformation patterns. A SAR system transmits electromagnetic waves at a wavelength that can range from a few millimeters to tens of centimeters and therefore can operate during day and night under all-weather conditions. Using SAR processing technique (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) radar signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image that represents the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets. InSAR imaging utilizes the interaction of electromagnetic waves, referred to as interference, to measure precise distances between the satellite antenna and ground resolution elements to derive landscape topography and its subtle change in elevation.

  4. Tropical Forest Vegetation Profiles and Biomass from Multibaseline Interferometric SAR at C- band

    NASA Astrophysics Data System (ADS)

    Treuhaft, R.; Chapman, B.; Santos, J. R.; Dutra, L.; Goncalves, F.; Graca, P. A.; Drake, J.

    2007-12-01

    Interferometric synthetic aperture radar (InSAR) involves the reception of SAR signals at two spatially separated ends of a baseline. The resulting phase and coherence observations from InSAR are both sensitive to the vertical structure of vegetation. However, multiple InSAR observations--more than one phase-coherence-pair--are needed to estimate parameters describing vertical structure. Multiple observations can be made with different baselines, polarizations, or frequencies. This talk reviews why InSAR is sensitive to vertical structure. It then describes an experiment in the tropical forests of La Selva Biological Station in Costa Rica in which 12-14 baselines were used to estimate vegetation vertical profiles at C-band. Calibration of the InSAR phases and coherences with nearby pastures was essential for interpreting the data for vegetation, rather than surface, characteristics. Relative density profiles from primary, secondary, and selectively logged forests will be shown along with profiles from abandoned pastures. Field methods used to validate the profiles involve measuring individual tree dimensions, and the production of field profiles will be described and compared to InSAR profiles. Lidar profiles will also be shown for comparison. Functions of the InSAR profiles will be used estimate biomass of 30 stands

  5. Biomass mapping using biophysical forest type characterisation of SAR polarimetric images

    NASA Astrophysics Data System (ADS)

    Quiñones, Marcela J.; Hoekman, Dirk H.

    2002-01-01

    Studies on the relationship between biomass and radar backscatter have relied on field data to construct empirical relationships with radar backscatter that can be used for biomass estimations and mapping. In general, inversion of radar data for biomass estimations is limited by the variations on backscatter produced by structural parameters and soil moisture and limited to a certain maximum biomass level dependent on the structural class. In this work we created biomass maps of two study sites at the Colombian Amazon (Guaviare and Araracuara) by using results from polarimetric classification algorithm that combines power, phase and correlation of C, L and P band of AirSAR data. Two different approaches were used. For the Guaviare site, (dry and flat) the biomass classes selected are related to Land Cover types and an empirical relationship between biomass and the average backscatter (LHV+PRR)/2) is used to create the biomass map. High consistency with the cover map is found. For the Araracuara site (hilly and flooded) a biomass map is created by reclassifying a biophysical forest structural map with biomass values obtained from field available data. Field data is used to validate maps and to study the behavior of radar polarimetric signatures according to different forest structures. A new approach of analysis is based on the description of the polarimetric coherence according to a physical explanation of the wave-object interactions. The same type of analysis is used to study systematically the influence of different forest structural parameters and soil moisture conditions on the polarimetric signatures. Simulated radar data from the UTARTCAN backscatter model is used.

  6. Use of Radarsat-2 Polarimetric SAR Images for Fuel Moisture Mapping in Alaska Boreal Forests and South Africa Savannahs

    NASA Astrophysics Data System (ADS)

    Leblon, B.; Bourgeau-Chavez, L. L.; Kong, M.; Buckley, J. R.; Mathieu, R. M.; Charbonneau, F.; Gross, C. P.; Naidoo, L.

    2014-12-01

    The study reported a comparison between two Radarsat-2 polarimetric SAR (polSAR) images from extreme dry versus wet conditions are compared in an effort to determine the value of using polarimetric SAR data for estimating fuel moisture over South Africa savannahs and Alaska boreal forests. The savannahs study area is located into the Kruger National Park area and has 36 sites of lowveld savannas from bare overgrazed sites to medium-dense savannahs. The boreal forest study area has a chronosequence of black spruce ecosystems (recent burns, shrub-dominated regenerating forests , open canopied forests, moderately dense forest cover). Both study areas have a fairly level topography suitable for radar studies. The polSAR images were acquired using the same beam mode (FQ5 (23-25° incidence angle over the boreal sites, FQ15 (34.47-36.05° incidence angle) over the savannahs sites). Over each study area, soil moisture and vegetation structural data were measured in situ concurrently to the acquisition of the SAR imagery. The polSAR images were filtered for speckle noise using a Lee sigma filter and several polarimetric products were computed, such as those directly derived from the images (single linear and polairzed backscatters, polarimetric discriminators) and from target decompositions (Freeman-Durden, new van Zyl, Cloude-Pottier). Because most of these variables have a different unit, a normalized difference (in %) for each variable was calculated using the median values of the dry and wet dates for easier comparison of variable changes between the dates. Over both study areas, the normalized difference between wet and dry conditions was lower when higher tree canopy occurs. Results show utility of C-HH and C-RR polarized backscatters. Several polarimetric discriminators (dmin, Pr max, Pr min, Smax, Smin) were also significantly affected by the soil wetness. The Freeman Durden and van Zyl decomposition parameters outperformed the Cloude-Pottier decomposition

  7. Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection

    SciTech Connect

    Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V. Jr.

    1996-02-01

    In this report, we employ an approach quite different from any previous work; we show that a new methodology leads to a simpler and clearer understanding of the fundamental principles of SAR interferometry. This methodology also allows implementation of an important collection mode that has not been demonstrated to date. Specifically, we introduce the following six new concepts for the processing of interferometric SAR (INSAR) data: (1) processing using spotlight mode SAR imaging (allowing ultra-high resolution), as opposed to conventional strip-mapping techniques; (2) derivation of the collection geometry constraints required to avoid decorrelation effects in two-pass INSAR; (3) derivation of maximum likelihood estimators for phase difference and the change parameter employed in interferometric change detection (ICD); (4) processing for the two-pass case wherein the platform ground tracks make a large crossing angle; (5) a robust least-squares method for two-dimensional phase unwrapping formulated as a solution to Poisson`s equation, instead of using traditional path-following techniques; and (6) the existence of a simple linear scale factor that relates phase differences between two SAR images to terrain height. We show both theoretical analysis, as well as numerous examples that employ real SAR collections to demonstrate the innovations listed above.

  8. Estimating tropical-forest density profiles from multibaseline interferometric SAR

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert; Chapman, Bruce; dos Santos, Joao Roberto; Dutra, Luciano; Goncalves, Fabio; da Costa Freitas, Corina; Mura, Jose Claudio; de Alencastro Graca, Paulo Mauricio

    2006-01-01

    Vertical profiles of forest density are potentially robust indicators of forest biomass, fire susceptibility and ecosystem function. Tropical forests, which are among the most dense and complicated targets for remote sensing, contain about 45% of the world's biomass. Remote sensing of tropical forest structure is therefore an important component to global biomass and carbon monitoring. This paper shows preliminary results of a multibasline interfereomtric SAR (InSAR) experiment over primary, secondary, and selectively logged forests at La Selva Biological Station in Costa Rica. The profile shown results from inverse Fourier transforming 8 of the 18 baselines acquired. A profile is shown compared to lidar and field measurements. Results are highly preliminary and for qualitative assessment only. Parameter estimation will eventually replace Fourier inversion as the means to producing profiles.

  9. Estimating tropical-forest density profiles from multibaseline interferometric SAR

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert; Chapman, Bruce; dos Santos, Joao Roberto; Dutra, Luciano; Goncalves, Fabio; da Costa Freitas, Corina; Mura, Jose Claudio; de Alencastro Graca, Paulo Mauricio

    2006-01-01

    Vertical profiles of forest density are potentially robust indicators of forest biomass, fire susceptibility and ecosystem function. Tropical forests, which are among the most dense and complicated targets for remote sensing, contain about 45% of the world's biomass. Remote sensing of tropical forest structure is therefore an important component to global biomass and carbon monitoring. This paper shows preliminary results of a multibasline interfereomtric SAR (InSAR) experiment over primary, secondary, and selectively logged forests at La Selva Biological Station in Costa Rica. The profile shown results from inverse Fourier transforming 8 of the 18 baselines acquired. A profile is shown compared to lidar and field measurements. Results are highly preliminary and for qualitative assessment only. Parameter estimation will eventually replace Fourier inversion as the means to producing profiles.

  10. Comparison of L and C band polarimetric SAR data for the retrieval of soil moisture in the Alps

    NASA Astrophysics Data System (ADS)

    Pasolli, L.; Notarnicola, C.; Bruzzone, L.; Bertoldi, G.; Niedrist, G.; Tappeiner, U.; Zebisch, M.; Del Frate, F.; Laurin, G. V.

    2011-11-01

    This work is developed in the framework of the SOFIA project (ESA AO-6280) which aims at estimating important biophysical variables in the Alpine area by using advanced state of the art retrieval methods in combination with new generation satellite polarimetric SAR data. As a first analysis in this direction, in a previous contribution we investigated the effectiveness of fully polarimetric RADARSAT2 C-band SAR data and proposed the use of the Support Vector Regression technique and the integration of additional information on the investigated area obtained from ancillary data. In this paper we move the attention on the exploitation of L-band SAR data. In more detail, our analysis aims at: 1) assessing the effectiveness of the proposed retrieval algorithm with different satellite SAR data, namely the L-band data; 2) comparing the estimates obtained with the use of C- and L-band SAR imagery, in order to understand common patterns and eventually discrepances due to the different penetration capability of the signals; and 3) understanding the feasibility of a synergic use of L and C band SAR data (when both available) for improving the retrieval of soil moisture in Alpine areas. The experimental analysis is carried out with the use of polarimetric RADARSAT2 (C-band) and ALOS PalSAR (L-band) SAR data. The achieved results indicate the potential of the synergic use of C and L band SAR imagery for the retrieval of soil moisture also in the challenging alpine environment. This feature is properly exploited by the proposed retrieval algorithm, thus pointing out its effectiveness in handling data with different spatial and radiometric characteristics.

  11. Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing

    2011-01-01

    An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.

  12. Coastal Sediments and Habitats in the German Wadden Sea Imaged by Polarimetric X-, C- and L-band SAR

    NASA Astrophysics Data System (ADS)

    Wang, Wensheng; Gade, Martin

    2017-04-01

    Microwave remote sensing using synthetic aperture radar (SAR) can be used to obtain geophysical parameters of intertidal surface independent of day time and cloud coverage. Polarimetric SAR imagery can provide more detailed information about surface features, moisture and roughness, which supports the classification of intertidal sediments and habitats. In this paper, the polarimetric characteristics of exposed intertidal flats are analyzed using spaceborne SAR imagery from TerraSAR-X (X-band), Radarsat-2 (C-band), and ALOS-2 (L-band) satellites. Four test sites in the German Wadden Sea coast were chosen, which represent typical surface compositions of different sediments, vegetation, and habitats, and of which a large amount of SAR imagery was used for our analyses. We studied the dominant scattering mechanisms of various surface types, including sediments (mud and sand flats) and bivalve (oyster and mussel) beds, using both fully and dual polarimetric multi-frequency and multi-temporal SAR imagery. The polarimetric characteristics of each surface type were then quantitatively compared using depolarization parameters derived from algebraic operations of the normalized Kennaugh elements. In addition, combining X-, C- and L-band SAR imagery, we not only provide Kennaugh elements for coastal sediments and bivalve beds, but also demonstrate the different scattering behavior of each surface type when observed at various wavelengths. Our results show that even-bounce scattering plays a key role in the radar backscattering from sand flats, while for bivalve beds odd-bounce scattering dominates the received signals. The Kennaugh elements, especially the real (K3) and imaginary (K7) parts of the inter-channel correlations, contain useful information about different sediments, vegetation, and habitats; and the combined K3 and K7 elements have great potential to discriminate bivalve beds from sand flats on exposed intertidal flats. Furthermore, we demonstrate that the

  13. Study on sea ice thickness estimation using the latest space-borne polarimetric SAR sensors

    NASA Astrophysics Data System (ADS)

    Kim, D.; Kim, J.; Hwang, B.

    2010-12-01

    Variation of sea ice is one of the most evident indicators of climate change on our planet. Thinning of sea ice has been regarded as the major contributing factor that leads to the massive sea ice loss in Arctic sea. Direct measurement of sea ice can be made available by drilling a hole through the ice and/or by using Electromagnetic Induction system. Although these methods are accurate, they are time consuming and limited in space and time. We investigated the usability of polarimetric parameters (backscattering coefficient, VV-to-HH backscattering coefficient ratio, depolarization factors, and target decomposition theorems) of X-, C- and L-band space-borne SAR data in estimating sea ice thickness in Arctic sea. Acquisitions of the latest high-resolution SAR data (i.e. TerraSAR-X, RADARSAT-2, and ALOS PALSAR) were coordinated with sea ice field campaigns at the coast of Greenland. We found that the backscattering coefficients and VV-to-HH backscattering coefficient ratio (BCR) of C- and X-band SAR data had a weak and insignificant correlation with sea ice thickness, while the BCR of L-band SAR data had a perceptible correlation with sea ice thickness. We also found that a strong correlation between sea ice thickness and depolarization factors (co-polarized correlation and cross-polarized ratio). This suggests that target depolarization factors can be effective parameters in estimating sea ice thickness in Arctic sea. It is known that the target depolarization is strongly related to changes in surface roughness. Sensitivity study has shown that the observed ice thickness to depolarization relationship was partly explained by surface roughness effects.

  14. Geology Structure Identification based on Polarimetric SAR (PolSAR) Data and Field Based Observation at Ciwidey Geothermal Field

    NASA Astrophysics Data System (ADS)

    Pradipta, R. A.; Saepuloh, A.; Suryantini

    2016-09-01

    Geological structure observation is difficult to be conducted at Quaternary volcanic field due to the classical problem at tropical region such as intensive erosion, dense vegetation covers, and rough terrain. The problem hampers the field observation especially for geological structures mapping. In order to overcome the problems, an active remote sensing technology based on Polarimetric Synthetic Aperture Radar (PolSAR) data was used in this study. The longer wavelength of microwave than optical region caused the SAR layer penetration higher than optics. The Ciwidey Geothermal Field, Indonesia was selected as study area because of the existence of surface manifestations with lack information about the control of geological structures to the geothermal system. Visual interpretation based on composite polarization modes was applied to identify geological structures at study area. The color composite Red-Green-Blue for HV-HH-VV polarizations provided highest texture and structural features among the other composite combination. The Linear Features Density (LFD) map was also used to interpret the fractures zones. The calculated LFD showed high anomaly about 3.6 km/km2 with two strike directions NW-SE and NE-SW. Interestingly, the surface geothermal manifestation agreed with the low anomaly of LFD. The geological structures consisted of ten faults were successfully detected and mapped. The faults type mainly are oblique-slip with strike directions NE-SW and NW-SE.

  15. Unsupervised polarimetric SAR urban area classification based on model-based decomposition with cross scattering

    NASA Astrophysics Data System (ADS)

    Xiang, Deliang; Tang, Tao; Ban, Yifang; Su, Yi; Kuang, Gangyao

    2016-06-01

    Since it has been validated that cross-polarized scattering (HV) is caused not only by vegetation but also by rotated dihedrals, in this study, we use rotated dihedral corner reflectors to form a cross scattering matrix and propose an extended four-component model-based decomposition method for PolSAR data over urban areas. Unlike other urban area decomposition techniques which need to discriminate the urban and natural areas before decomposition, this proposed method is applied on PolSAR image directly. The building orientation angle is considered in this scattering matrix, making it flexible and adaptive in the decomposition. Therefore, we can separate cross scattering of urban areas from the overall HV component. Further, the cross and helix scattering components are also compared. Then, using these decomposed scattering powers, the buildings and natural areas can be easily discriminated from each other using a simple unsupervised K-means classifier. Moreover, buildings aligned and not aligned along the radar flight direction can be also distinguished clearly. Spaceborne RADARSAT-2 and airborne AIRSAR full polarimetric SAR data are used to validate the performance of our proposed method. The cross scattering power of oriented buildings is generated, leading to a better decomposition result for urban areas with respect to other state-of-the-art urban decomposition techniques. The decomposed scattering powers significantly improve the classification accuracy for urban areas.

  16. Imaging of buried and foliage-obscured objects with an ultrawide-bandwidth polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Sheen, Dan R.; Lewis, Terry B.; Wei, Susan C.; Kletzli, D. W., Jr.

    1993-11-01

    The Environmental Research Institute of Michigan (ERIM) has developed a unique ground- based, portable, synthetic aperture radar (SAR). This SAR images targets in their natural backgrounds without the expense of an airborne sensor and with higher performance (bandwidth, resolution) than existing airborne systems. A horizontal 36-foot long aluminum truss supports a rail and an antenna cartridge, which is moved along the rail to allow synthetic aperture focusing. The system is fully-polarimetric and has collected data over the frequency band of 400 - 1300 MHz resulting in a nominal resolution of 0.17 m in range and 0.5 m in cross-range. The low frequency range of the system allows for penetration of soil (to shallow depths) as well as foliage and the system has been used to collect images of buried and foliage- obscured targets. The ground imagery collected to date includes steel oil drums buried at depths of up to one-meter. Both the drums as well as the disturbances due to digging the holes are visible in the imagery. Foliage imagery includes portions of a Lear jet under a mature hardwood forest. Due to the low frequency and wide bandwidth of the sensor (400 - 1300 MHz), obscured objects are clearly visible in the SAR imagery. Other responses in the foliage imagery are due to the dihedral-like ground-trunk reflections.

  17. Interferometric SAR for observation of glacier motion and firn penetration

    NASA Technical Reports Server (NTRS)

    Winebrenner, Dale P.; Joughlin, Ian R.; Fahnestock, Mark A.

    1997-01-01

    A digital elevation model (DEM) for a swath in west Greenland above Jakobshavn Isbrae derived from a number ERS-1 interferograms combined so as to reduce phase errors and other problems is presented. The DEM shows a wealth of kilometer-scale, dynamically supported topography, which arises from ice sheet flow over the rough bed. A correlation is shown between topography and interferometric phase due solely to ice sheet motion, which clearly shows the translations of scatterers in the surface up and downslope in the topography. Finally, the low correlation in interferograms of ice sheet dry snow zones motivates investigation on the depth-locus of backscattering. A scattering model is presented, including realistic firn grain size distributions and layering, which shows that layering helps to localize backscattering from dry firn to shallower depths than would otherwise be expected.

  18. A null-steering viewpoint of interferometric SAR

    SciTech Connect

    BICKEL,DOUGLAS L.

    2000-05-02

    Interferometric synthetic aperture radar (IFSAR) extends the two-dimensional imaging capability of traditional synthetic aperture radar to three-dimensions by using an aperture in the elevation plane to estimate the 3-D structure of the target. The operation of this additional aperture can be viewed from a null-steering point of view, rather than the traditional phase determination point of view. Knowing that IFSAR can be viewed from the null-steering perspective allows one to take advantage of the mathematical foundation developed for null-steering arrays. In addition, in some problems of interest in IFSAR the null-steering perspective provides better intuition and suggests alternative solutions. One example is the problem of estimating building height where layover is present.

  19. Motion compensation for aircraft-borne interferometric SAR

    NASA Astrophysics Data System (ADS)

    Bullock, Richard John

    This research has studied data driven techniques for roll compensation for aircraft-borne InSAR, for platforms where an accurate Inertial Navigation Unit (INU) is inappropriate due to limitations on weight or cost, such as a low-cost civilian mapping system or a miniature UAV. It is shown that for unknown topography, roll errors cannot simply be filtered from the interferogram due to a fundamental ambiguity between aircraft roll effects and certain types of undulating terrain. The solution to this problem lies in the differential Doppler shifts of the signals received at the two antennas. These are proportional to the aircraft roll rate and can be extracted by incoherent or coherent means and utilised to reconstruct the aircraft roll history. This research analyses, experimentally evaluates and further develops the incoherent Differential Doppler (DD) method for roll compensation, developed to the proof-of-concept stage by A. Currie at QinetiQ (Malvern) and compares this with the two-look method, which is a novel coherent technique developed, analysed and experimentally evaluated as part of this PhD from an original idea proposed by Prof. R. Voles of UCL. By means of empirical analysis, numerical simulation and real test data from the QinetiQ C-Band InSAR, it is shown that the two-look method offers significant advantages in sensitivity, frequency performance, robustness and efficiency of implementation over the DD method, particularly at long range. The experimental results also show that for the QinetiQ C-Band InSAR, the two-look method provides roll compensation to a similar quality or better than provided by the on-board Litton-93 INU, which has a specified accuracy of +/-0.05°. Ambiguities in the roll rate estimates from other motions are also shown to be small for this platform, and could be reduced further by employing differential GPS track compensation.

  20. Advanced SAR simulator with multi-beam interferometric capabilities

    NASA Astrophysics Data System (ADS)

    Reppucci, Antonio; Márquez, José; Cazcarra, Victor; Ruffini, Giulio

    2014-10-01

    State of the art simulations are of great interest when designing a new instrument, studying the imaging mechanisms due to a given scenario or for inversion algorithm design as they allow to analyze and understand the effects of different instrument configurations and targets compositions. In the framework of the studies about a new instruments devoted to the estimation of the ocean surface movements using Synthetic Aperture Radar along-track interferometry (SAR-ATI) an End-to-End simulator has been developed. The simulator, built in a high modular way to allow easy integration of different processing-features, deals with all the basic operations involved in an end to end scenario. This includes the computation of the position and velocity of the platform (airborne/spaceborne) and the geometric parameters defining the SAR scene, the surface definition, the backscattering computation, the atmospheric attenuation, the instrument configuration, and the simulation of the transmission/reception chains and the raw data. In addition, the simulator provides a inSAR processing suit and a sea surface movement retrieval module. Up to four beams (each one composed by a monostatic and a bistatic channel) can be activated. Each channel provides raw data and SLC images with the possibility of choosing between Strip-map and Scansar modes. Moreover, the software offers the possibility of radiometric sensitivity analysis and error analysis due atmospheric disturbances, instrument-noise, interferogram phase-noise, platform velocity and attitude variations. In this paper, the architecture and the capabilities of this simulator will be presented. Meaningful simulation examples will be shown.

  1. Segmentation of interferometric SAR data in urban areas

    NASA Astrophysics Data System (ADS)

    Soergel, Uwe; Schulz, Karsten; Thoennessen, Ulrich

    2001-08-01

    The improved quality of InSAR data suggests to utilize such data for analysis of urban areas. But, the phase information from which the height data is calculated, is often severely disturbed, depending on the signal to noise ratio. As a consequence, irregular height jumps occur even inside flat objects. In this paper we refer to investigations to stabilize and improve the InSAR height data. After preprocessing, a segmentation is carried out in the intensity and the height data. Inside the extracted segments the height data is smoothed, using the related intensity or coherence values as weights. For every segment the weighted average height is calculated. Preliminary hypotheses for buildings are identified a by significant height over surrounding ground. In a post-processing step, the intermediate results are analyzed and corrected due to a possible over- and under-segmentation. Adjacent objects with similar heights are merged and objects including shadow areas are split. The shadow areas are detected by structural image analysis in a production net environment exploiting collateral information, like sensor position and depression angle. The derived 3D information may be used for visualization or map update tasks. A test site including the airport of Frankfurt (Main) was chosen. For the visualization purpose, a 3D view of the smoothed height data is shown. The results are compared to a map and differences are depicted and discussed.

  2. Observing Deformation at Mt. Raung East Java Based on PALSAR-2 Imagery by Using Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Arbad, Arliandy P.; Takeuchi, W.; Ardy, Achmad; Ashari, Ridwan A.

    2016-11-01

    In August 2015, Indonesia Center of Volcanology and Geological Hazard Mitigation (CVGHM) recorded of tectonic activities at Mt. Raung with maximum amplitude 2-32 mm and continuing the tremor quakes until the beginning of the 2016 eruption period. Mt. Raung is located at East Java Province, one of most active stratovolcano in Indonesia, typically erupt with explosive eruptions and another deadly hazards such as pyroclastic flow, lahar and volcanic gases. Radar imagery consequently proposes of value device for mapping and assessing of volcano oppurtunities. By this study, we propose InSAR method to observe deformation in Mt. Raung. Interferometric SAR derives the phase difference based on two images of PALSAR-2 observations taken in January 2015 and January 2016. According to the processing of interferometric SAR, those images must be coregistered into a stack, and we selected 2015 imagery as master and the other imagery as slave. We estimate the interferogram result to know the line-of-sight then be flattened by removing the topographic phase an inflating volcano (or any other landform) produces a pattern of concentric fringes in a radar interferogram from which the ffects of viewing geometry and topography have been removed. Finally, we expect the result ofInSAR processing technique to investigate ground deformation of Mt. Raung. It would be a capable and cost-effective way of enhancing the techniques normally used in geodetic monitoring to assess the next eruptive events.

  3. Monitoring water level using Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) images

    NASA Astrophysics Data System (ADS)

    Stavroulaki, Eleni; Alexakis, Dimitrios D.; Tsanis, Ioannis K.

    2017-04-01

    Interferometric Synthetic Aperture Radar (SAR) methodology can successfully detect phase variations related to water level changes and produce corresponding water level maps. Two lakes located in Western Crete, Greece, namely Lake Kournas and Lake Agia were used as case studies to study water level change with means of SAR interferometry. The change of the water surface in the lake is examined over a period of two years, 2015-2016 using Sentinel 1 IW mode images and in situ water level data. Initially, all the SAR images were preprocessed in terms of atmospheric and radiometric corrections. Various interferograms were developed to study the multi-temporal regime of water level in both lakes. Optical satellite sensor data (Landsat 8) were used to study the vegetation regime and how this affect the interferogram processing. The results denoted the fact that the combination of SAR backscattering intensity and unwrapped phase water level data can provide additional insight into hydrological state. It is also shown that integrated analysis of the backscattering mechanism and interferometric characteristics can considerably enhance the reliability of the water-level retrieval scheme and optimize the capture of hydrological patterns spatial distribution. Keywords: Sentinel-1, interferogram, water level, Backscattering

  4. Modified patch-based locally optimal Wiener method for interferometric SAR phase filtering

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Huang, Haifeng; Dong, Zhen; Wu, Manqing

    2016-04-01

    This paper presents a modified patch-based locally optimal Wiener (PLOW) method for interferometric synthetic aperture radar (InSAR) phase filtering. PLOW is a linear minimum mean squared error (LMMSE) estimator based on a Gaussian additive noise condition. It jointly estimates moments, including mean and covariance, using a non-local technique. By using similarities between image patches, this method can effectively filter noise while preserving details. When applied to InSAR phase filtering, three modifications are proposed based on spatial variant noise. First, pixels are adaptively clustered according to their coherence magnitudes. Second, rather than a global estimator, a locally adaptive estimator is used to estimate noise covariance. Third, using the coherence magnitudes as weights, the mean of each cluster is estimated, using a weighted mean to further reduce noise. The performance of the proposed method is experimentally verified using simulated and real data. The results of our study demonstrate that the proposed method is on par or better than the non-local interferometric SAR (NL-InSAR) method.

  5. The Touzi Decomposition for Wetland Classification Using Polarimetric C-Band SAR

    NASA Astrophysics Data System (ADS)

    Touzi, E.; Deschamps, A.; Demers, A. M.; Rother, G.

    2009-04-01

    The Touzi decomposition [1] is investigated for wetland characterization. Like the Cloude α scattering type, the magnitude αs of the symmetric scattering is not effective for vegetation type discrimination. The phase Φαs of the symmetric scattering type has to be used for enhanced characterization of wetland vegetation species. A new tool is introduced for assessment of the scattering type phase coherence, and the phase of the dominant scattering type is shown to be very promising for wetland target classifica- tion. The unique information provided by Φαs for enhanced wetland class discrimination is demonstrated using Convair- 580 polarimetric C-band SAR data collected over the Mer Bleue wetland in the East of Ottawa, Canada. The use of Φαs makes possible the discrimination of shrub bog from sedges fen, and permits even the discrimination between conifer dominated treed bog from upland deciduous forest under leafy conditions.

  6. A new clustering algorithm applicable to multispectral and polarimetric SAR images

    NASA Technical Reports Server (NTRS)

    Wong, Yiu-Fai; Posner, Edward C.

    1993-01-01

    We describe an application of a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, we extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The clustering algorithm was able to partition a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and is insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use.

  7. A new clustering algorithm applicable to multispectral and polarimetric SAR images

    NASA Technical Reports Server (NTRS)

    Wong, Yiu-Fai; Posner, Edward C.

    1993-01-01

    We describe an application of a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, we extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The clustering algorithm was able to partition a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and is insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use.

  8. A Combined Use of Decomposition and Texture for Terrain Classification of Fully Polarimetric SAR Images

    NASA Astrophysics Data System (ADS)

    Rodionova, N. V.

    2007-03-01

    This p aper presents two-stag e unsupervised terrain classification of fully polarimetr ic SA R data using Freeman and Durden decomposition based on three simp le scattering mechanisms: surface, volume and double bounce (first step), and textur al features (uncorrelated uniformity , contr ast, inv erse mo men t and entropy) obtained from grey lev el co-occurrence matr ices (GLCM) (second step). Textural f eatures ar e defined in moving w indow 5x5 pixels w ith N=32 (N - number of grey lev els) . This algorith m preserves th e purity of domin ant polarimetric scattering properties and defines textural features in each scatter ing category. It is shown better object discrimin ation after app lying textur e w ith in fix ed scattering category. Speckle r eduction is one of th e main mo ments in imag e interpr etation improvement because of its great influen ce on textur e. Results from unfiltered and Lee filtered polar imetr ic SAR imag es show that the v alues of contrast and en tropy decr ease and th e values of uniformity and inverse moment increase with speckle reduction, that's tru e for all polarizations (HH, VV, HV). Th e d iscr imination b etw een objects increases after speckle f ilter ing. Polar ization influen ce on textur e features is def ined by calculating th e features in SAR images w ith HH , VV and HV polarizations before and after speck le filter ing, and then creating RG B images. It is shown mor e polarization inf luence on textur e features (uniformity , inverse mo ment and entropy) before filtering and less influen ce - after speck le f iltering. I t's not true for contrast wher e polar ization influen ce is not ch anged practically w ith filtering. SIR-C/X-SA R SLC L-band imag es of Moscow r egion are used for illustr ation.

  9. Interferometric SAR monitoring of the Vallcebre landslide (Spain) using corner reflectors

    NASA Astrophysics Data System (ADS)

    Crosetto, M.; Gili, J. A.; Monserrat, O.; Cuevas-González, M.; Corominas, J.; Serral, D.

    2013-04-01

    This paper describes the deformation monitoring of the Vallcebre landslide (Eastern Pyrenees, Spain) using the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique and corner reflectors (CRs). The fundamental aspects of this satellite-based deformation monitoring technique are described to provide the key elements needed to fully understand and correctly interpret its results. Several technical and logistic aspects related to the use of CRs are addressed including an analysis of the suitability of DInSAR data to monitor a specific landslide, a discussion on the choice of the type of CRs, suggestions for the installation of CRs and a description of the design of a CR network. This is followed by the description of the DInSAR data analysis procedure required to derive deformation estimates starting from the main observables of the procedure, i.e., the interferometric phases. The main observation equation is analysed, discussing the role of each phase component. A detailed discussion is devoted to the phase unwrapping problem, which has a direct impact on the deformation monitoring capability. Finally, the performance of CRs for monitoring ground displacements has been tested in the Vallcebre landslide (Eastern Pyrenees, Spain). Two different periods, which provide interesting results to monitor over time the kinematics of different parts of the considered landslide unit, are analysed and described.

  10. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  11. Change detection in a time series of polarimetric SAR data by an omnibus test statistic and its factorization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nielsen, Allan A.; Conradsen, Knut; Skriver, Henning

    2016-10-01

    Test statistics for comparison of real (as opposed to complex) variance-covariance matrices exist in the statistics literature [1]. In earlier publications we have described a test statistic for the equality of two variance-covariance matrices following the complex Wishart distribution with an associated p-value [2]. We showed their application to bitemporal change detection and to edge detection [3] in multilook, polarimetric synthetic aperture radar (SAR) data in the covariance matrix representation [4]. The test statistic and the associated p-value is described in [5] also. In [6] we focussed on the block-diagonal case, we elaborated on some computer implementation issues, and we gave examples on the application to change detection in both full and dual polarization bitemporal, bifrequency, multilook SAR data. In [7] we described an omnibus test statistic Q for the equality of k variance-covariance matrices following the complex Wishart distribution. We also described a factorization of Q = R2 R3 … Rk where Q and Rj determine if and when a difference occurs. Additionally, we gave p-values for Q and Rj. Finally, we demonstrated the use of Q and Rj and the p-values to change detection in truly multitemporal, full polarization SAR data. Here we illustrate the methods by means of airborne L-band SAR data (EMISAR) [8,9]. The methods may be applied to other polarimetric SAR data also such as data from Sentinel-1, COSMO-SkyMed, TerraSAR-X, ALOS, and RadarSat-2 and also to single-pol data. The account given here closely follows that given our recent IEEE TGRS paper [7]. Selected References [1] Anderson, T. W., An Introduction to Multivariate Statistical Analysis, John Wiley, New York, third ed. (2003). [2] Conradsen, K., Nielsen, A. A., Schou, J., and Skriver, H., "A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing 41(1): 4-19, 2003. [3] Schou, J

  12. Soil Moisture Retrieval from Polarimetric SAR Data: A Short Review of Existing Methods and a New One

    NASA Astrophysics Data System (ADS)

    Di Martino, Gerardo; Iodice, Antonio; Poreh, Davod; Riccio, Daniele

    2016-08-01

    Soil moisture retrieval from SAR data is not an easy task, especially in presence of vegetation cover. Accordingly, in recent years several methods for soil-moisture retrieval under vegetation cover have been developed, relying on model-based or hybrid polarimetric target- decomposition techniques. However, most of these decomposition techniques suffer from the so-called negative-power problem, which is mainly related to poor modelling of surface- and/or volume-scattering contributions. In this paper we, first, analyse the Polarimetric Two-Scale Two-Component Model and the Iterative Generalized Hybrid Decomposition method, proposing a way to combine the estimation results of the methods so that most vegetation conditions can be accounted for. Then, we introduce a method that tries to solve the case of dominant surface scattering and non- negligible dihedral scattering, which is the case not covered by the abovementioned model combination. Meaningful estimation results are presented and discussed using polarimetric L-band SAR data of the AgriSAR 2006 campaign.

  13. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.

    2011-01-01

    The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  14. L-Band Polarimetric InSAR Observations of Greenland Ice Sheets using ALOS

    NASA Astrophysics Data System (ADS)

    Chen, A.; Zebker, H.

    2008-12-01

    The ALOS PALSAR instrument has acquired L-band (23.6 cm wavelength) fully polarimetric synthetic aperture radar (SAR) observations of Greenland with 10 meter single-look resolution. We examine images from a strip in northern Greenland extending from latitudes of 75 degrees N to 80 degrees N, which covers the dry snow, percolation, and wet snow zones of the Greenland ice sheet, as well as the rocky coastal area. Images for repeat-pass interferometry with a 350 meter baseline were acquired at a 46 day interval in March and April 2007. The images from the two dates are coregistered by cross-correlating the HH observations, and we observe fringes in all polarizations in the dry snow, percolation, and wet snow zones, and also in the stable parts of the rocky coastal area. In the dry snow zone of inner Greenland, we observe significantly higher coherence in the HH-HH interferograms (around 0.7) compared to the HV-HV interferograms (around 0.4), and similarly higher coherence in the VV-VV interferogram compared to the VH-VH interferogram. These differences between co-polarized and cross-polarized signals result from volume scattering and lower SNR in the cross-polarized channels. They indicate that scalar models do not fully describe L-band microwave scattering from firn. On each observation date, the phase difference between the HH and the HV returns is almost constant over the dry snow zone of the interior of Greenland. However, there is significant variability in the phase difference between HH and HV returns closer to the coast. The phase difference between the VV and VH returns shows similar behavior, again indicating a difference between co-polarized and cross-polarized scattering mechanisms. We derive polarization signatures for the various scattering regions in the Greenland ice sheets to better understand the scattering mechanisms involved. We model the firn in the dry snow zone as a layered medium with rough interfaces between the layers, and we use the

  15. Phase of Target Scattering for Wetland Characterization using Polarimetric C-Band SAR

    SciTech Connect

    Touzi, R; Deschamps, Mireille C; Rother, Gernot

    2009-09-01

    Wetlands continue to be under threat, and there is a major need for mapping and monitoring wetlands for better management and protection of these sensitive areas. Only a few studies have been published on wetland characterization using polarimetric synthetic aperture radars (SARs). The most successful results have been obtained using the phase difference between HH and VV polarizations, phi{sub HH} - phi{sub VV}, which has shown promise for separating flooded wetland classes. Recently, we have introduced a new decomposition, the Touzi decomposition, which describes target scattering type in terms of a complex entity, the symmetric scattering type. Huynen's target helicity is used to assess the symmetric nature of target scattering. In this paper, the new complex-scattering-type parameters, the magnitude alphas and phase Phi{sub alpha} s, are investigated for wetland characterization. The use of the dominant-scattering-type phase Phi{sub alpha} s makes it possible to discriminate shrub bogs from poor (sedge or shrub) fens. These two classes cannot be separated using phi{sub HH} - phi{sub VV}, or the radiometric scattering information provided by alphas, the Cloude alpha, the entropy H, and the multipolarization HH-HV-VV channels. phi{sub alpha} s, which cannot detect deep (45 cm below the peat surface) water flow in a bog, is more sensitive to the shallower (10-20-cm) fen beneath water, and this makes possible the separation of poor fens from shrub bogs. Phi{sub alpha} s also permits the discrimination of conifer-dominated treed bog from upland deciduous forest under leafy conditions. Target helicity information is exploited to introduce a new parameter, the target asymmetry. The latter is shown very promising for detection of forest changes between leafy and no-leaf conditions. The analysis of low-entropy marsh scattering showed that both the scattering-type magnitude and phas- - e alphas and Phi{sub alpha} s, respectively, as well as the maximum polarization

  16. Simultaneous interferometric and polarimetric strain measurements on composites using a fiber-optic strain gauge

    NASA Astrophysics Data System (ADS)

    Fuerstenau, N.; Schmidt, W.; Goetting, H.-C.

    1992-06-01

    A fiberoptic Michelson interferometer is used for remote sensing of the bending-induced surface strain of plates made from carbon-fiber composites. The double-polarization method is used for eliminating the ambiguity of fringe counting. Simultaneous measurement of the birefringence-dependent phase offset yields an additional analog (polarimetric) signal, which allows for initialization of the incremental readout. The measured dependence of surface strain on plate bending agrees with the theoretically expected linear relationship, and it agrees with the gauge sensitivity published by Valis et al. (1989). The observed hysteresis and temperature sensitivity are significantly smaller than the same effects in an electrical strain gauge.

  17. Monitoring delta subsidence with Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, S.; Overeem, I.; Syvitski, J. P.

    2014-12-01

    Can subsidence in river deltas be monitored in near real-time at the spatial and temporal resolution needed for informing critical management decisions? Interferometric Synthetic Radar Aperture (InSAR) is a satellite-based technique that can map ground deformation with millimeter-scale vertical resolution over thousands of square kilometers. InSAR has enormous potential to shed light on the dynamics of actively subsiding deltas, but the technique is not commonly applied outside of major cities due to the difficulty of performing InSAR in wet, vegetated settings. Given these limitations, how can InSAR best serve the global effort to monitor sinking deltas? Here, an overview of InSAR processing is provided that addresses delta-specific challenges, including frequent cloud-cover in tropical areas; noisy signals in wetlands and flooded fields; dense forests that interact unpredictably with different radar wavelengths; flat landscapes that hinder image stacking algorithms; rapid urban development that can render Digital Elevation Models (DEMs) inaccurate; and a lack of in situ GPS (Global Positioning System) receivers for InSAR calibration. InSAR has unique value for monitoring subsidence in deltas, and some natural and anthropogenic drivers of subsidence can be resolved by InSAR. High-resolution InSAR measurements from the Ganges-Brahmaputra Delta (GBD) are then presented and validated against GPS data. Surface motion is shown to reflect subsurface stratigraphy, and sediment compaction is shown to be the most important factor in this delta on short (non-tectonic) timescales. Average compaction rates throughout the eastern delta range from 0 to > 18 mm/y, varying by more than an order of magnitude depending on the ages and grain sizes of surface and subsurface sediment layers. Fastest subsidence is observed in Holocene organic-rich mud, and slowest subsidence is observed along the Meghna River and in areas with surface or subsurface sand deposits. Although groundwater

  18. Detection of damaged urban areas using interferometric SAR coherence change with PALSAR-2

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Thapa, Rajesh Bahadur; Ohsumi, Tsuneo; Fujiwara, Hiroyuki; Yonezawa, Chinatsu; Tomii, Naoya; Suzuki, Sinichi

    2016-07-01

    The interferometric SAR coherence-change technique with coherence filter and polarization (HH and HV) has been used to detect the parts of buildings damaged by the 2015 Gorkha Earthquake. A survey of the building damage was conducted in every house to evaluate the detection accuracy in the Khokana and Sankhu urban areas in the Kathmandu Valley of Nepal. The damaged parts of the urban area were adequately detected using coherence-change (∆ γ) values obtained before the earthquake ( γ pre) and during the inter-seismic stage of the earthquake ( γ int). The use of a coherence filter effectively increased overall accuracy by ~2.1 to 7.0 % with HH polarization. The incorporation of HV polarization marginally increased the accuracy (~0.9 to 1.2 %). It was confirmed that road damage due to liquefaction was also observed using the interferometric SAR coherence-change detection technique. The classification accuracy was lower (27.1-35.1 %) for areas that were damaged. However, higher accuracy (97.8-99.2 %) was achieved for areas that were damage-free, in ∆ γ obtained from HH and HV polarization with a coherence filter. This helped to identify the damaged urban areas (using this technique) immediately after occurrence of an earthquake event.

  19. Wavemill Product Assessment- Defining Products and Evaluating Potential Performance from a Novel Spaceborne Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Cotton, P. D.; Gommenginger, C.; Martin, A.; Marquez, J.; Burbidge, G.; Quilfen, Y.; Chapron, B.; Reppucci, A.; Buck, C.

    2016-08-01

    Ocean Surface Currents are one of the most important ocean properties for oceanographers and operators in the maritime domain. Improved monitoring of ocean currents is systematically the number one requirement that emerges from any science or end user requirement surveys.Wavemill is a novel hybrid interferometric SAR system first proposed by ESA/ESTEC [Buck, 2005]. It offers the possibility of generating two-dimensional wide swath, high resolution, high precision maps of surface current vectors and ocean topography [Buck et al., 2009]. Based on a single spacecraft, it avoids the difficulties of synchronisation and baseline estimation associated with other interferometric SAR systems based on two or more satellites (e.g. the "cartwheel" or "helix" concept).The Wavemill concept has developed steadily since its first inception in 2005. A number of Wavemill studies in recent years have gradually put together facts and figures to support the case for Wavemill as a possible space-borne mission.The Wavemill Product Assessment study (WaPA) aimed to define the scientific capabilities and limitations of a spaceborne Wavemill instrument in preparation for a possible submission of the Wavemill concept as a candidate Earth Explorer Core mission. The WaPA project team brought together expert scientists and engineers in the field of SAR imaging of ocean currents, and included the National Oceanography Centre (UK), Starlab (Spain), IFREMER (France) and Airbus Defence and Space (UK). Overall project management was provided by Satellite Oceanographic Consultants (UK). The approach taken included:- A review of SAR imaging of ocean currents in along-track interferometric mode to learn from previous experiments and modelling what key phenomena need to be accounted for to determine the true performance of a spaceborne Wavemill system- Validation of proposed Wavemill primary products based on Wavemill airborne proof-of-concept data and numerical simulations to determine the capabilities

  20. Interferometric Processing of Spaceborne SAR Data in Advanced SAR Imaging Modes

    DTIC Science & Technology

    2000-10-01

    Mittermayer and Alberto Moreira Deutsches Zentrum fiur Luft- und Raumfahrt (DLR) Institut fuir Hochfrequenztechnik und Radarsysteme 82234 Oberpfaffenhofen...34, IEEE Transactions on Geosc., Vol. 32, No. 4, July 1994, pp. 855-865. [4] J. Mittermayer , A. Moreira, 0. Lofeld: "Spotlight SAR Data Processing Using the...Frequency Scaling Algo- rithm", IEEE Trans. on Geosc. and Remote Sensing, Vol. 37, No. 5, September 1999. [51 Mittermayer , J., A. Moreira and 0

  1. Interferometric synthetic aperture radar (InSAR) and its applications to study volcanoes, part 2: InSAR imaging of Alaskan Volcanoes

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Wicks, Charles W.; Power, John A.

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) is a remote sensing technique which can measure ground surface deformation with sub-centimeter precision and spatial resolution in tens-of-meters over a large region. This paper summarizes our recent InSAR studies of Alaskan volcanoes, associated with both eruptive and non-eruptive activity. It shows that InSAR can improve our understanding of how the Alaskan volcanoes work and enhance our capability to predict future eruptions and the associated hazards. 

  2. Mapping slope movements in Alpine environments using TerraSAR-X interferometric methods

    NASA Astrophysics Data System (ADS)

    Barboux, Chloé; Strozzi, Tazio; Delaloye, Reynald; Wegmüller, Urs; Collet, Claude

    2015-11-01

    Mapping slope movements in Alpine environments is an increasingly important task in the context of climate change and natural hazard management. We propose the detection, mapping and inventorying of slope movements using different interferometric methods based on TerraSAR-X satellite images. Differential SAR interferograms (DInSAR), Persistent Scatterer Interferometry (PSI), Short-Baseline Interferometry (SBAS) and a semi-automated texture image analysis are presented and compared in order to determine their contribution for the automatic detection and mapping of slope movements of various velocity rates encountered in Alpine environments. Investigations are conducted in a study region of about 6 km × 6 km located in the Western Swiss Alps using a unique large data set of 140 DInSAR scenes computed from 51 summer TerraSAR-X (TSX) acquisitions from 2008 to 2012. We found that PSI is able to precisely detect only points moving with velocities below 3.5 cm/yr in the LOS, with a root mean squared error of about 0.58 cm/yr compared to DGPS records. SBAS employed with 11 days summer interferograms increases the range of detectable movements to rates up to 35 cm/yr in the LOS with a root mean squared error of 6.36 cm/yr, but inaccurate measurements due to phase unwrapping are already possible for velocity rates larger than 20 cm/year. With the semi-automated texture image analysis the rough estimation of the velocity rates over an outlined moving zone is accurate for rates of "cm/day", "dm/month" and "cm/month", but due to the decorrelation of yearly TSX interferograms this method fails for the observation of slow movements in the "cm/yr" range.

  3. Simultaneous interferometric and polarimetric strain measurements on composites using a fiber-optic strain gauge.

    PubMed

    Fürstenau, N; Schmidt, W; Goetting, H C

    1992-06-01

    A fiber-optic Michelson interferometer is used for remote sensing of the bending-induced surface strain (up to 2500 microepsilon) of plates made from carbon-fiber composites. The double-polarization method is used for eliminating the ambiguity of fringe counting. Simultaneous measurement of the birefringencedependent phase offset yields an additional analog (polarimetric) signal, which allows for initialization of the incremental readout. The measured dependence of surface strain on plate bending agrees with the theoretically expected linear relationship, and it agrees with the gauge sensitivity published by Valis et al. [Proc. Soc. Photo-Opt. Instrum. Eng. 1170, 495 (1989)]. The observed hysteresis and temperature sensitivity are significantly smaller than the same effects in an electrical strain gauge.

  4. An Unsupervised Change Detection Based on Test Statistic and KI from Multi-Temporal and Full Polarimetric SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. Q.; Yang, J.; Li, P. X.; Liu, M. Y.; Shi, Y. M.

    2016-06-01

    Accurate and timely change detection of Earth's surface features is extremely important for understanding relationships and interactions between people and natural phenomena. Many traditional methods of change detection only use a part of polarization information and the supervised threshold selection. Those methods are insufficiency and time-costing. In this paper, we present a novel unsupervised change-detection method based on quad-polarimetric SAR data and automatic threshold selection to solve the problem of change detection. First, speckle noise is removed for the two registered SAR images. Second, the similarity measure is calculated by the test statistic, and automatic threshold selection of KI is introduced to obtain the change map. The efficiency of the proposed method is demonstrated by the quad-pol SAR images acquired by Radarsat-2 over Wuhan of China.

  5. River Delta Subsidence Measured with Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, Stephanie

    This thesis addresses the need for high-resolution subsidence maps of major world river deltas. Driven by a combination of rising water, sediment compaction, and reduced sediment supply due to damming and flood control, many deltas are sinking relative to sea level. A lack of data constraining rates and patterns of subsidence has made it difficult to determine the relative contributions of each factor in any given delta, however, or to assess whether the primary drivers of land subsidence are natural or anthropogenic. In recent years, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a satellite-based technique that can map ground deformation with mm-scale accuracy over thousands of square kilometers. These maps could provide critical insight into the drivers of subsidence in deltas, but InSAR is not typically applied to non-urban delta areas due to the difficulties of performing the technique in wet, vegetated settings. This thesis addresses those difficulties and achieves high-resolution measurements of ground deformation in rural deltaic areas. Chapter 1 introduces the processes that drive relative sea level rise in river deltas and investigates open questions in delta subsidence research. Chapter 2 assesses the performance of InSAR in delta settings and reviews interferogram generation in the context of delta analysis, presenting delta-specific processing details and guiding interpretation in these challenging areas. Chapter 3 applies Differential (D-) InSAR to the coast of the Yellow River Delta in China. Results show that subsidence rates are as high as 250 mm/y due to groundwater extraction at aquaculture facilities, a rate that exceeds local and global average sea level rise by nearly two orders of magnitude and suggests a significant hazard for Asian megadeltas. Chapter 4 applies interferometric stacking and Small Baseline Subset (SBAS)-InSAR to the Ganges-Brahmaputra Delta, Bangladesh. Results show that stratigraphy controls subsidence in

  6. General adaptive-neighborhood technique for improving synthetic aperture radar interferometric coherence estimation.

    PubMed

    Vasile, Gabriel; Trouvé, Emmanuel; Ciuc, Mihai; Buzuloiu, Vasile

    2004-08-01

    A new method for filtering the coherence map issued from synthetic aperture radar (SAR) interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region-growing technique driven by the information provided by the amplitude images. Then pixels in the derived adaptive neighborhood are complex averaged to yield the filtered value of the coherence, after a phase-compensation step is performed. An extension of the algorithm is proposed for polarimetric interferometric SAR images. The proposed method has been applied to both European Remote Sensing (ERS) satellite SAR images and airborne high-resolution polarimetric interferometric SAR images. Both subjective and objective performance analysis, including coherence edge detection, shows that the proposed method provides better results than the standard phase-compensated fixed multilook filter and the Lee adaptive coherence filter.

  7. Structural Biomass Estimation from L-band Interferometric SAR and Lidar

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Chapman, B. D.; Goncalves, F.; Hensley, S.; dos Santos, J. R.; Graca, P. A.; Dutra, L.

    2011-12-01

    After a review of biomass estimation from interferometric SAR (InSAR) at all bands over the last 15 years, and a brief review of lidar biomass estimation, this paper discusses structure and biomass estimation from simultaneously acquired (not repeat-track) InSAR at L-band. We will briefly discuss the history of regression of biomass to InSAR raw observations (coherence and phase) and structural parameters (height, standard deviation, Fourier component). Lidar biomass estimation from functions of the waveform will be discussed. We review our structural and biomass estimation results for C-band InSAR at vertical polarization for 12-14 baselines in La Selva Biological Station, Costa Rica. C-band vertical scales were between 12 and 100 m for structure estimation, but only between 50 and 100 m for biomass estimation, due to phase calibration problems at the shorter vertical wavelengths (larger baselines). Most of the talk will be spent on L-band, simultaneously acquired multibaseline InSAR, also at La Selva, acquired at vertical polarization. Because the vertical interferometric scale is proportional to the radar altitude times the wavelength over the baseline length, the AirSAR aircraft had to be flown very low (1.2 km) to realize vertical scales at L-band of 60 m and higher. Our lidar biomass estimation suggests that vertical scales of 14 m-100 m are optimal for biomass estimation. We will try three different approaches to biomass estimation with the limited high vertical scales we have available: 1) We will regress biomass to Fourier transforms as in the C-band and lidar study, but with 60 m - 100+ m vertical scales we do not expect accuracies to be as high as for the lidar demonstration (58 Mg/ha RMS scatter of estimated about field biomass for biomasses up to 450 Mg/ha), which used Fourier vertical wavelengths of 15 m-20 m. In addition to using Fourier components, 2) we will report the use of the derivative of the InSAR complex coherence with respect to Fourier

  8. TELAER: a multi-mode/multi-antenna interferometric airborne SAR system

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Amaral, Tiago; Berardino, Paolo; Esposito, Carmen; Jackson, Giuseppe; Pauciullo, Antonio; Vaz Junior, Eurico; Wimmer, Christian; Lanari, Riccardo

    2014-05-01

    The present contribution is aimed at showing the capabilities of the TELAER airborne Synthetic Aperture Radar (SAR) system recently upgraded to the interferometric mode [1]. TELAER is an Italian airborne X-Band SAR system, mounted onboard a LearJet 35A aircraft. Originally equipped with a single TX/RX antenna, it now operates in single-pass interferometric mode thanks to a system upgrading [1] funded by the Italian National Research Council (CNR), via the Italian Ministry of Education, Universities and Research (MIUR), in the framework of a cooperation between CNR and the Italian Agency for Agriculture Subsidy Payments (AGEA). In the frame of such cooperation, CNR has entrusted the Institute for Electromagnetic Sensing of the Environment (IREA) for managing all the activities, included the final flight tests, related to the system upgrading. According to such an upgrading, two additional receiving X-band antennas have been installed in order to allow, simultaneously, single-pass Across-Track and Along-Track interferometry [1]. More specifically, the three antennas are now installed in such a way to produce three different across-track baselines and two different along-track baselines. Moreover, in the frame of the same system upgrading, it has been mounted onboard the Learjet an accurate embedded Global Navigation Satellite System and Inertial Measurement Unit equipment. This allows precise measurement of the tracks described by the SAR antennas during the flight, in order to accurately implement Motion Compensation (MOCO) algorithms [2] during the image formation (focusing) step. It is worth remarking that the TELAER system upgraded to the interferometric mode is very flexible, since the user can set different operational modes characterized by different geometric resolutions and range swaths. In particular, it is possible to reach up to 0.5 m of resolution with a range swath of 2km; conversely, it is possible to enlarge the range swath up to 10 km at expenses of

  9. Interferometric processing of C-band SAR data for the improvement of stand age estimation in rubber plantation

    NASA Astrophysics Data System (ADS)

    Trisasongko, Bambang H.; Paull, David J.; Panuju, Dyah R.

    2015-01-01

    Rubber ranks the second largest plantation in Indonesia after oil palm. While oil palm plantations have been exploited mainly by large companies, many rubber plantations are still managed by peasant farmers who maintain its biodiversity. Due to its broad and scattered location, monitoring tropical rubber plantation is a crucial application of active remote sensing. In this paper, the backscatter coefficient of Envisat Advanced Synthetic Aperture Radar (ASAR) is compared to interferometric coherence to study the relationship between stand age and SAR parameters. It is shown that VV polarized C-band SAR achieves its saturation level in plantations aged about 5-10 years. Extension of saturation level can be achieved by processing an interferometric pair of ASAR data, which results in interferometric coherence. In this paper, coherence can take up to 20 years stand age to achieve prior to saturation. Since stand age is highly related to biomass, this finding argues that the biomass can be best estimated using coherence.

  10. Automated Feature Extraction by Combining Polarimetric SAR and Object-Based Image Analysis for Monitoring of Natural Resource Exploitation

    NASA Astrophysics Data System (ADS)

    Plank, Simon; Mager, Alexander; Schoepfer, Elizabeth

    2015-04-01

    An automated feature extraction procedure based on the combination of a pixel-based unsupervised classification of polarimetric synthetic aperture radar data (co-co dual-polarimetric TerraSAR-X) and an object-based post-classification is presented. The former is based on the entropy/alpha decomposition and the hereon based unsupervised Wishart classification, while the latter considers in addition feature properties such as shape and area. The feature extraction procedure is developed for monitoring oil field infrastructure. For developing countries, several studies reported a high correlation between the dependence of oil exports and violent conflicts. Consequently, to support problem solving, an independent monitoring of the oil field infrastructure by Earth observation is proposed.

  11. Yellowstone Volcanic Unrest from GPS and SAR Interferometric Observations between 1992 and 2015

    NASA Astrophysics Data System (ADS)

    Aly, M. H.

    2015-12-01

    Incorporating geodetic measurements from nine Global Positioning System (GPS) stations and multi-sensor Interferometric Synthetic Aperture Radar (InSAR), six prominent episodes of Yellowstone caldera unrest are identified between 1992 and 2015. Episode 1: 1992-1995, deflation rate of about 2.7 cm/yr, episode 2: 1996-2000, minimal deflation of 0.5 cm/yr with considerable inflation of 1.7 cm/yr at Norris, episode 3: 2000-2004, slight deflation of 0.7 cm/yr with local inflation of 0.6 cm/yr at Norris, episode 4: 2004-2009, extraordinary inflation of 3-8 cm/yr with substantial deflation of 1-4 cm/yr at Norris, episode 5: 2010-2014, notable deflation of about 1-2.4 cm/yr across the entire caldera floor, and ultimately episode 6: 2014-2015, remarkable caldera-wide inflation of about 2-6 cm/yr. During the period of observation (1992-2015), extensive deformation has occurred primarily at three locations; namely, the Mallard Lake resurgent dome, the Sour Creek resurgent dome, and the Norris Geyser Basin that is located nearby the northwestern rim of the caldera. InSAR data acquired during 1992-2015 by ERS-1, ERS-2, ENVISAT, TerraSAR-X, TanDEM-X, and Sentinel-1 are analyzed using the two-pass and the small baseline subset interferometric methods. The created interferograms do not show any alignment of crustal deformation with fault zones across the intermittently active caldera, which indicate that the magma charge and discharge, as well as the widespread hydrothermal activity are responsible for the induced deformation. Fault zones most likely have acted as pathways for the movements of magma and hydrothermal fluids, but they do not have any influence on the measured rates of surface motion. Source modeling of recent GPS and InSAR measurements indicates the existence of two distinct planar sources beneath the caldera (8-12 km) and the Norris Geyser Basin (10-16 km).

  12. Monitoring Water Dams Related Geomorphologic Changes and Increased Ground Instability using SAR Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Poncos, Valentin; Teleaga, Delia

    2010-05-01

    Development of large infrastructure is always a trigger for changes in the geomorphological pattern of the surrounding areas. One such example is the development of a water dam; the heavy weight of this structure, combined with the one from the cumulated water represents an important factor leading to ground subsidence. As an effect, surrounding mountain slopes become active, leading to landslides threatening the water dam itself. The subject of the paper is a case study in the Carpathian Mountains of Romania. The SIRIU water dam, developed in an active part of the mountains (thus with steep topography), generates land subsidence in the village downstream and heavy landslides activity on the slopes of the surrounding mountains, affecting the lake and the roads along it. This case study was designed as a pilot project for the Romanian Ministry of Environment without any prior knowledge of the area from ASRC side. A landslide was initially indicated as a prime target for monitoring. In the end, a large number of landslides, including very local ones, were detected and ground validation was done in the field. The deformation measurements obtained with InSAR are remarcable because of the high-resolution obtained using the 300 MHz bandwidth Spotlight mode of Terra-SAR X. The sub-meter resolution of the radar made possible to identify movement down to individual rocks level. Validation was easily done by visual identification of the moving rocks and concrete structures in the image and observations on the ground. In every area that was indicated by InSAR as unstable we found evidence of landslides, with metric precision. As mentioned, the monitoring technology consisted in Interferometric Synthetic Aperture Radar techniques using the German Terra-SAR X data kindly provided by Infoterra Gmbh. Initially, Persistent Scatterers Interferometry was intended to be applied but because of the complicate topography of the region, ASRC decided to acquire multiple interferometric

  13. Flood disaster monitoring in Thailand by using a airborne L-band SAR: Polarimetric and interferometry Synthetic Aperture Radar with L-band(Pi-SAR-L)

    NASA Astrophysics Data System (ADS)

    Kawano, N.; Sobue, S.; Shimada, M.; Ohyoshi, K.

    2012-04-01

    It was heavy rainfall around the northern region of Thailand from July to September 2011, which caused flood disaster to quite wide region of Thailand, it finally reached to the Bangkok central in the end of October 2011. Japan Aerospace Exploration Agency (JAXA) conducted an emergency observation by using a airborne L-band SAR: Polarimetric and interferometry Synthetic Aperture Radar with L-band(Pi-SAR-L) from 5th to 27th November to monitor flood area. Pi-SAR-L has a center frequency of 1271.5 MHz, a band width of 50 MHz, a slant range resolution of 3 m, and an acquisition swath of 15 km on the ground. Pi-SAR-L is boarded on an aircraft of the Gulfstream-II operated by the Diamond Air Service(DAS), Japan, and the Gulfstream-II was ferried to the Chieng-Mai airport in the North Thailand, from Japan. In our presentation, we will show flood area around Bangkok and its variations detected by Pi-SAR-L

  14. Full-aspect 3D target reconstruction of interferometric circular SAR

    NASA Astrophysics Data System (ADS)

    Lin, Yun; Bao, Qian; Hou, Liying; Yu, Lingjuan; Hong, Wen

    2016-10-01

    Circular SAR has several attractive features, such as full-aspect observation, high resolution, and 3D target reconstruction capability, thus it has important potential in fine feature description of typical targets. However, the 3D reconstruction capability relies on the scattering persistence of the target. For target with a highly directive scattering property, the resolution in the direction perpendicular to the instantaneous slant plane is very low compared to the range and azimuth resolutions, and the 3D structure of target can hardly be obtained. In this paper, an Interferometric Circular SAR (InCSAR) method is proposed to reconstruct the full-aspect 3D structure of typical targets. InCSAR uses two sensors with a small incident angle difference to collect data in a circular trajectory. The method proposed in this paper calculates the interferometric phase difference (IPD) of the image pair at equally spaced height slices, and mask the original image with an IPD threshold. The main principle is that when a scatterer is imaged at a wrong height, the image pair has an offset, which results in a nonzero IPD, and only when the scatterer is correctly imaged at its true height, the IPD is near zero. The IPD threshold is used to retain scatterers that is correctly imaged at the right height, and meanwhile eliminate scatterers that is imaged at a wrong height, thus the 3D target structure can be retrieved. The proposed method is validated by real data processing, both the data collected in the microwave chamber and the GOTCHA airborne data.

  15. A Common Calibration Source Framework for Fully-Polarimetric and Interferometric Radiometers

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Davis, Brynmor; Piepmeier, Jeff; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Two types of microwave radiometry--synthetic thinned array radiometry (STAR) and fully-polarimetric (FP) radiometry--have received increasing attention during the last several years. STAR radiometers offer a technological solution to achieving high spatial resolution imaging from orbit without requiring a filled aperture or a moving antenna, and FP radiometers measure extra polarization state information upon which entirely new or more robust geophysical retrieval algorithms can be based. Radiometer configurations used for both STAR and FP instruments share one fundamental feature that distinguishes them from more 'standard' radiometers, namely, they measure correlations between pairs of microwave signals. The calibration requirements for correlation radiometers are broader than those for standard radiometers. Quantities of interest include total powers, complex correlation coefficients, various offsets, and possible nonlinearities. A candidate for an ideal calibration source would be one that injects test signals with precisely controllable correlation coefficients and absolute powers simultaneously into a pair of receivers, permitting all of these calibration quantities to be measured. The complex nature of correlation radiometer calibration, coupled with certain inherent similarities between STAR and FP instruments, suggests significant leverage in addressing both problems together. Recognizing this, a project was recently begun at NASA Goddard Space Flight Center to develop a compact low-power subsystem for spaceflight STAR or FP receiver calibration. We present a common theoretical framework for the design of signals for a controlled correlation calibration source. A statistical model is described, along with temporal and spectral constraints on such signals. Finally, a method for realizing these signals is demonstrated using a Matlab-based implementation.

  16. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  17. The ZpiM algorithm: a method for interferometric image reconstruction in SAR/SAS.

    PubMed

    Dias, José M B; Leitao, José M N

    2002-01-01

    This paper presents an effective algorithm for absolute phase (not simply modulo-2-pi) estimation from incomplete, noisy and modulo-2pi observations in interferometric aperture radar and sonar (InSAR/InSAS). The adopted framework is also representative of other applications such as optical interferometry, magnetic resonance imaging and diffraction tomography. The Bayesian viewpoint is adopted; the observation density is 2-pi-periodic and accounts for the interferometric pair decorrelation and system noise; the a priori probability of the absolute phase is modeled by a compound Gauss-Markov random field (CGMRF) tailored to piecewise smooth absolute phase images. We propose an iterative scheme for the computation of the maximum a posteriori probability (MAP) absolute phase estimate. Each iteration embodies a discrete optimization step (Z-step), implemented by network programming techniques and an iterative conditional modes (ICM) step (pi-step). Accordingly, the algorithm is termed ZpiM, where the letter M stands for maximization. An important contribution of the paper is the simultaneous implementation of phase unwrapping (inference of the 2pi-multiples) and smoothing (denoising of the observations). This improves considerably the accuracy of the absolute phase estimates compared to methods in which the data is low-pass filtered prior to unwrapping. A set of experimental results, comparing the proposed algorithm with alternative methods, illustrates the effectiveness of our approach.

  18. Classification of High Resolution C-Band PolSAR Data Based on Polarimetric and Texture Features

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Chen, Erxue; Li, Zengyuan; Feng, Qi; Li, Lan

    2014-11-01

    PolSAR image classification is an important technique in the remote sensing area. For high resolution PolSAR image, polarimetric and texture features are equally important for the high resolution PolSAR image classification. The texture features are mainly extracted through Gray Level Co-occurrence Matrix (GLCM) method, but this method has some deficiencies. First, GLCM method can only work on gray-scale images; Secondly, the number of texture features extracted by GLCM method is generally up dozens, or even hundreds. Too many features may exist larger redundancy and will increase the complexity of classification. Therefore, this paper introduces a new texture feature factor-RK that derived from PolSAR image non-Gaussian statistic model. Using the domestic airborne C-band PolSAR image data, we completed classification combined the polarization and texture characteristics. The results showed that this new texture feature factor-RK can overcome the above drawbacks and can achieve same performance compared with GLCM method.

  19. Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces.

    PubMed

    Yoshida, Takero; Rheem, Chang-Kyu

    2015-06-10

    A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed.

  20. Surface Deformation of Los Humeros Caldera, Mexico, Estimated by Interferometric Synthetic Aperture Radar (InSAR).

    NASA Astrophysics Data System (ADS)

    Santos Basurto, R.; Lopez Quiroz, P.; Carrasco Nuñez, G.; Doin, M. P.

    2014-12-01

    Los Humeros caldera is located in the eastern part of the Trans-Mexican Volcanic Belt, to the north of the state of Puebla and bordering the west side of the state of Veracruz. The study of the caldera, is of great interest because there is a geothermal field currently working inside of it. In fact, Los Humeros, is the third more important geothermal field in Mexico. In this work, we used InSAR to estimate the surface deformation on the caldera, aiming to contribute to its modeling and to help preventing subsidence related hazards on the geothermal field and surroundings. On this study, we calculated 34 interferograms from 21 SAR images of the ENVISAT European Space Agency Mission. The analysis of the interferograms, allow us to detect, decorrelation of the interferometric signal increased, when time spans were greater than 70 days. Also, for those with good signal correlation, the atmospheric signal dominated the interferogram, masking completely the deformation. Moreover, residual orbital ramps were detected, in some of the calculated interferograms. An algorithm capable to remove all the interferogram signal contributions but the deformation related, has been implemented. Resulting deformation and its correlation with several variables like the geology, the hydrogeology and the seismic records, were analysed through its integration in a Geographic Information System.

  1. Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Chen, Curtis

    2010-01-01

    Satellite-based repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides a synoptic high spatial resolution perspective of Earth's changing surface, permitting one to view large areas quickly and efficiently. By measuring relative phase change from one observation to the next on a pixel-by-pixel basis, maps of deformation and change can be derived. Variability of the atmosphere and the ionosphere leads to phase/time delays that are present in the data that can mask many of the subtle deformation signatures of interest, so methods for mitigation of these effects are important. Many of these effects have been observed in existing ALOS PALSAR data, and studies are underway to characterize and mitigate the ionosphere using these data. Since the ionosphere is a dispersive medium, it is possible in principle distinguish the ionospheric signatures from the non-dispersive effects of deformation and the atmosphere. In this paper, we describe a method for mapping the ionosphere in InSAR data based on a multi-frequency split-spectrum processing technique.

  2. Wavemill Product Assessment - Defining potential products from a novel spaceborne interferometric SAR

    NASA Astrophysics Data System (ADS)

    Marquez, Jose; Gommenginger, Christine; Burbidge, Geoff; Quilfen, Yves; Cotton, David; Buck, Christopher; Donlon, Craig

    2013-04-01

    The Wavemill is a new radar instrument concept that offers the possibility of generating two-dimensional wide swath, high resolution, high precision maps of surface current vectors and ocean topography. Based on a single spacecraft, it avoids the difficulties of synchronisation and baseline estimation associated with other interferometric SAR systems based on two or more satellites. WaPA, the Wavemill Product Assessment project, is supported by ESA under the General Studies Programme (GSP) to define the scientific capabilities and limitations of a spaceborne Wavemill instrument. The Wavemill concept has developed steadily since its first inception in 2005. A number of Wavemill studies in recent years have gradually put together facts and figures to support the case for Wavemill as a possible spaceborne mission. The WaPA project builds on past studies to address some key aspects relating to the expected performances and limitations of a spaceborne Wavemill instrument. This study is a critical step on the path towards establishing Wavemill as a convincing candidate instrument for a future ocean current mission. In this paper we present the technical concept of the Wavemill instrument, provide an overview of current capability in terms of measuring surface currents from spaceborne SAR, present results from an airborne proof-of-concept campaign and then discuss some early findings from the project in terms of the potential products and their expected performance.

  3. Assessing Natural Disaster Impacts and Recovery Using Multifrequency, Fully-Polarimetric Synthetic Aperture Radar (SAR) and Optical Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Weissel, J. K.; Czuchlewski, K. R.; Kim, Y.

    2002-12-01

    Many natural disasters involving landslides, volcanic eruptions, fires, or floods entail terrain resurfacing, followed by subsequent recovery. Modern satellite and airborne remote sensing technologies, which combine broad spatial coverage and high spatial resolution with time-sequential site revisit capability, can provide important information on the extent and duration of major landscape disturbance. In humid climate settings, these hazards temporarily remove or replace a natural vegetation cover and in doing so, modify the physical properties of the land surface. In optical remote sensing, removal of vegetation alters surface albedo in the visible -- near infrared (V-NIR) waveband, particularly the high reflectance from vegetation in the NIR. For SAR remote sensing, removal of vegetation cover causes a change in dominant microwave scattering mechanism for the areas affected. SAR has operational advantages over optical sensors for rapid disaster assessment because of its day/night acquisition capability, the ability to ``see through'' smoke, clouds and dust, and the side-looking viewing geometry, which is an advantage whenever data collection directly above the site would prove dangerous. We show how multifrequency, fully-polarimetric airborne SAR data can be ``inverted'' for parameters that reflect scattering mechanism signatures diagnostic of different surface cover types. We apply a uniform approach to map landslides resulting from the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan, volcanic flows from the major 1996 eruption of Manam volcano in Papua New Guinea, and the extent of damage from the summer 2002 Rodeo -- Chediski wildfire in Arizona. In addition, earlier work has shown that multifrequency SAR polarimetric backscatter is sensitive to total above-ground biomass. This attribute can be exploited to calculate vegetation loss during a disaster and for assessment of regrowth during the recovery phase.

  4. Identifying Successive Eruption of Guntur Volcanic Complex Using Magnetic Susceptibility and Polarimetric Synthetic Aperture Radar (PolSAR) Data

    NASA Astrophysics Data System (ADS)

    Saepuloh, Asep; Bakker, Erwin

    2017-06-01

    Identifying distribution and stratigraphic of volcanic products are important not only for mitigating volcanic hazards, but also to know the characteristics of the successive eruptions. Guntur volcanic complex located in Garut, West Java, Indonesia was selected as study area because of the last eruption took place in 1847 and the volcanic activity has been dormant since then, however its seismicity is still active. During the period of July to October 2009, the hypocentre distribution of volcano tectonic earthquakes is mostly located at western flank of the volcano, beneath Guntur - Gandapura craters at the depth of less than 5 km. This study is aimed to identify distribution and succession of volcanic products based on their magnetic properties and backscattering signal of Polarimetric Synthetic Aperture Radar (PolSAR) data. The polarimetric decomposition method was used to identify the distribution of the volcanic products based on their scattering characteristics. Then, the field measurement using SM-30 magnetic susceptibility meter was performed to confirm the units of volcanic products and interpret their successions. According to the polarimetric decomposition method, we could identify fifteen successive eruptions formed Guntur Volcano Complex and termed as Khuluk and Gumuk in Indonesian standard. The successions were produced Gumuk Windu, Gumuk Malang, Gumuk Pulus, Gumuk Putrri, Khuluk Meungpeuk, Gumuk Cakra, Gumuk Gandapura, Gumuk Putri, Gumuk Gajah, Gumuk Batususun, Khuluk Pasirlaku, Gumuk Agung, Gumuk Picung, Gumuk Pasirmalang, Gumuk Masigit, Khuluk Kabuyutan and Khuluk Guntur. The magnetic susceptibility confirmed that the variations of magnetic susceptibility of rocks at each gumuk agreed with their stratigraphy.

  5. Study of a passive companion microsatellite to the SAOCOM-1B satellite of Argentina, for bistatic and interferometric SAR applications

    NASA Astrophysics Data System (ADS)

    Barbier, Christian; Derauw, Dominique; Orban, Anne; Davidson, Malcolm W. J.

    2014-10-01

    We report the results of a preparatory study aimed at exploring candidate applications that could benefit from a passive micro-satellite accompanying the L-band SAOCOM-1B satellite of Argentina, and to carry out a limited demonstration, based on data acquired during ESA airborne campaigns, of selected applications. In a first step of the study, the potential applications were identified and prioritized based on the mission context and strategic applications, scientific need, and feasibility. The next step of the study was to carry out some demonstrations using data sets acquired during the BioSAR 2007-2009, TropiSAR 2009 and IceSAR 2007 campaigns. A P-band InSAR digital elevation model was generated from BioSAR 2007 data. Time-series of interferometric coherence maps were obtained as a tool for change detection and monitoring. PolInSAR processing was carried out on BioSAR 2007 and IceSAR data.

  6. A Method of Combining PolSAR and InSAR Informatioon in Soil Moisture Estimations

    NASA Astrophysics Data System (ADS)

    Yin, Qiang; Hong, Wen

    2016-08-01

    As to the application of soil moisture retrieval, there are two major groups of methodology: the one mostly based on multi- polarimetric SAR scattering intensity and the other of utilizing interferometric SAR complex coherence, respectively. In this paper the initial soil moisture values estimated from polarimetric scattering models are combined to theInSAR soil moisture change estimation method. Due to the fact that InSAR coherent change detection method can only get the relevant change between two observations, it is advantageous to integrate the InSAR and PolSAR information. The proposed approach is robust to soil roughness and topography, proper for long time-series observations without the need in ground truth soil moisture measurements for calibration purpose.

  7. Estimation of Bridge Height over Water from Polarimetric SAR Image Data Using Mapping and Projection Algorithm and De-Orientation Theory

    NASA Astrophysics Data System (ADS)

    Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo

    An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.

  8. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt

    USGS Publications Warehouse

    Schaber, G.G.; McCauley, J.F.; Breed, C.S.

    1997-01-01

    Bir Safsaf, within the hyperarid 'core' of the Sahara in the Western Desert of Egypt, was recognized following the SIR-A and SIR-B missions in the 1980s as one of the key localities in northeast Africa, where penetration of dry sand by radar signals delineates previously unknown, sand-buried paleodrainage valleys ('radar-rivers') of middle Tertiary to Quaternary age. The Bir Safsaf area was targeted as a focal point for further research in sand penetration and geologic mapping using the multifrequency and polarimetric SIR-C/X-SAR sensors. Analysis of the SIR-C/X-SAR data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat TM images by a relatively thin, but extensive blanket of blow sand. Basement rock units (granitoids and gneisses) and the fractures associated with them at Bir Safsaf are shown here for the first time to be clearly delineated using C- and L-band SAR images. The detectability of most geologic features is dependent primarily on radar frequency, as shown for wind erosion patterns in bedrock at X-band (3 cm wavelength), and for geologic units and sand and clay-filled fractures in weathered crystal-line basement rocks at C-band (6 cm) and L-band (24 cm). By contrast, Quaternary paleodrainage channels are detectable at all three radar frequencies owing, among other things, to an usually thin cover of blow sand. The SIR-C/X-SAR data investigated to date enable us to make specific recommendations about the utility of certain radar sensor configurations for geologic and paleoenvironmental reconnaissance in desert regions.Analysis of the shuttle imaging radar-C/X-synthetic aperture radar (SIR-C/X-SAR) data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and

  9. Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data

    NASA Astrophysics Data System (ADS)

    Silva, Wagner F.; Rudorff, Bernardo F. T.; Formaggio, Antonio R.; Paradella, Waldir R.; Mura, José C.

    Recent articles are indicating that polarimetric data provide significantly more information than conventional or multi-polarized images, particularly due to the additional phase information. The objective of this paper is to evaluate the multi-polarized and fully polarimetric L-band airborne SAR-R99B data, in terms of their capability to distinguish among different agricultural crops in the western part of Bahia State, Brazil. Emphasis was given to coffee, cotton and pasture crops which were at well developed growing stages. Discrimination among crops was carried out using graphical analysis of mean backscatter values. Crop classification was performed for single and multiple polarizations, and fully polarimetric images with a classifier that uses the contextual Iterated Conditional Modes-ICM algorithm. The investigation confirmed the potential of L-band multi-polarized and polarimetric airborne SAR-R99B data to distinguish and classify agricultural crops in the tropical condition of the test-site. In addition, it clearly indicated the gradual and considerable improvement that was achieved going from single to three polarizations and from multi-polarized to fully polarimetric images.

  10. Multibaseline polarimetric synthetic aperture radar tomography of forested areas using wavelet-based distribution compressive sensing

    NASA Astrophysics Data System (ADS)

    Liang, Lei; Li, Xinwu; Gao, Xizhang; Guo, Huadong

    2015-01-01

    The three-dimensional (3-D) structure of forests, especially the vertical structure, is an important parameter of forest ecosystem modeling for monitoring ecological change. Synthetic aperture radar tomography (TomoSAR) provides scene reflectivity estimation of vegetation along elevation coordinates. Due to the advantages of super-resolution imaging and a small number of measurements, distribution compressive sensing (DCS) inversion techniques for polarimetric SAR tomography were successfully developed and applied. This paper addresses the 3-D imaging of forested areas based on the framework of DCS using fully polarimetric (FP) multibaseline SAR interferometric (MB-InSAR) tomography at the P-band. A new DCS-based FP TomoSAR method is proposed: a new wavelet-based distributed compressive sensing FP TomoSAR method (FP-WDCS TomoSAR method). The method takes advantage of the joint sparsity between polarimetric channel signals in the wavelet domain to jointly inverse the reflectivity profiles in each channel. The method not only allows high accuracy and super-resolution imaging with a low number of acquisitions, but can also obtain the polarization information of the vertical structure of forested areas. The effectiveness of the techniques for polarimetric SAR tomography is demonstrated using FP P-band airborne datasets acquired by the ONERA SETHI airborne system over a test site in Paracou, French Guiana.

  11. Schatten Matrix Norm Based Polarimetric SAR Data Regularization Application over Chamonix Mont-Blanc

    NASA Astrophysics Data System (ADS)

    Le, Thu Trang; Atto, Abdourrahmane M.; Trouve, Emmanuel

    2013-08-01

    The paper addresses the filtering of Polarimetry Synthetic Aperture Radar (PolSAR) images. The filtering strategy is based on a regularizing cost function associated with matrix norms called the Schatten p-norms. These norms apply on matrix singular values. The proposed approach is illustrated upon scattering and coherency matrices on RADARSAT-2 PolSAR images over the Chamonix Mont-Blanc site. Several p values of Schatten p-norms are surveyed and their capabilities on filtering PolSAR images is provided in comparison with conventional strategies for filtering PolSAR data.

  12. Research on Inversion Models for Forest Height Estimation Using Polarimetric SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Duan, B.; Zou, B.

    2017-09-01

    The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can't estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.

  13. Biomass estimation in a tropical wet forest using Fourier transforms of profiles from lidar or interferometric SAR

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Gonçalves, F. G.; Drake, J. B.; Chapman, B. D.; dos Santos, J. R.; Dutra, L. V.; Graça, P. M. L. A.; Purcell, G. H.

    2010-12-01

    Tropical forest biomass estimation based on the structure of the canopy is a burgeoning and crucial remote sensing capability for balancing terrestrial carbon budgets. This paper introduces a new approach to structural biomass estimation based on the Fourier transform of vertical profiles from lidar or interferometric SAR (InSAR). Airborne and field data were used from 28 tropical wet forest stands at La Selva Biological Station, Costa Rica, with average biomass of 229 Mg-ha-1. RMS scatters of remote sensing biomass estimates about field measurements were 58.3 Mg-ha-1, 21%, and 76.1 Mg-ha-1, 26%, for lidar and InSAR, respectively. Using mean forest height, the RMS scatter was 97 Mg-ha-1, ≈34% for both lidar and InSAR. The confidence that Fourier transforms are a significant improvement over height was >99% for lidar and ≈90% for InSAR. Lidar Fourier transforms determined the useful range of vertical wavelengths to be 14 m to 100 m.

  14. Properties of radar backscatter of forests measured with a multifrequency polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Amar, F.; Karam, M. A.; Fung, A. K.; De Grandi, G.; Lavalle, C.; Sieber, A.

    1992-01-01

    Fully polarimetric airborne synthetic aperture radar (AIRSAR) data, collected in Germany during the MAC Europe campaign, are calibrated using software packages developed at the Joint Research Center (JRC) in Italy for both L- and C-bands. During the period of the overflight dates, extensive ground truth was collected in order to describe the physical and statistical parameters of the canopy, the understory, and the soil. These parameters are compiled and converted into electromagnetic parameters suitable for input to the new polarimetric three-layer canopy model developed at the Wave Scattering Research Center (WSRC) at the University of Texas at Arlington. Comparisons between the theoretical predictions from the model and the calibrated data are carried out. Initial results reveal that the trend of the average phase difference can be predicted by the model, and that the backscattering ratio *shh/ svv is sensitive to the distribution of the primary branches.

  15. PolSAR calibration and reconstruction of hybrid polarimetric RISAT-1 data for pseudo quad-pol decomposition: a comparison with quad-pol

    NASA Astrophysics Data System (ADS)

    Kumar, Shashi; Gupta, Vivek; Gonnuru, Pratyusha; Joshi, Sushil Kumar

    2016-05-01

    A new approach to reconstruction of pseudo quad-polarized data from hybrid polarimetric data has been presented in this research. The algorithm is based on certain assumptions which were validated upon testing the aptness of the results and their comparison with true optical images of the region under study. This involved direct construction of the 3X3 coherency matrix from the 2X1 scattering matrices obtained from the hybrid polarimetric data. The reasonableness of the assumptions were tested by decomposing the reconstructed pseudo quad-pol data using a coherent decomposition mechanism. The data set used in this project was Level-1 FRS-1 Hybrid Polarimetric data and FRS-2 Quad-pol data of RISAT-1. Reliable scattering retrieval from SAR data involves the calibration of the data. Polarimetric calibration was performed on real and imaginary channels of the single look complex SAR data. The newly developed algorithm was implemented on calibrated data. To extract complete information of different scattering elements of any location, second order derivative of scattering matrix is the most suitable and widely used matrix. Coherency matrix of pseudo quad-pol obtained from hybrid polarimetric data using reconstruction algorithm was decomposed using Yamaguchi four component decomposition for scattering information extraction. The obtained surface, double-bounce and volume scattering were compared with the scattering elements of hybrid-polarimetric decomposition, m-alpha and decomposition of quad-pol data of RISAT-1. The comparison revealed that the results obtained were satisfactory and thus the assumptions made during the reconstruction of pseudo quad-pol data were reasonable for specific purposes. Further comparisons of results using different decompositions technique at pixel level comparison can help better understand the aptness of the algorithm.

  16. Multibaseline POLInSAR Module for SAR Data Processing and Analysis in RAT (Radar Tools)

    NASA Astrophysics Data System (ADS)

    Neumann, M.; Reiber, A.; Jäger, M.; Guillaso, S.; Hellwich, O.

    2007-03-01

    The combination of SAR Polarimetry (POL- SAR) and SAR Interferometry (InSAR) into Polarimetric SAR Interferometry (POLInSAR) has shown great potential for information extraction from SAR data. Applications have been developed and validated theoretically for POLInSAR data. But due to different reasons these methods are difficult to apply on real data. The SAR observables have to be increased, and the utilization of multiple baselines (MB) is one of the possibilities. There will be a need for data processing and analysis methods and tools to work effectively with multibaseline datasets. In this paper we present the newly developed module for the software package RAT (Radar Tools), which provides these abilities for multibaseline polarimetric interferometric SAR data. It is the first available package of tools for working with MBSAR data. RAT (RAdar Tools [1], [2]) is a collection of tools for advanced image processing of SAR remote sensing data, originally started as a student's project and currently under further development at the Department of Computer Vision and Remote Sensing of the Technical University of Berlin. It is programmed in IDL (Interactive Data Language) and uses IDL widgets as graphical user interface. The purpose of this paper is also to give an overview of the current development status of RAT through addressing the newest structural improvements in RAT as well as recently implemented methods for SAR polarimetry and interferometry.

  17. An L-band SAR for repeat pass deformation measurements on a UAV platform

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Hensley, Scott; Lou, Yunling

    2004-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeatpass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV or minimally piloted vehicle (MPV).

  18. An L-band SAR for repeat pass deformation measurements on a UAV platform

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Hensley, Scott; Lou, Yunling

    2004-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeatpass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV or minimally piloted vehicle (MPV).

  19. Quest-2003 Polarimetric Signature Trial: Experiment Design, SAR Calibration, Data Acquisition and Initial Results

    DTIC Science & Technology

    2004-11-01

    quatre dtalonneurs radar actifs (ARC) et deux stations de base GPS (systbme de positionnement mondial). La BFC Shearwater offre un terrain relativement...des passages du radar. L’acquisition de I’ensemble de donn~es PolSAR a dtd effectude Ai l’aide du capteur SAR entidrement polarim6trique a6roportd...6tait constitu6 de quatre rdflecteurs 5 coin (CR), quatre 6talonneurs radar actifs (ARC) et deux stations de base GPS (systbme de positionnement mondial

  20. Dark SPOT Detection Using Intensity and the Degree of Polarization in Fully Polarimetric SAR Images for Oil Polution Monitoring

    NASA Astrophysics Data System (ADS)

    Zakeri, F.; Amini, J.

    2015-12-01

    Oil spill surveillance is of great environmental and economical interest, directly contributing to improve environmental protection. Monitoring of oil spills using synthetic aperture radar (SAR) has received a considerable attention over the past few years, notably because of SAR data abilities like all-weather and day-and-night capturing. The degree of polarization (DoP) is a less computationally complex quantity characterizing a partially polarized electromagnetic field. The key to the proposed approach is making use of DoP as polarimetric information besides intensity ones to improve dark patches detection as the first step of oil spill monitoring. In the proposed approach first simple intensity threshold segmentation like Otsu method is applied to the image. Pixels with intensities below the threshold are regarded as potential dark spot pixels while the others are potential background pixels. Second, the DoP of potential dark spot pixels is estimated. Pixels with DoP below a certain threshold are the real dark-spot pixels. Choosing the threshold is a critical and challenging step. In order to solve choosing the appropriate threshold, we introduce a novel but simple method based on DoP of potential dark spot pixels. Finally, an area threshold is used to eliminate any remaining false targets. The proposed approach is tested on L band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico. Comparing the obtained results from the new method with conventional approaches like Otsu, K-means and GrowCut shows better achievement of the proposed algorithm. For instance, mean square error (MSE) 65%, Overall Accuracy 20% and correlation 40% are improved.

  1. Improving Ship Detection with Polarimetric SAR based on Convolution between Co-polarization Channels

    PubMed Central

    Li, Haiyan; He, Yijun; Wang, Wenguang

    2009-01-01

    The convolution between co-polarization amplitude only data is studied to improve ship detection performance. The different statistical behaviors of ships and surrounding ocean are characterized a by two-dimensional convolution function (2D-CF) between different polarization channels. The convolution value of the ocean decreases relative to initial data, while that of ships increases. Therefore the contrast of ships to ocean is increased. The opposite variation trend of ocean and ships can distinguish the high intensity ocean clutter from ships' signatures. The new criterion can generally avoid mistaken detection by a constant false alarm rate detector. Our new ship detector is compared with other polarimetric approaches, and the results confirm the robustness of the proposed method. PMID:22399964

  2. Improving Ship Detection with Polarimetric SAR based on Convolution between Co-polarization Channels.

    PubMed

    Li, Haiyan; He, Yijun; Wang, Wenguang

    2009-01-01

    The convolution between co-polarization amplitude only data is studied to improve ship detection performance. The different statistical behaviors of ships and surrounding ocean are characterized a by two-dimensional convolution function (2D-CF) between different polarization channels. The convolution value of the ocean decreases relative to initial data, while that of ships increases. Therefore the contrast of ships to ocean is increased. The opposite variation trend of ocean and ships can distinguish the high intensity ocean clutter from ships' signatures. The new criterion can generally avoid mistaken detection by a constant false alarm rate detector. Our new ship detector is compared with other polarimetric approaches, and the results confirm the robustness of the proposed method.

  3. Monitoring The Dynamics Of Hyper-Saline Environments With Polarimetric SAR: Death Valley, California Example

    NASA Astrophysics Data System (ADS)

    Lasne, Y.; McDonald, K.; Paillou, P.; Freeman, A.; Chapman, B.; Farr, T.; Ruffié, G.; Malézieux, J.

    2008-12-01

    Soil salinization in arid and semi-arid regions still remains one of the most important threats not only for socio-economical issues when dealing with water ressources management, but also for ecological matters such as: desertification, climate changes, and biomass reduction. Then, monitoring and mapping of soil salinity distribution represent today a key challenge in our understanding of such environmental processes. Being highly dependent on the dielectric properties of soils, synthetic aperture radar (SAR) appears to be an efficient tool for the remote sensing of hyper-saline environments. More precisely, the influence of saline deposits on SAR imagery lies in the solubility and ionic properties of the minerals which strongly influence both real and imaginary parts of the complex permittivity of such deposits, and thus the radar backscattering coefficient. Based on temporal series acquired with spaceborne SAR systems (ALOS/PALSAR, SIR-C) over the Death Valley (CA), we show that the copolarized backscattering ratio and phase difference derived from SAR data can be used as suitable indicators to monitor the dynamics of hyper-saline deposits. In particular, we propose these copolar parameters to follow the variations in the dielectric properties of moistened and salt-affected soils on a seasonal time scale because of the close relationship between the salinity (governed by the soil moisture content) and the complex permittivity of the soils. We also highlight a strong temporal correlation between the copolar parameters and weather data since precipitation events control the soil moisture and salinity. In order to allow for a better interpretation of the saline deposits signatures observed on SAR data, we also perform analytical simulations of the radar backscattering associated with saline deposits by means of the IEM scattering model. Using laboratory and in~ situ dielectric measurements as input parameters, we simulate the copolar ratio and phase difference as

  4. 3D Rendering of High Resolution PolInSAR Urban Area

    NASA Astrophysics Data System (ADS)

    Trouve, Nicolas; Colin-Koeniguer, Elise; Cantalloube, Hubert

    2011-03-01

    In the field of urban SAR imaging and mapping, the PolInSAR information potential has not been fully exploited. Until recently available resolution of PolInSAR images were not sufficient to render 3D city landscape using the polarimetric and interferometric information. This paper presents the results of urban reconstruction using single pass full polarimetric and interferometric data using ONERA's Airborne system: RAMSES. It focus on the statistical process designed for the PolInSAR matrices estimation in high resolution urban areas. A region growing algorithm is proposed to design statistically homogeneous region while preserving spatial features of the scene through shape constraints. A companion paper [CKT11] will present the interferometry tools developed to exploit the region growth results. Validation on real data using RAMSES images at X band over Toulouse are presented through 3D colored render results.

  5. A Multi-Frequency Polarimetric SAR Sensors Analysis over the UNESCO Archaeological Site of Djebel Barkal (Sudan)

    NASA Astrophysics Data System (ADS)

    Patruno, Jolanda; Dore, Nicole; Pottier, Eric; Crespi, Mattia

    2013-08-01

    Differences in vegetation growth and in soil moisture content generate ground anomalies which can be linked to subsurface anthropic structures. Such evidences have been studied by means of aerial photographs and of historical II World War acquisitions first, and of very high spatial resolution of optical satellites later. This work aims to exploit the technique of SAR Polarimetry for the detection of surface and subsurface archaeological structures, comparing ALOS P ALSAR L-band (central frequency 1.27 GHz), with RADARSAT-2 C-band sensor (central frequency 5.405 GHz). The great potential of the two polarimetric sensors with different frequency for the detection of archaeological remains has been demonstrated thanks to the sand penetration capability of both C-band and L- band sensors. The choice to analyze radar sensors is based on their 24-hour observations, independent from Sun illumination and meteorological conditions and on the electromagnetic properties of the target they could provide, information not derivable from optical images.

  6. Polarimetric SAR decomposition parameter subset selection and their optimal dynamic range evaluation for urban area classification using Random Forest

    NASA Astrophysics Data System (ADS)

    Hariharan, Siddharth; Tirodkar, Siddhesh; Bhattacharya, Avik

    2016-02-01

    Urban area classification is important for monitoring the ever increasing urbanization and studying its environmental impact. Two NASA JPL's UAVSAR datasets of L-band (wavelength: 23 cm) were used in this study for urban area classification. The two datasets used in this study are different in terms of urban area structures, building patterns, their geometric shapes and sizes. In these datasets, some urban areas appear oriented about the radar line of sight (LOS) while some areas appear non-oriented. In this study, roll invariant polarimetric SAR decomposition parameters were used to classify these urban areas. Random Forest (RF), which is an ensemble decision tree learning technique, was used in this study. RF performs parameter subset selection as a part of its classification procedure. In this study, parameter subsets were obtained and analyzed to infer scattering mechanisms useful for urban area classification. The Cloude-Pottier α, the Touzi dominant scattering amplitude αs1 and the anisotropy A were among the top six important parameters selected for both the datasets. However, it was observed that these parameters were ranked differently for the two datasets. The urban area classification using RF was compared with the Support Vector Machine (SVM) and the Maximum Likelihood Classifier (MLC) for both the datasets. RF outperforms SVM by 4% and MLC by 12% in Dataset 1. It also outperforms SVM and MLC by 3.5% and 11% respectively in Dataset 2.

  7. Using Regional GPS Network Atmospheric Models for Mitigating Errors in Interferometric Synthetic Aperture Radar (InSAR) Images

    NASA Astrophysics Data System (ADS)

    Reuveni, Y.; Bock, Y.; Tong, X.; Moore, A. W.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) measurements provide valuable information for obtaining Earth surface deformation and topography at high spatial resolution for crustal deformation studies. Similar to Global Positioning System (GPS), InSAR phase measurements are affected by the Earth's ionospheric and tropospheric layers as the electromagnetic signals significantly refract while propagating through the different layers. While electromagnetic signals propagating through the neutral atmosphere are affected primarily by the pressure, temperature, and water vapor content of atmospheric gases, the propagation through the ionosphere is mainly affected by the number of free electrons along the signal path. Here, we present the use of dense regional GPS networks for extracting tropospheric zenith delays and ionospheric Total Electron Content (TEC) maps in order to reduce the noise levels in the phase measurement of the InSAR images. The results show significant reduction in the RMS values when simultaneously combining the two corrections, both at short time periods where no surface deformation is expected, and at longer periods, where imaging of crustal deformation, such as the ground subsidence and aseismic fault creep, is enhanced.

  8. Strategies for detection of floodplain inundation with multi-frequency polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Hess, Laura L.; Melack, John M.

    1992-01-01

    Mapping of floodplain inundation patterns is a key element in developing hydrological and biogeochemical models for large tropical river basins such as the Amazon. Knowledge of the time sequence of inundation is necessary to determine both water routing and biogenic gas fluxes. Synthetic Aperture Radar (SAR) is uniquely suited for this application because of its ability to penetrate cloud cover and, in many cases, to detect flooding beneath a forest or herbaceous canopy. A procedure for discriminating flooded forest, flooded herbaceous vegetation, and open water from other cover types for a coastal wetland site on the lower Altamaha floodplain, Georgia, emphasizing robust classifiers that are not site-specific is currently being developed.

  9. MarCoPola Polarimetric SAR Trial: Signatures of Multiple Vessels with Aligned Operating Conditions

    DTIC Science & Technology

    2005-09-01

    capteur radar transporté à bord du CV-580 d’Environnement Canada, complétées par l’acquisition d’images satellites à l’aide d’ENVISAT. Un site...d’étalonnage était constitué de quatre étalonneurs radar actifs (ARC), quatre réflecteurs à coin (CR) et deux stations de base GPS (système de...RDDC Ottawa développe actuellement des capacités d’exploitation des données du futur capteur du radar à synthèse d’ouverture (SAR) RADARSAT-2 à

  10. Characterizing Freeze-Thaw Transitions Using L-Band Interferometric SAR over a Boreal Forest in Alaska

    NASA Astrophysics Data System (ADS)

    Ganem, D.; McDonald, K. C.; Podest, E.; Chapman, B. D.; Zimmermann, R.

    2008-12-01

    Land surface seasonal transitions between predominantly frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth´s Northern Hemisphere profoundly affecting surface meteorological conditions, ecological trace gas dynamics, and hydrologic activity. The study of freeze-thaw transitions is a key component in better understanding land-atmosphere carbon exchange and the cycling of water, carbon, and energy in the high latitudes. Microwave remote sensing techniques have been demonstrated to be effective tools for delineating seasonal freeze/thaw transitions in the terrestrial high latitudes as indicators of key growing season processes. Past efforts characterizing freeze/thaw processes in boreal forests have focused on application of time series radar backscatter amplitude to delineate landscape freeze/thaw state. In this study, we apply satellite radar time series observations to investigate the application of Interferometric Synthetic Aperture Radar (InSAR) to monitor seasonal freeze/thaw processes in a boreal forest. We employ time series data acquired over the Bonanza Creek Experimental Forest along the Tanana River floodplain to examine InSAR response. We compare the InSAR time series data to in situ observations of vegetation and soil temperature, and vegetation biophysical activity as inferred from xylem sap flux measurements. We investigate relationships between the remote sensing data products, soil freeze/thaw, vegetation freeze/thaw, and the initiation of seasonal growth processes in trees, and the potential of InSAR for distinguishing these processes. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  11. Supervised Classification of Polarimetric SAR Imagery Using Temporal and Contextual Information

    NASA Astrophysics Data System (ADS)

    Dargahi, A.; Maghsoudi, Y.; Abkar, A. A.

    2013-09-01

    Using the context as a source of ancillary information in classification process provides a powerful tool to obtain better class discrimination. Modelling context using Markov Random Fields (MRFs) and combining with Bayesian approach, a context-based supervised classification method is proposed. In this framework, to have a full use of the statistical a priori knowledge of the data, the spatial relation of the neighbouring pixels was used. The proposed context-based algorithm combines a Gaussian-based wishart distribution of PolSAR images with temporal and contextual information. This combination was done through the Bayes decision theory: the class-conditional probability density function and the prior probability are modelled by the wishart distribution and the MRF model. Given the complexity and similarity of classes, in order to enhance the class separation, simultaneously two PolSAR images from two different seasons (leaf-on and leaf-off) were used. According to the achieved results, the maximum improvement in the overall accuracy of classification using WMRF (Combining Wishart and MRF) compared to the wishart classifier when the leaf-on image was used. The highest accuracy obtained was when using the combined datasets. In this case, the overall accuracy of the wishart and WMRF methods were 72.66% and 78.95% respectively.

  12. Subsidence Monitoring in the Coastal Region of Nigeria Using Multi Temporal Interferometric Synthetic Aperture Radar (MT-InSAR)

    NASA Astrophysics Data System (ADS)

    Mahmud, Muhammad Umar; Yakubu, Tahir A.; Adewuyi, Taiyte Oluwafem; Sousa, Joaquim J.; Ruiz-Armenteros, Antonio M.; Bakon, Matus; Lazecky, Milan; Perissin, Daniele

    2016-08-01

    The uncontrolled exploitation of the groundwater, oil and gas in the Nigerian coastal geosyncline has led to progressive decline of the aquifer level and a continuous need for opening deeper drillings to exploit deeper aquifers.From the analysis of the interferometric results derived from the application of Multi-Temporal Interferometry (MT-InSAR) technique, Lagos state appears to be subsiding conically up to -7 mm/yr. The velocity rates of subsidence in the surrounding cities like Lekki, Badagry, Ikorodu and Epe are much higher than in Lagos city. These preliminary investigation results reveal heavy structures, in particular buildings, that were seen constructed mostly on the sand filled areas where the sediments compaction rates is very high.

  13. Mitigation of Faraday rotation in ALOS-2/PALSAR-2 full polarimetric SAR imageries

    NASA Astrophysics Data System (ADS)

    Mohanty, Shradha; Singh, Gulab

    2016-05-01

    The ionosphere, which extends from 50-450 kms in earth's atmosphere, is a particularly important region with regards electromagnetic wave propagation and radio communications in the L-band and lower frequencies. These ions interact with the traversing electromagnetic wave and cause rotation of polarization of the radar signal. In this paper, a potentially computable method for quantifying Faraday rotation (FR), is discussed with the knowledge of full polarimetric ALOS/PALSAR data and ALOS-2/PALSAR-2 data. For a well calibrated monostatic, full-pol ALOS-2/PALSAR-2 data, the reciprocal symmetry of the received scattering matrix is violated due to FR. Apart from FR, other system parameters like residual system noise, channel amplitude, phase imbalance and cross-talk, also account for the non-symmetry. To correct for the FR effect, firstly the noise correction was performed. PALSAR/PALSAR-2 data was converted into 4×4 covariance matrix to calculate the coherence between cross-polarized elements. Covariance matrix was modified by the coherence factor. For FR corrections, the covariance matrix was converted into 4×4 coherency matrix. The elements of coherency matrix were used to estimate FR angle and correct for FR. Higher mean FR values during ALOS-PALSAR measurements can be seen in regions nearer to the equator and the values gradually decrease with increase in latitude. Moreover, temporal variations in FR can also be noticed over different years (2006-2010), with varying sunspot activities for the Niigata, Japan test site. With increasing sunspot activities expected during ALOS-2/PALSAR-2 observations, more striping effects were observed over Mumbai, India. This data has also been FR corrected, with mean FR values of about 8°, using the above mentioned technique.

  14. Spectral Clustering of Polarimetric SAR Data with the Wishart-Derived Distance Measures

    NASA Astrophysics Data System (ADS)

    Anfinsen, S. N.; Jenssen, R.; Eltoft, T.

    2007-03-01

    This paper presents a new spectral clustering algorithm, which is specially tailored for segmentation of polari- metric SAR images. This is accomplished by use of certain pairwise distance measures between pixels. The measures are derived from the complex Wishart distribu- tion, and capture the statistical information contained in the coherency matrix. We demonstrate how the pairwise distances are transformed into an affinity matrix, whose eigendecomposition determines the optimal partitioning of pixels. We further show that the obtained clustering provides an improved initialization of the classical unsu- pervised Wishart classifier, and that the entire classifica- tion can also be performed in a kernel induced feature space. The algorithms are tested on crop classification with promising results.

  15. Polarimetric Interferometric Experiment Trials for Years 2001 and 2002: Experiment Design Ground Truthing Data Quality and Analysis

    DTIC Science & Technology

    2003-09-01

    analyse documentaire et sur l’utilit6 que ce domaine reprnsente pour le MDN. Ce projet est financ6 dans le cadre du Fonds d’investissement technologique...apprentissages realises sont egalement detailles. Ce document technique accompagne un autre rapport de RDDC portant sur une analyse de documents qui...which is beneficial for these types of studies. Ideally, a single pass Pol InSAR system would have been easier to analyse and assess. However, during

  16. C- & X-Band SAR Interferometric Analysis over Alpine and Apennine Regions

    NASA Astrophysics Data System (ADS)

    Bovenga, F.; Nitti, D. O.; Nutricato, R.; Chiaradia, M. T.

    2010-12-01

    In the present work we present results of ground deformation measurements inferred through repeat-pass Synthetic Aperture Radar (SAR) Interferometry (InSAR) in C- and X-band over Alpine and Apennine sites affected by slope instability. The activity was carried out in the framework of the MORFEO (MOnitoraggio e Rischio da Frana mediante dati EO) project, founded by the Italian Spatial Agency (ASI) and dedicated to landslide risk assessment. A number of areas affected by hydrogeological instabilities have been selected and studied in detail by processing both C- and X-band SAR data through multi-temporal Differential SAR Interferometry algorithms. InSAR-derived displacements provided on areas of hydrogeological interest are going to be validated in the framework of MORFEO project by the geological partnership thanks to the availability of ground truths. In the present work, we present the results obtained by processing through SPINUA, a PS-like algorithm, three areas affected by landslide phenomena: the area around Garzeno and Catasco in the Lombard Alps, the area aver St. Moritz in the Swiss Alps and the Ivancich landslide close to Assisi town in the Italian Apennine. We provide comparison between the deformation maps derived from ENVISAT and those obtained by processing a limited number of COSMO-SkyMED images. Our results are also validated by using ERS and RADAR- SAT PS maps freely available on the GeoIFFI web-catalogue (Garzeno), geotechnical investigation available in literature (St. Moritz) and results from SBAS technique (Assisi).

  17. Dual-Frequency Interferometric SAR Observations of a Tropical Rain-Forest

    NASA Technical Reports Server (NTRS)

    Rigot, E.

    1996-01-01

    Repeat-pass, interferometric, radar observations of tropical rain-forest collected by the Shuttle Imaging Radar C (SIR-C) in the state of Rondonia, Brazil, reveal signal coherence is destroyed at C-band (5.6-cm) in the forest, whereas L-band (24-cm) radar signals remain strongly coherent over the entire landscape. At L-band, the rms difference in inferred topographic height between the forest and adjacent clearings is 5 m, equivalent to the height noise. Atmospheric delays are large, however, forming kilometer-sized anomalies with a 1.2-cm rms one way. Radar interferometric studies of the humid tropics must therefore be conducted at long radar wavelengths, with kilometric base-lines or with two antennas operating simultaneously.

  18. Dual-Frequency Interferometric SAR Observations of a Tropical Rain-Forest

    NASA Technical Reports Server (NTRS)

    Rignot, E.

    1996-01-01

    Repeat-pass, interferometric, radar observations of tropical rain-forest collected by the Shuttle Imaging Radar C (SIR-C) in the state of Rondonia, Brazil, reveal signal coherence is destroyed at C-band (5.6-cm) in the forest, whereas L-band (24-cm) radar signals remain strongly coherent over the entire landscape. At L-band, the rms difference in inferred topographic height between the forest and adjacent clearings is 5 m, equivalent to the height noise. Atmospheric delays are large, however, forming kilometer-sized anomalies with a 1.2-cm rms one way. Radar interferometric studies of the humid tropics must therefore be conducted at long radar wavelengths, with kilometric baselines or with two antennas operating simultaneously.

  19. Bayes classification of interferometric TOPSAR data

    NASA Technical Reports Server (NTRS)

    Michel, T. R.; Rodriguez, E.; Houshmand, B.; Carande, R.

    1995-01-01

    We report the Bayes classification of terrain types at different sites using airborne interferometric synthetic aperture radar (INSAR) data. A Gaussian maximum likelihood classifier was applied on multidimensional observations derived from the SAR intensity, the terrain elevation model, and the magnitude of the interferometric correlation. Training sets for forested, urban, agricultural, or bare areas were obtained either by selecting samples with known ground truth, or by k-means clustering of random sets of samples uniformly distributed across all sites, and subsequent assignments of these clusters using ground truth. The accuracy of the classifier was used to optimize the discriminating efficiency of the set of features that was chosen. The most important features include the SAR intensity, a canopy penetration depth model, and the terrain slope. We demonstrate the classifier's performance across sites using a unique set of training classes for the four main terrain categories. The scenes examined include San Francisco (CA) (predominantly urban and water), Mount Adams (WA) (forested with clear cuts), Pasadena (CA) (urban with mountains), and Antioch Hills (CA) (water, swamps, fields). Issues related to the effects of image calibration and the robustness of the classification to calibration errors are explored. The relative performance of single polarization Interferometric data classification is contrasted against classification schemes based on polarimetric SAR data.

  20. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations

    NASA Astrophysics Data System (ADS)

    Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza

    2017-06-01

    Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.

  1. Detecting coal fires in China using Differential Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Hoffmann, J.; Roth, A.; Voigt, S.

    2004-06-01

    We investigate the feasibility of detecting fires in subsurface coal deposits through InSAR observations of accompa- nying surface displacements. Uncontrolled burning of subsurface coal seams have been reported from many locations around the world. In northern China alone, more than 10 Million tons (Mt) of coal are estimated to burn every year. This has massive implications for the regional economy and ecology. In fighting these fires and controlling burning coal seams the timely and reliable detection and mapping of the affected regions is critical. However, this has proven to be ex- tremely difficult in the often remote regions of northern China, where many of the fires have been caused by uncontrolled, small-scale mining operations. Both volume change of the burning coal and thermal effects in the adjacent rock mass are expected to cause measurable surface displacements and numerous reports of collapses of the earth's surface exist. Unfortunately, reliable data on surface deformation accompanying the fires are not available. Nevertheless, theoretical considerations and individual reports suggest that subsidence mapping using differential InSAR may be a suitable tool to detect burning regions and map the spatial extent of the affected areas. Though topography, temporal decorrelation, and poor data coverage complicate the analysis we have identified several localized areas of subsidence in the region. Here we discuss the potential and limitations of using InSAR for coal-fire detection in northern China.

  2. Polarimetric Interferometry - Remote Sensing Applications

    DTIC Science & Technology

    2007-02-01

    This lecture is mainly based on the work of S.R. Cloude and presents examples for remote sensing applications Polarimetric SAR Interferometry...PolInSAR). PolInSAR has its origins in remote sensing and was first developed for applications in 1997 using SIRC L-Band data [1,2]. In its original form it

  3. Coastal sea level from inland CryoSat-2 interferometric SAR altimetry

    NASA Astrophysics Data System (ADS)

    Abulaitijiang, Adili; Andersen, Ole Baltazar; Stenseng, Lars

    2015-03-01

    The European Space Agency's CryoSat-2 satellite can operate in a novel synthetic aperture radar interferometric (SARIn) mode where its nominal footprint (swath) is observed by two antennas and the phase difference between the signals is used to determination the exact location of the scatterer through an off-nadir correction. The potential of SARIn for sea level determination is investigated over the fjords of Eastern Greenland. In principle the satellite should only track sea level within its nominal footprint of 7 km across track, but we observe that scattering targets (fjords) within twice its nominal footprint are frequently observed but mislocated in CryoSat-2 due to phase wrapping. We devised a way to relocate the observations and correct the range accordingly. When CryoSat-2 is flying inland we consequently observed that the satellite occasionally provide valid sea level in fjords up to 13 km away in the across-track direction.

  4. Multibaseline interferometric SAR at millimeterwaves test of an algorithm on real data and a synthetic scene

    NASA Astrophysics Data System (ADS)

    Essen, Helmut; Brehm, Thorsten; Boehmsdorff, Stephan

    2007-10-01

    Interferometric Synthetic Aperture Radar has the capability to provide the user with the 3-D-Information of land surfaces. To gather data with high height estimation accuracy it is necessary to use a wide interferometric baseline or a high radar frequency. However the problem of resolving the phase ambiguity at smaller wavelengths is more critical than at longer wavelengths, as the unambiguous height interval is inversely proportional to the radar wavelength. To solve this shortcoming, a multiple baseline approach can be used with a number of neighbouring horns and an increasing baselength going from narrow to wide. The narrowest, corresponding to adjacent horns, is then assumed to be unambiguous in phase. This initial interferogram is used as a starting point for the algorithm, which in the next step, unwraps the interferogram with the next wider baseline using the coarse height information to solve the phase ambiguities. This process is repeated consecutively until the interferogram with highest precision is unwrapped. On the expense of this multi-channel-approach the algorithm is simple and robust, and even the amount of processing time is reduced considerably, compared to traditional methods. The multiple baseline approach is especially adequate for millimeterwave radars as antenna horns with relatively small aperture can be used, while a sufficient 3-dB beamwidth is maintained. The paper describes the multiple baseline algorithm and shows the results of tests on real data and a synthetic area. Possibilities and limitations of this approach are discussed. Examples of digital elevation maps derived from measured data at millimeterwaves are shown.

  5. DARIS (Deformation Analysis Using Recursive Interferometric Systems) A New Algorithm for Displacement Measurements Though SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Redavid, Antonio; Bovenga, Fabio

    2010-03-01

    In the present work we describe a new and alternative repeat-pass interferometry algorithm designed and developed with the aim to: i) increase the robustness wrt to noise by increasing the number of differential interferograms and consequently the information redundancy; ii) guarantee high performances in the detection of non linear deformation without the need of specifying in input a particular cinematic model.The starting point is a previous paper [4] dedicated to the optimization of the InSAR coregistration by finding an ad hoc path between the images which minimizes the expected total decorrelation as in the SABS-like approaches [3]. The main difference wrt the PS-like algorithms [1],[2] is the use of couples of images which potentially can show high spatial coherence and, which are neglected by the standard PSI processing.The present work presents a detailed description of the algorithm processing steps as well as the results obtained by processing simulated InSAR data with the aim to evaluate the algorithm performances. Moreover, the algorithm has been also applied on a real test case in Poland, to study the subsidence affecting the Wieliczka Salt Mine. A cross validation wrt SPINUA PSI-like algorithm [5] has been carried out by comparing the resultant displacement fields.

  6. Coastal Sea-Level in Norway from Cryosat-2 Interferometric SAR Altimetry

    NASA Astrophysics Data System (ADS)

    Idzanovic, Martina; Ophaug, Vegard; Andersen, Ole B.

    2016-08-01

    Conventional altimeters determine the sea surface height with an accuracy of a few centimeters over the open ocean. Although satellite altimetry is a mature discipline, altimeter observations collected over coastal regions suffer from numerous effects which degrade their quality. The Norwegian coast adds further complications, due to many islands, mountains, and deep, narrow fjords. The European Space Agency (ESA) CryoSat-2 satellite carries a Synthetic aperture Interferometric Radar ALtimeter (SIRAL). Due to the SIRAL instrument, CryoSat-2 is able to observe closer to the coast than conventional altimeters. This motivates the current paper, in which we investigate the potential of CryoSat-2 data to provide improved observations in the Norwegian coastal zone. We make use of CryoSat-2 SARIn mode observations and determine sea surface heights at 23 tide gauges along the coast, and compare these with independent sea-level observations. Using standard CryoSat-2 geophysical (tide + IB) corrections gives a standard deviation of differences of ˜15 cm with respect to tide-gauge observations. Replacing standard corrections with refined corrections using tide-gauge information suggests an improvement of ˜5 cm. A special case study at the Stavanger tide-gauge shows an improvement of ˜3 cm comparing CryoSat-2 sites and conventional altimeter sites with respect to the tide-gauge. These results highlight a great development of satellite altimetry in coastal zones and raises expectations for future missions such as Sentinel-3.

  7. A fine resolution multifrequency polarimetric FM radar

    NASA Technical Reports Server (NTRS)

    Bredow, J.; Gogineni, S.; Leung, T.; Moore, R. K.

    1988-01-01

    A fine resolution polarimetric FM SAR was developed for optimization of polarimetric SARs and interpretation of SAR data via controlled experiments with surface-base sensors. The system is designed for collecting polarimetric data at 5.3 and 10 GHz over incidence angles from 0 to 60 deg. Features of the system include broad bandwidth to obtain fine range resolution, phase stabilization and linearization loop circuitry, and digital signal processing capability. The system is used in a research program to collect polarimetric backscatter data from artificial sea ice research and design trade-offs, laboratory and field evaluation, as well as results from experiments on artificial sea ice are presented.

  8. Advanced Antenna Design for NASA's EcoSAR Instrument

    NASA Technical Reports Server (NTRS)

    Du Toit, Cornelis F.; Deshpande, Manohar; Rincon, Rafael F.

    2016-01-01

    Advanced antenna arrays were designed for NASA's EcoSAR airborne radar instrument. EcoSAR is a beamforming synthetic aperture radar instrument designed to make polarimetric and "single pass" interferometric measurements of Earth surface parameters. EcoSAR's operational requirements of a 435MHz center frequency with up to 200MHz bandwidth, dual polarization, high cross-polarization isolation (> 30 dB), +/- 45deg beam scan range and antenna form-factor constraints imposed stringent requirements on the antenna design. The EcoSAR project successfully developed, characterized, and tested two array antennas in an anechoic chamber. EcoSAR's first airborne campaign conducted in the spring of 2014 generated rich data sets of scientific and engineering value, demonstrating the successful operation of the antennas.

  9. Detecting and Measuring Land Subsidence in Houston-Galveston, Texas using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System Data, 2012-2016

    NASA Astrophysics Data System (ADS)

    Reed, A.; Baker, S.

    2016-12-01

    Several cities in the Houston-Galveston (HG) region in Texas have subsided up to 13 feet over several decades due to natural and anthropogenic processes [Yu et al. 2014]. Land subsidence, a gradual sinking of the Earth's surface, is an often human-induced hazard and a major environmental problem expedited by activities such as mining, oil and gas extraction, urbanization and excessive groundwater pumping. We are able to detect and measure subsidence in HG using interferometric synthetic aperture radar (InSAR) and global positioning systems (GPS). Qu et al. [2015] used ERS, Envisat, and ALOS-1 to characterize subsidence in HG from 1995 to 2011, but a five-year gap in InSAR measurements exists due to a lack of freely available SAR data. We build upon the previous study by comparing subsidence patterns detected by Sentinel-1 data starting in July 2015. We used GMT5SAR to generate a stack of interferograms with perpendicular baselines less than 100 meters and temporal baselines less than 100 days to minimize temporal and spatial decorrelation. We applied the short baseline subset (SBAS) time series processing using GIAnT and compared our results with GPS measurements. The implications of this work will strengthen land subsidence monitoring systems in HG and broadly aid in the development of effective water resource management policies and strategies.

  10. Slope instability and post-emplacement lava flow deformation revealed using interferometric synthetic aperture radar (InSAR) at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Schaefer, L. N.; Lu, Z.; Oommen, T.

    2014-12-01

    Pacaya Volcano, Guatemala, is a dominantly basaltic complex that has been continually active since the 1960's, with over 250 lava flows, intermittent strombolian activity, and ash and fumerolic plumes. Sometime between 0.6 and 1.6 ka B.P., the SW sector of the initial cone failed in a major edifice collapse. This event left a large arcuate scarp, within which the modern cone was constructed from historical times up to the present. Two collapses on the upper flanks of the cone near the main vent in 1962 and 2010, and uneven loading of lava flows on the SW flank are a cause for concern about the stability of this young edifice. For this study, ALOS PALSAR L-band Interferometric Synthetic Aperture Radar (InSAR) data was analyzed at Pacaya from February 2007 - February 2011. Interferograms reveal several applications of InSAR for understanding and monitoring activity at Pacaya, including: (1) lava cooling-related compaction during effusive activity, (2) inflation on the northern side of the cone prior to a large eruption on May 27th, 2010, and (3) movement of the edifice to the SW during this large eruption, suggesting large-scale flank instability. With the implementation of InSAR technology at Pacaya in the future, we may be able to provide insights into the post-emplacement behavior of lava flows and shed light on edifice stability, leading to improved volcano hazard assessments.

  11. SAR Remote Sensing for Urban Building Earthquake-Damage Detection and Assessment: A Review

    NASA Astrophysics Data System (ADS)

    Gong, Lixia; Wu, Fan; Zhang, Jingfa; Li, Rong

    2014-11-01

    Urban building damage detection and assessment after earthquake is crucial for effective post disaster relief actions. Synthetic Aperture Radar (SAR) is a key sensor to provide vital information due to its ability to map the affected areas independently of weather conditions, day and night. Under the condition of medium resolution SAR image, change detection is usually applied to identify damaged building by comparing post-seismic to pre-seismic images based on the intensity correlation and interferometric coherence. However, the new high resolution on-orbit SAR sensors (e.g. Radarsat-2, TerraSAR-X/ TanDEM-X, COSMO-SkyMed etc.) have renewed interest in extraction information for monitoring the damage. Intensity, phase and polarimetric information are usually adopted for the damage detection and assessment. The present paper reviews the theoretical background and applications of SAR remote sensing techniques to the study of urban building damage detection and assessment by earthquake.

  12. Geocoding of AIRSAR/TOPSAR SAR Data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to

  13. Geocoding of AIRSAR/TOPSAR SAR Data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to

  14. UAVSAR: InSAR and PolSAR Test Bed for the Proposed NI-SAR Mission

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Hensley, S.; Lou, Y.

    2014-12-01

    UAVSAR, which first became operational in 2009, has served as an operational testbed for the NI-SAR L-band radar concept and a unique instrument in its own right. UAVSAR supports a broad array of basic and applied geoscience, covering on smaller scale all the disciplines NI-SAR would be able to address on a global scale. Although designed specifically to provide high accuracy repeated flight tracks and precise imaging geometry for InSAR-based solid earth studies, its fully polarimetric operation, low noise, and consistent calibration accuracy has made it a premier instrument for PolSAR-based studies also. Since 2009 it has successfully imaged more than 16 million km2 and >4300 quad-polarimetric data products are now publicly available online. Upgrades made in the last year to automate the repeat track processing serve as a model for generating large volumes of InSAR products: Since January 2014 more than 700 interferometric products have been released, exceeding the output of all previous years combined. Standardly available products now include browse images of all InSAR acquisitions and coregistered single-look complex image stacks suitable for standard time series analysis. Here we present an overview of the wide range of studies utilizing UAVSAR data including those based on polarimetry and pair-wise and times series interferometry, highlighting both the unique capabilities of UAVSAR and the ways in which NI-SAR would be able to dramatically extend the capabilities. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  15. Effect of Medium Symmetries in Limiting the Number of Parameters Estimated with Polarimetric Interferometry

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta

    2000-01-01

    The addition of interferometric backscattering pairs to the conventional polarimetric SAR data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of vegetation parameters. Without regard to the sensitivity of these data to vegetation scattering parameters, this paper poses the question: Will increasing the data channels as such result in a one-to-one increase in the number of parameters that can be estimated, or do vegetation and data properties inherently limit that number otherwise? In this paper, the complete polarimetric interferometric covariance matrix is considered and various symmetry properties of the scattering medium are used to study whether any of the correlation pairs can be eliminated. The number of independent pairs has direct consequences in their utility in parameter estimation schemes, since the maximum number of parameters that can be estimated cannot exceed the number of unique measurements. The independent components of the polarimetric interferometric SAR (POL/INSAR) data are derived for media with reflection, rotation, and azimuth symmetries, which are often encountered in vegetated surfaces. Similar derivations have been carried out before for simple polarimetry, i.e., zero baseline. This paper extends those to the interferometric case of general nonzero baselines. It is shown that depending on the type of symmetries present, the number of independent available measurements that can be used to estimate medium parameters will vary. In particular, whereas in the general case there are 27 mathematically independent measurements possible from a polarimetric interferometer, this number can be reduced to 15, 9, and 6 if the medium has reflection, rotation, or azimuthal symmetries, respectively. The results can be used in several ways in the interpretation of SAR data and the development of parameter estimation schemes, which will be discussed at the

  16. Advanced interpretation of land subsidence by validating multi-interferometric SAR data: the case study of the Anthemountas basin (northern Greece)

    NASA Astrophysics Data System (ADS)

    Raspini, F.; Loupasakis, C.; Rozos, D.; Moretti, S.

    2013-04-01

    The potential of repeat-pass space borne SAR (Synthetic Aperture Radar) interferometry has been exploited to investigate spatial patterns of land subsidence in the Anthemountas basin, in the northern part of Greece. The PSI (Persistent Scatterer Interferometry) approach, based on the processing of long series of SAR acquisitions, has been applied to forty-two images acquired in 1995-2001 by ERS1/2 satellites. Interferometric results have been analyzed at a basin scale as support for land motion mapping and at local scale for the characterization of ground motion events affecting the village of Perea in the Thermaikos municipality and the "Macedonia" international airport. PSI results revealed a moderate subsidence phenomenon along the wider coastal zone of Anthemountas basin corresponding to intense groundwater extraction. Highest values, exceeding 20 mm yr-1, were measured in the airport area where the thickest sequence of compressible Quaternary sediments occurs. Intense subsidence has been detected also in the Perea village (maximum deformation up to 10-15 mm yr-1), where a series of fractures, causing damages to both buildings and infrastructure, occurred in 2005-2006. Furthermore, a linear pattern of deformation, elongated parallel to the major normal Thermi fault, has been observed, indicating movements with a probable tectonic component.

  17. Advanced interpretation of land subsidence by validating multi-interferometric SAR data: the case study of the Anthemountas basin (Northern Greece)

    NASA Astrophysics Data System (ADS)

    Raspini, F.; Loupasakis, C.; Rozos, D.; Moretti, S.

    2013-10-01

    The potential of repeat-pass space borne SAR (Synthetic Aperture Radar) interferometry has been exploited to investigate spatial patterns of land subsidence in the Anthemountas basin, in the northern part of Greece. The PSI (Persistent Scatterer Interferometry) approach, based on the processing of long series of SAR acquisitions, has been applied to forty-two images acquired in 1995-2001 by ERS1/2 satellites. Interferometric results have been analysed at a basin scale as support for land motion mapping and at a local scale for the characterisation of ground motion events affecting the village of Perea in the Thermaikos municipality and the "Macedonia" international airport. PSI results revealed a moderate subsidence phenomenon along the wider coastal zone of Anthemountas basin corresponding to intense groundwater extraction. Highest values, exceeding -20 mm yr-1, were measured in the airport area where the thickest sequence of compressible Quaternary sediments occurs. Intense subsidence has been detected also in the Perea village (maximum deformation of -10 to -15 mm yr-1), where a series of fractures, causing damages to both buildings and infrastructure, occurred in 2005-2006.

  18. Registration Of SAR Images With Multisensor Images

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Burnette, Charles F.; Van Zyl, Jakob J.

    1993-01-01

    Semiautomated technique intended primarily to facilitate registration of polarimetric synthetic-aperture-radar (SAR) images with other images of same or partly overlapping terrain while preserving polarization information conveyed by SAR data. Technique generally applicable in sense one or both of images to be registered with each other generated by polarimetric or nonpolarimetric SAR, infrared radiometry, conventional photography, or any other applicable sensing method.

  19. A Methodology to Validate the InSAR Derived Displacement Field of the September 7th, 1999 Athens Earthquake Using Terrestrial Surveying. Improvement of the Assessed Deformation Field by Interferometric Stacking

    PubMed Central

    Kotsis, Ioannis; Kontoes, Charalabos; Paradissis, Dimitrios; Karamitsos, Spyros; Elias, Panagiotis; Papoutsis, Ioannis

    2008-01-01

    The primary objective of this paper is the evaluation of the InSAR derived displacement field caused by the 07/09/1999 Athens earthquake, using as reference an external data source provided by terrestrial surveying along the Mornos river open aqueduct. To accomplish this, a processing chain to render comparable the leveling measurements and the interferometric derived measurements has been developed. The distinct steps proposed include a solution for reducing the orbital and atmospheric interferometric fringes and an innovative method to compute the actual InSAR estimated vertical ground subsidence, for direct comparison with the leveling data. Results indicate that the modeled deformation derived from a series of stacked interferograms, falls entirely within the confidence interval assessed for the terrestrial surveying data. PMID:27879926

  20. MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?

    NASA Astrophysics Data System (ADS)

    Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence

    2017-09-01

    Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.

  1. MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?

    PubMed

    Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence

    2017-09-01

    Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.

  2. Advanced Polarimetric Concepts - Part 1 (Polarimetric Target Description, Speckle filtering and Decomposition Theorems)

    DTIC Science & Technology

    2007-02-01

    with p=3 for the reciprocal case (SHV=SVH) and p=4 for the non-reciprocal case. The distribution functions for dual polarization ( HH , VH), (HV...and scene description difficult. The speckle reduction problem is more complicated for polarimetric SAR than a single polarization SAR, because of the...changes in wave polarization basis. Among the existing Polarimetric Target Decomposition theorems - coherent (Krogager, Cameron ...), non-coherent (Huynen

  3. Integrating polarimetric synthetic aperture radar and imaging spectrometry for wildland fuel mapping in southern California

    Treesearch

    P.E. Dennison; D.A. Roberts; J. Regelbrugge; S.L. Ustin

    2000-01-01

    Polarimetric synthetic aperture radar (SAR) and imaging spectrometry exemplify advanced technologies for mapping wildland fuels in chaparral ecosystems. In this study, we explore the potential of integrating polarimetric SAR and imaging spectrometry for mapping wildland fuels. P-band SAR and ratios containing P-band polarizations are sensitive to variations in stand...

  4. Robust snapshot interferometric spectropolarimetry.

    PubMed

    Kim, Daesuk; Seo, Yoonho; Yoon, Yonghee; Dembele, Vamara; Yoon, Jae Woong; Lee, Kyu Jin; Magnusson, Robert

    2016-05-15

    This Letter describes a Stokes vector measurement method based on a snapshot interferometric common-path spectropolarimeter. The proposed scheme, which employs an interferometric polarization-modulation module, can extract the spectral polarimetric parameters Ψ(k) and Δ(k) of a transmissive anisotropic object by which an accurate Stokes vector can be calculated in the spectral domain. It is inherently strongly robust to the object 3D pose variation, since it is designed distinctly so that the measured object can be placed outside of the interferometric module. Experiments are conducted to verify the feasibility of the proposed system. The proposed snapshot scheme enables us to extract the spectral Stokes vector of a transmissive anisotropic object within tens of msec with high accuracy.

  5. Overview and Applications of UAVSAR's Multi-Squint Polarimetric Imaging Mode

    NASA Technical Reports Server (NTRS)

    Scott Hensley; Chen, Curtis; Michel, Thierry; Jones, Cathleen; Chapman, Bruce; Muellerschoen, Ron

    2011-01-01

    NASA's Jet Propulsion Laboratory has developed a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data for application to monitoring surface deformation and vegetation structure measurements. The system employs a precision autopilot developed by NASA Dryden that allows the plane to fly precise trajectories usually within a 5 m tube. Also required for robust repeat pass applications is the ability to point the antenna in the same direction on repeat passes to a fraction of an azimuth beamwidth (8? for UAVSAR). This precise pointing is achieved using an electronically scanned antenna whose pointing is based on inertial navigation unit (INU) attitude angle data. The radar design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and has a greater than 20 km range swath when flying at its nominal altitude of 12500 m. The ability to electronically steer the beam on a pulse-to-pulse basis has allowed a new mode of SAR data acquisition whereby the radar beam is steered to different squint angles on successive pulses thereby simultaneously generating images at multiple squint angles. This mode offers the possibility of generating vector deformation measurements with a single pair of repeat passes and to obtain greater kz diversity for vegetation studies with a reduced number of passes. This paper will present an overview of the mode, discuss its potential for deformation and vegetation, and show some examples using UAVSAR data.

  6. Overview and Applications of UAVSAR's Multi-Squint Polarimetric Imaging Mode

    NASA Technical Reports Server (NTRS)

    Scott Hensley; Chen, Curtis; Michel, Thierry; Jones, Cathleen; Chapman, Bruce; Muellerschoen, Ron

    2011-01-01

    NASA's Jet Propulsion Laboratory has developed a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data for application to monitoring surface deformation and vegetation structure measurements. The system employs a precision autopilot developed by NASA Dryden that allows the plane to fly precise trajectories usually within a 5 m tube. Also required for robust repeat pass applications is the ability to point the antenna in the same direction on repeat passes to a fraction of an azimuth beamwidth (8? for UAVSAR). This precise pointing is achieved using an electronically scanned antenna whose pointing is based on inertial navigation unit (INU) attitude angle data. The radar design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and has a greater than 20 km range swath when flying at its nominal altitude of 12500 m. The ability to electronically steer the beam on a pulse-to-pulse basis has allowed a new mode of SAR data acquisition whereby the radar beam is steered to different squint angles on successive pulses thereby simultaneously generating images at multiple squint angles. This mode offers the possibility of generating vector deformation measurements with a single pair of repeat passes and to obtain greater kz diversity for vegetation studies with a reduced number of passes. This paper will present an overview of the mode, discuss its potential for deformation and vegetation, and show some examples using UAVSAR data.

  7. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System)

    PubMed Central

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed. PMID:22389590

  8. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System).

    PubMed

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; Dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed.

  9. Deformation Time-Series of the Lost-Hills Oil Field using a Multi-Baseline Interferometric SAR Inversion Algorithm with Finite Difference Smoothing Constraints

    NASA Astrophysics Data System (ADS)

    Werner, C. L.; Wegmüller, U.; Strozzi, T.

    2012-12-01

    The Lost-Hills oil field located in Kern County,California ranks sixth in total remaining reserves in California. Hundreds of densely packed wells characterize the field with one well every 5000 to 20000 square meters. Subsidence due to oil extraction can be grater than 10 cm/year and is highly variable both in space and time. The RADARSAT-1 SAR satellite collected data over this area with a 24-day repeat during a 2 year period spanning 2002-2004. Relatively high interferometric correlation makes this an excellent region for development and test of deformation time-series inversion algorithms. Errors in deformation time series derived from a stack of differential interferograms are primarily due to errors in the digital terrain model, interferometric baselines, variability in tropospheric delay, thermal noise and phase unwrapping errors. Particularly challenging is separation of non-linear deformation from variations in troposphere delay and phase unwrapping errors. In our algorithm a subset of interferometric pairs is selected from a set of N radar acquisitions based on criteria of connectivity, time interval, and perpendicular baseline. When possible, the subset consists of temporally connected interferograms, otherwise the different groups of interferograms are selected to overlap in time. The maximum time interval is constrained to be less than a threshold value to minimize phase gradients due to deformation as well as minimize temporal decorrelation. Large baselines are also avoided to minimize the consequence of DEM errors on the interferometric phase. Based on an extension of the SVD based inversion described by Lee et al. ( USGS Professional Paper 1769), Schmidt and Burgmann (JGR, 2003), and the earlier work of Berardino (TGRS, 2002), our algorithm combines estimation of the DEM height error with a set of finite difference smoothing constraints. A set of linear equations are formulated for each spatial point that are functions of the deformation velocities

  10. Pol-In SAR Optimal Coherence Estimation and its application in Imaging Forest Canopy

    NASA Astrophysics Data System (ADS)

    Lin, Q.; Chu, T.; Zebker, H. A.

    2012-12-01

    Polarimetric SAR interferometry processing, combining poloarimetric and interferometric data, is a good candidate for global biomass estimation. One advantage of PolInSAR is the possibility to obtain interferograms from all possible linear combinations of polarization states, thus, it improves the coherence level and as a consequence, increases the accuarcy of the reconstructed elevation for scatters. PolIn SAR gives hope to find the scatter center for forest canopy and can be used to global biomass measurement. As a key procedure of PolIn SAR, coherence optimization is to obtain the optimal scatter mechanism between two SAR data acquisition which leads to the highest interferometric coherence estimation. Various algorithms has been proposed to solve this problem, including two-mechanism coherence (2MC) optimization, single-mechanism coherence (1MC) optimization, numeric range etc. The optimal coherence, as an essential parameter in Random Volume over Ground (RVOG) model, can be used to retrieve the forest tree height and thus, contributes to the global biomass estimation. We will examine the data acquired by ALOSPOL SAR in Hawaii area to image the forest canopy area. Various optimal coherence methods are used and the results are compared.

  11. Canadian SAR remote sensing for the Terrestrial Wetland Global Change Research Network (TWGCRN)

    USGS Publications Warehouse

    Kaya, Shannon; Brisco, Brian; Cull, Andrew; Gallant, Alisa L.; Sadinski, Walter J.; Thompson, Dean

    2010-01-01

    The Canada Centre for Remote Sensing (CCRS) has more than 30 years of experience investigating the use of SAR remote sensing for many applications related to terrestrial water resources. Recently, CCRS scientists began contributing to the Terrestrial Wetland Global Change Research Network (TWGCRN), a bi-national research network dedicated to assessing impacts of global change on interconnected wetland-upland landscapes across a vital portion of North America. CCRS scientists are applying SAR remote sensing to characterize wetland components of these landscapes in three ways. First, they are using a comprehensive set of RADARSAT-2 SAR data collected during April to September 2009 to extract multi-temporal surface water information for key TWGCRN study landscapes in North America. Second, they are analyzing polarimetric RADARSAT-2 data to determine areas where double-bounce represents the primary scattering mechanism and is indicative of flooded vegetation in these landscapes. Third, they are testing advanced interferometric SAR techniques to estimate water levels with RADARSAT-2 Fine Quad polarimetric image pairs. The combined information from these three SAR analysis activities will provide TWGCRN scientists with an integrated view and monitoring capability for these dynamic wetland-upland landscapes. These data are being used in conjunction with other remote sensing and field data to study interactions between landscape and animal (birds and amphibians) responses to climate/global change.

  12. Pol(In)SAR Soil Moisture Study by using Pi-SAR 2L and GB-SAR Data in Preparation of the upcoming ALOS-2/PALSAR-2 Mission

    NASA Astrophysics Data System (ADS)

    Koyama, C.; Sato, M.

    2013-12-01

    Recently Earth Observation by means of active microwave is advancing rapidly. The evolution started from first-generation classical single-channel systems like JERS (JAXA), ERS (ESA) or Radarsat-1 (CSA). With the launch of ALOS-1 (JAXA), the first fully polarimetric SAR measurements became available followed by Radarsat-2 (CSA) and TerraSAR-X (DLR), making polarimetric L-, C-, and X-band data available. In Japanese fiscal year 2013, the third generation of SAR satellites will begin with the launch of ALOS-2. The JAXA cutting-edge follow-on mission to the highly acclaimed ALOS-1 will carry the state-of-the-art PALSAR-2 sensor aboard. Due to its much better orbital revisit cycle of only 14 days and its very high spatial resolution (3 m) the system will be highly suitable for interferometric analysis of polarimetric data obtained from repeat-pass acquisitions. The combination of polarimetry and interferometry is probably the most promising approach for a better estimation of geophysical parameters from SAR data acquired over natural terrain and thus will greatly improve the capabilities to estimate soil moisture under all kinds of vegetation with high accuracy and with high temporal and spatial resolutions. In advent of the 3rd generation of Japanese SAR EO satellites, our group conducts a variety of fundamental research on low-frequency SAR surface scattering/interactions. Here, we present first results from soil moisture experiments based on fully polarimetric GB-SAR (Tohoku University) and Pi-SAR 2L (JAXA) measurements. These experiments comprise investigations of the effective soil moisture measuring depth of L-band SAR. The experimental set-up consists of an array of receiving di-pole antennas installed in different depths to quantify the penetration (and reflection) capabilities of the incoming EM waves. We use a fully polarimetric GB-SAR system based on a high-end VNA capable of coherent measurement of the [S2] scattering matrix. It uses 2 large horn antennas

  13. Geocoding of AIRSAR/TOPSAR SAR Data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Lou, Yungling; vanZyl, Jakob

    1996-01-01

    It has been demonstrated that radar interferometry is a promising method for determination of digital elevation information and terrain slope from synthetic aperture radar (SAR) data. A multipolarimetric radar AIRSAR operates in the P, L, and C bands on board the NASA DC-8 aircraft. The TOPSAR, a special mode of the AIRSAR system, is able to collect single pass interferometric C and/or L band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this configuration is to acquire digital topographic information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. In this paper, a procedure to geocode the new AIRSAR/TOPSAR data is presented and an earlier AIRSAR/TOPSAR image is geocoded and evaluated in terms of geometric accuracy.

  14. Geocoding of AIRSAR/TOPSAR SAR Data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Lou, Yungling; vanZyl, Jakob

    1996-01-01

    It has been demonstrated that radar interferometry is a promising method for determination of digital elevation information and terrain slope from synthetic aperture radar (SAR) data. A multipolarimetric radar AIRSAR operates in the P, L, and C bands on board the NASA DC-8 aircraft. The TOPSAR, a special mode of the AIRSAR system, is able to collect single pass interferometric C and/or L band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this configuration is to acquire digital topographic information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. In this paper, a procedure to geocode the new AIRSAR/TOPSAR data is presented and an earlier AIRSAR/TOPSAR image is geocoded and evaluated in terms of geometric accuracy.

  15. Feature utility in polarimetric radar image classification

    NASA Technical Reports Server (NTRS)

    Cumming, Ian G.; Van Zyl, Jakob J.

    1989-01-01

    The information content in polarimetric SAR images is examined, and the polarimetric image variables containing the information that is important to the classification of terrain features in the images are determined. It is concluded that accurate classification can be done when just over half of the image variables are retained. A reduction in image data dimensionality gives storage savings, and can lead to the improvement of classifier performance. In addition, it is shown that a simplified radar system with only phase-calibrated CO-POL or SINGLE TX channels can give classification performance which approaches that of a fully polarimetric radar.

  16. Advanced Polarimetric Concepts - Part 2 (Polarimetric Target Classification)

    DTIC Science & Technology

    2007-02-01

    polarization and single polarization /single polarization modes, and the C- band RADARSAT II [Meisl 2000] and L- band ALOS ...likelihood classifiers to a. Each individual polarization , | HH |2, |VV|2 and |HV|2, for all three bands . b. Combinations of dual polarizations without the...advanced satellite radar systems such as PALSAR, an L- band SAR sensor on board the NASDA ALOS satellite and Radarsat II, a C- band polarimetric

  17. Mapping of intrastratal halite karst with the correlation of interferometric synthetic aperture radar (InSAR) data to models of geological displacement along faults

    NASA Astrophysics Data System (ADS)

    Zechner, Eric; Mitosch, Bernhard; Dresmann, Horst; Huggenberger, Peter

    2017-04-01

    Previous modeling studies of evaporite dissolution (Zidane et al. 2014) showed that the presence of conductive subvertical fault zones within carbonates and evaporites plays an important role as flow paths for variable-density flow of groundwater and transport of dissolved salt. In addition, fault zone heterogeneity presents an important factor affecting halite dissolution. As a consequence, the intrastratal halite karst preferentially develops closer to conductive fault zones. Therefore, highest surface subsidence rates due to the intrastratal halite karst are expected above conductive fault zones. However, precise delineation of subsurface fault zones, and, even more so, structural and hydraulic characterization of the fault zones is often not possible due to the lack of sensitive data. The presented study directly relates remote-sensing imagery of surface deformation to modeling studies of faulted geological horizons. The working hypothesis assumes that the larger the displacement of geological horizons along normal faults, the higher the fracturing and brecciation of rocks within the fault zones, which then increases the potential for a higher permeability along fault zones. A series of interferometric synthetic aperture radar images (InSAR) from 2003 to 2010 cover an area of the Tabular Jura of north-western Switzerland, which is affected by intrastratal halite karst. Averaged surface deformation rates calculated from both Persistent Scatterer and Small Baseline techniques show more than 10mm/y subsidence in some parts of the study area. Horst and Graben structures of the same area are mapped with 3D models of faulted geological horizons, and are mostly based on borehole information. Resulting displacements along normal faults and strike-slip faults vary between a few meters to over 500m, and are calculated onto a first layer of 2D traces representing the fault zone. The possible correlation between the displacements along faults and a second layer of averaged

  18. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    NASA Astrophysics Data System (ADS)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  19. Performance of PolSAR backscatter and PolInSAR coherence for scattering characterization of forest vegetation using single pass X-band spaceborne synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Joshi, Sushil Kumar; Kumar, Shashi

    2017-04-01

    Airborne synthetic aperture radar (SAR) data have been successfully used for forest height inversion; however, there is limited applicability in spaceborne scenarios due to high temporal decorrelation. This study investigates the potential of a high-resolution fully polarimetric interferometric pair of TerraSAR-X/TanDEM-X SAR data with no temporal decorrelation to analyze the backscatter and coherence response and to implement polarimetric SAR interferometry-based height inversion algorithms. The data were acquired over Barkot forest region of Uttarakhand state in India. Yamaguchi decomposition was implemented onto the dataset to express total backscatter as a sum of different scattering components from a single SAR resolution cell. Coherency matrix was used to compute complex coherence for different polarization channels. Forest areas suffered from low coherence due to volume decorrelation, whereas a dry river bed had shown high coherence. The coherence amplitude inversion approach overestimated the forest height and also resulted in false heights for this dry river bed. These limitations were overcome by implementing three-stage inversion modeling, which assumes polarization-independent volume coherence. The results were validated using ground truth data available for 49 plots, and the latter was found to be more accurate with an overall accuracy of 90.15% and root-mean-square error of 2.42 m.

  20. First Image Products from EcoSAR - Osa Peninsula, Costa Rica

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon

    2016-01-01

    Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.

  1. Land deformation in Saint Louis, Missouri measured by ALOS InSAR and PolINSAR validated with DGPS base stations

    NASA Astrophysics Data System (ADS)

    Ghulam, A.

    2011-12-01

    DInSAR is a solid technique to estimate land subsidence and rebound using phase information from multiple SAR acquisitions over the same location from the same orbits, but from a slightly different observing geometry. However, temporal decorrelation and atmospheric effects are often a challenge to the accuracy of the DInSAR measurements. Such uncertainties may be overcome using time series interferogram stacking, e.g., permanent scatterer interferometry (Ferretti, et al., 2000, 2001). However, it requires large number of image collections. In this paper, interferometric synthetic aperture radar (InSAR) data pairs from the Phased Array type L-band Synthetic Aperture Radar (PALSAR) sensor onboard Advanced Land Observing Satellite (ALOS) are used to measure seasonal and annual land surface deformation over Saint Louis, Missouri. The datasets cover four years of time period spanning from 2006 to 2010. With the limited data coverage that is not suitable for permanent scatterer interferometry, the paper demonstrates the efficacy of dual pair interferometry from both fine-beam single polarization mode and dual-pol polarimetric images and short baseline interferometry (SBAS) approach (Berardino, et al., 2002) with an estimation accuracy comparable to differential global position systems (DGPS). We also present the impact of using assumed phase-stable ground control points versus GPS base stations for orbital refinement and phase unwrapping on overall measurement accuracy by comparing the deformation results from DInSAR and Polarimetric InSAR with DGPS base stations and ground truthing.

  2. Three-dimensional surface reconstruction from multistatic SAR images.

    PubMed

    Rigling, Brian D; Moses, Randolph L

    2005-08-01

    This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets.

  3. Processing pharus data with the generic SAR processor

    SciTech Connect

    Otten, M.P.G.

    1996-11-01

    The Generic SAR Processor (GSP) is a SAR processing environment created to process airborne and spaceborne SAR data with a maximum amount of flexibility, while at the same time providing a user friendly and powerful environment for handling and analyzing SAR, including polarimetric calibration. PHARUS is an airborne polarimetric C-band SAR, utilizing an active (solid state) phased array. The absence of mechanical antenna stabilization, the use of electronic beam steering, in combination with high PRF, polarimetric operation, under motion condition which can be severe, requires a very large flexibility of the SAR processor. The GSP is designed to handle this type of SAR data with a very flexible motion compensation-, azimuth compression-, and radiometric correction approach. First experiences with the processing of PHARUS data show that this is a valid approach to obtain high quality polarimetric imagery with a phased array SAR. 4 refs., 5 figs.

  4. UAV-Based L-Band SAR with Precision Flight Path Control

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul

    2004-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  5. UAV-based L-band SAR with precision flight path control

    NASA Astrophysics Data System (ADS)

    Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Gregory A.; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul A.

    2005-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes1. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 m tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and 16 km range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  6. UAV-Based L-Band SAR with Precision Flight Path Control

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul

    2004-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  7. Performance of PolSAR backscatter and PolInSAR coherence for scattering characterization of forest vegetation using TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Joshi, Sushil K.; Kumar, Shashi; Agrawal, Shefali

    2016-05-01

    Airborne SAR data has been successfully used for forest height inversion, however there is limited applicability in space borne scenario due to high temporal decorrelation. This study investigates the potential of high resolution fully polarimetric pair of TerraSAR-X/TanDEM-X SAR data acquired over Barkot forest region of Uttarakhand state in India to analyze the backscatter and coherence and to test the height inversion algorithms. Yamaguchi decomposition was implemented onto the dataset to express total backscatter as a sum of different scattering components from a single SAR resolution cell. Coherency matrix was used to compute complex coherence for different polarization channels. Forest areas suffered from low coherence due to volume decorrelation whereas dry river bed had shown high coherence. Appropriate perpendicular baseline and hence the interferometric vertical wavenumber was selected in forest height estimation. Coherence amplitude inversion (CAI) approach overestimated the forest height and also resulted in false heights for dry river bed. This limitation was overcome by implementing three stage inversion modeling (TSI) which assumes polarization independent volume coherence and the heights in dry river bed were completely eliminated. The results were validated using ground truth data available for 49 plots, and TSI was found to be more accurate with an average accuracy of 90.15% and RMSE of 2.42 m.

  8. The Performance Analysis Based on SAR Sample Covariance Matrix

    PubMed Central

    Erten, Esra

    2012-01-01

    Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given. PMID:22736976

  9. The performance analysis based on SAR sample covariance matrix.

    PubMed

    Erten, Esra

    2012-01-01

    Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given.

  10. Large Scale Assessment of Radio Frequency Interference Signatures in L-band SAR Data

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Nicoll, J.

    2011-12-01

    Imagery of L-band Synthetic Aperture Radar (SAR) systems such as the PALSAR sensor on board the Advanced Land Observing Satellite (ALOS) has proven to be a valuable tool for observing environmental changes around the globe. Besides offering 24/7 operability, the L-band frequency provides improved interferometric coherence, and L-band polarimetric data has shown great potential for vegetation monitoring, sea ice classification, and the observation of glaciers and ice sheets. To maximize the benefit of missions such as ALOS PALSAR for environmental monitoring, data consistency and calibration are vital. Unfortunately, radio frequency interference (RFI) signatures from ground-based radar systems regularly impair L-band SAR data quality and consistency. With this study we present a large-scale analysis of typical RFI signatures that are regularly observed in L-band SAR data over the Americas. Through a study of the vast archive of L-band SAR data in the US Government Research Consortium (USGRC) data pool at the Alaska Satellite Facility (ASF) we were able to address the following research goals: 1. Assessment of RFI Signatures in L-band SAR data and their Effects on SAR Data Quality: An analysis of time-frequency properties of RFI signatures in L-band SAR data of the USGRC data pool is presented. It is shown that RFI-filtering algorithms implemented in the operational ALOS PALSAR processor are not sufficient to remove all RFI-related artifacts. In examples, the deleterious effects of RFI on SAR image quality, polarimetric signature, SAR phase, and interferometric coherence are presented. 2. Large-Scale Assessment of Severity, Spatial Distribution, and Temporal Variation of RFI Signatures in L-band SAR data: L-band SAR data in the USGRC data pool were screened for RFI using a custom algorithm. Per SAR frame, the algorithm creates geocoded frame bounding boxes that are color-coded according to RFI intensity and converted to KML files for analysis in Google Earth. From

  11. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil

    NASA Astrophysics Data System (ADS)

    Liesenberg, Veraldo; Gloaguen, Richard

    2013-04-01

    Single, interferometric dual, and quad-polarization mode data were evaluated for the characterization and classification of seven land use classes in an area with shifting cultivation practices located in the Eastern Amazon (Brazil). The Advanced Land-Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired during a six month interval. A clear-sky Landsat-5/TM image acquired at the same period was used as additional ground reference and as ancillary input data in the classification scheme. We evaluated backscattering intensity, polarimetric features, interferometric coherence and texture parameters for classification purposes using support vector machines (SVM) and feature selection. Results showed that the forest classes were characterized by low temporal backscattering intensity variability, low coherence and high entropy. Quad polarization mode performed better than dual and single polarizations but overall accuracies remain low and were affected by precipitation events on the date and prior SAR date acquisition. Misclassifications were reduced by integrating Landsat data and an overall accuracy of 85% was attained. The integration of Landsat to both quad and dual polarization modes showed similarity at the 5% significance level. SVM was not affected by SAR dimensionality and feature selection technique reveals that co-polarized channels as well as SAR derived parameters such as Alpha-Entropy decomposition were important ranked features after Landsat' near-infrared and green bands. We show that in absence of Landsat data, polarimetric features extracted from quad-polarization L-band increase classification accuracies when compared to single and dual polarization alone. We argue that the joint analysis of SAR and their derived parameters with optical data performs even better and thus encourage the further development of joint techniques under the Reducing Emissions from Deforestation and Degradation (REDD) mechanism.

  12. Estimation of supraglacial debris thickness using a novel target decomposition on L-band polarimetric SAR images in the Tianshan Mountains

    NASA Astrophysics Data System (ADS)

    Huang, L.; Li, Zh.; Tian, B. S.; Han, H. D.; Liu, Y. Q.; Zhou, J. M.; Chen, Q.

    2017-04-01

    Debris is widely distributed in the ablation zones of mountain glaciers in the Tianshan Mountains. Supraglacial debris can accelerate or hamper glacier ablation, depending on its thickness. Thus, it plays an important role in the mass balance of debris-covered glaciers. This paper proposes a novel method to estimate supraglacial debris thickness by using L-band polarimetric synthetic aperture radar. A new model-based target decomposition is used to extract the surface scattering, double bounce, and volume scattering components. The surface scatter model uses the extended Bragg scatter, which considers the depolarization effect for rough surfaces. The volume scatter model uses elliptical scatterers, which approximate the shape of the solids in the debris. The volume scattering power is related to the dielectric properties of the debris, the radar wavelength, the incidence angle, and the elliptical scatter shape. Once the target decomposition is performed, the debris thickness can be inverted from the volume scattering power and other known parameters. Through comparison with a large number of field measurements, the inversion is shown to be reasonable, and the accuracy is validated to be ±0.12 m. Based on the inversion map in the study area, the debris thicknesses of the Koxkar glacier and its neighboring glaciers are presented and analyzed.

  13. A Study on PolInSAR Coherence Based Regression Analysis of Forest Biomass (BARKOT Reserve Forest India), Using RADARSAT-2 Datasets

    NASA Astrophysics Data System (ADS)

    Singh, J.; Kumar, S.; Kushwaha, S. P. S.

    2015-04-01

    Forests cover 30% of the world's land surface, and are home to around 90% of the world's flora and fauna. They serve as one of the world's largest carbon sinks, absorbing 2.4 million tons of CO2 each year and storing billions more in form of biomass. Around 6 million hectares of forest is lost or changed each year and as much as a fifth of global emissions are estimated to come from deforestation. Hence accurate estimation of forest biophysical variables is necessary as it is a key parameter in determination of forest inventories, vegetation modeling and global carbon cycle. SAR Remote sensing technique is capable of providing accurate and reliable information about forest parameters. The present work aims to explore the potential of C-band Radarsat-2 Polarimetric Interferometric Synthetic Aperture Radar (PolinSAR) technique for developing a relationship between complex coherence and forest aboveground biomass (t/ha). In order to attain our objective Radarsat-2 satellite interferometric pair of 4th March 2013(master image) and 28th March 2013(slave image) were acquired for Barkot Reserve Forest, Dehradun, India. Field inventory was done for 30 plots (31.62m x 31.62m) and tree height and stem diameter were procured for each plot which were later utilized in calculation of aboveground biomass(AGB).Work emphasizes on the application of PolinSAR coherence instead of using SAR backscatter which saturates after a certain value of biomass content. Complex coherence values for different polarization channels were computed with the help of polarimetric interferometric coherence matrix. Retrieved complex coherences were investigated individually and then regression analysis was carried with the field estimated aboveground biomass. R2 value of HV+VH complex coherence component was found to be relatively higher than other polarization channel components

  14. Retrieval of Soil Moisture Using Extended Polarimetric Surface Scattering Models

    NASA Astrophysics Data System (ADS)

    Ponnurangam, G. G.; Rao, Y. S.

    2013-08-01

    In this paper, Bragg surface scattering model based three polarimetric surface scattering models have been investigated for soil moisture estimation and validation using Polarimetric SAR (PolSAR) data. The models are (a) X-Bragg model assumes uniform distribution for the width of orientation angle distribution. (b) Modified X- Bragg model assumes Gaussian distribution with 1.5 power correlation function. (c) Lee et al. proposed a new surface scattering model with a new distribution function. Moreover, some polarimetric parameters such as linear copolarization coherence (y), cross polarization power (|Shv|2) and orientation angle parameters in the coherency matrix elements (T12, T22 and T33) etc., have been analysed for various width of orientation angle distribution. Both 'H-α method' and 'Copol-Crosspol ratios method' are used for soil moisture inversion and the estimated mv (%) has been compared with semi-empirical polarimetric surface scattering models such as Oh et al. model and Dubois et al. model.

  15. Sea Oil Slick Observation by Means of Fully-Polarimetric ALOS PALSAR Data

    NASA Astrophysics Data System (ADS)

    Gambardella, A.; Migliaccio, M.; Nunziata, F.; Shimada, M.; Isoguchi, O.

    2009-04-01

    A study on sea oil slick observation by means of L- band polarimetric synthetic aperture radar (SAR) data is accomplished. It is based on the different sea surface scattering mechanism expected with and without surface slicks. Polarimetric measurements are processed by means of a simple and very effective filtering technique which is electromagnetically based on the Mueller scattering matrix. Moreover, some polarimetric features, evaluated on both the slick-free and slick-covered sea surface, are analyzed for confirming the filter output. Experiments are accomplished on polarimetric SAR data acquired by the PALSAR sensor, mounted on board of the ALOS satellite, and are relevant to an oil slick, due to a tank accident, and a look-alike. Results demonstrate, for the first time, that L-band polarimetric SAR measurements are useful for oil slick observation purposes and witness the capability of ALOS PALSAR data for such application.

  16. Land Cover Mapping Using SENTINEL-1 SAR Data

    NASA Astrophysics Data System (ADS)

    Abdikan, S.; Sanli, F. B.; Ustuner, M.; Calò, F.

    2016-06-01

    In this paper, the potential of using free-of-charge Sentinel-1 Synthetic Aperture Radar (SAR) imagery for land cover mapping in urban areas is investigated. To this aim, we use dual-pol (VV+VH) Interferometric Wide swath mode (IW) data collected on September 16th 2015 along descending orbit over Istanbul megacity, Turkey. Data have been calibrated, terrain corrected, and filtered by a 5x5 kernel using gamma map approach. During terrain correction by using a 25m resolution SRTM DEM, SAR data has been resampled resulting into a pixel spacing of 20m. Support Vector Machines (SVM) method has been implemented as a supervised pixel based image classification to classify the dataset. During the classification, different scenarios have been applied to find out the performance of Sentinel-1 data. The training and test data have been collected from high resolution image of Google Earth. Different combinations of VV and VH polarizations have been analysed and the resulting classified images have been assessed using overall classification accuracy and Kappa coefficient. Results demonstrate that, combining opportunely dual polarization data, the overall accuracy increases up to 93.28% against 73.85% and 70.74% of using individual polarization VV and VH, respectively. Our preliminary analysis points out that dual polarimetric Sentinel-1SAR data can be effectively exploited for producing accurate land cover maps, with relevant advantages for urban planning and management of large cities.

  17. Present status and applications of Interferometric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Qiao, Shubo; Li, Jinling; Sun, Fuping; Bian, Shaofeng

    2003-03-01

    Interferometric Synthetic Aperture Radar (InSAR) is a newly developed space geodetic technique, which provides the three dimensional information of targets on the Earth by interferometric processing of the Single Look Complex Images (SLC-Image) of Synthetic Aperture Radar (SAR). Because of the outstanding characteristics in all-weather and 24-hour continuous surveying, as well as the ability to penetrate into some substances on the Earth, the latent application fields of InSAR are rather broad, which becomes one of the foci in Earth science study. Hereby the principles and general status of SAR and InSAR are briefly introduced. The limitations in the precision of the height determination of targets on the Earth by InSAR are analyzed. The applications of InSAR and the mutual relation for promotion between InSAR and astro-geodynamics study are highlighted discussed.

  18. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above

  19. Integrated analysis of differential interferometric synthetic aperture radar (DInSAR) and geological data for measuring deformation movement of Kaligarang fault, Semarang-Indonesia

    NASA Astrophysics Data System (ADS)

    Prasetyo, Y.; Fakhrudin, Warasambi, S. M.

    2016-05-01

    Semarang is one of the densely populated city in Central Java which is has Kaligarang's fault. It is lie in Kaligarang River and across several dense urban settlement. The position of Kaligarang's river itself divides in the direction nearly north-south city of Semarang. The impact of the fault can be seen in severals indication such as a land subsidence phenomenon in Tinjomoyo village area which is make impact to house and road destruction. In this research, we have used combination methods between InSAR, DinSAR and geomorphology (geology data) where is this techniques used to identity the fault area and estimate Kaligarang's fault movement velocity. In fault movement velocity observation, we only compute the movement in vertical with neglect horizontal movement. The data used in this study of one pair ALOS PALSAR level 1.0 which was acquired on June 8, 2007and 10 of September 2009. Besides that third ALOS PALSAR earlier, also used data of SRTM DEM 4th version, is used for the correction of the topography. The use of the three methods already mentioned earlier have different functions. For the lnSAR method used for the establishment of a digital model in Semarang. After getting high models digital city of Semarang, the identification process can be done layout, length, width and area of the Kaligarang fault using geomorphology. Results of such identification can be calculated using the rate of deformation and fault movement. From the result generated DinSAR method of land subsidence rate between 3 em to II em. To know the truth measurement that used DinSAR method, is performed with the decline of validation that measured using GPS. After validating obtained standard deviation of 3,073 em. To estimate the Kaligarang's fault pattern and direction is using the geomorphology method. The results that Kaligarang's is an active fault that has fault strike slip as fault pattern. It makes this research is useful because could be used as an inquick assessment in fault

  20. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren

    2006-01-01

    NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differentian interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  1. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren

    2006-01-01

    NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differentian interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  2. Analysis of polarimetric synthetic aperture radar and passive visible light polarimetric imaging data fusion for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Maitra, Sanjit

    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single

  3. Observations and Mitigation of RFI in ALOS PALSAR SAR Data; Implications for the Desdyni Mission

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Le, Charles

    2008-01-01

    Initial examination of ALOS PALSAR synthetic aperture radar (SAR) data has indicated significant radio frequency interference (RFI) in several geographic locations around the world. RFI causes significant reduction in image contrast, introduces periodic and quasi-periodic image artifacts, and introduces significant phase noise in repeat pass interferometric data reduction. The US National Research Council Decadal Survey of Earth Science has recommended DESDynI, a Deformation, Ecosystems, and Dynamics of Ice satellite mission comprising an L-band polarimetric radar configured for repeat pass interferometry. There is considerable interest internationally in other future L-band and lower frequency systems as well. Therefore the issues of prevalence and possibilities of mitigation of RFI in these crowded frequency bands is of considerable interest. RFI is observed in ALOS PALSAR in California, USA, and in southern Egypt in data examined to date. Application of several techniques for removing it from the data prior to SAR image formation, ranging from straightforward spectral normalization to time-domain, multi-phase filtering techniques are considered. Considerable experience has been gained from the removal of RFI from P-band acquired by the GeoSAR system. These techniques applied to the PALSAR data are most successful when the bandwidth of any particular spectral component of the RFI is narrow. Performance impacts for SAR imagery and interferograms are considered in the context of DESDynI measurement requirements.

  4. Observations and Mitigation of RFI in ALOS PALSAR SAR Data; Implications for the Desdyni Mission

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Le, Charles

    2008-01-01

    Initial examination of ALOS PALSAR synthetic aperture radar (SAR) data has indicated significant radio frequency interference (RFI) in several geographic locations around the world. RFI causes significant reduction in image contrast, introduces periodic and quasi-periodic image artifacts, and introduces significant phase noise in repeat pass interferometric data reduction. The US National Research Council Decadal Survey of Earth Science has recommended DESDynI, a Deformation, Ecosystems, and Dynamics of Ice satellite mission comprising an L-band polarimetric radar configured for repeat pass interferometry. There is considerable interest internationally in other future L-band and lower frequency systems as well. Therefore the issues of prevalence and possibilities of mitigation of RFI in these crowded frequency bands is of considerable interest. RFI is observed in ALOS PALSAR in California, USA, and in southern Egypt in data examined to date. Application of several techniques for removing it from the data prior to SAR image formation, ranging from straightforward spectral normalization to time-domain, multi-phase filtering techniques are considered. Considerable experience has been gained from the removal of RFI from P-band acquired by the GeoSAR system. These techniques applied to the PALSAR data are most successful when the bandwidth of any particular spectral component of the RFI is narrow. Performance impacts for SAR imagery and interferograms are considered in the context of DESDynI measurement requirements.

  5. ARBRES: Light-Weight CW/FM SAR Sensors for Small UAVs

    PubMed Central

    Aguasca, Albert; Acevo-Herrera, Rene; Broquetas, Antoni; Mallorqui, Jordi J.; Fabregas, Xavier

    2013-01-01

    This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m) for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller). Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM) has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo) module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory. PMID:23467032

  6. ARBRES: light-weight CW/FM SAR sensors for small UAVs.

    PubMed

    Aguasca, Albert; Acevo-Herrera, Rene; Broquetas, Antoni; Mallorqui, Jordi J; Fabregas, Xavier

    2013-03-06

    This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m) for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller). Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM) has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo) module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory.

  7. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    NASA Astrophysics Data System (ADS)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness

  8. Phase calibration of polarimetric radar images

    NASA Technical Reports Server (NTRS)

    Sheen, Dan R.; Kasischke, Eric S.; Freeman, Anthony

    1989-01-01

    The problem of phase calibration between polarization channels of an imaging radar is studied. The causes of various types of phase errors due to the radar system architecture and system imperfections are examined. A simple model is introduced to explain the spatial variation in phase error as being due to a displacement between the phase centers of the vertical and horizontal antennas. It is also shown that channel leakage can cause a spatial variation in phase error. Phase calibration using both point and distributed ground targets is discussed and a method for calibrating phase using only distributed target is verified, subject to certain constraints. Experimental measurements using the NADC/ERIM P-3 synthetic-aperture radar (SAR) system and NASA/JPL DC-8 SAR, which operates at C-, L-, and P-bands, are presented. Both of these systems are multifrequency, polarimetric, airborne, SAR systems.

  9. InSAR Scientific Computing Environment - The Home Stretch

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.

    2011-12-01

    The Interferometric Synthetic Aperture Radar (InSAR) Scientific Computing Environment (ISCE) is a software development effort in its third and final year within the NASA Advanced Information Systems and Technology program. The ISCE is a new computing environment for geodetic image processing for InSAR sensors enabling scientists to reduce measurements directly from radar satellites to new geophysical products with relative ease. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. Upcoming international SAR missions will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment has the functionality to become a key element in processing data from NASA's proposed DESDynI mission into higher level data products, supporting a new class of analyses that take advantage of the long time and large spatial scales of these new data. At the core of ISCE is a new set of efficient and accurate InSAR algorithms. These algorithms are placed into an object-oriented, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. ISCE supports data from nearly all of the available satellite platforms, including ERS, EnviSAT, Radarsat-1, Radarsat-2, ALOS, TerraSAR-X, and Cosmo-SkyMed. The code applies a number of parallelization techniques and sensible approximations for speed. It is configured to work on modern linux-based computers with gcc compilers and python

  10. Information content of polarimetric SAR data

    NASA Technical Reports Server (NTRS)

    Cumming, Ian G.; Small, David L.; Vanzyl, Jakob J.

    1991-01-01

    The information content of the compressed Stoke's matrix data from the Airborne Synthetic Aperture Radar (AIRSAR) is examined in two ways - by measuring how each feature separates classes of terrain in an image, and by measuring how well a classifier performs with and without each feature. In this way, the features may then be ranked in order of information content (or in order of utility to the classifier). Suggestions are made regarding those variables that can be omitted in a data compression scheme or in a future simplified radar system.

  11. Detection of land degradation with polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Ray, Terrill W.; Farr, Tom G.; van Zyl, Jakob J.

    1992-08-01

    Land degradation is a crucial problem facing the human race. With an ever-increasing population placing increasing stress on agricultural lands, land impoverishment has the potential for adversely impacting the food supply in many regions of the world. The Manix Basin Area of the Mojave desert has been cropped using center pivot irrigation, but since 1973 many fields have been abandoned for economic reasons. Data were collected using the JPL Airborne Synthetic Aperture Radar (AIRSAR), a multi-spectral radar polarimeter. Analysis of these data revealed unusual polarization responses which we attribute to the formation of wind ripples on the surfaces of fields which had been abandoned for more than 5 years. This conjecture was confirmed through field observations, and the observed polarization responses were effectively modelled using a second-order small perturbation model. These results demonstrate the usefulness of remote sensing techniques supported by limited field work for study of land degradation at synoptic scales.

  12. Application of symmetry properties to polarimetric remote sensing with JPL AIRSAR data

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, Simon H.; Kwok, R.; Li, F. K.

    1992-01-01

    Based on symmetry properties, polarimetric remote sensing of geophysical media is studied. From the viewpoint of symmetry groups, media with reflection, rotation, azimuthal, and centrical symmetries are considered. The symmetries impose relations among polarimetric scattering coefficients, which are valid to all scattering mechanisms in the symmetrical configurations. Various orientation distributions of non-spherical scatterers can be identified from the scattering coefficients by a comparison with the symmetry calculations. Experimental observations are then analyzed for many geophysical scenes acquired with the Jet Propulsion Laboratory (JPL) airborne polarimetric SAR at microwave frequencies over sea ice and vegetation. Polarimetric characteristics of different ice types are compared with symmetry behaviors. The polarimetric response of a tropical rain forest reveals characteristics close to the centrical symmetry properties, which can be used as a distributed target to relatively calibrate polarimetric radars without any deployment of manmade calibration targets.

  13. Monsoon '90 - Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.; Guerra, Abel G.

    1992-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  14. Monsoon 1990: Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.; Dubois, Pascale; Guerra, Abel

    1991-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  15. Tropical Forest Biomass Estimation from Vertical Fourier Transforms of Lidar and InSAR Profiles

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Goncalves, F.; Drake, J.; Hensley, S.; Chapman, B. D.; Michel, T.; Dos Santos, J. R.; Dutra, L.; Graca, P. A.

    2010-12-01

    Structural forest biomass estimation from lidar or interferometric SAR (InSAR) has demonstrated better performance than radar-power-based approaches for the higher biomasses (>150 Mg/ha) found in tropical forests. Structural biomass estimation frequently regresses field biomass to some function of forest height. With airborne, 25-m footprint lidar data and fixed-baseline C-band InSAR data over tropical wet forests of La Selva Biological Station, Costa Rica, we compare the use of Fourier transforms of vertical profiles at a few frequencies to the intrinsically low-frequency “average height”. RMS scatters of Fourier-estimated biomass about field-measured biomass improved by 40% and 20% over estimates base on average height from lidar and fixed-baseline InSAR, respectively. Vertical wavelengths between 14 and 100 m were found to best estimate biomass. The same airborne data acquisition over La Selva was used to generate many 10’s of repeat-track L-band InSAR baselines with time delays of 1-72 hours, and vertical wavelengths of 5-100 m. We will estimate biomass from the Fourier transforms of L-band radar power profiles (InSAR complex coherence). The effects of temporal decorrelation will be modeled in the Fourier domain to try to model and reduce their impact. Using L-band polarimetric interferometry, average heights will be estimated as well and biomass regression performance compared to the Fourier transform approach. The more traditional approach of using L-band radar polarimetry will also be compared to structural biomass estimation.

  16. Segmentation of Multilook, Multifrequency, and Multipolarimetric SAR Data.

    DTIC Science & Technology

    1995-11-20

    1995 Final Technical 02/01/92-07/31/95 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Segmentation of Multilook , Multifrequency, and Multipolarimetric SAR Data...Maximum 200 worth) This final report summarizes the findings of the research, "Segmentation of Multi-look, Multi-frequency and Multi- polarimetric SAR ...segmentation of high resolution SAR images, b) detection of man-made features in SAR images and c) labeling, as well as, grouping algorithms. These

  17. Classification of Targets in SAR Images Using ISAR Data

    DTIC Science & Technology

    2005-05-01

    Classification of Targets in SAR Images Using ISAR Data J. J. M. de Wit, R. J. Dekker, and A. C. van den Broek TNO Defence, Security, and Safety...classification of targets in SAR images by using ISAR measurements was studied, based on polarimetric SAR and ISAR data acquired with the MEMPHIS...interest in synthetic aperture radar ( SAR ) systems is increasing as well, mainly due to their all-weather capability. A study for the Dutch Ministry of

  18. Moving Target Detection with Along-Track SAR Interferometry. A Theoretical Analysis

    DTIC Science & Technology

    2002-08-01

    1994). Intensity and Phase Statistics of Multilook Polarimetric and Interfer- ometric SAR Imagery. IEEE Trans. Geoscience and Remote Sensing, GRS-32(5... Multilook Polarimetric Signatures. IEEE Trans. Geoscience and Remote Sensing, GRS-32(3), 562-574. 4. Gierull, C.H. (July 2001). Statistics of SAR ...Along-Track SAR Interferometry A Theoretical Analysis Christoph H. Gierull DISTRIBUTION STATEMENTA Approved for Public Release Distribution Unlimited

  19. Validation of burst overlapping for ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry

    NASA Astrophysics Data System (ADS)

    Natsuaki, Ryo; Motohka, Takeshi; Ohki, Masato; Watanabe, Manabu; Suzuki, Shinichi

    2016-10-01

    The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) aboard the Advanced Land Observing Satellite- 2 (ALOS-2, "DAICHI-2") is the latest L-band spaceborne synthetic aperture radar (SAR). PALSAR-2 observes the world mainly with 10 m resolution / 70 km swath Stripmap mode and 25 m resolution / 350 km swath ScanSAR mode. The 3-m resolution Stripmap mode is mainly used upon Japan. 350 km ScanSAR observation could detect large scale deformation e.g., the Mw 7.8 Gorkha, Nepal earthquake and its aftershocks in 2015. ALOS-2 ScanSAR is the first one that supports ScanSAR-ScanSAR interferometry in L-band spaceborne SAR. However, because of the parameter setting error for the orbit estimation, ALOS-2 PALSAR-2 ScanSAR could achieve little number of interferometric pair until the software modification on February 8, 2015. That is, the burst overlap timing required for the interferometric analysis was insufficient and it depends on the observation date. In this paper, we report the investigation results of this case and discuss the current status of the ALOS-2 ScanSAR InSAR. Some archives achieved before February 8, 2015 can be used for interferometric analysis with after Feb. 8. However, most of them have no interferometric pair. We also report that the archives acquired after February 8, have enough burst overlapping.

  20. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Chen, Erxue; Li, Zengyuan; Zhao, Chunjiang; Yang, Guijun; Pignatti, Stefano; Casa, Raffaele; Zhao, Lei

    2015-02-01

    The feasibility of monitoring lodging of wheat fields by exploiting fully polarimetric C-band radar images has been investigated in this paper. A set of backscattering intensity features and polarimetric features, derived by target decomposition techniques, was extracted from 5 consecutive Radarsat-2 images. The temporal evolutions of these features of lodging wheat fields were investigated as a function of DAS (day after sowing) during the entire growing season. The temporal behavior was compared between typical lodging fields and normal fields in different growing stages. It was found that polarimetric feature from synthetic aperture radar (SAR) data was very sensitive to wheat lodging. Then a method called polarimetric index, availing the sensitivity of polarimetry to the structure, was put forward to monitor wheat lodging. The method was validated by two sets of in situ data collected in Shangkuli Farmland area, Inner Mongolia, China, at heading and ripe stages of spring wheat. Almost all the lodging fields were successfully distinguished from normal fields. Furthermore, the result revealed that the polarimetric index can reflect the intrinsic feature of lodging wheat with good anti-inference ability such as wheat growth difference. While optical sensors relied on its spectral features to monitor crop lodging, the proposed method based on radar data utilized polarimetric features to monitor crop lodging.

  1. Normal and Differential SAR Interferometry

    DTIC Science & Technology

    2005-02-01

    Geudtner, B. Schättler, P. Vachon, U. Steinbrecher, J. Holzner, J. Mittermayer , H. Breit, A. Moreira. RADARSAT ScanSAR interferometry. In: Proceedings of...part 4, pp. 470-475 Krieger, G., Wendler, M., Fiedler, H., Mittermayer , J., Moreira, A., 2002. Performance analysis for bistatic interferometric...SAR configurations. In: Proceedings of IGARSS 2002, Toronto, Canada, vol. 1, pp. 650-652. Krieger, G., Fiedler, H., Mittermayer , J., Papathanassiou, K

  2. Terrain classification of polarimetric synthetic aperture radar imagery based on polarimetric features and ensemble learning

    NASA Astrophysics Data System (ADS)

    Huang, Chuanbo

    2017-04-01

    An evolutionary classification system for terrain classification of polarimetric synthetic aperture radar (PolSAR) imagery based on ensemble learning with polarimetric and texture features is proposed. Polarimetric measurements cannot produce sufficient identification information for PolSAR terrain classification in some complex areas. To address this issue, texture features have been successfully used in image segmentation. The system classification feature has been adopted using a combination of Pauli features and the last principal component of Gabor texture-feature dimensionality reduction. The resulting feature combination assigned through experimental analysis is very suitable for describing structural and spatial information. To obtain a good integration effect, the basic classifier should be as precise as possible and the differences among the features should be as distinct as possible. We therefore examine and construct an ensemble-weighted voting classifier, including two support vector machine models that are constructed using kernel functions of the radial basis and sigmoid, extreme learning machine, k-nearest neighbor, and discriminant analysis classifier, which can avoid redundancy and bias because of different theoretical backgrounds. An experiment was performed to estimate the proposed algorithm's performance. The results verified that the algorithm can obtain better accuracy than the four classifiers mentioned in this paper.

  3. An L-band SAR for repeat pass deformation measurements on a UAV platform

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Lou, Yunling; Rosen, Paul; Wheeler, Kevin; Zebker, Howard; Madsen, Soren; Miller, Tim; Hoffman, Jim; Farra, Don

    2003-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeat-pass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV) or minimally piloted vehicle (MPV). Upon surveying the capabilities and availabilities of such aircraft, the Proteus aircraft and the ALTAIR UAV appear to meet our criteria in terms of payload capabilities, flying altitude, and endurance. To support the repeat pass deformation capability it is necessary to control flight track capability of the aircraft to be within a specified 10 m tube with a goal of 1 m. This requires real-time GPS control of the autopilot to achieve these objectives that has not been demonstrated on these aircraft. Based on the Proteus and ALTAIR's altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and a 16 km range swath. The radar will have an active electronic beam steering antenna to achieve a Doppler centroid stability that is necessary for repeat-pass interferometry. This paper presents some of the trade studies for the platform, instrument and the expected science.

  4. An L-band SAR for repeat pass deformation measurements on a UAV platform

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Lou, Yunling; Rosen, Paul; Wheeler, Kevin; Zebker, Howard; Madsen, Soren; Miller, Tim; Hoffman, Jim; Farra, Don

    2003-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeat-pass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV) or minimally piloted vehicle (MPV). Upon surveying the capabilities and availabilities of such aircraft, the Proteus aircraft and the ALTAIR UAV appear to meet our criteria in terms of payload capabilities, flying altitude, and endurance. To support the repeat pass deformation capability it is necessary to control flight track capability of the aircraft to be within a specified 10 m tube with a goal of 1 m. This requires real-time GPS control of the autopilot to achieve these objectives that has not been demonstrated on these aircraft. Based on the Proteus and ALTAIR's altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and a 16 km range swath. The radar will have an active electronic beam steering antenna to achieve a Doppler centroid stability that is necessary for repeat-pass interferometry. This paper presents some of the trade studies for the platform, instrument and the expected science.

  5. Determination of vegetation canopy structure and biomass using a fully polarimetric repeat-pass L-band radar

    NASA Astrophysics Data System (ADS)

    Simard, M.; Lavalle, M.; Pinto, N.; Hensley, S.; Dubayah, R.

    2011-12-01

    We use the UAVSAR, an airborne fully polarimetric L-band radar system, to estimate forest canopy structure and biomass through radar backscatter and repeat-pass interferometry. UAVSAR provides backscatter images with a spatial resolution of 5m and is capable of repeat-pass interferometry. Our analysis also includes data from LVIS (Laser vegetation Imaging sensor), which serve as a validation dataset but also provide a priori knowledge for our forest structure model. LVIS is a laser altimeter providing a spatially dense sampling of full waveforms with a footprint of 25m. During the UAVSAR data collection campaigns, we collected weather (wind, precipitation and temperature) as well as forest structure data in a total of 95 plots. The plot measurements included, trunk diameter at breast height, tree height and species as well as terrain slopes. These field data were used to estimate canopy density, height and biomass at the stand level. The main objective of the UAVSAR campaign was to characterize, quantify and mitigate the impact of temporal decorrelation on the estimation of canopy height by radar interferometry. However, we also compare the radar backscatter with the field estimates of stand biomass, to assess its potential. On the other hand, a polarimetric interferometric model is used to estimate vegetation height from radar interferometry (polinSAR). The polinSAR model relies on the measurement of correlation and phase as different polarizations. However, since UAVSAR is a repeat-pass interferometric system, slight changes within the canopy (e.g. due to weather and motion of scatterers) between radar acquisitions tend to decorrelate successive radar images. This effect can be taken into account within the polinSAR model but strongly depends on the assumed temporal decorrelation. We designed the UAVSAR campaign to quantify temporal decorrelation. Within a period of two weeks, we collected several days of data at different time intervals in order to sample

  6. Interferometric Synthetic Aperture Radar (InSAR)

    USGS Publications Warehouse

    Dzurisin, D.; Lu, Z.

    2006-01-01

    Geodesists are, for the most part, a patient and hardworking lot. A day spent hiking to a distant peak, hours spent waiting for clouds to clear a line-of-sight between observation points, weeks spent moving methodically along a level line — such is the normal pulse of the geodetic profession. The fruits of such labors are all the more precious because they are so scarce. A good day spent with an electronic distance meter (EDM) or level typically produces fewer than a dozen data points. A year of tiltmeter output sampled at ten-minute intervals constitutes less than half a megabyte of data. All of the leveling data ever collected at Yellowstone Caldera fit comfortably on a single PC diskette! These quantities are trivial by modern datastorage standards, in spite of the considerable efforts expended to produce them.

  7. SAR Interferometry with TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Eineder, M.; Runge, H.; Boerner, E.; Bamler, R.; Adam, N.; Schättler, B.; Breit, H.; Suchandt, S.

    2004-06-01

    The TerraSAR-X project is a public private partnership between Astrium GmbH and the German Aerospace Center DLR. Astrium will launch the satellite in late 2005 and holds the rights of commercial data exploitation. DLR is currently developing the ground segment and is responsible for the scientific exploitation of the data. Even if the mission goal is not primarily SAR interferometry, TerraSAR-X offers a number of new perspectives to SAR interferometry when compared to ERS and also ENVISAT: a) High resolution of 3 meters and better in stripmap and spotlight mode. b) The option for a burst synchronized ScanSAR mode. c) The high range bandwidth will allow large baselines and the option for highly precise DEM generation. d) X- Band will show new scattering properties. e) High observation frequency due to the short repeat cycle and variable incidence angles. f) An along track interferometric mode. The available products relevant for interferometry are presented and other relevant topics like orbit control and delta-k interferometry are discussed.

  8. Interferometric synthetic aperture radar terrain elevation mapping from multiple observations

    SciTech Connect

    Ghiglia, D.C.; Wahl, D.E.

    1994-07-01

    All prior interferometric SAR imaging experiments to date dealt with pairwise processing. Simultaneous image collections from two antenna systems or two-pass single antenna collections are processed as interferometric pairs to extract corresponding pixel by pixel phase differences which encode terrain elevation height. The phase differences are wrapped values which must be unwrapped and scaled to yield terrain height. We propose two major classes of techniques that hold promise for robust multibaseline (multiple pair) interferometric SAR terrain elevation mapping. The first builds on the capability of a recently published method for robust weighted and unweighted least-squares phase unwrapping, while the second attacks the problem directly in a maximum likelihood (ML) formulation. We will provide several examples (actual and simulated SAR imagery) that illustrate the advantages and disadvantages of each method.

  9. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    to ingest raw data from other SARs on the input side. The combination of the airborne and the ground segment, augmented by the transfer of technological knowledge needed to operate the system, will provide for an autonomous capability of the system user/owner. The PHARUS project has so far resulted in the construction of a C-band, VV-polarized research SAR (PHARS) with a 1- look resolution of 1.5 multiplied by 5 meter (5 multiplied by 5 meter at 7 independent looks) and a swath width of 6 km. This system has been extensively used for research and application projects in Europe, for purposes of mapping, land use inventory, change detection, coastal bathymetry, ship detection and ocean wave measurement. The next system recently completed is a fully polarimetric C-band system with adjustable resolution and swath width (the latter up to 20 km); this system is expected to be operational autumn 1995. The polarimetric capability will provide for a much enhanced discerning power (discrimination between e.g. forest/cultivated, various forest types, etc.). Discrimination by polarimetric signature is an alterative approach, with different possibilities and limitations, to e.g. the use of several frequencies. This paper gives an overview of the SAR research system and the results obtained with this system. The PHARUS design and use are discussed.

  10. Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands

    USGS Publications Warehouse

    Kim, J.-W.; Lu, Zhiming; Lee, H.; Shum, C.K.; Swarzenski, C.M.; Doyle, T.W.; Baek, S.-H.

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) has been used to detect relative water level changes in wetlands. We developed an innovative method to integrate InSAR and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identify double-bounce backscattering areas in the wetland. ENVISAT radar altimeter-measured 18-Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (~ 40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-1 C-band InSAR are then integrated with ENVISAT radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. We anticipate that this new technique will allow retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  11. Pyxis handheld polarimetric imager

    NASA Astrophysics Data System (ADS)

    Chenault, David B.; Pezzaniti, J. Larry; Vaden, Justin P.

    2016-05-01

    The instrumentation for measuring infrared polarization signatures has seen significant advancement over the last decade. Previous work has shown the value of polarimetric imagery for a variety of target detection scenarios including detection of manmade targets in clutter and detection of ground and maritime targets while recent work has shown improvements in contrast for aircraft detection and biometric markers. These data collection activities have generally used laboratory or prototype systems with limitations on the allowable amount of target motion or the sensor platform and usually require an attached computer for data acquisition and processing. Still, performance and sensitivity have been steadily getting better while size, weight, and power requirements have been getting smaller enabling polarimetric imaging for a greater or real world applications. In this paper, we describe Pyxis®, a microbolometer based imaging polarimeter that produces live polarimetric video of conventional, polarimetric, and fused image products. A polarization microgrid array integrated in the optical system captures all polarization states simultaneously and makes the system immune to motion artifacts of either the sensor or the scene. The system is battery operated, rugged, and weighs about a quarter pound, and can be helmet mounted or handheld. On board processing of polarization and fused image products enable the operator to see polarimetric signatures in real time. Both analog and digital outputs are possible with sensor control available through a tablet interface. A top level description of Pyxis® is given followed by performance characteristics and representative data.

  12. Repeat-pass InSAR processing for Vegetation Height Calculation: Theory and a validated example

    NASA Astrophysics Data System (ADS)

    Siqueira, P.; Lei, Y.

    2014-12-01

    Knowledge of the vegetation height for a forested region is often used as a proxy for stem volume, biomass, and for characterizing habitats of a variety of plant and animal species. For this reason, remote sensing measures available from stereography, lidar, and InSAR have been important tools for airborne and spaceborne platforms. Among these and other candidates for measuring vegetation heights, InSAR has the advantage of achieving wide coverage areas (on the order of 100 km in cross-track swath) over short time periods, thus making it practical for large-scale assessments of the global environment. The determination of forest stand height (FSH), which is an assessment made on the order of one to ten hectares of resolution, InSAR can provide measures that are proportional to FSH. These are: 1.) interferometric phase compared to a known DEM, preferably of the bald earth, 2.) interferometric correlation (polarimetric or otherwise), which is related to the volume scattering nature of the target, and 3.) interferometric correlation which is related to the temporal decorrelation of the target. Of these, while the volumetric aspect of interferometric correlation is of keen interest, because of the dominant error source of temporal decorrelation, it comes at the cost of the need to perform single-pass interferometry. While such satellite systems do exist (notably the TanDEM-X mission), for vegetation applications, lower frequency systems such as ALOS-1 and -2, and the future NASA radar mission at L-band, provides better signal returns from throughout the vegetation canopy. Hence, rather than relying on volumetric correlation to provide the desired FSH signature, repeat-pass observations of temporal decorrelation are coupled with a vegetation model for this decorrelation to determine the vegetation height. In order to demonstrate this technique, the University of Massachusetts has used 46-day repeat-pass ALOS data to estimate FSH over the US State of Maine, nearly a 10

  13. Crop Change Assessment Using Polarimetric RADARSAT-2 Data

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Shang, Jiali; Vachon, Paris W.; McNairn, Heather

    2011-03-01

    This paper studies the feasibility of monitoring crop growth cycles based on a temporal variation analysis of three elementary radar scattering mechanisms. Crop changes are assessed using RADARSAT-2 polarimetric data. The polarimetric SAR (PolSAR) analysis is based on the Pauli decomposition. Multi-temporal analysis is applied to RGB images constructed using surface scattering, double bounce and volume scattering. The crops studied in this paper are corn, cereals and soybeans. Each crop has unique physical structural characteristics and responds differently to these scattering mechanisms. By monitoring the significant changes that occur in these scattering mechanisms, the crop growth to harvest cycle can be observed and the harvest time can be estimated. In addition, a Maximum Likelihood Classification was performed on the RADARSAT-2 data to produce a crop map. An overall classification accuracy of 85% was achieved.

  14. Development of InSAR technology on deformation monitoring

    NASA Astrophysics Data System (ADS)

    Jiao, Ming-lian; Jiang, Ting-chen; Zong, Yu-yu

    2008-10-01

    In recent years, application of InSAR (Interferometric Synthetic Aperture, Radar) to deformation monitoring has become a hotspot in research of geological hazards. This paper introduces the basic principles and data processing procedures of InSAR and summarizes main progresses made in InSAR technology and its application to deformation monitoring. Through actual examples of application and research at home and abroad, the article figures out existing problems and the future of application of InSAR.

  15. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    NASA Astrophysics Data System (ADS)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  16. Polarimetric Tornado Detection.

    NASA Astrophysics Data System (ADS)

    Ryzhkov, Alexander V.; Schuur, Terry J.; Burgess, Donald W.; Zrnic, Dusan S.

    2005-05-01

    Polarimetric radars are shown to be capable of tornado detection through the recognition of tornadic debris signatures that are characterized by the anomalously low cross-correlation coefficient ρhv and differential reflectivity ZDR. This capability is demonstrated for three significant tornadic storms that struck the Oklahoma City, Oklahoma, metropolitan area. The first tornadic debris signature, based on the measurements with the National Severe Storms Laboratory's Cimarron polarimetric radar, was reported for a storm on 3 May 1999. Similar signatures were identified for two significant tornadic events during the Joint Polarization Experiment (JPOLE) in May 2003. The data from these storms were collected with a polarimetric prototype of the Next-Generation Weather Radar (NEXRAD). In addition to a small-scale debris signature, larger-scale polarimetric signatures that might be relevant to tornadogenesis were persistently observed in tornadic supercells. The latter signatures are likely associated with lofted light debris (leaves, grass, dust, etc.) in the inflow region and intense size sorting of hydrometeors in the presence of strong wind shear and circulation.

  17. Application of SAR Remote Sensing in Land Surface Processes Over Tropical region

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.

    1996-01-01

    This paper outlines the potential applications of polarimetric SAR systems over tropical regions such as mapping land use and deforestation, forest regeneration, wetland and inundation studies, and mapping land cover types for biodiversity and habitat conservation studies.

  18. Radar Interferometric Observations of Destabilized Rockglaciers

    NASA Astrophysics Data System (ADS)

    Strozzi, Tazio; Delaloye, Reynald; Raetzo, Hugo; Wegmuller, Urs

    2010-03-01

    Analysis of ERS-1/2 Tandem SAR interferograms for inventorying mass wasting in the periglacial belt of the Valais Alps (Switzerland) has evidenced - what was not expected before - that at least 10 rockglaciers were affected by very rapid movements of about 1 cm/day in 1995-1999. Currently, the detection of the state of activity of these very rapidly moving rockglaciers is hardly feasible with satellite SAR data, because of signal decorrelation after the 35, 46 and 11 days repeat intervals of the ENVISAT, ALOS and TerraSAR-X satellites, respectively. The role of space-borne radar interferometry as an element in a warning system is thus insignificant for these very rapid landslides, but an in- situ radar imaging system can overcome some of the limitations of satellite systems. In this contribution we present results from terrestrial radar interferometric measurements of two destabilized rockglaciers performed in August 2009.

  19. a Robust Change Detector for Multilook Polarimetric Synthetic Aperture Radar Data

    NASA Astrophysics Data System (ADS)

    Ghanbari; Akbari; Abkar; Sahebi; Liu

    2014-10-01

    In this paper, we propose a robust unsupervised change detection algorithm for multilook polarimetric synthetic aperture radar (PolSAR) data. The Hotelling-Lawley trace (HLT) statistic is used as a test statistic to measure the similarity of two covariance matrices. The generalized Kittler and Illingworth (K&I) minimum-error thresholding algorithm is then applied on the test statistic image to accurately discriminates changed and unchanged areas. The algorithm, tested on real PolSAR images, provides satisfactory results.

  20. Advanced Concepts in Polarimetry. Part 1: Polarimetric Target Description, Speckle Filtering and Decomposition Theorems

    DTIC Science & Technology

    2005-02-01

    p=3 for the reciprocal case (SHV=SVH) and p=4 for the non-reciprocal case. The distribution functions for dual polarization ( HH , VH), (HV, VV) or... HH , VV) can be derived from this complex Wishart distribution. For example, if only complex HH and VV are available, p=2, and for single polarization ...The speckle reduction problem is more complicated for polarimetric SAR than a single polarization SAR, because of the difficulties of preserving

  1. External calibration of polarimetric radar images using distributed targets

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Nghiem, S. V.; Kwok, R.

    1992-01-01

    A new technique is presented for calibrating polarimetric synthetic aperture radar (SAR) images using only the responses from natural distributed targets. The model for polarimetric radars is assumed to be X = cRST where X is the measured scattering matrix corresponding to the target scattering matrix S distorted by the system matrices T and R (in general T does not equal R(sup t)). To allow for the polarimetric calibration using only distributed targets and corner reflectors, van Zyl assumed a reciprocal polarimetric radar model with T = R(sup t); when applied for JPL SAR data, a heuristic symmetrization procedure is used by POLCAL to compensate the phase difference between the measured HV and VH responses and then take the average of both. This heuristic approach causes some non-removable cross-polarization responses for corner reflectors, which can be avoided by a rigorous symmetrization method based on reciprocity. After the radar is made reciprocal, a new algorithm based on the responses from distributed targets with reflection symmetry is developed to estimate the cross-talk parameters. The new algorithm never experiences problems in convergence and is also found to converge faster than the existing routines implemented for POLCAL. When the new technique is implemented for the JPL polarimetric data, symmetrization and cross-talk removal are performed on a line-by-line (azimuth) basis. After the cross-talks are removed from the entire image, phase and amplitude calibrations are carried out by selecting distributed targets either with azimuthal symmetry along the looking direction or with some well-known volume and surface scattering mechanisms to estimate the relative phases and amplitude responses of the horizontal and vertical channels.

  2. Polarimetric radar data decomposition and interpretation

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Ranson, K. Jon

    1993-01-01

    Significant efforts have been made to decompose polarimetric radar data into several simple scattering components. The components which are selected because of their physical significance can be used to classify SAR (Synthetic Aperture Radar) image data. If particular components can be related to forest parameters, inversion procedures may be developed to estimate these parameters from the scattering components. Several methods have been used to decompose an averaged Stoke's matrix or covariance matrix into three components representing odd (surface), even (double-bounce) and diffuse (volume) scatterings. With these decomposition techniques, phenomena, such as canopy-ground interactions, randomness of orientation, and size of scatters can be examined from SAR data. In this study we applied the method recently reported by van Zyl (1992) to decompose averaged backscattering covariance matrices extracted from JPL SAR images over forest stands in Maine, USA. These stands are mostly mixed stands of coniferous and deciduous trees. Biomass data have been derived from field measurements of DBH and tree density using allometric equations. The interpretation of the decompositions and relationships with measured stand biomass are presented in this paper.

  3. Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Zhao, Chunjiang; Yang, Guijun; Li, Zengyuan; Chen, Erxue; Yuan, Lin; Yang, Xiaodong; Xu, Xingang

    2015-01-01

    Dynamic mapping and monitoring of crop harvest on a large spatial scale will provide critical information for the formulation of optimal harvesting strategies. This study evaluates the feasibility of C-band polarimetric synthetic aperture radar (PolSAR) for monitoring the harvesting progress of oilseed rape (Brassica napus L.) fields. Five multitemporal, quad-pol Radarsat-2 images and one optical ZY-1 02C image were acquired over a farmland area in China during the 2013 growing season. Typical polarimetric signatures were obtained relying on polarimetric decomposition methods. Temporal evolutions of these signatures of harvested fields were compared with the ones of unharvested fields in the context of the entire growing cycle. Significant sensitivity was observed between the specific polarimetric parameters and the harvest status of oilseed rape fields. Based on this sensitivity, a new method that integrates two polarimetric features was devised to detect the harvest status of oilseed rape fields using a single image. The validation results are encouraging even for the harvested fields covered with high residues. This research demonstrates the capability of PolSAR remote sensing in crop harvest monitoring, which is a step toward more complex applications of PolSAR data in precision agriculture.

  4. Investigation of Variations in the Equivalent Number of Looks for Polarimetric Channels

    NASA Astrophysics Data System (ADS)

    Hu, Dingsheng; Anfinsen, Stian Normann; Tao, Ding; Qiu, Xiaolan

    2015-04-01

    Current estimators of equivalent number of looks (ENL) have already been able to adapt the full-polarimetric SAR data and work in an unsupervised way. However, for some complex SAR scenes, the existing unsupervised estimation procedure would underestimate the ENL value, as the influence of inhomogeneous factor surpasses the allowance. Before determining further solution, this paper first investigates deviations in the estimated ENL that are observed when processing polarimetric synthetic aperture radar images of ocean surfaces. Even for surface that appears to be homogeneous, the estimated ENL is significantly different in cross-polarimetric (cross-pol) and co-polarimetric (co-pol) channels. We have formulated two hypotheses for the cause of this. Both hypotheses reflect that the mixtures are different in each channel, which leads us to question the validity of using the polarimetric information as a whole to eliminate mixture influence, in terms of accuracy and rationality. In the paper, we proposes a new unsupervised estimation procedure to avoid the mixture influence and with robust capability to obtain accurate ENL estimation even for some complex SAR scene.

  5. Integration of Canopy Height Information Derived from Stereo Imagery with SAR Backscatter Data to Improve Biomass Mapping

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ranson, J.; Montesano, P. M.; Ni, W.

    2015-12-01

    Accurate forest biomass estimation over large areas is important for studies of global climate change and the carbon cycle. Synthetic Aperture Radar (SAR) is known to be effective for assessing forest biomass. SAR penetrates farther into forest canopies than optical sensors, so SAR data from forested areas can be related to standing woody biomass, especially at longer L and P bands wavelength. The effect of forest structure on radar signature reduces its sensitivity to biomass when the biomass reaches a threshold level (e.g. ~100Mg/ha at L-band). Therefore the ability for forest biomass mapping using only backscattering coefficients is limited. However, including height data in forest biomass mapping using SAR data will improve the sensitivity beyond saturation levels. There are many ways to get information related to forest canopy height including: 1) Lidar, a direct measurement of canopy height; 2) Height of scattering phase center (HSPC) from InSAR; 3) HSPC difference from two bands of InSAR, and 4) Polarimetric Interferometric SAR, which employs the polarization-dependent coherences. Photogrammetry (or stereo imagery) is another technique for quantifying forest vertical structure and is a traditional technique for the extraction of a digital surface model. The launch of spaceborne sensors, the application of digital cameras, the maturation of photogrammetry theory and the development of fully digital and automatic image processing make the application of photogrammetric methods feasible. Our previous studies using ALOS PRISM data have shown that the canopy height derived from PRISM stereo data were highly correlated with LVIS RH50 data. In this study we have integrated this canopy height with L-band SAR imagery data to map forest biomass in our test site in Howland, Maine. The point cloud data from multi-pair stereo imageries of five PRISM scenes were co-registered and used along with the USGS NED data to calculate the mean canopy height at 30m pixels. Multi

  6. Application of a New Polarimetric Filter to RADARSAT-2 Data of Deception Island (antarctic Peninsula Region) for Surface Cover Characterization

    NASA Astrophysics Data System (ADS)

    Guillaso, S.; Schmid, T.; Lopez-Martinez, J.; D'Hondt, O.

    2015-04-01

    In this paper, we describe a new approach to analyse and quantify land surface covers on Deception Island, a volcanic island located in the Northern Antarctic Peninsula region by means of fully polarimetric RADARSAT-2 (C-Band) SAR image. Data have been filtered by a new polarimetric speckle filter (PolSAR-BLF) that is based on the bilateral filter. This filter is locally adapted to the spatial structure of the image by relying on pixel similarities in both the spatial and the radiometric domains. Thereafter different polarimetric features have been extracted and selected before being geocoded. These polarimetric parameters serve as a basis for a supervised classification using the Support Vector Machine (SVM) classifier. Finally, a map of landform is generated based on the result of the SVM results.

  7. Polarimetric road ice detection

    NASA Astrophysics Data System (ADS)

    Drummond, Krista

    This thesis investigated the science behind polarimetric road ice detection systems. Laboratory Mueller matrix measurements of a simulated road under differing surface conditions were collected searching for a discriminatory polarization property. These Mueller matrices were decomposed into depolarization, diattenuation, and retardance. Individual sample surface polarization properties were then calculated from these three unique matrices and compared. Specular and off-specular reflection responses of each sample were collected. Four polarization properties stood out for having high separation between dry and iced measurements: Depolarization Index, Linear Diattenuation, Linear Polarizance, and Linear Retardance. Through our investigation polarimetric ice detection is possible. Continued research of the polarization properties of road ice can result in the development of a road ice detection system. Proposed deployment methods of such a system have been outlined following the analysis of the data collected in this experiment.

  8. Interferometric synthetic aperture radar studies of Alaska volcanoes

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C.; Power, J.; Dzurisin, D.; Thatcher, W.; Masterlark, Timothy

    2002-01-01

    Interferometric synthetic aperture radar (InSAR) imaging is a recently developed geodetic technique capable of measuring ground-surface deformation with centimeter to subcentimeter vertical precision and spatial resolution of tens-of-meter over a relatively large region (~104 km2). The spatial distribution of surface deformation data, derived from InSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic and tectonic processes associated with volcanoes. This paper summarizes our recent InSAR studies of several Alaska volcanoes, which include Okmok, Akutan, Kiska, Augustine, Westdahl, and Peulik volcanoes.

  9. Polarimetric imagery collection experiment

    NASA Astrophysics Data System (ADS)

    Romano, Joao M.; Felton, Melvin; Chenault, David; Sohr, Brian

    2010-04-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL that is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives in an open field. The database will allow for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.

  10. Mueller polarimetric microscopy

    NASA Astrophysics Data System (ADS)

    Laude-Boulesteix, Blandine; De Martino, Antonello; Le Naour, Gilles; Genestie, Catherine; Schwartz, Laurent; Garcia-Caurel, Enric; Drevillon, Bernard

    2004-07-01

    We present a multispectral polarimetric imaging system well suited for complete Mueller matrix microscopy. The source is a spectrally filtered halogen light bulb, and the image is formed on a fast CCD camera The light polarization is modulated before the sample and analyzed after the sample by using nematic liquid crystal modulators.. The whole Mueller matrix image of the sample is typically measured over 5 seconds for a good signal-to-noise ratio. The instrument design, together with an original and easy-to-operate calibration procedure provides a high polarimetric accuracy over wide ranges of wavelengths and magnifications. Mueller polarimetry provides separate images of scalar and vector retardation and dichroism of the sample, together with its depolarizing power, while all these effects do contribute simultaneously to the contrasts observed in standard polarized microsopy. Polarimetric images of several samples, namely an unstained rabbit cornea, a picrosirius red stained hepatic biopsy, and a rat artery specifically stained for collagen III are shown and discussed

  11. Interferometric synthetic aperture radar: Building tomorrow's tools today

    USGS Publications Warehouse

    Lu, Zhong

    2006-01-01

    A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.

  12. Automatic oil spill detection on quad polarimetric UAVSAR imagery

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Dhakal, Shanti

    2016-05-01

    Oil spill on the water bodies has adverse effects on coastal and marine ecology. Oil spill contingency planning is of utmost importance in order to plan for mitigation and remediation of the oceanic oil spill. Remote sensing technologies are used for monitoring the oil spills on the ocean and coastal region. Airborne and satellite sensors such as optical, infrared, ultraviolet, radar and microwave sensors are available for remote surveillance of the ocean. Synthetic Aperture Radar (SAR) is used most extensively for oil-spill monitoring because of its capability to operate during day/night and cloud-cover condition. This study detects the possible oil spill regions on fully polarimetric Uninhabited Aerial Vehicle - Synthetic Aperture Radar (UAVSAR) images. The UAVSAR image is decomposed using Cloude-Pottier polarimetric decomposition technique to obtain entropy and alpha parameters. In addition, other polarimetric features such as co-polar correlation and degree of polarization are obtained for the UAVSAR images. These features are used to with fuzzy logic based classification to detect oil spill on the SAR images. The experimental results show the effectiveness of the proposed method.

  13. Updated progress in theories and applications of spaceborne SAR interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Ling; Huang, Cheng; Ding, Xiao-Li; Li, Zhi-Wei

    2006-12-01

    InSAR (Interferometric Synthetic Aperture Radar) and D-InSAR (Differential InSAR) are rapidly developed new technologies of space geodesy during the late 20th century, and now obviously become hot research topics in the field of microwave remote sensing. Compared with the other sensors, InSAR possesses many incomparable advantages such as the capability to work at all-time and under all weather, very high spatial resolution and strong penetrability through the ground surface. This paper introduces general status of SAR, InSAR, D-InSAR technology, and the principles of InSAR and D-InSAR. New theories and the potential problems of (D-)InSAR technology are largely discussed, including multi-baseline interferometry, Pol-InSAR technique, the correction of atmospheric effects, permanent Scatterers method, the synthesization technique between InSAR and GPS, LIDAR etc., and the InSAR parallel algorithm. Then the new applications of InSAR and D-InSAR are described in detail including 3D topographic mapping, deformation monitoring (including surface subsidence, landside monitoring and ITRF's foundation and maintenance, etc.), thematic mapping (including agriculture and forestry, oceanic surveying and flood monitoring, etc.) and meteorology etc.. Finally, the prospect and future trends in InSAR development are summarized.

  14. Polarimetric characterization of Spectralon

    NASA Astrophysics Data System (ADS)

    Goldstein, Dennis H.; Chenault, David B.; Pezzaniti, J. L.

    1999-10-01

    A polarimetric characterization of the reflective standard material Spectralon is presented. Samples of Spectralon with reflectances of 2 percent, 50 percent, 75 percent and 99 percent were examined. The characterization was accomplished using the Air Force Research Laboratory's spectropolarimeter in reflection mode. Data are presented for the spectral region .65 to 1.0 micrometers. Polarizance was measured for the four Spectralon samples at eight input beam incidence angles. All observations were made from normal to the Spectralon. It was found that as the incidence beam angle increases, the polarizance increases; and as the reflectance of the samples decreases, the polarizance increases.

  15. A Polarimetric Extension of the van Cittert-Zernike Theorem for Use with Microwave Interferometers

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Simon, N. K.

    2004-01-01

    The van Cittert-Zernike theorem describes the Fourier-transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave Earth remote sensing. The development provides insight into the mechanics of two-dimensional interferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.

  16. Polarimetric Palsar Calibration

    NASA Astrophysics Data System (ADS)

    Touzi, R.; Shimada, M.

    2008-11-01

    Polarimetric PALSAR system parameters are assessed using data sets collected over various calibration sites. The data collected over the Amazonian forest permits validating the zero Faraday rotation hypotheses near the equator. The analysis of the Amazonian forest data and the response of the corner reflectors deployed during the PALSAR acquisitions lead to the conclusion that the antenna is highly isolated (better than -35 dB). Theses results are confirmed using data collected over the Sweden and Ottawa calibration sites. The 5-m height trihedrals deployed in the Sweden calibration site by the Chalmers University of technology permits accurate measurement of antenna parameters, and detection of 2-3 degree Faraday rotation during day acquisition, whereas no Faraday rotation was noted during night acquisition. Small Faraday rotation angles (2-3 degree) have been measured using acquisitions over the DLR Oberpfaffenhofen and the Ottawa calibration sites. The presence of small but still significant Faraday rotation (2-3 degree) induces a CR return at the cross-polarization HV and VH that should not be interpreted as the actual antenna cross-talk. PALSAR antenna is highly isolated (better than -35 dB), and diagonal antenna distortion matrices (with zero cross-talk terms) can be used for accurate calibration of PALSAR polarimetric data.

  17. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  18. Monitoring Seasonal Land Subsidence and Uplift in the Green Valley Area of the Tucson Active Management Area Groundwater Basin, Southern Arizona using Interferometric Synthetic Aperture Radar (InSAR) Data and Global Navigation Satellite System (GNSS) Data

    NASA Astrophysics Data System (ADS)

    Conway, B. D.

    2013-12-01

    The Green Valley land subsidence feature is located in southern Arizona, approximately 20 miles south of the Tucson metropolitan area within the town of Sahuarita. Groundwater levels fluctuate as much as 110 feet annually, caused by seasonal pumping demands of a nearby pecan orchard. Recent Arizona Department of Water Resources (ADWR) InSAR data and GNSS survey data reveal that seasonal land subsidence and subsequent uplift are occurring as a direct result of seasonal groundwater level fluctuations. Data from a nearby ADWR transducer shows that the groundwater level begins to decline around middle to late February, dropping as much as 110 feet by the end of June. Groundwater levels generally remain somewhat stable until the middle of October, when the groundwater level begins to rise. Groundwater levels will rise as much as 110 feet by the middle of February; a complete 12-month recovery. ADWR InSAR and GNSS survey data show that land subsidence occurs from February until May followed by a stable period, then uplift occurs from October to February. The Green Valley land subsidence feature is a dynamic hydrogeological system that requires continued deformation monitoring using both InSAR and GNSS data. Radarsat-2 Interferograms that illustrate both seasonal subsidence and uplift. Surveyed elevation and groundwater level change data that document how seasonal groundwater fluctuations result in seasonal land subsidence and uplift.

  19. NASA/JPL Aircraft SAR Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Donovan, N. (Editor); Evans, D. L. (Editor); Held, D. N. (Editor)

    1985-01-01

    Speaker-supplied summaries of the talks given at the NASA/JPL Aircraft SAR Workshop on February 4 and 5, 1985, are provided. These talks dealt mostly with composite quadpolarization imagery from a geologic or ecologic prespective. An overview and summary of the system characteristics of the L-band synthetic aperture radar (SAR) flown on the NASA CV-990 aircraft are included as supplementary information. Other topics ranging from phase imagery and interferometric techniques classifications of specific areas, and the potentials and limitations of SAR imagery in various applications are discussed.

  20. SARS Basics

    MedlinePlus

    ... Laboratory Testing & Specimens SARS-Associated Coronavirus (SARS-CoV) Sequencing Informed Consent for Laboratory Testing Specimen Collection and ... person touches a surface or object contaminated with infectious droplets and then touches his or her mouth, ...

  1. Damage Assessment Map from Interferometric Coherence

    NASA Astrophysics Data System (ADS)

    Yun, S.; Fielding, E. J.; Simons, M.; Rosen, P. A.; Owen, S. E.; Webb, F.

    2010-12-01

    Large earthquakes cause buildings to collapse, which often claims the lives of many. For example, 2010 Haiti earthquake killed about 230,000 people, with about 280,000 buildings collapsed or severely damaged. When a major earthquake hits an urban area, one of the most critical information for rescue operations is rapid and accurate assessment of building-collapse areas. From a study on 2003 Bam earthquake in Iran, interferometric coherence was proved useful for earthquake damage assessment (Fielding et al., 2005) when similar perpendicular baselines can be found for pre- and coseismic interferometric pairs and when there is little temporal and volume decorrelation. In this study we develop a new algorithm to create a more robust and accurate damage assessment map using interferometric coherence despite different interferometric baselines and with other decorrelation sources. We test the algorithm on a building block that recently underwent demolition, which is a proxy for building collapse due to earthquakes, for new construction in the City of Pasadena, California. The size of the building block is about 150 m E-W and 300 m N-S, and the demolition project started on April 23, 2007 and continued until January 22, 2008. After we process Japanese L-band ALOS PALSAR data with ROI_PAC, an interferometric coherence map that spans the demolition period is registered to a coherence map before the demolition, and the relative bias of the coherence values are removed, then a causality constraint is applied to enhance the change due to demolition. The results show clear change in coherence at the demolition site. We improve the signal-to-noise ratio of the coherence change at the demolition site from 17.3 (for simple difference) to 44.6 (with the new algorithm). The damage assessment map algorithm will become more useful with the emergence of InSAR missions with more frequent data acquisition, such as Sentinel-1 and DESDynI.

  2. Interferometric synthetic aperture radar imagery of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  3. Interferometric phase reconstruction using simplified coherence network

    NASA Astrophysics Data System (ADS)

    Zhang, Kui; Song, Ruiqing; Wang, Hui; Wu, Di; Wang, Hua

    2016-09-01

    Interferometric time-series analysis techniques, which extend the traditional differential radar interferometry, have demonstrated a strong capability for monitoring ground surface displacement. Such techniques are able to obtain the temporal evolution of ground deformation within millimeter accuracy by using a stack of synthetic aperture radar (SAR) images. In order to minimize decorrelation between stacked SAR images, the phase reconstruction technique has been developed recently. The main idea of this technique is to reform phase observations along a SAR stack by taking advantage of a maximum likelihood estimator which is defined on the coherence matrix estimated from each target. However, the phase value of a coherence matrix element might be considerably biased when its corresponding coherence is low. In this case, it will turn to an outlying sample affecting the corresponding phase reconstruction process. In order to avoid this problem, a new approach is developed in this paper. This approach considers a coherence matrix element to be an arc in a network. A so-called simplified coherence network (SCN) is constructed to decrease the negative impact of outlying samples. Moreover, a pointed iterative strategy is designed to resolve the transformed phase reconstruction problem defined on a SCN. For validation purposes, the proposed method is applied to 29 real SAR images. The results demonstrate that the proposed method has an excellent computational efficiency and could obtain more reliable phase reconstruction solutions compared to the traditional method using phase triangulation algorithm.

  4. Feasibility Analysis of DEM Differential Method on Tree Height Assessment wit Terra-SAR/TanDEM-X Data

    NASA Astrophysics Data System (ADS)

    Zhang, Wangfei; Chen, Erxue; Li, Zengyuan; Feng, Qi; Zhao, Lei

    2016-08-01

    DEM Differential Method is an effective and efficient way for forest tree height assessment with Polarimetric and interferometric technology, however, the assessment accuracy of it is based on the accuracy of interferometric results and DEM. Terra-SAR/TanDEM-X, which established the first spaceborne bistatic interferometer, can provide highly accurate cross-track interferometric images in the whole global without inherent accuracy limitations like temporal decorrelation and atmospheric disturbance. These characters of Terra-SAR/TandDEM-X give great potential for global or regional tree height assessment, which have been constraint by the temporal decorrelation in traditional repeat-pass interferometry. Currently, in China, it will be costly to collect high accurate DEM with Lidar. At the same time, it is also difficult to get truly representative ground survey samples to test and verify the assessment results. In this paper, we analyzed the feasibility of using TerraSAR/TanDEM-X data to assess forest tree height with current free DEM data like ASTER-GDEM and archived ground in-suit data like forest management inventory data (FMI). At first, the accuracy and of ASTER-GDEM and forest management inventory data had been assessment according to the DEM and canopy height model (CHM) extracted from Lidar data. The results show the average elevation RMSE between ASTER-GEDM and Lidar-DEM is about 13 meters, but they have high correlation with the correlation coefficient of 0.96. With a linear regression model, we can compensate ASTER-GDEM and improve its accuracy nearly to the Lidar-DEM with same scale. The correlation coefficient between FMI and CHM is 0.40. its accuracy is able to be improved by a linear regression model withinconfidence intervals of 95%. After compensation of ASTER-GDEM and FMI, we calculated the tree height in Mengla test site with DEM Differential Method. The results showed that the corrected ASTER-GDEM can effectively improve the assessment accuracy

  5. Offshore platform sourced pollution monitoring using space-borne fully polarimetric C and X band synthetic aperture radar.

    PubMed

    Singha, Suman; Ressel, Rudolf

    2016-11-15

    Use of polarimetric SAR data for offshore pollution monitoring is relatively new and shows great potential for operational offshore platform monitoring. This paper describes the development of an automated oil spill detection chain for operational purposes based on C-band (RADARSAT-2) and X-band (TerraSAR-X) fully polarimetric images, wherein we use polarimetric features to characterize oil spills and look-alikes. Numbers of near coincident TerraSAR-X and RADARSAT-2 images have been acquired over offshore platforms. Ten polarimetric feature parameters were extracted from different types of oil and 'look-alike' spots and divided into training and validation dataset. Extracted features were then used to develop a pixel based Artificial Neural Network classifier. Mutual information contents among extracted features were assessed and feature parameters were ranked according to their ability to discriminate between oil spill and look-alike spots. Polarimetric features such as Scattering Diversity, Surface Scattering Fraction and Span proved to be most suitable for operational services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Polarimetric synthetic aperture radar application for tropical peatlands classification: a case study in Siak River Transect, Riau Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Novresiandi, Dandy Aditya; Nagasawa, Ryota

    2017-01-01

    Mapping spatial distributions of tropical peatlands is important for properly estimating carbon emissions and for providing information that aids in the sustainable management of tropical peatlands, particularly in Indonesia. This study evaluated the performance of phased array type L-band synthetic aperture radar (SAR) (PALSAR) dual-polarization and fully polarimetric data for tropical peatlands classification. The study area was in Siak River Transect, Riau Province, Indonesia, a rapidly developing region, where the peatland has been intensively converted mostly into oil palm plantations over the last two decades. Thus, polarimetric features derived after polarimetric decompositions, backscatter coefficients measurements, and the radar vegetation index were evaluated to classify tropical peatlands using the decision tree classifier. Overall, polarimetric features generated by the combination of dual-polarization and fully polarimetric data yielded an overall accuracy (OA) of 69% and a kappa coefficient (K) of 0.57. The integration of an additional feature, "distance to river," to the algorithm increased the OA to 76% and K to 0.66. These results indicated that the methodology in this study might serve as an efficient tool in tropical peatlands classification, especially when involving the use of L-band SAR dual-polarization and fully polarimetric data.

  7. Refining the asteroid taxonomy by polarimetric observations

    NASA Astrophysics Data System (ADS)

    Belskaya, I. N.; Fornasier, S.; Tozzi, G. P.; Gil-Hutton, R.; Cellino, A.; Antonyuk, K.; Krugly, Yu. N.; Dovgopol, A. N.; Faggi, S.

    2017-03-01

    We present new results of polarimetric observations of 15 main belt asteroids of different composition. By merging new and published data we determined polarimetric parameters characterizing individual asteroids and mean values of the same parameters characterizing different taxonomic classes. The majority of asteroids show polarimetric phase curves close to the average curve of the corresponding class. We show that using polarimetric data it is possible to refine asteroid taxonomy and derive a polarimetric classification for 283 main belt asteroids. Polarimetric observations of asteroid (21) Lutetia are found to exhibit possible variations of the position angle of the polarization plane over the surface.

  8. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  9. Evaluating suitability of Pol-SAR (TerraSAR-X, Radarsat-2) for automated sea ice classification

    NASA Astrophysics Data System (ADS)

    Ressel, Rudolf; Singha, Suman; Lehner, Susanne

    2016-05-01

    Satellite borne SAR imagery has become an invaluable tool in the field of sea ice monitoring. Previously, single polarimetric imagery were employed in supervised and unsupervised classification schemes for sea ice investigation, which was preceded by image processing techniques such as segmentation and textural features. Recently, through the advent of polarimetric SAR sensors, investigation of polarimetric features in sea ice has attracted increased attention. While dual-polarimetric data has already been investigated in a number of works, full-polarimetric data has so far not been a major scientific focus. To explore the possibilities of full-polarimetric data and compare the differences in C- and X-bands, we endeavor to analyze in detail an array of datasets, simultaneously acquired, in C-band (RADARSAT-2) and X-band (TerraSAR-X) over ice infested areas. First, we propose an array of polarimetric features (Pauli and lexicographic based). Ancillary data from national ice services, SMOS data and expert judgement were utilized to identify the governing ice regimes. Based on these observations, we then extracted mentioned features. The subsequent supervised classification approach was based on an Artificial Neural Network (ANN). To gain quantitative insight into the quality of the features themselves (and reduce a possible impact of the Hughes phenomenon), we employed mutual information to unearth the relevance and redundancy of features. The results of this information theoretic analysis guided a pruning process regarding the optimal subset of features. In the last step we compared the classified results of all sensors and images, stated respective accuracies and discussed output discrepancies in the cases of simultaneous acquisitions.

  10. Scientist's Idealism Vs. User's Realism for Orthorectification of Full Radarsat-2/Compact RCM Polarimetric Data with DSM

    NASA Astrophysics Data System (ADS)

    Toutin, Thierry; Wang, Huili; Charbonneau, Francois; Schmitt, Carla

    2013-08-01

    This paper presented two methods for the orthorectification of full/compact polarimetric SAR data: the polarimetric processing is performed in the image space (scientist's idealism) or in the ground space (user's realism) before or after the geometric processing, respectively. Radarsat-2 (R2) fine-quad and simulated very high-resolution RCM data acquired with different look angles over a hilly relief study site were processed using accurate lidar digital surface model. Quantitative evaluations between the two methods as a function of different geometric and radiometric parameters were performed to evaluate the impact during the orthorectification. The results demonstrated that the ground-space method can be safely applied to polarimetric R2 SAR data with an exception with the steep look angles and steep terrain slopes. On the other hand, the ground-space method cannot be applied to simulated compact RCM data due to 17dB noise floor and oversampling.

  11. Crustal Deformation Measurements Using Repeat-pass JERS 1 SAR Interferometry Near the Izu Peninsula, Japan

    NASA Technical Reports Server (NTRS)

    Fujiwara, Satoshi; Rosen, Paul A.; Tobita, Mikio; Murakami, Makoto

    1997-01-01

    We have examined the precision of interferometric SAR measurements of surface deformation of the Earth using 24-cm wavelength data acqured by the Japanese Earth Resources Satellite 1 (JERS 1) spacecraft, over the Izu Peninsula, Japan.

  12. Crustal Deformation Measurements Using Repeat-pass JERS 1 SAR Interferometry Near the Izu Peninsula, Japan

    NASA Technical Reports Server (NTRS)

    Fujiwara, Satoshi; Rosen, Paul A.; Tobita, Mikio; Murakami, Makoto

    1997-01-01

    We have examined the precision of interferometric SAR measurements of surface deformation of the Earth using 24-cm wavelength data acqured by the Japanese Earth Resources Satellite 1 (JERS 1) spacecraft, over the Izu Peninsula, Japan.

  13. Research on two-pass differential InSAR and its implementation

    NASA Astrophysics Data System (ADS)

    Liu, Yihua; Zeng, Qiming; Li, Xiaofan; Gao, Liang; Zhang, Hua

    2006-03-01

    In this paper, the principle and processing procedures of two-pass Differential Interferometric Synthetic Aperture Radar (DInSAR) have been presented, and the difficulties and implementation of the key points are discussed in detail.

  14. Ground-Level Digital Terrain Model (DTM) Construction from Tandem-X InSAR Data and Worldview Stereo-Photogrammetric Images

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo, Temilola; Lagomasino, David; Osmanoglu, Batuhan; Feliciano, Emanuelle

    2016-01-01

    The ground-level digital elevation model (DEM) or digital terrain model (DTM) information are invaluable for environmental modeling, such as water dynamics in forests, canopy height, forest biomass, carbon estimation, etc. We propose to extract the DTM over forested areas from the combination of interferometric complex coherence from single-pass TanDEM-X (TDX) data at HH polarization and Digital Surface Model (DSM) derived from high-resolution WorldView (WV) image pair by means of random volume over ground (RVoG) model. The RVoG model is a widely and successfully used model for polarimetric SAR interferometry (Pol-InSAR) technique for vertical forest structure parameter retrieval [1][2][3][4]. The ground-level DEM have been obtained by complex volume decorrelation in the RVoG model with the DSM using stereo-photogrammetric technique. Finally, the airborne lidar data were used to validate the ground-level DEM and forest canopy height results.

  15. Bird Migration Echoes Observed by Polarimetric Radar

    NASA Astrophysics Data System (ADS)

    Minda, Haruya; Furuzawa, Fumie A.; Satoh, Shinsuke; Nakamura, Kenji

    A C-band polarimetric radar on Okinawa Island successfully observed large-scale bird migrations over the western Pacific Ocean. The birds generated interesting polarimetric signatures. This paper describes the signatures and speculates bird behavior.

  16. Offshore pollution monitoring using fully polarimetric X- and C-band synthetic aperture radar: a near-real-time perspective

    NASA Astrophysics Data System (ADS)

    Singha, Suman; Ressel, Rudolf; Lehner, Susanne

    2016-05-01

    Use of polarimetric features for oil spill characterization is relatively new and have not been used for operational services until now. In the last decade, a number of semi-automatic and automatic techniques have been proposed in order to differentiate oil spill and look-alike spots based on single pol SAR data, however these techniques suffer from a high miss-classification rate which is undesirable for operational services. In addition to that, small operational spillages from offshore platforms are often ignored as it appears insignificant on traditional ScanSAR (wide) images. In order to mitigate this situation a major focus of research in this area is the development of automated algorithms based on polarimetric images to distinguish oil spills from look-alikes. This paper describes the development of an automated Near Real Time (NRT) oil spill detection processing chain based on quad-pol RADARSAT-2 and quad-pol TerraSAR-X images using polarimetric features (e.g. Lexicographic and Pauli Based features). Number TerraSAR-X images acquired over known offshore platforms with same day ascending and descending configuration along with near coincident RADARSAT-2 acquisition. A total number of 10 polarimetric feature parameters were extracted from different types of oil (e.g. crude oil, emulsion etc) and look-alike spots and divided into training and validation dataset. Extracted features were then used for training and validation of a pixel based Artificial Neural Network (ANN) classifier. Initial performance estimation was carried out for the proposed methodology in order to evaluate its suitability for NRT operational service. Mutual information contents among extracted features were assessed and feature parameters were ranked according to their ability to discriminate between oil spill and look- alike. Polarimetric features such as Scattering diversity, Surface scattering fraction, Entropy and Span proved to be more discriminative than other polarimetric features.

  17. Studies of multi-baseline spaceborne interferometric synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Li, F.; Goldstein, R.

    1987-01-01

    A set of Seasat SAR data that were obtained in nearly repeat ground track orbits is utilized to simulate the performance of spaceborne interferometric synthetic aperture radar (ISAR) systems. A qualitative assessment of the topography measurement capability is presented. A phase measurement error model is described and compared with the data obtained at various baseline separations and signal-to-noise ratios. Finally, the implications of these results on the future spaceborne ISAR design are discussed.

  18. Landslide Inventory and Monitoring Using Sentinel-1 SAR Imagery

    NASA Astrophysics Data System (ADS)

    Monserrat, Oriol; Crosetto, Michele; Devanthery, Nuria; Cuevas-Gonzalez, Maria; Barra, Anna; Crippa, Bruno

    2016-08-01

    An important application of differential SAR interferometry (DInSAR) and Persistent Scatterer Interferometry is landslide detection and monitoring. Several studies have been published, which make use of the entire spectrum of SAR data types available in the last 25 years. This paper describes a procedure to update landslide inventory maps using Sentinel-1 data. The paper briefly discusses the main advantages of the Sentinel-1 SAR data. Then it describes the data analysis procedure used to update landslide inventory maps using interferometric data and a number of additional information layers. The effectiveness of the procedure is illustrated by the results of a study area located in the Molise region, in Southern Italy.

  19. Dependence of Polarimetric Scattering Mechanisms on Land Cover

    NASA Astrophysics Data System (ADS)

    Atwood, D. K.; Meyer, F.

    2011-03-01

    A method for statistically representing the polarimetric SAR scattering mechanisms of individual land cover classes is introduced and applied to ALOS PALSAR L-band quad-pol data. PALSAR scattering signatures are correlated with land cover classification maps to determine typical scattering mechanisms. The approach utilizes two free, open-source software tools, ESA's PolSARpro and the Alaska Satellite Facility's MapReady Remote Sensing Toolbox as well as Geographic Information System (GIS) tools, to compute the probability density functions of normalized decomposition components for each land cover class.The proposed method provides the ability to compare polarimetric decompositions, investigate scattering mechanisms, detect change in land cover classification, and discover inhomogeneities in the spectral characteristics of individual classes. The approach is first employed to compare the Freeman and Van Zyl three-component decomposition techniques, where the former is shown to introduce many pixels with 100% volume saturation.Ideally, the method yields distinctive scattering peaks for each land cover class with minimal variance in the individual scattering components. However, in some instances, bimodal peaks are found. These are shown to either represent changes between the original land classification and the SAR acquisitions, or the existence of spectral subclasses that were not differentiated in the original classification. Last, the method is used to determine the impact of Polarimetric Orientation Angle (POA) correction on the scattering signatures of urban land cover classes. POA compensation is shown to bring about a significant reduction in the volume scattering component.A method for statistically representing the polarimetric SAR scattering mechanisms of individual land cover classes is introduced and applied to ALOS PALSAR L-band quad-pol data. PALSAR scattering signatures are correlated with land cover classification maps to determine typical

  20. Polarimetric properties of land clutter at millimeterwave bands

    NASA Astrophysics Data System (ADS)

    Essen, Helmut; Schimpf, Hartmut

    2004-02-01

    To have an appropriate data base for the development of non-cooperative target identification techniques, airborne measurements were conducted with the mmW-SAR-system MEMPHIS over agricultural terrain with a variety of different fields and canopies of trees. Four different depression angles were used, ranging between 15° and 38°, which allows to determine important clutter parameters as a function of depression angle. During the measurements evaluated here, the transmit polarization was switched from pulse to pulse between horizontal and vertical. Most important for a comparison between different passes is a careful polarimetric calibration. This was done using a statistical method. Absolute amplitude calibration was achieved by means of trihedral corner reflectors. The SAR processing provides the user with several degrees of freedom. Apart from different cross range (Doppler) resolution cell sizes it is possible to create either single look or multi-look images and study the influence of averaging on reflectivity statistics. The results are valuable not only for discrimination and ATR algorithms but also for the development of polarimetric target/clutter simulation models. The paper describes the experimental set-up and discusses the evaluation methods. Typical results are presented and the implications on ATR methods are highlighted.

  1. A noise model for InSAR time series

    NASA Astrophysics Data System (ADS)

    Agram, P. S.; Simons, M.

    2015-04-01

    Interferometric synthetic aperture radar (InSAR) time series methods estimate the spatiotemporal evolution of surface deformation by incorporating information from multiple SAR interferograms. While various models have been developed to describe the interferometric phase and correlation statistics in individual interferograms, efforts to model the generalized covariance matrix that is directly applicable to joint analysis of networks of interferograms have been limited in scope. In this work, we build on existing decorrelation and atmospheric phase screen models and develop a covariance model for interferometric phase noise over space and time. We present arguments to show that the exploitation of the full 3-D covariance structure within conventional time series inversion techniques is computationally challenging. However, the presented covariance model can aid in designing new inversion techniques that can at least mitigate the impact of spatial correlated nature of InSAR observations.

  2. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects.

  3. TE/TM Simulations of Interferometric Measurements

    NASA Technical Reports Server (NTRS)

    Houshmand, Bijan

    2000-01-01

    Interferometric synthetic aperture radar (IFSAR) measurements at X-, C-, L-, and P-band are used to derive ground topography at meter level resolution. Interpretation of the derived topography requires attention due to the complex interaction of the radar signal with ground cover. The presence of penetrable surfaces such as vegetation, and tree canopies poses a challenge since the depth of penetration depends on a number of parameters such as the operating radar frequency, polarization, incident angle, as well as terrain structure. The dependence of the reconstructed topography on polarization may lead to the characterization of the ground cover. Simulation of interferometric measurements is useful for interpretation of the derived topography (B. Houshmand, Proceedings of URSI, 314, 1997). In this talk , time domain simulations for interferometric measurement for TE- and TM- polarization are presented. Time domain simulation includes the effects of the surface material property as well geometry comparable the radar signal wavelength (B. Houshmand, Proceedings of the URSI, 25, 1998). The IFSAR simulation is carried out in two steps. First, the forward scattering data is generated based on full wave analysis. Next, the electromagnetic information is inverted to generate surface topography. This inversion is based on the well known IFSAR processing technique which is composed of signal compression, and formation of an interferogram. The full wave forward scattering data is generated by the scattered-field formulation of the FDTD algorithm. The simulation is carried out by exciting the computational domain by a radar signal. The scattered field is then computed and translated to the receiving interferometric antennas using the time-domain Huygen's principle. The inversion process starts by compressing the time-domain data. The range compressed data from both receivers are then coregistered to form an interferogram. The resulting interferogram is then related to the

  4. Polarimetric observations of Hungaria asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; Lazzaro, D.; Benavidez, P.

    2007-06-01

    Aims:We present the results of a polarimetric program at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aim of this campaign is to estimate the polarimetric properties of asteroids belonging to the Hungaria dynamical group. Methods: The data were obtained with the Casprof polarimeter at the 2.15 m telescope. The Casprof polarimeter is a two-hole aperture polarimeter with rapid modulation. The campaign began in 2000, and data on a sample of 24 members of the Hungaria group were obtained. We use the slope - albedo or P_min - albedo relationships to get polarimetric albedos for 18 of these objects. Results: Only two Xe-type objects, 434 Hungaria and 3447 Burkhalter, shown a polarimetric behavior compatible with a high albedo object. The A-type asteroid 1600 Vyssotsky has a polarimetric behavior similar to what was observed by Fornasier et al. (2006) for 863 Benkolea, and four objects show P_min values consistent with dark surfaces. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  5. Towards automated mapping of lake ice using RADARSAT-2 and simulated RCM compact polarimetric data

    NASA Astrophysics Data System (ADS)

    Duguay, Claude

    2016-04-01

    The Canadian Ice Service (CIS) produces a weekly ice fraction product (a text file with a single lake-wide ice fraction value, in tenth, estimated for about 140 large lakes across Canada and northern United States) created from the visual interpretation of RADARSAT-2 ScanSAR dual-polarization (HH and HV) imagery, complemented by optical satellite imagery (AVHRR, MODIS and VIIRS). The weekly ice product is generated in support of the Canadian Meteorological Centre (CMC) needs for lake ice coverage in their operational numerical weather prediction model. CIS is interested in moving from its current (manual) way of generating the ice fraction product to a largely automated process. With support from the Canadian Space Agency, a project was recently initiated to assess the potential of polarimetric SAR data for lake ice cover mapping in light of the upcoming RADARSAT Constellation Mission (to be launched in 2018). The main objectives of the project are to evaluate: 1) state-of-the-art image segmentation algorithms and 2) RADARSAT-2 polarimetric and simulated RADARSAT Constellation Mission (RCM) compact polarimetric SAR data for ice/open water discrimination. The goal is to identify the best segmentation algorithm and non-polarimetric/polarimetric parameters for automated lake ice monitoring at CIS. In this talk, we will present the background and context of the study as well as initial results from the analysis of RADARSAT-2 Standard Quad-Pol data acquired during the break-up and freeze-up periods of 2015 on Great Bear Lake, Northwest Territories.

  6. Next generation SAR demonstration on space station

    SciTech Connect

    Edelstein, Wendy; Kim, Yunjin; Freeman, Anthony; Jordan, Rolando

    1999-01-22

    This paper describes the next generation synthetic aperture radar (SAR) that enables future low cost space-borne radar missions. In order to realize these missions, we propose to use an inflatable, membrane, microstrip antenna that is particularly suitable for low frequency science radar missions. In order to mitigate risks associated with this revolutionary technology, the space station demonstration will be very useful to test the long-term survivability of the proposed antenna. This experiment will demonstrate several critical technology challenges associated with space-inflatable technologies. Among these include space-rigidization of inflatable structures, controlled inflation deployment, flatness and uniform separation of thin-film membranes and RF performance of membrane microstrip antennas. This mission will also verify the in-space performance of lightweight, high performance advanced SAR electronics. Characteristics of this SAR instrument include a capability for high resolution polarimetric imaging. The mission will acquire high quality scientific data using this advanced SAR to demonstrate the utility of these advanced technologies. We will present an inflatable L-band SAR concept for commercial and science applications and a P-band design concept to validate the Biomass SAR mission concept. The ionospheric effects on P-band SAR images will also be examined using the acquired data.

  7. RADARSAT-2 Polarimetric Radar Imaging for Lake Ice Mapping

    NASA Astrophysics Data System (ADS)

    Pan, F.; Kang, K.; Duguay, C. R.

    2016-12-01

    Changes in lake ice dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake ice cover observations are also a valuable data source for predictions with numerical ice and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake ice cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake ice mapping at high latitudes where meteorological conditions and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake ice from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and different ice types during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms. These procedures as well as basic polarimetric parameters were integrated into modified convolutional neural networks (CNN). The CNN were modified via introduction of a Markov random field into the higher iterative layers of networks for acquiring updated priors and classifying ice and open water areas over the lake. We show that the selected polarimetric parameters can help with interpretation of radar-ice/water interactions and can be used successfully for water-ice segmentation, including different ice types. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake ice for consideration by ice services.

  8. UAVASAR L-Band Polarimetric Data to Analyze BP Oil Spill

    NASA Astrophysics Data System (ADS)

    Migliacciio, M.; Nunziata, F.; Holt, B.

    2011-03-01

    Two polarimetric approaches are presented to observe oil spills in polarimetric SAR data gathered during UAVSAR flights over the polluted area of Gulf of Mexico. The approaches, based on the co-polarized pedestal height and on the co-polarized phase difference (CPD), are able to work on full-polarized and dual-polarized Synthetic Aperture Radar (SAR) data, respectively.The approaches have been shown to be both able to distinguish the oil for the surrounding sea surface and to classify it according to its damping properties. Results, compared with ancillary data provided by independent aircraft surveys, witness the very heterogeneous damping properties of the oil spilled after the BP oil platform accident.

  9. Land Use Mapping with Evidential Fusion of Polarimetric Synthetic Aperture Radar and Hyperspectral Imagery

    DTIC Science & Technology

    2002-09-01

    comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to...Intelligent Data Fusion System (IDFS) for evidential fusion of features extracted from polarimetric SAR and Hyperspectral imagery. This paper presents the use...hypotheses using the evidence theory proposed by Dempster-Shafer. This paper presents an overview of the current functionality of IDFS. Results of evidential

  10. Processing and Analysis of Polarimetric Ship Signatures from MARSIE: Report on Results for Polar Epsilon

    DTIC Science & Technology

    2006-10-01

    signed by Gary W. Geling Gary W. Geling Head, Radar Applications and Space Technologies Section Approved for release by Original signed by Cam...Ottawa TM 2006-202 Acknowledgements The MARSIE trial was implemented as a TTCP SEN AG-7 activity with Gary Geling (DRDC Ottawa) and LCdr...DRDC Ottawa TM 2005-134. [12] Liu, C., P.W. Vachon, and G.W. Geling ; Improved ship detection using polarimetric SAR data; Canadian Journal of

  11. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul; Chen, Hou-tong; Peralta, Xomalin G; Brener, Igal

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at tcrahertz frequencies, it may find applications in other frequency ranges as well.

  12. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.

  13. Coherence versus interferometric resolution

    SciTech Connect

    Luis, Alfredo

    2010-06-15

    We examine the relation between second-order coherence and resolution in the interferometric detection of phase shifts. While for classical thermal light resolution and second-order coherence are synonymous, we show that for quantum light beams reaching optimum precision second-order coherence and resolution become antithetical.

  14. Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy.

    PubMed

    Sheppard, Colin J R; Kou, Shan Shan; Depeursinge, Christian

    2012-03-01

    It is shown that the spatial frequencies recorded in interferometric synthetic aperture microscopy do not correspond to exact backscattering [as they do in unistatic synthetic aperture radar (SAR)] and that the reconstruction process based on SAR is therefore based on an approximation. The spatial frequency response is developed based on the three-dimensional coherent transfer function approach and compared with that in optical coherence tomography and digital holographic microscopy.

  15. Evaluating compact SAR polarimetry for tropical forest monitoring

    NASA Astrophysics Data System (ADS)

    Trisasongko, Bambang H.

    2015-01-01

    Fully polarimetric Synthetic Aperture Radar (SAR) or PolSAR has been proven useful for diverse applications related to environment. Nevertheless, problems are arising since satellite-borne PolSAR requires special arrangements on data acquisition and consumes higher energy for signal transmission. Complexity of data acquisition and analysis can be reduced using compact polarimetry. The technique has been demonstrated to some extent; however, tests on various environments are still required. This paper assesses compact polarimetry on a tropical forest fringe, especially to monitor expanding oil palm estate and forest disturbance, in comparison to fully polarimetric mode. PALSAR data of Manokwari, Indonesia, were collected from JAXA through RA4.1029 project. In this paper, linear 45 degrees transmission is evaluated to detect various land cover classes using Wishart supervised classifier. Tonal discrepancies between both polarimetric modes are evident, suggesting compact polarimetry has limitation to recover information contained in fully polarimetric mode. However, Wishart classification procedure indicates that compact polarimetry is still useful for mapping.

  16. Formation Flying for Distributed InSAR

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Murray, Emmanuell A.; Ploen, Scott R.; Gromov, Konstantin G.; Chen, Curtis W.

    2006-01-01

    We consider two spacecraft flying in formation to create interferometric synthetic aperture radar (InSAR). Several candidate orbits for such in InSar formation have been previously determined based on radar performance and Keplerian orbital dynamics. However, with out active control, disturbance-induced drift can degrade radar performance and (in the worst case) cause a collision. This study evaluates the feasibility of operating the InSAR spacecraft as a formation, that is, with inner-spacecraft sensing and control. We describe the candidate InSAR orbits, design formation guidance and control architectures and algorithms, and report the (Delta)(nu) and control acceleration requirements for the candidate orbits for several tracking performance levels. As part of determining formation requirements, a formation guidance algorithm called Command Virtual Structure is introduced that can reduce the (Delta)(nu) requirements compared to standard Leader/Follower formation approaches.

  17. Formation Flying for Distributed InSAR

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Murray, Emmanuell A.; Ploen, Scott R.; Gromov, Konstantin G.; Chen, Curtis W.

    2006-01-01

    We consider two spacecraft flying in formation to create interferometric synthetic aperture radar (InSAR). Several candidate orbits for such in InSar formation have been previously determined based on radar performance and Keplerian orbital dynamics. However, with out active control, disturbance-induced drift can degrade radar performance and (in the worst case) cause a collision. This study evaluates the feasibility of operating the InSAR spacecraft as a formation, that is, with inner-spacecraft sensing and control. We describe the candidate InSAR orbits, design formation guidance and control architectures and algorithms, and report the (Delta)(nu) and control acceleration requirements for the candidate orbits for several tracking performance levels. As part of determining formation requirements, a formation guidance algorithm called Command Virtual Structure is introduced that can reduce the (Delta)(nu) requirements compared to standard Leader/Follower formation approaches.

  18. Polarimetric synthetic aperture radar image unsupervised classification method based on artificial immune system

    NASA Astrophysics Data System (ADS)

    Jie, Yu; Gang, Wang; Teng, Zhu; Xiaojuan, Li; Qin, Yan

    2014-01-01

    An unsupervised classification method based on the H/α classifier and artificial immune system (AIS) is proposed to overcome the inefficiencies that arise when traditional classification methods deal with polarimetric synthetic aperture radar (PolSAR) data having large numbers of overlapping pixels and excess polarimetric information. The method is composed of two steps. First, Cloude-Pottier decomposition is used to obtain the entropy H and the scattering angle α. The classification result based on the H/α plane is used to initialize the AIS algorithm. Second, to obtain accurate results, the AIS clonal selection algorithm is used to perform an iterative calculation. As a self-organizing, self-recognizing, and self-optimizing algorithm, the AIS is able to obtain a global optimal solution and better classification results by making use of both the scattering mechanism of ground features and polarimetric scattering characteristics. The effectiveness and feasibility of this method are demonstrated by experiments using a NASA-JPL PolSAR image and a high-resolution PolSAR image of Lingshui autonomous county in Hainan Province.

  19. InfoTerra/TerraSAR initiative

    NASA Astrophysics Data System (ADS)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  20. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    PubMed Central

    Davis, Brynmor. J.; Marks, Daniel. L.; Ralston, Tyler. S.; Carney, P. Scott; Boppart, Stephen. A.

    2008-01-01

    Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM) allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT), utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR). In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR. PMID:20948975

  1. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy.

    PubMed

    Davis, Brynmor J; Marks, Daniel L; Ralston, Tyler S; Carney, P Scott; Boppart, Stephen A

    2008-06-01

    Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM) allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT), utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR). In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  2. The ROHP-PAZ mission and the polarimetric and non-polarimetric effects of rain and other fozen hydrometeors on GNSS Radio-Occultation signals.

    NASA Astrophysics Data System (ADS)

    De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Tomás, S.; Turk, J.; Ao, C. O.; Oliveras, S.; Rius, A.

    2015-12-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) will test, for the first time, the new polarimetric radio occultation (RO) concept. This is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) RO payload on board of the Spanish Earth Observation satellite PAZ. The launch of the satellite is scheduled for October 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years.The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric components of the received signal, although in this case we will use the forward scattering geometry instead of the backscattering one. It will allow us to retrieve precipitation and other hydrometeors information, and simultaneous thermodynamic vertical profiles which will help to the understanding of the thermodynamic processes beyond heavy rain events. A sensitivity analysis has been performed, showing that the rain-induced effect is above PAZ detectability threshold in 90% of the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. The measurements from the campaign have shown the first experimental evidences that precipitation and frozen hydrometeors induce a noticeable effect into the polarimetric RO observables. We will present here the actual status of the mission and the results from the field campaign. We will also discuss the results of the theoretical study of the thermodynamics and the effects of rain and frozen hydrometeors into standard and polarimetric RO, based on a large collocation exercise of COSMIC and TerrasSar-X with TRMM, GPM and CloudSat.

  3. Optical Polarimetric Mapping of Ceres

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Li, Jian-Yang; Kelley, Michael S.

    2016-10-01

    The dwarf planet Ceres, with one quarter of its mass possibly as water, is of particular importance to understanding the origin and the evolution history of water in the inner solar system. It is also a real-life laboratory to study astrobiology. NASA's Dawn is returning detailed geological maps of Ceres until the end of this year. As a complement to the Dawn mission, using SPHERE/ZIMPOL at one of Very Large Telescopes in Chile, we obtained the optical polarimetric maps in the I and V band of the whole surface of Ceres in July and August, 2015. Polarimetric maps of Ceres are sensitive to the physical conditions (such as packing density and particle size distribution) and composition of its surface regolith. The comparative studies between our polarimetric maps and Dawn maps help us to understand the geological evolution and the space weathering processes on Ceres' surface. At the time of the ZIMPOL observations, with the best spatial resolution of about 0.02 arcsecond (equivalent to 30 km), we effectively obtained about 700 independent measurements of the surface in one polarimetric set. I will present the SPHERE observations and discuss our major findings.

  4. Delta-K Wideband SAR Interferometry for DEM Generation and Persistent Scatterers Using TeraSAR-X

    NASA Astrophysics Data System (ADS)

    Brcic, Ramon; Eineder, Michael; Bamler, Richard; Steinbrecher, Ulrich; Schulze, Daniel; Metzig, Robert; Papathanassiou, Konstantinos; Nagler, Thomas; Mueller, Florian; Suess, Martin

    2010-03-01

    Wideband SAR systems such as TerraSAR-X allow estimation of the absolute interferometric phase without resorting to error prone phase unwrapping. This is achieved through the delta-k technique that exploits frequency diversity within the range bandwidth to simulate a SAR system with a much longer carrier wavelength. This benefits all interferometric applications including DEM generation and land surface motion determination. Here we present the results of an ESA study (21318/07/NL/HE) into using delta-k absolute phase estimation for DEM generation and PSI (Persistent Scatterer Interferometry). Using TerraSAR- X data, examples from a delta-k DEM generation system are shown which avoid the errors induced by conventional phase unwrapping. For PSI, the possibilities of absolute phase estimation for a single PS are explored in theory and examples where wideband estimation is compared to conventional PSI processing for a stack of acquisitions over Paris.

  5. Along Track Interferometry Synthetic Aperture Radar (ATI-SAR) Techniques for Ground Moving Target Detection

    DTIC Science & Technology

    2006-01-01

    DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 Words) Conventional along track interferometric synthetic aperature radar , ATI-SAR, approaches can detect...House, Inc., Norwood, MA, 1995. [14] R. Bamler and P. Hartl, " Synthetic aperture radar interferometry," Inverse Problems, vol. 14, R1-R54, 1998. [15... SYNTHETIC APERTURE RADAR (ATI-SAR) TECHNIQUES FOR GROUND MOVING TARGET DETECTION Stiefvater Consultants

  6. Likelihood Ratio Test Polarimetric SAR Ship Detection Application

    DTIC Science & Technology

    2005-12-01

    IHHI, green = IHV+ VHI , blue = IVVl) and the Pauli Decomposition (red - double bounce, green = volume scatter, blue = single bounce). On the right side...before, three files that combine to form a basic RGB composite representation of the image are generated (Red=IHHI, green=IHV+ VHI , blue-jVVI). Then, six...IHV- VHI . The image is then displayed in the main display. If the channel viewports are turned on, the HH channel is shown in the first viewport, the

  7. Target Classification Using SAR (Synthetic Aperture Radar) Polarimetric Data

    DTIC Science & Technology

    1989-01-01

    concerned with studies which exarnine the ( ’c ht a, tcristics of dihedral corner reflectors [15]. However, the motive behind !III- ,. pIe-occupation...s excellent correlation between the predicted and the measured reaction of a dihedral 2-9 I I I I’ So e corner reflector to varying degrees of...Griesser’s article ti- tled Backscatter Analysis of Dihedral Corner Reflectors Using Physical Optics and the Physical Theory of Diffraction [17] in which he

  8. On The TerraSAR-X Dual-Mode For Oil Slick Observation

    NASA Astrophysics Data System (ADS)

    Velotto, D.; Migliaccio, M.; Nunziata, F.; Lehner, S.

    2010-04-01

    In this study a polarimetric approach is for the first time developed and applied to X-band Synthetic Aperture Radar (SAR) data for sea oil slick observation. Following this an electromagnetic model which, based on the Co-polarized Phase Difference (CPD), allows describing the slick-free and slick-covered sea surface scattering is proposed. Single Look Complex (SSC) TerraSAR-X (TSX) data, gathered in dual polarimetric mode, in which both certified oil slicks and look-alikes are present, are analyzed. Several experiments are shown here and discussed in detail.

  9. Object-oriented change detection based on weighted polarimetric scattering differences on POLSAR images

    NASA Astrophysics Data System (ADS)

    Shi, X.; Lu, L.; Yang, S.; Huang, G.; Zhao, Z.

    2015-06-01

    For wide application of change detection with SAR imagery, current processing technologies and methods are mostly based on pixels. It is difficult for pixel-based technologies to utilize spatial characteristics of images and topological relations of objects. Object-oriented technology takes objects as processing unit, which takes advantage of the shape and texture information of image. It can greatly improve the efficiency and reliability of change detection. Recently, with the development of polarimetric synthetic aperture radar (PolSAR), more backscattering features on different polarization state can be available for usage of object-oriented change detection study. In this paper, the object-oriented strategy will be employed. Considering the fact that the different target or target's state behaves different backscattering characteristics dependent on polarization state, an object-oriented change detection method that based on weighted polarimetric scattering difference of PolSAR images is proposed. The method operates on the objects generated by generalized statistical region merging (GSRM) segmentation processing. The merit of GSRM method is that image segmentation is executed on polarimetric coherence matrix, which takes full advantages of polarimetric backscattering features. And then, the measurement of polarimetric scattering difference is constructed by combining the correlation of covariance matrix and the difference of scattering power. Through analysing the effects of the covariance matrix correlation and the scattering echo power difference on the polarimetric scattering difference, the weighted method is used to balance the influences caused by the two parts, so that more reasonable weights can be chosen to decrease the false alarm rate. The effectiveness of the algorithm that proposed in this letter is tested by detection of the growth of crops with two different temporal radarsat-2 fully PolSAR data. First, objects are produced by GSRM algorithm

  10. Cluster membership probability: polarimetric approach

    NASA Astrophysics Data System (ADS)

    Medhi, Biman J.; Tamura, Motohide

    2013-04-01

    Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q (per cent) and u (per cent) for the proper-motion member stars depends on the interstellar and intracluster differential reddening in the open cluster. It is found that this method could be used to estimate the cluster membership probability if we have additional polarimetric and photometric information for a star to identify it as a probable member/non-member of a particular cluster, such as the maximum wavelength value (λmax), the unit weight error of the fit (σ1), the dispersion in the polarimetric position angles (overline{ɛ }), reddening (E(B - V)) or the differential intracluster reddening (ΔE(B - V)). This method could also be used to estimate the membership probability of known member stars having no membership probability as well as to resolve disagreements about membership among different proper-motion surveys.

  11. "New" Vistas for Polarimetric Exploration

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2016-12-01

    The versatility of polarimetric exploration is exploited to address the overarching goals for the remote sensing and robotic exploration of our solar system and exoplanetary systems: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. While linear polarization of reflected light by solar system objects provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality (or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. Most solar system polarimetric exploration is dominantly the study of cometary and asteroidal dust/regoliths. However, efforts are starting to emerge as "new" directions in this field: from recent studies of outer planetary atmospheres and satellites; polarization of magnetic field lines; addressing taxonomy of asteroids and including amateur astronomers. Although current solar system missions do not have polarimeters on-board, ground-based polarimetric observations prove to valuable and complementary. For example, NASA/JUNO lacks a polarimeter in its payload, and one of its goals is to understand Jupiter's aurorae. Recent ground-based observations from NASA/IRTF indicate that the auroral H3+ line is polarized (Barthelemy et al., 2011, A&A, 530). Another new direction for polarimetric exploration is the inclusion of amateur astronomers. Imaging and spectroscopy are routinely performed by amateurs, but recently, there is interest in developing polarimetric exploration amongst the amateur community, such as the study of polarization of the moon (Fearnside et al., 2016, Icarus). I will

  12. Agricultural Land Cover from Multitemporal C-Band SAR Data

    NASA Astrophysics Data System (ADS)

    Skriver, H.

    2013-12-01

    Henning Skriver DTU Space, Technical University of Denmark Ørsteds Plads, Building 348, DK-2800 Lyngby e-mail: hs@space.dtu.dk Problem description This paper focuses on land cover type from SAR data using high revisit acquisitions, including single and dual polarisation and fully polarimetric data, at C-band. The data set were acquired during an ESA-supported campaign, AgriSAR09, with the Radarsat-2 system. Ground surveys to obtain detailed land cover maps were performed during the campaign. Classification methods using single- and dual-polarisation data, and fully polarimetric data are used with multitemporal data with short revisit time. Results for airborne campaigns have previously been reported in Skriver et al. (2011) and Skriver (2012). In this paper, the short revisit satellite SAR data will be used to assess the trade-off between polarimetric SAR data and data as single or dual polarisation SAR data. This is particularly important in relation to the future GMES Sentinel-1 SAR satellites, where two satellites with a relatively wide swath will ensure a short revisit time globally. Questions dealt with are: which accuracy can we expect from a mission like the Sentinel-1, what is the improvement of using polarimetric SAR compared to single or dual polarisation SAR, and what is the optimum number of acquisitions needed. Methodology The data have sufficient number of looks for the Gaussian assumption to be valid for the backscatter coefficients for the individual polarizations. The classification method used for these data is therefore the standard Bayesian classification method for multivariate Gaussian statistics. For the full-polarimetric cases two classification methods have been applied, the standard ML Wishart classifier, and a method based on a reversible transform of the covariance matrix into backscatter intensities. The following pre-processing steps were performed on both data sets: The scattering matrix data in the form of SLC products were

  13. POLARIMETRIC OBSERVATIONS OF {sigma} ORIONIS E

    SciTech Connect

    Carciofi, A. C.; Faes, D. M.; Townsend, R. H. D.; Bjorkman, J. E.

    2013-03-20

    Some massive stars possess strong magnetic fields that confine plasma in the circumstellar environment. These magnetospheres have been studied spectroscopically, photometrically, and, more recently, interferometrically. Here we report on the first firm detection of a magnetosphere in continuum linear polarization, as a result of monitoring {sigma} Ori E at the Pico dos Dias Observatory. The non-zero intrinsic polarization indicates an asymmetric structure whose minor elongation axis is oriented 150. Degree-Sign 0 east of the celestial north. A modulation of the polarization was observed with a period of half of the rotation period, which supports the theoretical prediction of the presence of two diametrally opposed, corotating blobs of gas. A phase lag of -0.085 was detected between the polarization minimum and the primary minimum of the light curve, suggestive of a complex shape of the plasma clouds. We present a preliminary analysis of the data with the Rigidly Rotating Magnetosphere model, which could not reproduce simultaneously the photometric and polarimetric data. A toy model comprising two spherical corotating blobs joined by a thin disk proved more successful in reproducing the polarization modulation. With this model we were able to determine that the total scattering mass of the thin disk is similar to the mass of the blobs (2M{sub b}/M{sub d} = 1.2) and that the blobs are rotating counterclockwise on the plane of the sky. This result shows that polarimetry can provide a diagnostic of the geometry of clouds, which will serve as an important constraint for improving the Rigidly Rotating Magnetosphere model.

  14. Polarimetric analysis of snow-covered and bare lake ice from Ku and X-band scatterometer data

    NASA Astrophysics Data System (ADS)

    Ben Khadhra, K.; Gunn, G. E.; Duguay, C. R.; Kelly, R. E.

    2011-12-01

    Lake ice plays a key role in regional climate, and has significant physical, biological and socio-economic impacts (e.g. fish overwintering habitat, winter-road transportation, public safety). In the last two decades, there has been growing interest by the international remote sensing community to explore radar polarimetry for glaciological investigations, mainly for glaciers and ice sheet. Polarimetric synthetic aperture radar (SAR) could be a potential tool for lake ice cover mapping and ice thickness estimation. In this paper, we represent results from the first investigation of fully polarimetric Ku and X-band (9.6 and 17.2 GHz, respectively) scatterometer data collected over lake near Churchill, Manitoba. Several controlled and calibrated experimental measurements were carried out during winter 2010-2011, as a contribution to the Cold Regions Hydrology High-resolution Observatory (CoReH2O) candidate mission of the European Space Agency (ESA). Scatterometer scans were made on several occasions at five undisturbed static sites on Ramsey Lake. Measurements characterizing snow and ice properties were also gathered immediately after scatterometer scans. Snow depth and density, snow water equivalent, gain size, ice thickness, ice composition and air inclusion in ice volume were determined at each site. This field data set was very important for the interpretation of the polarimetric parameters, e.g. the copolarization ratio, the copolarization phase and the depolarization ratio. First, the polarimetric parameters have been analysed for the two layers (snow and ice) covariance matrix and where snow subsequently removed. Thus, the influence of the snow layer on the polarimetric data could be quantified. Also, the Pauli and Cloude/Pottier polarimetric decompositions were applied for the two-layer and one-layer scattering mechanisms (removed snow) to quantify the effectiveness of these decompositions. Results show that the polarimetric SAR could explain the different

  15. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  16. A 3-D SAR approach to IFSAR processing

    SciTech Connect

    DOERRY,ARMIN W.; BICKEL,DOUGLAS L.

    2000-03-01

    Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super-resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.

  17. Development Of Polarimetric Decomposition Techniques For Indian Forest Resource Assessment Using Radar Imaging Satellite (Risat-1) Images

    NASA Astrophysics Data System (ADS)

    Sridhar, J.

    2015-12-01

    The focus of this work is to examine polarimetric decomposition techniques primarily focussed on Pauli decomposition and Sphere Di-Plane Helix (SDH) decomposition for forest resource assessment. The data processing methods adopted are Pre-processing (Geometric correction and Radiometric calibration), Speckle Reduction, Image Decomposition and Image Classification. Initially to classify forest regions, unsupervised classification was applied to determine different unknown classes. It was observed K-means clustering method gave better results in comparison with ISO Data method.Using the algorithm developed for Radar Tools, the code for decomposition and classification techniques were applied in Interactive Data Language (IDL) and was applied to RISAT-1 image of Mysore-Mandya region of Karnataka, India. This region is chosen for studying forest vegetation and consists of agricultural lands, water and hilly regions. Polarimetric SAR data possess a high potential for classification of earth surface.After applying the decomposition techniques, classification was done by selecting region of interests andpost-classification the over-all accuracy was observed to be higher in the SDH decomposed image, as it operates on individual pixels on a coherent basis and utilises the complete intrinsic coherent nature of polarimetric SAR data. Thereby, making SDH decomposition particularly suited for analysis of high-resolution SAR data. The Pauli Decomposition represents all the polarimetric information in a single SAR image however interpretation of the resulting image is difficult. The SDH decomposition technique seems to produce better results and interpretation as compared to Pauli Decomposition however more quantification and further analysis are being done in this area of research. The comparison of Polarimetric decomposition techniques and evolutionary classification techniques will be the scope of this work.

  18. Precision Interferometric Dilatometer

    DTIC Science & Technology

    2013-05-23

    reference mirrors on a ULE glass or Zerodur block in a thermally insulated - part of the system. Since the BIP, (or B2P2) paths are in air, mounting...into the vacuum chamber. The reference mirror support (e.g., Zerodur ) is shielded from temperature excursion, and a conservative error is ALu - aL... Mirror (1000 V B 15 pm motion)s............s.. 24 10. Interferometric Counter Output vs. Voltage Applied to PZT-Driven Mirror (fine scale

  19. Interferometric Remapped Array Nulling

    NASA Astrophysics Data System (ADS)

    Abe, L.; Aristidi, E.; Vakili, F.; Domiciano, A.

    We present an interferometric beam recombination technique which allows achromatic and direct true imaging of targets at very high angular resolution. This technique intrinsically overcomes the main problems of Labeyrie's hypertelescope design, and can be used in a nulling configuration. It is thus particularly well suited for high contrast imaging in the context of exo-planet search and characterization especially for future space-borne arrays. We present the concept on a formal basis, and discuss its instrumental implementation.

  20. On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements

    NASA Astrophysics Data System (ADS)

    Catani, Filippo; Farina, Paolo; Moretti, Sandro; Nico, Giovanni; Strozzi, Tazio

    2005-03-01

    This paper presents two examples of application of Synthetic Aperture Radar (SAR) interferometry (InSAR) to typical geomorphological problems. The principles of InSAR are introduced, taking care to clarify the limits and the potential of this technique for geomorphological studies. The application of InSAR to the quantification of landform attributes such as the slope and to the estimation of landform variations is investigated. Two case studies are presented. A first case study focuses on the problem of measuring landform attributes by interferometric SAR data. The interferometric result is compared with the corresponding one obtained by a Digital Elevation Model (DEM). In the second case study, the use of InSAR for the estimation of landform variations caused by a landslide is detailed.

  1. Relative astrometry of compact flaring structures in Sgr A* with polarimetric very long baseline interferometry

    SciTech Connect

    Johnson, Michael D.; Doeleman, Sheperd S.; Fish, Vincent L.; Broderick, Avery E.; Wardle, John F. C.; Marrone, Daniel P.

    2014-10-20

    We demonstrate that polarimetric interferometry can be used to extract precise spatial information about compact polarized flares of Sgr A*. We show that, for a faint dynamical component, a single interferometric baseline suffices to determine both its polarization and projected displacement from the quiescent intensity centroid. A second baseline enables two-dimensional reconstruction of the displacement, and additional baselines can self-calibrate using the flare, enhancing synthesis imaging of the quiescent emission. We apply this technique to simulated 1.3 mm wavelength observations of a 'hot spot' embedded in a radiatively inefficient accretion disk around Sgr A*. Our results indicate that, even with current sensitivities, polarimetric interferometry with the Event Horizon Telescope can achieve ∼5 μas relative astrometry of compact flaring structures near Sgr A* on timescales of minutes.

  2. GB-SAR Experiment On Deformation Extraction And System Error Analysis

    NASA Astrophysics Data System (ADS)

    Qu, Shibo; Wang, Yanping; Tan, Weixian; Hong, Wen

    2010-10-01

    Ground Based Synthetic Aperture Radar (GB-SAR) provides a new method to monitoring deformation in relative small region. In this paper, we present the GB-SAR imaging geometry and analyze the interferometric phase for the purpose of deformation monitoring. Deformation monitoring error sources are also analyzed through sensitivity equations, including frequency instability and its influence on interferometric phase and deformation extraction, incident angle and monitoring distance. At last, a deformation monitoring experiment is carry out using ASTRO (Advanced Scannable Two-dimensional Rail Observation system), a GB-SAR system constructed by Institute of Electronics Chinese Academy of Sciences (IECAS). The deformation monitoring results show good consistent with metal objects' movement.

  3. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is

  4. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is

  5. Crustal Deformation of Long Valley Caldera, Eastern California, Inferred from L-Band InSAR

    NASA Astrophysics Data System (ADS)

    Tanaka, Akiko

    2008-11-01

    SAR interferometric analyses using JERS-1/SAR and ALOS/PALSAR images of Long Valley caldera are performed. JERS-1/SAR interferogram (June 1993-August 1996) shows a small region of subsidence associated the Casa Diablo geothermal power plant, which is superimposed on a broad scale uplift/expansion of the resurgent dome. ALOS/PALSAR interferograms show no deformation of the resurgent dome as expected. However, it may show a small region of subsidence associated the Casa Diablo geothermal power plant.

  6. Wideband Interferometric Sensing and Imaging Polarimetry

    NASA Technical Reports Server (NTRS)

    Verdi, James Salvatore; Kessler, Otto; Boerner, Wolfgang-Martin

    1996-01-01

    Wideband Interferometric Sensing and Imaging Polarimetry (WISIP) has become an important, indispensible tool in wide area military surveillance and global environmental monitoring of the terrestrial and planetary covers. It enables dynamic, real time optimal feature extraction of significant characteristics of desirable targets and/or target sections with simultaneous suppression of undesirable background clutter and propagation path speckle at hitherto unknown clarity and never before achieved quality. WISIP may be adopted to the detection, recognition, and identification (DRI) of any stationary, moving or vibrating targets or distributed scatterer segments versus arbitrary stationary, dynamical changing and/or moving geo-physical/ecological environments, provided the instantaneous 2x2 phasor and 4x4 power density matrices for forward propagation/backward scattering, respectively, can be measured with sufficient accuracy. For example, the DRI of stealthy, dynamically moving inhomogeneous volumetric scatter environments such as precipitation scatter, the ocean/sea/lake surface boundary layers, the littoral coastal surf zones, pack ice and snow or vegetative canopies, dry sands and soils, etc. can now be successfully realized. A comprehensive overview is presented on how these modern high resolution/precision, complete polarimetric co-registered signature sensing and imaging techniques, complemented by full integration of novel navigational electronic tools, such as DGPS, will advance electromagnetic vector wave sensing and imaging towards the limits of physical realization. Various examples utilizing the most recent image data take sets of airborne, space shuttle, and satellite imaging systems demonstrate the utility of WISIP.

  7. Characterization of spatial statistics of distributed targets in SAR data. [applied to sea-ice data

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Kwok, R.

    1993-01-01

    A statistical approach to the analysis of spatial statistics in polarimetric multifrequency SAR data, which is aimed at extracting the intrinsic variability of the target by removing variability from other sources, is presented. An image model, which takes into account three sources of spatial variability, namely, image speckle, system noise, and the intrinsic spatial variability of the target or texture, is described. It is shown that the presence of texture increases the image variance-to-mean square ratio and introduces deviations of the image autocovariance function from the expected SAR system response. The approach is exemplified by sea-ice SAR imagery acquired by the Jet Propulsion Laboratory three-frequency polarimetric airborne SAR. Data obtained indicate that, for different sea-ice types, the spatial statistics seem to vary more across frequency than across polarization and the observed differences increase in magnitude with decreasing frequency.

  8. (abstract) The SIR-C/X-SAR Mission

    NASA Technical Reports Server (NTRS)

    Way, JoBea; Evans, Diane; Elachi, Charles

    1993-01-01

    The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is a cooperative experiment between the National Aeronautics and Space Administration (NASA), the German Space Agency (DARA), and the Italian Space Agency (ASI). The experiment is the next evolutionary step in NASA's Spaceborne Imaging Radar (SIR) program that began with the Seasat SAR in 1978, and continued with SAR -A in 1981 and SAR-B in 1984. The program will eventually lead to the Earth Observing System (EOS) SAR later in this decade. SIR-C will provide increased capability over Seasat, SIR-A, and SIR-B by acquiring polarimetric images simultaneously at two microwave frequencies: L-band (wavelength 24 cm) and C-band (wavelength 6 cm). X-SAR will operate at X-band (wavelength 3 cm) with VV polarization, resulting in a three-frequency capability. Because radar backscatter is most strongly influenced by objects comparable in size to the radar wavelength, this multifrequency capability will provide information about the Earth's surface over a wide range of scales not discernable with single-frequency experiments. The polarimetric data will yield quantitative information about the surface geometric structure, vegetation dielectric properties, and surface discontinuities. The first SIR-C/X-SAR flight is planned for early in 1994, with two subsequent flights in different seasons to enable data aquisition under different environmental conditions. SIR-C/X-SAR will collect data for a period of 6 to 9 days during each flight. The instrument will be flown in a 57(deg) inclination orbit with a nomimal orbit altitude of 215 km. This altitude will result in a slightly drifting orbit. The latest status of the SIR-C/X-SAR mission and instrument design, science activities, and expected results will be presented.

  9. The NASA Polarimetric Radar (NPOL)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  10. Science Drivers for Polarimetric Exploration

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma

    2017-04-01

    The versatility of polarimetric exploration is exploited to address: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Polarized light occurs in three states: unpolarized, linear and circularized. Each mode of polarized light provides information about the scattering medium, from atmospheres to search for signatures of habitability. Spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Linear polarization of reflected light by solar system objects provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality (or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. Atmospheric phenomena such as rainbows, clouds and haloes exhibit polarimetric signatures that can be used as diagnostics to probe the atmosphere and may be possible to extend this approach to other planets and exoplanets. Biological molecules exhibit an inherent handedness or circular polarization or chirality, assisting in search for the identification of astrobiological material in the solar system. Polarimetry is also utilized in the exploration of comets, asteroids, dust/regoliths. Renewed efforts for ground-based polarimetry are emerging, from probing planetary atmospheres to the study of magnetic field lines and taxonomy of asteroids. While imaging and spectroscopy are routinely performed by amateurs, there is growing interest and progress in developing polarimetric exploration amongst the amateur community, with encouraging results.I will present a review of these efforts and the goal to create a global " PACA* Polarimetry Network" of observers, modelers and instrument experts to fully

  11. Sentinel-1 Sar Imagery for Finnish Agricultural Subsidy Control

    NASA Astrophysics Data System (ADS)

    Torma, Markus; Munck, Anders; Mattila, Olli-Pekka; Harma, Pekka; Arslan, Nadir

    2016-08-01

    Agricultural parcels were classified to six general plant groups (winter cereals, spring cereals, peas, potato, rapeseed and grasses) using Sentinel-1 Interferometric Wide swath SAR imagery. The results were encouraging; the best overall accuracy was about 95%. The division of parcels to ploughed or non-ploughed parcels was possible if images were available after snow melt and before greening.

  12. InSAR captures rifting and volcanism in East Africa

    USGS Publications Warehouse

    Poland, Michael P.

    2006-01-01

    In the past decade, synthetic aperture radar interferometric (InSAR) has enjoyed increasing use as a tool for detecting and characterizing surface deformation associated with volcanoes, earthquakes, glaciers, and other geological processes. Though InSAR can only image deformation that occurs along the radar line-of-sight and is subject to atmospheric, orbital, and other errors that can be difficult to quantify, the method has the advantage of high spatial resolution (especially in arid, unvegetated environments) without requiring equipment on the ground. As a result, InSAR is extremely useful for mapping deformation in poorly accessible or unmonitored parts of the world.

  13. Effect of external digital elevation model on monitoring of mine subsidence by two-pass differential interferometric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Tao, Qiuxiang; Gao, Tengfei; Liu, Guolin; Wang, Zhiwei

    2017-04-01

    The external digital elevation model (DEM) error is one of the main factors that affect the accuracy of mine subsidence monitored by two-pass differential interferometric synthetic aperture radar (DInSAR), which has been widely used in monitoring mining-induced subsidence. The theoretical relationship between external DEM error and monitored deformation error is derived based on the principles of interferometric synthetic aperture radar (DInSAR) and two-pass DInSAR. Taking the Dongtan and Yangcun mine areas of Jining as test areas, the difference and accuracy of 1:50000, ASTER GDEM V2, and SRTM DEMs are compared and analyzed. Two interferometric pairs of Advanced Land Observing Satellite Phased Array L-band SAR covering the test areas are processed using two-pass DInSAR with three external DEMs to compare and analyze the effect of three external DEMs on monitored mine subsidence in high- and low-coherence subsidence regions. Moreover, the reliability and accuracy of the three DInSAR-monitored results are compared and verified with leveling-measured subsidence values. Results show that the effect of external DEM on mine subsidence monitored by two-pass DInSAR is not only related to radar look angle, perpendicular baseline, slant range, and external DEM error, but also to the ground resolution of DEM, the magnitude of subsidence, and the coherence of test areas.

  14. SAR Polarimetry

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  15. Nonlinear interferometric vibrational imaging.

    PubMed

    Marks, Daniel L; Boppart, Stephen A

    2004-03-26

    Coherent anti-Stokes Raman scattering (CARS) processes are "coherent," but the phase of the anti-Stokes radiation is lost by most incoherent spectroscopic CARS measurements. We propose a Raman microscopy imaging method called nonlinear interferometric vibrational imaging, which measures Raman spectra by obtaining the temporal anti-Stokes signal through nonlinear interferometry. With a more complete knowledge of the anti-Stokes signal, we show through simulations that a high-resolution Raman spectrum can be obtained of a molecule in a single pulse using broad band radiation. This could be useful for identifying the three-dimensional spatial distribution of molecular species in tissue.

  16. Interferometric star tracking.

    PubMed

    Decou, A B

    1974-02-01

    A new star-tracking technique based on interferometry is described and analyzed in detail. A heuristic comparison is made with traditional star-tracking methods that demonstrates several advantages in the interferometric approach for very high accuracy systems. A detailed error analysis is performed on several versions of the system that use all solid-state detection. One such system is shown to have a potential accuracy of +/-0.01 sec of arc using a small optical system and state-of-the-art components. Applications of the new system in large orbiting astronomical observatories and deep space laser communications systems are also discussed.

  17. Monitoring urban subsidence based on SAR lnterferometric point target analysis

    USGS Publications Warehouse

    Zhang, Y.; Zhang, Jiahua; Gong, W.; Lu, Zhiming

    2009-01-01

    lnterferometric point target analysis (IPTA) is one of the latest developments in radar interferometric processing. It is achieved by analysis of the interferometric phases of some individual point targets, which are discrete and present temporarily stable backscattering characteristics, in long temporal series of interferometric SAR images. This paper analyzes the interferometric phase model of point targets, and then addresses two key issues within IPTA process. Firstly, a spatial searching method is proposed to unwrap the interferometric phase difference between two neighboring point targets. The height residual error and linear deformation rate of each point target can then be calculated, when a global reference point with known height correction and deformation history is chosen. Secondly, a spatial-temporal filtering scheme is proposed to further separate the atmosphere phase and nonlinear deformation phase from the residual interferometric phase. Finally, an experiment of the developed IPTA methodology is conducted over Suzhou urban area. Totally 38 ERS-1/2 SAR scenes are analyzed, and the deformation information over 3 546 point targets in the time span of 1992-2002 are generated. The IPTA-derived deformation shows very good agreement with the published result, which demonstrates that the IPTA technique can be developed into an operational tool to map the ground subsidence over urban area.

  18. Beaconless search and rescue using polarimetric synthetic aperture radar

    SciTech Connect

    McCandless, S.W. Jr.; Huxtable, B.D.; Mansfield, A.W.; Wallace, R.; Larsen, R.; Rais, H.

    1996-03-01

    In developing a beaconless search and rescue capability to quickly locate small aircraft that have crashed in remote areas, NASA{close_quote}s Search and Rescue (S&R) Program brings together advanced polarimetric synthetic aperture radar processing, field and laboratory tests, and state-of-the-art automated target detection algorithms. This paper provides the status of this program, which began with experiments conducted in concert with the JPL DC-8 AirSAR in 1989 at the Duke University Forest. The program is being conducted by NASA{close_quote}s Goddard Space Flight Center (GSFC) under the auspices of the Search and Rescue Office. {copyright} {ital 1996 American Institute of Physics.}

  19. Multifrequency polarimetric microwave scatterometer based on a vector network analyzer

    NASA Astrophysics Data System (ADS)

    D'Alessio, Angelo C.; Posa, Francesco; Sabatelli, Vincenzo; Casarano, Domenico

    1999-12-01

    In order to test a multi-frequency polarimetric scatterometer based on a Vector Network Analyzer, calibration measurements have been performed over point targets. Two trihedral corner reflectors with different dimensions have been employed. The radar cross sections have been measured at different frequency bands (L, C and X) and for different look angles between 23 degree(s) and 50 degree(s). Satisfactory results have been obtained in all three bands, however in the L-band the electromagnetic smog, due to mobile phones and airport radars, caused some difficulties in the extinction of the radiometric information. Other calibration tests have been planned before using the instrument as a ground-truth data acquisition device on the test-sites envisaged for the spaceborne SRTM and ENVISAT SAR missions.

  20. Preliminary Results of Estimating Soil Moisture Over Bare Soil Using Full-Polarimetric ALOS-2 Data

    NASA Astrophysics Data System (ADS)

    Sekertekin, A.; Marangoz, A. M.; Abdikan, S.; Esetlili, M. T.

    2016-10-01

    Synthetic Aperture Radar (SAR) imaging system is one of the most effective way for Earth observation. The aim of this study is to present the preliminary results about estimating soil moisture using L-band Synthetic Aperture Radar (SAR) data. Full-polarimetric (HH, HV, VV, VH) ALOS-2 data, acquired on 22.04.2016 with the incidence angle of 30.4o, were used in the study. Simultaneously with the SAR acquisition, in-situ soil moisture samples over bare agricultural lands were collected and evaluated using gravimetric method. Backscattering coefficients for all polarizations were obtained and linear regression analysis was carried out with in situ moisture measurements. The best correlation coefficient was observed with VV polarization. Cross-polarized backscattering coefficients were not so sensitive to soil moisture content. In the study, it was observed that soil moisture maps can be retrieved with the accuracy about 14% (RMSE).

  1. Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping

    NASA Astrophysics Data System (ADS)

    Maghsoudi, Yasser

    Forests are a major natural resource of the Earth and control a wide range of environmental processes. Forests comprise a major part of the planet's plant biodiversity and have an important role in the global hydrological and biochemical cycles. Among the numerous potential applications of remote sensing in forestry, forest mapping plays a vital role for characterization of the forest in terms of species. Particularly, in Canada where forests occupy 45% of the territory, representing more than 400 million hectares of the total Canadian continental area. In this thesis, the potential of polarimetric SAR (PolSAR) Radarsat-2 data for forest mapping is investigated. This thesis has two principle objectives. First is to propose algorithms for analyzing the PolSAR image data for forest mapping. There are a wide range of SAR parameters that can be derived from PolSAR data. In order to make full use of the discriminative power offered by all these parameters, two categories of methods are proposed. The methods are based on the concept of feature selection and classifier ensemble. First, a nonparametric definition of the evaluation function is proposed and hence the methods NFS and CBFS. Second, a fast wrapper algorithm is proposed for the evaluation function in feature selection and hence the methods FWFS and FWCBFS. Finally, to incorporate the neighboring pixels information in classification an extension of the FWCBFS method i.e. CCBFS is proposed. The second objective of this thesis is to provide a comparison between leaf-on (summer) and leaf-off (fall) season images for forest mapping. Two Radarsat-2 images acquired in fine quad-polarized mode were chosen for this study. The images were collected in leaf-on and leaf-off seasons. We also test the hypothesis whether combining the SAR parameters obtained from both images can provide better results than either individual datasets. The rationale for this combination is that every dataset has some parameters which may be

  2. Oil spill detection from SAR image using SVM based classification

    NASA Astrophysics Data System (ADS)

    Matkan, A. A.; Hajeb, M.; Azarakhsh, Z.

    2013-09-01

    In this paper, the potential of fully polarimetric L-band SAR data for detecting sea oil spills is investigated using polarimetric decompositions and texture analysis based on SVM classifier. First, power and magnitude measurements of HH and VV polarization modes and, Pauli, Freeman and Krogager decompositions are computed and applied in SVM classifier. Texture analysis is used for identification using SVM method. The texture features i.e. Mean, Variance, Contrast and Dissimilarity from them are then extracted. Experiments are conducted on full polarimetric SAR data acquired from PALSAR sensor of ALOS satellite on August 25, 2006. An accuracy assessment indicated overall accuracy of 78.92% and 96.46% for the power measurement of the VV polarization and the Krogager decomposition respectively in first step. But by use of texture analysis the results are improved to 96.44% and 96.65% quality for mean of power and magnitude measurements of HH and VV polarizations and the Krogager decomposition. Results show that the Krogager polarimetric decomposition method has the satisfying result for detection of sea oil spill on the sea surface and the texture analysis presents the good results.

  3. Tight formation flying for an along-track SAR interferometer

    NASA Astrophysics Data System (ADS)

    Gill, Eberhard; Runge, Hartmut

    2004-08-01

    While space-borne synthetic aperture radar (SAR) has evolved into a mature technology over the past two decades, there is a growing interest in interferometric SAR applications. Especially along-track interferometry with its capability to resolve the velocity of on-ground objects and ocean currents is of high interest for scientific applications. The accuracy of the resolved velocity on ground scales directly with the along-track separation between adjacent SAR antennas. Since space vehicles are quite limited in size, a formation flying approach with two SAR instruments distributed onto two spacecraft thus appears to be an innovative approach to along-track SAR interferometry. In the framework of an ESA study, this paper discusses the potential benefits, drawbacks and problems associated with a close formation flight for an along-track interferometry SAR mission. To this end, the absolute and relative orbit reconstruction requirements for the SAR processing chain are derived from basic interferometric principles as well as appropriate baselines of the satellite formation in L-Band and X-Band. A discussion of potential space-borne navigation sensors is presented along with the accuracy of state-of-the-art relative orbit reconstruction. Finally, appropriate thrusters for formation acquisition and control are discussed together with approaches to formation flying guidance and control as well as fuel consumption.

  4. Interferometric Fiber Optic Sensors

    PubMed Central

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair. PMID:22736961

  5. Interferometric Remapped Array Nulling

    NASA Astrophysics Data System (ADS)

    Vakili, F.; Aristidi, E.; Abe, L.; Lopez, B.

    2004-07-01

    This paper describes a method of beam-combination in the so-called hypertelescope imaging technique recently introduced by Labeyrie in optical interferometry. The method we propose is an alternative to the Michelson pupil reconfiguration that suffers from the loss of the classical object-image convolution relation. From elementary theory of Fourier optics we demonstrate that this problem can be solved by reconfiguring images instead of pupils. Imaging is performed in a combined pupil-plane where the point-source intensity distribution (PSID by comparison to the more commonly quoted point-spread function, PSF) tends towards a pseudo Airy disc for a sufficiently large number of telescopes. Our method is applicable to snap-shot imaging of extended sources with a field limited to the Airy pattern of single telescopes operated in a co-phased multi-aperture interferometric array. It thus allows to apply conveniently pupil plane coronagraphy. Our technique called Interferometric Remapped Array Nulling (IRAN) is particularly suitable for high dynamic imaging of extra-solar planetary companions or extra-galactic objects where long baseline interferometry would closely probe the central regions of AGNs for instance. We also discuss the application of IRAN to improve the performances of imaging and/or nulling interferometers like the full-fledged VLTI array or the DARWIN space-borne mission.

  6. Interferometric fiber optic sensors.

    PubMed

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  7. Combined DEM Extration Method from StereoSAR and InSAR

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  8. Fusion of LADAR with SAR for precision strike

    SciTech Connect

    Cress, D.H.; Muguira, M.R.

    1995-03-01

    This paper presents a concept for fusing 3-dimensional image reconnaissance data with LADAR imagery for aim point refinement. The approach is applicable to fixed or quasi-fixed targets. Quasi-fixed targets are targets that are not expected to be moved between the time of reconnaissance and the time of target engagement. The 3-dimensional image data is presumed to come from standoff reconnaissance assets tens to hundreds of kilometers from the target area or acquisitions prior to hostilities. Examples are synthetic aperture radar (SAR) or stereoprocessed satellite imagery. SAR can be used to generate a 3-dimensional map of the surface through processing of data acquired with conventional SAR acquired using two closely spaced, parallel reconnaissance paths, either airborne or satellite based. Alternatively, a specialized airborne SAR having two receiving antennas may be used for data acquisition. The data sets used in this analysis are: (1) LADAR data acquired using a Hughes-Danbury system flown over a portion of Kirtland AFB during the period September 15--16, 1993; (2) two pass interferometric SAR data flown over a terrain-dominated area of Kirtland AFB; (3) 3-dimensional mapping of an urban-dominated area of the Sandia National Laboratories and adjacent cultural area extracted from aerial photography by Vexcel Corporation; (4) LADAR data acquired at Eglin AFB under Wright Laboratory`s Advanced Technology Ladar System (ATLAS) program using a 60 {mu}J, 75 KHz Co{sub 2} laser; and (5) two pass interferometric SAR data generated by Sandia`s STRIP DCS (Data Collection System) radar corresponding to the ATLAS LADAR data. The cultural data set was used in the urban area rather than SAR because high quality interferometric SAR data were not available for the urban-type area.

  9. Classification of PolSAR image based on quotient space theory

    NASA Astrophysics Data System (ADS)

    An, Zhihui; Yu, Jie; Liu, Xiaomeng; Liu, Limin; Jiao, Shuai; Zhu, Teng; Wang, Shaohua

    2015-12-01

    In order to improve the classification accuracy, quotient space theory was applied in the classification of polarimetric SAR (PolSAR) image. Firstly, Yamaguchi decomposition method is adopted, which can get the polarimetric characteristic of the image. At the same time, Gray level Co-occurrence Matrix (GLCM) and Gabor wavelet are used to get texture feature, respectively. Secondly, combined with texture feature and polarimetric characteristic, Support Vector Machine (SVM) classifier is used for initial classification to establish different granularity spaces. Finally, according to the quotient space granularity synthetic theory, we merge and reason the different quotient spaces to get the comprehensive classification result. Method proposed in this paper is tested with L-band AIRSAR of San Francisco bay. The result shows that the comprehensive classification result based on the theory of quotient space is superior to the classification result of single granularity space.

  10. Estimation of Soil Moisture for Vegetated Surfaces Using Multi-Temporal L-Band SAR Measurements

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Sun, G.; Hsu, A.; Wang, J.; ONeill, P.; Ranson, J.; Engman, E. T.

    1997-01-01

    This paper demonstrates the technique to estimate ground surface and vegetation scattering components, based on the backscattering model and the radar decomposition theory, under configuration of multi-temporal L-band polarimetric SAR measurement. This technique can be used to estimate soil moisture of vegetated surface.

  11. Long-range polarimetric imaging through fog.

    PubMed

    Fade, Julien; Panigrahi, Swapnesh; Carré, Anthony; Frein, Ludovic; Hamel, Cyril; Bretenaker, Fabien; Ramachandran, Hema; Alouini, Mehdi

    2014-06-20

    We report an experimental implementation of long-range polarimetric imaging through fog over kilometric distance in real field atmospheric conditions. An incoherent polarized light source settled on a telecommunication tower is imaged at a distance of 1.3 km with a snapshot polarimetric camera including a birefringent Wollaston prism, allowing simultaneous acquisition of two images along orthogonal polarization directions. From a large number of acquisitions datasets and under various environmental conditions (clear sky/fog/haze, day/night), we compare the efficiency of using polarized light for source contrast increase with different signal representations (intensity, polarimetric difference, polarimetric contrast, etc.). With the limited-dynamics detector used, a maximum fourfold increase in contrast was demonstrated under bright background illumination using polarimetric difference image.

  12. Principles and techniques of polarimetric mapping.

    NASA Technical Reports Server (NTRS)

    Halajian, J.; Hallock, H.

    1973-01-01

    This paper introduces the concept and potential value of polarimetric maps and the techniques for generating these maps in operational remote sensing. The application-oriented polarimetric signature analyses in the literature are compiled, and several optical models are illustrated to bring out requirements of a sensor system for polarimetric mapping. By use of the concepts of Stokes parameters the descriptive specification of one sensor system is refined. The descriptive specification for a multichannel digital photometric-polarimetric mapper is based upon our experience with the present single channel device which includes the generation of polarimetric maps and pictures. High photometric accuracy and stability coupled with fast, accurate digital output has enabled us to overcome the handicap of taking sequential data from the same terrain.

  13. Characterizing hydrologic changes of Great Dismal Swamp using SAR/InSAR technology

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lu, Z.; Zhu, Z.

    2015-12-01

    Great Dismal Swamp is one of the largest, northernmost peatlands on the Atlantic Coastal Plain, and the swamp is underlain by a thick water-logged organic soil layer (peat) made up of dead and decaying plant material. The peatlands play a role as the sink of large amount of soil organic carbon and methane. However, the disturbance of the peatland negatively impacted the ecosystem and contributed to the climate change caused by the released greenhouse gas. Our SAR/InSAR methods observed the hydrologic changes in the peatlands, which is a key factor to conserve the wetland, through several methods. First, we compared averaged SAR intensity from C- and L-band SAR sensors with groundwater level changes, and deduced a linear relationship between the SAR backscattering intensity and the groundwater level change. Second, we extracted the inundated area during wet season from InSAR coherence. Third, we measured the relative water level changes in the inundated area using the interferometric phases. Finally, we estimated the groundwater level changes corresponding to the soil moisture changes from time-series InSAR method. Our results can provide the unique opportunity to understand the occurring hydrologic and vegetation changes in the Great Dismal Swamp.

  14. Recovering Seasat SAR Data

    NASA Astrophysics Data System (ADS)

    Logan, T. A.; Arko, S. A.; Rosen, P. A.

    2013-12-01

    supposedly 'steadily' changing millisecond (MSEC) timing values. The elevated BER made even a basic linear fit difficult. In addition, the MSEC field often shows a 'stair step' function, assumed to be a spacecraft clock malfunction. To fix these issues, three separate levels of time filtering were applied. After the initial three-pass time filter, a fourth procedure located and removed discontinuities - missing data sections that occurred randomly throughout the data takes - by inserting random valued lines into the effected data file and repeated value lines into the corresponding header file. Finally, a fifth pass through the metadata was required to fix remaining start time anomalies. After the data were filtered, all times were linearly increasing, and all discontinuities filled, images could finally be formed. ASF DAAC utilized a custom version of ROI, the Repeat Orbit Interferometric SAR processor, to focus the data. Special focusing tasks for Seasat included dealing with Doppler ambiguity issues and filtering out 'spikes' in the power spectra. Once these obstacles were overcome via additional pre-processing software developed in house, well-focused SAR imagery was obtained from approximately 80% the ASF DAAC archives. These focused products, packaged in either HDF5 or geotiff formats with XML metadata, are downloadable from ASF DAAC free of charge.

  15. Human polarimetric micro-doppler

    NASA Astrophysics Data System (ADS)

    Tahmoush, David; Silvious, Jerry

    2011-06-01

    Modern radars can pick up target motions other than just the principle target Doppler; they pick out the small micro-Doppler variations as well. These can be used to visually identify both the target type as well as the target activity. We model and measure some of the micro-Doppler motions that are amenable to polarimetric measurement. Understanding the capabilities and limitations of radar systems that utilize micro-Doppler to measure human characteristics is important for improving the effectiveness of these systems at securing areas. In security applications one would like to observe humans unobtrusively and without privacy issues, which make radar an effective approach. In this paper we focus on the characteristics of radar systems designed for the estimation of human motion for the determination of whether someone is loaded. Radar can be used to measure the direction, distance, and radial velocity of a walking person as a function of time. Detailed radar processing can reveal more characteristics of the walking human. The parts of the human body do not move with constant radial velocity; the small micro-Doppler signatures are timevarying and therefore analysis techniques can be used to obtain more characteristics. Looking for modulations of the radar return from arms, legs, and even body sway are being assessed by researchers. We analyze these techniques and focus on the improved performance that fully polarimetric radar techniques can add. We perform simulations and fully polarimetric measurements of the varying micro-Doppler signatures of humans as a function of elevation angle and azimuthal angle in order to try to optimize this type of system for the detection of arm motion, especially for the determination of whether someone is carrying something in their arms. The arm is often bent at the elbow, providing a surface similar to a dihedral. This is distinct from the more planar surfaces of the body and allows us to separate the signals from the arm (and

  16. Polarimetric total internal reflection biosensing.

    PubMed

    Maisonneuve, Mathieu; Song, In-Hyouk; Patskovsky, Sergiy; Meunier, Michel

    2011-04-11

    In this paper, a concept of polarimetric total internal reflection (TIR) biosensor based on the method of temporal phase modulation is presented. Measurements of the phase difference between s- and p- polarized light combined with their amplitudes allow simultaneous detection of the bulk refractive index and thickness of the surface biofilms. Obtained experimental sensitivity is better than 10(-5) in terms of refractive index unit and 0.5 nm in biolayer thickness. Relatively simple technological implementation of the TIR sensors on the base of inexpensive and transparent substrates opens a number of novel applications in biosensing and microscopy. © 2011 Optical Society of America

  17. Tropical forest tree stands characterization with L-band polarimetric radar

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Tseng

    1990-01-01

    The effectiveness of using L-band polarimetric data to determine tropical tree-stand parameters is discussed with specific attention given to the correction of the radar data. Tree-parameter data from ground studies is compared to L-band polarimetric data (in both uncorrected and topographically corrected forms) for two test areas. The test sites are at two different elevations but both include 81 test plots with topographic data and tree-characteristic data given. Synthetic-aperture radar (SAR) data are found to be related to bole volume and tree volume, and the topographically corrected data show results similar to the uncorrected data. Similar r-values are given for both data sets because the data with incidence-angle values below 35 and above 55 are removed. Topographical correction is important when local incidence angles exceed the limits.

  18. Segmenting and extracting terrain surface signatures from fully polarimetric multilook SIR-C data

    NASA Astrophysics Data System (ADS)

    Geaga, Jorge V.

    2016-05-01

    We report results from the segmenting and study of terrain surface signatures of fully polarimetric multilook L-band and C-band SIR-C data. Entropy/alpha/anisotropy decomposition features are available from single multilook pixel data. This eliminates the need to average data from several pixels. Entropy and alpha are utilized in the segmentation along with features we have developed primarily from the eigenanalysis of the Kennaugh matrices of multilook data. We have previously reported on our algorithm for segmenting fully polarimetric single look TerraSAR-X, multilook SIR-C and 7 band Landsat 5 data featuring the iterative application of a feedforward neural network with one hidden layer. A comparison of signatures from simultaneously recorded data at L and C bands is presented. The terrain surfaces surveyed include the ocean, lakes, lake ice, bare ground, desert salt flats, lava beds, vegetation, sand dunes, rough desert surfaces, agricultural and urban areas.

  19. Tropical forest tree stands characterization with L-band polarimetric radar

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Tseng

    1990-01-01

    The effectiveness of using L-band polarimetric data to determine tropical tree-stand parameters is discussed with specific attention given to the correction of the radar data. Tree-parameter data from ground studies is compared to L-band polarimetric data (in both uncorrected and topographically corrected forms) for two test areas. The test sites are at two different elevations but both include 81 test plots with topographic data and tree-characteristic data given. Synthetic-aperture radar (SAR) data are found to be related to bole volume and tree volume, and the topographically corrected data show results similar to the uncorrected data. Similar r-values are given for both data sets because the data with incidence-angle values below 35 and above 55 are removed. Topographical correction is important when local incidence angles exceed the limits.

  20. VideoSAR collections to image underground chemical explosion surface phenomena

    NASA Astrophysics Data System (ADS)

    Yocky, David A.; Calloway, Terry M.; Wahl, Daniel E.

    2017-05-01

    Fully-polarimetric X-band (9.6 GHz center frequency) VideoSAR with 0.125-meter ground resolution flew collections before, during, and after the fifth Source Physics Experiment (SPE-5) underground chemical explosion. We generate and exploit synthetic aperture RADAR (SAR) and VideoSAR products to characterize surface effects caused by the underground explosion. To our knowledge, this has never been done. Exploited VideoSAR products are "movies" of coherence maps, phase-difference maps, and magnitude imagery. These movies show two-dimensional, time-varying surface movement. However, objects located on the SPE pad created unwanted, vibrating signatures during the event which made registration and coherent processing more difficult. Nevertheless, there is evidence that dynamic changes are captured by VideoSAR during the event. VideoSAR provides a unique, coherent, time-varying measure of surface expression of an underground chemical explosion.

  1. Interferometric synthetic-aperature radar (InSAR): Chapter 5

    USGS Publications Warehouse

    Dzurisin, Daniel; Lu, Zhong

    2007-01-01

    Geodesists are, for the most part, a patient and hardwor