Science.gov

Sample records for polarimetric interferometric sar

  1. Polarimetric Interferometric SAR: Literature Review and an Assessment of its Utility for DND: TIF Project Memorandum

    DTIC Science & Technology

    2003-09-01

    SAR : Literature Review and an Assessment of its utility for DND TIF Project.Memorandum Karim E. Mattar, Maureen L. Yeremy and Chuck Livingstone...September 2003 Canada 20031119 057 Polarimetric Interferometric SAR : Literature Review and an Assessment of its utility for DND TIF Project Memorandum Karim...Radar ( SAR ) is a recent area of research that has had significant attention from the mid-1990s. This area of research has combined the utility of two SAR

  2. Techniques and Tools for Estimating Ionospheric Effects in Interferometric and Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rosen, P.; Lavalle, M.; Pi, X.; Buckley, S.; Szeliga, W.; Zebker, H.; Gurrola, E.

    2011-01-01

    The InSAR Scientific Computing Environment (ISCE) is a flexible, extensible software tool designed for the end-to-end processing and analysis of synthetic aperture radar data. ISCE inherits the core of the ROI_PAC interferometric tool, but contains improvements at all levels of the radar processing chain, including a modular and extensible architecture, new focusing approach, better geocoding of the data, handling of multi-polarization data, radiometric calibration, and estimation and correction of ionospheric effects. In this paper we describe the characteristics of ISCE with emphasis on the ionospheric modules. To detect ionospheric anomalies, ISCE implements the Faraday rotation method using quadpolarimetric images, and the split-spectrum technique using interferometric single-, dual- and quad-polarimetric images. The ability to generate co-registered time series of quad-polarimetric images makes ISCE also an ideal tool to be used for polarimetric-interferometric radar applications.

  3. EcoSAR: NASA's P-band fully polarimetric single pass interferometric airborne radar

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Rincon, R. F.; Fatoyinbo, T. E.; Lee, S. K.; Sun, G.; Daniyan, O.; Harcum, M. E.

    2014-12-01

    EcoSAR is a new airborne synthetic aperture radar imaging system, developed at the NASA Goddard Space Flight Center. It is a P-band sensor that employs a non-conventional and innovative design. The EcoSAR system was designed as a multi-disciplinary instrument to image the 3-dimensional surface of the earth from a single pass platform with two antennas. EcoSAR's principal mission is to penetrate the forest canopy to return vital information about the canopy structure and estimate biomass. With a maximum bandwidth of 200 MHz in H and 120 MHz in V polarizations it can provide sub-meter resolution imagery of the study area. EcoSAR's dual antenna, 32 transmit and receive channel architecture provides a test-bed for developing new algorithms in InSAR data processing such as single pass interferometry, full polarimetry, post-processing synthesis of multiple beams, simultaneous measurement over both sides of the flight track, selectable resolution and variable incidence angle. The flexible architecture of EcoSAR will create new opportunities in radar remote sensing of forest biomass, permafrost active layer thickness, and topography mapping. EcoSAR's first test flight occurred between March 27th and April 1st, 2014 over the Andros Island in Bahamas and Corcovado and La Selva National Parks in Costa Rica. The 32 channel radar system collected about 6 TB of radar data in about 12 hours of data collection. Due to the existence of radio and TV communications in the operational frequency band, acquired data contains strong radar frequency interference, which had to be removed prior to beamforming and focusing. Precise locations of the antennas are tracked using high-rate GPS and inertial navigation units, which provide necessary information for accurate processing of the imagery. In this presentation we will present preliminary imagery collected during the test campaign, show examples of simultaneous dual track imaging, as well as a single pass interferogram. The

  4. Three-Dimensional Road Network by Fusion of Polarimetric and Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Gamba, P.; Houshmand, B.

    1998-01-01

    In this paper a fuzzy classification procedure is applied to polarimetric radar measurements, and street pixels are detected. These data are successively grouped into consistent roads by means of a dynamic programming approach based on the fuzzy membership function values. Further fusion of the 2D road network extracted and 3D TOPSAR measurements provides a powerful way to analyze urban infrastructures.

  5. Effect of Medium Symmetries on Limiting the Number of Parameters Estimated with Polarimetric SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.

    1999-01-01

    The addition of interferometric backscattering pairs to the conventional polarimetric synthetic aperture radar (SAR) data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of parameters.

  6. Millimeter-wave interferometric SAR and polarimetry

    NASA Astrophysics Data System (ADS)

    Boehmsdorff, Stephan; Essen, Helmut; Schimpf, Hartmuf; Wahlen, Alfred

    1998-07-01

    Using synthetic aperture radars with appropriate signal processing algorithms is a recognized technique for remote sensing applications. A wide spectrum of radar frequencies is used and a high degree of sophistication implies polarimetric and further multichannel approaches. Each frequency band used, exhibits special sensitivities to features of the earth's surface or man-made targets. This is mostly due to the coupling of the electromagnetic waves to backscattering geometries which are related to the radarwavelength. A part of the spectrum which has been covered not very intensely is the millimeterwave region. This may be mostly due to the relatively high atmospheric absorption at millimeterwaves which obstructs the use of such sensors for long range applications. On the other hand for military applications IR-imaging sensors are widely used which suffer even more from adverse transmission properties of the atmosphere. Application of multichannel techniques as polarimetry, multifrequency techniques and interferometry are also done with more ease due to compactness of the hardware and simplicity of processing. As there exist no data which would allow to investigate the potential of multifrequency polarimetric and interferometric mmW-SAR the Millimeterwave Experimental Multifrequency Polarimetric High Resolution Interferometric Imaging System was installed into an aircraft C-160 `Transall' to gather respective data over different land scenarios. The off-line evaluation of the radar data starts with off-line track, calibration and reformatting procedures. Afterwards synthetic aperture processing is applied to these data to generate radar images for co- and cross-polarization at 35 GHz and 94 GHz. As already mentioned above, SAR-processing at millimeterwavelengths requires a considerable lower amount of sophistication in comparison with algorithms applied at lower radar-frequencies. This can mainly be attributed to the short aperture length at mm-wave frequencies

  7. Potentials of polarimetric SAR interferometry for agriculture monitoring

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Juan M.; Ballester-Berman, J. David

    2009-04-01

    This paper is aimed to define the main specifications and system requirements of a future spaceborne synthetic aperture radar (SAR) mission with polarimetric and interferometric capabilities, to be applied in agriculture monitoring. Firstly, a previous discussion concerning the applications of remote sensing to agriculture and the requirements demanded by end users is introduced. Then, a review of polarimetric SAR and interferometric SAR techniques employed in agriculture is performed in order to explore and justify the potential contributions to crop parameter retrieval of polarimetric SAR interferometry (PolInSAR). The current status of the research about PolInSAR when applied to the retrieval of biophysical parameters of agricultural crops is also addressed, covering recent advances in theoretical modeling aspects (both direct and inverse models), the validation carried out so far with indoor data, and complementary information provided by other different but related experiments. From this experience, we describe some system specifications that will be important for the success of this technique. Among them it is emphasized the need of baselines larger than usual, medium-high frequency band, and a mandatory single-pass mode for overcoming temporal decorrelation. Finally, a set of future experiments is also proposed for additional testing and confirmation of observations made so far regarding minimum baseline requirements, temporal evolution of observables and modeling issues, among others.

  8. Registration of interferometric SAR images

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Vesecky, John F.; Zebker, Howard A.

    1992-01-01

    Interferometric synthetic aperture radar (INSAR) is a new way of performing topography mapping. Among the factors critical to mapping accuracy is the registration of the complex SAR images from repeated orbits. A new algorithm for registering interferometric SAR images is presented. A new figure of merit, the average fluctuation function of the phase difference image, is proposed to evaluate the fringe pattern quality. The process of adjusting the registration parameters according to the fringe pattern quality is optimized through a downhill simplex minimization algorithm. The results of applying the proposed algorithm to register two pairs of Seasat SAR images with a short baseline (75 m) and a long baseline (500 m) are shown. It is found that the average fluctuation function is a very stable measure of fringe pattern quality allowing very accurate registration.

  9. Unsupervised Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Dubois, Pascale; Van Zyl, Jakob; Kwok, Ronald; Chellappa, Rama

    1994-01-01

    Method of unsupervised segmentation of polarimetric synthetic-aperture-radar (SAR) image data into classes involves selection of classes on basis of multidimensional fuzzy clustering of logarithms of parameters of polarimetric covariance matrix. Data in each class represent parts of image wherein polarimetric SAR backscattering characteristics of terrain regarded as homogeneous. Desirable to have each class represent type of terrain, sea ice, or ocean surface distinguishable from other types via backscattering characteristics. Unsupervised classification does not require training areas, is nearly automated computerized process, and provides nonsubjective selection of image classes naturally well separated by radar.

  10. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; Lu, Daniel

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  11. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  12. Forest Structure Characterization Using JPL's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  13. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Boerner, Wolfgang-Martin

    2005-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  14. Classification Of Terrain In Polarimetric SAR Images

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob J.; Kong, Jin A.; Shin, Robert T.; Lim, Harold; Swartz, Albert; Yueh, Simon H.

    1993-01-01

    Two algorithms processing polarimetric synthetic-aperture-radar data found effective in assigning various parts of SAR images to classes representing different types of terrain. Partially automate interpretation of SAR imagery, reducing amount of photointerpretation needed and putting whole interpretation process on more quantitative and systematic basis. First algorithm implements Bayesian classification scheme "supervised" by use of training data. Second algorithm implements classification procedure unsupervised.

  15. Unsupervised segmentation of polarimetric SAR data using the covariance matrix

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Chellappa, Rama; Dubois, Pascale C.

    1992-01-01

    A method for unsupervised segmentation of polarimetric synthetic aperture radar (SAR) data into classes of homogeneous microwave polarimetric backscatter characteristics is presented. Classes of polarimetric backscatter are selected on the basis of a multidimensional fuzzy clustering of the logarithm of the parameters composing the polarimetric covariance matrix. The clustering procedure uses both polarimetric amplitude and phase information, is adapted to the presence of image speckle, and does not require an arbitrary weighting of the different polarimetric channels; it also provides a partitioning of each data sample used for clustering into multiple clusters. Given the classes of polarimetric backscatter, the entire image is classified using a maximum a posteriori polarimetric classifier. Four-look polarimetric SAR complex data of lava flows and of sea ice acquired by the NASA/JPL airborne polarimetric radar (AIRSAR) are segmented using this technique. The results are discussed and compared with those obtained using supervised techniques.

  16. Polarimetric SAR Interferometry Evaluation in Mangroves

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  17. Measurement of Pancharatnam's phase by robust interferometric and polarimetric methods

    SciTech Connect

    Loredo, J. C.; Ortiz, O.; De Zela, F.; Weingaertner, R.

    2009-07-15

    We report on theoretical calculations and experimental observations of Pancharatnam's phase originating from arbitrary SU(2) transformations applied to polarization states of light. We have implemented polarimetric and interferometric methods, which allow us to cover the full Poincare sphere. As a distinctive feature, our interferometric array is robust against mechanical and thermal disturbances, showing that the polarimetric method is not inherently superior over the interferometric one, as previously assumed. Our strategy effectively amounts to feeding an interferometer with two copropagating beams that are orthogonally polarized with respect to each other. It can be applied to different types of standard arrays, such as a Michelson, a Sagnac, or a Mach-Zehnder interferometer. We exhibit the versatility of our arrangement by performing measurements of Pancharatnam's phases and fringe visibilities that closely fit the theoretical predictions. Our approach can be easily extended to deal with mixed states and to study decoherence effects.

  18. Unsupervised segmentation of polarimetric SAR data using the covariance matrix

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Chellappa, Rama; Dubois, Pascale; Kwok, Ronald; Van Zyl, Jacob

    1991-01-01

    An unsupervised selection of polarimetric features useful for the segmentation and analysis of polarimetric synthetic aperture radar (SAR) data is presented. The technique is based on multidimensional clustering of the parameters composing the polarimetric covariance matrix of the data. Clustering is performed on the logarithm of these quantities. Once the polarimetric cluster centers have been determined, segmentation of the polarimetric data into regions is performed using a maximum likelihood polarimetric classifier. Segmentation maps are further improved using a Markov random field to describe the statistics of the regions and computing the maximum of the product of the local conditional densities. Examples with real polarimetric SAR imagery are given to illustrate the potential of this method.

  19. A new method to extract forest height from repeat-pass polarimetric and interferometric radar data

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Hensley, S.; Dubayah, R.

    2012-12-01

    The objective of this paper is to present a new remote sensing method and a new physical model that will potentially enable estimating forest height and vegetation 3D structure using radar technology. The method is based on repeat-pass polarimetric-interferometric radar technique; the model is termed random-motion-over-ground (RMoG) model [1, 2]. We will describe a step-by-step procedure that will help the ecosystem community to monitor ecosystems at regional and global scale using radar data available from the forthcoming radar missions. We will show first results of forest height estimated from UAVSAR data and compared against LVIS data. We will quantify the error associated to our method. We will also discuss the improvements that we plan on including in future works. Our ultimate goal is to measure low and large biomass stocks using the large amount of radar data that will be available in the near future. The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a fully polarimetric L-band airborne radar developed at the Jet Propulsion Laboratory (JPL). UAVSAR acquires repeat-pass interferometric data for measuring vegetation structure and monitoring crustal deformations. The UAVSAR team at JPL has acquired and processed several polarimetric-interferometric (Pol-InSAR) datasets over the Harvard Forest in Massachusetts (United States) that allows testing repeat-pass Pol-InSAR technique. Pol-InSAR technique was proposed 15 years ago to estimate vegetation biomass and overcome the inherent saturation of radar backscatter versus biomass [3]. The advantage of Pol-InSAR is the ability to estimate the 3D structure of vegetation using a small number of interferometric acquisitions. In order to extract vegetation properties from Pol-InSAR UAVSAR data, we use a model of temporal-volumetric coherence, the RMoG model, suitable for repeat-pass interferometry. In the RMoG model the vegetation is idealized as a two-layer scattering scenario constituted by a

  20. Applications of Polarimetric and Interferometric SAR to Environmental Remote Sensing and its Activities: Recent Advances in Extrawideband Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing and its Applications

    DTIC Science & Technology

    2007-02-01

    134] Krieger, G., M. Wendler, J. Mittermayer ,, S. Buckreuss F. Witte, W. Keydel, A. Moreira, 2002, “Sector Imaging Radar for Enhanced Vision...twentieth printing: 1997) [171] Mittermayer , J., A. Moreira and O. Lofeld., 1999, "The frequency scaling algorithm for spotlight SAR data processing

  1. Space-borne polarimetric SAR sensors or the golden age of radar polarimetry

    NASA Astrophysics Data System (ADS)

    Pottier, E.

    2010-06-01

    . In order to promote the exploitation of Polarimetric Spaceborne data, as it is starting today to proliferate with the launch of these Polarimetric SAR sensors, the PolSARpro Software, developed under contract to ESA and that is a toolbox for the scientific exploitation of Polarimetric SAR and Polarimetric-Interferometric data and a tool for high-level education in radar polarimetry, has been expanded and refined to include all elements necessary for the demonstration of a number of key applications. The PolSARpro Software, that already was supporting an important range of airborne and spaceborne polarimetric data sources, supports now the following additional data sources: ALOS-PALSAR (Dual-Pol fine mode and Quad-Pol mode), TerraSAR-X (Dual-pol mode) and Radarsat-2 (Dual-Pol fine mode and Quad-Pol fine and standard modes), by offering a platform dedicated interface for E.O Scientific Investigator. A number of illustrations of key applications has been developed for the demonstration and the promotion of the Polarimetric Spaceborne missions, that are consistent with the activities incorporated in the GMES Services Element (GSE). The aim of this communication is to present the current state of the art in SAR Polarimetry ranging from theory to applications, with special emphasis in the analysis of data provided by the new Polarimetric Spaceborne SAR sensors, and samples of real polarimetric data will be presented for use in real-life examples of key applications.

  2. Remote topographic sensing using polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Schuler, Dale L.; Ainsworth, Thomas L.; Lee, Jong-Sen; Grunes, Mitchell R.; de Grandi, Gianfranco D.

    1997-12-01

    A new remote sensing technique using polarimetric synthetic aperture radar (SAR) data has been developed which can measure terrain slopes in the azimuthal, or along-track, direction. Terrain elevation maps can then be generated by integrating these slopes. The processing of both single- pass, and orthogonal two-pass, datasets is investigated. When single-pass SAR data is used elevation groundtruth must be available for at least one point of each profile formed in the azimuthal direction. When orthogonal two-pass slope data is employed, the elevation surface may be generated as an iterative solution of the Poisson equation and only a single elevation tie-point is required. The study presented uses orthogonal two-pass NASA/JPL AIRSAR P-band data as a test of the Poisson equation approach for an area in Death Valley National Park, California. The orthogonal two-pass results have been compared with a co-registered, conventional, U.S. Geological Survey product. Technique accuracy and potential applications are discussed.

  3. Polarimetric SAR Interferometry to Monitor Land Subsidence in Tehran

    NASA Astrophysics Data System (ADS)

    Sadeghi, Zahra; Valadan Zoej, Mohammad Javad; Muller, Jan-Peter

    2016-08-01

    This letter uses a combination of ADInSAR with a coherence optimization method. Polarimetric DInSAR is able to enhance pixel phase quality and thus coherent pixel density. The coherence optimization method is a search-based approach to find the optimized scattering mechanism introduced by Navarro-Sanchez [1]. The case study is southwest of Tehran basin located in the North of Iran. It suffers from a high-rate of land subsidence and is covered by agricultural fields. Usually such an area would significantly decorrelate but applying polarimetric ADInSAR it is possible to obtain a more coherent pixel coverage. A set of dual-pol TerraSAR-X images was ordered for polarimetric ADInSAR procedure. The coherence optimization method is shown to have increased the density and phase quality of coherent pixels significantly.

  4. Experiments of Tomography-Based SAR Techniques with P-Band Polarimetric Data

    NASA Astrophysics Data System (ADS)

    Lombardini, F.; Pardini, M.

    2009-04-01

    New opportunities are arising in the synthetic aperture radar (SAR) observation of forest scenarios, especially with decimetric and metric radio wavelengths, which possess the capability of penetrating into volumes. Given its capabilities in the three-dimensional imaging of the scattering properties of the observed scene, SAR Tomography (Tomo-SAR) constitutes a good candidate for the analysis of the vertical structure of the forest. In this work, the results are presented of the application of tomography-based SAR techniques to P-band airborne data over a boreal forest from the ESA BioSAR-1 project. Results of an adaptive tomographic analysis are presented, also with a low resolution dataset, which emulates a satellite acquisition. In order to mitigate the geometric perspective effects due to the poor range resolution, the principle is introduced of the application of a common band pre-filtering to tomography. Then, a coherent layer canceller is derived to possibly apply interferometric techniques conceived for single layer scenarios to two layer scenarios. Finally, a stabilized adaptive polarimetric Tomo-SAR (PolTomo-SAR) method is proposed for estimating the 3D polarimetric scattering mechanism of the scene with low distorsions.

  5. Compact polarimetric SAR product and calibration considerations for target analysis

    NASA Astrophysics Data System (ADS)

    Sabry, Ramin

    2016-10-01

    Compact polarimetric (CP) data exploitation is currently of growing interest considering the new generation of such Synthetic Aperture Radar (SAR) systems. These systems offer target detection and classification capabilities comparable to those of polarimetric SARs (PolSAR) with less stringent requirements. A good example is the RADARSAT Constellation Mission (RCM). In this paper, some characteristic CP products are described and effects of CP mode deviation from ideal circular polarization transmit on classifications are modeled. The latter is important for operation of typical CP modes (e.g., RCM). The developed model can be used to estimate the ellipticity variation from CP measured data, and hence, calibrate the classification products.

  6. X-SAR as high-performance interferometric SAR

    NASA Astrophysics Data System (ADS)

    Werner, Marian U.; Schandl, Josef

    1995-11-01

    In April and October 1994 the X-SAR radar has been flown twice onboard the Space Shuttle, as part of the Space Radar Laboratory (SRL-1 and SRL-2). This radar payload is the first synthetic aperture radar (SAR) system of its kind in space, with three frequencies, multi- polarization, variable incidence angle and variable modes of operation. SIR-C/X-SAR, the new generation of imaging microwave remote sensing sensors from space, demonstrated successfully repeat pass interferometry in all three frequencies with a one day repeat as well as a six month repeat orbit. The major problems with the repeat orbit interferometry are the temporal target decorrelation, unsuitable baseline and different squint angles for the two passes to be processed. Therefore, for the third mission of the Space Radar Lab which shall be called SRTM (shuttle radar topographic mapper), single pass interferometry with a second receive antenna is proposed to generate a topographic map of all land surfaces between +60 degrees and -56 degrees latitude. X-SAR's 12 meter long and 40 cm wide main transmit and receive antenna is mounted directly to a tiltable part of the SIR-C antenna truss structure in the Shuttle cargo bay. The second receive antenna is 6 meters long and is mounted together with the second C-band antenna to a 31 meter long deployable boom structure perpendicular to the velocity direction to build the baseline. X-SAR is not capable of operating in a scan SAR model like SIR-C to allow continuous coverage, but will operate in a high resolution mode with a swath width of 30 - 35 km. The engineering design of the interferometric configuration for X-SAR, the requirement specifications, and the predicted performance as well as the mission operation aspects are described in this paper. SIR-C/X- SAR is a cooperative project. The SIR-C instrument was developed by NASA's Jet Propulsion Laboratory (JPL). The X-band radar (X-SAR) was developed by the Dornier and Alenia Spazio Companies for the German

  7. MAX-91: Polarimetric SAR results on Montespertoli site

    NASA Technical Reports Server (NTRS)

    Baronti, S.; Luciani, S.; Moretti, S.; Paloscia, S.; Schiavon, G.; Sigismondi, S.

    1993-01-01

    The polarimetric Synthetic Aperture Radar (SAR) is a powerful sensor for high resolution ocean and land mapping and particularly for monitoring hydrological parameters in large watersheds. There is currently much research in progress to assess the SAR operational capability as well as to estimate the accuracy achievable in the measurements of geophysical parameters with the presently available airborne and spaceborne sensors. An important goal of this research is to improve our understanding of the basic mechanisms that control the interaction of electro-magnetic waves with soil and vegetation. This can be done both by developing electromagnetic models and by analyzing statistical relations between backscattering and ground truth data. A systematic investigation, which aims at a better understanding of the information obtainable from the multi-frequency polarimetric SAR to be used in agro-hydrology, is in progress by our groups within the framework of SIR-C/X-SAR Project and has achieved a most significant milestone with the NASA/JPL Aircraft Campaign named MAC-91. Indeed this experiment allowed us to collect a large and meaningful data set including multi-temporal multi-frequency polarimetric SAR measurements and ground truth. This paper presents some significant results obtained over an agricultural flat area within the Montespertoli site, where intensive ground measurements were carried out. The results are critically discussed with special regard to the information associated with polarimetric data.

  8. Two microstrip arrays for interferometric SAR applications

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1993-01-01

    Two types of C-band aircraft interferometric Synthetic Aperture Radar (SAR) are being developed at JPL to measure the ocean wave characteristics. Each type requires two identical antennas with each having a long rectangular aperture to radiate fan-shaped beam(s). One type of these radars requires each of its antennas to radiate a broadside beam that will measure the target's cross-track velocity. The other type, having each of its antennas to radiate two off-broadside pointed beams, will allow the measurement of both the cross-track and the along-track velocities of the target. Because flush mounting of the antenna on the aircraft fuselage is desirable, microstrip patch array is selected for these interferometric SAR antennas. To meet the radar system requirement, each array needs a total of 76 microstrip patches which are arranged in a 38 x 2 rectangular aperture with a physical size of 1.6m x 16.5cm. To minimize the insertion loss and physical real estate of this relatively long array, a combined series/parallel feed technique is used. Techniques to suppress cross-pol radiation and to effectively utilize the RF power are also implemented. Cross-pol level of lower than -30 dB from the co-pol peak and low insertion loss of 0.36 dB have been achieved for both types of arrays. For the type of radar that requires two off-braodside pointed beams, a simple phasing technique is used to achieve this dual-beam capability with adequate antenna gain (20 dBi) and sidelobe level (-14 dB). Both radar arrays have been flight tested on aircraft with excellent antenna performance demonstrated.

  9. From Maxwell's Equations to Polarimetric SAR Images: A Simulation Approach.

    PubMed

    Sant'Anna, Sidnei J S; Da S Lacava, J C; Fernandes, David

    2008-11-19

    A new electromagnetic approach for the simulation of polarimetric SAR images is proposed. It starts from Maxwell's equations, employs the spectral domain full-wave technique, the moment method, and the stationary phase method to compute the far electromagnetic fields scattered by multilayer structures. A multilayer structure is located at each selected position of a regular rectangular grid of coordinates, which defines the scene area under imaging. The grid is determined taking into account the elementary scatter size and SAR operational parameters, such as spatial resolution, pixel spacing, look angle and platform altitude. A two-dimensional separable "sinc" function to represent the SAR spread point function is also considered. Multifrequency sets of single-look polarimetric SAR images are generated, in L-, C- and X-bands and the images are evaluated using several measurements commonly employed in SAR data analysis. The evaluation shows that the proposed simulation process is working properly, since the obtained results are in accordance with those presented in the literature. Therefore, this new approach becomes suitable for carrying out theoretical and practical studies using polarimetric SAR images.

  10. From Maxwell's Equations to Polarimetric SAR Images: A Simulation Approach

    PubMed Central

    Sant'Anna, Sidnei J. S.; da S. Lacava, J. C.; Fernandes, David

    2008-01-01

    A new electromagnetic approach for the simulation of polarimetric SAR images is proposed. It starts from Maxwell's equations, employs the spectral domain full-wave technique, the moment method, and the stationary phase method to compute the far electromagnetic fields scattered by multilayer structures. A multilayer structure is located at each selected position of a regular rectangular grid of coordinates, which defines the scene area under imaging. The grid is determined taking into account the elementary scatter size and SAR operational parameters, such as spatial resolution, pixel spacing, look angle and platform altitude. A two-dimensional separable “sinc” function to represent the SAR spread point function is also considered. Multifrequency sets of single-look polarimetric SAR images are generated, in L-, C- and X-bands and the images are evaluated using several measurements commonly employed in SAR data analysis. The evaluation shows that the proposed simulation process is working properly, since the obtained results are in accordance with those presented in the literature. Therefore, this new approach becomes suitable for carrying out theoretical and practical studies using polarimetric SAR images. PMID:27873935

  11. Initial assessment of an airborne Ku-band polarimetric SAR.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  12. Land cover classification comparisons among dual polarimetric, pseudo-fully polarimetric, and fully polarimetric SAR imagery

    NASA Astrophysics Data System (ADS)

    Mishra, Bhogendra; Susaki, Junichi

    2012-10-01

    In this paper, an approach is proposed that predicts fully polarimetric data from dual polarimetric data, and then applies selected supervised algorithm for dual polarimetric, pseudo-fully polarimetric and fully polarimetric dataset for the land cover classification comparison. A regression model has been developed to predict the complex variables of VV polarimetric component and amplitude independently using corresponding complex variables and amplitude in HH and HV bands. Support vector machine (SVM)is implemented for the land cover classification. Coherency matrix and amplitude were used for all dataset for the land cover classification independently.They are used to compare the data from different perspective. Finally, a post processing technique is implemented to remove the isolated pixels appeared as a noise. AVNIR-2 optical data over the same area is used as ground truth data to access the classification accuracy.The result from SVM indicates that the fully polarimetric mode gives the maximum classification accuracy followed by pseudo-fully polarimetric and dual polarimetric datasets using coherency matrix input for fully polarimetric image and pseudo-fully polarimetric image and covariance matrix input for dual polarimetric image. Additionally, it is observed that pseudo-fully polarimetric image with amplitude input does not show the significant improvement over dual polarimetric image with same input.

  13. Applications of interferometrically derived terrain slopes: Normalization of SAR backscatter and the interferometric correlation coefficient

    NASA Technical Reports Server (NTRS)

    Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.

    1994-01-01

    Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.

  14. Quad-Polarimetric SAR for Detection and Characterization of Icebergs

    NASA Astrophysics Data System (ADS)

    Akbari, V.; Brekke, C.; Doulgeris, A. P.; Storvold, R.; Silvertsen, A.

    2016-08-01

    This paper evaluates the performance of fully polarimetric SAR data in iceberg detection and characterization. The study aims to explore the potential of RADARSAT- 2 SAR data to detect icebergs and growlers in Svalbard that have broken off from the glaciers nearby. To be able to detect iceberg/growlers in a SAR image, a significant contrast between iceberg and background clutter is required. The sublook cross-correlation magnitude (SCM) is extracted from the complex cross-correlation between subapeture images and contrast between iceberg and sea clutter is measured. The results of target-to-clutter ratio from the SCM indicate that the sublook analysis has an impact on detection performance.

  15. Ensemble polarimetric SAR image classification based on contextual sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Lamei; Wang, Xiao; Zou, Bin; Qiao, Zhijun

    2016-05-01

    Polarimetric SAR image interpretation has become one of the most interesting topics, in which the construction of the reasonable and effective technique of image classification is of key importance. Sparse representation represents the data using the most succinct sparse atoms of the over-complete dictionary and the advantages of sparse representation also have been confirmed in the field of PolSAR classification. However, it is not perfect, like the ordinary classifier, at different aspects. So ensemble learning is introduced to improve the issue, which makes a plurality of different learners training and obtained the integrated results by combining the individual learner to get more accurate and ideal learning results. Therefore, this paper presents a polarimetric SAR image classification method based on the ensemble learning of sparse representation to achieve the optimal classification.

  16. Monitoring Surface Deformation using Polarimetric Ground Based Interferometric Radar

    NASA Astrophysics Data System (ADS)

    Legarsky, J. J.; Gomez, F.; Rosenblad, B.; Loehr, E.; Cherukumilli, S.; Deng, H.; Held, B.; Jenkins, W.

    2012-12-01

    Surface deformation monitoring using ground based interferometric radar (GBIR) measurements may be desirable for a number of applications in the earth sciences. The University of Missouri (MU) research team has ongoing efforts to use the MU GBIR for monitoring surface deformation at a number of sites. Measurements have been collected at sites requiring access by various transportation means such as using off-road vehicle, hiking, and helicopter. Once on site, initial setup takes about 10 minutes. After setup, an image may be acquired by azimuth scan about every 20 seconds. The highly portable system lends itself to rapid deployment in remote environments and repeat survey sites. The MU GBIR's high portability and fast imaging capabilities allow rapid surveying and long-term surveying potential of surface deformation. Imagery may be formed in near real time for initial quick looks. After data collection, imagery data may be further enhanced by radiometric calibration, polarimetric calibration, and time-series analysis. Imaging may be acquired at the electromagnetic spectral bands of C-band and Ku-band. Prior demonstration of millimeter and better sensitivity to deformation over the course of a day of data collects has been performed using the MU GBIR. In addition, the MU GBIR can be removed and re-positioned at the same point with geodetic-grade precision for repeat surveys. Study results and additional development progress will be presented. This project is sponsored by a grant from the National Science Foundation.

  17. Classification of Polarimetric SAR Image Based on the Subspace Method

    NASA Astrophysics Data System (ADS)

    Xu, J.; Li, Z.; Tian, B.; Chen, Q.; Zhang, P.

    2013-07-01

    Land cover classification is one of the most significant applications in remote sensing. Compared to optical sensing technologies, synthetic aperture radar (SAR) can penetrate through clouds and have all-weather capabilities. Therefore, land cover classification for SAR image is important in remote sensing. The subspace method is a novel method for the SAR data, which reduces data dimensionality by incorporating feature extraction into the classification process. This paper uses the averaged learning subspace method (ALSM) method that can be applied to the fully polarimetric SAR image for classification. The ALSM algorithm integrates three-component decomposition, eigenvalue/eigenvector decomposition and textural features derived from the gray-level cooccurrence matrix (GLCM). The study site, locates in the Dingxing county, in Hebei Province, China. We compare the subspace method with the traditional supervised Wishart classification. By conducting experiments on the fully polarimetric Radarsat-2 image, we conclude the proposed method yield higher classification accuracy. Therefore, the ALSM classification method is a feasible and alternative method for SAR image.

  18. Interferometric SAR imaging by transmitting stepped frequency chaotic noise signals

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhua; Gu, Xiang; Zhai, Wenshuai; Dong, Xiao; Shi, Xiaojin; Kang, Xueyan

    2015-10-01

    Noise radar has been applied in many fields since it was proposed more than 50 years ago. However, it has not been applied to interferometric SAR imaging yet as far as we know. This paper introduces our recent work on interferometric noise radar. An interferometric SAR system was developed which can transmit both chirp signal and chaotic noise signal (CNS) at multiple carrier frequencies. An airborne experiment with this system by transmitting both signals was carried out, and the data were processed to show the capability of interferometric SAR imaging with CNS. The results shows that although the interferometric phase quality of CNS is degraded due to the signal to noise ratio (SNR) is lower compared with that of chirp signal, we still can get satisfied DEM after multi-looking processing. Another work of this paper is to apply compressed sensing (CS) theory to the interferometric SAR imaging with CNS. The CS theory states that if a signal is sparse, then it can be accurately reconstructed with much less sampled data than that regularly required according to Nyquist Sampling Theory. To form a structured random matrix, if the transmitted signal is of fixed waveform, then random subsampling is needed. However, if the transmitted signal is of random waveform, then only uniform subsampling is needed. This is another advantage of noise signal. Both the interferometric phase images and the DEMs by regular method and by CS method are processed with results compared. It is shown that the degradation of interferometric phases due to subsampling is larger than that of amplitude image.

  19. Detection of land degradation with polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Farr, Tom G.; Van Zyl, Jakob J.

    1992-01-01

    Multispectral radar polarimeter data were collected over the Manix Basin Area of the Mojave desert using an airborne SAR. An analysis of the data reveals unusual polarization responses which are attributed to the formation of wind ripples on the surfaces of fields that have been abandoned for more than 5 years. This hypothesis has been confirmed through field observations, and a second-order perturbation model is shown to effectively model the polarization responses. The results demonstrate the usefulness of remote sensing techniques for the study of land degradation at synoptic scales.

  20. Classification And Monitoring Of Salt Marsh Habitats With Multi-Polarimetric Airborne SAR

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2013-12-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi- frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  1. Process for combining multiple passes of interferometric SAR data

    DOEpatents

    Bickel, Douglas L.; Yocky, David A.; Hensley, Jr., William H.

    2000-11-21

    Interferometric synthetic aperture radar (IFSAR) is a promising technology for a wide variety of military and civilian elevation modeling requirements. IFSAR extends traditional two dimensional SAR processing to three dimensions by utilizing the phase difference between two SAR images taken from different elevation positions to determine an angle of arrival for each pixel in the scene. This angle, together with the two-dimensional location information in the traditional SAR image, can be transformed into geographic coordinates if the position and motion parameters of the antennas are known accurately.

  2. Accounting For Gains And Orientations In Polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1992-01-01

    Calibration method accounts for characteristics of real radar equipment invalidating standard 2 X 2 complex-amplitude R (receiving) and T (transmitting) matrices. Overall gain in each combination of transmitting and receiving channels assumed different even when only one transmitter and one receiver used. One characterizes departure of polarimetric Synthetic Aperture Radar (SAR) system from simple 2 X 2 model in terms of single parameter used to transform measurements into format compatible with simple 2 X 2 model. Data processed by applicable one of several prior methods based on simple model.

  3. Rice growth monitoring using simulated compact polarimetric C band SAR

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Li, Kun; Liu, Long; Shao, Yun; Brisco, Brian; Li, Weiguo

    2014-12-01

    In this study, a set of nine compact polarimetric (CP) images were simulated from polarimetric RADARSAT-2 data acquired over a test site containing two types of rice field in Jiangsu province, China. The types of rice field in the test site were (1) transplanted hybrid rice fields, and (2) direct-sown japonica rice fields. Both types have different yields and phenological stages. As a first step, the two types of rice field were distinguished with 94% and 86% accuracy respectively through analyzing CP synthetic aperture radar (SAR) observations and their behavior in terms of scattering mechanisms during the rice growth season. The focus was then on phenology retrieval for each type of rice field. A decision tree (DT) algorithm was built to fulfill the precise retrieval of rice phenological stages, in which seven phenological stages were discriminated. The key criterion for each phenological stage was composed of 1-4 CP parameters, some of which were first used for rice phenology retrieval and found to be very sensitive to rice phenological changes. The retrieval results were verified at parcel level for a set of 12 stands of rice and up to nine observation dates per stand. This gave an accuracy of 88-95%. Throughout the phenology retrieval process, only simulated CP data were used, without any auxiliary data. These results demonstrate the potential of CP SAR for rice growth monitoring applications.

  4. Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi

    2014-01-01

    The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.

  5. Disaster debris estimation using high-resolution polarimetric stereo-SAR

    NASA Astrophysics Data System (ADS)

    Koyama, Christian N.; Gokon, Hideomi; Jimbo, Masaru; Koshimura, Shunichi; Sato, Motoyuki

    2016-10-01

    This paper addresses the problem of debris estimation which is one of the most important initial challenges in the wake of a disaster like the Great East Japan Earthquake and Tsunami. Reasonable estimates of the debris have to be made available to decision makers as quickly as possible. Current approaches to obtain this information are far from being optimal as they usually rely on manual interpretation of optical imagery. We have developed a novel approach for the estimation of tsunami debris pile heights and volumes for improved emergency response. The method is based on a stereo-synthetic aperture radar (stereo-SAR) approach for very high-resolution polarimetric SAR. An advanced gradient-based optical-flow estimation technique is applied for optimal image coregistration of the low-coherence non-interferometric data resulting from the illumination from opposite directions and in different polarizations. By applying model based decomposition of the coherency matrix, only the odd bounce scattering contributions are used to optimize echo time computation. The method exclusively considers the relative height differences from the top of the piles to their base to achieve a very fine resolution in height estimation. To define the base, a reference point on non-debris-covered ground surface is located adjacent to the debris pile targets by exploiting the polarimetric scattering information. The proposed technique is validated using in situ data of real tsunami debris taken on a temporary debris management site in the tsunami affected area near Sendai city, Japan. The estimated height error is smaller than 0.6 m RMSE. The good quality of derived pile heights allows for a voxel-based estimation of debris volumes with a RMSE of 1099 m3. Advantages of the proposed method are fast computation time, and robust height and volume estimation of debris piles without the need for pre-event data or auxiliary information like DEM, topographic maps or GCPs.

  6. Observation of Planetary Oceans with Fully Polarimetric Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Moon, Wooil M.

    waves observed in the western part of the East Sea test area were also estimated from more than 140 SAR images. On the other hand, very long wave patterns (13-10 km) were observed in two successively acquired ENVISAT ASAR images and interpreted as near-inertial internal waves based on the hydrographic data. The Along Track Interferometric SAR (ATI-SAR), utilizing two SAR antennas separated along the platform flight direction and combined interferometrically, was also tested and validated to derive ocean surface current and wave information. The phase of ATI-SAR is related to the line-of-sight velocity of the water scatterers. The surface current extraction from the ATI-SAR velocity is still an open question, because the Doppler shift is not simply proportional to the component of the mean surface current. It also includes other types of contributions associated with the phase velocity of the Bragg waves and orbital motions of all ocean waves that are longer than Bragg waves. For accurate current estimation, a new and practically useful method was developed using simultaneously measured L- and C-band ATI-SAR data. The influence of Bragg resonant waves and long ocean wave motions on the ATI-SAR velocity according to the radar-frequency was analyzed and effectively eliminated. The method was applied to NASA(JPL) L- and C-band ATI-SAR measurements. The resulting ocean surface current vectors were compared with in situ measurements collected by an RCM (Recording Current Meter). Furthermore, ocean surface wave information was extracted from the ATI-SAR data using a quasi-linear transform. The limitations of the transform were also discussed. The basic principles and the results of these multi-disciplinary observation approaches on the Earth's ocean may be extended to investigate other terrestrial planetary surface observation in the solar system. With recent launching of several fully polarimetric SAR systems such as ALOS, TerraSAR-X and RADARSAT-2, we now have the real

  7. Classification and Monitoring of Salt Marsh Habitats with Multi-Polarimetric and Multi-Frequency SAR

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair; Brown, Sarah

    2013-08-01

    Within GMES there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application for Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh habitats from can be identified from SAR remotely sensed data. Multi-frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by characterizing their botanical and structural composition, flooding regimes as well as fluctuations in soil moisture. Different SAR features as backscatter coefficient, band ratios and polarimetric decomposition are extracted.

  8. Oil Detection in a Coastal Marsh with Polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Ramsey, E., III; Rangoonwala, A.; Suzuoki, Y.; Bannister, T.

    2011-09-01

    The NASA UAVSAR was deployed June 2010 to support Deep Water Horizon oil spill response activities specifically, oil detection and characterization, oil extent mapping in wetlands, coastal resource impact detection, and ecosystem recovery. The UAVSAR platform demonstrated enhanced capability to act rapidly and provide targeted mapping response. Our research focused on the effectiveness of high spatial resolution and fully polarimetric L-band Synthetic Aperture Radar (PolSAR) for mapping oil in wetlands, specifically within Barataria Bay in eastern coastal Louisiana. Barataria Bay contained a numerous site observations confirming spatially extensive shoreline oil impacts, multiple oil spill UAVSAR collections, and a near anniversary 2009 collection. PolSAR oil detection relied on decomposition and subsequent classifications of the single look complex (SLC) calibrated radar cross sections representing the complex elements of the scattering matrix. Initial analyses results found that shoreline marsh structural damage as well as oil on marsh plants and sediments without canopy structural damage were exhibited as anomalous features on post-spill SLC scenes but were not evident on the pre-spill SLC scene collected in 2009. Pre-spill and post-spill Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions and the Wishart classifications seeded with the FD and CP classes (Wishart-FD) also highlighted these nearshore features as a change in dominate scatter from pre-spill to post-spill. SLC analyses also indicated penetration of oil ladened waters into interior marshes well past the immediate shorelines; however, these post-spill SLC analyses results could not be validated due to the lack of observational data and possible flooding in the pre-spill SLC scene.

  9. Alternative to Four-Component Decomposition for Polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Zhang, J. X.; Huang, G. M.; Wei, J. J.; Zhao, Z.

    2016-06-01

    There are more unknowns than equations to solve for previous four-component decomposition methods. In this case, the nonnegative power of each scattering mechanism has to be determined with some assumptions and physical power constraints. This paper presents a new decomposition scheme, which models the measured matrix after polarimetric orientation angle (POA) compensation as a linear sum of five scattering mechanisms (i.e., odd-bounce scattering, double-bounce scattering, diffuse scattering, volume scattering, and helix scattering). And the volume scattering power is calculated by a slight modified NNED method, owing to this method considering the external volume scattering model from oblique dihedral structure. After the helix and volume scattering powers have been determined sequentially, the other three scattering powers are estimated by combining the generalized similarity parameter (GSP) and the eigenvalue decomposition. Among them, due to POA compensation, the diffuse scattering induced from a dihedral with a relative orientation of 45º has negligible scattering power. Thus, the new method can be reduced as four-component decomposition automatically. And then the ALOS-2 PolSAR data covering Guiyang City, Guizhou Province, China were used to evaluate the performance of the new method in comparison with some classical decomposition methods (i.e. Y4R, S4R and G4U).

  10. A novel framework for change detection in bi-temporal polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Pirrone, Davide; Bovolo, Francesca; Bruzzone, Lorenzo

    2016-10-01

    Last years have seen relevant increase of polarimetric Synthetic Aperture Radar (SAR) data availability, thanks to satellite sensors like Sentinel-1 or ALOS-2 PALSAR-2. The augmented information lying in the additional polarimetric channels represents a possibility for better discriminate different classes of changes in change detection (CD) applications. This work aims at proposing a framework for CD in multi-temporal multi-polarization SAR data. The framework includes both a tool for an effective visual representation of the change information and a method for extracting the multiple-change information. Both components are designed to effectively handle the multi-dimensionality of polarimetric data. In the novel representation, multi-temporal intensity SAR data are employed to compute a polarimetric log-ratio. The multitemporal information of the polarimetric log-ratio image is represented in a multi-dimensional features space, where changes are highlighted in terms of magnitude and direction. This representation is employed to design a novel unsupervised multi-class CD approach. This approach considers a sequential two-step analysis of the magnitude and the direction information for separating non-changed and changed samples. The proposed approach has been validated on a pair of Sentinel-1 data acquired before and after the flood in Tamil-Nadu in 2015. Preliminary results demonstrate that the representation tool is effective and that the use of polarimetric SAR data is promising in multi-class change detection applications.

  11. Maximum Likelihood Shift Estimation Using High Resolution Polarimetric SAR Clutter Model

    NASA Astrophysics Data System (ADS)

    Harant, Olivier; Bombrun, Lionel; Vasile, Gabriel; Ferro-Famil, Laurent; Gay, Michel

    2011-03-01

    This paper deals with a Maximum Likelihood (ML) shift estimation method in the context of High Resolution (HR) Polarimetric SAR (PolSAR) clutter. Texture modeling is exposed and the generalized ML texture tracking method is extended to the merging of various sensors. Some results on displacement estimation on the Argentiere glacier in the Mont Blanc massif using dual-pol TerraSAR-X (TSX) and quad-pol RADARSAT-2 (RS2) sensors are finally discussed.

  12. Integrated Analysis of Interferometric SAR, Satellite Altimetry and Hydraulic Modeling to Quantify Louisiana Wetland Dynamics

    NASA Technical Reports Server (NTRS)

    Lee, Hyongki; Kim, Jin-woo; Lu, Zhong; Jung, Hahn Chul; Shum, C. K.; Alsdorf, Doug

    2012-01-01

    Wetland loss in Louisiana has been accelerating due primarily to anthropogenic and nature processes, and is being advocated as a problem with national importance. Accurate measurement or modeling of wetland-wide water level changes, its varying extent, its storage and discharge changes resulting in part from sediment loads, erosion and subsidence are fundamental to assessment of hurricane-induced flood hazards and wetland ecology. Here, we use innovative method to integrate interferometric SAR (InSAR) and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identi:fy double-bonnce backscattering areas in the wetland. Envisat radar altimeter-measured 18- Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (approx.40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-l C-band InSAR are then integrated with Envisat radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. Furthermore, we compare our water elevation changes with 2D flood modeling from LISFLOOD hydrodynamic model. Our study demonstrates that this new technique allows retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  13. Preliminary analysis results of the Sea Surface Observation by a High Resolution Along-Track Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Kojima, S.

    2013-12-01

    There are many requirements to detect the moving targets such as cars and ships in SAR images as well as to measure their speed. In particular, there are strongly requirements to detect ships and measure the ocean waves and the sea surface currents regardless of the time or the weather in the case of the ship accidents or the oil spill accidents because the rescue operation should be operated at the anytime. To satisfy these requirements, NICT developed the airborne along-track interferometric SAR (AT-InSAR) system in 2011. Kojima[1][2] carried out the preliminary experiments using a truck and ship to check its function and clarify its capability for the detection of the moving targets, and confirmed that its performance was satisfied with its specifications. The purpose of this study is to make clear the relationship between the phenomena on the sea surface such as the ocean waves and the velocity estimated from the AT-InSAR data, and the capability of the sea surface measurement by the AT-InSAR. In addition, the method to estimate wave directional spectra from AT-InSAR data is developed. The sea surface observation was carried out 3 km off the coast of Ooarai, the northeast of Tokyo, JAPAN on the 23th of August 2011. I observed the sea surface in the fine special resolution (0.3 m) and took a special average (1 m) to reduce noise. First of all, I estimated the wave velocity from the AT-InSAR images and calculated the 2D wave number spectra from it. And then, I estimated the directional wave spectra using the dispersion relation. As a result, it was clarified that the ocean waves could be measured by the AT-InSAR. In addition, it made clear that the bow waves and stern waves generated by a running ship could be detected by AT-InSAR. References [1] S. Kojima, T. Umehara, J. Uemoto, T. Kobayashi, M. Satake and S. Uratsuka, 'Development of Pi-SAR2 Along-Track Interferometric SAR System', IGARSS 2013, pp. 3159-3162, Aug. 2013. [2] S. Kojima, 'Evaluation of the Ship

  14. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  15. Detection and Monitoring of Inundation with Polarimetric L-Band SAR

    NASA Astrophysics Data System (ADS)

    Chapman, B. D.; Celi, J. E.; Hamilton, S. K.; McDonald, K. C.

    2014-12-01

    It has been known for decades that at wavelengths L-band or longer, SAR is a sensitive indicator of inundation underneath forest canopies. The high resolution detection of below-canopy inundation is difficult to accomplish at regional to continental scales using other types of remote sensing sensors, making it a compelling SAR measurement especially useful for studying wetland inundation dynamics, particularly in difficult-to-reach access, canopy-covered tropical forest environments. Most results have utilized spaceborne SAR observations with less than fully polarimetric data. Since one of the objectives of the NISAR mission is to characterize and understand the fundamental process that drives changes to ecosystems such as wetland inundated areas, we will discuss the sensitivity of L-band SAR to inundation. We will illustrate the detection of inundation using fully polarimetric L-band SAR data from UAVSAR, NASA's airborne SAR, over a tropical forest region in Ecuador and Peru. At the same time as the data collection, measurements were made on the ground to characterize vegetation and inundation characteristics. The field data were used to validate the results of classifying the vanZyl decomposition of the polarimetric data. We compare this classification with that possible with a reduced subset of the polarimetric observations.

  16. Use of airborne polarimetric SAR, optical and elevation data for mapping and monitoring of salt marsh vegetation habitats

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2014-10-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi-frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  17. Oil Detection in a Coastal Marsh with Polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Ramsey, E.; Rangoonwala, A.; Suzuoki, Y.; Bannister, T.

    2011-12-01

    The NASA UAVSAR was deployed June 2010 to support Deep Water Horizon oil spill response activities expressly, oil characterization, oil detection in wetlands, and coastal resource impact detection and recovery. The UAVSAR demonstrated enhanced capability to act rapidly and provide targeted mapping responses. Our research focused on the effectiveness of high spatial resolution and fully polarimetric L-band SAR for mapping oil in wetlands, specifically within Barataria Bay in eastern coastal Louisiana (Fig.). The Bay contained numerous site observations confirming spatially extensive shoreline oil impacts, multiple UAVSAR collections, and a near anniversary 2009 collection. PolSAR oil detection relied on decomposition and subsequent classifications of the single look complex (SLC) scenes. Initial analyses results found that shoreline marsh structural damage accompanied by oil occurrence were exhibited as anomalous features on post-spill SLC flightlines but were not evident on the pre-spill SLC flightline collected in 2009. Pre-spill and post-spill Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions and Wishart classifications seeded with the FD and CP classes (Wishart-FD, Wishart-CP)also highlighted these nearshore features as a change in dominate scatter. In addition, all decompositions and classifications identify a class of interior marshes within the central core of the study region that reproduce spatially extensive changes in backscatter exhibited on the pre-spill and post-spill SLC image comparisons and on all post-spill SLC images. The FD and CP decompositions revealed that the change is associated with a transform of dominant scatter from primarily surface or volume to double or even bounce. As a preponderance of evidence supports the penetration of oil-polluted waters into interior marshes, it is reasonable that marshes exhibiting different backscatter in the pre-spill and post-spill SLC renditions, identify interior marshes exposed to flushing

  18. Fitting a Two-Component Scattering Model to Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Freeman, A.

    1998-01-01

    Classification, decomposition and modeling of polarimetric SAR data has received a great deal of attention in the recent literature. The objective behind these efforts is to better understand the scattering mechanisms which give rise to the polarimetric signatures seen in SAR image data. In this Paper an approach is described, which involves the fit of a combination of two simple scattering mechanisms to polarimetric SAR observations. The mechanisms am canopy scatter from a cloud of randomly oriented oblate spheroids, and a ground scatter term, which can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, seen through a layer of vertically oriented scatterers. An advantage of this model fit approach is that the scattering contributions from the two basic scattering mechanisms can be estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. The model fit can be applied to polarimetric AIRSAR data at C-, L- and P-Band.

  19. Exploring snow information content of interferometric SAR data

    NASA Astrophysics Data System (ADS)

    Esmaeily Gazkohani, Ali

    The objective of this research is to explore the information content of repeat-pass cross-track Interferometric SAR (InSAR) with regard to snow, in particular Snow Water Equivalent (SWE) and snow depth. The study is an outgrowth of earlier snow cover modeling and radar interferometry experiments at Schefferville, Quebec, Canada and elsewhere which has shown that for reasons of loss of coherence repeat-pass InSAR is not useful for the purpose of snow cover mapping, even when used in differential InSAR mode. Repeat-pass cross-track InSAR would overcome this problem. As at radar wavelengths dry snow is transparent, the main reflection is at the snow/ground interface. The high refractive index of ice creates a phase delay which is linearly related to the water equivalent of the snow pack. When wet, the snow surface is the main reflector, and this enables measurement of snow depth. Algorithms are elaborated accordingly. Field experiments were conducted at two sites and employ two different types of digital elevation models (DEM) produced by means of cross track InSAR. One was from the Shuttle Radar Topography Mission digital elevation model (SRTM DEM), flown in February 2000. It was compared to the photogrammetrically produced Canadian Digital Elevation Model (CDEM) to examine snow-related effects at a site near Schefferville, where snow conditions are well known from half a century of snow and permafrost research. The second type of DEM was produced by means of airborne cross track InSAR (TOPSAR). Several missions were flown for this purpose in both summer and winter conditions during NASA's Cold Land Processes Experiment (CLPX) in Colorado, USA. Differences between these DEM's were compared to snow conditions that were well documented during the CLPX field campaigns. The results are not straightforward. As a result of automated correction routines employed in both SRTM and AIRSAR DEM extraction, the snow cover signal is contaminated. Fitting InSAR DEM's to known

  20. Comparing the Behavior of Polarimetric SAR Imagery (TerraSAR-X and Radarsat-2) for Automated Sea Ice Classification

    NASA Astrophysics Data System (ADS)

    Ressel, Rudolf; Singha, Suman; Lehner, Susanne

    2016-08-01

    Arctic Sea ice monitoring has attracted increasing attention over the last few decades. Besides the scientific interest in sea ice, the operational aspect of ice charting is becoming more important due to growing navigational possibilities in an increasingly ice free Arctic. For this purpose, satellite borne SAR imagery has become an invaluable tool. In past, mostly single polarimetric datasets were investigated with supervised or unsupervised classification schemes for sea ice investigation. Despite proven sea ice classification achievements on single polarimetric data, a fully automatic, general purpose classifier for single-pol data has not been established due to large variation of sea ice manifestations and incidence angle impact. Recently, through the advent of polarimetric SAR sensors, polarimetric features have moved into the focus of ice classification research. The higher information content four polarimetric channels promises to offer greater insight into sea ice scattering mechanism and overcome some of the shortcomings of single- polarimetric classifiers. Two spatially and temporally coincident pairs of fully polarimetric acquisitions from the TerraSAR-X/TanDEM-X and RADARSAT-2 satellites are investigated. Proposed supervised classification algorithm consists of two steps: The first step comprises a feature extraction, the results of which are ingested into a neural network classifier in the second step. Based on the common coherency and covariance matrix, we extract a number of features and analyze the relevance and redundancy by means of mutual information for the purpose of sea ice classification. Coherency matrix based features which require an eigendecomposition are found to be either of low relevance or redundant to other covariance matrix based features. Among the most useful features for classification are matrix invariant based features (Geometric Intensity, Scattering Diversity, Surface Scattering Fraction).

  1. On evaluating the accuracy of SAR sea-ice classification using multifrequency polarimetric AIRSAR data

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.; Rignot, Eric

    1993-01-01

    We investigate how multifrequency and polarimetric synthetic aperture radar (SAR) imagery enhances present capability to discriminate different ice conditions in single-frequency, single-polarization satellite SAR data. Frequencies considered are C- (lambda = 5.6cm), L- (lambda = 24cm) and P- (lambda = 68cm) band. Radar backscatter characteristics of six radiometrically and polarimetrically distinct ice types are selected from a cluster analysis of the multifrequency polarimetric SAR data and used to classify SAR images. Validation of these ice conditions is based on information provided by aerial photos, weather and ice surface measurements acquired at an ice camp, together with airborne passive microwave imagery, and visual analysis of the SAR data. The six identified sea-ice types are: (1) multiyear sea-ice; (2) compressed first year ice; (3) first year rubble and ridges; (4) first year rough ice; (5) first year smooth ice; and (6) thin ice. Open water is absent in all analyzed data. Classification of the SAR imagery into those six ice types is performed using a Bayesian Maximum A Posteriori classifier. Two complete scenes acquired at different dates in different locations are classified. The scenes were chosen such that they are representative of typical ice conditions in the Beaufort Sea in March 1988 and because ancillary information is available for validating the segmentation of various ice surface conditions.

  2. The Potential of Polarimetric and Compact SAR Data in Rice Identification

    NASA Astrophysics Data System (ADS)

    Shao, Y.; Li, K.; Brisco, B.; Liu, L.; Yang, Z.

    2014-03-01

    Rice is a major food staple in the world, and provides food for more than one-third of the global population. The monitoring and mapping of paddy rice in a timely and efficient manner is very important for governments and decision makers. Synthetic Aperture Radar (SAR) has been proved to be a significant data source in rice monitoring. In this study, RADARSAT-2 polarimetric data were used to simulate compact polarimetry data. The simulated compact data and polarimetric data were then used to evaluate the information content for rice identification. The results indicate that polarimetric SAR can be used for rice identification based on the scattering mechanisms. The compact polarization RH and the RH/RL ratio are very promising for the discrimination of transplanted rice and direct-sown rice. These results require verification in further research.

  3. Bistatic Polarimetric SAR Decomposition in Terms of Roll-Invariant Parameters

    NASA Astrophysics Data System (ADS)

    Bombrun, Lionel

    2011-03-01

    This paper introduces a new bistatic Polarimetric SAR decomposition in terms of roll-invariant parameters. The proposed decomposition is an extension of the Target Scattering Vector Model to the bistatic case, where the cross-polarization terms of the scattering matrix are not necessary equal.

  4. SAR Polarimetric Signatures for Urban Targets - Polarimetric Signature Calculation and Visualization

    NASA Astrophysics Data System (ADS)

    Vyas, A.; Sashtri, B.

    2012-08-01

    Various urban targets (land use) from Ahmedabad city were chosen, followed by generation of polarimetric signatures for each target using the developed tool. These polarimetric signatures were then studied and analyzed in detail. An attempt has been to develop a Polarimetric Signature Calculation and Visual Representation Tool assigned name "POLSIC", to generate Co-polarized and Cross polarized signatures, based on the calculation of Stokes Matrix and the backscattered power at various ellipticity and orientation angles. The input parameters required for the developed tool, are the amplitude and phase values of all the four polarizations, for each target using any quadpol radar imagery. In this study, RADARSAT-2 imagery has been used to obtain the amplitude and phase values of each target, in all four polarization states. Polarimetric signatures were generated for various urban targets using the developed tool. Vegetated land, built up in the city, built up within lake, and road were found to have an overall higher polarimetric response (backscattered power) as compared to grass lawn, fallow land and minimum in case of water body. Such Polarimetric responses were obtained due to factors like surface roughness and orientation of the target with respect to the radar look angle. The shape of the signature also indicates the scattering characteristics.

  5. Application of Polarimetric-Interferometric Phase Coherence Optimization (PIPCO) Procedure to SIR-C/X-SAR Tien-Shan Tracks 122.20(94 Oct. 08)/154.20(94 Oct. 09) Repeat-Orbit C/L-Band Pol-D-InSAR Imag

    NASA Technical Reports Server (NTRS)

    Boerner, W. M.; Mott, H.; Verdi, J.; Darizhapov, D.; Dorjiev, B.; Tsybjito, T.; Korsunov, V.; Tatchkov, G.; Bashkuyev, Y.; Cloude, S.; Papathanassiou, K.; Pottier, E.; Lee, J.; Ainsworth, T.; Schuler, D.; Grandi, G.; Rosen, P.; Peltzer, G.

    1998-01-01

    During the past decade, Radar Polarimetry has established itself as a mature science and advanced technology in high resolution POL-SAR imaging, image target characterization and selective image feature extraction.

  6. Assessment of Polarimetric SAR Interferometry for Improving Ship Classification based on Simulated Data.

    PubMed

    Margarit, Gerard; Mallorqui, Jordi J

    2008-12-02

    This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR) in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels' geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS) and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA) working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions.

  7. Assessment of Polarimetric SAR Interferometry for Improving Ship Classification based on Simulated Data

    PubMed Central

    Margarit, Gerard; Mallorqui, Jordi J.

    2008-01-01

    This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR) in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels' geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS) and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA) working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions. PMID:27873954

  8. Classification and monitoring of reed belts using dual-polarimetric TerraSAR-X time series

    NASA Astrophysics Data System (ADS)

    Heine, Iris; Jagdhuber, Thomas; Itzerott, Sibylle

    2016-04-01

    The shorelines of lakes in northeastern Germany are often covered by reed. These reed belts fulfill an important function as erosion protection, biotope for animals, carbon storage, and as cleaning filter for lake water. However, despite their importance for the limnic ecosystem, reed vegetation in northeastern Germany is not regularly monitored. In this research study we investigate the potential of synthetic aperture radar polarimetry (PolSAR) for seasonal monitoring of reed vegetation. SAR imagery enables sunlight- and (almost) weather-independent monitoring. Polarimetric decomposition techniques allow the physical characterization of the scattering scenario and the involved scatterers. Our study is based on 19 dual-polarimetric (HH/VV) TerraSAR-X images acquired between August 2014 and May 2015. We calculated different polarimetric indices comprising the HH and VV intensities, the dual-polarimetric coherency matrix with dominant and mean alpha scattering angles, entropy and anisotropy (normalized eigen-value difference) as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The reed areas in the TerraSAR-X images were classified using a random forest algorithm and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes in the double bounce sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles). Additionally, the dual-polarimetric coherence (amplitude), anisotropy, entropy, and anisotropy-entropy-combinations showed seasonal changes of reed. In summer, the reed areas are characterized within the X-band SAR data by volume scattering, whereas in winter double-bounce scattering dominates. The volume scattering in summer is caused predominantly by reed leaves. In autumn, the leaves start to wither and fall off, so that in winter predominately

  9. Urban area mapping from polarimetric SAR data using fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Asmeet; Manickam, Surendar; Bhattacharya, Avik; Porwal, Alok

    2016-05-01

    In this work, we present urban area mapping from full-polarimetric synthetic aperture radar (SAR) data using fuzzy inference system (FIS). In particular, our aim is to utilize the profound knowledge available about scattering mechanism from urban targets to delineate urban environment. In this approach, we have utilized the recently developed polarimetric SAR scattering power decomposition technique (SD-Y4O) given in Bhattacharya et. al. The improved powers along with some other polarimetric parameters were used in this study. A suitable normalization procedure was adapted to handle the skewness in the estimated parameters. The fuzzy if-then rules were constructed from the in-depth knowledge of scattering mechanisms from an urban environment. Suitable methods were introduced to define the fuzzy inference system. The defuzzified membership values were thresholded using an unsupervised clustering method (k-means). The pixels lying in the range [μmax-σ, μmax+σ] corresponds to urban areas where µmax is the largest cluster center and σ is the standard deviation of the cluster corresponding to µmax. The extracted urban area is in visually good agreement with the high resolution optical image. ALOS PALSAR full-polarimetric L-band SAR data has been used in this study.

  10. Moving from Temporal Coherence to Decorrelation Time of Interferometric Measurements Exploiting ESA's SAR Archive

    NASA Astrophysics Data System (ADS)

    Foumelis, Michael; Mitraka, Zina; Cuccu, Roberto; Desnos, Yves-Louis; Engdahl, Marcus

    2015-05-01

    Interferometric coherence can be considered as an expression of temporal decorrelation. It is understood that interferometric coherence decreases with time between SAR acquisitions because of changes in surface reflectivity, reducing the quality of SAR phase measurements. This is an intrinsic characteristic of the design of SAR systems that has a significant contribution at longer time scales. Although in the past there was not sufficient amount of SAR data to extract robust statistical metrics for decorrelation, in the present study it is demonstrated that tailored analysis of interferometric coherence exploiting the large SAR archive available by the European Space Agency (ESA), enables the accurate quantification of temporal decorrelation. A methodology to translate the observed rate of coherence loss into decorrelation times over a volcanic landscape, namely the Santorini volcanic complex is the subject treated in this study. Specifically, a sensitivity analysis was performed on a large data stack of interferometric pairs to quantify at a pixel level the time beyond which the interferometric phase becomes practically unusable due to the effect of decorrelation. Though the dependence of decorrelation on various land cover/use types is already documented the provision of additional information regarding the expected time of decorrelation is of practical use especially when EO data are utilized in operational activities. The performed analysis is viewed within the improved capacity of current and future SAR systems, while underlining the necessity for exploitation of archive data.

  11. Impact of focusing of Ground Based SAR data on the quality of interferometric SAR applications

    NASA Astrophysics Data System (ADS)

    Zonno, Mariantonietta; Mascolo, Luigi; Guccione, Pietro; Nico, Giovanni; Di Pasquale, Andrea

    2014-10-01

    A Ground-Based Synthetic Aperture Radar (GB-SAR) is nowadays employed in several applications. The processing of ground-based, space and airborne SAR data relies on the same physical principles. Nevertheless specific algorithms for the focusing of data acquired by GB-SAR system have been proposed in literature. In this work the impact of the main focusing methods on the interferometric phase dispersion and on the coherence has been studied by employing a real dataset obtained by carrying out an experiment. Several acquisitions of a scene with a corner reflector mounted on a micrometric screw have been made; before some acquisitions the micrometric screw has been displaced of few millimetres in the Line-of-Sight direction. The images have been first focused by using two different algorithms and correspondently, two different sets of interferograms have been generated. The mean and standard deviation of the phase values in correspondence of the corner reflector have been compared to those obtained by knowing the real displacement of the micrometric screw. The mean phase and its dispersion and the coherence values for each focusing algorithm have been quantified and both the precision and the accuracy of the interferometic phase measurements obtained by using the two different focusing methods have been assessed.

  12. A classification algorithm based on Cloude decomposition model for fully polarimetric SAR image

    NASA Astrophysics Data System (ADS)

    Xiang, Hongmao; Liu, Shanwei; Zhuang, Ziqi; Zhang, Naixin

    2016-11-01

    Remote sensing is an important technology for monitoring coastal zone, but it is difficult to get effective optical data in cloudy or rainy weather. SAR is an important data source for monitoring the coastal zone because it cannot be restricted in all-weather. Fully polarimetric SAR data is more abundant than single polarization and multi-polarization SAR data. The experiment selected the fully polarimetric SAR image of Radarsat-2, which covered the Yellow River Estuary. In view of the features of the study area, we carried out the H/ α unsupervised classification, the H/ α -Wishart unsupervised classification and the H/ α -Wishart unsupervised classification based on the results of Cloude decomposition. A new classification method is proposed which used the Wishart supervised classification based on the result of H/ α -Wishart unsupervised classification. The experimental results showed that the new method effectively overcome the shortcoming of unsupervised classification and improved the classification accuracy significantly. It was also shown that the classification result of SAR image had the similar precision with that of Landsat-7 image by the same classification method, SAR image had a better precision of water classification due to its sensitivity for water, and Landsat-7 image had a better precision of vegetation types.

  13. Detectability Analysis of Road Vehicles in Radarsat-2 Fully Polarimetric SAR Images for Traffic Monitoring

    PubMed Central

    Zhang, Bo; Wang, Chao; Zhang, Hong; Wu, Fan; Tang, Yi-Xian

    2017-01-01

    By acquiring information over a wide area regardless of weather conditions and solar illumination, space-borne Synthetic Aperture Radar (SAR) has the potential to be a promising application for traffic monitoring. However, the backscatter character of a vehicle in a SAR image is unstable and varies with image parameters, such as aspect and incidence angle. To investigate vehicle detectability in SAR images for traffic monitoring applications, images of four common types of vehicles in China were acquired using the fully polarimetric (FP) SAR of Radarsat-2 in our experiments. Methods for measuring a vehicle’s aspect angle and backscatter intensity are introduced. The experimental FP SAR images are used to analyze the detectability, which is affected by factors such as vehicle size, vehicle shape, and aspect angle. Moreover, a new metric to improve vehicle detectability in FP SAR images is proposed and compared with the well-known intensity metric. The experimental results show that shape is a crucial factor in affecting the backscatter intensity of vehicles, which also oscillates with varying aspect angle. If the size of a vehicle is smaller than the SAR image resolution, using the intensity metric would result in low detectability. However, it could be improved in an FP SAR image by using the proposed metric. Compared with the intensity metric, the overall detectability is improved from 72% to 90% in our experiments. Therefore, this study indicates that FP SAR images have the ability to detect stationary vehicles on the road and are meaningful for traffic monitoring. PMID:28178178

  14. Detectability Analysis of Road Vehicles in Radarsat-2 Fully Polarimetric SAR Images for Traffic Monitoring.

    PubMed

    Zhang, Bo; Wang, Chao; Zhang, Hong; Wu, Fan; Tang, Yi-Xian

    2017-02-06

    By acquiring information over a wide area regardless of weather conditions and solar illumination, space-borne Synthetic Aperture Radar (SAR) has the potential to be a promising application for traffic monitoring. However, the backscatter character of a vehicle in a SAR image is unstable and varies with image parameters, such as aspect and incidence angle. To investigate vehicle detectability in SAR images for traffic monitoring applications, images of four common types of vehicles in China were acquired using the fully polarimetric (FP) SAR of Radarsat-2 in our experiments. Methods for measuring a vehicle's aspect angle and backscatter intensity are introduced. The experimental FP SAR images are used to analyze the detectability, which is affected by factors such as vehicle size, vehicle shape, and aspect angle. Moreover, a new metric to improve vehicle detectability in FP SAR images is proposed and compared with the well-known intensity metric. The experimental results show that shape is a crucial factor in affecting the backscatter intensity of vehicles, which also oscillates with varying aspect angle. If the size of a vehicle is smaller than the SAR image resolution, using the intensity metric would result in low detectability. However, it could be improved in an FP SAR image by using the proposed metric. Compared with the intensity metric, the overall detectability is improved from 72% to 90% in our experiments. Therefore, this study indicates that FP SAR images have the ability to detect stationary vehicles on the road and are meaningful for traffic monitoring.

  15. Interferometric synthetic aperture radar (InSAR) and its applications to study volcanoes, part 1: Principles of InSAR

    USGS Publications Warehouse

    Lu, Zhong; Zhang, Jixian; Zhang, Yonghong

    2006-01-01

    Interferometric synthetic aperture radar is an ability to measure the surface deformation of remote sensing technology, in a huge area, its deformation measurement with sub-centimeter accuracy, and spatial resolution in the tens of meters or less. In this paper, the basic theory of InSAR technology is reviewed, its working principle is clarified, and the related problems of surface deformation measurement using InSAR technology are discussed.

  16. Analysis of polarimetric SAR signatures of vegetated areas

    NASA Technical Reports Server (NTRS)

    French, Nancy H. F.; Bourgeau-Chavez, Laura L.; Kasischke, Eric S.; Sheen, Daniel R.

    1991-01-01

    Several techniques to quantitatively analyze the information in the polarimetric signature are discussed, including: (1) a shape (texture) parameter; (2) fractional polarization; (3) the phase difference signature; and (4) the correlation coefficient. These techniques are applied to airborne synthetic aperture radar imagery collected over several different vegetation communities, including a mangrove swamp, a mixed-age loblolly pine forest, and a flooded bald cypress forest.

  17. Bayesian classification of polarimetric SAR images using adaptive a priori probabilities

    NASA Technical Reports Server (NTRS)

    Van Zyl, J. J.; Burnette, C. F.

    1992-01-01

    The problem of classifying earth terrain by observed polarimetric scattering properties is tackled with an iterative Bayesian scheme using a priori probabilities adaptively. The first classification is based on the use of fixed and not necessarily equal a priori probabilities, and successive iterations change the a priori probabilities adaptively. The approach is applied to an SAR image in which a single water body covers 10 percent of the image area. The classification accuracy for ocean, urban, vegetated, and total area increase, and the percentage of reclassified pixels decreases greatly as the iteration number increases. The iterative scheme is found to improve the a posteriori classification accuracy of maximum likelihood classifiers by iteratively using the local homogeneity in polarimetric SAR images. A few iterations can improve the classification accuracy significantly without sacrificing key high-frequency detail or edges in the image.

  18. Extraction of Benthic Fauna Habitat in Tidal Flats Using Multi-Frequency Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Choe, Byung-Hun; Kim, Duk-Jin; Hwang, Ji-Hwan; Moon, Wooil M.

    2011-03-01

    Benthic faunas form a relatively rough surface structure in tidal flats by their unique surface structure or their survival activities. In particular, oyster reefs are exposed and distributed intensively on those tidal flats at low tide. In this study, we investigated the microwave scattering signatures occurred by the regional distribution of oysters in tidal flats, applying polarimetric analysis techniques to fully polarimetric RADARSAT-2 (C-band) and ALOS PALSAR (L-band) data. Tidal flats of Jebu Island in the western coastal region of the Korean peninsula were selected for the investigation. The scattering mechanisms in tidal flats were analyzed by Freeman-Durden target decomposition and the target depolarization effects were quantitatively measured using the cross- polarized ratio, co-polarized correlation coefficient, and phase difference between HH and VV. From C-band SAR data, we observed strong volume (or multiple) scattering and depolarization effects in the oyster reefs, while only surface scattering was dominant in mud flat areas. These scattering signatures were also verified in-situ measurenments using a ground-based polarimetric scatterometer system. However, no difference was observed between the scattering signatures of oyster reefs and mud flat areas from L-band data, which have a relatively longer wavelength. In conclusion, this study suggests that multi-frequency polarimetric SAR measurements can be used to detect the naturally distributed oysters in tidal flats.

  19. Rapid Landslide Mapping by Means of Post-Event Polarimetric SAR Imagery

    NASA Astrophysics Data System (ADS)

    Plank, Simon; Martinis, Sandro; Twele, Andre

    2016-08-01

    Rapid mapping of landslides, quickly providing information about the extent of the affected area and type and grade of damage, is crucial to enable fast crisis response. Reviewing the literature shows that most synthetic aperture radar (SAR) data-based landslide mapping procedures use change detection techniques. However, the required very high resolution (VHR) pre-event SAR imagery, acquired shortly before the landslide event, is commonly not available. Due to limitations in onboard disk space and downlink transmission rates modern VHR SAR missions do not systematically cover the entire world. We present a fast and robust procedure for mapping of landslides, based on change detection between freely available and systematically acquired pre-event optical and post-event polarimetric SAR data.

  20. Change Detection in a Short Time Sequence of Polarimetric C-Band SAR Data

    NASA Astrophysics Data System (ADS)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2016-08-01

    Based on an omnibus likelihood ratio test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution and a factorization of this test statistic with associated p-values, change analysis in a time series of multilook, polarimetric SAR data in the covariance matrix representation is carried out. The omnibus test statistic and its factorization detect if and when change(s) occur. The technique is demonstrated on airborne EMISAR C-band data but may be applied to ALOS, COSMO-SkyMed, RadarSat-2 Sentinel-1, TerraSAR-X, and Yaogan data also.

  1. Multitemporal RADARSAT-2 polarimetric SAR data for urban land-cover mapping

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Ban, Yifang

    2010-11-01

    The objective of this research is to evaluate the performance of multitemporal RADARSAT-2 polarimetric SAR data for urban land use/land-cover classification. Three dates of RADARSAT-2 polarimetric SAR data were acquired during the summer of 2008 over the rural-urban fringe of the Greater Toronto Area. The major land-cover types are residential areas, industry areas, bare land, golf courses, forest, and agricultural crops. The methodology used in this study follow the manner that first extracting the features and then carrying out the supervised classification taking the different feature combinations as an input. Support vectors machine is selected to be the classifier. SAR features including amplitude, intensity, long-term coherence, Freeman-Durden decomposition are extracted and compared by evaluating the classification abilities. Long-term coherence plays an important role in building discrimination in this study. The best classification results achieved by using the three dates HH, VH, HV amplitude layers and the coherence map. The overall accuracy is 82.3%. The results indicate that RADARSAT-2 polarimetric data has a potential to urban land-cover classification with the proper feature combinations.

  2. Multitemporal RADARSAT-2 polarimetric SAR data for urban land-cover mapping

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Ban, Yifang

    2009-09-01

    The objective of this research is to evaluate the performance of multitemporal RADARSAT-2 polarimetric SAR data for urban land use/land-cover classification. Three dates of RADARSAT-2 polarimetric SAR data were acquired during the summer of 2008 over the rural-urban fringe of the Greater Toronto Area. The major land-cover types are residential areas, industry areas, bare land, golf courses, forest, and agricultural crops. The methodology used in this study follow the manner that first extracting the features and then carrying out the supervised classification taking the different feature combinations as an input. Support vectors machine is selected to be the classifier. SAR features including amplitude, intensity, long-term coherence, Freeman-Durden decomposition are extracted and compared by evaluating the classification abilities. Long-term coherence plays an important role in building discrimination in this study. The best classification results achieved by using the three dates HH, VH, HV amplitude layers and the coherence map. The overall accuracy is 82.3%. The results indicate that RADARSAT-2 polarimetric data has a potential to urban land-cover classification with the proper feature combinations.

  3. Temporal Coherence as an Estimate of Decorrelation Time of SAR Interferometric Measurements

    NASA Astrophysics Data System (ADS)

    Foumelis, Michael

    2014-05-01

    Following a plethora of validations and demonstrations Interferometric SAR (InSAR) has been established as a mature space geodetic technique for providing valuable insights for various phenomena related to geohazards. One of the main advantages of space borne SAR systems with respect to GNSS is the continuous spatial coverage. However, the impact of temporal decorrelation especially in repeat-pass interferometry has been observed during the historical development of InSAR applications. Interferometric coherence is considered as the expression of temporal decorrelation. It is understood that interferometric coherence decreases with time between SAR acquisitions because of changes in surface reflectivity, reducing the accuracy and spatial coverage of SAR phase measurements. This is an intrinsic characteristic of the design of SAR systems that has a significant contribution at longer time scales. Since the majority of geohazards rely on long term observation scenarios, the effect of temporal decorrelation is evident as coherence becomes dominated by temporal changes. Although in the past there was not sufficient amount of SAR data to extract robust statistical metrics, in the present study it is demonstrated that tailored analysis of interferometric coherence by exploiting the large archive of SAR data available by the European Space Agency (ESA), enables the accurate quantification of temporal decorrelation. A methodology to translate the observed rate of coherence loss into decorrelation times over a volcanic landscape is the subject treated in this study. Specifically, a sensitivity analysis based on a large data stack of interferometric pairs in order to quantitatively estimate at a pixel level the time beyond which each interferometric phase becomes practically unusable is presented. The estimation and mapping of the spatial distribution of the temporal decorrelation times in an area without a necessary a priori knowledge of its surface characteristics is a

  4. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    DTIC Science & Technology

    2005-02-01

    Cologne, Germany. Krieger, G., M. Wendler, J. Mittermayer ,, S. Buckreuss F. Witte, W. Keydel, A. Moreira, 2002, “Sector Imaging Radar for Enhanced...twentieth printing: 1997) Mittermayer , J., A. Moreira and O. Lofeld., 1999, "The frequency scaling algorithm for spotlight SAR data processing". IEEE

  5. Polarimetric radars and polarimetric SAR data in tasks of detection and identification of marine oil pollution

    NASA Astrophysics Data System (ADS)

    Sineva, A. A.; Ivanov, A. Yu.

    2016-12-01

    Detecting and distinguishing different kinds of oil pollution, including spills of crude oil on the sea surface, is one important problem of modern remote sensing. The wide use of imaging radars is not always effective. In this review paper, the main principles and methods of polarization radar imaging and radar data processing are discussed based on present theoretical and experimental approaches and ideas. The efficiency of polarimetric methods for oil-spill detection and accurate identification on the sea surface is demonstrated as well. As is shown, modern methods of multipolarimetric radar-signal processing is a powerful means for improving oil-pollution detection and discrimination algorithms.

  6. Detection of oyster habitat in tidal flats using multi-frequency polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Choe, Byung-Hun; Kim, Duk-jin; Hwang, Ji-Hwan; Oh, Yisok; Moon, Wooil M.

    2012-01-01

    Exposed oyster reefs in tidal flats have complex and rough surfaces because of their unique surface texture, which are quite distinct from the surrounding mud or sand flats. Here we investigate the microwave signatures, backscattered from naturally distributed oyster reefs in tidal flats, utilizing the polarimetric analysis techniques to fully polarimetric RADARSAT-2 (C-band) and ALOS PALSAR (L-band) data. The study areas include the tidal flats around Jebu Island and Hampyung Bay on the west coast of the Korean peninsula. We analyzed the microwave scattering mechanisms associated with oyster reefs and surrounding areas using the polarimetric target decomposition theorem and quantitatively measu ρHHVV red target depolarization effects (the cross-polarized ratio (HV/VV), the co-polarized correlation coefficient ( ρHHVV), and the co-polarized phase difference between HH and VV). On the basis of a large increase in the cross-polarized backscattering (HV) in the C-band SAR data, one can observe strong volume (or multiple) scattering and depolarization effects over oyster reefs areas, whereas only surface scattering was dominant in most parts of the background tidal areas. In oyster reefs, the proportion of volume scattering and the cross-polarized ratio were greater than 0.7 and -8 dB, respectively. These scattering characteristics were also verified from in-situ measurements in the field using a ground-based polarimetric scatterometer system. However, almost no difference was observed between the scattering signatures of oyster reefs and background mudflat areas from L-band data, which have a considerably longer wavelength than C-band. The study clearly suggests that multi-frequency (C- and L-band) polarimetric SAR systems can be used to detect the naturally distributed oyster reefs in tidal flats.

  7. Polarimetric Interferometry

    DTIC Science & Technology

    2007-02-01

    Comparison with conventional single- polarization estimates illustrates the significant processing gains that are possible if there is access to full...polarimetric interferometric data. A comparison with conventional single- polarization presented in former lectures illustrates the significant processing...gains that are possible if access to full polarimetric interferometric data is possible. The strong polarization dependence of the coherence will be

  8. Development and Evaluation of Science and Technology Education Program Using Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Ikemitsu, H.; Nango, K.

    2016-06-01

    This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.

  9. Water-Body types identification in urban areas from radarsat-2 fully polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Xie, Lei; Zhang, Hong; Wang, Chao; Chen, Fulong

    2016-08-01

    This paper presents a novel method for supervised water-body extraction and water-body types identification from Radarsat-2 fully polarimetric (FP) synthetic aperture radar (SAR) data in complex urban areas. First, supervised water-body extraction using the Wishart classifier is performed, and the false alarms that are formed in built-up areas are removed using morphological processing methods and spatial contextual information. Then, the support vector machine (SVM), the classification and regression tree (CART), TreeBagger (TB), and random forest (RF) classifiers are introduced for water-body types (rivers, lakes, ponds) identification. In SAR images, certain other objects that are misclassified as water are also considered in water-body types identification. Several shape and polarimetric features of each candidate water-body are used for identification. Radarsat-2 PolSAR data that were acquired over Suzhou city and Dongguan city in China are used to validate the effectiveness of the proposed method, and the experimental results are evaluated at both the object and pixel levels. We compared the water-body types classification results using only shape features and the combination of shape and polarimetric features, the experimental results show that the polarimetric features can eliminate the misclassifications from certain other objects like roads to water areas, and the increasement of classification accuracy embodies at both the object and pixel levels. The experimental results show that the proposed methods can achieve satisfactory accuracies at the object level [89.4% (Suzhou), 95.53% (Dongguan)] and the pixel level [96.22% (Suzhou), 97.95% (Dongguan)] for water-body types classification, respectively.

  10. Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery.

    PubMed

    Marapareddy, Ramakalavathi; Aanstoos, James V; Younan, Nicolas H

    2016-06-16

    Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We used L-band Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ₁, λ₂, and λ₃), we implemented several unsupervised classification algorithms for the identification of anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory's (JPL's) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers.

  11. Advanced Unsupervised Classification Methods to Detect Anomalies on Earthen Levees Using Polarimetric SAR Imagery

    PubMed Central

    Marapareddy, Ramakalavathi; Aanstoos, James V.; Younan, Nicolas H.

    2016-01-01

    Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment. We used L-band Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ1, λ2, and λ3), we implemented several unsupervised classification algorithms for the identification of anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers. PMID:27322270

  12. Target Classification Using SAR (Synthetic Aperture Radar) Polarimetric Data

    DTIC Science & Technology

    1989-01-01

    3-8 3.4. SarTool’rn Target Orientation .. .. .. .... ... .... ...... 3-i1S .5.. Single Layer Perceptron .. .. .. .... ... .... ... ...... 3-20 .1. 1...Rosenblatt’s algorithm is based on the 3-18 single layer perceptron . This type of network can employ continuous as well as discrete inputs and is capable...X0 InputYout Decision Boundary ,- N I Perceptron Perceptron Logic Decision Region Figure 3.5. Single Layer Perceptron described in Lippman’s article

  13. Random Forest Classification of Sediments on Exposed Intertidal Flats Using ALOS-2 Quad-Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Wang, W.; Yang, X.; Liu, G.; Zhou, H.; Ma, W.; Yu, Y.; Li, Z.

    2016-06-01

    Coastal zones are one of the world's most densely populated areas and it is necessary to propose an accurate, cost effective, frequent, and synoptic method of monitoring these complex ecosystems. However, misclassification of sediments on exposed intertidal flats restricts the development of coastal zones surveillance. With the advent of SAR (Synthetic Aperture Radar) satellites, polarimetric SAR satellite imagery plays an increasingly important role in monitoring changes in coastal wetland. This research investigated the necessity of combining SAR polarimetric features with optical data, and their contribution in accurately sediment classification. Three experimental groups were set to make assessment of the most appropriate descriptors. (i) Several SAR polarimetric descriptors were extracted from scattering matrix using Cloude-Pottier, Freeman-Durden and Yamaguchi methods; (ii) Optical remote sensing (RS) data with R, G and B channels formed the second feature combinations; (iii) The chosen SAR and optical RS indicators were both added into classifier. Classification was carried out using Random Forest (RF) classifiers and a general result mapping of intertidal flats was generated. Experiments were implemented using ALOS-2 L-band satellite imagery and GF-1 optical multi-spectral data acquired in the same period. The weights of descriptors were evaluated by VI (RF Variable Importance). Results suggested that optical data source has few advantages on sediment classification, and even reduce the effect of SAR indicators. Polarimetric SAR feature sets show great potentials in intertidal flats classification and are promising in classifying mud flats, sand flats, bare farmland and tidal water.

  14. Comparison of alternative parameters to dual polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    Sugimoto, Mitsunobu; Ouchi, Kazuo

    2012-09-01

    The goal of this study is to examine the potential of deriving information comparable to quad-polarization synthetic aperture radar (SAR) data from dual-polarization data. Multi-polarization data have shown the potential to increase further the ability of extracting physical quantities of observation targets. Above all, quad-polarization data have more information than others, but they are relatively few in number compared with single or dual-polarization data. Although there are many SAR systems capable of quad-polarization observation, most of them are operated mainly on single or dual-polarization mode because of limited data transfer rate, area of coverage, required resolution, other system restriction, and so on. Thus, there is a certain trade- off between data availability and multi polarization. Therefore, we focused on dual-polarization as a good compromise between single and quad-polarization data. In this study, we investigated possible alternative parameters that can be derived from HH-VV dual-polarization data and can serve as substitutes for cross-polarization component in quad-polarization data. Experiments are performed using the Advanced Land Observation Satellite-Phased Array L-band SAR (ALOS-PALSAR) quad-polarization data. The cross polarization component in the data is used as benchmark for the alternative parameters.

  15. Polarimetric millimetre wave SAR for precision farming applications

    NASA Astrophysics Data System (ADS)

    Essen, H.; Nüßler, D.; Krebs, C.; Schimpf, H.; Johannes, W.; Wahlen, A.

    2010-10-01

    A high resolution imaging millimetre wave SAR delivers three key parameters important for precision farming applications, namely range, reflectivity and polarization state. The reflectivity gives information upon the type of crop and its humidity. Especially in the millimeter wave region young growing green plants exhibit a considerably higher reflectivity than older, dry leaves. Dependent on the transmit-receive polarization also indications are given upon the humidity of the underlying soil. Polarimetry also allows to judge the ripeness of the grain as the geometry of the ear is changing during the ripening process.

  16. An Automated Mapping Processor using C-Band Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Rodriguez, E.; Michel, T. R.; Martin, J. M.; Houshmand, B.

    1996-01-01

    We describe a processor which has been implemented to generate map products starting from C-band interferometric data. The first stage of the processor consists of the conventional interferometric synthetic aperture radar (SAR) processing producing a digital elevation model (DEM) and a SAR brightness image in sensor coordinates. In the second stage of processing, a land use classification map is obtained by using the DEM, brightness, and interferometric correlation layers. Auxiliary layers which include a drainage layer, a height gradient layer, a height error layer, an estimated penetration layer, and a shaded relief layer are also computed. In the final step, all UTM collocated layers are combined in a geographical information system (GIS) which allows for both hard copy map products and digital applications.

  17. An Automated Mapping Processor Using C-Band Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Rodriguez, E.; Michel, T. R.; Martin, J. M.; Houshmand, B.

    1996-01-01

    We present the description of a processor which has been implemented to generate map products starting from C-band interferometric data. The first stage of the processor consists of the conventional interferometric SAR processing producing a Digital Elevation Model (DEMs) and a SAR brightness image in sensor coordinates. In the second stage of processing, a land use classification map is obtained by using the DEM, brightness, and interferometric correlation layers. Auxiliary layers which include a drainage layer, a height gradient layer, a height error layer, an estimated penetration layer, and a shaded relief layer are also computed. In the final step, all UTM collocated layers are combined in a GIS system which allows for both hard copy map products and for digital applications.

  18. Estimating Forest Vertical Structure from Multialtitude, Fixed-Baseline Radar Interferometric and Polarimetric Data

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Siqueira, Paul R.

    2000-01-01

    Parameters describing the vertical structure of forests, for example tree height, height-to-base-of-live-crown, underlying topography, and leaf area density, bear on land-surface, biogeochemical, and climate modeling efforts. Single, fixed-baseline interferometric synthetic aperture radar (INSAR) normalized cross-correlations constitute two observations from which to estimate forest vertical structure parameters: Cross-correlation amplitude and phase. Multialtitude INSAR observations increase the effective number of baselines potentially enabling the estimation of a larger set of vertical-structure parameters. Polarimetry and polarimetric interferometry can further extend the observation set. This paper describes the first acquisition of multialtitude INSAR for the purpose of estimating the parameters describing a vegetated land surface. These data were collected over ponderosa pine in central Oregon near longitude and latitude -121 37 25 and 44 29 56. The JPL interferometric TOPSAR system was flown at the standard 8-km altitude, and also at 4-km and 2-km altitudes, in a race track. A reference line including the above coordinates was maintained at 35 deg for both the north-east heading and the return southwest heading, at all altitudes. In addition to the three altitudes for interferometry, one line was flown with full zero-baseline polarimetry at the 8-km altitude. A preliminary analysis of part of the data collected suggests that they are consistent with one of two physical models describing the vegetation: 1) a single-layer, randomly oriented forest volume with a very strong ground return or 2) a multilayered randomly oriented volume; a homogeneous, single-layer model with no ground return cannot account for the multialtitude correlation amplitudes. Below the inconsistency of the data with a single-layer model is followed by analysis scenarios which include either the ground or a layered structure. The ground returns suggested by this preliminary analysis seem

  19. Decomposition of Polarimetric SAR Images Based on Second- and Third-order Statics Analysis

    NASA Astrophysics Data System (ADS)

    Kojima, S.; Hensley, S.

    2012-12-01

    There are many papers concerning the research of the decomposition of polerimetric SAR imagery. Most of them are based on second-order statics analysis that Freeman and Durden [1] suggested for the reflection symmetry condition that implies that the co-polarization and cross-polarization correlations are close to zero. Since then a number of improvements and enhancements have been proposed to better understand the underlying backscattering mechanisms present in polarimetric SAR images. For example, Yamaguchi et al. [2] added the helix component into Freeman's model and developed a 4 component scattering model for the non-reflection symmetry condition. In addition, Arii et al. [3] developed an adaptive model-based decomposition method that could estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in a SAR image without the reflection symmetry condition. This purpose of this research is to develop a new decomposition method based on second- and third-order statics analysis to estimate the surface, dihedral, volume and helix scattering components from polarimetric SAR images without the specific assumptions concerning the model for the volume scattering. In addition, we evaluate this method by using both simulation and real UAVSAR data and compare this method with other methods. We express the volume scattering component using the wire formula and formulate the relationship equation between backscattering echo and each component such as the surface, dihedral, volume and helix via linearization based on second- and third-order statics. In third-order statics, we calculate the correlation of the correlation coefficients for each polerimetric data and get one new relationship equation to estimate each polarization component such as HH, VV and VH for the volume. As a result, the equation for the helix component in this method is the same formula as one in Yamaguchi's method. However, the equation for the volume

  20. Polarimetric SAR Data for Urban Land Cover Classification Using Finite Mixture Model

    NASA Astrophysics Data System (ADS)

    Mahdianpari, Masoud; Akbari, Vahid; Mohammadimanesh, Fariba; Alioghli Fazel, Mohammad

    2013-04-01

    Image classification techniques play an important role in automatic analysis of remote sensing data. This paper demonstrates the potential of polarimetric synthetic aperture radar (PolSAR) for urban land cover mapping using an unsupervised classification approach. Analysis of PolSAR images often shows that non-Gaussian models give better representation of the scattering vector statistics. Hence, processing algorithms based on non-Gaussian statistics should improve performance, compared to complex Gaussian distributions. Several distributions could be used to model SAR image texture with different spatial correlation properties and various degrees of inhomogeneity [1-3]. Statistical properties are widely used for image segmentation and land cover classification of PolSAR data. The pixel-based approaches cluster individual pixels through analysis of their statistical properties. Those methods work well on the relatively coarse spatial resolution images. But classification results based on pixelwise analysis demonstrate the pepper-salt effect of speckle in medium and high resolution applications such as urban area monitoring [4]. Therefore, the expected improvement of the classification results is hindered by the increase of textural differences within a class. In such situation, enhancement could be made through exploring the contextual correlation among pixels by Markov random field (MRF) models [4, 5]. The potential of MRF models to retrieve spatial contextual information is desired to improve the accuracy and reliability of image classification. Unsupervised contextual polarimetric SAR image segmentation is addressed by combining statistical modeling and spatial context within an MRF framework. We employ the stochastic expectation maximization (SEM) algorithm [6] to jointly perform clustering of the data and parameter estimation of the statistical distribution conditioned to each image cluster and the MRF model. This classification method is applied on medium

  1. Statistical modeling of targets and clutter in single-look non-polarimetric SAR imagery

    SciTech Connect

    Salazar, J.S.; Hush, D.R.; Koch, M.W.; Fogler, R.J.; Hostetler, L.D.

    1998-08-01

    This paper presents a Generalized Logistic (gLG) distribution as a unified model for Log-domain synthetic aperture Radar (SAR) data. This model stems from a special case of the G-distribution known as the G{sup 0}-distribution. The G-distribution arises from a multiplicative SAR model and has the classical K-distribution as another special case. The G{sup 0}-distribution, however, can model extremely heterogeneous clutter regions that the k-distribution cannot model. This flexibility is preserved in the unified gLG model, which is capable of modeling non-polarimetric SAR returns from clutter as well as man-made objects. Histograms of these two types of SAR returns have opposite skewness. The flexibility of the gLG model lies in its shape and shift parameters. The shape parameter describes the differing skewness between target and clutter data while the shift parameter compensates for movements in the mean as the shape parameter changes. A Maximum Likelihood (ML) estimate of the shape parameter gives an optimal measure of the skewness of the SAR data. This measure provides a basis for an optimal target detection algorithm.

  2. Classification of High Resolution C-Band PolSAR Data on Polarimetric and Texture Features

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Chen, Erxue; Li, Zengyuan; Feng, Qi; Li, Lan

    2014-11-01

    PolSAR image classification is an important technique in the remote sensing area. For high resolution PolSAR image, polarimetric and texture features are equally important for the high resolution PolSAR image classification. The texture features are mainly extracted through Gray Level Co-occurrence Matrix (GLCM) method, but this method has some deficiencies. First, GLCM method can only work on gray-scale images; Secondly, the number of texture features extracted by GLCM method is generally up dozens, or even hundreds. Too many features may exist larger redundancy and will increase the complexity of classification. Therefore, this paper introduces a new texture feature factor-RK that derived from PolSAR image non-Gaussian statistic model.Using the domestic airborne C-band PolSAR image data, we completed classification combined the polarization and texture characteristics.The results showed that this new texture feature factor-RK can overcome the above drawbacks and can achieve same performance compared with GLCM method.

  3. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  4. Analyzing C-band SAR polarimetric information for LAI and crop yield estimations

    NASA Astrophysics Data System (ADS)

    Molijn, Ramses A.; Iannini, Lorenzo; Mousivand, Ali; Hanssen, Ramon F.

    2014-10-01

    In this study, space remote sensing data and crop specific information from the ESA-led AgriSAR 2009 campaign are used for studying the profiles of C-band SAR backscatter signals and multispectral-based leaf area index (LAI) over the growth period of canola, pea and wheat. In addition, the correlations between radar backscatter parameters and the crop yields were analyzed, based on extracted statistics of temporal profiles. The results show that the HV backscatter and LAI are correlated differently before and after LAI peak. In addition, the coefficient of determination between peakrelated statistics from polarimetric indicator profiles and yield for pea fields can reach up to 0.68, and for canola and wheat up to 0.47 and 0.5, respectively. HV backscatter and coherence between HH and VV are most.

  5. Assessing Natural Disaster Impacts and Recovery Using Multifrequency, Fully-Polarimetric Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Czuchlewski, K. R.; Kim, Y.; Weissel, J. K.

    2003-04-01

    Many natural disasters involving landslides, volcanic eruptions, fires, or flo o ds entail terrain resurfacing, followed by subsequent recovery. Mo dern satellite and airborne remote sensing technologies, which combine broad spatial coverage and high spatial resolution with time-sequential site revisit capability, can provide important information on the extent and duration of ma jor landscape disturbance. In humid climate settings, these hazards temporarily remove or replace a natural vegetation cover and in doing so, mo dify the physical properties of the land surface. In optical remote sensing, removal of vegetation alters surface albedo in the visible - near infrared (V-NIR) waveband, particularly the high reflectance from vegetation in the NIR. For SAR remote sensing, removal of vegetation cover causes a change in dominant microwave scattering mechanism for the areas affected. SAR has operational advantages over optical sensors for rapid disaster assessment because of its day/night acquisition capability, the ability to "see through" smoke, clouds and dust, and the side-lo oking viewing geometry, which is an advantage whenever data collection directly above the site would prove dangerous. We show how multifrequency, fully-polarimetric airborne SAR data can be "inverted" for parameters that reflect scattering mechanism signatures diagnostic of different surface cover types. We apply a uniform approach to map landslides resulting from the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan and volcanic flows from the ma jor 1996 eruption of Manam volcano in Papua New Guinea. In addition, earlier work has shown that multifrequency SAR polarimetric backscatter is sensitive to total above-ground biomass. This attribute can be exploited to calculate vegetation loss during a disaster and for assessment of regrowth during the recovery phase.

  6. Inversion of Electromagnetic Models for Bare Soil Parameter Estimation from Multifrequency Polarimetric SAR Data

    PubMed Central

    Pierdicca, Nazzareno; Castracane, Paolo; Pulvirenti, Luca

    2008-01-01

    The potentiality of polarimetric SAR data for the estimation of bare soil geophysical parameters (i.e., roughness and soil moisture) is investigated in this work. For this purpose, two forward models available in the literature, able to simulate the measurements of a multifrequency radar polarimeter, have been implemented for use within an inversion scheme. A multiplicative noise has been considered in the multidimensional space of the elements of the polarimetric Covariance Matrix, by adopting a complex Wishart distribution to account for speckle effects. An additive error has been also introduced on the simulated measurements to account for calibration and model errors. Maximum a Posteriori Probability and Minimum Variance criteria have been considered to perform the inversion. As for the algorithms to implement the criteria, simple optimization/integration procedures have been used. A Neural Network approach has been adopted as well. A correlation between the roughness parameters has been also supposed in the simulation as a priori information, to evaluate its effect on the estimation accuracy. The methods have been tested on simulated data to compare their performances as function of number of looks, incidence angles and frequency bands, thus identifying the best radar configuration in terms of estimation accuracy. Polarimetric measurements acquired during MAC Europe and SIR-C campaigns, over selected bare soil fields, have been also used as validation data. PMID:27873982

  7. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    2007-01-01

    Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the

  8. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  9. Forest Stand Volume Estimation Using Airborne LIDAR And Polarimetric SAR Over Hilly Region

    NASA Astrophysics Data System (ADS)

    Fan, Fengyun; Chen, Erxue; Li, Zengyuan; Liu, Qingwang; Li, Shiming; Ling, Feilong

    2010-10-01

    In order to investigate the potential capability of mapping forest stand volume using the multi-sources data, ALOS PALSAR, airborne LiDAR and high resolution CCD image in forest stand level, one test site located in the warm temperate hilly forest region of Shandong Province in China was established. Airborne LiDAR and CCD campaign was carried out in the end of May, 2005. One scene of ALOS PALSAR quad-polarization image was acquired in May 19th,2007. Ground forest plot data for Black Locust and Chinese Pine dominated forest stands were collected through field work from May to June of 2008. The correlations of forest stand volume to PALSAR backscattering coefficient of HH, HV, VH,VV, their ratio and some H-Alpha polarimetric decomposition parameters were analyzed in stand level through regression analysis. Mean forest stand volume of each polygons (forest stand) was finally estimated based on the regression model established using ground measured forest volume data and the corresponding parameters (polygon mean) derived from LiDAR CHM and polarimetric SAR data. Results show that it is feasible to combine low density LiDAR data, L-band SAR data and forest polygon data from high resolution CCD image for stand level forest volume estimation in hilly regions, the RMSE is 20.064m3/ha for Black Locust and 24.730m3/ha for Chinese Pine .

  10. Forest Stand Volume Estimation Using Airborne LIDAR And Polarimetric SAR Over Hilly Region

    NASA Astrophysics Data System (ADS)

    Fan, Fengyun; Chen, Erxue; Li, Zengyuan; Liu, Qingwang; Li, Shiming; Ling, Feilong; Pottier, Eric; Cloude, Shane

    2010-10-01

    In order to investigate the potential capability of mapping forest stand volume using the multi-sources data, ALOS PALSAR, airborne LiDAR and high resolution CCD image in forest stand level, one test site located in the warm temperate hilly forest region of Shandong Province in China was established. Airborne LiDAR and CCD campaign was carried out in the end of May, 2005. One scene of ALOS PALSAR quad-polarization image was acquired in May 19th,2007. Ground forest plot data for Black Locust and Chinese Pine dominated forest stands were collected through field work from May to June of 2008. The correlations of forest stand volume to PALSAR backscattering coefficient of HH, HV,VH,VV, their ratio and some H-Alpha polarimetric decomposition parameters were analyzed in stand level through regression analysis. Mean forest stand volume of each polygons (forest stand) was finally estimated based on the regression model established using ground measured forest volume data and the corresponding parameters (polygon mean) derived from LiDAR CHM and polarimetric SAR data. Results show that it is feasible to combine low density LiDAR data, L-band SAR data and forest polygon data from high resolution CCD image for stand level forest volume estimation in hilly regions, the RMSE is 20.064m3/ha for Black Locust and 24.730m3/ha for Chinese Pine .

  11. Agricultural Land Classification Based on Statistical Analysis of Full Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Homayouni, S.; Fazel, M. A.; Mohammadimanesh, F.

    2013-09-01

    The discrimination capability of Polarimetric Synthetic Aperture Radar (PolSAR) data makes them a unique source of information with a significant contribution in tackling problems concerning environmental applications. One of the most important applications of these data is land cover classification of the earth surface. These data type, make more detailed classification of phenomena by using the physical parameters and scattering mechanisms. In this paper, we have proposed a contextual unsupervised classification approach for full PolSAR data, which allows the use of multiple sources of statistical evidence. Expectation-Maximization (EM) classification algorithm is basically performed to estimate land cover classes. The EM algorithm is an iterative algorithm that formalizes the problem of parameters estimation of a mixture distribution. To represent the statistical properties and integrate contextual information of the associated image data in the analysis process we used Markov random field (MRF) modelling technique. This model is developed by formulating the maximum posteriori decision rule as the minimization of suitable energy functions. For select optimum distribution which adapts the data more efficiently we used Mellin transform which is a natural analytical tool to study the distribution of products and quotients of independent random variables. Our proposed classification method is applied to a full polarimetric L-band dataset acquired from an agricultural region in Winnipeg, Canada. We evaluate the classification performance based on kappa and overall accuracies of the proposed approach and compared with other well-known classic methods.

  12. Interferometric synthetic aperture radar (InSAR)—its past, present and future

    USGS Publications Warehouse

    Lu, Zhong; Kwoun, Oh-Ig; Rykhus, R.P.

    2007-01-01

    Very simply, interferometric synthetic aperture radar (InSAR) involves the use of two or more synthetic aperture radar (SAR) images of the same area to extract landscape topography and its deformation patterns. A SAR system transmits electromagnetic waves at a wavelength that can range from a few millimeters to tens of centimeters and therefore can operate during day and night under all-weather conditions. Using SAR processing technique (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) radar signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image that represents the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets. InSAR imaging utilizes the interaction of electromagnetic waves, referred to as interference, to measure precise distances between the satellite antenna and ground resolution elements to derive landscape topography and its subtle change in elevation.

  13. Tropical Forest Vegetation Profiles and Biomass from Multibaseline Interferometric SAR at C- band

    NASA Astrophysics Data System (ADS)

    Treuhaft, R.; Chapman, B.; Santos, J. R.; Dutra, L.; Goncalves, F.; Graca, P. A.; Drake, J.

    2007-12-01

    Interferometric synthetic aperture radar (InSAR) involves the reception of SAR signals at two spatially separated ends of a baseline. The resulting phase and coherence observations from InSAR are both sensitive to the vertical structure of vegetation. However, multiple InSAR observations--more than one phase-coherence-pair--are needed to estimate parameters describing vertical structure. Multiple observations can be made with different baselines, polarizations, or frequencies. This talk reviews why InSAR is sensitive to vertical structure. It then describes an experiment in the tropical forests of La Selva Biological Station in Costa Rica in which 12-14 baselines were used to estimate vegetation vertical profiles at C-band. Calibration of the InSAR phases and coherences with nearby pastures was essential for interpreting the data for vegetation, rather than surface, characteristics. Relative density profiles from primary, secondary, and selectively logged forests will be shown along with profiles from abandoned pastures. Field methods used to validate the profiles involve measuring individual tree dimensions, and the production of field profiles will be described and compared to InSAR profiles. Lidar profiles will also be shown for comparison. Functions of the InSAR profiles will be used estimate biomass of 30 stands

  14. The polarimetric entropy classification of SAR based on the clustering and signal noise ration

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Jie; Lang, Fengkai

    2009-10-01

    Usually, Wishart H/α/A classification is an effective unsupervised classification method. However, the anisotropy parameter (A) is an unstable factor in the low signal noise ration (SNR) areas; at the same time, many clusters are useless to manually recognize. In order to avoid too many clusters to affect the manual recognition and the convergence of iteration and aiming at the drawback of the Wishart classification, in this paper, an enhancive unsupervised Wishart classification scheme for POLSAR data sets is introduced. The anisotropy parameter A is used to subdivide the target after H/α classification, this parameter has the ability to subdivide the homogeneity area in high SNR condition which can not be classified by using H/α. It is very useful to enhance the adaptability in difficult areas. Yet, the target polarimetric decomposition is affected by SNR before the classification; thus, the local homogeneity area's SNR evaluation is necessary. After using the direction of the edge detection template to examine the direction of POL-SAR images, the results can be processed to estimate SNR. The SNR could turn to a powerful tool to guide H/α/A classification. This scheme is able to correct the mistake judging of using A parameter such as eliminating much insignificant spot on the road and urban aggregation, even having a good performance in the complex forest. To convenience the manual recognition, an agglomerative clustering algorithm basing on the method of deviation-class is used to consolidate some clusters which are similar in 3by3 polarimetric coherency matrix. This classification scheme is applied to full polarimetric L band SAR image of Foulum area, Denmark.

  15. Biomass mapping using biophysical forest type characterisation of SAR polarimetric images

    NASA Astrophysics Data System (ADS)

    Quiñones, Marcela J.; Hoekman, Dirk H.

    2002-01-01

    Studies on the relationship between biomass and radar backscatter have relied on field data to construct empirical relationships with radar backscatter that can be used for biomass estimations and mapping. In general, inversion of radar data for biomass estimations is limited by the variations on backscatter produced by structural parameters and soil moisture and limited to a certain maximum biomass level dependent on the structural class. In this work we created biomass maps of two study sites at the Colombian Amazon (Guaviare and Araracuara) by using results from polarimetric classification algorithm that combines power, phase and correlation of C, L and P band of AirSAR data. Two different approaches were used. For the Guaviare site, (dry and flat) the biomass classes selected are related to Land Cover types and an empirical relationship between biomass and the average backscatter (LHV+PRR)/2) is used to create the biomass map. High consistency with the cover map is found. For the Araracuara site (hilly and flooded) a biomass map is created by reclassifying a biophysical forest structural map with biomass values obtained from field available data. Field data is used to validate maps and to study the behavior of radar polarimetric signatures according to different forest structures. A new approach of analysis is based on the description of the polarimetric coherence according to a physical explanation of the wave-object interactions. The same type of analysis is used to study systematically the influence of different forest structural parameters and soil moisture conditions on the polarimetric signatures. Simulated radar data from the UTARTCAN backscatter model is used.

  16. Use of Radarsat-2 Polarimetric SAR Images for Fuel Moisture Mapping in Alaska Boreal Forests and South Africa Savannahs

    NASA Astrophysics Data System (ADS)

    Leblon, B.; Bourgeau-Chavez, L. L.; Kong, M.; Buckley, J. R.; Mathieu, R. M.; Charbonneau, F.; Gross, C. P.; Naidoo, L.

    2014-12-01

    The study reported a comparison between two Radarsat-2 polarimetric SAR (polSAR) images from extreme dry versus wet conditions are compared in an effort to determine the value of using polarimetric SAR data for estimating fuel moisture over South Africa savannahs and Alaska boreal forests. The savannahs study area is located into the Kruger National Park area and has 36 sites of lowveld savannas from bare overgrazed sites to medium-dense savannahs. The boreal forest study area has a chronosequence of black spruce ecosystems (recent burns, shrub-dominated regenerating forests , open canopied forests, moderately dense forest cover). Both study areas have a fairly level topography suitable for radar studies. The polSAR images were acquired using the same beam mode (FQ5 (23-25° incidence angle over the boreal sites, FQ15 (34.47-36.05° incidence angle) over the savannahs sites). Over each study area, soil moisture and vegetation structural data were measured in situ concurrently to the acquisition of the SAR imagery. The polSAR images were filtered for speckle noise using a Lee sigma filter and several polarimetric products were computed, such as those directly derived from the images (single linear and polairzed backscatters, polarimetric discriminators) and from target decompositions (Freeman-Durden, new van Zyl, Cloude-Pottier). Because most of these variables have a different unit, a normalized difference (in %) for each variable was calculated using the median values of the dry and wet dates for easier comparison of variable changes between the dates. Over both study areas, the normalized difference between wet and dry conditions was lower when higher tree canopy occurs. Results show utility of C-HH and C-RR polarized backscatters. Several polarimetric discriminators (dmin, Pr max, Pr min, Smax, Smin) were also significantly affected by the soil wetness. The Freeman Durden and van Zyl decomposition parameters outperformed the Cloude-Pottier decomposition

  17. Estimating tropical-forest density profiles from multibaseline interferometric SAR

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert; Chapman, Bruce; dos Santos, Joao Roberto; Dutra, Luciano; Goncalves, Fabio; da Costa Freitas, Corina; Mura, Jose Claudio; de Alencastro Graca, Paulo Mauricio

    2006-01-01

    Vertical profiles of forest density are potentially robust indicators of forest biomass, fire susceptibility and ecosystem function. Tropical forests, which are among the most dense and complicated targets for remote sensing, contain about 45% of the world's biomass. Remote sensing of tropical forest structure is therefore an important component to global biomass and carbon monitoring. This paper shows preliminary results of a multibasline interfereomtric SAR (InSAR) experiment over primary, secondary, and selectively logged forests at La Selva Biological Station in Costa Rica. The profile shown results from inverse Fourier transforming 8 of the 18 baselines acquired. A profile is shown compared to lidar and field measurements. Results are highly preliminary and for qualitative assessment only. Parameter estimation will eventually replace Fourier inversion as the means to producing profiles.

  18. "Phase-Enhanced" 3D Snapshot ISAR Imaging and Interferometric SAR

    DTIC Science & Technology

    2009-12-28

    ESC-TR-2007-067 Technical Report 1135 <« Phase-Enhanced" 3D Snapshot ISAR Imaging and Interferometric SAR J.T. Mayhan 28 December 2009 Lincoln...document when it is no longer needed. Massachusetts Institute of Technology Lincoln Laboratory ttPhase-Lnhanced,, 3D Snapshot ISAR Imaging and...inverse synthetie aperture radar ( ISAR ) images based on recent developments in high resolution spectral estimation theory. Because this technique requires

  19. Comparison of L and C band polarimetric SAR data for the retrieval of soil moisture in the Alps

    NASA Astrophysics Data System (ADS)

    Pasolli, L.; Notarnicola, C.; Bruzzone, L.; Bertoldi, G.; Niedrist, G.; Tappeiner, U.; Zebisch, M.; Del Frate, F.; Laurin, G. V.

    2011-11-01

    This work is developed in the framework of the SOFIA project (ESA AO-6280) which aims at estimating important biophysical variables in the Alpine area by using advanced state of the art retrieval methods in combination with new generation satellite polarimetric SAR data. As a first analysis in this direction, in a previous contribution we investigated the effectiveness of fully polarimetric RADARSAT2 C-band SAR data and proposed the use of the Support Vector Regression technique and the integration of additional information on the investigated area obtained from ancillary data. In this paper we move the attention on the exploitation of L-band SAR data. In more detail, our analysis aims at: 1) assessing the effectiveness of the proposed retrieval algorithm with different satellite SAR data, namely the L-band data; 2) comparing the estimates obtained with the use of C- and L-band SAR imagery, in order to understand common patterns and eventually discrepances due to the different penetration capability of the signals; and 3) understanding the feasibility of a synergic use of L and C band SAR data (when both available) for improving the retrieval of soil moisture in Alpine areas. The experimental analysis is carried out with the use of polarimetric RADARSAT2 (C-band) and ALOS PalSAR (L-band) SAR data. The achieved results indicate the potential of the synergic use of C and L band SAR imagery for the retrieval of soil moisture also in the challenging alpine environment. This feature is properly exploited by the proposed retrieval algorithm, thus pointing out its effectiveness in handling data with different spatial and radiometric characteristics.

  20. Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing

    2011-01-01

    An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.

  1. Study on sea ice thickness estimation using the latest space-borne polarimetric SAR sensors

    NASA Astrophysics Data System (ADS)

    Kim, D.; Kim, J.; Hwang, B.

    2010-12-01

    Variation of sea ice is one of the most evident indicators of climate change on our planet. Thinning of sea ice has been regarded as the major contributing factor that leads to the massive sea ice loss in Arctic sea. Direct measurement of sea ice can be made available by drilling a hole through the ice and/or by using Electromagnetic Induction system. Although these methods are accurate, they are time consuming and limited in space and time. We investigated the usability of polarimetric parameters (backscattering coefficient, VV-to-HH backscattering coefficient ratio, depolarization factors, and target decomposition theorems) of X-, C- and L-band space-borne SAR data in estimating sea ice thickness in Arctic sea. Acquisitions of the latest high-resolution SAR data (i.e. TerraSAR-X, RADARSAT-2, and ALOS PALSAR) were coordinated with sea ice field campaigns at the coast of Greenland. We found that the backscattering coefficients and VV-to-HH backscattering coefficient ratio (BCR) of C- and X-band SAR data had a weak and insignificant correlation with sea ice thickness, while the BCR of L-band SAR data had a perceptible correlation with sea ice thickness. We also found that a strong correlation between sea ice thickness and depolarization factors (co-polarized correlation and cross-polarized ratio). This suggests that target depolarization factors can be effective parameters in estimating sea ice thickness in Arctic sea. It is known that the target depolarization is strongly related to changes in surface roughness. Sensitivity study has shown that the observed ice thickness to depolarization relationship was partly explained by surface roughness effects.

  2. Geology Structure Identification based on Polarimetric SAR (PolSAR) Data and Field Based Observation at Ciwidey Geothermal Field

    NASA Astrophysics Data System (ADS)

    Pradipta, R. A.; Saepuloh, A.; Suryantini

    2016-09-01

    Geological structure observation is difficult to be conducted at Quaternary volcanic field due to the classical problem at tropical region such as intensive erosion, dense vegetation covers, and rough terrain. The problem hampers the field observation especially for geological structures mapping. In order to overcome the problems, an active remote sensing technology based on Polarimetric Synthetic Aperture Radar (PolSAR) data was used in this study. The longer wavelength of microwave than optical region caused the SAR layer penetration higher than optics. The Ciwidey Geothermal Field, Indonesia was selected as study area because of the existence of surface manifestations with lack information about the control of geological structures to the geothermal system. Visual interpretation based on composite polarization modes was applied to identify geological structures at study area. The color composite Red-Green-Blue for HV-HH-VV polarizations provided highest texture and structural features among the other composite combination. The Linear Features Density (LFD) map was also used to interpret the fractures zones. The calculated LFD showed high anomaly about 3.6 km/km2 with two strike directions NW-SE and NE-SW. Interestingly, the surface geothermal manifestation agreed with the low anomaly of LFD. The geological structures consisted of ten faults were successfully detected and mapped. The faults type mainly are oblique-slip with strike directions NE-SW and NW-SE.

  3. Motion compensation for aircraft-borne interferometric SAR

    NASA Astrophysics Data System (ADS)

    Bullock, Richard John

    This research has studied data driven techniques for roll compensation for aircraft-borne InSAR, for platforms where an accurate Inertial Navigation Unit (INU) is inappropriate due to limitations on weight or cost, such as a low-cost civilian mapping system or a miniature UAV. It is shown that for unknown topography, roll errors cannot simply be filtered from the interferogram due to a fundamental ambiguity between aircraft roll effects and certain types of undulating terrain. The solution to this problem lies in the differential Doppler shifts of the signals received at the two antennas. These are proportional to the aircraft roll rate and can be extracted by incoherent or coherent means and utilised to reconstruct the aircraft roll history. This research analyses, experimentally evaluates and further develops the incoherent Differential Doppler (DD) method for roll compensation, developed to the proof-of-concept stage by A. Currie at QinetiQ (Malvern) and compares this with the two-look method, which is a novel coherent technique developed, analysed and experimentally evaluated as part of this PhD from an original idea proposed by Prof. R. Voles of UCL. By means of empirical analysis, numerical simulation and real test data from the QinetiQ C-Band InSAR, it is shown that the two-look method offers significant advantages in sensitivity, frequency performance, robustness and efficiency of implementation over the DD method, particularly at long range. The experimental results also show that for the QinetiQ C-Band InSAR, the two-look method provides roll compensation to a similar quality or better than provided by the on-board Litton-93 INU, which has a specified accuracy of +/-0.05°. Ambiguities in the roll rate estimates from other motions are also shown to be small for this platform, and could be reduced further by employing differential GPS track compensation.

  4. Advanced SAR simulator with multi-beam interferometric capabilities

    NASA Astrophysics Data System (ADS)

    Reppucci, Antonio; Márquez, José; Cazcarra, Victor; Ruffini, Giulio

    2014-10-01

    State of the art simulations are of great interest when designing a new instrument, studying the imaging mechanisms due to a given scenario or for inversion algorithm design as they allow to analyze and understand the effects of different instrument configurations and targets compositions. In the framework of the studies about a new instruments devoted to the estimation of the ocean surface movements using Synthetic Aperture Radar along-track interferometry (SAR-ATI) an End-to-End simulator has been developed. The simulator, built in a high modular way to allow easy integration of different processing-features, deals with all the basic operations involved in an end to end scenario. This includes the computation of the position and velocity of the platform (airborne/spaceborne) and the geometric parameters defining the SAR scene, the surface definition, the backscattering computation, the atmospheric attenuation, the instrument configuration, and the simulation of the transmission/reception chains and the raw data. In addition, the simulator provides a inSAR processing suit and a sea surface movement retrieval module. Up to four beams (each one composed by a monostatic and a bistatic channel) can be activated. Each channel provides raw data and SLC images with the possibility of choosing between Strip-map and Scansar modes. Moreover, the software offers the possibility of radiometric sensitivity analysis and error analysis due atmospheric disturbances, instrument-noise, interferogram phase-noise, platform velocity and attitude variations. In this paper, the architecture and the capabilities of this simulator will be presented. Meaningful simulation examples will be shown.

  5. Unsupervised polarimetric SAR urban area classification based on model-based decomposition with cross scattering

    NASA Astrophysics Data System (ADS)

    Xiang, Deliang; Tang, Tao; Ban, Yifang; Su, Yi; Kuang, Gangyao

    2016-06-01

    Since it has been validated that cross-polarized scattering (HV) is caused not only by vegetation but also by rotated dihedrals, in this study, we use rotated dihedral corner reflectors to form a cross scattering matrix and propose an extended four-component model-based decomposition method for PolSAR data over urban areas. Unlike other urban area decomposition techniques which need to discriminate the urban and natural areas before decomposition, this proposed method is applied on PolSAR image directly. The building orientation angle is considered in this scattering matrix, making it flexible and adaptive in the decomposition. Therefore, we can separate cross scattering of urban areas from the overall HV component. Further, the cross and helix scattering components are also compared. Then, using these decomposed scattering powers, the buildings and natural areas can be easily discriminated from each other using a simple unsupervised K-means classifier. Moreover, buildings aligned and not aligned along the radar flight direction can be also distinguished clearly. Spaceborne RADARSAT-2 and airborne AIRSAR full polarimetric SAR data are used to validate the performance of our proposed method. The cross scattering power of oriented buildings is generated, leading to a better decomposition result for urban areas with respect to other state-of-the-art urban decomposition techniques. The decomposed scattering powers significantly improve the classification accuracy for urban areas.

  6. Imaging of buried and foliage-obscured objects with an ultrawide-bandwidth polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Sheen, Dan R.; Lewis, Terry B.; Wei, Susan C.; Kletzli, D. W., Jr.

    1993-11-01

    The Environmental Research Institute of Michigan (ERIM) has developed a unique ground- based, portable, synthetic aperture radar (SAR). This SAR images targets in their natural backgrounds without the expense of an airborne sensor and with higher performance (bandwidth, resolution) than existing airborne systems. A horizontal 36-foot long aluminum truss supports a rail and an antenna cartridge, which is moved along the rail to allow synthetic aperture focusing. The system is fully-polarimetric and has collected data over the frequency band of 400 - 1300 MHz resulting in a nominal resolution of 0.17 m in range and 0.5 m in cross-range. The low frequency range of the system allows for penetration of soil (to shallow depths) as well as foliage and the system has been used to collect images of buried and foliage- obscured targets. The ground imagery collected to date includes steel oil drums buried at depths of up to one-meter. Both the drums as well as the disturbances due to digging the holes are visible in the imagery. Foliage imagery includes portions of a Lear jet under a mature hardwood forest. Due to the low frequency and wide bandwidth of the sensor (400 - 1300 MHz), obscured objects are clearly visible in the SAR imagery. Other responses in the foliage imagery are due to the dihedral-like ground-trunk reflections.

  7. Modified patch-based locally optimal Wiener method for interferometric SAR phase filtering

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Huang, Haifeng; Dong, Zhen; Wu, Manqing

    2016-04-01

    This paper presents a modified patch-based locally optimal Wiener (PLOW) method for interferometric synthetic aperture radar (InSAR) phase filtering. PLOW is a linear minimum mean squared error (LMMSE) estimator based on a Gaussian additive noise condition. It jointly estimates moments, including mean and covariance, using a non-local technique. By using similarities between image patches, this method can effectively filter noise while preserving details. When applied to InSAR phase filtering, three modifications are proposed based on spatial variant noise. First, pixels are adaptively clustered according to their coherence magnitudes. Second, rather than a global estimator, a locally adaptive estimator is used to estimate noise covariance. Third, using the coherence magnitudes as weights, the mean of each cluster is estimated, using a weighted mean to further reduce noise. The performance of the proposed method is experimentally verified using simulated and real data. The results of our study demonstrate that the proposed method is on par or better than the non-local interferometric SAR (NL-InSAR) method.

  8. Observing Deformation at Mt. Raung East Java Based on PALSAR-2 Imagery by Using Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Arbad, Arliandy P.; Takeuchi, W.; Ardy, Achmad; Ashari, Ridwan A.

    2016-11-01

    In August 2015, Indonesia Center of Volcanology and Geological Hazard Mitigation (CVGHM) recorded of tectonic activities at Mt. Raung with maximum amplitude 2-32 mm and continuing the tremor quakes until the beginning of the 2016 eruption period. Mt. Raung is located at East Java Province, one of most active stratovolcano in Indonesia, typically erupt with explosive eruptions and another deadly hazards such as pyroclastic flow, lahar and volcanic gases. Radar imagery consequently proposes of value device for mapping and assessing of volcano oppurtunities. By this study, we propose InSAR method to observe deformation in Mt. Raung. Interferometric SAR derives the phase difference based on two images of PALSAR-2 observations taken in January 2015 and January 2016. According to the processing of interferometric SAR, those images must be coregistered into a stack, and we selected 2015 imagery as master and the other imagery as slave. We estimate the interferogram result to know the line-of-sight then be flattened by removing the topographic phase an inflating volcano (or any other landform) produces a pattern of concentric fringes in a radar interferogram from which the ffects of viewing geometry and topography have been removed. Finally, we expect the result ofInSAR processing technique to investigate ground deformation of Mt. Raung. It would be a capable and cost-effective way of enhancing the techniques normally used in geodetic monitoring to assess the next eruptive events.

  9. The Touzi Decomposition for Wetland Classification Using Polarimetric C-Band SAR

    NASA Astrophysics Data System (ADS)

    Touzi, E.; Deschamps, A.; Demers, A. M.; Rother, G.

    2009-04-01

    The Touzi decomposition [1] is investigated for wetland characterization. Like the Cloude α scattering type, the magnitude αs of the symmetric scattering is not effective for vegetation type discrimination. The phase Φαs of the symmetric scattering type has to be used for enhanced characterization of wetland vegetation species. A new tool is introduced for assessment of the scattering type phase coherence, and the phase of the dominant scattering type is shown to be very promising for wetland target classifica- tion. The unique information provided by Φαs for enhanced wetland class discrimination is demonstrated using Convair- 580 polarimetric C-band SAR data collected over the Mer Bleue wetland in the East of Ottawa, Canada. The use of Φαs makes possible the discrimination of shrub bog from sedges fen, and permits even the discrimination between conifer dominated treed bog from upland deciduous forest under leafy conditions.

  10. A new clustering algorithm applicable to multispectral and polarimetric SAR images

    NASA Technical Reports Server (NTRS)

    Wong, Yiu-Fai; Posner, Edward C.

    1993-01-01

    We describe an application of a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, we extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The clustering algorithm was able to partition a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and is insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use.

  11. A Combined Use of Decomposition and Texture for Terrain Classification of Fully Polarimetric SAR Images

    NASA Astrophysics Data System (ADS)

    Rodionova, N. V.

    2007-03-01

    This p aper presents two-stag e unsupervised terrain classification of fully polarimetr ic SA R data using Freeman and Durden decomposition based on three simp le scattering mechanisms: surface, volume and double bounce (first step), and textur al features (uncorrelated uniformity , contr ast, inv erse mo men t and entropy) obtained from grey lev el co-occurrence matr ices (GLCM) (second step). Textural f eatures ar e defined in moving w indow 5x5 pixels w ith N=32 (N - number of grey lev els) . This algorith m preserves th e purity of domin ant polarimetric scattering properties and defines textural features in each scatter ing category. It is shown better object discrimin ation after app lying textur e w ith in fix ed scattering category. Speckle r eduction is one of th e main mo ments in imag e interpr etation improvement because of its great influen ce on textur e. Results from unfiltered and Lee filtered polar imetr ic SAR imag es show that the v alues of contrast and en tropy decr ease and th e values of uniformity and inverse moment increase with speckle reduction, that's tru e for all polarizations (HH, VV, HV). Th e d iscr imination b etw een objects increases after speckle f ilter ing. Polar ization influen ce on textur e features is def ined by calculating th e features in SAR images w ith HH , VV and HV polarizations before and after speck le filter ing, and then creating RG B images. It is shown mor e polarization inf luence on textur e features (uniformity , inverse mo ment and entropy) before filtering and less influen ce - after speck le f iltering. I t's not true for contrast wher e polar ization influen ce is not ch anged practically w ith filtering. SIR-C/X-SA R SLC L-band imag es of Moscow r egion are used for illustr ation.

  12. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  13. Change detection in a time series of polarimetric SAR data by an omnibus test statistic and its factorization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nielsen, Allan A.; Conradsen, Knut; Skriver, Henning

    2016-10-01

    Test statistics for comparison of real (as opposed to complex) variance-covariance matrices exist in the statistics literature [1]. In earlier publications we have described a test statistic for the equality of two variance-covariance matrices following the complex Wishart distribution with an associated p-value [2]. We showed their application to bitemporal change detection and to edge detection [3] in multilook, polarimetric synthetic aperture radar (SAR) data in the covariance matrix representation [4]. The test statistic and the associated p-value is described in [5] also. In [6] we focussed on the block-diagonal case, we elaborated on some computer implementation issues, and we gave examples on the application to change detection in both full and dual polarization bitemporal, bifrequency, multilook SAR data. In [7] we described an omnibus test statistic Q for the equality of k variance-covariance matrices following the complex Wishart distribution. We also described a factorization of Q = R2 R3 … Rk where Q and Rj determine if and when a difference occurs. Additionally, we gave p-values for Q and Rj. Finally, we demonstrated the use of Q and Rj and the p-values to change detection in truly multitemporal, full polarization SAR data. Here we illustrate the methods by means of airborne L-band SAR data (EMISAR) [8,9]. The methods may be applied to other polarimetric SAR data also such as data from Sentinel-1, COSMO-SkyMed, TerraSAR-X, ALOS, and RadarSat-2 and also to single-pol data. The account given here closely follows that given our recent IEEE TGRS paper [7]. Selected References [1] Anderson, T. W., An Introduction to Multivariate Statistical Analysis, John Wiley, New York, third ed. (2003). [2] Conradsen, K., Nielsen, A. A., Schou, J., and Skriver, H., "A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing 41(1): 4-19, 2003. [3] Schou, J

  14. Soil Moisture Retrieval from Polarimetric SAR Data: A Short Review of Existing Methods and a New One

    NASA Astrophysics Data System (ADS)

    Di Martino, Gerardo; Iodice, Antonio; Poreh, Davod; Riccio, Daniele

    2016-08-01

    Soil moisture retrieval from SAR data is not an easy task, especially in presence of vegetation cover. Accordingly, in recent years several methods for soil-moisture retrieval under vegetation cover have been developed, relying on model-based or hybrid polarimetric target- decomposition techniques. However, most of these decomposition techniques suffer from the so-called negative-power problem, which is mainly related to poor modelling of surface- and/or volume-scattering contributions. In this paper we, first, analyse the Polarimetric Two-Scale Two-Component Model and the Iterative Generalized Hybrid Decomposition method, proposing a way to combine the estimation results of the methods so that most vegetation conditions can be accounted for. Then, we introduce a method that tries to solve the case of dominant surface scattering and non- negligible dihedral scattering, which is the case not covered by the abovementioned model combination. Meaningful estimation results are presented and discussed using polarimetric L-band SAR data of the AgriSAR 2006 campaign.

  15. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.

    2011-01-01

    The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  16. L-Band Polarimetric InSAR Observations of Greenland Ice Sheets using ALOS

    NASA Astrophysics Data System (ADS)

    Chen, A.; Zebker, H.

    2008-12-01

    The ALOS PALSAR instrument has acquired L-band (23.6 cm wavelength) fully polarimetric synthetic aperture radar (SAR) observations of Greenland with 10 meter single-look resolution. We examine images from a strip in northern Greenland extending from latitudes of 75 degrees N to 80 degrees N, which covers the dry snow, percolation, and wet snow zones of the Greenland ice sheet, as well as the rocky coastal area. Images for repeat-pass interferometry with a 350 meter baseline were acquired at a 46 day interval in March and April 2007. The images from the two dates are coregistered by cross-correlating the HH observations, and we observe fringes in all polarizations in the dry snow, percolation, and wet snow zones, and also in the stable parts of the rocky coastal area. In the dry snow zone of inner Greenland, we observe significantly higher coherence in the HH-HH interferograms (around 0.7) compared to the HV-HV interferograms (around 0.4), and similarly higher coherence in the VV-VV interferogram compared to the VH-VH interferogram. These differences between co-polarized and cross-polarized signals result from volume scattering and lower SNR in the cross-polarized channels. They indicate that scalar models do not fully describe L-band microwave scattering from firn. On each observation date, the phase difference between the HH and the HV returns is almost constant over the dry snow zone of the interior of Greenland. However, there is significant variability in the phase difference between HH and HV returns closer to the coast. The phase difference between the VV and VH returns shows similar behavior, again indicating a difference between co-polarized and cross-polarized scattering mechanisms. We derive polarization signatures for the various scattering regions in the Greenland ice sheets to better understand the scattering mechanisms involved. We model the firn in the dry snow zone as a layered medium with rough interfaces between the layers, and we use the

  17. Phase of Target Scattering for Wetland Characterization using Polarimetric C-Band SAR

    SciTech Connect

    Touzi, R; Deschamps, Mireille C; Rother, Gernot

    2009-09-01

    Wetlands continue to be under threat, and there is a major need for mapping and monitoring wetlands for better management and protection of these sensitive areas. Only a few studies have been published on wetland characterization using polarimetric synthetic aperture radars (SARs). The most successful results have been obtained using the phase difference between HH and VV polarizations, phi{sub HH} - phi{sub VV}, which has shown promise for separating flooded wetland classes. Recently, we have introduced a new decomposition, the Touzi decomposition, which describes target scattering type in terms of a complex entity, the symmetric scattering type. Huynen's target helicity is used to assess the symmetric nature of target scattering. In this paper, the new complex-scattering-type parameters, the magnitude alphas and phase Phi{sub alpha} s, are investigated for wetland characterization. The use of the dominant-scattering-type phase Phi{sub alpha} s makes it possible to discriminate shrub bogs from poor (sedge or shrub) fens. These two classes cannot be separated using phi{sub HH} - phi{sub VV}, or the radiometric scattering information provided by alphas, the Cloude alpha, the entropy H, and the multipolarization HH-HV-VV channels. phi{sub alpha} s, which cannot detect deep (45 cm below the peat surface) water flow in a bog, is more sensitive to the shallower (10-20-cm) fen beneath water, and this makes possible the separation of poor fens from shrub bogs. Phi{sub alpha} s also permits the discrimination of conifer-dominated treed bog from upland deciduous forest under leafy conditions. Target helicity information is exploited to introduce a new parameter, the target asymmetry. The latter is shown very promising for detection of forest changes between leafy and no-leaf conditions. The analysis of low-entropy marsh scattering showed that both the scattering-type magnitude and phas- - e alphas and Phi{sub alpha} s, respectively, as well as the maximum polarization

  18. Monitoring delta subsidence with Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, S.; Overeem, I.; Syvitski, J. P.

    2014-12-01

    Can subsidence in river deltas be monitored in near real-time at the spatial and temporal resolution needed for informing critical management decisions? Interferometric Synthetic Radar Aperture (InSAR) is a satellite-based technique that can map ground deformation with millimeter-scale vertical resolution over thousands of square kilometers. InSAR has enormous potential to shed light on the dynamics of actively subsiding deltas, but the technique is not commonly applied outside of major cities due to the difficulty of performing InSAR in wet, vegetated settings. Given these limitations, how can InSAR best serve the global effort to monitor sinking deltas? Here, an overview of InSAR processing is provided that addresses delta-specific challenges, including frequent cloud-cover in tropical areas; noisy signals in wetlands and flooded fields; dense forests that interact unpredictably with different radar wavelengths; flat landscapes that hinder image stacking algorithms; rapid urban development that can render Digital Elevation Models (DEMs) inaccurate; and a lack of in situ GPS (Global Positioning System) receivers for InSAR calibration. InSAR has unique value for monitoring subsidence in deltas, and some natural and anthropogenic drivers of subsidence can be resolved by InSAR. High-resolution InSAR measurements from the Ganges-Brahmaputra Delta (GBD) are then presented and validated against GPS data. Surface motion is shown to reflect subsurface stratigraphy, and sediment compaction is shown to be the most important factor in this delta on short (non-tectonic) timescales. Average compaction rates throughout the eastern delta range from 0 to > 18 mm/y, varying by more than an order of magnitude depending on the ages and grain sizes of surface and subsurface sediment layers. Fastest subsidence is observed in Holocene organic-rich mud, and slowest subsidence is observed along the Meghna River and in areas with surface or subsurface sand deposits. Although groundwater

  19. Detection of damaged urban areas using interferometric SAR coherence change with PALSAR-2

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Thapa, Rajesh Bahadur; Ohsumi, Tsuneo; Fujiwara, Hiroyuki; Yonezawa, Chinatsu; Tomii, Naoya; Suzuki, Sinichi

    2016-07-01

    The interferometric SAR coherence-change technique with coherence filter and polarization (HH and HV) has been used to detect the parts of buildings damaged by the 2015 Gorkha Earthquake. A survey of the building damage was conducted in every house to evaluate the detection accuracy in the Khokana and Sankhu urban areas in the Kathmandu Valley of Nepal. The damaged parts of the urban area were adequately detected using coherence-change (∆ γ) values obtained before the earthquake ( γ pre) and during the inter-seismic stage of the earthquake ( γ int). The use of a coherence filter effectively increased overall accuracy by ~2.1 to 7.0 % with HH polarization. The incorporation of HV polarization marginally increased the accuracy (~0.9 to 1.2 %). It was confirmed that road damage due to liquefaction was also observed using the interferometric SAR coherence-change detection technique. The classification accuracy was lower (27.1-35.1 %) for areas that were damaged. However, higher accuracy (97.8-99.2 %) was achieved for areas that were damage-free, in ∆ γ obtained from HH and HV polarization with a coherence filter. This helped to identify the damaged urban areas (using this technique) immediately after occurrence of an earthquake event.

  20. Simultaneous interferometric and polarimetric strain measurements on composites using a fiber-optic strain gauge

    NASA Astrophysics Data System (ADS)

    Fuerstenau, N.; Schmidt, W.; Goetting, H.-C.

    1992-06-01

    A fiberoptic Michelson interferometer is used for remote sensing of the bending-induced surface strain of plates made from carbon-fiber composites. The double-polarization method is used for eliminating the ambiguity of fringe counting. Simultaneous measurement of the birefringence-dependent phase offset yields an additional analog (polarimetric) signal, which allows for initialization of the incremental readout. The measured dependence of surface strain on plate bending agrees with the theoretically expected linear relationship, and it agrees with the gauge sensitivity published by Valis et al. (1989). The observed hysteresis and temperature sensitivity are significantly smaller than the same effects in an electrical strain gauge.

  1. Wavemill Product Assessment- Defining Products and Evaluating Potential Performance from a Novel Spaceborne Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Cotton, P. D.; Gommenginger, C.; Martin, A.; Marquez, J.; Burbidge, G.; Quilfen, Y.; Chapron, B.; Reppucci, A.; Buck, C.

    2016-08-01

    Ocean Surface Currents are one of the most important ocean properties for oceanographers and operators in the maritime domain. Improved monitoring of ocean currents is systematically the number one requirement that emerges from any science or end user requirement surveys.Wavemill is a novel hybrid interferometric SAR system first proposed by ESA/ESTEC [Buck, 2005]. It offers the possibility of generating two-dimensional wide swath, high resolution, high precision maps of surface current vectors and ocean topography [Buck et al., 2009]. Based on a single spacecraft, it avoids the difficulties of synchronisation and baseline estimation associated with other interferometric SAR systems based on two or more satellites (e.g. the "cartwheel" or "helix" concept).The Wavemill concept has developed steadily since its first inception in 2005. A number of Wavemill studies in recent years have gradually put together facts and figures to support the case for Wavemill as a possible space-borne mission.The Wavemill Product Assessment study (WaPA) aimed to define the scientific capabilities and limitations of a spaceborne Wavemill instrument in preparation for a possible submission of the Wavemill concept as a candidate Earth Explorer Core mission. The WaPA project team brought together expert scientists and engineers in the field of SAR imaging of ocean currents, and included the National Oceanography Centre (UK), Starlab (Spain), IFREMER (France) and Airbus Defence and Space (UK). Overall project management was provided by Satellite Oceanographic Consultants (UK). The approach taken included:- A review of SAR imaging of ocean currents in along-track interferometric mode to learn from previous experiments and modelling what key phenomena need to be accounted for to determine the true performance of a spaceborne Wavemill system- Validation of proposed Wavemill primary products based on Wavemill airborne proof-of-concept data and numerical simulations to determine the capabilities

  2. Interferometric Processing of Spaceborne SAR Data in Advanced SAR Imaging Modes

    DTIC Science & Technology

    2000-10-01

    Mittermayer and Alberto Moreira Deutsches Zentrum fiur Luft- und Raumfahrt (DLR) Institut fuir Hochfrequenztechnik und Radarsysteme 82234 Oberpfaffenhofen...34, IEEE Transactions on Geosc., Vol. 32, No. 4, July 1994, pp. 855-865. [4] J. Mittermayer , A. Moreira, 0. Lofeld: "Spotlight SAR Data Processing Using the...Frequency Scaling Algo- rithm", IEEE Trans. on Geosc. and Remote Sensing, Vol. 37, No. 5, September 1999. [51 Mittermayer , J., A. Moreira and 0

  3. Interferometric synthetic aperture radar (InSAR) and its applications to study volcanoes, part 2: InSAR imaging of Alaskan Volcanoes

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Wicks, Charles W.; Power, John A.

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) is a remote sensing technique which can measure ground surface deformation with sub-centimeter precision and spatial resolution in tens-of-meters over a large region. This paper summarizes our recent InSAR studies of Alaskan volcanoes, associated with both eruptive and non-eruptive activity. It shows that InSAR can improve our understanding of how the Alaskan volcanoes work and enhance our capability to predict future eruptions and the associated hazards. 

  4. Unsupervised classification algorithm based on EM method for polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Fernández-Michelli, J. I.; Hurtado, M.; Areta, J. A.; Muravchik, C. H.

    2016-07-01

    In this work we develop an iterative classification algorithm using complex Gaussian mixture models for the polarimetric complex SAR data. It is a non supervised algorithm which does not require training data or an initial set of classes. Additionally, it determines the model order from data, which allows representing data structure with minimum complexity. The algorithm consists of four steps: initialization, model selection, refinement and smoothing. After a simple initialization stage, the EM algorithm is iteratively applied in the model selection step to compute the model order and an initial classification for the refinement step. The refinement step uses Classification EM (CEM) to reach the final classification and the smoothing stage improves the results by means of non-linear filtering. The algorithm is applied to both simulated and real Single Look Complex data of the EMISAR mission and compared with the Wishart classification method. We use confusion matrix and kappa statistic to make the comparison for simulated data whose ground-truth is known. We apply Davies-Bouldin index to compare both classifications for real data. The results obtained for both types of data validate our algorithm and show that its performance is comparable to Wishart's in terms of classification quality.

  5. Mapping slope movements in Alpine environments using TerraSAR-X interferometric methods

    NASA Astrophysics Data System (ADS)

    Barboux, Chloé; Strozzi, Tazio; Delaloye, Reynald; Wegmüller, Urs; Collet, Claude

    2015-11-01

    Mapping slope movements in Alpine environments is an increasingly important task in the context of climate change and natural hazard management. We propose the detection, mapping and inventorying of slope movements using different interferometric methods based on TerraSAR-X satellite images. Differential SAR interferograms (DInSAR), Persistent Scatterer Interferometry (PSI), Short-Baseline Interferometry (SBAS) and a semi-automated texture image analysis are presented and compared in order to determine their contribution for the automatic detection and mapping of slope movements of various velocity rates encountered in Alpine environments. Investigations are conducted in a study region of about 6 km × 6 km located in the Western Swiss Alps using a unique large data set of 140 DInSAR scenes computed from 51 summer TerraSAR-X (TSX) acquisitions from 2008 to 2012. We found that PSI is able to precisely detect only points moving with velocities below 3.5 cm/yr in the LOS, with a root mean squared error of about 0.58 cm/yr compared to DGPS records. SBAS employed with 11 days summer interferograms increases the range of detectable movements to rates up to 35 cm/yr in the LOS with a root mean squared error of 6.36 cm/yr, but inaccurate measurements due to phase unwrapping are already possible for velocity rates larger than 20 cm/year. With the semi-automated texture image analysis the rough estimation of the velocity rates over an outlined moving zone is accurate for rates of "cm/day", "dm/month" and "cm/month", but due to the decorrelation of yearly TSX interferograms this method fails for the observation of slow movements in the "cm/yr" range.

  6. An Unsupervised Change Detection Based on Test Statistic and KI from Multi-Temporal and Full Polarimetric SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. Q.; Yang, J.; Li, P. X.; Liu, M. Y.; Shi, Y. M.

    2016-06-01

    Accurate and timely change detection of Earth's surface features is extremely important for understanding relationships and interactions between people and natural phenomena. Many traditional methods of change detection only use a part of polarization information and the supervised threshold selection. Those methods are insufficiency and time-costing. In this paper, we present a novel unsupervised change-detection method based on quad-polarimetric SAR data and automatic threshold selection to solve the problem of change detection. First, speckle noise is removed for the two registered SAR images. Second, the similarity measure is calculated by the test statistic, and automatic threshold selection of KI is introduced to obtain the change map. The efficiency of the proposed method is demonstrated by the quad-pol SAR images acquired by Radarsat-2 over Wuhan of China.

  7. River Delta Subsidence Measured with Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, Stephanie

    This thesis addresses the need for high-resolution subsidence maps of major world river deltas. Driven by a combination of rising water, sediment compaction, and reduced sediment supply due to damming and flood control, many deltas are sinking relative to sea level. A lack of data constraining rates and patterns of subsidence has made it difficult to determine the relative contributions of each factor in any given delta, however, or to assess whether the primary drivers of land subsidence are natural or anthropogenic. In recent years, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a satellite-based technique that can map ground deformation with mm-scale accuracy over thousands of square kilometers. These maps could provide critical insight into the drivers of subsidence in deltas, but InSAR is not typically applied to non-urban delta areas due to the difficulties of performing the technique in wet, vegetated settings. This thesis addresses those difficulties and achieves high-resolution measurements of ground deformation in rural deltaic areas. Chapter 1 introduces the processes that drive relative sea level rise in river deltas and investigates open questions in delta subsidence research. Chapter 2 assesses the performance of InSAR in delta settings and reviews interferogram generation in the context of delta analysis, presenting delta-specific processing details and guiding interpretation in these challenging areas. Chapter 3 applies Differential (D-) InSAR to the coast of the Yellow River Delta in China. Results show that subsidence rates are as high as 250 mm/y due to groundwater extraction at aquaculture facilities, a rate that exceeds local and global average sea level rise by nearly two orders of magnitude and suggests a significant hazard for Asian megadeltas. Chapter 4 applies interferometric stacking and Small Baseline Subset (SBAS)-InSAR to the Ganges-Brahmaputra Delta, Bangladesh. Results show that stratigraphy controls subsidence in

  8. Structural Biomass Estimation from L-band Interferometric SAR and Lidar

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Chapman, B. D.; Goncalves, F.; Hensley, S.; dos Santos, J. R.; Graca, P. A.; Dutra, L.

    2011-12-01

    After a review of biomass estimation from interferometric SAR (InSAR) at all bands over the last 15 years, and a brief review of lidar biomass estimation, this paper discusses structure and biomass estimation from simultaneously acquired (not repeat-track) InSAR at L-band. We will briefly discuss the history of regression of biomass to InSAR raw observations (coherence and phase) and structural parameters (height, standard deviation, Fourier component). Lidar biomass estimation from functions of the waveform will be discussed. We review our structural and biomass estimation results for C-band InSAR at vertical polarization for 12-14 baselines in La Selva Biological Station, Costa Rica. C-band vertical scales were between 12 and 100 m for structure estimation, but only between 50 and 100 m for biomass estimation, due to phase calibration problems at the shorter vertical wavelengths (larger baselines). Most of the talk will be spent on L-band, simultaneously acquired multibaseline InSAR, also at La Selva, acquired at vertical polarization. Because the vertical interferometric scale is proportional to the radar altitude times the wavelength over the baseline length, the AirSAR aircraft had to be flown very low (1.2 km) to realize vertical scales at L-band of 60 m and higher. Our lidar biomass estimation suggests that vertical scales of 14 m-100 m are optimal for biomass estimation. We will try three different approaches to biomass estimation with the limited high vertical scales we have available: 1) We will regress biomass to Fourier transforms as in the C-band and lidar study, but with 60 m - 100+ m vertical scales we do not expect accuracies to be as high as for the lidar demonstration (58 Mg/ha RMS scatter of estimated about field biomass for biomasses up to 450 Mg/ha), which used Fourier vertical wavelengths of 15 m-20 m. In addition to using Fourier components, 2) we will report the use of the derivative of the InSAR complex coherence with respect to Fourier

  9. General adaptive-neighborhood technique for improving synthetic aperture radar interferometric coherence estimation.

    PubMed

    Vasile, Gabriel; Trouvé, Emmanuel; Ciuc, Mihai; Buzuloiu, Vasile

    2004-08-01

    A new method for filtering the coherence map issued from synthetic aperture radar (SAR) interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region-growing technique driven by the information provided by the amplitude images. Then pixels in the derived adaptive neighborhood are complex averaged to yield the filtered value of the coherence, after a phase-compensation step is performed. An extension of the algorithm is proposed for polarimetric interferometric SAR images. The proposed method has been applied to both European Remote Sensing (ERS) satellite SAR images and airborne high-resolution polarimetric interferometric SAR images. Both subjective and objective performance analysis, including coherence edge detection, shows that the proposed method provides better results than the standard phase-compensated fixed multilook filter and the Lee adaptive coherence filter.

  10. TELAER: a multi-mode/multi-antenna interferometric airborne SAR system

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Amaral, Tiago; Berardino, Paolo; Esposito, Carmen; Jackson, Giuseppe; Pauciullo, Antonio; Vaz Junior, Eurico; Wimmer, Christian; Lanari, Riccardo

    2014-05-01

    The present contribution is aimed at showing the capabilities of the TELAER airborne Synthetic Aperture Radar (SAR) system recently upgraded to the interferometric mode [1]. TELAER is an Italian airborne X-Band SAR system, mounted onboard a LearJet 35A aircraft. Originally equipped with a single TX/RX antenna, it now operates in single-pass interferometric mode thanks to a system upgrading [1] funded by the Italian National Research Council (CNR), via the Italian Ministry of Education, Universities and Research (MIUR), in the framework of a cooperation between CNR and the Italian Agency for Agriculture Subsidy Payments (AGEA). In the frame of such cooperation, CNR has entrusted the Institute for Electromagnetic Sensing of the Environment (IREA) for managing all the activities, included the final flight tests, related to the system upgrading. According to such an upgrading, two additional receiving X-band antennas have been installed in order to allow, simultaneously, single-pass Across-Track and Along-Track interferometry [1]. More specifically, the three antennas are now installed in such a way to produce three different across-track baselines and two different along-track baselines. Moreover, in the frame of the same system upgrading, it has been mounted onboard the Learjet an accurate embedded Global Navigation Satellite System and Inertial Measurement Unit equipment. This allows precise measurement of the tracks described by the SAR antennas during the flight, in order to accurately implement Motion Compensation (MOCO) algorithms [2] during the image formation (focusing) step. It is worth remarking that the TELAER system upgraded to the interferometric mode is very flexible, since the user can set different operational modes characterized by different geometric resolutions and range swaths. In particular, it is possible to reach up to 0.5 m of resolution with a range swath of 2km; conversely, it is possible to enlarge the range swath up to 10 km at expenses of

  11. Interferometric processing of C-band SAR data for the improvement of stand age estimation in rubber plantation

    NASA Astrophysics Data System (ADS)

    Trisasongko, Bambang H.; Paull, David J.; Panuju, Dyah R.

    2015-01-01

    Rubber ranks the second largest plantation in Indonesia after oil palm. While oil palm plantations have been exploited mainly by large companies, many rubber plantations are still managed by peasant farmers who maintain its biodiversity. Due to its broad and scattered location, monitoring tropical rubber plantation is a crucial application of active remote sensing. In this paper, the backscatter coefficient of Envisat Advanced Synthetic Aperture Radar (ASAR) is compared to interferometric coherence to study the relationship between stand age and SAR parameters. It is shown that VV polarized C-band SAR achieves its saturation level in plantations aged about 5-10 years. Extension of saturation level can be achieved by processing an interferometric pair of ASAR data, which results in interferometric coherence. In this paper, coherence can take up to 20 years stand age to achieve prior to saturation. Since stand age is highly related to biomass, this finding argues that the biomass can be best estimated using coherence.

  12. Yellowstone Volcanic Unrest from GPS and SAR Interferometric Observations between 1992 and 2015

    NASA Astrophysics Data System (ADS)

    Aly, M. H.

    2015-12-01

    Incorporating geodetic measurements from nine Global Positioning System (GPS) stations and multi-sensor Interferometric Synthetic Aperture Radar (InSAR), six prominent episodes of Yellowstone caldera unrest are identified between 1992 and 2015. Episode 1: 1992-1995, deflation rate of about 2.7 cm/yr, episode 2: 1996-2000, minimal deflation of 0.5 cm/yr with considerable inflation of 1.7 cm/yr at Norris, episode 3: 2000-2004, slight deflation of 0.7 cm/yr with local inflation of 0.6 cm/yr at Norris, episode 4: 2004-2009, extraordinary inflation of 3-8 cm/yr with substantial deflation of 1-4 cm/yr at Norris, episode 5: 2010-2014, notable deflation of about 1-2.4 cm/yr across the entire caldera floor, and ultimately episode 6: 2014-2015, remarkable caldera-wide inflation of about 2-6 cm/yr. During the period of observation (1992-2015), extensive deformation has occurred primarily at three locations; namely, the Mallard Lake resurgent dome, the Sour Creek resurgent dome, and the Norris Geyser Basin that is located nearby the northwestern rim of the caldera. InSAR data acquired during 1992-2015 by ERS-1, ERS-2, ENVISAT, TerraSAR-X, TanDEM-X, and Sentinel-1 are analyzed using the two-pass and the small baseline subset interferometric methods. The created interferograms do not show any alignment of crustal deformation with fault zones across the intermittently active caldera, which indicate that the magma charge and discharge, as well as the widespread hydrothermal activity are responsible for the induced deformation. Fault zones most likely have acted as pathways for the movements of magma and hydrothermal fluids, but they do not have any influence on the measured rates of surface motion. Source modeling of recent GPS and InSAR measurements indicates the existence of two distinct planar sources beneath the caldera (8-12 km) and the Norris Geyser Basin (10-16 km).

  13. Flood disaster monitoring in Thailand by using a airborne L-band SAR: Polarimetric and interferometry Synthetic Aperture Radar with L-band(Pi-SAR-L)

    NASA Astrophysics Data System (ADS)

    Kawano, N.; Sobue, S.; Shimada, M.; Ohyoshi, K.

    2012-04-01

    It was heavy rainfall around the northern region of Thailand from July to September 2011, which caused flood disaster to quite wide region of Thailand, it finally reached to the Bangkok central in the end of October 2011. Japan Aerospace Exploration Agency (JAXA) conducted an emergency observation by using a airborne L-band SAR: Polarimetric and interferometry Synthetic Aperture Radar with L-band(Pi-SAR-L) from 5th to 27th November to monitor flood area. Pi-SAR-L has a center frequency of 1271.5 MHz, a band width of 50 MHz, a slant range resolution of 3 m, and an acquisition swath of 15 km on the ground. Pi-SAR-L is boarded on an aircraft of the Gulfstream-II operated by the Diamond Air Service(DAS), Japan, and the Gulfstream-II was ferried to the Chieng-Mai airport in the North Thailand, from Japan. In our presentation, we will show flood area around Bangkok and its variations detected by Pi-SAR-L

  14. Full-aspect 3D target reconstruction of interferometric circular SAR

    NASA Astrophysics Data System (ADS)

    Lin, Yun; Bao, Qian; Hou, Liying; Yu, Lingjuan; Hong, Wen

    2016-10-01

    Circular SAR has several attractive features, such as full-aspect observation, high resolution, and 3D target reconstruction capability, thus it has important potential in fine feature description of typical targets. However, the 3D reconstruction capability relies on the scattering persistence of the target. For target with a highly directive scattering property, the resolution in the direction perpendicular to the instantaneous slant plane is very low compared to the range and azimuth resolutions, and the 3D structure of target can hardly be obtained. In this paper, an Interferometric Circular SAR (InCSAR) method is proposed to reconstruct the full-aspect 3D structure of typical targets. InCSAR uses two sensors with a small incident angle difference to collect data in a circular trajectory. The method proposed in this paper calculates the interferometric phase difference (IPD) of the image pair at equally spaced height slices, and mask the original image with an IPD threshold. The main principle is that when a scatterer is imaged at a wrong height, the image pair has an offset, which results in a nonzero IPD, and only when the scatterer is correctly imaged at its true height, the IPD is near zero. The IPD threshold is used to retain scatterers that is correctly imaged at the right height, and meanwhile eliminate scatterers that is imaged at a wrong height, thus the 3D target structure can be retrieved. The proposed method is validated by real data processing, both the data collected in the microwave chamber and the GOTCHA airborne data.

  15. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  16. Classification of High Resolution C-Band PolSAR Data Based on Polarimetric and Texture Features

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Chen, Erxue; Li, Zengyuan; Feng, Qi; Li, Lan

    2014-11-01

    PolSAR image classification is an important technique in the remote sensing area. For high resolution PolSAR image, polarimetric and texture features are equally important for the high resolution PolSAR image classification. The texture features are mainly extracted through Gray Level Co-occurrence Matrix (GLCM) method, but this method has some deficiencies. First, GLCM method can only work on gray-scale images; Secondly, the number of texture features extracted by GLCM method is generally up dozens, or even hundreds. Too many features may exist larger redundancy and will increase the complexity of classification. Therefore, this paper introduces a new texture feature factor-RK that derived from PolSAR image non-Gaussian statistic model. Using the domestic airborne C-band PolSAR image data, we completed classification combined the polarization and texture characteristics. The results showed that this new texture feature factor-RK can overcome the above drawbacks and can achieve same performance compared with GLCM method.

  17. Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces.

    PubMed

    Yoshida, Takero; Rheem, Chang-Kyu

    2015-06-10

    A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed.

  18. Surface Deformation of Los Humeros Caldera, Mexico, Estimated by Interferometric Synthetic Aperture Radar (InSAR).

    NASA Astrophysics Data System (ADS)

    Santos Basurto, R.; Lopez Quiroz, P.; Carrasco Nuñez, G.; Doin, M. P.

    2014-12-01

    Los Humeros caldera is located in the eastern part of the Trans-Mexican Volcanic Belt, to the north of the state of Puebla and bordering the west side of the state of Veracruz. The study of the caldera, is of great interest because there is a geothermal field currently working inside of it. In fact, Los Humeros, is the third more important geothermal field in Mexico. In this work, we used InSAR to estimate the surface deformation on the caldera, aiming to contribute to its modeling and to help preventing subsidence related hazards on the geothermal field and surroundings. On this study, we calculated 34 interferograms from 21 SAR images of the ENVISAT European Space Agency Mission. The analysis of the interferograms, allow us to detect, decorrelation of the interferometric signal increased, when time spans were greater than 70 days. Also, for those with good signal correlation, the atmospheric signal dominated the interferogram, masking completely the deformation. Moreover, residual orbital ramps were detected, in some of the calculated interferograms. An algorithm capable to remove all the interferogram signal contributions but the deformation related, has been implemented. Resulting deformation and its correlation with several variables like the geology, the hydrogeology and the seismic records, were analysed through its integration in a Geographic Information System.

  19. Wavemill Product Assessment - Defining potential products from a novel spaceborne interferometric SAR

    NASA Astrophysics Data System (ADS)

    Marquez, Jose; Gommenginger, Christine; Burbidge, Geoff; Quilfen, Yves; Cotton, David; Buck, Christopher; Donlon, Craig

    2013-04-01

    The Wavemill is a new radar instrument concept that offers the possibility of generating two-dimensional wide swath, high resolution, high precision maps of surface current vectors and ocean topography. Based on a single spacecraft, it avoids the difficulties of synchronisation and baseline estimation associated with other interferometric SAR systems based on two or more satellites. WaPA, the Wavemill Product Assessment project, is supported by ESA under the General Studies Programme (GSP) to define the scientific capabilities and limitations of a spaceborne Wavemill instrument. The Wavemill concept has developed steadily since its first inception in 2005. A number of Wavemill studies in recent years have gradually put together facts and figures to support the case for Wavemill as a possible spaceborne mission. The WaPA project builds on past studies to address some key aspects relating to the expected performances and limitations of a spaceborne Wavemill instrument. This study is a critical step on the path towards establishing Wavemill as a convincing candidate instrument for a future ocean current mission. In this paper we present the technical concept of the Wavemill instrument, provide an overview of current capability in terms of measuring surface currents from spaceborne SAR, present results from an airborne proof-of-concept campaign and then discuss some early findings from the project in terms of the potential products and their expected performance.

  20. Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Chen, Curtis

    2010-01-01

    Satellite-based repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides a synoptic high spatial resolution perspective of Earth's changing surface, permitting one to view large areas quickly and efficiently. By measuring relative phase change from one observation to the next on a pixel-by-pixel basis, maps of deformation and change can be derived. Variability of the atmosphere and the ionosphere leads to phase/time delays that are present in the data that can mask many of the subtle deformation signatures of interest, so methods for mitigation of these effects are important. Many of these effects have been observed in existing ALOS PALSAR data, and studies are underway to characterize and mitigate the ionosphere using these data. Since the ionosphere is a dispersive medium, it is possible in principle distinguish the ionospheric signatures from the non-dispersive effects of deformation and the atmosphere. In this paper, we describe a method for mapping the ionosphere in InSAR data based on a multi-frequency split-spectrum processing technique.

  1. Assessing Natural Disaster Impacts and Recovery Using Multifrequency, Fully-Polarimetric Synthetic Aperture Radar (SAR) and Optical Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Weissel, J. K.; Czuchlewski, K. R.; Kim, Y.

    2002-12-01

    Many natural disasters involving landslides, volcanic eruptions, fires, or floods entail terrain resurfacing, followed by subsequent recovery. Modern satellite and airborne remote sensing technologies, which combine broad spatial coverage and high spatial resolution with time-sequential site revisit capability, can provide important information on the extent and duration of major landscape disturbance. In humid climate settings, these hazards temporarily remove or replace a natural vegetation cover and in doing so, modify the physical properties of the land surface. In optical remote sensing, removal of vegetation alters surface albedo in the visible -- near infrared (V-NIR) waveband, particularly the high reflectance from vegetation in the NIR. For SAR remote sensing, removal of vegetation cover causes a change in dominant microwave scattering mechanism for the areas affected. SAR has operational advantages over optical sensors for rapid disaster assessment because of its day/night acquisition capability, the ability to ``see through'' smoke, clouds and dust, and the side-looking viewing geometry, which is an advantage whenever data collection directly above the site would prove dangerous. We show how multifrequency, fully-polarimetric airborne SAR data can be ``inverted'' for parameters that reflect scattering mechanism signatures diagnostic of different surface cover types. We apply a uniform approach to map landslides resulting from the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan, volcanic flows from the major 1996 eruption of Manam volcano in Papua New Guinea, and the extent of damage from the summer 2002 Rodeo -- Chediski wildfire in Arizona. In addition, earlier work has shown that multifrequency SAR polarimetric backscatter is sensitive to total above-ground biomass. This attribute can be exploited to calculate vegetation loss during a disaster and for assessment of regrowth during the recovery phase.

  2. Study of a passive companion microsatellite to the SAOCOM-1B satellite of Argentina, for bistatic and interferometric SAR applications

    NASA Astrophysics Data System (ADS)

    Barbier, Christian; Derauw, Dominique; Orban, Anne; Davidson, Malcolm W. J.

    2014-10-01

    We report the results of a preparatory study aimed at exploring candidate applications that could benefit from a passive micro-satellite accompanying the L-band SAOCOM-1B satellite of Argentina, and to carry out a limited demonstration, based on data acquired during ESA airborne campaigns, of selected applications. In a first step of the study, the potential applications were identified and prioritized based on the mission context and strategic applications, scientific need, and feasibility. The next step of the study was to carry out some demonstrations using data sets acquired during the BioSAR 2007-2009, TropiSAR 2009 and IceSAR 2007 campaigns. A P-band InSAR digital elevation model was generated from BioSAR 2007 data. Time-series of interferometric coherence maps were obtained as a tool for change detection and monitoring. PolInSAR processing was carried out on BioSAR 2007 and IceSAR data.

  3. Estimation of Bridge Height over Water from Polarimetric SAR Image Data Using Mapping and Projection Algorithm and De-Orientation Theory

    NASA Astrophysics Data System (ADS)

    Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo

    An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.

  4. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt

    USGS Publications Warehouse

    Schaber, G.G.; McCauley, J.F.; Breed, C.S.

    1997-01-01

    Bir Safsaf, within the hyperarid 'core' of the Sahara in the Western Desert of Egypt, was recognized following the SIR-A and SIR-B missions in the 1980s as one of the key localities in northeast Africa, where penetration of dry sand by radar signals delineates previously unknown, sand-buried paleodrainage valleys ('radar-rivers') of middle Tertiary to Quaternary age. The Bir Safsaf area was targeted as a focal point for further research in sand penetration and geologic mapping using the multifrequency and polarimetric SIR-C/X-SAR sensors. Analysis of the SIR-C/X-SAR data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat TM images by a relatively thin, but extensive blanket of blow sand. Basement rock units (granitoids and gneisses) and the fractures associated with them at Bir Safsaf are shown here for the first time to be clearly delineated using C- and L-band SAR images. The detectability of most geologic features is dependent primarily on radar frequency, as shown for wind erosion patterns in bedrock at X-band (3 cm wavelength), and for geologic units and sand and clay-filled fractures in weathered crystal-line basement rocks at C-band (6 cm) and L-band (24 cm). By contrast, Quaternary paleodrainage channels are detectable at all three radar frequencies owing, among other things, to an usually thin cover of blow sand. The SIR-C/X-SAR data investigated to date enable us to make specific recommendations about the utility of certain radar sensor configurations for geologic and paleoenvironmental reconnaissance in desert regions.Analysis of the shuttle imaging radar-C/X-synthetic aperture radar (SIR-C/X-SAR) data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and

  5. Schatten Matrix Norm Based Polarimetric SAR Data Regularization Application over Chamonix Mont-Blanc

    NASA Astrophysics Data System (ADS)

    Le, Thu Trang; Atto, Abdourrahmane M.; Trouve, Emmanuel

    2013-08-01

    The paper addresses the filtering of Polarimetry Synthetic Aperture Radar (PolSAR) images. The filtering strategy is based on a regularizing cost function associated with matrix norms called the Schatten p-norms. These norms apply on matrix singular values. The proposed approach is illustrated upon scattering and coherency matrices on RADARSAT-2 PolSAR images over the Chamonix Mont-Blanc site. Several p values of Schatten p-norms are surveyed and their capabilities on filtering PolSAR images is provided in comparison with conventional strategies for filtering PolSAR data.

  6. Evaluation of DEM generation based on Interferometric SAR using TanDEM-X data in Tokyo

    NASA Astrophysics Data System (ADS)

    Avtar, Ram; Yunus, Ali P.; Kraines, Steven; Yamamuro, Masumi

    This study is focused on the evaluation of a Digital Elevation Model (DEM) for Tokyo, Japan from data collected by the recently launched TerraSAR add-on for Digital Elevation Measurements (TanDEM-X), satellite of the German Aerospace Center (DLR). The aim of the TanDEM-X mission is to use Interferometric SAR techniques to generate a consistent high resolution global DEM dataset. In order to generate an accurate global DEM using TanDEM-X data, it is important to evaluate the accuracy at different sites around the world. Here, we report our efforts to generate a high-resolution DEM of the Tokyo metropolitan region using TanDEM-X data. We also compare the TanDEM-X DEM with other existing DEMs for the Tokyo region. Statistical techniques were used to calculate the elevation differences between the TanDEM-X DEM and the reference data. Two high-resolution LiDAR DEMs are used as independent reference data. The vertical accuracy of the TanDEM-X DEM evaluated using the Root Mean Square Error (RMSE) is considerably higher than the existing global digital elevation models. However, the local area DEM generated by Geospatial Information Authority of Japan (GSI DEM) showed the highest accuracy among all non-LiDAR DEM's. The vertical accuracy in terms of RMSE estimated using the 2 m LiDAR as reference is 3.20 m for TanDEM-X, 2.44 m for the GSI, 7.00 m for SRTM DEM and 10.24 m for ASTER-GDEM. We also compared the accuracy of TanDEM-X with the other DEMs for different types of land cover classes. The results show that the absolute elevation error of TanDEM-X is higher for urban and vegetated areas, likewise to those observed for other global DEM's. This is probably because the radar signals used by TanDEM-X tend to measure the first reflective surface that is encountered, which is often the top of the buildings or canopy. Hence, the TanDEM-X based DEM is more akin to a Digital Surface Model (DSM).

  7. Biomass estimation in a tropical wet forest using Fourier transforms of profiles from lidar or interferometric SAR

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Gonçalves, F. G.; Drake, J. B.; Chapman, B. D.; dos Santos, J. R.; Dutra, L. V.; Graça, P. M. L. A.; Purcell, G. H.

    2010-12-01

    Tropical forest biomass estimation based on the structure of the canopy is a burgeoning and crucial remote sensing capability for balancing terrestrial carbon budgets. This paper introduces a new approach to structural biomass estimation based on the Fourier transform of vertical profiles from lidar or interferometric SAR (InSAR). Airborne and field data were used from 28 tropical wet forest stands at La Selva Biological Station, Costa Rica, with average biomass of 229 Mg-ha-1. RMS scatters of remote sensing biomass estimates about field measurements were 58.3 Mg-ha-1, 21%, and 76.1 Mg-ha-1, 26%, for lidar and InSAR, respectively. Using mean forest height, the RMS scatter was 97 Mg-ha-1, ≈34% for both lidar and InSAR. The confidence that Fourier transforms are a significant improvement over height was >99% for lidar and ≈90% for InSAR. Lidar Fourier transforms determined the useful range of vertical wavelengths to be 14 m to 100 m.

  8. Properties of radar backscatter of forests measured with a multifrequency polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Amar, F.; Karam, M. A.; Fung, A. K.; De Grandi, G.; Lavalle, C.; Sieber, A.

    1992-01-01

    Fully polarimetric airborne synthetic aperture radar (AIRSAR) data, collected in Germany during the MAC Europe campaign, are calibrated using software packages developed at the Joint Research Center (JRC) in Italy for both L- and C-bands. During the period of the overflight dates, extensive ground truth was collected in order to describe the physical and statistical parameters of the canopy, the understory, and the soil. These parameters are compiled and converted into electromagnetic parameters suitable for input to the new polarimetric three-layer canopy model developed at the Wave Scattering Research Center (WSRC) at the University of Texas at Arlington. Comparisons between the theoretical predictions from the model and the calibrated data are carried out. Initial results reveal that the trend of the average phase difference can be predicted by the model, and that the backscattering ratio *shh/ svv is sensitive to the distribution of the primary branches.

  9. PolSAR calibration and reconstruction of hybrid polarimetric RISAT-1 data for pseudo quad-pol decomposition: a comparison with quad-pol

    NASA Astrophysics Data System (ADS)

    Kumar, Shashi; Gupta, Vivek; Gonnuru, Pratyusha; Joshi, Sushil Kumar

    2016-05-01

    A new approach to reconstruction of pseudo quad-polarized data from hybrid polarimetric data has been presented in this research. The algorithm is based on certain assumptions which were validated upon testing the aptness of the results and their comparison with true optical images of the region under study. This involved direct construction of the 3X3 coherency matrix from the 2X1 scattering matrices obtained from the hybrid polarimetric data. The reasonableness of the assumptions were tested by decomposing the reconstructed pseudo quad-pol data using a coherent decomposition mechanism. The data set used in this project was Level-1 FRS-1 Hybrid Polarimetric data and FRS-2 Quad-pol data of RISAT-1. Reliable scattering retrieval from SAR data involves the calibration of the data. Polarimetric calibration was performed on real and imaginary channels of the single look complex SAR data. The newly developed algorithm was implemented on calibrated data. To extract complete information of different scattering elements of any location, second order derivative of scattering matrix is the most suitable and widely used matrix. Coherency matrix of pseudo quad-pol obtained from hybrid polarimetric data using reconstruction algorithm was decomposed using Yamaguchi four component decomposition for scattering information extraction. The obtained surface, double-bounce and volume scattering were compared with the scattering elements of hybrid-polarimetric decomposition, m-alpha and decomposition of quad-pol data of RISAT-1. The comparison revealed that the results obtained were satisfactory and thus the assumptions made during the reconstruction of pseudo quad-pol data were reasonable for specific purposes. Further comparisons of results using different decompositions technique at pixel level comparison can help better understand the aptness of the algorithm.

  10. An L-band SAR for repeat pass deformation measurements on a UAV platform

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Hensley, Scott; Lou, Yunling

    2004-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeatpass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV or minimally piloted vehicle (MPV).

  11. Quest-2003 Polarimetric Signature Trial: Experiment Design, SAR Calibration, Data Acquisition and Initial Results

    DTIC Science & Technology

    2004-11-01

    quatre dtalonneurs radar actifs (ARC) et deux stations de base GPS (systbme de positionnement mondial). La BFC Shearwater offre un terrain relativement...des passages du radar. L’acquisition de I’ensemble de donn~es PolSAR a dtd effectude Ai l’aide du capteur SAR entidrement polarim6trique a6roportd...6tait constitu6 de quatre rdflecteurs 5 coin (CR), quatre 6talonneurs radar actifs (ARC) et deux stations de base GPS (systbme de positionnement mondial

  12. Robustness of features for automatic target discrimination in high-resolution polarimetric SAR data

    NASA Astrophysics Data System (ADS)

    van den Broek, Albertus C.; Dekker, Rob J.; Steeghs, Phillippe

    2003-09-01

    We have studied the robustness of features against aspect variability for the purpose of target discrimination using polarimetric 35 Ghz ISAR data. Images at a resolution of 10 cm and 30 cm have been used for a complete aspect range of 360 degrees. The data covered four military targets: T72, ZSU23/4, T62, and BMP2. For the study we composed several feature vectors out of individual features extracted from the images. The features are divided into three categories: radiometric, geometric and polarimetric. We found that individual features show a strong variability as a function of aspect angle and cannot be used to discriminate between the targets irrespectively of the aspect angle. Using feature vectors and a maximum likelihood classifier reasonable discrimination (about 80%) between the four targets irrespective of the aspect angle was obtained at 10 cm resolution. At 30 cm resolution less significant discrimination (less than 70%) was found irrespective of the kind of feature vector used. In addition we investigated target discrimination per 30-degree aspect interval. In order to determine the aspect angle of targets we used a technique based on the Radon transformation, which gave an accuracy of about 5 degrees in aspect angle. We found that in this case good discrimination (more than 90%) was obtained at 10 cm resolution and reasonable discrimination (about 80%) at 30 cm resolution. The results are compared with analogous results from MSTAR data (30 cm resolution) of comparable targets.

  13. Dark SPOT Detection Using Intensity and the Degree of Polarization in Fully Polarimetric SAR Images for Oil Polution Monitoring

    NASA Astrophysics Data System (ADS)

    Zakeri, F.; Amini, J.

    2015-12-01

    Oil spill surveillance is of great environmental and economical interest, directly contributing to improve environmental protection. Monitoring of oil spills using synthetic aperture radar (SAR) has received a considerable attention over the past few years, notably because of SAR data abilities like all-weather and day-and-night capturing. The degree of polarization (DoP) is a less computationally complex quantity characterizing a partially polarized electromagnetic field. The key to the proposed approach is making use of DoP as polarimetric information besides intensity ones to improve dark patches detection as the first step of oil spill monitoring. In the proposed approach first simple intensity threshold segmentation like Otsu method is applied to the image. Pixels with intensities below the threshold are regarded as potential dark spot pixels while the others are potential background pixels. Second, the DoP of potential dark spot pixels is estimated. Pixels with DoP below a certain threshold are the real dark-spot pixels. Choosing the threshold is a critical and challenging step. In order to solve choosing the appropriate threshold, we introduce a novel but simple method based on DoP of potential dark spot pixels. Finally, an area threshold is used to eliminate any remaining false targets. The proposed approach is tested on L band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico. Comparing the obtained results from the new method with conventional approaches like Otsu, K-means and GrowCut shows better achievement of the proposed algorithm. For instance, mean square error (MSE) 65%, Overall Accuracy 20% and correlation 40% are improved.

  14. 3D Rendering of High Resolution PolInSAR Urban Area

    NASA Astrophysics Data System (ADS)

    Trouve, Nicolas; Colin-Koeniguer, Elise; Cantalloube, Hubert

    2011-03-01

    In the field of urban SAR imaging and mapping, the PolInSAR information potential has not been fully exploited. Until recently available resolution of PolInSAR images were not sufficient to render 3D city landscape using the polarimetric and interferometric information. This paper presents the results of urban reconstruction using single pass full polarimetric and interferometric data using ONERA's Airborne system: RAMSES. It focus on the statistical process designed for the PolInSAR matrices estimation in high resolution urban areas. A region growing algorithm is proposed to design statistically homogeneous region while preserving spatial features of the scene through shape constraints. A companion paper [CKT11] will present the interferometry tools developed to exploit the region growth results. Validation on real data using RAMSES images at X band over Toulouse are presented through 3D colored render results.

  15. Monitoring The Dynamics Of Hyper-Saline Environments With Polarimetric SAR: Death Valley, California Example

    NASA Astrophysics Data System (ADS)

    Lasne, Y.; McDonald, K.; Paillou, P.; Freeman, A.; Chapman, B.; Farr, T.; Ruffié, G.; Malézieux, J.

    2008-12-01

    Soil salinization in arid and semi-arid regions still remains one of the most important threats not only for socio-economical issues when dealing with water ressources management, but also for ecological matters such as: desertification, climate changes, and biomass reduction. Then, monitoring and mapping of soil salinity distribution represent today a key challenge in our understanding of such environmental processes. Being highly dependent on the dielectric properties of soils, synthetic aperture radar (SAR) appears to be an efficient tool for the remote sensing of hyper-saline environments. More precisely, the influence of saline deposits on SAR imagery lies in the solubility and ionic properties of the minerals which strongly influence both real and imaginary parts of the complex permittivity of such deposits, and thus the radar backscattering coefficient. Based on temporal series acquired with spaceborne SAR systems (ALOS/PALSAR, SIR-C) over the Death Valley (CA), we show that the copolarized backscattering ratio and phase difference derived from SAR data can be used as suitable indicators to monitor the dynamics of hyper-saline deposits. In particular, we propose these copolar parameters to follow the variations in the dielectric properties of moistened and salt-affected soils on a seasonal time scale because of the close relationship between the salinity (governed by the soil moisture content) and the complex permittivity of the soils. We also highlight a strong temporal correlation between the copolar parameters and weather data since precipitation events control the soil moisture and salinity. In order to allow for a better interpretation of the saline deposits signatures observed on SAR data, we also perform analytical simulations of the radar backscattering associated with saline deposits by means of the IEM scattering model. Using laboratory and in~ situ dielectric measurements as input parameters, we simulate the copolar ratio and phase difference as

  16. Polarimetric SAR decomposition parameter subset selection and their optimal dynamic range evaluation for urban area classification using Random Forest

    NASA Astrophysics Data System (ADS)

    Hariharan, Siddharth; Tirodkar, Siddhesh; Bhattacharya, Avik

    2016-02-01

    Urban area classification is important for monitoring the ever increasing urbanization and studying its environmental impact. Two NASA JPL's UAVSAR datasets of L-band (wavelength: 23 cm) were used in this study for urban area classification. The two datasets used in this study are different in terms of urban area structures, building patterns, their geometric shapes and sizes. In these datasets, some urban areas appear oriented about the radar line of sight (LOS) while some areas appear non-oriented. In this study, roll invariant polarimetric SAR decomposition parameters were used to classify these urban areas. Random Forest (RF), which is an ensemble decision tree learning technique, was used in this study. RF performs parameter subset selection as a part of its classification procedure. In this study, parameter subsets were obtained and analyzed to infer scattering mechanisms useful for urban area classification. The Cloude-Pottier α, the Touzi dominant scattering amplitude αs1 and the anisotropy A were among the top six important parameters selected for both the datasets. However, it was observed that these parameters were ranked differently for the two datasets. The urban area classification using RF was compared with the Support Vector Machine (SVM) and the Maximum Likelihood Classifier (MLC) for both the datasets. RF outperforms SVM by 4% and MLC by 12% in Dataset 1. It also outperforms SVM and MLC by 3.5% and 11% respectively in Dataset 2.

  17. A Multi-Frequency Polarimetric SAR Sensors Analysis over the UNESCO Archaeological Site of Djebel Barkal (Sudan)

    NASA Astrophysics Data System (ADS)

    Patruno, Jolanda; Dore, Nicole; Pottier, Eric; Crespi, Mattia

    2013-08-01

    Differences in vegetation growth and in soil moisture content generate ground anomalies which can be linked to subsurface anthropic structures. Such evidences have been studied by means of aerial photographs and of historical II World War acquisitions first, and of very high spatial resolution of optical satellites later. This work aims to exploit the technique of SAR Polarimetry for the detection of surface and subsurface archaeological structures, comparing ALOS P ALSAR L-band (central frequency 1.27 GHz), with RADARSAT-2 C-band sensor (central frequency 5.405 GHz). The great potential of the two polarimetric sensors with different frequency for the detection of archaeological remains has been demonstrated thanks to the sand penetration capability of both C-band and L- band sensors. The choice to analyze radar sensors is based on their 24-hour observations, independent from Sun illumination and meteorological conditions and on the electromagnetic properties of the target they could provide, information not derivable from optical images.

  18. Using Regional GPS Network Atmospheric Models for Mitigating Errors in Interferometric Synthetic Aperture Radar (InSAR) Images

    NASA Astrophysics Data System (ADS)

    Reuveni, Y.; Bock, Y.; Tong, X.; Moore, A. W.

    2015-12-01

    Interferometric Synthetic Aperture Radar (InSAR) measurements provide valuable information for obtaining Earth surface deformation and topography at high spatial resolution for crustal deformation studies. Similar to Global Positioning System (GPS), InSAR phase measurements are affected by the Earth's ionospheric and tropospheric layers as the electromagnetic signals significantly refract while propagating through the different layers. While electromagnetic signals propagating through the neutral atmosphere are affected primarily by the pressure, temperature, and water vapor content of atmospheric gases, the propagation through the ionosphere is mainly affected by the number of free electrons along the signal path. Here, we present the use of dense regional GPS networks for extracting tropospheric zenith delays and ionospheric Total Electron Content (TEC) maps in order to reduce the noise levels in the phase measurement of the InSAR images. The results show significant reduction in the RMS values when simultaneously combining the two corrections, both at short time periods where no surface deformation is expected, and at longer periods, where imaging of crustal deformation, such as the ground subsidence and aseismic fault creep, is enhanced.

  19. MarCoPola Polarimetric SAR Trial: Signatures of Multiple Vessels with Aligned Operating Conditions

    DTIC Science & Technology

    2005-09-01

    capteur radar transporté à bord du CV-580 d’Environnement Canada, complétées par l’acquisition d’images satellites à l’aide d’ENVISAT. Un site...d’étalonnage était constitué de quatre étalonneurs radar actifs (ARC), quatre réflecteurs à coin (CR) et deux stations de base GPS (système de...RDDC Ottawa développe actuellement des capacités d’exploitation des données du futur capteur du radar à synthèse d’ouverture (SAR) RADARSAT-2 à

  20. Strategies for detection of floodplain inundation with multi-frequency polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Hess, Laura L.; Melack, John M.

    1992-01-01

    Mapping of floodplain inundation patterns is a key element in developing hydrological and biogeochemical models for large tropical river basins such as the Amazon. Knowledge of the time sequence of inundation is necessary to determine both water routing and biogenic gas fluxes. Synthetic Aperture Radar (SAR) is uniquely suited for this application because of its ability to penetrate cloud cover and, in many cases, to detect flooding beneath a forest or herbaceous canopy. A procedure for discriminating flooded forest, flooded herbaceous vegetation, and open water from other cover types for a coastal wetland site on the lower Altamaha floodplain, Georgia, emphasizing robust classifiers that are not site-specific is currently being developed.

  1. Characterizing Freeze-Thaw Transitions Using L-Band Interferometric SAR over a Boreal Forest in Alaska

    NASA Astrophysics Data System (ADS)

    Ganem, D.; McDonald, K. C.; Podest, E.; Chapman, B. D.; Zimmermann, R.

    2008-12-01

    Land surface seasonal transitions between predominantly frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth´s Northern Hemisphere profoundly affecting surface meteorological conditions, ecological trace gas dynamics, and hydrologic activity. The study of freeze-thaw transitions is a key component in better understanding land-atmosphere carbon exchange and the cycling of water, carbon, and energy in the high latitudes. Microwave remote sensing techniques have been demonstrated to be effective tools for delineating seasonal freeze/thaw transitions in the terrestrial high latitudes as indicators of key growing season processes. Past efforts characterizing freeze/thaw processes in boreal forests have focused on application of time series radar backscatter amplitude to delineate landscape freeze/thaw state. In this study, we apply satellite radar time series observations to investigate the application of Interferometric Synthetic Aperture Radar (InSAR) to monitor seasonal freeze/thaw processes in a boreal forest. We employ time series data acquired over the Bonanza Creek Experimental Forest along the Tanana River floodplain to examine InSAR response. We compare the InSAR time series data to in situ observations of vegetation and soil temperature, and vegetation biophysical activity as inferred from xylem sap flux measurements. We investigate relationships between the remote sensing data products, soil freeze/thaw, vegetation freeze/thaw, and the initiation of seasonal growth processes in trees, and the potential of InSAR for distinguishing these processes. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  2. Supervised Classification of Polarimetric SAR Imagery Using Temporal and Contextual Information

    NASA Astrophysics Data System (ADS)

    Dargahi, A.; Maghsoudi, Y.; Abkar, A. A.

    2013-09-01

    Using the context as a source of ancillary information in classification process provides a powerful tool to obtain better class discrimination. Modelling context using Markov Random Fields (MRFs) and combining with Bayesian approach, a context-based supervised classification method is proposed. In this framework, to have a full use of the statistical a priori knowledge of the data, the spatial relation of the neighbouring pixels was used. The proposed context-based algorithm combines a Gaussian-based wishart distribution of PolSAR images with temporal and contextual information. This combination was done through the Bayes decision theory: the class-conditional probability density function and the prior probability are modelled by the wishart distribution and the MRF model. Given the complexity and similarity of classes, in order to enhance the class separation, simultaneously two PolSAR images from two different seasons (leaf-on and leaf-off) were used. According to the achieved results, the maximum improvement in the overall accuracy of classification using WMRF (Combining Wishart and MRF) compared to the wishart classifier when the leaf-on image was used. The highest accuracy obtained was when using the combined datasets. In this case, the overall accuracy of the wishart and WMRF methods were 72.66% and 78.95% respectively.

  3. Subsidence Monitoring in the Coastal Region of Nigeria Using Multi Temporal Interferometric Synthetic Aperture Radar (MT-InSAR)

    NASA Astrophysics Data System (ADS)

    Mahmud, Muhammad Umar; Yakubu, Tahir A.; Adewuyi, Taiyte Oluwafem; Sousa, Joaquim J.; Ruiz-Armenteros, Antonio M.; Bakon, Matus; Lazecky, Milan; Perissin, Daniele

    2016-08-01

    The uncontrolled exploitation of the groundwater, oil and gas in the Nigerian coastal geosyncline has led to progressive decline of the aquifer level and a continuous need for opening deeper drillings to exploit deeper aquifers.From the analysis of the interferometric results derived from the application of Multi-Temporal Interferometry (MT-InSAR) technique, Lagos state appears to be subsiding conically up to -7 mm/yr. The velocity rates of subsidence in the surrounding cities like Lekki, Badagry, Ikorodu and Epe are much higher than in Lagos city. These preliminary investigation results reveal heavy structures, in particular buildings, that were seen constructed mostly on the sand filled areas where the sediments compaction rates is very high.

  4. Mitigation of Faraday rotation in ALOS-2/PALSAR-2 full polarimetric SAR imageries

    NASA Astrophysics Data System (ADS)

    Mohanty, Shradha; Singh, Gulab

    2016-05-01

    The ionosphere, which extends from 50-450 kms in earth's atmosphere, is a particularly important region with regards electromagnetic wave propagation and radio communications in the L-band and lower frequencies. These ions interact with the traversing electromagnetic wave and cause rotation of polarization of the radar signal. In this paper, a potentially computable method for quantifying Faraday rotation (FR), is discussed with the knowledge of full polarimetric ALOS/PALSAR data and ALOS-2/PALSAR-2 data. For a well calibrated monostatic, full-pol ALOS-2/PALSAR-2 data, the reciprocal symmetry of the received scattering matrix is violated due to FR. Apart from FR, other system parameters like residual system noise, channel amplitude, phase imbalance and cross-talk, also account for the non-symmetry. To correct for the FR effect, firstly the noise correction was performed. PALSAR/PALSAR-2 data was converted into 4×4 covariance matrix to calculate the coherence between cross-polarized elements. Covariance matrix was modified by the coherence factor. For FR corrections, the covariance matrix was converted into 4×4 coherency matrix. The elements of coherency matrix were used to estimate FR angle and correct for FR. Higher mean FR values during ALOS-PALSAR measurements can be seen in regions nearer to the equator and the values gradually decrease with increase in latitude. Moreover, temporal variations in FR can also be noticed over different years (2006-2010), with varying sunspot activities for the Niigata, Japan test site. With increasing sunspot activities expected during ALOS-2/PALSAR-2 observations, more striping effects were observed over Mumbai, India. This data has also been FR corrected, with mean FR values of about 8°, using the above mentioned technique.

  5. Spectral Clustering of Polarimetric SAR Data with the Wishart-Derived Distance Measures

    NASA Astrophysics Data System (ADS)

    Anfinsen, S. N.; Jenssen, R.; Eltoft, T.

    2007-03-01

    This paper presents a new spectral clustering algorithm, which is specially tailored for segmentation of polari- metric SAR images. This is accomplished by use of certain pairwise distance measures between pixels. The measures are derived from the complex Wishart distribu- tion, and capture the statistical information contained in the coherency matrix. We demonstrate how the pairwise distances are transformed into an affinity matrix, whose eigendecomposition determines the optimal partitioning of pixels. We further show that the obtained clustering provides an improved initialization of the classical unsu- pervised Wishart classifier, and that the entire classifica- tion can also be performed in a kernel induced feature space. The algorithms are tested on crop classification with promising results.

  6. Polarimetric Interferometric Experiment Trials for Years 2001 and 2002: Experiment Design Ground Truthing Data Quality and Analysis

    DTIC Science & Technology

    2003-09-01

    analyse documentaire et sur l’utilit6 que ce domaine reprnsente pour le MDN. Ce projet est financ6 dans le cadre du Fonds d’investissement technologique...apprentissages realises sont egalement detailles. Ce document technique accompagne un autre rapport de RDDC portant sur une analyse de documents qui...which is beneficial for these types of studies. Ideally, a single pass Pol InSAR system would have been easier to analyse and assess. However, during

  7. Bayes classification of interferometric TOPSAR data

    NASA Technical Reports Server (NTRS)

    Michel, T. R.; Rodriguez, E.; Houshmand, B.; Carande, R.

    1995-01-01

    We report the Bayes classification of terrain types at different sites using airborne interferometric synthetic aperture radar (INSAR) data. A Gaussian maximum likelihood classifier was applied on multidimensional observations derived from the SAR intensity, the terrain elevation model, and the magnitude of the interferometric correlation. Training sets for forested, urban, agricultural, or bare areas were obtained either by selecting samples with known ground truth, or by k-means clustering of random sets of samples uniformly distributed across all sites, and subsequent assignments of these clusters using ground truth. The accuracy of the classifier was used to optimize the discriminating efficiency of the set of features that was chosen. The most important features include the SAR intensity, a canopy penetration depth model, and the terrain slope. We demonstrate the classifier's performance across sites using a unique set of training classes for the four main terrain categories. The scenes examined include San Francisco (CA) (predominantly urban and water), Mount Adams (WA) (forested with clear cuts), Pasadena (CA) (urban with mountains), and Antioch Hills (CA) (water, swamps, fields). Issues related to the effects of image calibration and the robustness of the classification to calibration errors are explored. The relative performance of single polarization Interferometric data classification is contrasted against classification schemes based on polarimetric SAR data.

  8. Polarimetric Interferometry - Remote Sensing Applications

    DTIC Science & Technology

    2007-02-01

    This lecture is mainly based on the work of S.R. Cloude and presents examples for remote sensing applications Polarimetric SAR Interferometry...PolInSAR). PolInSAR has its origins in remote sensing and was first developed for applications in 1997 using SIRC L-Band data [1,2]. In its original form it

  9. Coastal sea level from inland CryoSat-2 interferometric SAR altimetry

    NASA Astrophysics Data System (ADS)

    Abulaitijiang, Adili; Andersen, Ole Baltazar; Stenseng, Lars

    2015-03-01

    The European Space Agency's CryoSat-2 satellite can operate in a novel synthetic aperture radar interferometric (SARIn) mode where its nominal footprint (swath) is observed by two antennas and the phase difference between the signals is used to determination the exact location of the scatterer through an off-nadir correction. The potential of SARIn for sea level determination is investigated over the fjords of Eastern Greenland. In principle the satellite should only track sea level within its nominal footprint of 7 km across track, but we observe that scattering targets (fjords) within twice its nominal footprint are frequently observed but mislocated in CryoSat-2 due to phase wrapping. We devised a way to relocate the observations and correct the range accordingly. When CryoSat-2 is flying inland we consequently observed that the satellite occasionally provide valid sea level in fjords up to 13 km away in the across-track direction.

  10. Coastal Sea-Level in Norway from Cryosat-2 Interferometric SAR Altimetry

    NASA Astrophysics Data System (ADS)

    Idzanovic, Martina; Ophaug, Vegard; Andersen, Ole B.

    2016-08-01

    Conventional altimeters determine the sea surface height with an accuracy of a few centimeters over the open ocean. Although satellite altimetry is a mature discipline, altimeter observations collected over coastal regions suffer from numerous effects which degrade their quality. The Norwegian coast adds further complications, due to many islands, mountains, and deep, narrow fjords. The European Space Agency (ESA) CryoSat-2 satellite carries a Synthetic aperture Interferometric Radar ALtimeter (SIRAL). Due to the SIRAL instrument, CryoSat-2 is able to observe closer to the coast than conventional altimeters. This motivates the current paper, in which we investigate the potential of CryoSat-2 data to provide improved observations in the Norwegian coastal zone. We make use of CryoSat-2 SARIn mode observations and determine sea surface heights at 23 tide gauges along the coast, and compare these with independent sea-level observations. Using standard CryoSat-2 geophysical (tide + IB) corrections gives a standard deviation of differences of ˜15 cm with respect to tide-gauge observations. Replacing standard corrections with refined corrections using tide-gauge information suggests an improvement of ˜5 cm. A special case study at the Stavanger tide-gauge shows an improvement of ˜3 cm comparing CryoSat-2 sites and conventional altimeter sites with respect to the tide-gauge. These results highlight a great development of satellite altimetry in coastal zones and raises expectations for future missions such as Sentinel-3.

  11. Advanced Antenna Design for NASA's EcoSAR Instrument

    NASA Technical Reports Server (NTRS)

    Du Toit, Cornelis F.; Deshpande, Manohar; Rincon, Rafael F.

    2016-01-01

    Advanced antenna arrays were designed for NASA's EcoSAR airborne radar instrument. EcoSAR is a beamforming synthetic aperture radar instrument designed to make polarimetric and "single pass" interferometric measurements of Earth surface parameters. EcoSAR's operational requirements of a 435MHz center frequency with up to 200MHz bandwidth, dual polarization, high cross-polarization isolation (> 30 dB), +/- 45deg beam scan range and antenna form-factor constraints imposed stringent requirements on the antenna design. The EcoSAR project successfully developed, characterized, and tested two array antennas in an anechoic chamber. EcoSAR's first airborne campaign conducted in the spring of 2014 generated rich data sets of scientific and engineering value, demonstrating the successful operation of the antennas.

  12. A fine resolution multifrequency polarimetric FM radar

    NASA Technical Reports Server (NTRS)

    Bredow, J.; Gogineni, S.; Leung, T.; Moore, R. K.

    1988-01-01

    A fine resolution polarimetric FM SAR was developed for optimization of polarimetric SARs and interpretation of SAR data via controlled experiments with surface-base sensors. The system is designed for collecting polarimetric data at 5.3 and 10 GHz over incidence angles from 0 to 60 deg. Features of the system include broad bandwidth to obtain fine range resolution, phase stabilization and linearization loop circuitry, and digital signal processing capability. The system is used in a research program to collect polarimetric backscatter data from artificial sea ice research and design trade-offs, laboratory and field evaluation, as well as results from experiments on artificial sea ice are presented.

  13. Slope instability and post-emplacement lava flow deformation revealed using interferometric synthetic aperture radar (InSAR) at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Schaefer, L. N.; Lu, Z.; Oommen, T.

    2014-12-01

    Pacaya Volcano, Guatemala, is a dominantly basaltic complex that has been continually active since the 1960's, with over 250 lava flows, intermittent strombolian activity, and ash and fumerolic plumes. Sometime between 0.6 and 1.6 ka B.P., the SW sector of the initial cone failed in a major edifice collapse. This event left a large arcuate scarp, within which the modern cone was constructed from historical times up to the present. Two collapses on the upper flanks of the cone near the main vent in 1962 and 2010, and uneven loading of lava flows on the SW flank are a cause for concern about the stability of this young edifice. For this study, ALOS PALSAR L-band Interferometric Synthetic Aperture Radar (InSAR) data was analyzed at Pacaya from February 2007 - February 2011. Interferograms reveal several applications of InSAR for understanding and monitoring activity at Pacaya, including: (1) lava cooling-related compaction during effusive activity, (2) inflation on the northern side of the cone prior to a large eruption on May 27th, 2010, and (3) movement of the edifice to the SW during this large eruption, suggesting large-scale flank instability. With the implementation of InSAR technology at Pacaya in the future, we may be able to provide insights into the post-emplacement behavior of lava flows and shed light on edifice stability, leading to improved volcano hazard assessments.

  14. SAR Remote Sensing for Urban Building Earthquake-Damage Detection and Assessment: A Review

    NASA Astrophysics Data System (ADS)

    Gong, Lixia; Wu, Fan; Zhang, Jingfa; Li, Rong

    2014-11-01

    Urban building damage detection and assessment after earthquake is crucial for effective post disaster relief actions. Synthetic Aperture Radar (SAR) is a key sensor to provide vital information due to its ability to map the affected areas independently of weather conditions, day and night. Under the condition of medium resolution SAR image, change detection is usually applied to identify damaged building by comparing post-seismic to pre-seismic images based on the intensity correlation and interferometric coherence. However, the new high resolution on-orbit SAR sensors (e.g. Radarsat-2, TerraSAR-X/ TanDEM-X, COSMO-SkyMed etc.) have renewed interest in extraction information for monitoring the damage. Intensity, phase and polarimetric information are usually adopted for the damage detection and assessment. The present paper reviews the theoretical background and applications of SAR remote sensing techniques to the study of urban building damage detection and assessment by earthquake.

  15. Geocoding of AIRSAR/TOPSAR SAR Data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to

  16. UAVSAR: InSAR and PolSAR Test Bed for the Proposed NI-SAR Mission

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Hensley, S.; Lou, Y.

    2014-12-01

    UAVSAR, which first became operational in 2009, has served as an operational testbed for the NI-SAR L-band radar concept and a unique instrument in its own right. UAVSAR supports a broad array of basic and applied geoscience, covering on smaller scale all the disciplines NI-SAR would be able to address on a global scale. Although designed specifically to provide high accuracy repeated flight tracks and precise imaging geometry for InSAR-based solid earth studies, its fully polarimetric operation, low noise, and consistent calibration accuracy has made it a premier instrument for PolSAR-based studies also. Since 2009 it has successfully imaged more than 16 million km2 and >4300 quad-polarimetric data products are now publicly available online. Upgrades made in the last year to automate the repeat track processing serve as a model for generating large volumes of InSAR products: Since January 2014 more than 700 interferometric products have been released, exceeding the output of all previous years combined. Standardly available products now include browse images of all InSAR acquisitions and coregistered single-look complex image stacks suitable for standard time series analysis. Here we present an overview of the wide range of studies utilizing UAVSAR data including those based on polarimetry and pair-wise and times series interferometry, highlighting both the unique capabilities of UAVSAR and the ways in which NI-SAR would be able to dramatically extend the capabilities. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  17. Effect of Medium Symmetries in Limiting the Number of Parameters Estimated with Polarimetric Interferometry

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta

    2000-01-01

    The addition of interferometric backscattering pairs to the conventional polarimetric SAR data over forests and other vegetated areas increases the dimensionality of the data space, in principle enabling the estimation of a larger number of vegetation parameters. Without regard to the sensitivity of these data to vegetation scattering parameters, this paper poses the question: Will increasing the data channels as such result in a one-to-one increase in the number of parameters that can be estimated, or do vegetation and data properties inherently limit that number otherwise? In this paper, the complete polarimetric interferometric covariance matrix is considered and various symmetry properties of the scattering medium are used to study whether any of the correlation pairs can be eliminated. The number of independent pairs has direct consequences in their utility in parameter estimation schemes, since the maximum number of parameters that can be estimated cannot exceed the number of unique measurements. The independent components of the polarimetric interferometric SAR (POL/INSAR) data are derived for media with reflection, rotation, and azimuth symmetries, which are often encountered in vegetated surfaces. Similar derivations have been carried out before for simple polarimetry, i.e., zero baseline. This paper extends those to the interferometric case of general nonzero baselines. It is shown that depending on the type of symmetries present, the number of independent available measurements that can be used to estimate medium parameters will vary. In particular, whereas in the general case there are 27 mathematically independent measurements possible from a polarimetric interferometer, this number can be reduced to 15, 9, and 6 if the medium has reflection, rotation, or azimuthal symmetries, respectively. The results can be used in several ways in the interpretation of SAR data and the development of parameter estimation schemes, which will be discussed at the

  18. Registration Of SAR Images With Multisensor Images

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Burnette, Charles F.; Van Zyl, Jakob J.

    1993-01-01

    Semiautomated technique intended primarily to facilitate registration of polarimetric synthetic-aperture-radar (SAR) images with other images of same or partly overlapping terrain while preserving polarization information conveyed by SAR data. Technique generally applicable in sense one or both of images to be registered with each other generated by polarimetric or nonpolarimetric SAR, infrared radiometry, conventional photography, or any other applicable sensing method.

  19. Advanced Polarimetric Concepts - Part 1 (Polarimetric Target Description, Speckle filtering and Decomposition Theorems)

    DTIC Science & Technology

    2007-02-01

    with p=3 for the reciprocal case (SHV=SVH) and p=4 for the non-reciprocal case. The distribution functions for dual polarization ( HH , VH), (HV...and scene description difficult. The speckle reduction problem is more complicated for polarimetric SAR than a single polarization SAR, because of the...changes in wave polarization basis. Among the existing Polarimetric Target Decomposition theorems - coherent (Krogager, Cameron ...), non-coherent (Huynen

  20. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System)

    PubMed Central

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed. PMID:22389590

  1. Overview and Applications of UAVSAR's Multi-Squint Polarimetric Imaging Mode

    NASA Technical Reports Server (NTRS)

    Scott Hensley; Chen, Curtis; Michel, Thierry; Jones, Cathleen; Chapman, Bruce; Muellerschoen, Ron

    2011-01-01

    NASA's Jet Propulsion Laboratory has developed a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data for application to monitoring surface deformation and vegetation structure measurements. The system employs a precision autopilot developed by NASA Dryden that allows the plane to fly precise trajectories usually within a 5 m tube. Also required for robust repeat pass applications is the ability to point the antenna in the same direction on repeat passes to a fraction of an azimuth beamwidth (8? for UAVSAR). This precise pointing is achieved using an electronically scanned antenna whose pointing is based on inertial navigation unit (INU) attitude angle data. The radar design is fully polarimetric with an 80 MHz bandwidth (2 m range resolution) and has a greater than 20 km range swath when flying at its nominal altitude of 12500 m. The ability to electronically steer the beam on a pulse-to-pulse basis has allowed a new mode of SAR data acquisition whereby the radar beam is steered to different squint angles on successive pulses thereby simultaneously generating images at multiple squint angles. This mode offers the possibility of generating vector deformation measurements with a single pair of repeat passes and to obtain greater kz diversity for vegetation studies with a reduced number of passes. This paper will present an overview of the mode, discuss its potential for deformation and vegetation, and show some examples using UAVSAR data.

  2. Deformation Time-Series of the Lost-Hills Oil Field using a Multi-Baseline Interferometric SAR Inversion Algorithm with Finite Difference Smoothing Constraints

    NASA Astrophysics Data System (ADS)

    Werner, C. L.; Wegmüller, U.; Strozzi, T.

    2012-12-01

    The Lost-Hills oil field located in Kern County,California ranks sixth in total remaining reserves in California. Hundreds of densely packed wells characterize the field with one well every 5000 to 20000 square meters. Subsidence due to oil extraction can be grater than 10 cm/year and is highly variable both in space and time. The RADARSAT-1 SAR satellite collected data over this area with a 24-day repeat during a 2 year period spanning 2002-2004. Relatively high interferometric correlation makes this an excellent region for development and test of deformation time-series inversion algorithms. Errors in deformation time series derived from a stack of differential interferograms are primarily due to errors in the digital terrain model, interferometric baselines, variability in tropospheric delay, thermal noise and phase unwrapping errors. Particularly challenging is separation of non-linear deformation from variations in troposphere delay and phase unwrapping errors. In our algorithm a subset of interferometric pairs is selected from a set of N radar acquisitions based on criteria of connectivity, time interval, and perpendicular baseline. When possible, the subset consists of temporally connected interferograms, otherwise the different groups of interferograms are selected to overlap in time. The maximum time interval is constrained to be less than a threshold value to minimize phase gradients due to deformation as well as minimize temporal decorrelation. Large baselines are also avoided to minimize the consequence of DEM errors on the interferometric phase. Based on an extension of the SVD based inversion described by Lee et al. ( USGS Professional Paper 1769), Schmidt and Burgmann (JGR, 2003), and the earlier work of Berardino (TGRS, 2002), our algorithm combines estimation of the DEM height error with a set of finite difference smoothing constraints. A set of linear equations are formulated for each spatial point that are functions of the deformation velocities

  3. Pol-In SAR Optimal Coherence Estimation and its application in Imaging Forest Canopy

    NASA Astrophysics Data System (ADS)

    Lin, Q.; Chu, T.; Zebker, H. A.

    2012-12-01

    Polarimetric SAR interferometry processing, combining poloarimetric and interferometric data, is a good candidate for global biomass estimation. One advantage of PolInSAR is the possibility to obtain interferograms from all possible linear combinations of polarization states, thus, it improves the coherence level and as a consequence, increases the accuarcy of the reconstructed elevation for scatters. PolIn SAR gives hope to find the scatter center for forest canopy and can be used to global biomass measurement. As a key procedure of PolIn SAR, coherence optimization is to obtain the optimal scatter mechanism between two SAR data acquisition which leads to the highest interferometric coherence estimation. Various algorithms has been proposed to solve this problem, including two-mechanism coherence (2MC) optimization, single-mechanism coherence (1MC) optimization, numeric range etc. The optimal coherence, as an essential parameter in Random Volume over Ground (RVOG) model, can be used to retrieve the forest tree height and thus, contributes to the global biomass estimation. We will examine the data acquired by ALOSPOL SAR in Hawaii area to image the forest canopy area. Various optimal coherence methods are used and the results are compared.

  4. Canadian SAR remote sensing for the Terrestrial Wetland Global Change Research Network (TWGCRN)

    USGS Publications Warehouse

    Kaya, Shannon; Brisco, Brian; Cull, Andrew; Gallant, Alisa L.; Sadinski, Walter J.; Thompson, Dean

    2010-01-01

    The Canada Centre for Remote Sensing (CCRS) has more than 30 years of experience investigating the use of SAR remote sensing for many applications related to terrestrial water resources. Recently, CCRS scientists began contributing to the Terrestrial Wetland Global Change Research Network (TWGCRN), a bi-national research network dedicated to assessing impacts of global change on interconnected wetland-upland landscapes across a vital portion of North America. CCRS scientists are applying SAR remote sensing to characterize wetland components of these landscapes in three ways. First, they are using a comprehensive set of RADARSAT-2 SAR data collected during April to September 2009 to extract multi-temporal surface water information for key TWGCRN study landscapes in North America. Second, they are analyzing polarimetric RADARSAT-2 data to determine areas where double-bounce represents the primary scattering mechanism and is indicative of flooded vegetation in these landscapes. Third, they are testing advanced interferometric SAR techniques to estimate water levels with RADARSAT-2 Fine Quad polarimetric image pairs. The combined information from these three SAR analysis activities will provide TWGCRN scientists with an integrated view and monitoring capability for these dynamic wetland-upland landscapes. These data are being used in conjunction with other remote sensing and field data to study interactions between landscape and animal (birds and amphibians) responses to climate/global change.

  5. Pol(In)SAR Soil Moisture Study by using Pi-SAR 2L and GB-SAR Data in Preparation of the upcoming ALOS-2/PALSAR-2 Mission

    NASA Astrophysics Data System (ADS)

    Koyama, C.; Sato, M.

    2013-12-01

    Recently Earth Observation by means of active microwave is advancing rapidly. The evolution started from first-generation classical single-channel systems like JERS (JAXA), ERS (ESA) or Radarsat-1 (CSA). With the launch of ALOS-1 (JAXA), the first fully polarimetric SAR measurements became available followed by Radarsat-2 (CSA) and TerraSAR-X (DLR), making polarimetric L-, C-, and X-band data available. In Japanese fiscal year 2013, the third generation of SAR satellites will begin with the launch of ALOS-2. The JAXA cutting-edge follow-on mission to the highly acclaimed ALOS-1 will carry the state-of-the-art PALSAR-2 sensor aboard. Due to its much better orbital revisit cycle of only 14 days and its very high spatial resolution (3 m) the system will be highly suitable for interferometric analysis of polarimetric data obtained from repeat-pass acquisitions. The combination of polarimetry and interferometry is probably the most promising approach for a better estimation of geophysical parameters from SAR data acquired over natural terrain and thus will greatly improve the capabilities to estimate soil moisture under all kinds of vegetation with high accuracy and with high temporal and spatial resolutions. In advent of the 3rd generation of Japanese SAR EO satellites, our group conducts a variety of fundamental research on low-frequency SAR surface scattering/interactions. Here, we present first results from soil moisture experiments based on fully polarimetric GB-SAR (Tohoku University) and Pi-SAR 2L (JAXA) measurements. These experiments comprise investigations of the effective soil moisture measuring depth of L-band SAR. The experimental set-up consists of an array of receiving di-pole antennas installed in different depths to quantify the penetration (and reflection) capabilities of the incoming EM waves. We use a fully polarimetric GB-SAR system based on a high-end VNA capable of coherent measurement of the [S2] scattering matrix. It uses 2 large horn antennas

  6. Geocoding of AIRSAR/TOPSAR SAR Data

    NASA Technical Reports Server (NTRS)

    Holecz, Francesco; Lou, Yungling; vanZyl, Jakob

    1996-01-01

    It has been demonstrated that radar interferometry is a promising method for determination of digital elevation information and terrain slope from synthetic aperture radar (SAR) data. A multipolarimetric radar AIRSAR operates in the P, L, and C bands on board the NASA DC-8 aircraft. The TOPSAR, a special mode of the AIRSAR system, is able to collect single pass interferometric C and/or L band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this configuration is to acquire digital topographic information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. In this paper, a procedure to geocode the new AIRSAR/TOPSAR data is presented and an earlier AIRSAR/TOPSAR image is geocoded and evaluated in terms of geometric accuracy.

  7. Feature utility in polarimetric radar image classification

    NASA Technical Reports Server (NTRS)

    Cumming, Ian G.; Van Zyl, Jakob J.

    1989-01-01

    The information content in polarimetric SAR images is examined, and the polarimetric image variables containing the information that is important to the classification of terrain features in the images are determined. It is concluded that accurate classification can be done when just over half of the image variables are retained. A reduction in image data dimensionality gives storage savings, and can lead to the improvement of classifier performance. In addition, it is shown that a simplified radar system with only phase-calibrated CO-POL or SINGLE TX channels can give classification performance which approaches that of a fully polarimetric radar.

  8. Advanced Polarimetric Concepts - Part 2 (Polarimetric Target Classification)

    DTIC Science & Technology

    2007-02-01

    polarization and single polarization /single polarization modes, and the C- band RADARSAT II [Meisl 2000] and L- band ALOS ...likelihood classifiers to a. Each individual polarization , | HH |2, |VV|2 and |HV|2, for all three bands . b. Combinations of dual polarizations without the...advanced satellite radar systems such as PALSAR, an L- band SAR sensor on board the NASDA ALOS satellite and Radarsat II, a C- band polarimetric

  9. First Image Products from EcoSAR - Osa Peninsula, Costa Rica

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon

    2016-01-01

    Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.

  10. Three-dimensional surface reconstruction from multistatic SAR images.

    PubMed

    Rigling, Brian D; Moses, Randolph L

    2005-08-01

    This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets.

  11. Processing pharus data with the generic SAR processor

    SciTech Connect

    Otten, M.P.G.

    1996-11-01

    The Generic SAR Processor (GSP) is a SAR processing environment created to process airborne and spaceborne SAR data with a maximum amount of flexibility, while at the same time providing a user friendly and powerful environment for handling and analyzing SAR, including polarimetric calibration. PHARUS is an airborne polarimetric C-band SAR, utilizing an active (solid state) phased array. The absence of mechanical antenna stabilization, the use of electronic beam steering, in combination with high PRF, polarimetric operation, under motion condition which can be severe, requires a very large flexibility of the SAR processor. The GSP is designed to handle this type of SAR data with a very flexible motion compensation-, azimuth compression-, and radiometric correction approach. First experiences with the processing of PHARUS data show that this is a valid approach to obtain high quality polarimetric imagery with a phased array SAR. 4 refs., 5 figs.

  12. Performance of PolSAR backscatter and PolInSAR coherence for scattering characterization of forest vegetation using TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Joshi, Sushil K.; Kumar, Shashi; Agrawal, Shefali

    2016-05-01

    Airborne SAR data has been successfully used for forest height inversion, however there is limited applicability in space borne scenario due to high temporal decorrelation. This study investigates the potential of high resolution fully polarimetric pair of TerraSAR-X/TanDEM-X SAR data acquired over Barkot forest region of Uttarakhand state in India to analyze the backscatter and coherence and to test the height inversion algorithms. Yamaguchi decomposition was implemented onto the dataset to express total backscatter as a sum of different scattering components from a single SAR resolution cell. Coherency matrix was used to compute complex coherence for different polarization channels. Forest areas suffered from low coherence due to volume decorrelation whereas dry river bed had shown high coherence. Appropriate perpendicular baseline and hence the interferometric vertical wavenumber was selected in forest height estimation. Coherence amplitude inversion (CAI) approach overestimated the forest height and also resulted in false heights for dry river bed. This limitation was overcome by implementing three stage inversion modeling (TSI) which assumes polarization independent volume coherence and the heights in dry river bed were completely eliminated. The results were validated using ground truth data available for 49 plots, and TSI was found to be more accurate with an average accuracy of 90.15% and RMSE of 2.42 m.

  13. UAV-Based L-Band SAR with Precision Flight Path Control

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Muellerschoen, Ron; Lou, Yunling; Rosen, Paul

    2004-01-01

    NASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  14. The performance analysis based on SAR sample covariance matrix.

    PubMed

    Erten, Esra

    2012-01-01

    Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given.

  15. Large Scale Assessment of Radio Frequency Interference Signatures in L-band SAR Data

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Nicoll, J.

    2011-12-01

    Imagery of L-band Synthetic Aperture Radar (SAR) systems such as the PALSAR sensor on board the Advanced Land Observing Satellite (ALOS) has proven to be a valuable tool for observing environmental changes around the globe. Besides offering 24/7 operability, the L-band frequency provides improved interferometric coherence, and L-band polarimetric data has shown great potential for vegetation monitoring, sea ice classification, and the observation of glaciers and ice sheets. To maximize the benefit of missions such as ALOS PALSAR for environmental monitoring, data consistency and calibration are vital. Unfortunately, radio frequency interference (RFI) signatures from ground-based radar systems regularly impair L-band SAR data quality and consistency. With this study we present a large-scale analysis of typical RFI signatures that are regularly observed in L-band SAR data over the Americas. Through a study of the vast archive of L-band SAR data in the US Government Research Consortium (USGRC) data pool at the Alaska Satellite Facility (ASF) we were able to address the following research goals: 1. Assessment of RFI Signatures in L-band SAR data and their Effects on SAR Data Quality: An analysis of time-frequency properties of RFI signatures in L-band SAR data of the USGRC data pool is presented. It is shown that RFI-filtering algorithms implemented in the operational ALOS PALSAR processor are not sufficient to remove all RFI-related artifacts. In examples, the deleterious effects of RFI on SAR image quality, polarimetric signature, SAR phase, and interferometric coherence are presented. 2. Large-Scale Assessment of Severity, Spatial Distribution, and Temporal Variation of RFI Signatures in L-band SAR data: L-band SAR data in the USGRC data pool were screened for RFI using a custom algorithm. Per SAR frame, the algorithm creates geocoded frame bounding boxes that are color-coded according to RFI intensity and converted to KML files for analysis in Google Earth. From

  16. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil

    NASA Astrophysics Data System (ADS)

    Liesenberg, Veraldo; Gloaguen, Richard

    2013-04-01

    Single, interferometric dual, and quad-polarization mode data were evaluated for the characterization and classification of seven land use classes in an area with shifting cultivation practices located in the Eastern Amazon (Brazil). The Advanced Land-Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired during a six month interval. A clear-sky Landsat-5/TM image acquired at the same period was used as additional ground reference and as ancillary input data in the classification scheme. We evaluated backscattering intensity, polarimetric features, interferometric coherence and texture parameters for classification purposes using support vector machines (SVM) and feature selection. Results showed that the forest classes were characterized by low temporal backscattering intensity variability, low coherence and high entropy. Quad polarization mode performed better than dual and single polarizations but overall accuracies remain low and were affected by precipitation events on the date and prior SAR date acquisition. Misclassifications were reduced by integrating Landsat data and an overall accuracy of 85% was attained. The integration of Landsat to both quad and dual polarization modes showed similarity at the 5% significance level. SVM was not affected by SAR dimensionality and feature selection technique reveals that co-polarized channels as well as SAR derived parameters such as Alpha-Entropy decomposition were important ranked features after Landsat' near-infrared and green bands. We show that in absence of Landsat data, polarimetric features extracted from quad-polarization L-band increase classification accuracies when compared to single and dual polarization alone. We argue that the joint analysis of SAR and their derived parameters with optical data performs even better and thus encourage the further development of joint techniques under the Reducing Emissions from Deforestation and Degradation (REDD) mechanism.

  17. Land Cover Mapping Using SENTINEL-1 SAR Data

    NASA Astrophysics Data System (ADS)

    Abdikan, S.; Sanli, F. B.; Ustuner, M.; Calò, F.

    2016-06-01

    In this paper, the potential of using free-of-charge Sentinel-1 Synthetic Aperture Radar (SAR) imagery for land cover mapping in urban areas is investigated. To this aim, we use dual-pol (VV+VH) Interferometric Wide swath mode (IW) data collected on September 16th 2015 along descending orbit over Istanbul megacity, Turkey. Data have been calibrated, terrain corrected, and filtered by a 5x5 kernel using gamma map approach. During terrain correction by using a 25m resolution SRTM DEM, SAR data has been resampled resulting into a pixel spacing of 20m. Support Vector Machines (SVM) method has been implemented as a supervised pixel based image classification to classify the dataset. During the classification, different scenarios have been applied to find out the performance of Sentinel-1 data. The training and test data have been collected from high resolution image of Google Earth. Different combinations of VV and VH polarizations have been analysed and the resulting classified images have been assessed using overall classification accuracy and Kappa coefficient. Results demonstrate that, combining opportunely dual polarization data, the overall accuracy increases up to 93.28% against 73.85% and 70.74% of using individual polarization VV and VH, respectively. Our preliminary analysis points out that dual polarimetric Sentinel-1SAR data can be effectively exploited for producing accurate land cover maps, with relevant advantages for urban planning and management of large cities.

  18. Sea Oil Slick Observation by Means of Fully-Polarimetric ALOS PALSAR Data

    NASA Astrophysics Data System (ADS)

    Gambardella, A.; Migliaccio, M.; Nunziata, F.; Shimada, M.; Isoguchi, O.

    2009-04-01

    A study on sea oil slick observation by means of L- band polarimetric synthetic aperture radar (SAR) data is accomplished. It is based on the different sea surface scattering mechanism expected with and without surface slicks. Polarimetric measurements are processed by means of a simple and very effective filtering technique which is electromagnetically based on the Mueller scattering matrix. Moreover, some polarimetric features, evaluated on both the slick-free and slick-covered sea surface, are analyzed for confirming the filter output. Experiments are accomplished on polarimetric SAR data acquired by the PALSAR sensor, mounted on board of the ALOS satellite, and are relevant to an oil slick, due to a tank accident, and a look-alike. Results demonstrate, for the first time, that L-band polarimetric SAR measurements are useful for oil slick observation purposes and witness the capability of ALOS PALSAR data for such application.

  19. Present status and applications of Interferometric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Qiao, Shubo; Li, Jinling; Sun, Fuping; Bian, Shaofeng

    2003-03-01

    Interferometric Synthetic Aperture Radar (InSAR) is a newly developed space geodetic technique, which provides the three dimensional information of targets on the Earth by interferometric processing of the Single Look Complex Images (SLC-Image) of Synthetic Aperture Radar (SAR). Because of the outstanding characteristics in all-weather and 24-hour continuous surveying, as well as the ability to penetrate into some substances on the Earth, the latent application fields of InSAR are rather broad, which becomes one of the foci in Earth science study. Hereby the principles and general status of SAR and InSAR are briefly introduced. The limitations in the precision of the height determination of targets on the Earth by InSAR are analyzed. The applications of InSAR and the mutual relation for promotion between InSAR and astro-geodynamics study are highlighted discussed.

  20. Integrated analysis of differential interferometric synthetic aperture radar (DInSAR) and geological data for measuring deformation movement of Kaligarang fault, Semarang-Indonesia

    NASA Astrophysics Data System (ADS)

    Prasetyo, Y.; Fakhrudin, Warasambi, S. M.

    2016-05-01

    Semarang is one of the densely populated city in Central Java which is has Kaligarang's fault. It is lie in Kaligarang River and across several dense urban settlement. The position of Kaligarang's river itself divides in the direction nearly north-south city of Semarang. The impact of the fault can be seen in severals indication such as a land subsidence phenomenon in Tinjomoyo village area which is make impact to house and road destruction. In this research, we have used combination methods between InSAR, DinSAR and geomorphology (geology data) where is this techniques used to identity the fault area and estimate Kaligarang's fault movement velocity. In fault movement velocity observation, we only compute the movement in vertical with neglect horizontal movement. The data used in this study of one pair ALOS PALSAR level 1.0 which was acquired on June 8, 2007and 10 of September 2009. Besides that third ALOS PALSAR earlier, also used data of SRTM DEM 4th version, is used for the correction of the topography. The use of the three methods already mentioned earlier have different functions. For the lnSAR method used for the establishment of a digital model in Semarang. After getting high models digital city of Semarang, the identification process can be done layout, length, width and area of the Kaligarang fault using geomorphology. Results of such identification can be calculated using the rate of deformation and fault movement. From the result generated DinSAR method of land subsidence rate between 3 em to II em. To know the truth measurement that used DinSAR method, is performed with the decline of validation that measured using GPS. After validating obtained standard deviation of 3,073 em. To estimate the Kaligarang's fault pattern and direction is using the geomorphology method. The results that Kaligarang's is an active fault that has fault strike slip as fault pattern. It makes this research is useful because could be used as an inquick assessment in fault

  1. UAVSAR: A New NASA Airborne SAR System for Science and Technology Research

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Wheeler, Kevin; Sadowy, Greg; Miller, Tim; Shaffer, Scott; Muellerschoen, Ron; Jones, Cathleen; Zebker, Howard; Madsen, Soren

    2006-01-01

    NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differentian interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a UAV (Unpiloted Aria1 Vehicle) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 ft (13800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).

  2. ARBRES: Light-Weight CW/FM SAR Sensors for Small UAVs

    PubMed Central

    Aguasca, Albert; Acevo-Herrera, Rene; Broquetas, Antoni; Mallorqui, Jordi J.; Fabregas, Xavier

    2013-01-01

    This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m) for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller). Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM) has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo) module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory. PMID:23467032

  3. ARBRES: light-weight CW/FM SAR sensors for small UAVs.

    PubMed

    Aguasca, Albert; Acevo-Herrera, Rene; Broquetas, Antoni; Mallorqui, Jordi J; Fabregas, Xavier

    2013-03-06

    This paper describes a pair of compact CW/FM airborne SAR systems for small UAV-based operation (wingspan of 3.5 m) for low-cost testing of innovative SAR concepts. Two different SAR instruments, using the C and X bands, have been developed in the context of the ARBRES project, each of them achieving a payload weight below 5 Kg and a volume of 13.5 dm3 (sensor and controller). Every system has a dual receiving channel which allows operation in interferometric or polarimetric modes. Planar printed array antennas are used in both sensors for easy system integration and better isolation between transmitter and receiver subsystems. First experimental tests on board a 3.2 m wingspan commercial radio-controlled aircraft are presented. The SAR images of a field close to an urban area have been focused using a back-projection algorithm. Using the dual channel capability, a single pass interferogram and Digital Elevation Model (DEM) has been obtained which agrees with the scene topography. A simple Motion Compensation (MoCo) module, based on the information from an Inertial+GPS unit, has been included to compensate platform motion errors with respect to the nominal straight trajectory.

  4. Observations and Mitigation of RFI in ALOS PALSAR SAR Data; Implications for the Desdyni Mission

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Le, Charles

    2008-01-01

    Initial examination of ALOS PALSAR synthetic aperture radar (SAR) data has indicated significant radio frequency interference (RFI) in several geographic locations around the world. RFI causes significant reduction in image contrast, introduces periodic and quasi-periodic image artifacts, and introduces significant phase noise in repeat pass interferometric data reduction. The US National Research Council Decadal Survey of Earth Science has recommended DESDynI, a Deformation, Ecosystems, and Dynamics of Ice satellite mission comprising an L-band polarimetric radar configured for repeat pass interferometry. There is considerable interest internationally in other future L-band and lower frequency systems as well. Therefore the issues of prevalence and possibilities of mitigation of RFI in these crowded frequency bands is of considerable interest. RFI is observed in ALOS PALSAR in California, USA, and in southern Egypt in data examined to date. Application of several techniques for removing it from the data prior to SAR image formation, ranging from straightforward spectral normalization to time-domain, multi-phase filtering techniques are considered. Considerable experience has been gained from the removal of RFI from P-band acquired by the GeoSAR system. These techniques applied to the PALSAR data are most successful when the bandwidth of any particular spectral component of the RFI is narrow. Performance impacts for SAR imagery and interferograms are considered in the context of DESDynI measurement requirements.

  5. Analysis of polarimetric synthetic aperture radar and passive visible light polarimetric imaging data fusion for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Maitra, Sanjit

    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single

  6. InSAR Scientific Computing Environment - The Home Stretch

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.

    2011-12-01

    The Interferometric Synthetic Aperture Radar (InSAR) Scientific Computing Environment (ISCE) is a software development effort in its third and final year within the NASA Advanced Information Systems and Technology program. The ISCE is a new computing environment for geodetic image processing for InSAR sensors enabling scientists to reduce measurements directly from radar satellites to new geophysical products with relative ease. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. Upcoming international SAR missions will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment has the functionality to become a key element in processing data from NASA's proposed DESDynI mission into higher level data products, supporting a new class of analyses that take advantage of the long time and large spatial scales of these new data. At the core of ISCE is a new set of efficient and accurate InSAR algorithms. These algorithms are placed into an object-oriented, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. ISCE supports data from nearly all of the available satellite platforms, including ERS, EnviSAT, Radarsat-1, Radarsat-2, ALOS, TerraSAR-X, and Cosmo-SkyMed. The code applies a number of parallelization techniques and sensible approximations for speed. It is configured to work on modern linux-based computers with gcc compilers and python

  7. Phase calibration of polarimetric radar images

    NASA Technical Reports Server (NTRS)

    Sheen, Dan R.; Kasischke, Eric S.; Freeman, Anthony

    1989-01-01

    The problem of phase calibration between polarization channels of an imaging radar is studied. The causes of various types of phase errors due to the radar system architecture and system imperfections are examined. A simple model is introduced to explain the spatial variation in phase error as being due to a displacement between the phase centers of the vertical and horizontal antennas. It is also shown that channel leakage can cause a spatial variation in phase error. Phase calibration using both point and distributed ground targets is discussed and a method for calibrating phase using only distributed target is verified, subject to certain constraints. Experimental measurements using the NADC/ERIM P-3 synthetic-aperture radar (SAR) system and NASA/JPL DC-8 SAR, which operates at C-, L-, and P-bands, are presented. Both of these systems are multifrequency, polarimetric, airborne, SAR systems.

  8. Information content of polarimetric SAR data

    NASA Technical Reports Server (NTRS)

    Cumming, Ian G.; Small, David L.; Vanzyl, Jakob J.

    1991-01-01

    The information content of the compressed Stoke's matrix data from the Airborne Synthetic Aperture Radar (AIRSAR) is examined in two ways - by measuring how each feature separates classes of terrain in an image, and by measuring how well a classifier performs with and without each feature. In this way, the features may then be ranked in order of information content (or in order of utility to the classifier). Suggestions are made regarding those variables that can be omitted in a data compression scheme or in a future simplified radar system.

  9. Detection of land degradation with polarimetric SAR

    NASA Astrophysics Data System (ADS)

    Ray, Terrill W.; Farr, Tom G.; van Zyl, Jakob J.

    1992-08-01

    Land degradation is a crucial problem facing the human race. With an ever-increasing population placing increasing stress on agricultural lands, land impoverishment has the potential for adversely impacting the food supply in many regions of the world. The Manix Basin Area of the Mojave desert has been cropped using center pivot irrigation, but since 1973 many fields have been abandoned for economic reasons. Data were collected using the JPL Airborne Synthetic Aperture Radar (AIRSAR), a multi-spectral radar polarimeter. Analysis of these data revealed unusual polarization responses which we attribute to the formation of wind ripples on the surfaces of fields which had been abandoned for more than 5 years. This conjecture was confirmed through field observations, and the observed polarization responses were effectively modelled using a second-order small perturbation model. These results demonstrate the usefulness of remote sensing techniques supported by limited field work for study of land degradation at synoptic scales.

  10. Application of symmetry properties to polarimetric remote sensing with JPL AIRSAR data

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, Simon H.; Kwok, R.; Li, F. K.

    1992-01-01

    Based on symmetry properties, polarimetric remote sensing of geophysical media is studied. From the viewpoint of symmetry groups, media with reflection, rotation, azimuthal, and centrical symmetries are considered. The symmetries impose relations among polarimetric scattering coefficients, which are valid to all scattering mechanisms in the symmetrical configurations. Various orientation distributions of non-spherical scatterers can be identified from the scattering coefficients by a comparison with the symmetry calculations. Experimental observations are then analyzed for many geophysical scenes acquired with the Jet Propulsion Laboratory (JPL) airborne polarimetric SAR at microwave frequencies over sea ice and vegetation. Polarimetric characteristics of different ice types are compared with symmetry behaviors. The polarimetric response of a tropical rain forest reveals characteristics close to the centrical symmetry properties, which can be used as a distributed target to relatively calibrate polarimetric radars without any deployment of manmade calibration targets.

  11. Monsoon '90 - Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.; Guerra, Abel G.

    1992-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  12. Monsoon 1990: Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.; Dubois, Pascale; Guerra, Abel

    1991-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  13. Segmentation of Multilook, Multifrequency, and Multipolarimetric SAR Data.

    DTIC Science & Technology

    1995-11-20

    1995 Final Technical 02/01/92-07/31/95 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Segmentation of Multilook , Multifrequency, and Multipolarimetric SAR Data...Maximum 200 worth) This final report summarizes the findings of the research, "Segmentation of Multi-look, Multi-frequency and Multi- polarimetric SAR ...segmentation of high resolution SAR images, b) detection of man-made features in SAR images and c) labeling, as well as, grouping algorithms. These

  14. Classification of Targets in SAR Images Using ISAR Data

    DTIC Science & Technology

    2005-05-01

    Classification of Targets in SAR Images Using ISAR Data J. J. M. de Wit, R. J. Dekker, and A. C. van den Broek TNO Defence, Security, and Safety...classification of targets in SAR images by using ISAR measurements was studied, based on polarimetric SAR and ISAR data acquired with the MEMPHIS...interest in synthetic aperture radar ( SAR ) systems is increasing as well, mainly due to their all-weather capability. A study for the Dutch Ministry of

  15. Tropical Forest Biomass Estimation from Vertical Fourier Transforms of Lidar and InSAR Profiles

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Goncalves, F.; Drake, J.; Hensley, S.; Chapman, B. D.; Michel, T.; Dos Santos, J. R.; Dutra, L.; Graca, P. A.

    2010-12-01

    Structural forest biomass estimation from lidar or interferometric SAR (InSAR) has demonstrated better performance than radar-power-based approaches for the higher biomasses (>150 Mg/ha) found in tropical forests. Structural biomass estimation frequently regresses field biomass to some function of forest height. With airborne, 25-m footprint lidar data and fixed-baseline C-band InSAR data over tropical wet forests of La Selva Biological Station, Costa Rica, we compare the use of Fourier transforms of vertical profiles at a few frequencies to the intrinsically low-frequency “average height”. RMS scatters of Fourier-estimated biomass about field-measured biomass improved by 40% and 20% over estimates base on average height from lidar and fixed-baseline InSAR, respectively. Vertical wavelengths between 14 and 100 m were found to best estimate biomass. The same airborne data acquisition over La Selva was used to generate many 10’s of repeat-track L-band InSAR baselines with time delays of 1-72 hours, and vertical wavelengths of 5-100 m. We will estimate biomass from the Fourier transforms of L-band radar power profiles (InSAR complex coherence). The effects of temporal decorrelation will be modeled in the Fourier domain to try to model and reduce their impact. Using L-band polarimetric interferometry, average heights will be estimated as well and biomass regression performance compared to the Fourier transform approach. The more traditional approach of using L-band radar polarimetry will also be compared to structural biomass estimation.

  16. Moving Target Detection with Along-Track SAR Interferometry. A Theoretical Analysis

    DTIC Science & Technology

    2002-08-01

    1994). Intensity and Phase Statistics of Multilook Polarimetric and Interfer- ometric SAR Imagery. IEEE Trans. Geoscience and Remote Sensing, GRS-32(5... Multilook Polarimetric Signatures. IEEE Trans. Geoscience and Remote Sensing, GRS-32(3), 562-574. 4. Gierull, C.H. (July 2001). Statistics of SAR ...Along-Track SAR Interferometry A Theoretical Analysis Christoph H. Gierull DISTRIBUTION STATEMENTA Approved for Public Release Distribution Unlimited

  17. Validation of burst overlapping for ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry

    NASA Astrophysics Data System (ADS)

    Natsuaki, Ryo; Motohka, Takeshi; Ohki, Masato; Watanabe, Manabu; Suzuki, Shinichi

    2016-10-01

    The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) aboard the Advanced Land Observing Satellite- 2 (ALOS-2, "DAICHI-2") is the latest L-band spaceborne synthetic aperture radar (SAR). PALSAR-2 observes the world mainly with 10 m resolution / 70 km swath Stripmap mode and 25 m resolution / 350 km swath ScanSAR mode. The 3-m resolution Stripmap mode is mainly used upon Japan. 350 km ScanSAR observation could detect large scale deformation e.g., the Mw 7.8 Gorkha, Nepal earthquake and its aftershocks in 2015. ALOS-2 ScanSAR is the first one that supports ScanSAR-ScanSAR interferometry in L-band spaceborne SAR. However, because of the parameter setting error for the orbit estimation, ALOS-2 PALSAR-2 ScanSAR could achieve little number of interferometric pair until the software modification on February 8, 2015. That is, the burst overlap timing required for the interferometric analysis was insufficient and it depends on the observation date. In this paper, we report the investigation results of this case and discuss the current status of the ALOS-2 ScanSAR InSAR. Some archives achieved before February 8, 2015 can be used for interferometric analysis with after Feb. 8. However, most of them have no interferometric pair. We also report that the archives acquired after February 8, have enough burst overlapping.

  18. Polarimetric SAR Interferometry: Investigations using EC CV-580 SAR Data

    DTIC Science & Technology

    2005-03-01

    polarim~triques chevauchants ont &6 co[1ect~es au-dessus des villes d’Ottawa et de Gatineau. Parmni tous ces passages, quelques paires de chaque...scatterers from these smaller structures. This complexity is common in heavily urbanised neighbourhoods, and is a limiting factor for the applicability of Pol

  19. Normal and Differential SAR Interferometry

    DTIC Science & Technology

    2007-02-01

    Geudtner, B. Schättler, P. Vachon, U. Steinbrecher, J. Holzner, J. Mittermayer , H. Breit, A. Moreira. RADARSAT ScanSAR interferometry. In: Proc.IGARSS’99...IV, Ottawa, Vol. XXXIV, part 4, pp. 470-475 Krieger, G., Wendler, M., Fiedler, H., Mittermayer , J., Moreira, A., 2002. Performance analysis for...bistatic interferometric SAR configurations. In: Proc.IGARSS 2002, Toronto, Canada, vol. 1, pp. 650-652. Krieger, G., Fiedler, H., Mittermayer , J

  20. Normal and Differential SAR Interferometry

    DTIC Science & Technology

    2005-02-01

    Geudtner, B. Schättler, P. Vachon, U. Steinbrecher, J. Holzner, J. Mittermayer , H. Breit, A. Moreira. RADARSAT ScanSAR interferometry. In: Proceedings of...part 4, pp. 470-475 Krieger, G., Wendler, M., Fiedler, H., Mittermayer , J., Moreira, A., 2002. Performance analysis for bistatic interferometric...SAR configurations. In: Proceedings of IGARSS 2002, Toronto, Canada, vol. 1, pp. 650-652. Krieger, G., Fiedler, H., Mittermayer , J., Papathanassiou, K

  1. An L-band SAR for repeat pass deformation measurements on a UAV platform

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Lou, Yunling; Rosen, Paul; Wheeler, Kevin; Zebker, Howard; Madsen, Soren; Miller, Tim; Hoffman, Jim; Farra, Don

    2003-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeat-pass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV) or minimally piloted vehicle (MPV). Upon surveying the capabilities and availabilities of such aircraft, the Proteus aircraft and the ALTAIR UAV appear to meet our criteria in terms of payload capabilities, flying altitude, and endurance. To support the repeat pass deformation capability it is necessary to control flight track capability of the aircraft to be within a specified 10 m tube with a goal of 1 m. This requires real-time GPS control of the autopilot to achieve these objectives that has not been demonstrated on these aircraft. Based on the Proteus and ALTAIR's altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and a 16 km range swath. The radar will have an active electronic beam steering antenna to achieve a Doppler centroid stability that is necessary for repeat-pass interferometry. This paper presents some of the trade studies for the platform, instrument and the expected science.

  2. SAR Interferometry with TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Eineder, M.; Runge, H.; Boerner, E.; Bamler, R.; Adam, N.; Schättler, B.; Breit, H.; Suchandt, S.

    2004-06-01

    The TerraSAR-X project is a public private partnership between Astrium GmbH and the German Aerospace Center DLR. Astrium will launch the satellite in late 2005 and holds the rights of commercial data exploitation. DLR is currently developing the ground segment and is responsible for the scientific exploitation of the data. Even if the mission goal is not primarily SAR interferometry, TerraSAR-X offers a number of new perspectives to SAR interferometry when compared to ERS and also ENVISAT: a) High resolution of 3 meters and better in stripmap and spotlight mode. b) The option for a burst synchronized ScanSAR mode. c) The high range bandwidth will allow large baselines and the option for highly precise DEM generation. d) X- Band will show new scattering properties. e) High observation frequency due to the short repeat cycle and variable incidence angles. f) An along track interferometric mode. The available products relevant for interferometry are presented and other relevant topics like orbit control and delta-k interferometry are discussed.

  3. Land Use Mapping with Evidential Fusion of Polarimetric Synthetic Aperture Radar and Hyperspectral Imagery

    DTIC Science & Technology

    2002-09-01

    IDFS High Level Diagram 2. IDFS Image Modules The IDFS polarimetric SAR processor contains a textural classifier (using GLCM features on each plarimetric...classification from Coherence Matrix Grey-Level Cooccurrence Matrix Partial/Fully Polarimetric Parameters from the GLCM Table 1 Textural Features and...polarization response parameters), textural classifiers ( GLCM , backscattering coefficient) that provide hypotheses about the likelihood that some object of

  4. Interferometric Synthetic Aperture Radar (InSAR)

    USGS Publications Warehouse

    Dzurisin, D.; Lu, Z.

    2006-01-01

    Geodesists are, for the most part, a patient and hardworking lot. A day spent hiking to a distant peak, hours spent waiting for clouds to clear a line-of-sight between observation points, weeks spent moving methodically along a level line — such is the normal pulse of the geodetic profession. The fruits of such labors are all the more precious because they are so scarce. A good day spent with an electronic distance meter (EDM) or level typically produces fewer than a dozen data points. A year of tiltmeter output sampled at ten-minute intervals constitutes less than half a megabyte of data. All of the leveling data ever collected at Yellowstone Caldera fit comfortably on a single PC diskette! These quantities are trivial by modern datastorage standards, in spite of the considerable efforts expended to produce them.

  5. Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands

    USGS Publications Warehouse

    Kim, J.-W.; Lu, Zhiming; Lee, H.; Shum, C.K.; Swarzenski, C.M.; Doyle, T.W.; Baek, S.-H.

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) has been used to detect relative water level changes in wetlands. We developed an innovative method to integrate InSAR and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identify double-bounce backscattering areas in the wetland. ENVISAT radar altimeter-measured 18-Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (~ 40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-1 C-band InSAR are then integrated with ENVISAT radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. We anticipate that this new technique will allow retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  6. Repeat-pass InSAR processing for Vegetation Height Calculation: Theory and a validated example

    NASA Astrophysics Data System (ADS)

    Siqueira, P.; Lei, Y.

    2014-12-01

    Knowledge of the vegetation height for a forested region is often used as a proxy for stem volume, biomass, and for characterizing habitats of a variety of plant and animal species. For this reason, remote sensing measures available from stereography, lidar, and InSAR have been important tools for airborne and spaceborne platforms. Among these and other candidates for measuring vegetation heights, InSAR has the advantage of achieving wide coverage areas (on the order of 100 km in cross-track swath) over short time periods, thus making it practical for large-scale assessments of the global environment. The determination of forest stand height (FSH), which is an assessment made on the order of one to ten hectares of resolution, InSAR can provide measures that are proportional to FSH. These are: 1.) interferometric phase compared to a known DEM, preferably of the bald earth, 2.) interferometric correlation (polarimetric or otherwise), which is related to the volume scattering nature of the target, and 3.) interferometric correlation which is related to the temporal decorrelation of the target. Of these, while the volumetric aspect of interferometric correlation is of keen interest, because of the dominant error source of temporal decorrelation, it comes at the cost of the need to perform single-pass interferometry. While such satellite systems do exist (notably the TanDEM-X mission), for vegetation applications, lower frequency systems such as ALOS-1 and -2, and the future NASA radar mission at L-band, provides better signal returns from throughout the vegetation canopy. Hence, rather than relying on volumetric correlation to provide the desired FSH signature, repeat-pass observations of temporal decorrelation are coupled with a vegetation model for this decorrelation to determine the vegetation height. In order to demonstrate this technique, the University of Massachusetts has used 46-day repeat-pass ALOS data to estimate FSH over the US State of Maine, nearly a 10

  7. Pyxis handheld polarimetric imager

    NASA Astrophysics Data System (ADS)

    Chenault, David B.; Pezzaniti, J. Larry; Vaden, Justin P.

    2016-05-01

    The instrumentation for measuring infrared polarization signatures has seen significant advancement over the last decade. Previous work has shown the value of polarimetric imagery for a variety of target detection scenarios including detection of manmade targets in clutter and detection of ground and maritime targets while recent work has shown improvements in contrast for aircraft detection and biometric markers. These data collection activities have generally used laboratory or prototype systems with limitations on the allowable amount of target motion or the sensor platform and usually require an attached computer for data acquisition and processing. Still, performance and sensitivity have been steadily getting better while size, weight, and power requirements have been getting smaller enabling polarimetric imaging for a greater or real world applications. In this paper, we describe Pyxis®, a microbolometer based imaging polarimeter that produces live polarimetric video of conventional, polarimetric, and fused image products. A polarization microgrid array integrated in the optical system captures all polarization states simultaneously and makes the system immune to motion artifacts of either the sensor or the scene. The system is battery operated, rugged, and weighs about a quarter pound, and can be helmet mounted or handheld. On board processing of polarization and fused image products enable the operator to see polarimetric signatures in real time. Both analog and digital outputs are possible with sensor control available through a tablet interface. A top level description of Pyxis® is given followed by performance characteristics and representative data.

  8. Crop Change Assessment Using Polarimetric RADARSAT-2 Data

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Shang, Jiali; Vachon, Paris W.; McNairn, Heather

    2011-03-01

    This paper studies the feasibility of monitoring crop growth cycles based on a temporal variation analysis of three elementary radar scattering mechanisms. Crop changes are assessed using RADARSAT-2 polarimetric data. The polarimetric SAR (PolSAR) analysis is based on the Pauli decomposition. Multi-temporal analysis is applied to RGB images constructed using surface scattering, double bounce and volume scattering. The crops studied in this paper are corn, cereals and soybeans. Each crop has unique physical structural characteristics and responds differently to these scattering mechanisms. By monitoring the significant changes that occur in these scattering mechanisms, the crop growth to harvest cycle can be observed and the harvest time can be estimated. In addition, a Maximum Likelihood Classification was performed on the RADARSAT-2 data to produce a crop map. An overall classification accuracy of 85% was achieved.

  9. Development of InSAR technology on deformation monitoring

    NASA Astrophysics Data System (ADS)

    Jiao, Ming-lian; Jiang, Ting-chen; Zong, Yu-yu

    2008-10-01

    In recent years, application of InSAR (Interferometric Synthetic Aperture, Radar) to deformation monitoring has become a hotspot in research of geological hazards. This paper introduces the basic principles and data processing procedures of InSAR and summarizes main progresses made in InSAR technology and its application to deformation monitoring. Through actual examples of application and research at home and abroad, the article figures out existing problems and the future of application of InSAR.

  10. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  11. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    NASA Astrophysics Data System (ADS)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  12. Application of SAR Remote Sensing in Land Surface Processes Over Tropical region

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.

    1996-01-01

    This paper outlines the potential applications of polarimetric SAR systems over tropical regions such as mapping land use and deforestation, forest regeneration, wetland and inundation studies, and mapping land cover types for biodiversity and habitat conservation studies.

  13. SARS Basics

    MedlinePlus

    ... coronavirus (SARS-CoV). SARS was first reported in Asia in February 2003. Over the next few months, ... countries in North America, South America, Europe, and Asia before the SARS global outbreak of 2003 was ...

  14. Polarimetric Tornado Detection.

    NASA Astrophysics Data System (ADS)

    Ryzhkov, Alexander V.; Schuur, Terry J.; Burgess, Donald W.; Zrnic, Dusan S.

    2005-05-01

    Polarimetric radars are shown to be capable of tornado detection through the recognition of tornadic debris signatures that are characterized by the anomalously low cross-correlation coefficient ρhv and differential reflectivity ZDR. This capability is demonstrated for three significant tornadic storms that struck the Oklahoma City, Oklahoma, metropolitan area. The first tornadic debris signature, based on the measurements with the National Severe Storms Laboratory's Cimarron polarimetric radar, was reported for a storm on 3 May 1999. Similar signatures were identified for two significant tornadic events during the Joint Polarization Experiment (JPOLE) in May 2003. The data from these storms were collected with a polarimetric prototype of the Next-Generation Weather Radar (NEXRAD). In addition to a small-scale debris signature, larger-scale polarimetric signatures that might be relevant to tornadogenesis were persistently observed in tornadic supercells. The latter signatures are likely associated with lofted light debris (leaves, grass, dust, etc.) in the inflow region and intense size sorting of hydrometeors in the presence of strong wind shear and circulation.

  15. Radar Interferometric Observations of Destabilized Rockglaciers

    NASA Astrophysics Data System (ADS)

    Strozzi, Tazio; Delaloye, Reynald; Raetzo, Hugo; Wegmuller, Urs

    2010-03-01

    Analysis of ERS-1/2 Tandem SAR interferograms for inventorying mass wasting in the periglacial belt of the Valais Alps (Switzerland) has evidenced - what was not expected before - that at least 10 rockglaciers were affected by very rapid movements of about 1 cm/day in 1995-1999. Currently, the detection of the state of activity of these very rapidly moving rockglaciers is hardly feasible with satellite SAR data, because of signal decorrelation after the 35, 46 and 11 days repeat intervals of the ENVISAT, ALOS and TerraSAR-X satellites, respectively. The role of space-borne radar interferometry as an element in a warning system is thus insignificant for these very rapid landslides, but an in- situ radar imaging system can overcome some of the limitations of satellite systems. In this contribution we present results from terrestrial radar interferometric measurements of two destabilized rockglaciers performed in August 2009.

  16. Advanced Concepts in Polarimetry. Part 1: Polarimetric Target Description, Speckle Filtering and Decomposition Theorems

    DTIC Science & Technology

    2005-02-01

    p=3 for the reciprocal case (SHV=SVH) and p=4 for the non-reciprocal case. The distribution functions for dual polarization ( HH , VH), (HV, VV) or... HH , VV) can be derived from this complex Wishart distribution. For example, if only complex HH and VV are available, p=2, and for single polarization ...The speckle reduction problem is more complicated for polarimetric SAR than a single polarization SAR, because of the difficulties of preserving

  17. a Robust Change Detector for Multilook Polarimetric Synthetic Aperture Radar Data

    NASA Astrophysics Data System (ADS)

    Ghanbari; Akbari; Abkar; Sahebi; Liu

    2014-10-01

    In this paper, we propose a robust unsupervised change detection algorithm for multilook polarimetric synthetic aperture radar (PolSAR) data. The Hotelling-Lawley trace (HLT) statistic is used as a test statistic to measure the similarity of two covariance matrices. The generalized Kittler and Illingworth (K&I) minimum-error thresholding algorithm is then applied on the test statistic image to accurately discriminates changed and unchanged areas. The algorithm, tested on real PolSAR images, provides satisfactory results.

  18. Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Zhao, Chunjiang; Yang, Guijun; Li, Zengyuan; Chen, Erxue; Yuan, Lin; Yang, Xiaodong; Xu, Xingang

    2015-01-01

    Dynamic mapping and monitoring of crop harvest on a large spatial scale will provide critical information for the formulation of optimal harvesting strategies. This study evaluates the feasibility of C-band polarimetric synthetic aperture radar (PolSAR) for monitoring the harvesting progress of oilseed rape (Brassica napus L.) fields. Five multitemporal, quad-pol Radarsat-2 images and one optical ZY-1 02C image were acquired over a farmland area in China during the 2013 growing season. Typical polarimetric signatures were obtained relying on polarimetric decomposition methods. Temporal evolutions of these signatures of harvested fields were compared with the ones of unharvested fields in the context of the entire growing cycle. Significant sensitivity was observed between the specific polarimetric parameters and the harvest status of oilseed rape fields. Based on this sensitivity, a new method that integrates two polarimetric features was devised to detect the harvest status of oilseed rape fields using a single image. The validation results are encouraging even for the harvested fields covered with high residues. This research demonstrates the capability of PolSAR remote sensing in crop harvest monitoring, which is a step toward more complex applications of PolSAR data in precision agriculture.

  19. Polarimetric radar data decomposition and interpretation

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Ranson, K. Jon

    1993-01-01

    Significant efforts have been made to decompose polarimetric radar data into several simple scattering components. The components which are selected because of their physical significance can be used to classify SAR (Synthetic Aperture Radar) image data. If particular components can be related to forest parameters, inversion procedures may be developed to estimate these parameters from the scattering components. Several methods have been used to decompose an averaged Stoke's matrix or covariance matrix into three components representing odd (surface), even (double-bounce) and diffuse (volume) scatterings. With these decomposition techniques, phenomena, such as canopy-ground interactions, randomness of orientation, and size of scatters can be examined from SAR data. In this study we applied the method recently reported by van Zyl (1992) to decompose averaged backscattering covariance matrices extracted from JPL SAR images over forest stands in Maine, USA. These stands are mostly mixed stands of coniferous and deciduous trees. Biomass data have been derived from field measurements of DBH and tree density using allometric equations. The interpretation of the decompositions and relationships with measured stand biomass are presented in this paper.

  20. Application of a New Polarimetric Filter to RADARSAT-2 Data of Deception Island (antarctic Peninsula Region) for Surface Cover Characterization

    NASA Astrophysics Data System (ADS)

    Guillaso, S.; Schmid, T.; Lopez-Martinez, J.; D'Hondt, O.

    2015-04-01

    In this paper, we describe a new approach to analyse and quantify land surface covers on Deception Island, a volcanic island located in the Northern Antarctic Peninsula region by means of fully polarimetric RADARSAT-2 (C-Band) SAR image. Data have been filtered by a new polarimetric speckle filter (PolSAR-BLF) that is based on the bilateral filter. This filter is locally adapted to the spatial structure of the image by relying on pixel similarities in both the spatial and the radiometric domains. Thereafter different polarimetric features have been extracted and selected before being geocoded. These polarimetric parameters serve as a basis for a supervised classification using the Support Vector Machine (SVM) classifier. Finally, a map of landform is generated based on the result of the SVM results.

  1. Interferometric synthetic aperture radar studies of Alaska volcanoes

    USGS Publications Warehouse

    Lu, Zhiming; Wicks, C.; Power, J.; Dzurisin, D.; Thatcher, W.; Masterlark, Timothy

    2002-01-01

    Interferometric synthetic aperture radar (InSAR) imaging is a recently developed geodetic technique capable of measuring ground-surface deformation with centimeter to subcentimeter vertical precision and spatial resolution of tens-of-meter over a relatively large region (~104 km2). The spatial distribution of surface deformation data, derived from InSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic and tectonic processes associated with volcanoes. This paper summarizes our recent InSAR studies of several Alaska volcanoes, which include Okmok, Akutan, Kiska, Augustine, Westdahl, and Peulik volcanoes.

  2. Interferometric synthetic aperture radar: Building tomorrow's tools today

    USGS Publications Warehouse

    Lu, Zhong

    2006-01-01

    A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.

  3. Mueller polarimetric microscopy

    NASA Astrophysics Data System (ADS)

    Laude-Boulesteix, Blandine; De Martino, Antonello; Le Naour, Gilles; Genestie, Catherine; Schwartz, Laurent; Garcia-Caurel, Enric; Drevillon, Bernard

    2004-07-01

    We present a multispectral polarimetric imaging system well suited for complete Mueller matrix microscopy. The source is a spectrally filtered halogen light bulb, and the image is formed on a fast CCD camera The light polarization is modulated before the sample and analyzed after the sample by using nematic liquid crystal modulators.. The whole Mueller matrix image of the sample is typically measured over 5 seconds for a good signal-to-noise ratio. The instrument design, together with an original and easy-to-operate calibration procedure provides a high polarimetric accuracy over wide ranges of wavelengths and magnifications. Mueller polarimetry provides separate images of scalar and vector retardation and dichroism of the sample, together with its depolarizing power, while all these effects do contribute simultaneously to the contrasts observed in standard polarized microsopy. Polarimetric images of several samples, namely an unstained rabbit cornea, a picrosirius red stained hepatic biopsy, and a rat artery specifically stained for collagen III are shown and discussed

  4. Polarimetric imagery collection experiment

    NASA Astrophysics Data System (ADS)

    Romano, Joao M.; Felton, Melvin; Chenault, David; Sohr, Brian

    2010-04-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL that is focused on the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives in an open field. The database will allow for: 1) Understanding of signature variability under adverse weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of polarimetric technology; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.

  5. Automatic oil spill detection on quad polarimetric UAVSAR imagery

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Dhakal, Shanti

    2016-05-01

    Oil spill on the water bodies has adverse effects on coastal and marine ecology. Oil spill contingency planning is of utmost importance in order to plan for mitigation and remediation of the oceanic oil spill. Remote sensing technologies are used for monitoring the oil spills on the ocean and coastal region. Airborne and satellite sensors such as optical, infrared, ultraviolet, radar and microwave sensors are available for remote surveillance of the ocean. Synthetic Aperture Radar (SAR) is used most extensively for oil-spill monitoring because of its capability to operate during day/night and cloud-cover condition. This study detects the possible oil spill regions on fully polarimetric Uninhabited Aerial Vehicle - Synthetic Aperture Radar (UAVSAR) images. The UAVSAR image is decomposed using Cloude-Pottier polarimetric decomposition technique to obtain entropy and alpha parameters. In addition, other polarimetric features such as co-polar correlation and degree of polarization are obtained for the UAVSAR images. These features are used to with fuzzy logic based classification to detect oil spill on the SAR images. The experimental results show the effectiveness of the proposed method.

  6. Updated progress in theories and applications of spaceborne SAR interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Ling; Huang, Cheng; Ding, Xiao-Li; Li, Zhi-Wei

    2006-12-01

    InSAR (Interferometric Synthetic Aperture Radar) and D-InSAR (Differential InSAR) are rapidly developed new technologies of space geodesy during the late 20th century, and now obviously become hot research topics in the field of microwave remote sensing. Compared with the other sensors, InSAR possesses many incomparable advantages such as the capability to work at all-time and under all weather, very high spatial resolution and strong penetrability through the ground surface. This paper introduces general status of SAR, InSAR, D-InSAR technology, and the principles of InSAR and D-InSAR. New theories and the potential problems of (D-)InSAR technology are largely discussed, including multi-baseline interferometry, Pol-InSAR technique, the correction of atmospheric effects, permanent Scatterers method, the synthesization technique between InSAR and GPS, LIDAR etc., and the InSAR parallel algorithm. Then the new applications of InSAR and D-InSAR are described in detail including 3D topographic mapping, deformation monitoring (including surface subsidence, landside monitoring and ITRF's foundation and maintenance, etc.), thematic mapping (including agriculture and forestry, oceanic surveying and flood monitoring, etc.) and meteorology etc.. Finally, the prospect and future trends in InSAR development are summarized.

  7. Classification of earth terrain using polarimetric synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Lim, H. H.; Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Shin, R. T.; Van Zyl, J. J.

    1989-01-01

    Supervised and unsupervised classification techniques are developed and used to classify the earth terrain components from SAR polarimetric images of San Francisco Bay and Traverse City, Michigan. The supervised techniques include the Bayes classifiers, normalized polarimetric classification, and simple feature classification using discriminates such as the absolute and normalized magnitude response of individual receiver channel returns and the phase difference between receiver channels. An algorithm is developed as an unsupervised technique which classifies terrain elements based on the relationship between the orientation angle and the handedness of the transmitting and receiving polariation states. It is found that supervised classification produces the best results when accurate classifier training data are used, while unsupervised classification may be applied when training data are not available.

  8. Monitoring Seasonal Land Subsidence and Uplift in the Green Valley Area of the Tucson Active Management Area Groundwater Basin, Southern Arizona using Interferometric Synthetic Aperture Radar (InSAR) Data and Global Navigation Satellite System (GNSS) Data

    NASA Astrophysics Data System (ADS)

    Conway, B. D.

    2013-12-01

    The Green Valley land subsidence feature is located in southern Arizona, approximately 20 miles south of the Tucson metropolitan area within the town of Sahuarita. Groundwater levels fluctuate as much as 110 feet annually, caused by seasonal pumping demands of a nearby pecan orchard. Recent Arizona Department of Water Resources (ADWR) InSAR data and GNSS survey data reveal that seasonal land subsidence and subsequent uplift are occurring as a direct result of seasonal groundwater level fluctuations. Data from a nearby ADWR transducer shows that the groundwater level begins to decline around middle to late February, dropping as much as 110 feet by the end of June. Groundwater levels generally remain somewhat stable until the middle of October, when the groundwater level begins to rise. Groundwater levels will rise as much as 110 feet by the middle of February; a complete 12-month recovery. ADWR InSAR and GNSS survey data show that land subsidence occurs from February until May followed by a stable period, then uplift occurs from October to February. The Green Valley land subsidence feature is a dynamic hydrogeological system that requires continued deformation monitoring using both InSAR and GNSS data. Radarsat-2 Interferograms that illustrate both seasonal subsidence and uplift. Surveyed elevation and groundwater level change data that document how seasonal groundwater fluctuations result in seasonal land subsidence and uplift.

  9. NASA/JPL Aircraft SAR Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Donovan, N. (Editor); Evans, D. L. (Editor); Held, D. N. (Editor)

    1985-01-01

    Speaker-supplied summaries of the talks given at the NASA/JPL Aircraft SAR Workshop on February 4 and 5, 1985, are provided. These talks dealt mostly with composite quadpolarization imagery from a geologic or ecologic prespective. An overview and summary of the system characteristics of the L-band synthetic aperture radar (SAR) flown on the NASA CV-990 aircraft are included as supplementary information. Other topics ranging from phase imagery and interferometric techniques classifications of specific areas, and the potentials and limitations of SAR imagery in various applications are discussed.

  10. A Polarimetric Extension of the van Cittert-Zernike Theorem for Use with Microwave Interferometers

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Simon, N. K.

    2004-01-01

    The van Cittert-Zernike theorem describes the Fourier-transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave Earth remote sensing. The development provides insight into the mechanics of two-dimensional interferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.

  11. Polarimetric Palsar Calibration

    NASA Astrophysics Data System (ADS)

    Touzi, R.; Shimada, M.

    2008-11-01

    Polarimetric PALSAR system parameters are assessed using data sets collected over various calibration sites. The data collected over the Amazonian forest permits validating the zero Faraday rotation hypotheses near the equator. The analysis of the Amazonian forest data and the response of the corner reflectors deployed during the PALSAR acquisitions lead to the conclusion that the antenna is highly isolated (better than -35 dB). Theses results are confirmed using data collected over the Sweden and Ottawa calibration sites. The 5-m height trihedrals deployed in the Sweden calibration site by the Chalmers University of technology permits accurate measurement of antenna parameters, and detection of 2-3 degree Faraday rotation during day acquisition, whereas no Faraday rotation was noted during night acquisition. Small Faraday rotation angles (2-3 degree) have been measured using acquisitions over the DLR Oberpfaffenhofen and the Ottawa calibration sites. The presence of small but still significant Faraday rotation (2-3 degree) induces a CR return at the cross-polarization HV and VH that should not be interpreted as the actual antenna cross-talk. PALSAR antenna is highly isolated (better than -35 dB), and diagonal antenna distortion matrices (with zero cross-talk terms) can be used for accurate calibration of PALSAR polarimetric data.

  12. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  13. Interferometric synthetic aperture radar imagery of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  14. Feasibility Analysis of DEM Differential Method on Tree Height Assessment wit Terra-SAR/TanDEM-X Data

    NASA Astrophysics Data System (ADS)

    Zhang, Wangfei; Chen, Erxue; Li, Zengyuan; Feng, Qi; Zhao, Lei

    2016-08-01

    DEM Differential Method is an effective and efficient way for forest tree height assessment with Polarimetric and interferometric technology, however, the assessment accuracy of it is based on the accuracy of interferometric results and DEM. Terra-SAR/TanDEM-X, which established the first spaceborne bistatic interferometer, can provide highly accurate cross-track interferometric images in the whole global without inherent accuracy limitations like temporal decorrelation and atmospheric disturbance. These characters of Terra-SAR/TandDEM-X give great potential for global or regional tree height assessment, which have been constraint by the temporal decorrelation in traditional repeat-pass interferometry. Currently, in China, it will be costly to collect high accurate DEM with Lidar. At the same time, it is also difficult to get truly representative ground survey samples to test and verify the assessment results. In this paper, we analyzed the feasibility of using TerraSAR/TanDEM-X data to assess forest tree height with current free DEM data like ASTER-GDEM and archived ground in-suit data like forest management inventory data (FMI). At first, the accuracy and of ASTER-GDEM and forest management inventory data had been assessment according to the DEM and canopy height model (CHM) extracted from Lidar data. The results show the average elevation RMSE between ASTER-GEDM and Lidar-DEM is about 13 meters, but they have high correlation with the correlation coefficient of 0.96. With a linear regression model, we can compensate ASTER-GDEM and improve its accuracy nearly to the Lidar-DEM with same scale. The correlation coefficient between FMI and CHM is 0.40. its accuracy is able to be improved by a linear regression model withinconfidence intervals of 95%. After compensation of ASTER-GDEM and FMI, we calculated the tree height in Mengla test site with DEM Differential Method. The results showed that the corrected ASTER-GDEM can effectively improve the assessment accuracy

  15. Interferometric phase reconstruction using simplified coherence network

    NASA Astrophysics Data System (ADS)

    Zhang, Kui; Song, Ruiqing; Wang, Hui; Wu, Di; Wang, Hua

    2016-09-01

    Interferometric time-series analysis techniques, which extend the traditional differential radar interferometry, have demonstrated a strong capability for monitoring ground surface displacement. Such techniques are able to obtain the temporal evolution of ground deformation within millimeter accuracy by using a stack of synthetic aperture radar (SAR) images. In order to minimize decorrelation between stacked SAR images, the phase reconstruction technique has been developed recently. The main idea of this technique is to reform phase observations along a SAR stack by taking advantage of a maximum likelihood estimator which is defined on the coherence matrix estimated from each target. However, the phase value of a coherence matrix element might be considerably biased when its corresponding coherence is low. In this case, it will turn to an outlying sample affecting the corresponding phase reconstruction process. In order to avoid this problem, a new approach is developed in this paper. This approach considers a coherence matrix element to be an arc in a network. A so-called simplified coherence network (SCN) is constructed to decrease the negative impact of outlying samples. Moreover, a pointed iterative strategy is designed to resolve the transformed phase reconstruction problem defined on a SCN. For validation purposes, the proposed method is applied to 29 real SAR images. The results demonstrate that the proposed method has an excellent computational efficiency and could obtain more reliable phase reconstruction solutions compared to the traditional method using phase triangulation algorithm.

  16. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  17. Offshore platform sourced pollution monitoring using space-borne fully polarimetric C and X band synthetic aperture radar.

    PubMed

    Singha, Suman; Ressel, Rudolf

    2016-11-15

    Use of polarimetric SAR data for offshore pollution monitoring is relatively new and shows great potential for operational offshore platform monitoring. This paper describes the development of an automated oil spill detection chain for operational purposes based on C-band (RADARSAT-2) and X-band (TerraSAR-X) fully polarimetric images, wherein we use polarimetric features to characterize oil spills and look-alikes. Numbers of near coincident TerraSAR-X and RADARSAT-2 images have been acquired over offshore platforms. Ten polarimetric feature parameters were extracted from different types of oil and 'look-alike' spots and divided into training and validation dataset. Extracted features were then used to develop a pixel based Artificial Neural Network classifier. Mutual information contents among extracted features were assessed and feature parameters were ranked according to their ability to discriminate between oil spill and look-alike spots. Polarimetric features such as Scattering Diversity, Surface Scattering Fraction and Span proved to be most suitable for operational services.

  18. Evaluating suitability of Pol-SAR (TerraSAR-X, Radarsat-2) for automated sea ice classification

    NASA Astrophysics Data System (ADS)

    Ressel, Rudolf; Singha, Suman; Lehner, Susanne

    2016-05-01

    Satellite borne SAR imagery has become an invaluable tool in the field of sea ice monitoring. Previously, single polarimetric imagery were employed in supervised and unsupervised classification schemes for sea ice investigation, which was preceded by image processing techniques such as segmentation and textural features. Recently, through the advent of polarimetric SAR sensors, investigation of polarimetric features in sea ice has attracted increased attention. While dual-polarimetric data has already been investigated in a number of works, full-polarimetric data has so far not been a major scientific focus. To explore the possibilities of full-polarimetric data and compare the differences in C- and X-bands, we endeavor to analyze in detail an array of datasets, simultaneously acquired, in C-band (RADARSAT-2) and X-band (TerraSAR-X) over ice infested areas. First, we propose an array of polarimetric features (Pauli and lexicographic based). Ancillary data from national ice services, SMOS data and expert judgement were utilized to identify the governing ice regimes. Based on these observations, we then extracted mentioned features. The subsequent supervised classification approach was based on an Artificial Neural Network (ANN). To gain quantitative insight into the quality of the features themselves (and reduce a possible impact of the Hughes phenomenon), we employed mutual information to unearth the relevance and redundancy of features. The results of this information theoretic analysis guided a pruning process regarding the optimal subset of features. In the last step we compared the classified results of all sensors and images, stated respective accuracies and discussed output discrepancies in the cases of simultaneous acquisitions.

  19. Refining the asteroid taxonomy by polarimetric observations

    NASA Astrophysics Data System (ADS)

    Belskaya, I. N.; Fornasier, S.; Tozzi, G. P.; Gil-Hutton, R.; Cellino, A.; Antonyuk, K.; Krugly, Yu. N.; Dovgopol, A. N.; Faggi, S.

    2017-03-01

    We present new results of polarimetric observations of 15 main belt asteroids of different composition. By merging new and published data we determined polarimetric parameters characterizing individual asteroids and mean values of the same parameters characterizing different taxonomic classes. The majority of asteroids show polarimetric phase curves close to the average curve of the corresponding class. We show that using polarimetric data it is possible to refine asteroid taxonomy and derive a polarimetric classification for 283 main belt asteroids. Polarimetric observations of asteroid (21) Lutetia are found to exhibit possible variations of the position angle of the polarization plane over the surface.

  20. Research on two-pass differential InSAR and its implementation

    NASA Astrophysics Data System (ADS)

    Liu, Yihua; Zeng, Qiming; Li, Xiaofan; Gao, Liang; Zhang, Hua

    2006-03-01

    In this paper, the principle and processing procedures of two-pass Differential Interferometric Synthetic Aperture Radar (DInSAR) have been presented, and the difficulties and implementation of the key points are discussed in detail.

  1. Crustal Deformation Measurements Using Repeat-pass JERS 1 SAR Interferometry Near the Izu Peninsula, Japan

    NASA Technical Reports Server (NTRS)

    Fujiwara, Satoshi; Rosen, Paul A.; Tobita, Mikio; Murakami, Makoto

    1997-01-01

    We have examined the precision of interferometric SAR measurements of surface deformation of the Earth using 24-cm wavelength data acqured by the Japanese Earth Resources Satellite 1 (JERS 1) spacecraft, over the Izu Peninsula, Japan.

  2. Scientist's Idealism Vs. User's Realism for Orthorectification of Full Radarsat-2/Compact RCM Polarimetric Data with DSM

    NASA Astrophysics Data System (ADS)

    Toutin, Thierry; Wang, Huili; Charbonneau, Francois; Schmitt, Carla

    2013-08-01

    This paper presented two methods for the orthorectification of full/compact polarimetric SAR data: the polarimetric processing is performed in the image space (scientist's idealism) or in the ground space (user's realism) before or after the geometric processing, respectively. Radarsat-2 (R2) fine-quad and simulated very high-resolution RCM data acquired with different look angles over a hilly relief study site were processed using accurate lidar digital surface model. Quantitative evaluations between the two methods as a function of different geometric and radiometric parameters were performed to evaluate the impact during the orthorectification. The results demonstrated that the ground-space method can be safely applied to polarimetric R2 SAR data with an exception with the steep look angles and steep terrain slopes. On the other hand, the ground-space method cannot be applied to simulated compact RCM data due to 17dB noise floor and oversampling.

  3. Offshore pollution monitoring using fully polarimetric X- and C-band synthetic aperture radar: a near-real-time perspective

    NASA Astrophysics Data System (ADS)

    Singha, Suman; Ressel, Rudolf; Lehner, Susanne

    2016-05-01

    Use of polarimetric features for oil spill characterization is relatively new and have not been used for operational services until now. In the last decade, a number of semi-automatic and automatic techniques have been proposed in order to differentiate oil spill and look-alike spots based on single pol SAR data, however these techniques suffer from a high miss-classification rate which is undesirable for operational services. In addition to that, small operational spillages from offshore platforms are often ignored as it appears insignificant on traditional ScanSAR (wide) images. In order to mitigate this situation a major focus of research in this area is the development of automated algorithms based on polarimetric images to distinguish oil spills from look-alikes. This paper describes the development of an automated Near Real Time (NRT) oil spill detection processing chain based on quad-pol RADARSAT-2 and quad-pol TerraSAR-X images using polarimetric features (e.g. Lexicographic and Pauli Based features). Number TerraSAR-X images acquired over known offshore platforms with same day ascending and descending configuration along with near coincident RADARSAT-2 acquisition. A total number of 10 polarimetric feature parameters were extracted from different types of oil (e.g. crude oil, emulsion etc) and look-alike spots and divided into training and validation dataset. Extracted features were then used for training and validation of a pixel based Artificial Neural Network (ANN) classifier. Initial performance estimation was carried out for the proposed methodology in order to evaluate its suitability for NRT operational service. Mutual information contents among extracted features were assessed and feature parameters were ranked according to their ability to discriminate between oil spill and look- alike. Polarimetric features such as Scattering diversity, Surface scattering fraction, Entropy and Span proved to be more discriminative than other polarimetric features.

  4. A noise model for InSAR time series

    NASA Astrophysics Data System (ADS)

    Agram, P. S.; Simons, M.

    2015-04-01

    Interferometric synthetic aperture radar (InSAR) time series methods estimate the spatiotemporal evolution of surface deformation by incorporating information from multiple SAR interferograms. While various models have been developed to describe the interferometric phase and correlation statistics in individual interferograms, efforts to model the generalized covariance matrix that is directly applicable to joint analysis of networks of interferograms have been limited in scope. In this work, we build on existing decorrelation and atmospheric phase screen models and develop a covariance model for interferometric phase noise over space and time. We present arguments to show that the exploitation of the full 3-D covariance structure within conventional time series inversion techniques is computationally challenging. However, the presented covariance model can aid in designing new inversion techniques that can at least mitigate the impact of spatial correlated nature of InSAR observations.

  5. Bird Migration Echoes Observed by Polarimetric Radar

    NASA Astrophysics Data System (ADS)

    Minda, Haruya; Furuzawa, Fumie A.; Satoh, Shinsuke; Nakamura, Kenji

    A C-band polarimetric radar on Okinawa Island successfully observed large-scale bird migrations over the western Pacific Ocean. The birds generated interesting polarimetric signatures. This paper describes the signatures and speculates bird behavior.

  6. Studies of multi-baseline spaceborne interferometric synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Li, F.; Goldstein, R.

    1987-01-01

    A set of Seasat SAR data that were obtained in nearly repeat ground track orbits is utilized to simulate the performance of spaceborne interferometric synthetic aperture radar (ISAR) systems. A qualitative assessment of the topography measurement capability is presented. A phase measurement error model is described and compared with the data obtained at various baseline separations and signal-to-noise ratios. Finally, the implications of these results on the future spaceborne ISAR design are discussed.

  7. Dependence of Polarimetric Scattering Mechanisms on Land Cover

    NASA Astrophysics Data System (ADS)

    Atwood, D. K.; Meyer, F.

    2011-03-01

    A method for statistically representing the polarimetric SAR scattering mechanisms of individual land cover classes is introduced and applied to ALOS PALSAR L-band quad-pol data. PALSAR scattering signatures are correlated with land cover classification maps to determine typical scattering mechanisms. The approach utilizes two free, open-source software tools, ESA's PolSARpro and the Alaska Satellite Facility's MapReady Remote Sensing Toolbox as well as Geographic Information System (GIS) tools, to compute the probability density functions of normalized decomposition components for each land cover class.The proposed method provides the ability to compare polarimetric decompositions, investigate scattering mechanisms, detect change in land cover classification, and discover inhomogeneities in the spectral characteristics of individual classes. The approach is first employed to compare the Freeman and Van Zyl three-component decomposition techniques, where the former is shown to introduce many pixels with 100% volume saturation.Ideally, the method yields distinctive scattering peaks for each land cover class with minimal variance in the individual scattering components. However, in some instances, bimodal peaks are found. These are shown to either represent changes between the original land classification and the SAR acquisitions, or the existence of spectral subclasses that were not differentiated in the original classification. Last, the method is used to determine the impact of Polarimetric Orientation Angle (POA) correction on the scattering signatures of urban land cover classes. POA compensation is shown to bring about a significant reduction in the volume scattering component.A method for statistically representing the polarimetric SAR scattering mechanisms of individual land cover classes is introduced and applied to ALOS PALSAR L-band quad-pol data. PALSAR scattering signatures are correlated with land cover classification maps to determine typical

  8. Towards automated mapping of lake ice using RADARSAT-2 and simulated RCM compact polarimetric data

    NASA Astrophysics Data System (ADS)

    Duguay, Claude

    2016-04-01

    The Canadian Ice Service (CIS) produces a weekly ice fraction product (a text file with a single lake-wide ice fraction value, in tenth, estimated for about 140 large lakes across Canada and northern United States) created from the visual interpretation of RADARSAT-2 ScanSAR dual-polarization (HH and HV) imagery, complemented by optical satellite imagery (AVHRR, MODIS and VIIRS). The weekly ice product is generated in support of the Canadian Meteorological Centre (CMC) needs for lake ice coverage in their operational numerical weather prediction model. CIS is interested in moving from its current (manual) way of generating the ice fraction product to a largely automated process. With support from the Canadian Space Agency, a project was recently initiated to assess the potential of polarimetric SAR data for lake ice cover mapping in light of the upcoming RADARSAT Constellation Mission (to be launched in 2018). The main objectives of the project are to evaluate: 1) state-of-the-art image segmentation algorithms and 2) RADARSAT-2 polarimetric and simulated RADARSAT Constellation Mission (RCM) compact polarimetric SAR data for ice/open water discrimination. The goal is to identify the best segmentation algorithm and non-polarimetric/polarimetric parameters for automated lake ice monitoring at CIS. In this talk, we will present the background and context of the study as well as initial results from the analysis of RADARSAT-2 Standard Quad-Pol data acquired during the break-up and freeze-up periods of 2015 on Great Bear Lake, Northwest Territories.

  9. TE/TM Simulations of Interferometric Measurements

    NASA Technical Reports Server (NTRS)

    Houshmand, Bijan

    2000-01-01

    Interferometric synthetic aperture radar (IFSAR) measurements at X-, C-, L-, and P-band are used to derive ground topography at meter level resolution. Interpretation of the derived topography requires attention due to the complex interaction of the radar signal with ground cover. The presence of penetrable surfaces such as vegetation, and tree canopies poses a challenge since the depth of penetration depends on a number of parameters such as the operating radar frequency, polarization, incident angle, as well as terrain structure. The dependence of the reconstructed topography on polarization may lead to the characterization of the ground cover. Simulation of interferometric measurements is useful for interpretation of the derived topography (B. Houshmand, Proceedings of URSI, 314, 1997). In this talk , time domain simulations for interferometric measurement for TE- and TM- polarization are presented. Time domain simulation includes the effects of the surface material property as well geometry comparable the radar signal wavelength (B. Houshmand, Proceedings of the URSI, 25, 1998). The IFSAR simulation is carried out in two steps. First, the forward scattering data is generated based on full wave analysis. Next, the electromagnetic information is inverted to generate surface topography. This inversion is based on the well known IFSAR processing technique which is composed of signal compression, and formation of an interferogram. The full wave forward scattering data is generated by the scattered-field formulation of the FDTD algorithm. The simulation is carried out by exciting the computational domain by a radar signal. The scattered field is then computed and translated to the receiving interferometric antennas using the time-domain Huygen's principle. The inversion process starts by compressing the time-domain data. The range compressed data from both receivers are then coregistered to form an interferogram. The resulting interferogram is then related to the

  10. Polarimetric observations of Hungaria asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; Lazzaro, D.; Benavidez, P.

    2007-06-01

    Aims:We present the results of a polarimetric program at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aim of this campaign is to estimate the polarimetric properties of asteroids belonging to the Hungaria dynamical group. Methods: The data were obtained with the Casprof polarimeter at the 2.15 m telescope. The Casprof polarimeter is a two-hole aperture polarimeter with rapid modulation. The campaign began in 2000, and data on a sample of 24 members of the Hungaria group were obtained. We use the slope - albedo or P_min - albedo relationships to get polarimetric albedos for 18 of these objects. Results: Only two Xe-type objects, 434 Hungaria and 3447 Burkhalter, shown a polarimetric behavior compatible with a high albedo object. The A-type asteroid 1600 Vyssotsky has a polarimetric behavior similar to what was observed by Fornasier et al. (2006) for 863 Benkolea, and four objects show P_min values consistent with dark surfaces. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  11. Real time polarimetric dehazing.

    PubMed

    Mudge, Jason; Virgen, Miguel

    2013-03-20

    Remote sensing is a rich topic due to its utility in gathering detailed accurate information from locations that are not economically feasible traveling destinations or are physically inaccessible. However, poor visibility over long path lengths is problematic for a variety of reasons. Haze induced by light scatter is one cause for poor visibility and is the focus of this article. Image haze comes about as a result of light scattering off particles and into the imaging path causing a haziness to appear on the image. Image processing using polarimetric information of light scatter can be used to mitigate image haze. An imaging polarimeter which provides the Stokes values in real time combined with a "dehazing" algorithm can automate image haze removal for instant applications. Example uses are to improve visual display providing on-the-spot detection or imbedding in an active control loop to improve viewing and tracking while on a moving platform. In addition, removing haze in this manner allows the trade space for a system operational waveband to be opened up to bands which are object matched and not necessarily restricted by scatter effects.

  12. UAVASAR L-Band Polarimetric Data to Analyze BP Oil Spill

    NASA Astrophysics Data System (ADS)

    Migliacciio, M.; Nunziata, F.; Holt, B.

    2011-03-01

    Two polarimetric approaches are presented to observe oil spills in polarimetric SAR data gathered during UAVSAR flights over the polluted area of Gulf of Mexico. The approaches, based on the co-polarized pedestal height and on the co-polarized phase difference (CPD), are able to work on full-polarized and dual-polarized Synthetic Aperture Radar (SAR) data, respectively.The approaches have been shown to be both able to distinguish the oil for the surrounding sea surface and to classify it according to its damping properties. Results, compared with ancillary data provided by independent aircraft surveys, witness the very heterogeneous damping properties of the oil spilled after the BP oil platform accident.

  13. Evaluating compact SAR polarimetry for tropical forest monitoring

    NASA Astrophysics Data System (ADS)

    Trisasongko, Bambang H.

    2015-01-01

    Fully polarimetric Synthetic Aperture Radar (SAR) or PolSAR has been proven useful for diverse applications related to environment. Nevertheless, problems are arising since satellite-borne PolSAR requires special arrangements on data acquisition and consumes higher energy for signal transmission. Complexity of data acquisition and analysis can be reduced using compact polarimetry. The technique has been demonstrated to some extent; however, tests on various environments are still required. This paper assesses compact polarimetry on a tropical forest fringe, especially to monitor expanding oil palm estate and forest disturbance, in comparison to fully polarimetric mode. PALSAR data of Manokwari, Indonesia, were collected from JAXA through RA4.1029 project. In this paper, linear 45 degrees transmission is evaluated to detect various land cover classes using Wishart supervised classifier. Tonal discrepancies between both polarimetric modes are evident, suggesting compact polarimetry has limitation to recover information contained in fully polarimetric mode. However, Wishart classification procedure indicates that compact polarimetry is still useful for mapping.

  14. InfoTerra/TerraSAR initiative

    NASA Astrophysics Data System (ADS)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  15. Formation Flying for Distributed InSAR

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Murray, Emmanuell A.; Ploen, Scott R.; Gromov, Konstantin G.; Chen, Curtis W.

    2006-01-01

    We consider two spacecraft flying in formation to create interferometric synthetic aperture radar (InSAR). Several candidate orbits for such in InSar formation have been previously determined based on radar performance and Keplerian orbital dynamics. However, with out active control, disturbance-induced drift can degrade radar performance and (in the worst case) cause a collision. This study evaluates the feasibility of operating the InSAR spacecraft as a formation, that is, with inner-spacecraft sensing and control. We describe the candidate InSAR orbits, design formation guidance and control architectures and algorithms, and report the (Delta)(nu) and control acceleration requirements for the candidate orbits for several tracking performance levels. As part of determining formation requirements, a formation guidance algorithm called Command Virtual Structure is introduced that can reduce the (Delta)(nu) requirements compared to standard Leader/Follower formation approaches.

  16. Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy.

    PubMed

    Sheppard, Colin J R; Kou, Shan Shan; Depeursinge, Christian

    2012-03-01

    It is shown that the spatial frequencies recorded in interferometric synthetic aperture microscopy do not correspond to exact backscattering [as they do in unistatic synthetic aperture radar (SAR)] and that the reconstruction process based on SAR is therefore based on an approximation. The spatial frequency response is developed based on the three-dimensional coherent transfer function approach and compared with that in optical coherence tomography and digital holographic microscopy.

  17. Coherence versus interferometric resolution

    SciTech Connect

    Luis, Alfredo

    2010-06-15

    We examine the relation between second-order coherence and resolution in the interferometric detection of phase shifts. While for classical thermal light resolution and second-order coherence are synonymous, we show that for quantum light beams reaching optimum precision second-order coherence and resolution become antithetical.

  18. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul; Chen, Hou-tong; Peralta, Xomalin G; Brener, Igal

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at tcrahertz frequencies, it may find applications in other frequency ranges as well.

  19. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.

  20. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy.

    PubMed

    Davis, Brynmor J; Marks, Daniel L; Ralston, Tyler S; Carney, P Scott; Boppart, Stephen A

    2008-06-01

    Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM) allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT), utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR). In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  1. Delta-K Wideband SAR Interferometry for DEM Generation and Persistent Scatterers Using TeraSAR-X

    NASA Astrophysics Data System (ADS)

    Brcic, Ramon; Eineder, Michael; Bamler, Richard; Steinbrecher, Ulrich; Schulze, Daniel; Metzig, Robert; Papathanassiou, Konstantinos; Nagler, Thomas; Mueller, Florian; Suess, Martin

    2010-03-01

    Wideband SAR systems such as TerraSAR-X allow estimation of the absolute interferometric phase without resorting to error prone phase unwrapping. This is achieved through the delta-k technique that exploits frequency diversity within the range bandwidth to simulate a SAR system with a much longer carrier wavelength. This benefits all interferometric applications including DEM generation and land surface motion determination. Here we present the results of an ESA study (21318/07/NL/HE) into using delta-k absolute phase estimation for DEM generation and PSI (Persistent Scatterer Interferometry). Using TerraSAR- X data, examples from a delta-k DEM generation system are shown which avoid the errors induced by conventional phase unwrapping. For PSI, the possibilities of absolute phase estimation for a single PS are explored in theory and examples where wideband estimation is compared to conventional PSI processing for a stack of acquisitions over Paris.

  2. The ROHP-PAZ mission and the polarimetric and non-polarimetric effects of rain and other fozen hydrometeors on GNSS Radio-Occultation signals.

    NASA Astrophysics Data System (ADS)

    De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Tomás, S.; Turk, J.; Ao, C. O.; Oliveras, S.; Rius, A.

    2015-12-01

    The Radio Occultation and Heavy Precipitation experiment aboard the PAZ Low Earth Orbiter (ROHP-PAZ) will test, for the first time, the new polarimetric radio occultation (RO) concept. This is a mission of opportunity: The Spanish Ministry of Science and Innovation (MICINN) approved in 2009 a proposal to include a polarimetric Global Navigation Satellite System (GNSS) RO payload on board of the Spanish Earth Observation satellite PAZ. The launch of the satellite is scheduled for October 2015, and it will be followed by a 6-month commissioning phase period and has an expected life of 7 years, with a goal of 10 years.The concept is similar to that used in some polarimetric weather radars: to measure the differential phase shift between the two polarimetric components of the received signal, although in this case we will use the forward scattering geometry instead of the backscattering one. It will allow us to retrieve precipitation and other hydrometeors information, and simultaneous thermodynamic vertical profiles which will help to the understanding of the thermodynamic processes beyond heavy rain events. A sensitivity analysis has been performed, showing that the rain-induced effect is above PAZ detectability threshold in 90% of the events with along-ray averaged rain rate higher than 5 mm/h. Also, a ground field campaign has been conducted prior to the launch of the satellite. The measurements from the campaign have shown the first experimental evidences that precipitation and frozen hydrometeors induce a noticeable effect into the polarimetric RO observables. We will present here the actual status of the mission and the results from the field campaign. We will also discuss the results of the theoretical study of the thermodynamics and the effects of rain and frozen hydrometeors into standard and polarimetric RO, based on a large collocation exercise of COSMIC and TerrasSar-X with TRMM, GPM and CloudSat.

  3. On The TerraSAR-X Dual-Mode For Oil Slick Observation

    NASA Astrophysics Data System (ADS)

    Velotto, D.; Migliaccio, M.; Nunziata, F.; Lehner, S.

    2010-04-01

    In this study a polarimetric approach is for the first time developed and applied to X-band Synthetic Aperture Radar (SAR) data for sea oil slick observation. Following this an electromagnetic model which, based on the Co-polarized Phase Difference (CPD), allows describing the slick-free and slick-covered sea surface scattering is proposed. Single Look Complex (SSC) TerraSAR-X (TSX) data, gathered in dual polarimetric mode, in which both certified oil slicks and look-alikes are present, are analyzed. Several experiments are shown here and discussed in detail.

  4. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  5. Agricultural Land Cover from Multitemporal C-Band SAR Data

    NASA Astrophysics Data System (ADS)

    Skriver, H.

    2013-12-01

    Henning Skriver DTU Space, Technical University of Denmark Ørsteds Plads, Building 348, DK-2800 Lyngby e-mail: hs@space.dtu.dk Problem description This paper focuses on land cover type from SAR data using high revisit acquisitions, including single and dual polarisation and fully polarimetric data, at C-band. The data set were acquired during an ESA-supported campaign, AgriSAR09, with the Radarsat-2 system. Ground surveys to obtain detailed land cover maps were performed during the campaign. Classification methods using single- and dual-polarisation data, and fully polarimetric data are used with multitemporal data with short revisit time. Results for airborne campaigns have previously been reported in Skriver et al. (2011) and Skriver (2012). In this paper, the short revisit satellite SAR data will be used to assess the trade-off between polarimetric SAR data and data as single or dual polarisation SAR data. This is particularly important in relation to the future GMES Sentinel-1 SAR satellites, where two satellites with a relatively wide swath will ensure a short revisit time globally. Questions dealt with are: which accuracy can we expect from a mission like the Sentinel-1, what is the improvement of using polarimetric SAR compared to single or dual polarisation SAR, and what is the optimum number of acquisitions needed. Methodology The data have sufficient number of looks for the Gaussian assumption to be valid for the backscatter coefficients for the individual polarizations. The classification method used for these data is therefore the standard Bayesian classification method for multivariate Gaussian statistics. For the full-polarimetric cases two classification methods have been applied, the standard ML Wishart classifier, and a method based on a reversible transform of the covariance matrix into backscatter intensities. The following pre-processing steps were performed on both data sets: The scattering matrix data in the form of SLC products were

  6. Along Track Interferometry Synthetic Aperture Radar (ATI-SAR) Techniques for Ground Moving Target Detection

    DTIC Science & Technology

    2006-01-01

    DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 Words) Conventional along track interferometric synthetic aperature radar , ATI-SAR, approaches can detect...House, Inc., Norwood, MA, 1995. [14] R. Bamler and P. Hartl, " Synthetic aperture radar interferometry," Inverse Problems, vol. 14, R1-R54, 1998. [15... SYNTHETIC APERTURE RADAR (ATI-SAR) TECHNIQUES FOR GROUND MOVING TARGET DETECTION Stiefvater Consultants

  7. A 3-D SAR approach to IFSAR processing

    SciTech Connect

    DOERRY,ARMIN W.; BICKEL,DOUGLAS L.

    2000-03-01

    Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super-resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.

  8. Likelihood Ratio Test Polarimetric SAR Ship Detection Application

    DTIC Science & Technology

    2005-12-01

    IHHI, green = IHV+ VHI , blue = IVVl) and the Pauli Decomposition (red - double bounce, green = volume scatter, blue = single bounce). On the right side...before, three files that combine to form a basic RGB composite representation of the image are generated (Red=IHHI, green=IHV+ VHI , blue-jVVI). Then, six...IHV- VHI . The image is then displayed in the main display. If the channel viewports are turned on, the HH channel is shown in the first viewport, the

  9. Recent Advances In Radar Polarimetry And Polarimetric SAR Interferometry

    DTIC Science & Technology

    2007-02-01

    EUSAR Conference, 4-6 June 2002, Cologne, Germany. [134] Krieger, G., M. Wendler, J. Mittermayer ,, S. Buckreuss F. Witte, W. Keydel, A. Moreira, 2002...Misner, C.W., K.S. Thorne and A Wheeler, 1997, Gravitation, W.H. Freeman & Co., New York (twentieth printing: 1997) [171] Mittermayer , J., A. Moreira

  10. Optical Polarimetric Mapping of Ceres

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Li, Jian-Yang; Kelley, Michael S.

    2016-10-01

    The dwarf planet Ceres, with one quarter of its mass possibly as water, is of particular importance to understanding the origin and the evolution history of water in the inner solar system. It is also a real-life laboratory to study astrobiology. NASA's Dawn is returning detailed geological maps of Ceres until the end of this year. As a complement to the Dawn mission, using SPHERE/ZIMPOL at one of Very Large Telescopes in Chile, we obtained the optical polarimetric maps in the I and V band of the whole surface of Ceres in July and August, 2015. Polarimetric maps of Ceres are sensitive to the physical conditions (such as packing density and particle size distribution) and composition of its surface regolith. The comparative studies between our polarimetric maps and Dawn maps help us to understand the geological evolution and the space weathering processes on Ceres' surface. At the time of the ZIMPOL observations, with the best spatial resolution of about 0.02 arcsecond (equivalent to 30 km), we effectively obtained about 700 independent measurements of the surface in one polarimetric set. I will present the SPHERE observations and discuss our major findings.

  11. Object-oriented change detection based on weighted polarimetric scattering differences on POLSAR images

    NASA Astrophysics Data System (ADS)

    Shi, X.; Lu, L.; Yang, S.; Huang, G.; Zhao, Z.

    2015-06-01

    For wide application of change detection with SAR imagery, current processing technologies and methods are mostly based on pixels. It is difficult for pixel-based technologies to utilize spatial characteristics of images and topological relations of objects. Object-oriented technology takes objects as processing unit, which takes advantage of the shape and texture information of image. It can greatly improve the efficiency and reliability of change detection. Recently, with the development of polarimetric synthetic aperture radar (PolSAR), more backscattering features on different polarization state can be available for usage of object-oriented change detection study. In this paper, the object-oriented strategy will be employed. Considering the fact that the different target or target's state behaves different backscattering characteristics dependent on polarization state, an object-oriented change detection method that based on weighted polarimetric scattering difference of PolSAR images is proposed. The method operates on the objects generated by generalized statistical region merging (GSRM) segmentation processing. The merit of GSRM method is that image segmentation is executed on polarimetric coherence matrix, which takes full advantages of polarimetric backscattering features. And then, the measurement of polarimetric scattering difference is constructed by combining the correlation of covariance matrix and the difference of scattering power. Through analysing the effects of the covariance matrix correlation and the scattering echo power difference on the polarimetric scattering difference, the weighted method is used to balance the influences caused by the two parts, so that more reasonable weights can be chosen to decrease the false alarm rate. The effectiveness of the algorithm that proposed in this letter is tested by detection of the growth of crops with two different temporal radarsat-2 fully PolSAR data. First, objects are produced by GSRM algorithm

  12. On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements

    NASA Astrophysics Data System (ADS)

    Catani, Filippo; Farina, Paolo; Moretti, Sandro; Nico, Giovanni; Strozzi, Tazio

    2005-03-01

    This paper presents two examples of application of Synthetic Aperture Radar (SAR) interferometry (InSAR) to typical geomorphological problems. The principles of InSAR are introduced, taking care to clarify the limits and the potential of this technique for geomorphological studies. The application of InSAR to the quantification of landform attributes such as the slope and to the estimation of landform variations is investigated. Two case studies are presented. A first case study focuses on the problem of measuring landform attributes by interferometric SAR data. The interferometric result is compared with the corresponding one obtained by a Digital Elevation Model (DEM). In the second case study, the use of InSAR for the estimation of landform variations caused by a landslide is detailed.

  13. Polarimetric analysis of snow-covered and bare lake ice from Ku and X-band scatterometer data

    NASA Astrophysics Data System (ADS)

    Ben Khadhra, K.; Gunn, G. E.; Duguay, C. R.; Kelly, R. E.

    2011-12-01

    Lake ice plays a key role in regional climate, and has significant physical, biological and socio-economic impacts (e.g. fish overwintering habitat, winter-road transportation, public safety). In the last two decades, there has been growing interest by the international remote sensing community to explore radar polarimetry for glaciological investigations, mainly for glaciers and ice sheet. Polarimetric synthetic aperture radar (SAR) could be a potential tool for lake ice cover mapping and ice thickness estimation. In this paper, we represent results from the first investigation of fully polarimetric Ku and X-band (9.6 and 17.2 GHz, respectively) scatterometer data collected over lake near Churchill, Manitoba. Several controlled and calibrated experimental measurements were carried out during winter 2010-2011, as a contribution to the Cold Regions Hydrology High-resolution Observatory (CoReH2O) candidate mission of the European Space Agency (ESA). Scatterometer scans were made on several occasions at five undisturbed static sites on Ramsey Lake. Measurements characterizing snow and ice properties were also gathered immediately after scatterometer scans. Snow depth and density, snow water equivalent, gain size, ice thickness, ice composition and air inclusion in ice volume were determined at each site. This field data set was very important for the interpretation of the polarimetric parameters, e.g. the copolarization ratio, the copolarization phase and the depolarization ratio. First, the polarimetric parameters have been analysed for the two layers (snow and ice) covariance matrix and where snow subsequently removed. Thus, the influence of the snow layer on the polarimetric data could be quantified. Also, the Pauli and Cloude/Pottier polarimetric decompositions were applied for the two-layer and one-layer scattering mechanisms (removed snow) to quantify the effectiveness of these decompositions. Results show that the polarimetric SAR could explain the different

  14. Development Of Polarimetric Decomposition Techniques For Indian Forest Resource Assessment Using Radar Imaging Satellite (Risat-1) Images

    NASA Astrophysics Data System (ADS)

    Sridhar, J.

    2015-12-01

    The focus of this work is to examine polarimetric decomposition techniques primarily focussed on Pauli decomposition and Sphere Di-Plane Helix (SDH) decomposition for forest resource assessment. The data processing methods adopted are Pre-processing (Geometric correction and Radiometric calibration), Speckle Reduction, Image Decomposition and Image Classification. Initially to classify forest regions, unsupervised classification was applied to determine different unknown classes. It was observed K-means clustering method gave better results in comparison with ISO Data method.Using the algorithm developed for Radar Tools, the code for decomposition and classification techniques were applied in Interactive Data Language (IDL) and was applied to RISAT-1 image of Mysore-Mandya region of Karnataka, India. This region is chosen for studying forest vegetation and consists of agricultural lands, water and hilly regions. Polarimetric SAR data possess a high potential for classification of earth surface.After applying the decomposition techniques, classification was done by selecting region of interests andpost-classification the over-all accuracy was observed to be higher in the SDH decomposed image, as it operates on individual pixels on a coherent basis and utilises the complete intrinsic coherent nature of polarimetric SAR data. Thereby, making SDH decomposition particularly suited for analysis of high-resolution SAR data. The Pauli Decomposition represents all the polarimetric information in a single SAR image however interpretation of the resulting image is difficult. The SDH decomposition technique seems to produce better results and interpretation as compared to Pauli Decomposition however more quantification and further analysis are being done in this area of research. The comparison of Polarimetric decomposition techniques and evolutionary classification techniques will be the scope of this work.

  15. Cluster membership probability: polarimetric approach

    NASA Astrophysics Data System (ADS)

    Medhi, Biman J.; Tamura, Motohide

    2013-04-01

    Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q (per cent) and u (per cent) for the proper-motion member stars depends on the interstellar and intracluster differential reddening in the open cluster. It is found that this method could be used to estimate the cluster membership probability if we have additional polarimetric and photometric information for a star to identify it as a probable member/non-member of a particular cluster, such as the maximum wavelength value (λmax), the unit weight error of the fit (σ1), the dispersion in the polarimetric position angles (overline{ɛ }), reddening (E(B - V)) or the differential intracluster reddening (ΔE(B - V)). This method could also be used to estimate the membership probability of known member stars having no membership probability as well as to resolve disagreements about membership among different proper-motion surveys.

  16. POLARIMETRIC OBSERVATIONS OF {sigma} ORIONIS E

    SciTech Connect

    Carciofi, A. C.; Faes, D. M.; Townsend, R. H. D.; Bjorkman, J. E.

    2013-03-20

    Some massive stars possess strong magnetic fields that confine plasma in the circumstellar environment. These magnetospheres have been studied spectroscopically, photometrically, and, more recently, interferometrically. Here we report on the first firm detection of a magnetosphere in continuum linear polarization, as a result of monitoring {sigma} Ori E at the Pico dos Dias Observatory. The non-zero intrinsic polarization indicates an asymmetric structure whose minor elongation axis is oriented 150. Degree-Sign 0 east of the celestial north. A modulation of the polarization was observed with a period of half of the rotation period, which supports the theoretical prediction of the presence of two diametrally opposed, corotating blobs of gas. A phase lag of -0.085 was detected between the polarization minimum and the primary minimum of the light curve, suggestive of a complex shape of the plasma clouds. We present a preliminary analysis of the data with the Rigidly Rotating Magnetosphere model, which could not reproduce simultaneously the photometric and polarimetric data. A toy model comprising two spherical corotating blobs joined by a thin disk proved more successful in reproducing the polarization modulation. With this model we were able to determine that the total scattering mass of the thin disk is similar to the mass of the blobs (2M{sub b}/M{sub d} = 1.2) and that the blobs are rotating counterclockwise on the plane of the sky. This result shows that polarimetry can provide a diagnostic of the geometry of clouds, which will serve as an important constraint for improving the Rigidly Rotating Magnetosphere model.

  17. Precision Interferometric Dilatometer

    DTIC Science & Technology

    2013-05-23

    reference mirrors on a ULE glass or Zerodur block in a thermally insulated - part of the system. Since the BIP, (or B2P2) paths are in air, mounting...into the vacuum chamber. The reference mirror support (e.g., Zerodur ) is shielded from temperature excursion, and a conservative error is ALu - aL... Mirror (1000 V B 15 pm motion)s............s.. 24 10. Interferometric Counter Output vs. Voltage Applied to PZT-Driven Mirror (fine scale

  18. Interferometric Remapped Array Nulling

    NASA Astrophysics Data System (ADS)

    Abe, L.; Aristidi, E.; Vakili, F.; Domiciano, A.

    We present an interferometric beam recombination technique which allows achromatic and direct true imaging of targets at very high angular resolution. This technique intrinsically overcomes the main problems of Labeyrie's hypertelescope design, and can be used in a nulling configuration. It is thus particularly well suited for high contrast imaging in the context of exo-planet search and characterization especially for future space-borne arrays. We present the concept on a formal basis, and discuss its instrumental implementation.

  19. Crustal Deformation of Long Valley Caldera, Eastern California, Inferred from L-Band InSAR

    NASA Astrophysics Data System (ADS)

    Tanaka, Akiko

    2008-11-01

    SAR interferometric analyses using JERS-1/SAR and ALOS/PALSAR images of Long Valley caldera are performed. JERS-1/SAR interferogram (June 1993-August 1996) shows a small region of subsidence associated the Casa Diablo geothermal power plant, which is superimposed on a broad scale uplift/expansion of the resurgent dome. ALOS/PALSAR interferograms show no deformation of the resurgent dome as expected. However, it may show a small region of subsidence associated the Casa Diablo geothermal power plant.

  20. Relative astrometry of compact flaring structures in Sgr A* with polarimetric very long baseline interferometry

    SciTech Connect

    Johnson, Michael D.; Doeleman, Sheperd S.; Fish, Vincent L.; Broderick, Avery E.; Wardle, John F. C.; Marrone, Daniel P.

    2014-10-20

    We demonstrate that polarimetric interferometry can be used to extract precise spatial information about compact polarized flares of Sgr A*. We show that, for a faint dynamical component, a single interferometric baseline suffices to determine both its polarization and projected displacement from the quiescent intensity centroid. A second baseline enables two-dimensional reconstruction of the displacement, and additional baselines can self-calibrate using the flare, enhancing synthesis imaging of the quiescent emission. We apply this technique to simulated 1.3 mm wavelength observations of a 'hot spot' embedded in a radiatively inefficient accretion disk around Sgr A*. Our results indicate that, even with current sensitivities, polarimetric interferometry with the Event Horizon Telescope can achieve ∼5 μas relative astrometry of compact flaring structures near Sgr A* on timescales of minutes.

  1. (abstract) The SIR-C/X-SAR Mission

    NASA Technical Reports Server (NTRS)

    Way, JoBea; Evans, Diane; Elachi, Charles

    1993-01-01

    The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is a cooperative experiment between the National Aeronautics and Space Administration (NASA), the German Space Agency (DARA), and the Italian Space Agency (ASI). The experiment is the next evolutionary step in NASA's Spaceborne Imaging Radar (SIR) program that began with the Seasat SAR in 1978, and continued with SAR -A in 1981 and SAR-B in 1984. The program will eventually lead to the Earth Observing System (EOS) SAR later in this decade. SIR-C will provide increased capability over Seasat, SIR-A, and SIR-B by acquiring polarimetric images simultaneously at two microwave frequencies: L-band (wavelength 24 cm) and C-band (wavelength 6 cm). X-SAR will operate at X-band (wavelength 3 cm) with VV polarization, resulting in a three-frequency capability. Because radar backscatter is most strongly influenced by objects comparable in size to the radar wavelength, this multifrequency capability will provide information about the Earth's surface over a wide range of scales not discernable with single-frequency experiments. The polarimetric data will yield quantitative information about the surface geometric structure, vegetation dielectric properties, and surface discontinuities. The first SIR-C/X-SAR flight is planned for early in 1994, with two subsequent flights in different seasons to enable data aquisition under different environmental conditions. SIR-C/X-SAR will collect data for a period of 6 to 9 days during each flight. The instrument will be flown in a 57(deg) inclination orbit with a nomimal orbit altitude of 215 km. This altitude will result in a slightly drifting orbit. The latest status of the SIR-C/X-SAR mission and instrument design, science activities, and expected results will be presented.

  2. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is

  3. Sentinel-1 Sar Imagery for Finnish Agricultural Subsidy Control

    NASA Astrophysics Data System (ADS)

    Torma, Markus; Munck, Anders; Mattila, Olli-Pekka; Harma, Pekka; Arslan, Nadir

    2016-08-01

    Agricultural parcels were classified to six general plant groups (winter cereals, spring cereals, peas, potato, rapeseed and grasses) using Sentinel-1 Interferometric Wide swath SAR imagery. The results were encouraging; the best overall accuracy was about 95%. The division of parcels to ploughed or non-ploughed parcels was possible if images were available after snow melt and before greening.

  4. InSAR captures rifting and volcanism in East Africa

    USGS Publications Warehouse

    Poland, Michael P.

    2006-01-01

    In the past decade, synthetic aperture radar interferometric (InSAR) has enjoyed increasing use as a tool for detecting and characterizing surface deformation associated with volcanoes, earthquakes, glaciers, and other geological processes. Though InSAR can only image deformation that occurs along the radar line-of-sight and is subject to atmospheric, orbital, and other errors that can be difficult to quantify, the method has the advantage of high spatial resolution (especially in arid, unvegetated environments) without requiring equipment on the ground. As a result, InSAR is extremely useful for mapping deformation in poorly accessible or unmonitored parts of the world.

  5. Monitoring urban subsidence based on SAR lnterferometric point target analysis

    USGS Publications Warehouse

    Zhang, Y.; Zhang, Jiahua; Gong, W.; Lu, Zhiming

    2009-01-01

    lnterferometric point target analysis (IPTA) is one of the latest developments in radar interferometric processing. It is achieved by analysis of the interferometric phases of some individual point targets, which are discrete and present temporarily stable backscattering characteristics, in long temporal series of interferometric SAR images. This paper analyzes the interferometric phase model of point targets, and then addresses two key issues within IPTA process. Firstly, a spatial searching method is proposed to unwrap the interferometric phase difference between two neighboring point targets. The height residual error and linear deformation rate of each point target can then be calculated, when a global reference point with known height correction and deformation history is chosen. Secondly, a spatial-temporal filtering scheme is proposed to further separate the atmosphere phase and nonlinear deformation phase from the residual interferometric phase. Finally, an experiment of the developed IPTA methodology is conducted over Suzhou urban area. Totally 38 ERS-1/2 SAR scenes are analyzed, and the deformation information over 3 546 point targets in the time span of 1992-2002 are generated. The IPTA-derived deformation shows very good agreement with the published result, which demonstrates that the IPTA technique can be developed into an operational tool to map the ground subsidence over urban area.

  6. Oil spill detection from SAR image using SVM based classification

    NASA Astrophysics Data System (ADS)

    Matkan, A. A.; Hajeb, M.; Azarakhsh, Z.

    2013-09-01

    In this paper, the potential of fully polarimetric L-band SAR data for detecting sea oil spills is investigated using polarimetric decompositions and texture analysis based on SVM classifier. First, power and magnitude measurements of HH and VV polarization modes and, Pauli, Freeman and Krogager decompositions are computed and applied in SVM classifier. Texture analysis is used for identification using SVM method. The texture features i.e. Mean, Variance, Contrast and Dissimilarity from them are then extracted. Experiments are conducted on full polarimetric SAR data acquired from PALSAR sensor of ALOS satellite on August 25, 2006. An accuracy assessment indicated overall accuracy of 78.92% and 96.46% for the power measurement of the VV polarization and the Krogager decomposition respectively in first step. But by use of texture analysis the results are improved to 96.44% and 96.65% quality for mean of power and magnitude measurements of HH and VV polarizations and the Krogager decomposition. Results show that the Krogager polarimetric decomposition method has the satisfying result for detection of sea oil spill on the sea surface and the texture analysis presents the good results.

  7. The NASA Polarimetric Radar (NPOL)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  8. Tight formation flying for an along-track SAR interferometer

    NASA Astrophysics Data System (ADS)

    Gill, Eberhard; Runge, Hartmut

    2004-08-01

    While space-borne synthetic aperture radar (SAR) has evolved into a mature technology over the past two decades, there is a growing interest in interferometric SAR applications. Especially along-track interferometry with its capability to resolve the velocity of on-ground objects and ocean currents is of high interest for scientific applications. The accuracy of the resolved velocity on ground scales directly with the along-track separation between adjacent SAR antennas. Since space vehicles are quite limited in size, a formation flying approach with two SAR instruments distributed onto two spacecraft thus appears to be an innovative approach to along-track SAR interferometry. In the framework of an ESA study, this paper discusses the potential benefits, drawbacks and problems associated with a close formation flight for an along-track interferometry SAR mission. To this end, the absolute and relative orbit reconstruction requirements for the SAR processing chain are derived from basic interferometric principles as well as appropriate baselines of the satellite formation in L-Band and X-Band. A discussion of potential space-borne navigation sensors is presented along with the accuracy of state-of-the-art relative orbit reconstruction. Finally, appropriate thrusters for formation acquisition and control are discussed together with approaches to formation flying guidance and control as well as fuel consumption.

  9. Preliminary Results of Estimating Soil Moisture Over Bare Soil Using Full-Polarimetric ALOS-2 Data

    NASA Astrophysics Data System (ADS)

    Sekertekin, A.; Marangoz, A. M.; Abdikan, S.; Esetlili, M. T.

    2016-10-01

    Synthetic Aperture Radar (SAR) imaging system is one of the most effective way for Earth observation. The aim of this study is to present the preliminary results about estimating soil moisture using L-band Synthetic Aperture Radar (SAR) data. Full-polarimetric (HH, HV, VV, VH) ALOS-2 data, acquired on 22.04.2016 with the incidence angle of 30.4o, were used in the study. Simultaneously with the SAR acquisition, in-situ soil moisture samples over bare agricultural lands were collected and evaluated using gravimetric method. Backscattering coefficients for all polarizations were obtained and linear regression analysis was carried out with in situ moisture measurements. The best correlation coefficient was observed with VV polarization. Cross-polarized backscattering coefficients were not so sensitive to soil moisture content. In the study, it was observed that soil moisture maps can be retrieved with the accuracy about 14% (RMSE).

  10. Combined DEM Extration Method from StereoSAR and InSAR

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  11. Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping

    NASA Astrophysics Data System (ADS)

    Maghsoudi, Yasser

    Forests are a major natural resource of the Earth and control a wide range of environmental processes. Forests comprise a major part of the planet's plant biodiversity and have an important role in the global hydrological and biochemical cycles. Among the numerous potential applications of remote sensing in forestry, forest mapping plays a vital role for characterization of the forest in terms of species. Particularly, in Canada where forests occupy 45% of the territory, representing more than 400 million hectares of the total Canadian continental area. In this thesis, the potential of polarimetric SAR (PolSAR) Radarsat-2 data for forest mapping is investigated. This thesis has two principle objectives. First is to propose algorithms for analyzing the PolSAR image data for forest mapping. There are a wide range of SAR parameters that can be derived from PolSAR data. In order to make full use of the discriminative power offered by all these parameters, two categories of methods are proposed. The methods are based on the concept of feature selection and classifier ensemble. First, a nonparametric definition of the evaluation function is proposed and hence the methods NFS and CBFS. Second, a fast wrapper algorithm is proposed for the evaluation function in feature selection and hence the methods FWFS and FWCBFS. Finally, to incorporate the neighboring pixels information in classification an extension of the FWCBFS method i.e. CCBFS is proposed. The second objective of this thesis is to provide a comparison between leaf-on (summer) and leaf-off (fall) season images for forest mapping. Two Radarsat-2 images acquired in fine quad-polarized mode were chosen for this study. The images were collected in leaf-on and leaf-off seasons. We also test the hypothesis whether combining the SAR parameters obtained from both images can provide better results than either individual datasets. The rationale for this combination is that every dataset has some parameters which may be

  12. Nonlinear interferometric vibrational imaging.

    PubMed

    Marks, Daniel L; Boppart, Stephen A

    2004-03-26

    Coherent anti-Stokes Raman scattering (CARS) processes are "coherent," but the phase of the anti-Stokes radiation is lost by most incoherent spectroscopic CARS measurements. We propose a Raman microscopy imaging method called nonlinear interferometric vibrational imaging, which measures Raman spectra by obtaining the temporal anti-Stokes signal through nonlinear interferometry. With a more complete knowledge of the anti-Stokes signal, we show through simulations that a high-resolution Raman spectrum can be obtained of a molecule in a single pulse using broad band radiation. This could be useful for identifying the three-dimensional spatial distribution of molecular species in tissue.

  13. Fusion of LADAR with SAR for precision strike

    SciTech Connect

    Cress, D.H.; Muguira, M.R.

    1995-03-01

    This paper presents a concept for fusing 3-dimensional image reconnaissance data with LADAR imagery for aim point refinement. The approach is applicable to fixed or quasi-fixed targets. Quasi-fixed targets are targets that are not expected to be moved between the time of reconnaissance and the time of target engagement. The 3-dimensional image data is presumed to come from standoff reconnaissance assets tens to hundreds of kilometers from the target area or acquisitions prior to hostilities. Examples are synthetic aperture radar (SAR) or stereoprocessed satellite imagery. SAR can be used to generate a 3-dimensional map of the surface through processing of data acquired with conventional SAR acquired using two closely spaced, parallel reconnaissance paths, either airborne or satellite based. Alternatively, a specialized airborne SAR having two receiving antennas may be used for data acquisition. The data sets used in this analysis are: (1) LADAR data acquired using a Hughes-Danbury system flown over a portion of Kirtland AFB during the period September 15--16, 1993; (2) two pass interferometric SAR data flown over a terrain-dominated area of Kirtland AFB; (3) 3-dimensional mapping of an urban-dominated area of the Sandia National Laboratories and adjacent cultural area extracted from aerial photography by Vexcel Corporation; (4) LADAR data acquired at Eglin AFB under Wright Laboratory`s Advanced Technology Ladar System (ATLAS) program using a 60 {mu}J, 75 KHz Co{sub 2} laser; and (5) two pass interferometric SAR data generated by Sandia`s STRIP DCS (Data Collection System) radar corresponding to the ATLAS LADAR data. The cultural data set was used in the urban area rather than SAR because high quality interferometric SAR data were not available for the urban-type area.

  14. Classification of PolSAR image based on quotient space theory

    NASA Astrophysics Data System (ADS)

    An, Zhihui; Yu, Jie; Liu, Xiaomeng; Liu, Limin; Jiao, Shuai; Zhu, Teng; Wang, Shaohua

    2015-12-01

    In order to improve the classification accuracy, quotient space theory was applied in the classification of polarimetric SAR (PolSAR) image. Firstly, Yamaguchi decomposition method is adopted, which can get the polarimetric characteristic of the image. At the same time, Gray level Co-occurrence Matrix (GLCM) and Gabor wavelet are used to get texture feature, respectively. Secondly, combined with texture feature and polarimetric characteristic, Support Vector Machine (SVM) classifier is used for initial classification to establish different granularity spaces. Finally, according to the quotient space granularity synthetic theory, we merge and reason the different quotient spaces to get the comprehensive classification result. Method proposed in this paper is tested with L-band AIRSAR of San Francisco bay. The result shows that the comprehensive classification result based on the theory of quotient space is superior to the classification result of single granularity space.

  15. Characterizing hydrologic changes of Great Dismal Swamp using SAR/InSAR technology

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lu, Z.; Zhu, Z.

    2015-12-01

    Great Dismal Swamp is one of the largest, northernmost peatlands on the Atlantic Coastal Plain, and the swamp is underlain by a thick water-logged organic soil layer (peat) made up of dead and decaying plant material. The peatlands play a role as the sink of large amount of soil organic carbon and methane. However, the disturbance of the peatland negatively impacted the ecosystem and contributed to the climate change caused by the released greenhouse gas. Our SAR/InSAR methods observed the hydrologic changes in the peatlands, which is a key factor to conserve the wetland, through several methods. First, we compared averaged SAR intensity from C- and L-band SAR sensors with groundwater level changes, and deduced a linear relationship between the SAR backscattering intensity and the groundwater level change. Second, we extracted the inundated area during wet season from InSAR coherence. Third, we measured the relative water level changes in the inundated area using the interferometric phases. Finally, we estimated the groundwater level changes corresponding to the soil moisture changes from time-series InSAR method. Our results can provide the unique opportunity to understand the occurring hydrologic and vegetation changes in the Great Dismal Swamp.

  16. Estimation of Soil Moisture for Vegetated Surfaces Using Multi-Temporal L-Band SAR Measurements

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Sun, G.; Hsu, A.; Wang, J.; ONeill, P.; Ranson, J.; Engman, E. T.

    1997-01-01

    This paper demonstrates the technique to estimate ground surface and vegetation scattering components, based on the backscattering model and the radar decomposition theory, under configuration of multi-temporal L-band polarimetric SAR measurement. This technique can be used to estimate soil moisture of vegetated surface.

  17. Interferometric Fiber Optic Sensors

    PubMed Central

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair. PMID:22736961

  18. Interferometric Remapped Array Nulling

    NASA Astrophysics Data System (ADS)

    Vakili, F.; Aristidi, E.; Abe, L.; Lopez, B.

    2004-07-01

    This paper describes a method of beam-combination in the so-called hypertelescope imaging technique recently introduced by Labeyrie in optical interferometry. The method we propose is an alternative to the Michelson pupil reconfiguration that suffers from the loss of the classical object-image convolution relation. From elementary theory of Fourier optics we demonstrate that this problem can be solved by reconfiguring images instead of pupils. Imaging is performed in a combined pupil-plane where the point-source intensity distribution (PSID by comparison to the more commonly quoted point-spread function, PSF) tends towards a pseudo Airy disc for a sufficiently large number of telescopes. Our method is applicable to snap-shot imaging of extended sources with a field limited to the Airy pattern of single telescopes operated in a co-phased multi-aperture interferometric array. It thus allows to apply conveniently pupil plane coronagraphy. Our technique called Interferometric Remapped Array Nulling (IRAN) is particularly suitable for high dynamic imaging of extra-solar planetary companions or extra-galactic objects where long baseline interferometry would closely probe the central regions of AGNs for instance. We also discuss the application of IRAN to improve the performances of imaging and/or nulling interferometers like the full-fledged VLTI array or the DARWIN space-borne mission.

  19. Interferometric fiber optic sensors.

    PubMed

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  20. Recovering Seasat SAR Data

    NASA Astrophysics Data System (ADS)

    Logan, T. A.; Arko, S. A.; Rosen, P. A.

    2013-12-01

    supposedly 'steadily' changing millisecond (MSEC) timing values. The elevated BER made even a basic linear fit difficult. In addition, the MSEC field often shows a 'stair step' function, assumed to be a spacecraft clock malfunction. To fix these issues, three separate levels of time filtering were applied. After the initial three-pass time filter, a fourth procedure located and removed discontinuities - missing data sections that occurred randomly throughout the data takes - by inserting random valued lines into the effected data file and repeated value lines into the corresponding header file. Finally, a fifth pass through the metadata was required to fix remaining start time anomalies. After the data were filtered, all times were linearly increasing, and all discontinuities filled, images could finally be formed. ASF DAAC utilized a custom version of ROI, the Repeat Orbit Interferometric SAR processor, to focus the data. Special focusing tasks for Seasat included dealing with Doppler ambiguity issues and filtering out 'spikes' in the power spectra. Once these obstacles were overcome via additional pre-processing software developed in house, well-focused SAR imagery was obtained from approximately 80% the ASF DAAC archives. These focused products, packaged in either HDF5 or geotiff formats with XML metadata, are downloadable from ASF DAAC free of charge.

  1. Long-range polarimetric imaging through fog.

    PubMed

    Fade, Julien; Panigrahi, Swapnesh; Carré, Anthony; Frein, Ludovic; Hamel, Cyril; Bretenaker, Fabien; Ramachandran, Hema; Alouini, Mehdi

    2014-06-20

    We report an experimental implementation of long-range polarimetric imaging through fog over kilometric distance in real field atmospheric conditions. An incoherent polarized light source settled on a telecommunication tower is imaged at a distance of 1.3 km with a snapshot polarimetric camera including a birefringent Wollaston prism, allowing simultaneous acquisition of two images along orthogonal polarization directions. From a large number of acquisitions datasets and under various environmental conditions (clear sky/fog/haze, day/night), we compare the efficiency of using polarized light for source contrast increase with different signal representations (intensity, polarimetric difference, polarimetric contrast, etc.). With the limited-dynamics detector used, a maximum fourfold increase in contrast was demonstrated under bright background illumination using polarimetric difference image.

  2. Interferometric synthetic-aperature radar (InSAR): Chapter 5

    USGS Publications Warehouse

    Dzurisin, Daniel; Lu, Zhong

    2007-01-01

    Geodesists are, for the most part, a patient and hardworking lot. A day spent hiking to a distant peak, hours spent waiting for clouds to clear a line-of-sight between observation points, weeks spent moving methodically along a level line – such is the normal pulse of the geodetic profession. The fruits of such labors are all the more precious because they are so scarce. A good day spent with an electronic distance meter (EDM) or level typically produces fewer than a dozen data points. A year of tiltmeter output sampled at ten-minute intervals constitutes less than half a megabyte of data. All of the leveling data ever collected at Yellowstone Caldera fit comfortably on a single PC diskette. These quantities are trivial by modern data-storage standards, in spite of the considerable efforts expended to produce them.

  3. Segmenting and extracting terrain surface signatures from fully polarimetric multilook SIR-C data

    NASA Astrophysics Data System (ADS)

    Geaga, Jorge V.

    2016-05-01

    We report results from the segmenting and study of terrain surface signatures of fully polarimetric multilook L-band and C-band SIR-C data. Entropy/alpha/anisotropy decomposition features are available from single multilook pixel data. This eliminates the need to average data from several pixels. Entropy and alpha are utilized in the segmentation along with features we have developed primarily from the eigenanalysis of the Kennaugh matrices of multilook data. We have previously reported on our algorithm for segmenting fully polarimetric single look TerraSAR-X, multilook SIR-C and 7 band Landsat 5 data featuring the iterative application of a feedforward neural network with one hidden layer. A comparison of signatures from simultaneously recorded data at L and C bands is presented. The terrain surfaces surveyed include the ocean, lakes, lake ice, bare ground, desert salt flats, lava beds, vegetation, sand dunes, rough desert surfaces, agricultural and urban areas.

  4. Tropical forest tree stands characterization with L-band polarimetric radar

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Tseng

    1990-01-01

    The effectiveness of using L-band polarimetric data to determine tropical tree-stand parameters is discussed with specific attention given to the correction of the radar data. Tree-parameter data from ground studies is compared to L-band polarimetric data (in both uncorrected and topographically corrected forms) for two test areas. The test sites are at two different elevations but both include 81 test plots with topographic data and tree-characteristic data given. Synthetic-aperture radar (SAR) data are found to be related to bole volume and tree volume, and the topographically corrected data show results similar to the uncorrected data. Similar r-values are given for both data sets because the data with incidence-angle values below 35 and above 55 are removed. Topographical correction is important when local incidence angles exceed the limits.

  5. Enhanced resolution in Sar/ISAR imaging using iterative sidelobe apodization.

    PubMed

    Xu, Xiaojian; Narayanan, Ram M

    2005-04-01

    Resolution enhancement techniques in radar imaging have attracted considerable interest in recent years. In this work, we develop an iterative sidelobe apodization technique and investigate its applications to synthetic aperture radar (SAR) and inverse SAR (ISAR) image processing. A modified noninteger Nyquist spatially variant apodization (SVA) formulation is proposed, which is applicable to direct iterative image sidelobe apodization without using computationally intensive upsampling interpolation. A refined iterative sidelobe apodization procedure is then developed for image-resolution enhancement. Examples using this technique demonstrate enhanced image resolution in various applications, including airborne SAR imaging, image processing for three-dimensional interferometric ISAR imaging, and foliage-penetration ultrawideband SAR image processing.

  6. An improved method for polarimetric image restoration in interferometry

    NASA Astrophysics Data System (ADS)

    Pratley, Luke; Johnston-Hollitt, Melanie

    2016-11-01

    Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.

  7. Polarimetric microlensing of circumstellar discs

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-12-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar discs around the microlensed stars located at the Galactic bulge. These discs which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these discs can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot discs which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of discs, we show that although the polarimetric efficiency for detecting discs is similar to the photometric observation, but polarimetry observations can help to constraint the disc geometrical parameters e.g. the disc inner radius and the lens trajectory with respect to the disc semimajor axis. On the other hand, the time-scale of polarimetric curves of these microlensing events generally increases while their photometric time-scale does not change. By performing a Monte Carlo simulation, we show that almost four optically thin discs around the Galactic bulge sources are detected (or even characterized) through photometry (or polarimetry) observations of high-magnification microlensing events during 10-yr monitoring of 150 million objects.

  8. Multifrequency, Multipolarization External Calibration of the SIR-C/X-SAR Radars

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony; Sarabandi, K.

    1996-01-01

    Progress and the future plans for the following objectives are discussed: (1) Assess the accuracy at which the SIR-C/X-SAR standard data products can be calibrated through the use of ground calibrators to estimate the end-to-end system polarization calibration constants (or distortion parameters) and incorporate the constants into the data processing; (2) Study the cross-calibration between three multipolarization systems: SIR-C, the National Aeronautics and Space Administration/Jet Propulsion Laboratory (NASA/JPL) DC-8 SAR, and the University of Michigan ground-based polarimetric scatterometer; (3) Evaluate the calibration "stability" of SIR-C/X-SAR (measured by variations in the calibration constants) over the range swath width and over a specified distance in azimuth. Variations over a 12-hour period (between ascending and descending passes) will also be studied; and (4) Develop a cost-effective calibration plan including development of inexpensive polarimetric active calibrators.

  9. Nonclassical light in interferometric measurements

    NASA Technical Reports Server (NTRS)

    Ansari, N. A.; Difiore, L.; Romano, R.; Solimeno, S.; Zaccaria, F.; Manko, Margarita A.; Manko, Vladimir I.

    1995-01-01

    It is shown that the even and odd coherent light and other nonclassical states of light like superposition of coherent states with different phases may replace the squeezed light in an interferometric gravitational wave detector to increase its sensitivity.

  10. Interferometric interpretation for the degree of polarization of classical optical beams

    NASA Astrophysics Data System (ADS)

    Leppänen, Lasse-Petteri; Saastamoinen, Kimmo; Friberg, Ari T.; Setälä, Tero

    2014-11-01

    We introduce an interferometric interpretation for the degree of polarization as a quantity characterizing the ability of a light beam to generate polarization modulation when it interferes with itself. The result is confirmed experimentally in Young's interferometer with beams of controlled degree of polarization and by comparing to a standard polarimetric measurement. The new interpretation is a consequence of the electromagnetic interference law that we formulate for stationary, quasi-monochromatic, partially polarized light beams in time domain. Our work provides fundamental insight into the role of polarization in electromagnetic coherence and interference.

  11. Comparison of JPL-AIRSAR and DLR E-SAR images from the MAC Europe 1991 campaign over testsite Oberpfaffenhofen: Frequency and polarization dependent backscatter variations from agricultural fields

    NASA Technical Reports Server (NTRS)

    Schmullius, C.; Nithack, J.

    1992-01-01

    On July 12, the MAC Europe '91 (Multi-Sensor Airborne Campaign) took place over test site Oberpfaffenhofen. The DLR Institute of Radio-Frequency Technology participated with its C-VV, X-VV, and X-HH Experimental Synthetic Aperture Radar (E-SAR). The high resolution E-SAR images with a pixel size between 1 and 2 m and the polarimetric AIRSAR images were analyzed. Using both sensors in combination is a unique opportunity to evaluate SAR images in a frequency range from P- to X-band and to investigate polarimetric information.

  12. Terrain Measurement with SAR/InSAR

    NASA Astrophysics Data System (ADS)

    Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang

    2016-08-01

    Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.

  13. Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters.

    PubMed

    Pascazio, Vito; Schirinzi, Gilda

    2002-01-01

    In this paper, a technique that is able to reconstruct highly sloped and discontinuous terrain height profiles, starting from multifrequency wrapped phase acquired by interferometric synthetic aperture radar (SAR) systems, is presented. We propose an innovative unwrapping method, based on a maximum likelihood estimation technique, which uses multifrequency independent phase data, obtained by filtering the interferometric SAR raw data pair through nonoverlapping band-pass filters, and approximating the unknown surface by means of local planes. Since the method does not exploit the phase gradient, it assures the uniqueness of the solution, even in the case of highly sloped or piecewise continuous elevation patterns with strong discontinuities.

  14. Diverse deformation patterns of Aleutian volcanoes from InSAR

    USGS Publications Warehouse

    Lu, Zhiming; Dzurisin, D.; Wicks, C.; Power, J.

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) is capable of measuring ground-surface deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens of meters over an area of hundreds to thousands of square kilometers. With its global coverage and all-weather imaging capability, InSAR has become an increasingly important measurement technique for constraining magma dynamics of volcanoes over remote regions such as the Aleutian Islands. The spatial pattern of surface deformation data derived from InSAR images enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper summarizes the diverse deformation patterns of the Aleutian volcanoes observed with InSAR and demonstrates that deformation patterns and associated magma supply mechanisms in the Aleutians are diverse and vary between volcanoes. These findings provide a basis for improved models and better understanding of magmatic plumbing systems.

  15. Infrastructure stability surveillance with high resolution InSAR

    NASA Astrophysics Data System (ADS)

    Balz, Timo; Düring, Ralf

    2017-02-01

    The construction of new infrastructure in largely unknown and difficult environments, as it is necessary for the construction of the New Silk Road, can lead to a decreased stability along the construction site, leading to an increase in landslide risk and deformation caused by surface motion. This generally requires a thorough pre-analysis and consecutive surveillance of the deformation patterns to ensure the stability and safety of the infrastructure projects. Interferometric SAR (InSAR) and the derived techniques of multi-baseline InSAR are very powerful tools for a large area observation of surface deformation patterns. With InSAR and deriver techniques, the topographic height and the surface motion can be estimated for large areas, making it an ideal tool for supporting the planning, construction, and safety surveillance of new infrastructure elements in remote areas.

  16. Contrast optimization in broadband passive polarimetric imaging.

    PubMed

    Boffety, Matthieu; Hu, Haofeng; Goudail, François

    2014-12-01

    Polarimetric imaging is often performed using light with a narrow spectrum for the sake of polarization measurement accuracy. However, due to the use of narrowband filters, this reduces the amount of light entering the system and thus the signal-to-noise ratio. This may not be the best choice for target detection applications, where a high target contrast is required rather than polarimetric accuracy. We address contrast optimization for broadband passive polarimetric imaging. We show through simulation and experiments that polarimetric contrast can be significantly increased by broadening the spectrum of analyzed light. In addition, we show that the contrast can be optimized by taking into account the spectral dependence of the scene and of the polarization analysis devices.

  17. Polarimetric passive millimeter-wave sensing

    NASA Astrophysics Data System (ADS)

    Wikner, David A.; Samples, Greg

    2001-08-01

    The US Army Research Laboratory has developed a 93-Ghz Stokes radiometer that is currently being used to quantify the polarimetric signature of various objects and materials. Preliminary measurement using the radiometer have been made of various terrain types and objects, which have included an asphalt aircraft runway, a gravel road, water, grass a tank, and a truck. A description of the development of the radiometer, its performance, and some initial results are presented. These results are the first step in assessing the utility of polarimetric radiometry and specifically how missions can be enhanced using this information. The results show that polarimetric radiometry may be useful for eliminating water as a false target in the imagery. It is also shown that asphalt aircraft runways do have a polarimetric signature that is different than short dormant grass at a 3-deg glide slope angle.

  18. Investigations on polarimetric terahertz frequency domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Gong, Yandong; Zhang, Banghong; Notake, Takashi; Minamide, Hiroaki; Olivo, Malini; Sugii, Shigeki

    2014-04-01

    A polarimetric Terahertz frequency-domain spectroscopy system is presented which has an additional polarization measurement function at the Terahertz band. The achromatic Terahertz waveplate, which acts as the key device in the system, is also presented.

  19. The polarimetric capabilities of NICMOS

    NASA Technical Reports Server (NTRS)

    Hines, D. C.; Schmidt, G. D.; Lytle, Dyer

    1997-01-01

    The polarimetric capabilities of Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) are demonstrated from data obtained during the Early Release Observations of IRC+10216 and CRL 2688 (the Egg Nebula). Preflight Thermal Vacuum tests revealed that each polarizer has a unique polarizing efficiency, and that the position angle offsets differ from the nominal positions of O deg, 120 deg and 240 deg. Therefore an algorithm different from that of an ideal polarizer is required for proper reduction of astronomical polarimetry data. We discuss this new algorithm and the results of its application to NICMOS data. We also present preliminary estimates of the Instrumental Polarization, the sensitivity of the grisms to polarized light, and the accuracy of NICMOS imaging polarimetry for faint and low polarization objects. Finally, we suggest strategies for maximizing the success of NICMOS polarimetry observations.

  20. Polarimetric sensor systems for airborne ISR

    NASA Astrophysics Data System (ADS)

    Chenault, David; Foster, Joseph; Pezzaniti, Joseph; Harchanko, John; Aycock, Todd; Clark, Alex

    2014-06-01

    Over the last decade, polarimetric imaging technologies have undergone significant advancements that have led to the development of small, low-power polarimetric cameras capable of meeting current airborne ISR mission requirements. In this paper, we describe the design and development of a compact, real-time, infrared imaging polarimeter, provide preliminary results demonstrating the enhanced contrast possible with such a system, and discuss ways in which this technology can be integrated with existing manned and unmanned airborne platforms.

  1. Forest biophysical parameter estimation using space-borne bistatic PolInSAR measurements

    NASA Astrophysics Data System (ADS)

    Khati, Unmesh; Singh, Gulab; Mohanty, Shradha

    2016-05-01

    Forest height is an important indicator of the health of the forest ecosystem and can be utilized for accurate estimation of important parameters such as forest above-ground biomass. PolInSAR techniques have been utilized for forest height estimation using airborne and space-borne platforms. However, temporal decorrelation severely limits the ability of space-borne PolInSAR observations for meaningful height inversion. With the launch of the TerraSAR-X/TanDEM-X platforms, acquisition of Polarimetric SAR data in bistatic mode, without the undesired effects of temporal decorrelation, is possible. Full-PolInSAR bistatic data is acquired over Indian tropical forests and the height inversion results are presented in this research article. The inverted height shows a good correlation with field measured height, with r = 0.8. The inversion shows over-estimation over low height forests, while providing an accurate estimation for tall forested areas.

  2. Capability of geometric features to classify ships in SAR imagery

    NASA Astrophysics Data System (ADS)

    Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li

    2016-10-01

    Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.

  3. Interferometric radar measurements

    NASA Astrophysics Data System (ADS)

    Smith, Ronald A.; Shipman, Mark; Holder, E. J.; Williams, James K.

    2002-08-01

    The United States Army Space and Missile Defense Command (USASMDC) has interest in a technology demonstration that capitalizes on investment in fire control and smart interceptor technologies that have matured beyond basic research. The concept SWORD (Short range missile defense With Optimized Radar Distribution) consists of a novel approach utilizing a missile interceptor and interferometric fire control radar. A hit-to-kill, closed-loop, command guidance scheme is planned that takes advantage of extremely accurate target and interceptor state vectors derived via the fire control radar. The fire control system has the capability to detect, track, and classify multiple threats in a tactical regime as well as simultaneously provide command guidance updates to multiple missile interceptors. The missile interceptor offers a cost reduction potential as well as an enhancement to the kinematics range and lethality over existing SHORAD systems. Additionally, the Radio Frequency (RF) guidance scheme offers increased battlefield weather performance. The Air Defense (AD) community, responding to current threat capabilities and trends, has identified an urgent need to have a capability to counter proliferated, low cost threats with a low cost-per-kill weapon system. The SWORD system will offer a solution that meets this need. The SWORD critical technologies will be identified including a detailed description of each. Validated test results and basic principles of operation will be presented to prove the merit of past investments. The Deputy Assistant Secretary of the Army for Research and Technology (DAS(R&T) has a three- year Science and Technology Program to evaluate the errors and proposed mitigation techniques associated with target spectral dispersion and range gate straddle. Preliminary bench-top experiment results will be presented in this paper.

  4. 180-GHz Interferometric Imager

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Lim, Boon H.; O'Dwyer, Ian J.; Soria, Mary M.; Owen, Heather R.; Gaier, Todd C.; Lambrigtsen, Bjorn, H.; Tanner, Alan B.; Ruf, Christopher

    2011-01-01

    A 180-GHz interferometric imager uses compact receiver modules, combined high- and low-gain antennas, and ASIC (application specific integrated circuit) correlator technology, enabling continuous, all-weather observations of water vapor with 25-km resolution and 0.3-K noise in 15 minutes of observation for numerical weather forecasting and tropical storm prediction. The GeoSTAR-II prototype instrument is broken down into four major subsystems: the compact, low-noise receivers; sub-array modules; IF signal distribution; and the digitizer/correlator. Instead of the single row of antennas adopted in GeoSTAR, this version has four rows of antennas on a coarser grid. This dramatically improves the sensitivity in the desired field of view. The GeoSTAR-II instrument is a 48-element, synthetic, thinned aperture radiometer operating at 165-183 GHz. The instrument has compact receivers integrated into tiles of 16 elements in a 4x4 arrangement. These tiles become the building block of larger arrays. The tiles contain signal distribution for bias controls, IF signal, and local oscillator signals. The IF signals are digitized and correlated using an ASIC correlator to minimize power consumption. Previous synthetic aperture imagers have used comparatively large multichip modules, whereas this approach uses chip-scale modules mounted on circuit boards, which are in turn mounted on the distribution manifolds. This minimizes the number of connectors and reduces system mass. The use of ASIC technology in the digitizers and correlators leads to a power reduction close to an order of magnitude.

  5. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  6. Ship Detection Using RADARSAT-2 Fine Quad Mode and Simulated Compact Polarimetry Data

    DTIC Science & Technology

    2010-02-01

    2009]. [21] Lee, J.-S., Hoppel, K.W., and Mango, S.A. (1994). Intensity and phase statistics of multilook polarimetric and interferometric SAR ...CP) SAR system. A CP SAR system with circular polarization on transmission and two orthogonal linear polarizations on receive was simulated using...RADARSAT-2 FQ data. Polarimetric SAR (PolSAR) ship detection algorithms were applied to both the FQ and simulated CP data. From statistical

  7. Polarimetric Interferometry and Differential Interferometry

    DTIC Science & Technology

    2005-02-01

    polar channel HV. The surface scattering has zero cross polarization but has different scattering components in HH and VV as...polarisation states in all, HH , VV, HV, HH +VV and HH -VV. Note that by simply using the phase difference between polarizations we would seriously...an ge (m ) 20 40 60 80 20 40 60 80 HH -VV Azimuth (m) R an ge (m ) 20 40 60 80 20 40 60 80 P Figure 12 : Simulated L- band SAR images of

  8. SAR transmitter

    NASA Astrophysics Data System (ADS)

    1983-06-01

    In the follow-on of the ESA contract 4122/79 it was intended to demonstrate on breadboard the feasibility of a modular EPC supplied by a multibus for a KLYSTRON power transmitter. The aim of this final report is to give details on the design and on test results of the electronics required to drive a KLYSTRON for a SAR system. The concept utilized for the DC/DC conversion is a Series Resonant type (SCHWARZ Converter). An elegant Breadboard of 2 Modules (over 4 required for the complete EPC) has been realized and the tests have demonstrated the envisaged feasibility of an active redundancy with modular EPC both for output voltage generation and for output power. Also the concept of the multibus has been implemented (2 bus over 4) and verified in the EPC breadboard.

  9. A theoretical basis and methodology for the quantitative evaluation of thematic map series from SAR/InSAR data

    NASA Astrophysics Data System (ADS)

    Stevenson, Paula Jean

    2001-07-01

    Synthetic aperture radar (SAR) and interferometric SAR (InSAR) data are increasingly being used for specific operational purposes such as detailed elevation maps, detection of military targets, and coastline mapping of perpetually cloud-covered areas. One topic that has been studied extensively since the 1970's is the generation of thematic maps from this data. However, most of the relevant literature relies on highly labor-intensive approaches to yield "accurate" results for a particular scene, by fine-tuning parameters to minimize the "error" in the scene (as compared to sampled ground truth for the same scene). Consequently, it remains to be seen whether or how these data can be used to produce thematic map series efficiently and reliably in the face of varying landscapes, sensors, processors, classifiers, and output requirements. To the best of our knowledge, no one has yet examined the linked, complex, and multi-faceted issues involved in using SAR/InSAR data for this purpose; indeed, even a basis for conducting such a study has not been determined. This study adapts recent ISO (International Organization of Standardization) standards on measurand, repeatability, and reproducibility and applies them to the study of these issues. The standards are applied to analyze the range of measurement uncertainties associated with the end-to-end processes that are involved in generating thematic maps. These processes are: (1) the physical interaction of the SAR/InSAR signal with various terrain and landscape characteristics; (2) antenna characteristics and signal processing steps in generating an image; (3) image classification models and algorithms; and (4) standard map output requirements. The primary outcome is the development of a methodology through applying the ISO principles to thematic map classification of SAR/InSAR data. The methodology is expected to aid in determining the expected quality of a SAR/InSAR-based thematic map series and its fitness for intended

  10. (abstract) The EOS SAR Mission: A New Approach

    NASA Technical Reports Server (NTRS)

    Way, JoBea

    1993-01-01

    The goal of the Earth Orbiting System Synthetic Aperture Radar (EOS SAR) program is to help develop the modeling and observational capabilities to predict and monitor terrestrial and oceanic processes that are either causing global change or resulting from global change. Specifically, the EOS SAR will provide important geophysical products to the EOS data set to improve our understanding of the state and functioning of the Earth system. The strategy for the EOS SAR program is to define the instrument requirements based on required input to geophysical algorithms, provide the processing capability and algorithms to generate such products on the required spatial (global) and temporal (3-5 days) scales, and to provide the spaceborne instrumentation with international partnerships. Initially this partnership has been with Germany; currently we are exploring broader international partnerships. A MultiSAR approach to the EOS SAR which includes a number of SARs provided by Japan, ESA, Germany, Canada, and the US in synergistic orbits could be used to attain a truly global monitoring capability using multifrequency polarimetric signatures. These concepts and several options for mission scenarios will be presented.

  11. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    NASA Astrophysics Data System (ADS)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  12. Forest Profiling with Multiple Observation Interferometric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Chapman, B. D.; Dutra, L. V.; Dos Santos, J. R.; Goncalves, F. G.; Mura, J. C.; Freitas, C. D.; Graca, P. M.; Drake, J.

    2006-12-01

    Measurements of the vertical structure of forest vegetation bear on ecosystem state, such as biodiversity, carbon dynamics, and fire susceptibility, and the estimation of forest biomass. Global monitoring of vertical vegetation structure is one of the most important and as yet unrealized goals of forest remote sensing. The Interferometric Synthetic Aperture Radar (InSAR) phase and coherence observations are directly sensitive to the vertical distribution of electromagnetic dielectric in the forest medium. This dielectric distribution in turn depends on vegetation density as a function of the vertical coordinate. Multiple InSAR observations--multiple baseline, multiple frequency, and/or multiple polarization--must be used to uniquely estimate vegetation density profiles. This talk explains the need for multiple observation strategies and the benefits of multiple- baseline, multiple-frequency, and multiple-polarization strategies. Multiple baseline tropical forest profiles from C-band (wavelength=0.056 m) InSAR will be shown, as well as results from L-band (0.25 m) few-baseline observations over La Selva Biological Station, Costa Rica. Both surface-deformation measurements and those relevant to vertical-vegetation structure may result from a single InSAR mission design, provided, for example, that multiple nonzero baselines are flown along with the zero-baseline configuration preferred for deformation. The possibility of mutually improving the accuracy of deformation and structure in a simultaneous- measurement scenario will be discussed. There is also potential synergy with other remote sensing missions, such as the Tandem X InSAR mission, for delivering forest structure.

  13. Detection of Built-Up Areas Using Polarimetric Synthetic Aperture Radar Data and Hyperspectral Image

    NASA Astrophysics Data System (ADS)

    Bordbari, R.; Maghsoudi, Y.; Salehi, M.

    2015-12-01

    Polarimetric synthetic aperture radar (POLSAR) is an advantageous data for information extraction about objects and structures by using the wave scattering and polarization properties. Hyperspectral remote sensing exploits the fact that all materials reflect, absorb, and emit electromagnetic energy, at specific wavelengths, in distinctive patterns related to their molecular composition. As a result of their fine spectral resolution, Hyperspectral image (HIS) sensors provide a significant amount of information about the physical and chemical composition of the materials occupying the pixel surface. In target detection applications, the main objective is to search the pixels of an HSI data cube for the presence of a specific material (target). In this research, a hierarchical constrained energy minimization (hCEM) method using 5 different adjusting parameters has been used for target detection from hyperspectral data. Furthermore, to detect the built-up areas from POLSAR data, building objects discriminated from surrounding natural media presented on the scene using Freeman polarimetric target decomposition (PTD) and the correlation coefficient between co-pol and cross-pol channels. Also, target detection method has been implemented based on the different polarization basis for using the more information. Finally a majority voting method has been used for fusing the target maps. The polarimetric image C-band SAR data acquired by Radarsat-2, over San Francisco Bay area was used for the evaluation of the proposed method.

  14. Mobile radio interferometric geodetic systems

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.; Niell, A. E.; Ong, K. M.; Resch, G. M.; Morabito, D. D.; Claflin, E. S.; Lockhart, T. G.

    1978-01-01

    Operation of the Astronomical Radio Interferometric Earth Surveying (ARIES) in a proof of concept mode is discussed. Accuracy demonstrations over a short baseline, a 180 km baseline, and a 380 km baseline are documented. Use of ARIES in the Sea Slope Experiment of the National Geodetic Survey to study the apparent differences between oceanographic and geodetic leveling determinations of the sea surface along the Pacific Coast is described. Intergration of the NAVSTAR Global Positioning System and a concept called SERIES (Satellite Emission Radio Interferometric Earth Surveying) is briefly reviewed.

  15. An efficient compressive sensing based PS-DInSAR method for surface deformation estimation

    NASA Astrophysics Data System (ADS)

    Li, J. T.; Xu, H. P.; Shan, L.; Liu, W.; Chen, G. Z.

    2016-11-01

    Permanent scatterers differential interferometric synthetic aperture radar (PS-DInSAR) is a technique for detecting surface micro-deformation, with an accuracy at the centimeter to millimeter level. However, its performance is limited by the number of SAR images available (normally more than 20 are needed). Compressive sensing (CS) has been proven to be an effective signal recovery method with only a very limited number of measurements. Applying CS to PS-DInSAR, a novel CS-PS-DInSAR method is proposed to estimate the deformation with fewer SAR images. By analyzing the PS-DInSAR process in detail, first the sparsity representation of deformation velocity difference is obtained; then, the mathematical model of CS-PS-DInSAR is derived and the restricted isometry property (RIP) of the measurement matrix is discussed to validate the proposed CS-PS-DInSAR in theory. The implementation of CS-PS-DInSAR is achieved by employing basis pursuit algorithms to estimate the deformation velocity. With the proposed method, DInSAR deformation estimation can be achieved by a much smaller number of SAR images, as demonstrated by simulation results.

  16. Brazilian Amazon Territory Vegetation Study Using SAR Polarimetry Methods

    NASA Astrophysics Data System (ADS)

    Stavroula, Kanakaki; Pottier, Eric; Parcharidis, Issaak

    2016-08-01

    The satellite scene that we used is ALOS - PALSAR PRI mode fully-polarimetric data (polarizations: HH, VV, VH and HV).Polarimetric SAR data possess a high potential for classification of the Earth surface [1].H-A-alpha decomposition that is one of the most frequently used ones and Freeman-Durden decomposition that has been proved ideal for vegetation analysis and classification according to many studies. H-A-alpha decomposition extracts 3 basic parameters: Entropy, Anisotropy and alpha angle. Parameters that give different information for the scene.Entropy is a measure that indicates scattering characteristics of land and the higher values it gets the more intense the backscattering is.Alpha angle, usually, gives the same results with entropy. It gets different values from entropy parameter and each value gives important information about the scatterer type.Anisotropy parameter is an additional one, which, combining to the other 2 parameters offers a better classification.

  17. New formulation for interferometric synthetic aperture radar for terrain mapping

    SciTech Connect

    Jakowatz, C.V. Jr.; Wahl, D.E.; Eichel, P.H.; Thompson, P.A.

    1994-04-01

    The subject of interferometric synthetic aperture radar (IFSAR) for high-accuracy terrain elevation mapping continues to gain importance in the arena of radar signal processing. Applications to problems in precision terrain-aided guidance and automatic target recognition, as well as a variety of civil applications, are being studied by a number of researchers. Not unlike many other areas of SAR processing, the subject of IFSAR can at first glance appear to be somewhat mysterious. In this paper we show how the mathematics of IFSAR for terrain elevation mapping using a pair of spotlight mode SAR collections can be derived in a very straightforward manner. Here, we employ an approach that relies entirely on three-dimensional Fourier transforms, and utilizes no reference to range equations or Doppler concepts. The result is a simplified explanation of the fundamentals of interferometry, including an easily-seen link between image domain phase difference and terrain elevation height. The derivation builds upon previous work by the authors in which a framework for spotlight mode SAR image formation based on an analogy to three-dimensional computerized axial tomography (CAT) was developed. After outlining the major steps in the mathematics, we show how a computer simulator which utilizes three-dimensional Fourier transforms can be constructed that demonstrates all of the major aspects of IFSAR from spotlight mode collections.

  18. Poyang Lake wetland vegetation biomass inversion using polarimetric RADARSAT-2 synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Shen, Guozhuang; Liao, Jingjuan; Guo, Huadong; Liu, Ju

    2015-01-01

    Poyang Lake is the largest freshwater lake in China and one of the most important wetlands in the world. Vegetation, an important component of wetland ecosystems, is one of the main sources of the carbon in the atmosphere. Biomass can quantify the contribution of wetland vegetation to carbon sinks and carbon sources. Synthetic aperture radar (SAR), which can operate in all day and weather conditions and penetrate vegetation to some extent, can be used to retrieve information about vegetation structure and the aboveground biomass. In this study, RADARSAT-2 polarimetric SAR data were used to retrieve aboveground vegetation biomass in the Poyang Lake wetland. Based on the canopy backscatter model, the vegetation backscatter characteristics in the C-band were studied, and a good relation between simulated backscatter and backscatter in the RADARSAT-2 imagery was achieved. Using the backscatter model, pairs of training data were built and used to train the back propagation artificial neural network. The biomass was retrieved using this ANN and compared with the field survey results. The root-mean-square error in the biomass estimation was 45.57 g/m2. This shows that the combination of the model and polarimetric decomposition components can efficiently improve the inversion precision.

  19. Object-oriented fusion of RADARSAT-2 polarimetric synthetic aperture radar and HJ-1A multispectral data for land-cover classification

    NASA Astrophysics Data System (ADS)

    Xiao, Yan; Jiang, Qigang; Wang, Bin; Li, Yuanhua; Liu, Shu; Cui, Can

    2016-04-01

    The contribution of the integration of optical and polarimetric synthetic aperture radar (PolSAR) data to accurate land-cover classification was investigated. For this purpose, an object-oriented classification methodology that consisted of polarimetric decomposition, hybrid feature selection, and a support vector machine (SVM) was proposed. A RADARSAT-2 Fine Quad-Pol image and an HJ-1A CCD2 multispectral image were used as data sources. First, polarimetric decomposition was implemented for the RADARSAT-2 image. Sixty-one polarimetric parameters were extracted using different polarimetric decomposition methods and then merged with the main diagonal elements (T11, T22, T33) of the coherency matrix to form a multichannel image with 64 layers. Second, the HJ-1A and the multichannel images were divided into numerous image objects by implementing multiresolution segmentation. Third, 1104 features were extracted from the HJ-1A and the multichannel images for each image object. Fourth, the hybrid feature selection method that combined the ReliefF filter approach and the genetic algorithm (GA) wrapper approach (ReliefF-GA) was used. Finally, land-cover classification was performed by an SVM classifier on the basis of the selected features. Five other classification methodologies were conducted for comparison to verify the contribution of optical and PolSAR data integration and to test the superiority of the proposed object-oriented classification methodology. Comparison results show that HJ-1A data, RADARSAT-2 data, polarimetric decomposition, ReliefF-GA, and SVM have a significant contribution by improving land-cover classification accuracy.

  20. Estimation of Boreal Forest Biomass Using Spaceborne SAR Systems

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan; Moghaddam, Mahta

    1995-01-01

    In this paper, we report on the use of a semiempirical algorithm derived from a two layer radar backscatter model for forest canopies. The model stratifies the forest canopy into crown and stem layers, separates the structural and biometric attributes of the canopy. The structural parameters are estimated by training the model with polarimetric SAR (synthetic aperture radar) data acquired over homogeneous stands with known above ground biomass. Given the structural parameters, the semi-empirical algorithm has four remaining parameters, crown biomass, stem biomass, surface soil moisture, and surface rms height that can be estimated by at least four independent SAR measurements. The algorithm has been used to generate biomass maps over the entire images acquired by JPL AIRSAR and SIR-C SAR systems. The semi-empirical algorithms are then modified to be used by single frequency radar systems such as ERS-1, JERS-1, and Radarsat. The accuracy. of biomass estimation from single channel radars is compared with the case when the channels are used together in synergism or in a polarimetric system.

  1. Measuring Thermokarst Subsidence Using InSAR: Potential and Pitfalls

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Chen, A. C.; Gusmeroli, A.; Zebker, H. A.; Zhang, T.

    2014-12-01

    Thawing of ice-rich permafrost results in irregular, depressed landforms known as thermokarst terrain. The significant subsidence leading to thermokarst features can expand lakes, drain lakes, accelerate thaw, disturb the soil column, and promote erosion. Consequently, it affects many permafrost-region processes including vegetation succession, hydrology, and carbon storage and cycling. Many remote sensing studies identify thermokarst landforms and catalog their ever-changing areas. Yet the intrinsic dynamic thermokarst process, namely surface subsidence, remains a challenge to map and is seldom examined using remote sensing methods. Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that uses a time-series of satellite SAR images to measure cm-level land surface deformation. We demonstrate the capabilities and limitations of space-borne InSAR data to map thermokarst subsidence at a site located near Prudhoe Bay, on the North Slope of Alaska. A pipeline access road was constructed at this site in the 1970s, and is likely to have triggered the thawing of the region's permafrost, causing subsequent expansion of thermokarst-landform terrain. Our InSAR analysis using ALOS PALSAR images reveals that the thermokarst landforms in this region have undergone up to 10 cm of surface subsidence each summer from 2007 to 2010. This pilot study demonstrates the application of InSAR to map localized mass movement in permafrost terrain. We also illustrate how the effectiveness and accuracy of InSAR measurements are limited by several factors such as loss of interferometric coherence due to fast changes of ground surface conditions, spatial and temporal resolutions of InSAR data, and difficulty separating long-term and seasonal deformation signals.

  2. Contrast optimization in broadband polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Thomas, Lijo; Hu, Haofeng; Boffety, Matthieu; Goudail, François

    2016-05-01

    For the sake of polarimetric accuracy, polarization imaging systems based on liquid crystal modulators often work at one given wavelength due to the strong chromatic properties of the liquid crystal retarders. This often requires the use of narrowband filters which reduces the amount of light in the system and thus the signal-to-noise ratio. For applications where the main parameter of interest is the target/background discriminability rather than polarimetric accuracy, spectral filtering may not be the best option. In this work, we investigate the impact of broadening the spectrum of the light entering the system on the discriminability performance of passive and active polarimetric systems. Through simulations, we show that broadening the bandwidth of the illumination can increase the contrast between two regions, as the increase of light flux compensates for the loss of polarimetric precision. Moreover, we show that taking into account the chromatic characteristics of the components of the imaging system can further enhance the contrast. We validate these findings through experiments in passive and active configurations, and demonstrate that the illumination bandwidth can be seen as an additional parameter to optimize polarimetric imaging set-ups.

  3. Polarimetric remote sensing of geophysical medium structures

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Nguyen, D. T.

    1993-11-01

    Polarimetric remote sensing of structures in geophysical media is studied in this paper based on their symmetry properties. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is defined to study scattering structures in geophysical media. Experimental observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented to illustrate the use of symmetry properties. For forests, the coniferous forest in Mount Shasta area and mixed forests near Presque Isle show evidence of the centrical symmetry at C band. In sea ice from the Beaufort Sea, multiyear sea ice has a cross-polarized ratio e close to e0, calculated from symmetry, due to the randomness in the scattering structure. For first-year sea ice, e is much smaller than e0 as a result of preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering sea, it is observed that e and e0 are increasing with incident angle and e is greater than e0 at L band because of the directional feature of sea surface waves. Use of symmetry properties of geophysical media for polarimetric radar calibration is also suggested.

  4. Passive Polarimetric Remote Sensing of Snow and Ice

    DTIC Science & Technology

    1997-09-30

    In recent years, polarimetric radiometry has shown great potential to revolutionize passive remote sensing of the ocean surface. As a result, several...polarimetric radiometer, in 2001. This project explores the possibility of applying this new technology to remote sensing in the Polar Regions by investigating the polarimetric signature of ice and snow.

  5. Two-Wavelength Interferometric Keratometer

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric; Page, Norman

    1991-01-01

    Proposed interferometric keratometer measures shapes of corneas without touching them. Used to test strongly aspherical optics. Resembling present commercial lens-testing interferometers, generates interferograms representative of deviation of surfaces under test from sphericity. Such interferograms used to generate contour maps of surfaces. Measures corneal topography to diameters as large as 12 mm.

  6. Can Compressed Sensing Be Applied To Dual-Polarimetric Weather Radars?

    NASA Astrophysics Data System (ADS)

    Mishra, K.; Kruger, A.; Krajewski, W. F.

    2013-12-01

    The recovery of sparsely-sampled signals has long attracted considerable research interest in various fields such as reflection seismology, microscopy, and astronomy. Recently, such recovery techniques have been formalized as a sampling method called compressed sensing (CS) which uses few linear and non-adaptive measurements to reconstruct a signal that is sparse in a known domain. Many radar and remote sensing applications require efficient and rapid data acquisition. CS techniques have, therefore, enormous potential in dramatically changing the way the radar samples and processes data. A number of recent studies have investigated CS for radar applications with emphasis on point target radars, and synthetic aperture radar (SAR) imaging. CS radar holds the promise of compressing-while-sampling, and may yield simpler receiver hardware which uses low-rate ADCs and eliminates pulse compression/matched filter. The need of fewer measurements also implies that a CS radar may need smaller dwell times without significant loss of information. Finally, CS radar data could be used for improving the quality of low-resolution radar observations. In this study, we explore the feasibility of using CS for dual-polarimetric weather radars. In order to recover a signal in CS framework, two conditions must be satisfied: sparsity and incoherence. The sparsity of weather radar measurements can be modeled in several domains such as time, frequency, joint time-frequency domain, or polarimetric measurement domains. The condition of incoherence relates to the measurement process which, in a radar scenario, would imply designing an incoherent transmit waveform or an equivalent scanning strategy with an existing waveform. In this study, we formulate a sparse signal model for precipitation targets as observed by a polarimetric weather radar. The applicability of CS for such a signal model is then examined through simulations of incoherent measurements along with real weather data obtained

  7. Software for Generating Strip Maps from SAR Data

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry; Madsen, Soren; Chapin, Elaine; Rodriguez, Ernesto

    2004-01-01

    Jurassicprok is a computer program that generates strip-map digital elevation models and other data products from raw data acquired by an airborne synthetic-aperture radar (SAR) system. This software can process data from a variety of airborne SAR systems but is designed especially for the GeoSAR system, which is a dual-frequency (P- and X-band), single-pass interferometric SAR system for measuring elevation both at the bare ground surface and top of the vegetation canopy. Jurassicprok is a modified version of software developed previously for airborne-interferometric- SAR applications. The modifications were made to accommodate P-band interferometric processing, remove approximations that are not generally valid, and reduce processor-induced mapping errors to the centimeter level. Major additions and other improvements over the prior software include the following: a) A new, highly efficient multi-stage-modified wave-domain processing algorithm for accurately motion compensating ultra-wideband data; b) Adaptive regridding algorithms based on estimated noise and actual measured topography to reduce noise while maintaining spatial resolution; c) Exact expressions for height determination from interferogram data; d) Fully calibrated volumetric correlation data based on rigorous removal of geometric and signal-to-noise decorrelation terms; e) Strip range-Doppler image output in user-specified Doppler coordinates; f) An improved phase-unwrapping and absolute-phase-determination algorithm; g) A more flexible user interface with many additional processing options; h) Increased interferogram filtering options; and i) Ability to use disk space instead of random- access memory for some processing steps.

  8. Continuous monitoring of biophysical Eucalyptus sp. parameters using interferometric synthetic aperture radar data in P and X bands

    NASA Astrophysics Data System (ADS)

    Gama, Fábio Furlan; dos Santos, João Roberto; Mura, José Claudio

    2016-04-01

    This work aims to verify the applicability of models obtained using interferometric synthetic aperture radar (SAR) data for estimation of biophysical Eucalyptus saligna parameters [diameter of breast height (DBH), total height and volume], as a method of continuous forest inventory. In order to obtain different digital elevation models, and the interferometric height (Hint) to retrieve the tree heights, SAR surveying was carried out by an airborne interferometric SAR in two frequencies X and P bands. The study area, located in the Brazilian southeast region (S 22°53‧22″/W 45°26‧16″ and S 22°53‧22″/W 45°26‧16″), comprises 128.64 hectares of Eucalyptus saligna stands. The methodological procedures encompassed: forest inventory, topographic surveying, radar mapping, radar processing, and multivariable regression techniques to build Eucalyptus volume, DBH, and height models. The statistical regression pointed out Hint and interferometric coherence as the most important variables for the total height and DBH estimation; for the volume model, however, only the Hint variable was selected. The performance of the biophysical models from the second campaign, two years later (2006), were consistent and its results are very promising for updating annual inventories needed for managing Eucalyptus plantations.

  9. Empirical wind retrieval model based on SAR spectrum measurements

    NASA Astrophysics Data System (ADS)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction

  10. A snow wetness retrieval algorithm for SAR

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Dozier, Jeff

    1992-01-01

    The objectives of this study are: (1) to evaluate the backscattering signals response to snow wetness; and (2) to develop an algorithm for snow wetness measurement using C-band polarimetric synthetic aperture radar (SAR). In hydrological investigations, modeling and forecasting of snowmelt runoff requires information about snowpack properties and their spatial variability. In particular, timely measurement of snow parameters is needed for operational hydrology. The liquid water content of snowpack is one of the important parameters. Active microwave sensors are highly sensitive to liquid water in the snowpack because of the large dielectric contrast between ice and water in the microwave spectrum. They are not affected by weather and have a spatial resolution compatible with the topographic variation in alpine regions. However, a quantitative algorithm for retrieval snow wetness has not yet been developed.

  11. Software Processes SAR Motion-Measurement Data

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Kroger, Peter; Le, Charles T. C.

    2004-01-01

    Motion Measurement Processor (MMP) is one of three computer programs that are used together in the operation of a terrain-mapping dual-frequency interferometric synthetic-aperture-radar (SAR) system. The other two programs - Jurassicprok and Calibration Processor - are described in the two immediately preceding articles. MMP acquires all the motion and attitude data collected by onboard instrumentation systems, including radar, laser and camera metrology, inertial navigation systems, and Global Positioning System (GPS) receivers. MMP combines all this information and processes it into all the trajectory information needed to run Jurassicprok, which performs the interferometric processing and mapping functions. MMP includes several Kalman filters for combining and smoothing aircraft motion and attitude data, and least-squares inversion and filtering software tools for solving for interferometric baseline lengths. MMP synchronizes the motion and radar data. It combines the various measurement data into a unified, seven-dimensional reference system and puts out the resulting filtered trajectory and attitude data along with instructions for use of the data by Jurassicprok, as well as the command files used to operate Jurassicprok.

  12. Symmetry properties in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Li, F. K.

    1992-01-01

    This paper presents the relations among polarimetric backscattering coefficients from the viewpoint of symmetry groups. Symmetry of geophysical media encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered for both reciprocal and nonreciprocal cases. On the basis of the invariance under symmetry transformations in the linear polarization basis, the scattering coefficients are related by a set of equations which restrict the number of independent parameters in the polarimetric covariance matrix. The properties derived under these transformations are general and apply to all scattering mechanisms in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the derived symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is discussed. As a practical application, the results from this paper provide new methods for the external calibration of polarimetric radars without the deployment of man-made calibration targets.

  13. PacRIM II: A review of AirSAR operations and system performance

    NASA Technical Reports Server (NTRS)

    Moller, D.; Chu, A.; Lou, Y.; Miller, T.; O'Leary, E.

    2001-01-01

    In this paper we briefly review the AirSAR system, its expected performance, and quality of data obtained during that mission. We discuss the system hardware calibration methodologies, and present quantitative performance values of radar backscatter and interferometric height errors (random and systematic) from PACRIM II calibration data.

  14. Stellar Rotation Effects in Polarimetric Microlensing

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe

    2016-07-01

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.

  15. Soil Moisture Retrieval in Alpine Grassland and Pasture by Using Support Vector Regression Techniques and Polarimetric RADARSAT2 Images

    NASA Astrophysics Data System (ADS)

    Pasolli, L.; Notarnicola, C.; Bruzzone, L.; Bertoldi, G.; Niedrist, G.; Tappeiner, U.; Zebish, M.; Del Frate, F.; Vaglio Laurin, Gaia

    2011-03-01

    In this work, the use of fully polarimetric RADARSAT2 SAR images is investigated for the retrieval of soil moisture content in Alpine meadows and pastures. In greater detail, the features extracted according to three different extraction strategies are investigated and their capability to improve the estimation performance is assessed according to both quantitative performance on a set of reference samples and qualitative analysis of the corresponding output soil moisture content maps. In general, the achieved results indicate that the use of multiple polarimetric features improves the estimation of soil moisture content in the investigated mountain area. Attention should be paid, however, in the selection of the features to be considered in the retrieval process.

  16. STAP for SAR

    DTIC Science & Technology

    2003-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014042 TITLE: STAP for SAR DISTRIBUTION: Approved for public release...compilation report: ADP014040 thru ADP014047 UNCLASSIFIED 3-1 STAP for SAR A. Farina Technical Directorate, Radar & Technology Division Alenia...Adaptive Processing) to Synthetic Aperture Radar ( SAR ) systems. SAR is a microwave sensor that allows us to have a high resolution mapping of

  17. Contextual filtering method applied to sub-bands of interferometric image decomposition

    NASA Astrophysics Data System (ADS)

    Belhadj-Aissa, S.; Hocine, F.; Boughacha, M. S.; Belhadj-Aissa, M.

    2016-10-01

    The precision and accuracy of Digital elevation model and deformation measurement, from SAR interferometry (InSAR/DInSAR) depend mainly on the quality of the interferogram. However, the phase noise, which is mainly due to decorrelation between the images and the speckle, makes the step of phase unwrapping most delicate. In this paper, we propose a filtering method that combines the techniques of decomposition into sub-bands and nonlinear local weights. The Spectral / Contextual filter that we propose, inspired from to Goldstein filter is applied to the sub-bands from the wavelet decomposition. To validate the results, we applied to interferometric products tandem pair ERS1/ERS2 taken in the region of Algiers Algeria.

  18. Development of a folded compact range and its application in performing coherent change detection and interferometric ISAR measurement

    SciTech Connect

    Sorensen, K.W.; Zittel, D.H.; Littlejohn, J.H.

    1996-09-01

    A folded compact range configuration has been developed at the Sandia National Laboratories` compact range antenna and radar cross section measurement facility as a means of performing indoor, environmentally controlled far-field simulations of synthetic aperture radar (SAR) measurements of distributed target samples (i.e. gravel, sand, etc.). In particular, the folded compact range configuration has been used to perform both highly sensitive coherent change detection (CCD) measurements and interferometric inverse synthetic aperture radar (IFSAR) measurements, which, in addition to the two-dimensional spatial resolution afforded by typical interferometric SAR (ISAR) processing, provides resolution of the relative height of targets with accuracies on the order of a wavelength. This paper describes the development of the folded compact range, as well as the coherent change detection and interferometric measurements that have been made with the system. The measurement have been very successful, and have demonstrated not only the viability of the folded compact range concept in simulating SAR CCD and IFSAR measurements, but also its usefulness as a tool in the research and development of SAR CCD and IFSAR image generation and measurement methodologies.

  19. Polarimetric applications to identify bee honey

    NASA Astrophysics Data System (ADS)

    Espinosa-Luna, Rafael; Saucedo-Orozco, Izcoatl; Santiago-Lona, Cynthia V.; Franco-Sánchez, Juan M.; Magallanes-Luján, Alejandro

    2011-10-01

    A polarimetric characterization, consisting of the Mueller matrix determination and the measurement of the refractive index, is employed to study bee honey and corn syrup differences. Two samples of commercial marks of bee honey and one sample of commercial mark corn syrup are studied. Results show the corn syrup and one of the bee honey samples have a similar polarimetric behavior, which differs from the second bee honey sample. This behavior can be employed as a simple, qualitative test, to discriminate true bee honey from corn syrup or from adulterated bee honey.s-powe

  20. Polarimetric target detection under uneven illumination.

    PubMed

    Huang, Bingjing; Liu, Tiegen; Han, Jiahui; Hu, Haofeng

    2015-09-07

    In polarimetric imaging, the uneven illumination could cause the significant spatial intensity fluctuations in the scene, and thus hampers the target detection. In this paper, we propose a method of illumination compensation and contrast optimization for Stokes polarimetric imaging, which allows significantly increasing the performance of target detection under uneven illumination. We show with numerical simulation and real-world experiment that, based on the intensity information contained in the polarization information, the contrast can be effectively enhanced by proper approach, which is of particular importance in practical applications with spatial illumination fluctuations, such as remote sensing.

  1. Geophysical controls on C band polarimetric backscatter from melt pond covered Arctic first-year sea ice: Assessment using high-resolution scatterometry

    NASA Astrophysics Data System (ADS)

    Scharien, R. K.; Yackel, J. J.; Barber, D. G.; Asplin, M.; Gupta, M.; Isleifson, D.

    2012-08-01

    Geophysical controls on C band polarimetric backscatter from the discrete surface cover types which comprise advanced melt first-year sea ice (FYI): snow covered ice, bare ice, and melt pond; are assessed using polarimetric radar scatterometry from test sites representing high Arctic and marginal ice zones in the Canadian Arctic. Surface characterization data is used to evaluate the interaction of polarized radiation with each feature, and dominant scattering mechanisms are assessed in a regional context. High-resolution time series (diurnal) scatterometry and coincident atmospheric boundary layer profile data are used to explain linkages between ice-atmosphere interactions and polarimetric backscatter in a marginal ice zone. The co-polarization ratio for FYI melt ponds is shown to be distinct from snow covered ice or bare ice during early and peak phases of advanced melt, making it a candidate parameter for the unambiguous detection of pond formation and the inversion of melt pond fraction. The ratio displays an increasing trend with radar incidence angle in a manner consistent with Bragg surface scattering theory, though it is not predictable by a Bragg model. Cross-polarization backscatter intensity shows potential for discriminating the onset and duration of freeze events in a marginal ice zone, due to dominant backscatter from the snow cover adjacent to melt ponds. Preliminary results here outline the potential of covariance matrix derived polarimetric measurements for the inversion of advanced melt sea ice geophysical parameters, and provide a basis for the investigation of distributed targets in late season spaceborne polarimetric SAR scenes.

  2. Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.

    2004-01-01

    The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.

  3. Manmade target extraction based on multistage decision and its application for change detection in polarimetric synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Cong, Runmin; Han, Ping; Li, Chongyi; He, Jiaji; Zhang, Zaiji

    2016-09-01

    Targets of interest are different in various applications in which manmade targets, such as aircraft, ships, and buildings, are given more attention. Manmade target extraction methods using synthetic aperture radar (SAR) images are designed in response to various demands, which include civil uses, business purposes, and military industries. This plays an increasingly vital role in monitoring, military reconnaissance, and precision strikes. Achieving accurate and complete results through traditional methods is becoming more challenging because of the scattered complexity of polarization in polarimetric synthetic aperture radar (PolSAR) image. A multistage decision-based method is proposed composed of power decision, dominant scattering mechanism decision, and reflection symmetry decision. In addition, the theories of polarimetric contrast enhancement, generalized Y decomposition, and maximum eigenvalue ratio are applied to assist the decision. Fully PolSAR data are adopted to evaluate and verify the approach. Experimental results show that the method can achieve an effective result with a lower false alarm rate and clear contours. Finally, on this basis, a universal framework of change detection for manmade targets is presented as an application of our method. Two sets of measured data are also used to evaluate and verify the effectiveness of the change-detection algorithm.

  4. InSAR data for monitoring land subsidence: time to think big

    NASA Astrophysics Data System (ADS)

    Ferretti, A.; Colombo, D.; Fumagalli, A.; Novali, F.; Rucci, A.

    2015-11-01

    Satellite interferometric synthetic aperture radar (InSAR) data have proven effective and valuable in the analysis of urban subsidence phenomena based on multi-temporal radar images. Results obtained by processing data acquired by different radar sensors, have shown the potential of InSAR and highlighted the key points for an operational use of this technology, namely: (1) regular acquisition over large areas of interferometric data stacks; (2) use of advanced processing algorithms, capable of estimating and removing atmospheric disturbances; (3) access to significant processing power for a regular update of the information over large areas. In this paper, we show how the operational potential of InSAR has been realized thanks to the recent advances in InSAR processing algorithms, the advent of cloud computing and the launch of new satellite platforms, specifically designed for InSAR analyses (e.g. Sentinel-1a operated by the ESA and ALOS2 operated by JAXA). The processing of thousands of SAR scenes to cover an entire nation has been performed successfully in Italy in a project financed by the Italian Ministry of the Environment. The challenge for the future is to pass from the historical analysis of SAR scenes already acquired in digital archives to a near real-time monitoring program where up to date deformation data are routinely provided to final users and decision makers.

  5. A Time Domain Along-Track SAR Interferometry Method

    NASA Astrophysics Data System (ADS)

    Cao, N.; Lee, H.; Jung, H. C.

    2015-12-01

    Differential interferometric synthetic aperture radar (DInSAR) has already been proven to be a useful technique for measuring ground displacement at millimeter level. One major drawback of traditional DInSAR technique is that only 1-D deformation in slant range direction can be detected. In order to obtain along-track displacement using a single InSAR pair, two major attempts have been made. The first one is based on cross-correlation between two SAR amplitude images. The second attempt is based on split-beam processing to generate two SAR images from forward- and backward-looking beams. Comparing with the former method, this multiple-aperture SAR interferometry (MAI) can achieve much better measurement accuracy. The major drawback of the MAI method is degraded signal to noise ratio (SNR) and along-track resolution since total along-track integration time decreases in the split-beam procedure. In order to improve the SNR and along-track resolution as well as to extract the terrain displacement in the along-track direction, a time domain along-track SAR interferometry method is proposed in this study. Using traditional time domain backprojection method, the phase component corresponding to slant range direction offset can be estimated and removed from the range compressed SAR signal. Then a phase estimation procedure is implemented to obtain the phase component in the along-track direction. Using ALOS PALSAR data over Kilauea Volcano area in Hawai'i, our experimental results demonstrate the improved performance of the proposed method in extracting 2-D terrain deformation map from one pair of SAR images.

  6. Mapping Deforestation and Land Use in Amazon Rainforest Using SAR-C Imagery

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Soares, Joao Vianei; Alves, Diogenes Salas

    1996-01-01

    Land use changes and deforestation in tropical rainforests are among the major factors affecting the overall function of the global environment. To routinely assess the spatial extend and temporal dynamics of these changes has become an important challenge in several scientific disciplines such as climate and environmental studies. In this paper, the feasibility of using polarimetric spaceborne SAR data in mapping land cover types in the Amazon is studied.

  7. A variational model for PolSAR data speckle reduction based on the Wishart distribution.

    PubMed

    Nie, Xiangli; Qiao, Hong; Zhang, Bo

    2015-04-01

    In this paper, we propose a variational model for polarimetric synthetic aperture radar (PolSAR) data speckle reduction, which is based on the complex Wishart distribution of the covariance or coherency matrix and multichannel total variation (TV) regularization defined for complex-valued matrices. By assuming the TV regularization to be a prior and taking the statistical distribution of the covariance matrix in each resolution element into account, the variational model for PolSAR covariance data speckle suppression, named WisTV-C, is derived from the maximum a posteriori estimate. A similar variational model for PolSAR coherency data speckle reduction, named WisTV-T, is also obtained. As far as we know, this is the first variational model for the whole PolSAR covariance or coherency matrix data despeckling. Since the model is nonconvex, a convex relaxation iterative algorithm is designed to solve the variational problem, based on the variable splitting and alternating minimization techniques. Experimental results on both simulated and real PolSAR data demonstrate that the proposed approach notably removes speckles in the extended uniform areas and, meanwhile, better preserves the spatial resolution, the details such as edges and point scatterers, and the polarimetric scattering characteristics, compared with other methods.

  8. Neural techniques for SAR intensity and coherence data classificataion

    NASA Astrophysics Data System (ADS)

    Blonda, Palma N.; Satalino, Giuseppe; Wasowski, Janusz; Parise, Mario; Baraldi, Alberto; Refice, Alberto

    1999-12-01

    In recent years it has been proved that combined analysis of SAR intensity and interferometric correlation images is a valuable tool in classification tasks where traditional techniques such as crisp thresholding schemes and classical maximum likelihood classifiers have been employed. In this work, developed in the framework of the ESA AO3-320 project titled Application of ERS data to landslide activity monitoring in southern Apennines, Italy, our goal is to investigate: (1) usefulness of SAR interferometric correlation information in mapping areas with diffuse erosional activity, including landslides; and (2) effectiveness of soft computing techniques in the combined analysis of SAR intensity and interferometric correlation images. Two neural classifiers are selected from the literature. The first classifier is a one- stage error-driven Multilayer Perceptron (MLP) and the second classifier is a Two-Stage Hybrid (TSH) learning system, consisting of a sequence of an unsupervised data-driven first stage with a supervised error-driven second stage. The TSH unsupervised first stage is implemented as either: (1) the on- line learning, dynamic-sizing, dynamic-linking Fully Self Organizing Simplified Adaptive Resonance Theory (FOSART) clustering model; (2) the batch-learning, static-sizing, no- linking Fuzzy Learning Vector Quantization (FLVQ) algorithm; or (3) the on-line learning, static-sizing, static-linking Self-Organizing Map (SOM). The input data set consists of three SAR ERS-1/ERS-2 tandem pair images depicting an area featuring slope instability phenomena in the Campanian Apennines of Southern Italy. From each tandem pair, four pixel-based features are extracted: the backscattering mean intensity, the interferometric coherence, the backscattering intensity texture and the backscattering intensity change. Our classification task is focused on the discrimination of land cover types useful for hazard evaluation, i.e., evaluation of areas affected by erosion

  9. Urban Infrastructure Monitoring with a Spatially Adaptive Multi-Looking InSAR Technique

    NASA Astrophysics Data System (ADS)

    Sharma, Jayanti; Eppler, Jayson; Busler, Jennifer

    2015-05-01

    Surface displacements for urban infrastructure monitoring are derived using Interferometric Synthetic Aperture Radar (InSAR). The analysis uses a novel InSAR method, Homogenous Distributed Scatterer (HDS)-InSAR, that exploits both persistent point and coherent distributed scatterers using adaptive multi-looking of statistically homogenous pixel neighbourhoods. An unwrapped phase model incorporating meteorological data enables separation of temperature-correlated displacement from potentially hazardous long-term trends. Results are presented over the Canadian cities of Regina, Winnipeg and Montreal using RADARSAT-2 and TerraSAR-X data. The new combination of HDS-InSAR and the extended phase model permits large areas of infrastructure to be remotely monitored on a regular basis and enables a more targeted monitoring process to help identify infrastructure at greatest risk for damage.

  10. Methods of InSAR atmosphere correction for volcano activity monitoring

    USGS Publications Warehouse

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  11. Ground settlement monitoring from temporarily persistent scatterers between two SAR acquisitions

    USGS Publications Warehouse

    Lei, Z.; Xiaoli, D.; Guangcai, F.; Zhong, L.

    2009-01-01

    We present an improved differential interferometric synthetic aperture radar (DInSAR) analysis method that measures motions of scatterers whose phases are stable between two SAR acquisitions. Such scatterers are referred to as temporarily persistent scatterers (TPS) for simplicity. Unlike the persistent scatterer InSAR (PS-InSAR) method that relies on a time-series of interferograms, the new algorithm needs only one interferogram. TPS are identified based on pixel offsets between two SAR images, and are specially coregistered based on their estimated offsets instead of a global polynomial for the whole image. Phase unwrapping is carried out based on an algorithm for sparse data points. The method is successfully applied to measure the settlement in the Hong Kong Airport area. The buildings surrounded by vegetation were successfully selected as TPS and the tiny deformation signal over the area was detected. ??2009 IEEE.

  12. Precipitation observations from high frequency spaceborne polarimetric synthetic aperture radar and ground-based radar: Theory and model validation

    NASA Astrophysics Data System (ADS)

    Fritz, Jason P.

    Global weather monitoring is a very useful tool to better understand the Earth's hydrological cycle and provide critical information for emergency and warning systems in severe cases. Developed countries have installed numerous ground-based radars for this purpose, but they obviously are not global in extent. To address this issue, the Tropical Rainfall Measurement Mission (TRMM) was launched in 1997 and has been quite successful. The follow-on Global Precipitation Measurement (GPM) mission will replace TRMM once it is launched. However, a single precipitation radar satellite is still limited, so it would be beneficial if additional existing satellite platforms can be used for meteorological purposes. Within the past few years, several X-band Synthetic Aperture Radar (SAR) satellites have been launched and more are planned. While the primary SAR application is surface monitoring, and they are heralded as "all weather'' systems, strong precipitation induces propagation and backscatter effects in the data. Thus, there exists a potential for weather monitoring using this technology. The process of extracting meteorological parameters from radar measurements is essentially an inversion problem that has been extensively studied for radars designed to estimate these parameters. Before attempting to solve the inverse problem for SAR data, however, the forward problem must be addressed to gain knowledge on exactly how precipitation impacts SAR imagery. This is accomplished by simulating storms in SAR data starting from real measurements of a storm by ground-based polarimetric radar. In addition, real storm observations by current SAR platforms are also quantitatively analyzed by comparison to theoretical results using simultaneous acquisitions by ground radars even in single polarization. For storm simulation, a novel approach is presented here using neural networks to accommodate the oscillations present when the particle scattering requires the Mie solution, i

  13. SAR change detection MTI

    NASA Astrophysics Data System (ADS)

    Scarborough, Steven; Lemanski, Christopher; Nichols, Howard; Owirka, Gregory; Minardi, Michael; Hale, Todd

    2006-05-01

    This paper examines the theory, application, and results of using single-channel synthetic aperture radar (SAR) data with Moving Reference Processing (MRP) to focus and geolocate moving targets. Moving targets within a standard SAR imaging scene are defocused, displaced, or completely missing in the final image. Building on previous research at AFRL, the SAR-MRP method focuses and geolocates moving targets by reprocessing the SAR data to focus the movers rather than the stationary clutter. SAR change detection is used so that target detection and focusing is performed more robustly. In the cases where moving target returns possess the same range versus slow-time histories, a geolocation ambiguity results. This ambiguity can be resolved in a number of ways. This paper concludes by applying the SAR-MRP method to high-frequency radar measurements from persistent continuous-dwell SAR observations of a moving target.

  14. Ground truth measurement for the analysis of airborne SAR data recorded over Oberpfaffenhofen, FRG, 1989

    NASA Technical Reports Server (NTRS)

    Bayer, T.; Wieneke, F.; Winter, R.

    1990-01-01

    As a preliminary investigation to the joint multiparameter SIR-C/X-SAR shuttle experiment of NASA/JPL (USA), DLR (FRG), and PSN (Italy) which is scheduled for the year 1992 an airborne SAR campaign was conducted over Oberpfaffenhofen, FRG, in August 1989. Primarily this campaign was planned to test and verify equipment and algorithms developed at the DLR to calibrate multifrequency polarimetric SAR data. Oberpfaffenhofen is designated as one of the super test sites for the SIR-C/X-SAR experiment which will be imaged under all circumstances except severe mission errors. A super test site drives radar parameters and look directions and the recorded SAR data will be calibrated. In addition ancillary data will be available for the site. During the airborne STAR campaign conducted in the week of August 14th 1989 various sensor types were used to record remote sensing data over the calibration test site and its vicinity: the polarimetric DC-8 JPL-SAR (P-, L-, C-band), the DLR airborne SAR (C-, X-band), color infrared aerial photography (DLR), and the truck-mounted scatterometer (C- and X-band) of the Institute for Navigation, University of Stuttgart (INS). Because of this variety of different sensor types used and out of the fact that sufficiently large forested and agriculturally used areas were planned to be covered by these sensors, the interest of several German research groups involved in investigations concerning SAR land applications arose. The following groups carried out different ground-truth measurements: University of Bonn, Institute for plant cultivation (plant morphology and moisture content); University of Braunschweig, Institute for Geography (soil moisture and surface roughness); University of Freiburg, Institute for Geography (dielectric soil properties, landuse); and University of Munich, Institute for Geography (landuse inventory, plant, surface, and soil parameters). This paper presents the joint ground truth activities of the Institute for Geography

  15. Passive Polarimetric Microwave Signatures Observed Over Antarctica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WindSat satellite-based fully polarimetric passive microwave observations, expressed in the form of the Stokes vector, were analyzed over the Antarctic ice sheet. The vertically and horizontally polarized brightness temperatures (first two Stokes components) from WindSat are shown to be consistent w...

  16. Phase Calibration Of Polarimetric Radar Images

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony; Sheen, Dan R.; Kasischke, Erik S.

    1992-01-01

    Report addresses problem of calibration of differences between phases (relative to transmitted signals) of signals received in two polarization channels of polarimetric imaging radar system. Causes of various types of errors discussed. Calibration necessary to deduce information about target area - type of terrain, presence of vegetation, and land/water boundaries.

  17. IRAN: interferometric remapped array nulling

    NASA Astrophysics Data System (ADS)

    Aristidi, Eric; Vakili, Farrokh; Abe, Lyu; Belu, Adrian; Lopez, Bruno; Lanteri, Henri; Schutz, A.; Menut, Jean-Luc

    2004-10-01

    This paper describes a method of beam-combination in the so-called hypertelescope imaging technique recently introduced by Labeyrie in optical interferometry. The method we propose is an alternative to the Michelson pupil reconfiguration that suffers from the loss of the classical object-image convolution relation. From elementary theory of Fourier optics we demonstrate that this problem can be solved by observing in a combined pupil plane instead of an image plane. The point-source intensity distribution (PSID) of this interferometric "image" tends towards a psuedo Airy disc (similar to that of a giant monolithic telescope) for a sufficiently large number of telescopes. Our method is applicable to snap-shot imaging of extended sources with a field comparable to the Airy pattern of single telescopes operated in a co-phased multi-aperture interferometric array. It thus allows to apply conveniently pupil plane coronagraphy. Our technique called Interferometric Remapped Array Nulling (IRAN) is particularly suitable for high dynamic imaging of extra-solar planetary companions, circumstellar nebulosities or extra-galactic objects where long baseline interferometry would closely probe the central regions of AGNs for instance.

  18. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    NASA Astrophysics Data System (ADS)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  19. Sea ice classification using dual polarization SAR data

    NASA Astrophysics Data System (ADS)

    Huiying, Liu; Huadong, Guo; Lu, Zhang

    2014-03-01

    Sea ice is an indicator of climate change and also a threat to the navigation security of ships. Polarimetric SAR images are useful in the sea ice detection and classification. In this paper, backscattering coefficients and texture features derived from dual polarization SAR images are used for sea ice classification. Firstly, the HH image is recalculated based on the angular dependences of sea ice types. Then the effective gray level co-occurrence matrix (GLCM) texture features are selected for the support vector machine (SVM) classification. In the end, because sea ice concentration can provide a better separation of pancake ice from old ice, it is used to improve the SVM result. This method provides a good classification result, compared with the sea ice chart from CIS.

  20. The InSAR Scientific Computing Environment

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Gurrola, Eric; Sacco, Gian Franco; Zebker, Howard

    2012-01-01

    We have developed a flexible and extensible Interferometric SAR (InSAR) Scientific Computing Environment (ISCE) for geodetic image processing. ISCE was designed from the ground up as a geophysics community tool for generating stacks of interferograms that lend themselves to various forms of time-series analysis, with attention paid to accuracy, extensibility, and modularity. The framework is python-based, with code elements rigorously componentized by separating input/output operations from the processing engines. This allows greater flexibility and extensibility in the data models, and creates algorithmic code that is less susceptible to unnecessary modification when new data types and sensors are available. In addition, the components support provenance and checkpointing to facilitate reprocessing and algorithm exploration. The algorithms, based on legacy processing codes, have been adapted to assume a common reference track approach for all images acquired from nearby orbits, simplifying and systematizing the geometry for time-series analysis. The framework is designed to easily allow user contributions, and is distributed for free use by researchers. ISCE can process data from the ALOS, ERS, EnviSAT, Cosmo-SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X platforms, starting from Level-0 or Level 1 as provided from the data source, and going as far as Level 3 geocoded deformation products. With its flexible design, it can be extended with raw/meta data parsers to enable it to work with radar data from other platforms

  1. A dense medium electromagnetic scattering model for the InSAR correlation of snow

    NASA Astrophysics Data System (ADS)

    Lei, Yang; Siqueira, Paul; Treuhaft, Robert

    2016-05-01

    Snow characteristics, such as snow water equivalent (SWE) and snow grain size, are important characteristics for the monitoring of the global hydrological cycle and as indicators of climate change. This paper derives an interferometric synthetic aperture radar (InSAR) scattering model for dense media, such as snow, which takes into account multiple scattering effects through the Quasi-Crystalline Approximation. The result of this derivation is a simplified version of the InSAR correlation model derived for relating the InSAR correlation measurements to the snowpack characteristics of grain size, volume fraction, and layer depth as well as those aspects of the volume-ground interaction that affects the interferometric observation (i.e., the surface topography and the ratio of ground-to-volume scattering). Based on the model, the sensitivity of the InSAR correlation measurements to the snow characteristics is explored by simulation. Through this process, it is shown that Ka-band InSAR phase has a good sensitivity to snow grain size and volume fraction, while for lower frequency signals (Ku-band to L-band), the InSAR correlation magnitude and phase have a sensitivity to snow depth. Since the formulation depends, in part, on the pair distribution function, three functional forms of the pair distribution function are implemented and their effects on InSAR phase measurements compared. The InSAR scattering model described in this paper is intended to be an observational prototype for future Ka-band and L-band InSAR missions, such as NASA's Surface Water and Ocean Topography and NASA-ISRO Synthetic Aperture Radar missions, planned for launch in the 2020-2021 time frame. This formulation also enables further investigation of the InSAR-based snow retrieval approaches.

  2. D-InSAR to inspect the active fault of Kunlun Mountains on Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Miao, Fang; Ye, Chengming; Bi, Xiaojia; Wu, Zhenhan; Kong, Xiangsheng; Liu, Rui; Yan, Mingxing

    2007-11-01

    Differential Interferometric Synthetic Aperture Radar (D-InSAR) is a new technology which is capable of detecting the tiny ground deformation and extracting Digital Elevation Model (DEM). This paper introduces the basic principle of D-InSAR. Using of two pass model and SRTM DEM, acquired Kunlun Mountains region surface deformation of Ms8.1 in 2001. The result provides an important reference for Qinghai-Tibet Railway Disaster Prevention.

  3. Potentials of TanDEM-X Interferometric Data for Global Forest/Non-Forest Classification

    NASA Astrophysics Data System (ADS)

    Martone, Michele; Rizzoli, Paola; Brautigam, Benjamin; Krieger, Gerhard

    2016-08-01

    This paper presents a method to generate forest/non- forest maps from TanDEM-X interferometric SAR data. Among the several contributions which may affect the quality of interferometric products, the coherence loss caused by volume scattering represents the contribution which is predominantly affected by the presence of vegetation, and is therefore here exploited as main indicator for forest classification. Due to the strong dependency of the considered InSAR quantity on the geometric acquisition configuration, namely the incidence angle and the interferometric baseline, a multi-fuzzy clustering classification approach is used. Some examples are provided which show the potential of the proposed method. Further, additional features such as urban settlements, water, and critical areas affected by geometrical distortions (e.g. shadow and layover) need to be extracted, and possible approaches are presented as well. Very promising results are shown, which demonstrate the potentials of TanDEM-X bistatic data not only for forest identification, but, more in general, for the generation of a global land classification map as a next step.

  4. Assessing Biomass Carbon Stocks Over Tropical Peat Swamp Forests Using Multi-Temporal L-Band SAR Data

    NASA Astrophysics Data System (ADS)

    Wijaya, Arief; Liesenberg, Veraldo; Susanti, Ari; Karyanto, Oka; Verchot, Louis V.

    2013-12-01

    Peatland ecosystem has an important role as a carbon sink that stores huge amounts of carbon. This work focuses on biomass modelling applying multi-temporal SAR data over a tropical peat swamp forest in Indonesia. Four scenes of quad-polarimetric SAR(PLR) data from ALOS satellite are used for the study. The SAR data were acquired in April 2007, May 2007, April 2009 and April 2010. Attempts to estimate carbon stocks applied mono-temporal and multi-temporal approaches (e.g HHt1 vs HHt2, etc), also combining different polarizations (e.g HHt1+HVt1+VHt1+VVt1 vs HHt2+HVt2+VHt2+VVt2). Polarimetric features are supplied into the biomass equations to study their effects to the model performance. The findings show that co-polarization bands (HH and VV) in general are better than cross-polarization data (HV and VH) to predict biomass and several other forest stand parameters (i.e. LAI, tree height, diameter and basal area). Addition of polarimetric SAR features, e.g. Alpha angle, Entropy and Anisotropy have improved the empirical models predictability.

  5. Multifrequency polarimetric ALOS PALSAR and RADARSAT-2 analysis over the archaeological area of Djebel Barkal (Sudan)

    NASA Astrophysics Data System (ADS)

    Patruno, Jolanda; Dore, Nicole; Pottier, Eric; Crespi, Mattia

    2013-04-01

    Differences in vegetation growth and in soil moisture content generate ground anomalies which can be linked to the presence of subsurface anthropic structures. Such evidences have been studied and observed for a long time by means of aerial photographs, thanks to planned campaigns or through the observation of historical II World War acquisitions first, and thanks to the very high spatial resolution of optical satellites later. The present research constitutes a contribution to the non-invasive archaeological investigation methodology carried out in the last years by several institutions and cultural organizations. The work aims to exploit the technique of SAR Polarimetry for the detection of surface and subsurface archaeological structures, comparing ALOS PALSAR L-band, with a central frequency of 1.27 GHz, with RADARSAT-2 C-band sensor, whose central frequency is 5.405 GHz. The choice to analyze satellite radar sensors capabilities is based on their 24-hour observations, as they are independent from Sun illumination and meteorological conditions. Moreover, they could provide additional information concerning electromagnetic properties of the target, qualities not derivable from optical images. A multi frequency comparison between the two SAR sensors has been performed over the Napatan (900-270 BC) Meroitic (270 BC-350 AD) area of Djebel Barkal, located in Sudan and inscribed in the UNESCO World Heritage List since 2003. It constitutes one of the five Napatan and Meroitic archaeological sites stretching over more than 60 km in the Nile valley, in an arid area part of Nubia. The area, not completely excavated, presents thombs, pyramids and sacred palaces. The dataset we disposed of is composed of two archived ALOS PALSAR polarimetric images and four RADARSAT-2 polarimetric data specifically acquired in the same year (2012). All the products have been then processed and integrated with the available optical data and the cartographic documentation derivable from

  6. Opium Field Detection in South Oxfordshire Using SAR Polarimetry

    NASA Astrophysics Data System (ADS)

    Walker, Nick; Marino, Armando

    2011-03-01

    To-date the use of satellite imagery to monitor the growth of illicit crops such as marijuana, opium and coca has mostly been conducted using optical frequencies. However, it is well known that while optical imagery can be hampered by localised aerosols such as thin clouds, cirrus, haze and smoke, these do not present a problem for Synthetic Aperture Radar (SAR). In recent years a new generation of satellite borne sensors have also been equipped with enhanced polarimetric capabilities, which can potentially help with detecting and classifying different terrain types. For these reasons we believe it is useful to consider whether high resolution polarimetric SAR data can be applied to illicit crop detection.In this paper we present the results of an experiment whereby opium poppy fields were successfully detected in the south Oxfordshire region in the UK using RadarSat-2 quad-polarisation imagery. It should be noted that these crops are not being grown illicitly but instead are being cultivated for medicinal reasons in parts of the UK. It is interesting to note that the poppies cultivated for opium in the UK have white flowers rather than the more familiar red as can be seen from the photograph in Figure 1, which was taken 11 days earlier in the season compared to Figure 4 and Figure 5.

  7. Superresolved spatially multiplexed interferometric microscopy.

    PubMed

    Picazo-Bueno, José Ángel; Zalevsky, Zeev; García, Javier; Micó, Vicente

    2017-03-01

    Superresolution capability by angular and time multiplexing is implemented onto a regular microscope. The technique, named superresolved spatially multiplexed interferometric microscopy (S2MIM), follows our previously reported SMIM technique [Opt. Express22, 14929 (2014)OPEXFF1094-408710.1364/OE.22.014929, J. Biomed. Opt.21, 106007 (2016)JBOPFO1083-366810.1117/1.JBO.21.10.106007] improved with superresolved imaging. All together, S2MIM updates a commercially available non-holographic microscope into a superresolved holographic one. Validation is presented for an Olympus BX-60 upright microscope with resolution test targets.

  8. Interferometric optical vortex array generator

    SciTech Connect

    Vyas, Sunil; Senthilkumaran, P

    2007-05-20

    Two new interferometric configurations for optical vortex array generation are presented.These interferometers are different from the conventional interferometers in that they are capable of producing a large number of isolated zeros of intensity, and all of them contain optical vortices. Simulation and theory for optical vortex array generation using three-plane-wave interference is presented. The vortex dipole array produced this way is noninteracting, as there are no attraction or repulsion forces between them, leading to annihilation or creation of vortex pairs.

  9. Improved Interferometric Photorefractive Optical Processor

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Tsuen-Hsi

    1991-01-01

    Processing speed increased substantially. Improved optical interferometric image-processing scheme based on four-wave mixing via photorefractive effect in GaAs or InP. Gives rise to index-of-refraction gratings acting as phase-conjugate mirrors: interactions among four input beams generate wave-front-reversed replicas of two of these beams. Each phase-conjugate beam travels precisely back along path of corresponding input beam, regardless of angle of incidence. Any distortions introduced into input beam during forward propagation removed from phase-conjugate beam during backward propagation.

  10. A Radarsat-2 Polarimetric Multi-Incidence Angle Analysis over Archaeological Sites The Ancient UNESCO City of Samarra (Iraq)

    NASA Astrophysics Data System (ADS)

    Dore, Nicole; Patuno, Jolanda; Pottier, Eric; Crespi, Mattia

    2013-08-01

    Remote sensing is a well know application in the archaeological field, and important results by optical sensors are continuously obtained by archaeologists. Remote sensing satellite usefulness, in fact, is linked to the non-invasive approach, in particular for those areas where surveys in situ are not allowed for political unstable situation, where a monitoring from remote is requested and for those zones where an analysis of the environment is needed as a preliminary estimation of works.As known, archaeology has an invasive approached of investigation because of the removal of big quantity of terrain in order to bring to the surface ancient ruins.This research, thanks to the use of RADARSAT-2 SAR sensor, is aimed to verify the usefulness of SAR polarimetry over the UNESCO archaeological city of Samarra (Iraq) by means of four polarimetric images acquired with multi incidence angles in order to find the most suitable configuration for archaeological purposes.

  11. Adaptive sidelobe reduction in SAR and INSAR COSMO-SkyMed image processing

    NASA Astrophysics Data System (ADS)

    Lorusso, Rino; Lombardi, Nunzia; Milillo, Giovanni

    2016-10-01

    The main lobe and the side lobes of strong scatterers are sometimes clearly visible in SAR images. Sidelobe reduction is of particular importance when imaging scenes contain objects such as ships and buildings having very large radar cross sections. Amplitude weighting is usually used to suppress sidelobes of the images at the expense of broadening of mainlobe, loss of resolution and degradation of SAR images. The Spatial Variant Apodization (SVA) is an Adaptive SideLobe Reduction (ASLR) technique that provides high effective suppression of sidelobes without broadening mainlobe. In this paper, we apply SVA to process COSMO-SkyMed (CSK) StripMap and Spotlight X-band data and compare the images with the standard products obtained via Hamming window processing. Different test sites have been selected in Italy, Argentina, California and Germany where corner reflectors are installed. Experimental results show clearly the resolution improvement (20%) while sidelobe kept to a low level when SVA processing is applied compared with Hamming windowing one. Then SVA technique is applied to Interferometric SAR image processing (INSAR) using a CSK StripMap interferometric tandem-like data pair acquired on East-California. The interferometric coherence of image pair obtained without sidelobe reduction (SCS_U) and with sidelobe reduction performed via Hamming window and via SVA are compared. High resolution interferometric products have been obtained with small variation of mean coherence when using ASLR products with respect to hamming windowed and no windowed one.

  12. Mueller Polarimetric Imaging System with Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Laude-Boulesteix, Blandine; de Martino, Antonello; Drévillon, Bernard; Schwartz, Laurent

    2004-05-01

    We present a new polarimetric imaging system based on liquid-crystal modulators, a spectrally filtered white-light source, and a CCD camera. The whole Mueller matrix image of the sample is measured in approximately 5 s in the transmission mode. The instrument design, together with an original and easy-to-operate calibration procedure, provides high accuracy over a wide spectral range (500-700 nm). This accuracy has been assessed by measurement of a linear polarizer at different orientations and a thick wedged quartz plate as an example of a partially depolarized retarder. Polarimetric images of a stained hepatic biopsy with significant fibrosis have been taken at several wavelengths. The optical properties of Picrosirius Red stained collagen (diattenuation, retardance, and polarizance) have been measured independently from each other between 500 and 700 nm.

  13. Polarimetric Observation of Pulsars with Hexes

    NASA Astrophysics Data System (ADS)

    Xue, M.; Bhat, R.; Tremblay, S.; Ord, S.; Sobey, C.; Kirsten, F.

    2016-07-01

    The MWA VCS pipeline is now reliably generating high time resolution observations of radio pulsars in all four Stokes parameters. Here, we are proposing to test the polarimetric response of and our ability to calibrate the new Hex array currently under construction. These observation will provide data that will be used to study the pulsars themselves (including their emission mechanism and beam geometry), the interstellar medium and towards understanding the Galactic magnetic field. We are proposing a set of observations of three pulsars (J0034-0534, J0437-4715, and J2145-0750) at a wide range of hour angles to characterise the fidelity and stability of the polarimetric solutions with the hexes. The observation would be performed between 170-200 MHz and 140-170 MHz respectively. This project will form part of the PhD program of Mengyao Xue.

  14. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    USGS Publications Warehouse

    Zhang, L.; Lu, Zhiming; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach - temporarily coherent point (TCP) InSAR (TCPInSAR) - to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6. mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms. ?? 2011.

  15. Spectral and Polarimetric Imagery Collection Experiment

    DTIC Science & Technology

    2011-12-01

    Saturn V rocket located at the Space and Rocket Center, Huntsville, Alabama shown in figure 4 is an actual image taken with the system from the air...polarimetric sensors were placed inside the PAL laboratory elevator on top of a Quickset QTP-500 Pan and Tilt positioner (fig. 9). The QTP-500 can...The Pan and Tilt system positions the sensors to collect data of the mid and long range target sites, and two background-only sites by receiving

  16. Spectral and Polarimetric Imagery Collection Experiment

    DTIC Science & Technology

    2011-12-01

    the Saturn V rocket located at the Space and Rocket Center, Huntsville, Alabama shown in figure 4 is an actual image taken with the system from the...hyperspectral and polarimetric sensors were placed inside the PAL laboratory elevator on top of a Quickset QTP-500 Pan and Tilt positioner (fig. 9). The...cameras from Polaris (5), and blower to protect sensors from rain and snow (6). Figure 9 SPICE setup inside the PAL elevator The Pan and Tilt

  17. Polarimetric Backscattering Behavior of River Ice Cover

    NASA Astrophysics Data System (ADS)

    Mermoz, S.; Gherboudj, I.; Allain, S.; Bernier, M.; Pottier, E.

    2009-04-01

    In many northern rivers of Canada, the formation of the ice covers leads to important situations: ice jamming, and then flooding of large areas. Thus, the monitoring of river ice is necessary. Gherboudj has developed a model in order to understand the interactions of the radar signal with the river ice cover. The model is improved to simulate the fully polarimetric response of a river ice cover. The aim of this work is to analyse the results of the simulations.

  18. Polarimetric Hyperspectral Imaging Systems and Applications

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Mahoney, Colin; Reyes, George; Baw, Clayton La; Li, G. P.

    1996-01-01

    This paper reports activities in the development of AOTF Polarimetric Hyperspectral Imaging (PHI) Systems at JPL along with field observation results for illustrating the technology capabilities and advantages in remote sensing. In addition, the technology was also used to measure thickness distribution and structural imperfections of silicon-on-silicon wafers using white light interference phenomenon for demonstrating the potential in scientific and industrial applications.

  19. Supervised fully polarimetric classification of the Black Forest test site: From MAESTROI to MAC Europe

    NASA Technical Reports Server (NTRS)

    Degrandi, G.; Lavalle, C.; Degroof, H.; Sieber, A.

    1992-01-01

    A study on the performance of a supervised fully polarimetric maximum likelihood classifier for synthetic aperture radar (SAR) data when applied to a specific classification context: forest classification based on age classes and in the presence of a sloping terrain is presented. For the experimental part, the polarimetric AIRSAR data at P, L, and C-band, acquired over the German Black Forest near Freiburg in the frame of the 1989 MAESTRO-1 campaign and the 1991 MAC Europe campaign was used, MAESTRO-1 with an ESA/JRC sponsored campaign, and MAC Europe (Multi-sensor Aircraft Campaign); in both cases the multi-frequency polarimetric JPL Airborne Synthetic Aperture Radar (AIRSAR) radar was flown over a number of European test sites. The study is structured as follows. At first, the general characteristics of the classifier and the dependencies from some parameters, like frequency bands, feature vector, calibration, using test areas lying on a flat terrain are investigated. Once it is determined the optimal conditions for the classifier performance, we then move on to the study of the slope effect. The bulk of this work is performed using the Maestrol data set. Next the classifier performance with the MAC Europe data is considered. The study is divided into two stages: first some of the tests done on the Maestro data are repeated, to highlight the improvements due to the new processing scheme that delivers 16 look data. Second we experiment with multi images classification with two goals: to assess the possibility of using a training set measured from one image to classify areas in different images; and to classify areas on critical slopes using different viewing angles. The main points of the study are listed and some of the results obtained so far are highlighted.

  20. Detecting and monitoring UCG subsidence with InSAR

    SciTech Connect

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  1. Atmospheric Effects on InSAR Measurements and Their Mitigation

    PubMed Central

    Ding, Xiao-li; Li, Zhi-wei; Zhu, Jian-jun; Feng, Guang-cai; Long, Jiang-ping

    2008-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a powerful technology for observing the Earth surface, especially for mapping the Earth's topography and deformations. InSAR measurements are however often significantly affected by the atmosphere as the radar signals propagate through the atmosphere whose state varies both in space and in time. Great efforts have been made in recent years to better understand the properties of the atmospheric effects and to develop methods for mitigating the effects. This paper provides a systematic review of the work carried out in this area. The basic principles of atmospheric effects on repeat-pass InSAR are first introduced. The studies on the properties of the atmospheric effects, including the magnitudes of the effects determined in the various parts of the world, the spectra of the atmospheric effects, the isotropic properties and the statistical distributions of the effects, are then discussed. The various methods developed for mitigating the atmospheric effects are then reviewed, including the methods that are based on PSInSAR processing, the methods that are based on interferogram modeling, and those that are based on external data such as GPS observations, ground meteorological data, and satellite data including those from the MODIS and MERIS. Two examples that use MODIS and MERIS data respectively to calibrate atmospheric effects on InSAR are also given. PMID:27873822

  2. High-Level Performance Modeling of SAR Systems

    NASA Technical Reports Server (NTRS)

    Chen, Curtis

    2006-01-01

    SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.

  3. Atmospheric Effects on InSAR Measurements and Their Mitigation.

    PubMed

    Ding, Xiao-Li; Li, Zhi-Wei; Zhu, Jian-Jun; Feng, Guang-Cai; Long, Jiang-Ping

    2008-09-03

    Interferometric Synthetic Aperture Radar (InSAR) is a powerful technology for observing the Earth surface, especially for mapping the Earth's topography and deformations. InSAR measurements are however often significantly affected by the atmosphere as the radar signals propagate through the atmosphere whose state varies both in space and in time. Great efforts have been made in recent years to better understand the properties of the atmospheric effects and to develop methods for mitigating the effects. This paper provides a systematic review of the work carried out in this area. The basic principles of atmospheric effects on repeat-pass InSAR are first introduced. The studies on the properties of the atmospheric effects, including the magnitudes of the effects determined in the various parts of the world, the spectra of the atmospheric effects, the isotropic properties and the statistical distributions of the effects, are then discussed. The various methods developed for mitigating the atmospheric effects are then reviewed, including the methods that are based on PSInSAR processing, the methods that are based on interferogram modeling, and those that are based on external data such as GPS observations, ground meteorological data, and satellite data including those from the MODIS and MERIS. Two examples that use MODIS and MERIS data respectively to calibrate atmospheric effects on InSAR are also given.

  4. Polarimetric studies of polyethylene terephtalate flexible substrates

    NASA Astrophysics Data System (ADS)

    Stchakovsky, M.; Garcia-Caurel, E.; Warenghem, M.

    2008-12-01

    Polymer sheets are currently used worldwide in a wide range of applications. The manufacturing process of these sheets involves extruding machines that stretch the material in both lateral and longitudinal directions with respect to the machine direction, thus inducing birefringence. In most cases, the film obtained is optically biaxial. Polarimetric spectroscopy (Ellipsometry and Mueller Matrix) combined with conoscopic observation are the methods of choice to study these properties. In this work we report an analysis of commercially available polyethylene terephtalate (PET) films used as substrate for food packaging as well as for embedded electronic devices such as solar cells or flexible displays. Initial observation of these films through polarizing microscope in conoscopic mode reveals first the trace of optical axis plane with respect to the film surface and second, whether the optical axis is acute or not. This preliminary study allows optimal sample positioning for further polarimetric studies. The measurements and modelling are done in both reflection and transmission mode on several spectroscopic polarimetric setups from UV to NIR. The models give as a main result, the dielectric tensor of the film as well as its orientation with respect to the laboratory reference frame.

  5. Polarimetric scattering model for estimation of above ground biomass of multilayer vegetation using ALOS-PALSAR quad-pol data

    NASA Astrophysics Data System (ADS)

    Sai Bharadwaj, P.; Kumar, Shashi; Kushwaha, S. P. S.; Bijker, Wietske

    Forests are important biomes covering a major part of the vegetation on the Earth, and as such account for seventy percent of the carbon present in living beings. The value of a forest's above ground biomass (AGB) is considered as an important parameter for the estimation of global carbon content. In the present study, the quad-pol ALOS-PALSAR data was used for the estimation of AGB for the Dudhwa National Park, India. For this purpose, polarimetric decomposition components and an Extended Water Cloud Model (EWCM) were used. The PolSAR data orientation angle shifts were compensated for before the polarimetric decomposition. The scattering components obtained from the polarimetric decomposition were used in the Water Cloud Model (WCM). The WCM was extended for higher order interactions like double bounce scattering. The parameters of the EWCM were retrieved using the field measurements and the decomposition components. Finally, the relationship between the estimated AGB and measured AGB was assessed. The coefficient of determination (R2) and root mean square error (RMSE) were 0.4341 and 119 t/ha respectively.

  6. Vegetation profiles in tropical forests from multibaseline interferometric synthetic aperture radar, field, and lidar measurements

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Chapman, B. D.; Dos Santos, J. R.; GonçAlves, F. G.; Dutra, L. V.; GraçA, P. M. L. A.; Drake, J. B.

    2009-12-01

    This paper addresses the estimation of vertical vegetation density profiles from multibaseline interferometric synthetic aperture radar (InSAR) data from the AirSAR aircraft at C band over primary, secondary, and abandoned-pasture stands at La Selva Biological Station, Costa Rica in 2004. Profiles were also estimated from field data taken in 2006 and lidar data taken with the LVIS, 25 m spot instrument in 2005. After motivating the study of tropical forest profiles based on their role in the global carbon cycle, ecosystem state, and biodiversity, this paper describes the InSAR, field, and lidar data acquisitions and analyses. Beyond qualitative agreement between profiles from the 3 measurement techniques, results show that InSAR and lidar profile-averaged mean height have RMS scatters about field-measured means of 3.4 m and 3.2 m, 16% and 15% of the average mean height, respectively. InSAR and lidar standard deviations of the vegetation distribution have RMS scatters about the field standard deviations of 1.9 m and 1.5 m, or 27% and 21%, respectively. Dominant errors in the profile-averaged mean height for each measurement technique were modeled. InSAR inaccuracies, dominated by ambiguities in finding the ground altitude and coherence calibration, together account for about 3 m of InSAR error in the mean height. The dominant, modeled error for the field measurements was the inaccuracy in modeling the trees as uniformly filled volumes of leaf area, inducing field errors in mean height of about 3 m. The dominant, modeled lidar error, also due to finding the ground, was 2 m.

  7. Current Measurements in Rivers by Spaceborne Along-Track Interferometric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Romeiser, R.; Gruenler, S.; Stammer, D.

    2007-12-01

    The along-track interferometric synthetic aperture radar (along-track InSAR) technique permits a high-resolution imaging of ocean surface current fields all over the world from satellites. Results of the Shuttle Radar Topography Mission (SRTM) in early 2000 and theoretical findings indicate that spaceborne along-track InSARs are also suitable for current retrievals in rivers if the water surface is at least 200-300 m wide and sufficiently rough for microwave backscattering at slanting incidence. Accordingly, the technique is quite attractive for global river runoff monitoring, where it can complement water level and surface slope measurements by advanced radar altimeters and other efforts. The German satellite TerraSAR-X, which was launched in June 2007, will permit along-track interferometry in an experimental mode of operation. This will be the first opportunity for repeated current measurements from space at selected test sites during a period of several years. In this presentation we give an overview of basic principles and theoretical limits of current measurements by along-track InSAR, example results from SRTM, and predicted along-track InSAR capabilities of TerraSAR-X. An SRTM-derived surface current field in the lower Elbe river (Germany) agrees well with numerical hydrodynamic model results; characteristic lateral current variations around a pronounced main flow channel in the 1500 m wide river are resolved. Despite clearly suboptimal instrument parameters, TerraSAR-X simulations indicate an even better data quality. Depending on width, surface roughness, and relative flow direction of a river, current estimates with an accuracy better than 0.1 m/s will be possible with an effective spatial resolution of a few hundred meters to kilometers.

  8. Post disaster monitoring for the Great East Japan Earthquake with a new L-band airborne SAR "Pi-SAR-L2"

    NASA Astrophysics Data System (ADS)

    Kawano, Noriyuki

    2013-04-01

    A new L-band airborne SAR, Polarimetric and interferometry Synthetic Aperture Radar with L-band type-2 (Pi-SAR-L2) was developed in April 2012 by Japan Aerospace exploration Agency(JAXA). Pi-SAR-L2 employs a L-band with a band width of 85 MHz (1,215 - 1,300 MHz) with a peak power of 3.5 kW boarded on the Galfstream II. Pi-SAR-L2 conducted its first acquisitions for calibrations and validations over Tomakomai, Hokkaido, where is a test site with some corner reflectors in April 2012. The Great East Japan Earthquake with a magnitude 9.0 occurred at 14:46 on 11 Mar. 2011 and terribly big Tsunami attacked Tohoku district after the earthquake. The tsunami caused huge damage along its coast in Touhoku. Pi-SAR-L2 acquired these post disaster regions in Fukushima and Miyagi Prefectures along the coast on the way to Hokkaido in April 2012, some region still remain flooded area and debris caused by Tsumani. We will present Pi-SAR-L2 systems and specifications, and discuss monitoring these damages.

  9. Laboratory diagnosis of SARS.

    PubMed Central

    Bermingham, A; Heinen, P; Iturriza-Gómara, M; Gray, J; Appleton, H; Zambon, M C

    2004-01-01

    The emergence of new viral infections of man requires the development of robust diagnostic tests that can be applied in the differential diagnosis of acute illness, or to determine past exposure, so as to establish the true burden of disease. Since the recognition in April 2003 of the severe acute respiratory syndrome coronavirus (SARS-CoV) as the causative agent of severe acute respiratory syndrome (SARS), enormous efforts have been applied to develop molecular and serological tests for SARS which can assist rapid detection of cases, accurate diagnosis of illness and the application of control measures. International progress in the laboratory diagnosis of SARS-CoV infection during acute illness has led to internationally agreed World Health Organization criteria for the confirmation of SARS. Developments in the dissection of the human immune response to SARS indicate that serological tests on convalescent sera are essential to confirm SARS infection, given the sub-optimal predictive value of molecular detection tests performed during acute SARS illness. PMID:15306394

  10. The potential of more accurate InSAR covariance matrix estimation for land cover mapping

    NASA Astrophysics Data System (ADS)

    Jiang, Mi; Yong, Bin; Tian, Xin; Malhotra, Rakesh; Hu, Rui; Li, Zhiwei; Yu, Zhongbo; Zhang, Xinxin

    2017-04-01

    Synthetic aperture radar (SAR) and Interferometric SAR (InSAR) provide both structural and electromagnetic information for the ground surface and therefore have been widely used for land cover classification. However, relatively few studies have developed analyses that investigate SAR datasets over richly textured areas where heterogeneous land covers exist and intermingle over short distances. One of main difficulties is that the shapes of the structures in a SAR image cannot be represented in detail as mixed pixels are likely to occur when conventional InSAR parameter estimation methods are used. To solve this problem and further extend previous research into remote monitoring of urban environments, we address the use of accurate InSAR covariance matrix estimation to improve the accuracy of land cover mapping. The standard and updated methods were tested using the HH-polarization TerraSAR-X dataset and compared with each other using the random forest classifier. A detailed accuracy assessment complied for six types of surfaces shows that the updated method outperforms the standard approach by around 9%, with an overall accuracy of 82.46% over areas with rich texture in Zhuhai, China. This paper demonstrates that the accuracy of land cover mapping can benefit from the 3 enhancement of the quality of the observations in addition to classifiers selection and multi-source data ingratiation reported in previous studies.

  11. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes.

    PubMed

    Ramsey, Elijah; Meyer, Buffy M; Rangoonwala, Amina; Overton, Edward; Jones, Cathleen E; Bannister, Terri

    2014-12-15

    Polarimetric synthetic aperture radar (PolSAR) data exhibited dramatic, spatially extensive changes from June 2009 to June 2010 in Barataria Bay, Louisiana. To determine whether these changes were associated with the Deepwater Horizon (DWH) oil spill, twenty-nine sediment samples were collected in 2011 from shoreline and nearshore-interior coastal marsh locations where oil was not observed visually or with optical sensors during the spill. Oil source-fingerprinting and polytopic vector analysis were used to link DWH oil to PolSAR changes. Our results prove that DWH oil extended beyond shorelines and confirm the association between presence of DWH oil and PolSAR change. These results show that the DWH oil spill probably affected much more of the southeastern Louisiana marshland than originally concluded from ground and aerial surveys and verify that PolSAR is a powerful tool for tracking oil intrusion into marshes with high probability even where contamination is not visible from above the canopy.

  12. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Meyer, Buffy M.; Rangoonwala, Amina; Overton, Edward; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Polarimetric synthetic aperture radar (PolSAR) data exhibited dramatic, spatially extensive changes from June 2009 to June 2010 in Barataria Bay, Louisiana. To determine whether these changes were associated with the Deepwater Horizon (DWH) oil spill, twenty-nine sediment samples were collected in 2011 from shoreline and nearshore–interior coastal marsh locations where oil was not observed visually or with optical sensors during the spill. Oil source-fingerprinting and polytopic vector analysis were used to link DWH oil to PolSAR changes. Our results prove that DWH oil extended beyond shorelines and confirm the association between presence of DWH oil and PolSAR change. These results show that the DWH oil spill probably affected much more of the southeastern Louisiana marshland than originally concluded from ground and aerial surveys and verify that PolSAR is a powerful tool for tracking oil intrusion into marshes with high probability even where contamination is not visible from above the canopy.

  13. Polarimetric C-/X-band Synthetic Aperture Radar Observations of Melting Sea Ice in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.

    2013-12-01

    Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth

  14. Helmand river hydrologic studies using ALOS PALSAR InSAR and ENVISAT altimetry

    USGS Publications Warehouse

    Lu, Zhiming; Kim, J.-W.; Lee, H.; Shum, C.K.; Duan, J.; Ibaraki, M.; Akyilmaz, O.; Read, C.-H.

    2009-01-01

    The Helmand River wetland represents the only fresh-water resource in southern Afghanistan and one of the least mapped water basins in the world. The relatively narrow wetland consists of mostly marshes surrounded by dry lands. In this study, we demonstrate the use of the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) Interferometric SAR (InSAR) to detect the changes of the Helmand River wetland water level. InSAR images are combined with the geocentric water level measurements from the retracked high-rate (18-Hz) Environmental Satellite (Envisat) radar altimetry to construct absolute water level changes over the marshes. It is demonstrated that the integration of the altimeter and InSAR can provide spatio-temporal measurements of water level variation over the Helmand River marshes where in situ measurements are absent. ?? Taylor & Francis Group, LLC.

  15. Generation of Classical DInSAR and PSI Ground Motion Maps on a Cloud Thematic Platform

    NASA Astrophysics Data System (ADS)

    Mora, Oscar; Ordoqui, Patrick; Romero, Laia

    2016-08-01

    This paper presents the experience of ALTAMIRA INFORMATION uploading InSAR (Synthetic Aperture Radar Interferometry) services in the Geohazard Exploitation Platform (GEP), supported by ESA. Two different processing chains are presented jointly with ground motion maps obtained from the cloud computing, one being DIAPASON for classical DInSAR and SPN (Stable Point Network) for PSI (Persistent Scatterer Interferometry) processing. The product obtained from DIAPASON is the interferometric phase related to ground motion (phase fringes from a SAR pair). SPN provides motion data (mean velocity and time series) on high-quality pixels from a stack of SAR images. DIAPASON is already implemented, and SPN is under development to be exploited with historical data coming from ERS-1/2 and ENVISAT satellites, and current acquisitions of SENTINEL-1 in SLC and TOPSAR modes.

  16. Ka-Band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Ghaemi, Hirad; Heavy, Brandon; Perkovic, Dragana; Quddus, Momin; Zawadzki, Mark; Moller, Delwyn

    2010-01-01

    GLISTIN is an instrument concept for a single-pass interferometric SAR operating at 35.6 GHz. To achieve large swath widths using practical levels of transmitter power, a digitally-beamformed planar waveguide array is used. This paper describes results from a ground-based demonstration of a 16-receiver prototype. Furthermore, SweepSAR is emerging as promising technique for achieving very wide swaths for surface change detection. NASA and DLR are studying this approach for the DESDynI and Tandem-L missions. SweepSAR employs a reflector with a digitally-beamformed array feed. We will describe development of an airborne demonstration of SweepSAR using the GLISTIN receiver array and a reflector.

  17. First Demonstration of Agriculture Height Retrieval with PolInSAR Airborne Data

    NASA Astrophysics Data System (ADS)

    Lopez-Sanchez, Juan M.; Ballester-Berman, J. David; Hajnsek, Irena

    2011-03-01

    A set of three quad-pol images acquired at L-band in interferometric repeat-pass mode by DLR with the E-SAR system, in parallel with the AgriSAR2006 campaign, have been used to provide a first demonstration with airborne data of the retrieval of vegetation height from agricultural crops by means of PolInSAR based techniques.We have obtained accurate estimates of vegetation height over winter rape and maize fields, when compared with the availabe ground measurements. The same procedure yields a clear overestimation and larger variance over wheat fields.Results demonstrate that, although the frequency band is low, the model employed for the inversion is very simple, and the backscattered signal contains an important contribution from the ground, the volume information provided by interferometry is present and enables the application of PolInSAR-based retrieval approaches for agriculture monitoring practices.

  18. Analysis on the Potential of L-Band PolSAR Data for Crop Monitoring

    NASA Astrophysics Data System (ADS)

    Ballester-Berman, J. David; Lopez-Sanchez, Juan M.

    2011-03-01

    In this work we have made use of quad-pol measurements at L-band acquired by DLRs E-SAR system during the AgriSAR06 campaign for analyzing time series of different polarimetric indicators over winter wheat, maize and winter rape fields on the basis of the phenological development. Also, the sensitivity to crop fields of parameters derived from hybrid-polarity SAR architecture as proposed by Raney in 2007 has been investigated. In both quad-pol and hybrid-pol cases a correlation study along the whole phenological development among observables and ground-truth measurements has been performed. We have focused the potential of some of these observables for the detection of particular crop conditions along certain periods within the whole growth season.

  19. Estimation of Biomass Carbon Stocks over Peat Swamp Forests using Multi-Temporal and Multi-Polratizations SAR Data

    NASA Astrophysics Data System (ADS)

    Wijaya, A.; Liesenberg, V.; Susanti, A.; Karyanto, O.; Verchot, L. V.

    2015-04-01

    The capability of L-band radar backscatter to penetrate through the forest canopy is useful for mapping the forest structure, including above ground biomass (AGB) estimation. Recent studies confirmed that the empirical AGB models generated from the L-band radar backscatter can provide favourable estimation results, especially if the data has dual-polarization configuration. Using dual polarimetry SAR data the backscatter signal is more sensitive to forest biomass and forest structure because of tree trunk scattering, thus showing better discriminations of different forest successional stages. These SAR approaches, however, need to be further studied for the application in tropical peatlands ecosystem We aims at estimating forest carbon stocks and stand biophysical properties using combination of multi-temporal and multi-polarizations (quad-polarimetric) L-band SAR data and focuses on tropical peat swamp forest over Kampar Peninsula at Riau Province, Sumatra, Indonesia which is one of the most peat abundant region in the country. Applying radar backscattering (Sigma nought) to model the biomass we found that co-polarizations (HH and VV) band are more sensitive than cross-polarization channels (HV and VH). Individual HH polarization channel from April 2010 explained > 86% of AGB. Whereas VV polarization showed strong correlation coefficients with LAI, tree height, tree diameter and basal area. Surprisingly, polarimetric anisotropy feature from April 2007 SAR data show relatively high correlations with almost all forest biophysical parameters. Polarimetric anisotropy, which explains the ratio between the second and the first dominant scattering mechanism from a target has reduced at some extent the randomness of scattering mechanism, thus improve the predictability of this particular feature in estimating the forest properties. These results may be influenced by local seasonal variations of the forest as well as moisture, but available quad-pol SAR data were unable to

  20. Interferometric biochemical and chemical sensors

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter; Brecht, Andreas; Kraus, Gerolf

    1995-09-01

    Interferometric principles have gained wide acceptance in the field of chemical and biochemical sensing. Reflectometric interference spectrometry sensors using white light multiple reflections at thin layers, structures of polymers, or monolayers of biochemicals are discussed in a survey. These are compared to other techniques, especially methods using surface plasmon resonance and grating couplers. Applications in the area of environmental monitoring in public safety are given, demonstrating the results for halogenated hydrocarbons in air and water as well as pesticides in ground water. Calibration curves, limits of decision, of detection, and of determination are specified and discussed with respect to EU limits. The application of multivariate data analysis is considered including artificial neuronal networks for multisensor systems and referencing in the case of gas sensors.

  1. IRAN: Interferometric Remapped Array Nulling

    NASA Astrophysics Data System (ADS)

    Aristidi, E.; Vakili, F.; Schutz, A.; Lanteri, H.; Abe, L.; Belu, A.; Gori, P. M.; Lardière, O.; Lopez, B.; Menut, J. L.; Patru, F.

    IRAN is a method of beam-combination in the hypertelescope imaging technique recently introduced by Labeyrie in optical interferometry. We propose to observe the interferometric image in the pupil plane, performing multi-axial pupil plane interferometry. Imaging is performed in a combined pupil-plane where the point-source intensity distribution (PSID) tends towards a pseudo Airy disc for a sufficiently large number of telescopes. The image is concentrated into the limited support of the output pupil of the individual telescopes, in which the object-image convolution relation is conserved. Specific deconvolution algorithms have been developped for IRAN hypertelescope imagery, based upon Lucy-like iterative techniques. We show that the classical (image plane) and IRAN (pupil plane) hypertelescope imaging techniques are equivalent if one uses optical fibers for beam transportation. An application to the VLT/VIDA concept is presented.

  2. Multifocal interferometric synthetic aperture microscopy

    PubMed Central

    Xu, Yang; Chng, Xiong Kai Benjamin; Adie, Steven G.; Boppart, Stephen A.; Scott Carney, P.

    2014-01-01

    There is an inherent trade-off between transverse resolution and depth of field (DOF) in optical coherence tomography (OCT) which becomes a limiting factor for certain applications. Multifocal OCT and interferometric synthetic aperture microscopy (ISAM) each provide a distinct solution to the trade-off through modification to the experiment or via post-processing, respectively. In this paper, we have solved the inverse problem of multifocal OCT and present a general algorithm for combining multiple ISAM datasets. Multifocal ISAM (MISAM) uses a regularized combination of the resampled datasets to bring advantages of both multifocal OCT and ISAM to achieve optimal transverse resolution, extended effective DOF and improved signal-to-noise ratio. We present theory, simulation and experimental results. PMID:24977909

  3. Comparison Between Spectral, Spatial and Polarimetric Classification of Urban and Periurban Landcover Using Temporal Sentinel - 1 Images

    NASA Astrophysics Data System (ADS)

    Roychowdhury, K.

    2016-06-01

    Landcover is the easiest detectable indicator of human interventions on land. Urban and peri-urban areas present a complex combination of landcover, which makes classification challenging. This paper assesses the different methods of classifying landcover using dual polarimetric Sentinel-1 data collected during monsoon (July) and winter (December) months of 2015. Four broad landcover classes such as built up areas, water bodies and wetlands, vegetation and open spaces of Kolkata and its surrounding regions were identified. Polarimetric analyses were conducted on Single Look Complex (SLC) data of the region while ground range detected (GRD) data were used for spectral and spatial classification. Unsupervised classification by means of K-Means clustering used backscatter values and was able to identify homogenous landcovers over the study area. The results produced an overall accuracy of less than 50% for both the seasons. Higher classification accuracy (around 70%) was achieved by adding texture variables as inputs along with the backscatter values. However, the accuracy of classification increased significantly with polarimetric analyses. The overall accuracy was around 80% in Wishart H-A-Alpha unsupervised classification. The method was useful in identifying urban areas due to their double-bounce scattering and vegetated areas, which have more random scattering. Normalized Difference Built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) obtained from Landsat 8 data over the study area were used to verify vegetation and urban classes. The study compares the accuracies of different methods of classifying landcover using medium resolution SAR data in a complex urban area and suggests that polarimetric analyses present the most accurate results for urban and suburban areas.

  4. Polarimetric Imaging for the Detection of Disturbed Surfaces

    DTIC Science & Technology

    2009-06-01

    ABSTRACT (maximum 200 words) This work tested the ability of the fast time-division SALSA polarimetric camera of Bossa Nova Technologies, Ltd. to...Department of Physics iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT This work tested the ability of the fast time-division SALSA polarimetric...1978)...................................18 Figure 11. The SALSA Camera (from Lefaudeux et al., 2007)........................................20

  5. Leaf Area Index and Biomass Assessment over Tropical Peatland Forest Ecosystem Using ALOS PalSAR and Envisat ASAR Data

    NASA Astrophysics Data System (ADS)

    Wijaya, Arief; Susanti, Ari; Liesenberg, Veraldo; Wardhana, Wahyu; Yanto, Edi; Soeprijadi, Djoko; McFarlane, Craig; Qomar, Nurul

    2011-03-01

    Provision of accurate forest parameter properties is important as a basis for forest resources monitoring and carbon cycle assessment. The present study aims to model leaf area index (LAI), above ground biomass and carbon stocks over tropical peatland forests using single polarization SAR, full polarimetry SAR (PolSAR) data. Single band ALOS Palsar data (HH band, acquired on November 17, 2008) and polarimetric data (HH, VV, HV and VH, collected on April 4 and May 5, 2007) are used for the study. A series of ENVISAT ASAR data (5 datasets) collected in 2004 - 2005 are also used to model the forest properties. Landsat ETM data collected on January 22, 2009 is also used as a reference. The relationship between forest parameters and normalized radar backscattering is estimated using empirical models, and preliminary results show that Polarimetric SAR data has better correlations with the LAI and biomass than single polarimetry SAR data. The field data were collected during field work in March - April 2009 and the reliability of identified forest classes was also assessed from available Landsat ETM data. Analysis will be conducted on the basis of statistical correlations between radar data and modeled forest properties, such as LAI, biomass and tree age. This study focuses on a unique tropical peatland ecosystem in Kampar Peninsula, Sumatera, Indonesia, which has great potentials as carbon sinks and/or sources. Only few studies have been conducted in the study area due to limited satellite and field observation data.

  6. Discrimination of crop types with TerraSAR-X-derived information

    NASA Astrophysics Data System (ADS)

    Sonobe, Rei; Tani, Hiroshi; Wang, Xiufeng; Kobayashi, Nobuyuki; Shimamura, Hideki

    Although classification maps are required for management and for the estimation of agricultural disaster compensation, those techniques have yet to be established. This paper describes the comparison of three different classification algorithms for mapping crops in Hokkaido, Japan, using TerraSAR-X (including TanDEM-X) dual-polarimetric data. In the study area, beans, beets, grasslands, maize, potatoes and winter wheat were cultivated. In this study, classification using TerraSAR-X-derived information was performed. Coherence values, polarimetric parameters and gamma nought values were also obtained and evaluated regarding their usefulness in crop classification. Accurate classification may be possible with currently existing supervised learning models. A comparison between the classification and regression tree (CART), support vector machine (SVM) and random forests (RF) algorithms was performed. Even though J-M distances were lower than 1.0 on all TerraSAR-X acquisition days, good results were achieved (e.g., separability between winter wheat and grass) due to the characteristics of the machine learning algorithm. It was found that SVM performed best, achieving an overall accuracy of 95.0% based on the polarimetric parameters and gamma nought values for HH and VV polarizations. The misclassified fields were less than 100 a in area and 79.5-96.3% were less than 200 a with the exception of grassland. When some feature such as a road or windbreak forest is present in the TerraSAR-X data, the ratio of its extent to that of the field is relatively higher for the smaller fields, which leads to misclassifications.

  7. Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm

    NASA Astrophysics Data System (ADS)

    Ghulam, Abduwasit; Porton, Ingrid; Freeman, Karen

    2014-02-01

    In this paper, we propose a decision tree algorithm to characterize spatial extent and spectral features of invasive plant species (i.e., guava, Madagascar cardamom, and Molucca raspberry) in tropical rainforests by integrating datasets from passive and active remote sensing sensors. The decision tree algorithm is based on a number of input variables including matching score and infeasibility images from Mixture Tuned Matched Filtering (MTMF), land-cover maps, tree height information derived from high resolution stereo imagery, polarimetric feature images, Radar Forest Degradation Index (RFDI), polarimetric and InSAR coherence and phase difference images. Spatial distributions of the study organisms are mapped using pixel-based Winner-Takes-All (WTA) algorithm, object oriented feature extraction, spectral unmixing, and compared with the newly developed decision tree approach. Our results show that the InSAR phase difference and PolInSAR HH-VV coherence images of L-band PALSAR data are the most important variables following the MTMF outputs in mapping subcanopy invasive plant species in tropical rainforest. We also show that the three types of invasive plants alone occupy about 17.6% of the Betampona Nature Reserve (BNR) while mixed forest, shrubland and grassland areas are summed to 11.9% of the reserve. This work presents the first systematic attempt to evaluate forest degradation, habitat quality and invasive plant statistics in the BNR, and provides significant insights as to management strategies for the control of invasive plants and conversation in the reserve.

  8. Magma flux at Okmok Volcano, Alaska, from a joint inversion of continuous GPS, campaign GPS, and interferometric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Biggs, Juliet; Lu, Zhong; Fournier, Tom; Freymueller, Jeffrey T.

    2010-12-01

    Volcano deformation is usually measured using satellite geodetic techniques including interferometric synthetic aperture radar (InSAR), campaign GPS, and continuous GPS. Differences in the spatial and temporal sampling of each system mean that most appropriate inversion scheme to determine the source parameters from each data set is different. Most studies either compare results from independent inversions or subsample the data sets to the lowest common factor. It is unclear whether differences in the solution reflect differences in source behavior, differences in measurement bias, or differences in inversion technique. Here we develop a single inversion procedure that captures the benefits of each system, especially the daily sampling of continuous GPS and the high spatial resolution of InSAR. Okmok Volcano, Alaska, is an ideal target for such a test because a long series (<15 years) of InSAR and continuous GPS measurement exists and the source is almost continuously active and in a stable location.

  9. STORM: A New Airborne Polarimetric Real-Aperture Radar for Earth Observations

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.

    2003-04-01

    The successful launch of the Envisat in March 2002 offers new possibilities for estimating geophysical quantities characterizing continental or sea surface using the multi-polarization ASAR. In addition, in the context of the preparation of future missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. Airborne radar systems remain a very useful way to validate satellite measurements and to develop or validate algorithms needed to retrieve geophysical quantities from the radar measurements. CETP has designed and developed a new airborne radar called STORM] , which has a full polarimetric capability. STORM is derived from two previous versions of airborne radars developed at CETP, namely RESSAC (Hauser et al, JGR 1992) and RENE (Leloch-Duplex et al, Annales of Telecommunications, 1996). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. It offers a polarization diversity, receiving the complex signal in amplitude and phase simultaneously in H and V polarizations, which makes it possible to analyze the radar cross-section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. The antenna are pointed towards the surface with a mean incidence angle of 20° and a 3-dB aperture of about 30° in elevation and 8° in azimuth. The backscattered signal is analyzed from nadir to about 35° along the look-direction in 1012 range gates every 1.53m. The first tests with this system have been carried out in October 2001 over corner reflectors , over grass and ocean. In this workshop, we will present a validation of this system based on the results obtained with this first data set. In particular, we will present the calibration method of the complex signal (amplitude, phase), and distribution of phase differences (HH/VV, HV/VH) obtained over the different scatters (corner reflectors, grass

  10. Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band

    NASA Astrophysics Data System (ADS)

    Fors, Ane S.; Brekke, Camilla; Doulgeris, Anthony P.; Eltoft, Torbjørn; Renner, Angelika H. H.; Gerland, Sebastian

    2016-02-01

    In this study, we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around 0 °C. Sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporal consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set and for a reduced SAR feature set limited to temporally consistent features. In C band, the algorithm produced a good late-summer sea ice segmentation, separating the scenes into segments that could be associated with different sea ice types in the next step. The X-band performance was slightly poorer. Excluding temporally inconsistent SAR features improved the segmentation in one of the X-band scenes.

  11. Polarimetric 3D integral imaging in photon-starved conditions.

    PubMed

    Carnicer, Artur; Javidi, Bahram

    2015-03-09

    We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging.

  12. Polarimetric Indices for Crop Monitoring Based on Model Simulations and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Blaes, X.; Defourny, P.; Guissard, A.

    2003-04-01

    A polarimetric radiative transfer model has been developed at UCL for the simulation of polarimetric radar observation of rough soils and vegetated areas. The so called Polscat model is a fully polarimetric model and allows to compute the complete Mueller matrix from which the backscattering coefficients in various polarization~@~Ys can be obtained. For the soil, the Integral Equation Method (IEM) has been implemented. This surface scattering model requires as input the dielectric properties of the soil and the geometric properties of the surface (i.e. rms height and slopes). For the vegetation, the volume electromagnetic scattering model is based on the radiative transfer theory. It includes size distributions, it accounts for the reciprocity effect, it allows vertical distributions within the canopy and provides a precise description of the vegetation component. The soil parameters measurements are widely discussed in the literature. The rms height and the correlation length are commonly measured using linear profilometer. In our study, the 3-D geometry of the soil surface is determined using stereoscopic pairs of photographs acquired at 4- meter high over 2 crop types (i.e. sugar beet and spring barley) along the first stage of the growing period (when the soil is sparsely covered by the vegetation). From the modelled soil surfaces, 2-D profiles are generated in various directions (relative to the crop row orientation), positions and using different sampling distances. The roughness parameters are deduced from this different configurations and the corresponding co-polarized (HH and VV) signals are modelled. The effects of the sampling distance, the profile length and the roughness anisotropy on the output simulated signal are systematically investigated. In a second part, the partial validation of the surface scattering model is presented. This was made using simultaneous SAR images acquisitions (ERS, RADARSAT and JERS) and fields measurements from the 1995 to

  13. Improving the quality of interferometric synthetic aperture radar digital elevation models through a segmentation-based coregistration approach

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ching; Lin, Shih-Yuan; Miller, Pauline; Tsai, Ming-Da

    2016-10-01

    With the rapid development of remote sensing, multiple techniques are now capable of producing digital elevation models (DEMs), such as photogrammetry, Light Detection and Ranging (LiDAR), and interferometric synthetic aperture radar (InSAR). Satellite-derived InSAR DEMs are particularly attractive due to their advantages of large spatial extents, cost-effectiveness, and less dependence on the weather. However, several complex factors may limit the quality of derived DEMs, e.g., the inherited errors may be nonlinear and spatially variable over an entire InSAR pair scene. We propose a segmentation-based coregistration approach for generating accurate InSAR DEMs over large areas. Two matching algorithms, including least squares matching and iterative closest point, are integrated in this approach. Three Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) InSAR DEMs are evaluated, and their root mean square errors (RMSEs) improved from 17.87 to 9.98 m, 51.94 to 15.80 m, and 27.12 to 12.26 m. Compared to applying a single global matching strategy, the segmentation-based strategy further improved the RMSEs of the three DEMs by 3.27, 13.01, and 9.70 m, respectively. The results clearly demonstrate that the segmentation-based coregistration approach is capable of improving the geodetic quality of InSAR DEMs.

  14. SAR antenna calibration techniques

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Newell, A. C.

    1978-01-01

    Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.

  15. Numerical weather prediction models and SAR interferometry: synergic use for meteorological and INSAR applications

    NASA Astrophysics Data System (ADS)

    Pierdicca, Nazzareno; Rocca, Fabio; Perissin, Daniele; Ferretti, Rossella; Pichelli, Emanuela; Rommen, Bjorn; Cimini, Nico

    2011-11-01

    Spaceborne Interferometric Synthetic Aperture Radar (InSAR) is a well established technique useful in many land applications, such as landslide monitoring and digital elevation model extraction. One of its major limitation is the atmospheric effect, and in particular the high water vapour spatial and temporal variability which introduces an unknown delay in the signal propagation. However, the sensitivity of SAR interferometric phase to atmospheric conditions could in principle be exploited and InSAR could become in certain conditions a tool to monitor the atmosphere, as it happens with GPS receiver networks. This paper describes a novel attempt to assimilate InSAR derived information on the atmosphere, based on the Permanent Scatterer multipass technique, into a numerical weather forecast model. The methodology is summarised and the very preliminary results regarding the forecast of a precipitation event in Central Italy are analysed. The work was done in the framework of an ESA funded project devoted to the mapping of the water vapour with the aim to mitigate its effect for InSAR applications.

  16. First Results From the GeoSAR Mapping Instrument

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Wheeler, Kevin; Berkun, Andy; Brown, Walt; Chapin, Elaine; Freedman, Adam; Hamilton, Gary; Kroger, Peter; Michel, Charles Le. Thierry; Moller, Delwyn

    1999-01-01

    Geosynchronous Synthetic Aperture Radar (GeoSAR) is a consortium project consisting of The Jet Propulsion Laboratory (JPL), Calgis (a small GIS company based in Fresno, CA) and the California Department of Conservation with funding provided by Defense Research Projects Agency (DARPA) started in November 1996. The two main objectives of the GeoSAR Program are: 1) To develop a state of the art dual frequency interferometric radar mapping instrument capable of mapping the true ground surface height beneath the vegetation canopy; and 2) To transition this mapping technology to a commercial company, Calgis. JPL, the technical lead, has the following program deliverables at program completion in November 1999 include radar design and radar hardware for X-band (3 cm) and P-band (83 cm) radars, processor software, hardware and documentation, and calibrated X-band radar.

  17. Rapid subsidence over oil fields measured by SAR

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.; Blom, R. G.; Goldstein, R. M.

    1998-01-01

    The Lost Hills and Belridge oil felds are in the San Joaquin Valley, California. The major oil reservoir is high porosity and low permeability diatomite. Extraction of large volumes from shallow depths causes reduction in pore pressure and subsequent compaction, forming a surface subsidence bowl. We measure this subsidence from space using interferometric analysis of SAR (Synthetic Aperture Radar) data collected by the European Space Agency Remote Sensing Satellites (ERS-1 and ERS-2). Maximum subsidence rates are as high as 40 mm in 35 days or > 400 mm/yr, measured from interferograms with time separations ranging from one day to 26 months. The 8- and 26-month interferograms contain areas where the subsidence gradient exceeds the measurement possible with ERS SAR, but shows increased detail in areas of less rapid subsidence. Synoptic mapping of subsidence distribution from satellite data powerfully complements ground-based techniques, permits measurements where access is difficult, and aids identification of underlying causes.

  18. Microvibrations in a 20 M Long Ka-Band SAR Interferometer

    NASA Astrophysics Data System (ADS)

    Rodriques, G.; Ludwig, M.; Santiago-Prowald, J.

    2014-06-01

    Interferometric SAR operating at Ka-band has the potential for offering high-resolution 3D images of the surface of the Earth taken from a single-platform.The stability of the mechanical baseline of such an instrument has been considered as a key critical area for the feasibility of the concept.This paper is devoted to the analysis of the micro- vibrations in a 20-m long Ka-band SAR interferometer arising during typical attitude changing manoeuvers and the mechanical noise transmitted from reaction wheels. It is preliminarily concluded that the expected microvibration levels are within the requirements of the instrument.

  19. Mitigation of tropospheric InSAR phase artifacts through differential multisquint processing

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.

    2004-01-01

    We propose a technique for mitigating tropospheric phase errors in repeat-pass interferometric synthetic aperture radar (InSAR). The mitigation technique is based upon the acquisition of multisquint InSAR data. On each satellite pass over a target area, the radar instrument will acquire images from multiple squint (azimuth) angles, from which multiple interferograms can be formed. The diversity of viewing angles associated with the multisquint acquisition can be used to solve for two components of the 3-D surface displacement vector as well as for the differential tropospheric phase. We describe a model for the performance of the multisquint technique, and we present an assessment of the performance expected.

  20. Generalized ISAR--part II: interferometric techniques for three-dimensional location of scatterers.

    PubMed

    Given, James A; Schmidt, William R

    2005-11-01

    This paper is the second part of a study dedicated to optimizing diagnostic inverse synthetic aperture radar (ISAR) studies of large naval vessels. The method developed here provides accurate determination of the position of important radio-frequency scatterers by combining accurate knowledge of ship position and orientation with specialized signal processing. The method allows for the simultaneous presence of substantial Doppler returns from both change of roll angle and change of aspect angle by introducing generalized ISAR ates. The first paper provides two modes of interpreting ISAR plots, one valid when roll Doppler is dominant, the other valid when the aspect angle Doppler is dominant. Here, we provide, for each type of ISAR plot technique, a corresponding interferometric ISAR (InSAR) technique. The former, aspect-angle dominated InSAR, is a generalization of standard InSAR; the latter, roll-angle dominated InSAR, seems to be new to this work. Both methods are shown to be efficient at identifying localized scatterers under simulation conditions.

  1. Polarimetric thermal emission from rough surfaces

    NASA Technical Reports Server (NTRS)

    Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Oneill, K.; Lohanick, A.

    1993-01-01

    Recent theoretical works have suggested the potential of passive polarimetry in the remote sensing of geophysical media. It was shown that the third Stokes parameter U of the thermal emission may become larger for azimuthally asymmetric fields of observation. In order to investigate the potential applicability of passive polarimetry to the remote sensing of ocean surface, measurements of the polarimetric thermal emission from a sinusoidal water surface and a numerical study of the polarimetric thermal emission from randomly rough ocean surfaces were performed. Measurements of sinusoidal water surface thermal emission were performed using a sinusoidal water surface which was created by placing a thin sheet of fiberglass with a sinusoidal profile in two dimensions extended infinitely in the third dimension onto a water surface. The theory of thermal emission from a 'two-layer' periodic surface is derived and the exact solution is performed using both the extended boundary condition method (EBC) and the method of moments (MOM). The theoretical predictions are found to be in good agreement with the experimental results once the effects of the radiometer antenna pattern are included and the contribution of background noise to the measurements is modeled. The experimental results show that the U parameter indicates the direction of periodicity of the water surface and can approach values of up to 30 K for the surface observed. Next, a numerical study of polarimetric thermal emission from randomly rough surfaces was performed. A Monte Carlo technique utilizing an exact method for calculating thermal emission was chosen for the study to avoid any of the limitations of the commonly used approximate methods in rough surface scattering. In this Monte Carlo technique, a set of finite rough surface profiles in two dimensions with desired statistics was generated and extended periodically. The polarimetric thermal emission from each surface of the set was then calculated using

  2. Polarimetric clutter modeling: Theory and application

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lin, F. C.; Borgeaud, M.; Yueh, H. A.; Swartz, A. A.; Lim, H. H.; Shim, R. T.; Novak, L. M.

    1988-01-01

    The two-layer anisotropic random medium model is used to investigate fully polarimetric scattering properties of earth terrain media. The polarization covariance matrices for the untilted and tilted uniaxial random medium are evaluated using the strong fluctuation theory and distorted Born approximation. In order to account for the azimuthal randomness in the growth direction of leaves in tree and grass fields, an averaging scheme over the azimuthal direction is also applied. It is found that characteristics of terrain clutter can be identified through the analysis of each element of the covariance matrix. Theoretical results are illustrated by the comparison with experimental data provided by MIT Lincoln Laboratory for tree and grass fields.

  3. Polarimetric properties of the Reiner Gamma swirl

    NASA Astrophysics Data System (ADS)

    Jeong, Minsup; Kim, Sungsoo S.; Choi, Young-Jun; Garrick-Bethell, Ian

    2016-12-01

    In order to understand the regolith characteristics of the Reiner Gamma swirl, one of the most prominent lunar swirls, we analyze the correlation between the linear polarization flux Q and the intensity I of the swirl. We present comparisons between the phase function (the intensity variation with the phase angle) of the swirl and the phase functions of its neighbors using polarimetric data. We find that the swirl has unusually large Q values for given I values. We also show that the phase function of the swirl is relatively shallow compared to its neighbors. We suggest that the microstructure of the regolith on the Reiner Gamma swirl has been disrupted.

  4. Tangential Velocity Measurement Using Interferometric MTI Radar

    SciTech Connect

    DOERRY, ARMIN W.; MILESHOSKY, BRIAN P.; BICKEL, DOUGLAS L.

    2002-11-01

    An Interferometric Moving Target Indicator radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity vector of a target.

  5. Tunable mechanical monolithic sensor with interferometric readout for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, F.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2008-03-01

    This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve both for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result, for example, is that the measured natural resonance frequency of the instrument is 70 mHz with a Q = 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of mHz with a more refined mechanical tuning. Results on the readout system based on polarimetric homodyne Michelson interferometer is discussed.

  6. GPS-Based Precision Baseline Reconstruction for the TanDEM-X SAR-Formation

    NASA Technical Reports Server (NTRS)

    Montenbruck, O.; vanBarneveld, P. W. L.; Yoon, Y.; Visser, P. N. A. M.

    2007-01-01

    The TanDEM-X formation employs two separate spacecraft to collect interferometric Synthetic Aperture Radar (SAR) measurements over baselines of about 1 km. These will allow the generation ofa global Digital Elevation Model (DEM) with an relative vertical accuracy of 2-4 m and a 10 m ground resolution. As part of the ground processing, the separation of the SAR antennas at the time of each data take must be reconstructed with a 1 mm accuracy using measurements from two geodetic grade GPS receivers. The paper discusses the TanDEM-X mission as well as the methods employed for determining the interferometric baseline with utmost precision. Measurements collected during the close fly-by of the two GRACE satellites serve as a reference case to illustrate the processing concept, expected accuracy and quality control strategies.

  7. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry

    USGS Publications Warehouse

    Massonnet, D.; Holzer, T.; Vadon, H.

    1997-01-01

    Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.

  8. SAR calibration technology review

    NASA Technical Reports Server (NTRS)

    Walker, J. L.; Larson, R. W.

    1981-01-01

    Synthetic Aperture Radar (SAR) calibration technology including a general description of the primary calibration techniques and some of the factors which affect the performance of calibrated SAR systems are reviewed. The use of reference reflectors for measurement of the total system transfer function along with an on-board calibration signal generator for monitoring the temporal variations of the receiver to processor output is a practical approach for SAR calibration. However, preliminary error analysis and previous experimental measurements indicate that reflectivity measurement accuracies of better than 3 dB will be difficult to achieve. This is not adequate for many applications and, therefore, improved end-to-end SAR calibration techniques are required.

  9. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    PubMed Central

    Zou, Weibao; Li, Yan; Li, Zhilin; Ding, Xiaoli

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram. PMID:22399966

  10. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.

    2016-05-01

    Interferometric Synthetic Aperture Radar (InSAR), a remote sensing technique for measuring centimeter-level surface deformation, is used to estimate hydraulic head in the confined aquifer of the San Luis Valley (SLV), Colorado. Reconstructing head measurements from InSAR in agricultural regions can be difficult, as InSAR phase data are often decorrelated due to vegetation growth. Analysis of 17 L-band ALOS PALSAR scenes, acquired between January 2007 and March 2011, demonstrates that comprehensive InSAR deformation measurements can be recovered over the vegetated groundwater basin with an improved processing strategy. Local skeletal storage coefficients and time delays between the head change and deformation are estimated through a joint InSAR-well data analysis. InSAR subsidence estimates are transformed to head changes with finer temporal and spatial resolution than is possible using existing well records alone. Both InSAR and well data suggest that little long-term water-storage loss occurred in the SLV over the study period and that inelastic compaction was negligible. The seasonal head variations derived from InSAR are consistent with the existing well data at most locations where confined aquifer pumping activity dominates. Our results demonstrate the advantages of InSAR measurements for basin-wide characterization of aquifer storage properties and groundwater levels over agricultural regions.

  11. InSAR observations of active volcanoes in Latin America

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Chaussard, E.; Amelung, F.

    2012-12-01

    Over the last decade satellite-based interferometric synthetic aperture radar (InSAR) has developed into a well-known technique to gauge the status of active volcanoes. The InSAR technique can detect the ascent of magma to shallow levels of the volcanic plumbing system because new arriving magma pressurizes the system. This is likely associated with the inflation of the volcanic edifice and the surroundings. Although the potential of InSAR to detect magma migration is well known, the principal limitation was that only for few volcanoes frequent observations were acquired. The ALOS-1 satellite of the Japanese Aerospace Exploration Agency (JAXA) acquired a global L-band data set of 15-20 acquisitions during 2006-2011. Here we use ALOS InSAR and Small Baseline (SB) time-series methods for a ground deformation survey of Latin America with emphasis on the northern Andes. We present time-dependent ground deformation data for the volcanoes in Colombia, Ecuador and Peru and interpret the observations in terms of the dynamics of the volcanic systems.

  12. Remote sensing measurements of thermokarst subsidence using InSAR

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Chen, A. C.; Gusmeroli, A.; Zebker, H. A.; Zhang, T.

    2015-09-01

    Thawing of ice-rich permafrost followed by surface subsidence results in irregular, depressed landforms known as thermokarst. Many remote sensing studies have identified thermokarst landforms and mapped their changes. However, the intrinsic dynamic thermokarst process of surface subsidence remains a challenge to quantify and is seldom examined using remote sensing methods. In this study we used spaceborne interferometric synthetic aperture radar (InSAR) data to map surface subsidence trends at a thermokarst landform located near Deadhorse on the North Slope of Alaska. A pipeline access road constructed in the 1970s triggered the thawing of the permafrost, causing subsequent expansion of the thermokarst landform. Using Phased Array type L band Synthetic Aperture Radar images acquired by the Advanced Land Observing Satellite-1, our InSAR analysis reveals localized thermokarst subsidence of 2-8 cm/yr between 2006 and 2010, equivalent to an ice volume loss of about 1.2 × 107 m3/yr. Comparisons between InSAR subsidence trends and lidar microtopography suggest a characteristic time of 8 years of thermokarst development. We also quantitatively explain the difficulty, uncertainties, and possible biases in separating thermokarst-induced, irreversible subsidence from cyclic seasonal deformation. Our study illustrates that InSAR is an effective tool for mapping and studying active thermokarst processes and quantifying ice loss.

  13. Detection of macroalgae blooms by complex SAR imagery.

    PubMed

    Shen, Hui; Perrie, William; Liu, Qingrong; He, Yijun

    2014-01-15

    Increased frequency and enhanced damage to the marine environment and to human society caused by green macroalgae blooms demand improved high-resolution early detection methods. Conventional satellite remote sensing methods via spectra radiometers do not work in cloud-covered areas, and therefore cannot meet these demands for operational applications. We present a methodology for green macroalgae bloom detection based on RADARSAT-2 synthetic aperture radar (SAR) images. Green macroalgae patches exhibit different polarimetric characteristics compared to the open ocean surface, in both the amplitude and phase domains of SAR-measured complex radar backscatter returns. In this study, new index factors are defined which have opposite signs in green macroalgae-covered areas, compared to the open water surface. These index factors enable unsupervised detection from SAR images, providing a high-resolution new tool for detection of green macroalgae blooms, which can potentially contribute to a better understanding of the mechanisms related to outbreaks of green macroalgae blooms in coastal areas throughout the world ocean.

  14. Using SAR Interferograms and Coherence Images for Object-Based Delineation of Unstable Slopes

    NASA Astrophysics Data System (ADS)

    Friedl, Barbara; Holbling, Daniel

    2015-05-01

    This study uses synthetic aperture radar (SAR) interferometric products for the semi-automated identification and delineation of unstable slopes and active landslides. Single-pair interferograms and coherence images are therefore segmented and classified in an object-based image analysis (OBIA) framework. The rule-based classification approach has been applied to landslide-prone areas located in Taiwan and Southern Germany. The semi-automatically obtained results were validated against landslide polygons derived from manual interpretation.

  15. Airborne system for multispectral, multiangle polarimetric imaging.

    PubMed

    Bowles, Jeffrey H; Korwan, Daniel R; Montes, Marcos J; Gray, Deric J; Gillis, David B; Lamela, Gia M; Miller, W David

    2015-11-01

    In this paper, we describe the design, fabrication, calibration, and deployment of an airborne multispectral polarimetric imager. The motivation for the development of this instrument was to explore its ability to provide information about water constituents, such as particle size and type. The instrument is based on four 16 MP cameras and uses wire grid polarizers (aligned at 0°, 45°, 90°, and 135°) to provide the separation of the polarization states. A five-position filter wheel provides for four narrow-band spectral filters (435, 550, 625, and 750 nm) and one blocked position for dark-level measurements. When flown, the instrument is mounted on a programmable stage that provides control of the view angles. View angles that range to ±65° from the nadir have been used. Data processing provides a measure of the polarimetric signature as a function of both the view zenith and view azimuth angles. As a validation of our initial results, we compare our measurements, over water, with the output of a Monte Carlo code, both of which show neutral points off the principle plane. The locations of the calculated and measured neutral points are compared. The random error level in the measured degree of linear polarization (8% at 435) is shown to be better than 0.25%.

  16. Polarimetric PALSAR System Model Assessment and Calibration

    NASA Astrophysics Data System (ADS)

    Touzi, R.; Shimada, M.

    2009-04-01

    Polarimetric PALSAR system parameters are assessed using data sets collected over various calibration sites. The data collected over the Amazonian forest permits validating the zero Faraday rotation hypotheses near the equator. The analysis of the Amazonian forest data and the response of the corner reflectors deployed during the PALSAR acquisitions lead to the conclusion that the antenna is highly isolated (better than -35 dB). Theses results are confirmed using data collected over the Sweden and Ottawa calibration sites. The 5-m height trihedrals deployed in the Sweden calibration site by the Chalmers University of technology permits accurate measurement of antenna parameters, and detection of 2-3 degree Faraday rotation during day acquisition, whereas no Faraday rotation was noted during night acquisition. Small Faraday rotation angles (2-3 degree) have been measured using acquisitions over the DLR Oberpfaffenhofen and the Ottawa calibration sites. The presence of small but still significant Faraday rotation (2-3 degree) induces a CR return at the crosspolarization HV and VH that should not be interpreted as the actual antenna cross-talk. PALSAR antenna is highly isolated (better than -35 dB), and diagonal antenna distortion matrices (with zero cross-talk terms) can be used for accurate calibration of PALSAR polarimetric data.

  17. [Modeling and Simulation of Spectral Polarimetric BRDF].

    PubMed

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  18. Polarimetric VLBI with the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Fish, Vincent L.; Doeleman, S.; Marrone, D. P.; Lu, R.; Wardle, J. F.; EHT Collaboration

    2013-01-01

    The Event Horizon Telescope is a collaboration to observe the innermost accretion and outflow regions around supermassive black holes with an array of millimeter-wavelength telescopes. EHT observations have detected emission on scales of tens of microarcseconds around the black holes in the center of the Milky Way and M87. Non-polarimetric measurements have successfully been used to identify and model the Schwarzschild-radius-scale emission around these sources as well as to identify previously unresolvable structures in more distant AGNs and blazars, but new polarimetric data can provide additional information on the magnetic field strength and geometry in the jet launch and collimation region. Recent full-polarization VLBI observations with the EHT have detected polarized 1.3 mm emission arising on extremely small angular scales in a variety of extragalactic sources. We report on the results of these detections and detail the prospects for precision polarimetry thanks to the substantial EHT sensitivity improvements that will be realized over the next few years.

  19. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air