Sample records for polarised primary cilia

  1. Primary Cilia: Highly Sophisticated Biological Sensors

    PubMed Central

    Abou Alaiwi, Wissam A.; Lo, Shao T.; Nauli, Surya M.

    2009-01-01

    Primary cilia, thin hair-like structures protruding from the apical surface of most mammalian cells, have gained the attention of many researchers over the past decade. Primary cilia are microtubule-filled sensory organelles that are enclosed within the ciliary membrane. They originate at the cell surface from the mother centriole that becomes the mature basal body. In this review, we will discuss recent literatures on the roles of cilia as sophisticated sensory organelles. With particular emphasis on vascular endothelia and renal epithelia, the mechanosensory role of cilia in sensing fluid shear stress will be discussed. Also highlighted is the ciliary involvement in cell cycle regulation, development, cell signaling and cancer. Finally, primary cilia-related disorders will be briefly described. PMID:22423203

  2. Primary Cilia Are Not Calcium-Responsive Mechanosensors

    PubMed Central

    Delling, M.; Indzhykulian, A. A.; Liu, X.; Liu, Y.; Xie, T.; Corey, D. P.; Clapham, D. E.

    2016-01-01

    Primary cilia are solitary, generally non-motile, hair-like protrusions that extend from the surface of cells between cell divisions. Their antenna-like structure leads naturally to the assumption that they sense the surrounding environment, the most common hypothesis being sensation of mechanical force through calcium-permeable ion channels within the cilium1. This Ca2+- Responsive MechanoSensor (CaRMS) hypothesis for primary cilia has been invoked to explain a large range of biological responses, from control of left-right axis determination in embryonic development to adult progression of polycystic kidney disease and some cancers2,3. Here, we report the complete lack of mechanically induced calcium increases in primary cilia, in tissues upon which this hypothesis has been based. First, we developed a transgenic mouse, Arl13b-mCherry-GECO1.2, expressing a ratiometric genetically encoded calcium indicator (GECI) in all primary cilia. We then measured responses to flow in primary cilia of cultured kidney epithelial cells, kidney thick ascending tubules, crown cells of the embryonic node, kinocilia of inner ear hair cells, and several cell lines. Cilia-specific Ca2+ influxes were not observed in physiological or even highly supraphysiological levels of fluid flow. We conclude that mechanosensation, if it originates in primary cilia, is not via calcium signaling. PMID:27007841

  3. Mechanical Properties of Primary Cilia

    NASA Astrophysics Data System (ADS)

    Battle, Christopher; Schmidt, Christoph F.

    2013-03-01

    Recent studies have shown that the primary cilium, long thought to be a vestigial cellular appendage with no function, is involved in a multitude of sensory functions. One example, interesting from both a biophysical and medical standpoint, is the primary cilium of kidney epithelial cells, which acts as a mechanosensitive flow sensor. Genetic defects in ciliary function can cause, e.g., polycystic kidney disease (PKD). The material properties of these non-motile, microtubule-based 9 +0 cilia, and the way they are anchored to the cell cytoskeleton, are important to know if one wants to understand the mechano-electrochemical response of these cells, which is mediated by their cilia. We have probed the mechanical properties, boundary conditions, and dynamics of the cilia of MDCK cells using optical traps and DIC/fluorescence microscopy. We found evidence for both elastic relaxation of the cilia themselves after bending and for compliance in the intracellular anchoring structures. Angular and positional fluctuations of the cilia reflect both thermal excitations and cellular driving forces.

  4. Primary Cilia and Mammalian Hedgehog Signaling

    PubMed Central

    Bangs, Fiona; Anderson, Kathryn V.

    2017-01-01

    It has been a decade since it was discovered that primary cilia have an essential role in Hedgehog signaling in mammals. This discovery came from screens in the mouse that identified a set of genes that are required for both normal Hedgehog signaling and for the formation of primary cilia. Since then, dozens of mouse mutations have been identified that disrupt cilia in a variety of ways and have complex effects on Hedgehog signaling. Here we summarize the genetic and developmental studies used to deduce how Hedgehog signal transduction is linked to cilia and the complex effects that perturbation of cilia structure can have on Hh signaling. We conclude by describing the current status of our understanding of the cell-type specific regulation of ciliogenesis and how that determines the ability of cells to respond to Hedgehog ligands. PMID:27881449

  5. Characterization of primary cilia in human airway smooth muscle cells.

    PubMed

    Wu, Jun; Du, Hui; Wang, Xiangling; Mei, Changlin; Sieck, Gary C; Qian, Qi

    2009-08-01

    Considerable evidence indicates a key role for primary cilia of mammalian cells in mechanochemical sensing. Dysfunctions of primary cilia have been linked to the pathogenesis of several human diseases. However, cilia-related research has been limited to a few cell and tissue types; to our knowledge, no literature exists on primary cilia in airway smooth muscle (ASM). The aim of this study was to characterize primary cilia in human ASM. Primary cilia of human bronchial smooth muscle cells (HBSMCs) were examined using immunofluorescence confocal microscopy, and scanning and transmission electron microscopy. HBSMC migration and injury repair were examined by scratch-wound and epidermal growth factor (EGF)-induced migration assays. Cross-sectional images of normal human bronchi revealed that primary cilia of HBSMCs within each ASM bundle aggregated at the same horizontal level, forming a "cilium layer." Individual cilia of HBSMCs projected into extracellular matrix and exhibited varying degrees of deflection. Mechanochemical sensing molecules, polycystins, and alpha2-, alpha5-, and beta1-integrins were enriched in cilia, as was EGF receptor, known to activate jointly with integrins during cell migration. Migration assays demonstrated a ciliary contribution to HBSMC migration and wound repair. The primary cilia of ASM cells exert a role in sensing and transducing extracellular mechanochemical signals and in ASM injury repair. Defects in ASM ciliary function could potentially affect airway wall maintenance and/or remodeling, possibly relating to the genesis of bronchiectasis in autosomal dominant polycystic kidney disease, a disease of ciliopathy.

  6. Primary cilia: cellular sensors for the skeleton.

    PubMed

    Anderson, Charles T; Castillo, Alesha B; Brugmann, Samantha A; Helms, Jill A; Jacobs, Christopher R; Stearns, Tim

    2008-09-01

    The primary cilium is a solitary, immotile cilium that is present in almost every mammalian cell type. Primary cilia are thought to function as chemosensors, mechanosensors, or both, depending on cell type, and have been linked to several developmental signaling pathways. Primary cilium malfunction has been implicated in several human diseases, the symptoms of which include vision and hearing loss, polydactyly, and polycystic kidneys. Recently, primary cilia have also been implicated in the development and homeostasis of the skeleton. In this review, we discuss the structure and formation of the primary cilium and some of the mechanical and chemical signals to which it could be sensitive, with a focus on skeletal biology. We also raise several unanswered questions regarding the role of primary cilia as mechanosensors and chemosensors and identify potential research avenues to address these questions.

  7. Primary Cilia: Cellular Sensors for the Skeleton

    PubMed Central

    Anderson, Charles T.; Castillo, Alesha B.; Brugmann, Samantha A.; Helms, Jill A.; Jacobs, Christopher R.; Stearns, Tim

    2010-01-01

    The primary cilium is a solitary, immotile cilium that is present in almost every mammalian cell type. Primary cilia are thought to function as chemosensors, mechanosensors, or both, depending on cell type, and have been linked to several developmental signaling pathways. Primary cilium malfunction has been implicated in several human diseases, the symptoms of which include vision and hearing loss, polydactyly, and polycystic kidneys. Recently, primary cilia have also been implicated in the development and homeostasis of the skeleton. In this review, we discuss the structure and formation of the primary cilium and some of the mechanical and chemical signals to which it could be sensitive, with a focus on skeletal biology. We also raise several unanswered questions regarding the role of primary cilia as mechanosensors and chemosensors and identify potential research avenues to address these questions. PMID:18727074

  8. Primary cilia proteins: ciliary and extraciliary sites and functions.

    PubMed

    Hua, Kiet; Ferland, Russell J

    2018-05-01

    Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.

  9. HDAC6 inhibition suppresses chondrosarcoma by restoring the expression of primary cilia.

    PubMed

    Xiang, Wei; Guo, Fengjing; Cheng, Weiting; Zhang, Jiaming; Huang, Junming; Wang, Rui; Ma, Zhongxi; Xu, Kai

    2017-07-01

    Chondrosarcoma is a bone tumor characterized by the secretion of a cartilage-like extracellular matrix. It has been proved to lack extracellular sensor primary cilia. This study aimed to illustrate a feasible therapeutic method for chondrosarcoma by regulating primary cilia assembly through inhibiting histone deacetylases 6 (HDAC6) activation. In order to detect the interaction between primary cilia and HDAC6 in human chondrosarcoma, Tubastatin A and small interfering RNA (siRNA) were used to inhibit the endogenous expression of HDAC6. Cell viability test and Transwell assay were applied to evaluate the effects of malignant biological properties. Primary cilia staining and related proteins were detected. The abnormal expression of HDAC6 and cilia intraflagellar transport protein 88 (IFT88) was found in chondrosarcoma tissues. The inhibition of HDAC6 could downregulate the proliferation of chondrosarcoma cells in a concentration- and time-dependent manner and suppress the invasion capacity of tumor cells. Besides, the downregulation of HDAC6 exhibited a negative effect on the proliferation of relevant proteins but a positive effect on the primary cilia-related expression of IFT88 and acetylated α-tubulin. Primary cilia restoration could be observed after HDAC6 siRNA transfection. The Aurora A-HDAC6 cascade was involved in regulating primary cilia resorption by affecting α-tubulin deacetylation and Tubastatin A could inhibit chondrosarcoma cell growth in vivo. These results indicate that restricting HDAC6 can restore primary cilia assembly accompanied with suppressed chondrosarcoma cell proliferation and invasion capacities. Thus, promoting primary cilia restoration by targeting HDAC6 may be a feasible potential therapeutic method for chondro-sarcoma treatment.

  10. Sensing a Sensor: Identifying the Mechanosensory Function of Primary Cilia

    PubMed Central

    Prasad, Rahul M.; Jin, Xingjian; Nauli, Surya M.

    2014-01-01

    Over the past decade, primary cilia have emerged as the premier means by which cells sense and transduce mechanical stimuli. Primary cilia are sensory organelles that have been shown to be vitally involved in the mechanosensation of urine in the renal nephron, bile in the hepatic biliary system, digestive fluid in the pancreatic duct, dentin in dental pulp, lacunocanalicular fluid in bone and cartilage, and blood in vasculature. The prevalence of primary cilia among mammalian cell types is matched by the tremendously varied disease states caused by both structural and functional defects in cilia. In the process of delineating the mechanisms behind these disease states, calcium fluorimetry has been widely utilized as a means of quantifying ciliary function to both fluid flow and pharmacological agents. In this review, we will discuss the approaches used in associating calcium levels to cilia function. PMID:24839551

  11. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision

    PubMed Central

    Phua, Siew Cheng; Chiba, Shuhei; Suzuki, Masako; Su, Emily; Roberson, Elle C.; Pusapati, Ganesh V.; Setou, Mitsutoshi; Rohatgi, Rajat; Reiter, Jeremy F.; Ikegami, Koji; Inoue, Takanari

    2017-01-01

    The life cycle of a primary cilium begins in quiescence and ends prior to mitosis. In quiescent cells, primary cilium insulates itself from contiguous dynamic membrane processes on the cell surface to function as a stable signaling apparatus. Here, we demonstrate that basal restriction of ciliary structure dynamics is established by cilia-enriched phosphoinositide 5-phosphatase, Inpp5e. Growth induction displaces ciliary Inpp5e and accumulates phosphatidylinositol 4,5-bisphosphate to distal cilia. This triggers otherwise forbidden actin polymerization in primary cilia, which excises cilia tips in a process we call cilia decapitation. Whilst cilia disassembly is traditionally thought to occur solely through resorption, we show that an acute loss of IFT-B through cilia decapitation precedes resorption. Finally, we propose that cilia decapitation induces mitogenic signaling and constitutes a molecular link between the cilia life cycle and cell-division cycle. This newly defined ciliary mechanism may find significance in cell proliferation control during normal development and cancer. PMID:28086093

  12. Spectrum of Clinical Diseases Caused By Disorders of Primary Cilia

    PubMed Central

    Aygun, Meral Gunay-; Hildebrandt, Friedhelm

    2011-01-01

    The ciliopathies are a category of diseases caused by disruption of the physiological functions of cilia. Ciliary dysfunction results in a broad range of phenotypes, including renal, hepatic, and pancreatic cyst formation; situs abnormalities; retinal degeneration; anosmia; cerebellar or other brain anomalies; postaxial polydactyly; bronchiectasis; and infertility. The specific clinical features are dictated by the subtype, structure, distribution, and function of the affected cilia. This review highlights the clinical variability caused by dysfunction of motile and nonmotile primary cilia and emphasizes the genetic heterogeneity and phenotypic overlap that are characteristics of these disorders. There is a need for additional research to understand the shared and unique functions of motile and nonmotile cilia and the pathophysiology resulting from mutations in cilia, basal bodies, or centrosomes. Increased understanding of ciliary biology will improve the diagnosis and management of primary ciliary dyskinesia, syndromic ciliopathies, and cilia-related cystic diseases. PMID:21926397

  13. 5-HT6 receptor blockade regulates primary cilia morphology in striatal neurons.

    PubMed

    Brodsky, Matthew; Lesiak, Adam J; Croicu, Alex; Cohenca, Nathalie; Sullivan, Jane M; Neumaier, John F

    2017-04-01

    The 5-HT 6 receptor has been implicated in a variety of cognitive processes including habitual behaviors, learning, and memory. It is found almost exclusively in the brain, is expressed abundantly in striatum, and localizes to neuronal primary cilia. Primary cilia are antenna-like, sensory organelles found on most neurons that receive both chemical and mechanical signals from other cells and the surrounding environment; however, the effect of 5-HT 6 receptor function on cellular morphology has not been examined. We confirmed that 5-HT 6 receptors were localized to primary cilia in wild-type (WT) but not 5-HT 6 knockout (5-HT 6 KO) in both native mouse brain tissue and primary cultured striatal neurons then used primary neurons cultured from WT or 5-HT 6 KO mice to study the function of these receptors. Selective 5-HT 6 antagonists reduced cilia length in neurons cultured from wild-type mice in a concentration and time-dependent manner without altering dendrites, but had no effect on cilia length in 5-HT 6 KO cultured neurons. Varying the expression levels of heterologously expressed 5-HT 6 receptors affected the fidelity of ciliary localization in both WT and 5-HT 6 KO neurons; overexpression lead to increasing amounts of 5-HT 6 localization outside of the cilia but did not alter cilia morphology. Introducing discrete mutations into the third cytoplasmic loop of the 5-HT 6 receptor greatly reduced, but did not entirely eliminate, trafficking of the 5-HT 6 receptor to primary cilia. These data suggest that blocking 5-HT 6 receptor activity reduces the length of primary cilia and that mechanisms that regulate trafficking of 5-HT 6 receptors to cilia are more complex than previously thought. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparative study of the primary cilia in thyrocytes of adult mammals

    PubMed Central

    Utrilla, J C; Gordillo-Martínez, F; Gómez-Pascual, A; Fernández-Santos, J M; Garnacho, C; Vázquez-Román, V; Morillo-Bernal, J; García-Marín, R; Jiménez-García, A; Martín-Lacave, I

    2015-01-01

    Since their discovery in different human tissues by Zimmermann in 1898, primary cilia have been found in the vast majority of cell types in vertebrates. Primary cilia are considered to be cellular antennae that occupy an ideal cellular location for the interpretation of information both from the environment and from other cells. To date, in mammalian thyroid gland, primary cilia have been found in the thyrocytes of humans and dogs (fetuses and adults) and in rat embryos. The present study investigated whether the existence of this organelle in follicular cells is a general event in the postnatal thyroid gland of different mammals, using both immunolabeling by immunofluorescence and electron microscopy. Furthermore, we aimed to analyse the presence of primary cilia in various thyroid cell lines. According to our results, primary cilia are present in the adult thyroid gland of most mammal species we studied (human, pig, guinea pig and rabbit), usually as a single copy per follicular cell. Strikingly, they were not found in rat or mouse thyroid tissues. Similarly, cilia were also observed in all human thyroid cell lines tested, both normal and neoplastic follicular cells, but not in cultured thyrocytes of rat origin. We hypothesize that primary cilia could be involved in the regulation of normal thyroid function through specific signaling pathways. Nevertheless, further studies are needed to shed light on the permanence of these organelles in the thyroid gland of most species during postnatal life. PMID:26228270

  15. Non-essential role for cilia in coordinating precise alignment of lens fibres

    PubMed Central

    Sugiyama, Yuki; Shelley, Elizabeth J.; Yoder, Bradley K.; Kozmik, Zbynek; May-Simera, Helen L.; Beales, Philip L.; Lovicu, Frank J.; McAvoy, John W.

    2016-01-01

    The primary cilium, a microtubule-based organelle found in most cells, is a centre for mechano-sensing fluid movement and cellular signalling, notably through the Hedgehog pathway. We recently found that each lens fibre cell has an apically situated primary cilium that is polarised to the side of the cell facing the anterior pole of the lens. The direction of polarity is similar in neighbouring cells so that in the global view, lens fibres exhibit planar cell polarity (PCP) along the equatorial-anterior polar axis. Ciliogenesis has been associated with the establishment of PCP, although the exact relationship between PCP and the role of cilia is still controversial. To test the hypothesis that the primary cilia have a role in coordinating the precise alignment/orientation of the fibre cells, IFT88, a key component of the intraflagellar transport (IFT) complex, was removed specifically from the lens at different developmental stages using several lens-specific Cre-expressing mouse lines (MLR10- and LR-Cre). Irrespective of which Cre-line was adopted, both demonstrated that in IFT88-depleted cells, the ciliary axoneme was absent or substantially shortened, confirming the disruption of primary cilia formation. However no obvious histological defects were detected even when IFT88 was removed from the lens placode as early as E9.5. Specifically, the lens fibres aligned/oriented towards the poles to form the characteristic Y-shaped sutures as normal. Consistent with this, in primary lens epithelial explants prepared from these conditional knockout mouse lenses, the basal bodies still showed polarised localisation at the apical surface of elongating cells upon FGF-induced fibre differentiation. We further investigated the lens phenotype in knockouts of Bardet–Biedl Syndrome (BBS) proteins 4 and 8, the components of the BBSome complex which modulate ciliary function. In these BBS4 and 8 knockout lenses, again we found the pattern of the anterior sutures formed by the

  16. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton.

    PubMed

    Yuan, Xue; Serra, Rosa A; Yang, Shuying

    2015-01-01

    Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes. © 2014 New York Academy of Sciences.

  17. Distinct patterns of primary and motile cilia in Rathke's cleft cysts and craniopharyngioma subtypes.

    PubMed

    Coy, Shannon; Du, Ziming; Sheu, Shu-Hsien; Woo, Terri; Rodriguez, Fausto J; Kieran, Mark W; Santagata, Sandro

    2016-12-01

    Cilia are highly conserved organelles, which serve critical roles in development and physiology. Motile cilia are expressed in a limited range of tissues, where they principally regulate local extracellular fluid dynamics. In contrast, primary cilia are expressed by many vertebrate cell types during interphase, and are intimately involved in the cell cycle and signal transduction. Notably, primary cilia are essential for vertebrate hedgehog pathway activity. Improved detection of motile cilia may assist in the diagnosis of some pathologic entities such as Rathke's cleft cysts, whereas characterizing primary cilia in neoplastic tissues may implicate cilia-dependent signaling pathways as critical for tumorigenesis. We show that immunohistochemistry for the nuclear transcription factor FOXJ1, a master regulator of motile ciliogenesis, robustly labels the motile ciliated epithelium of Rathke's cleft cysts. FOXJ1 expression discriminates Rathke's cleft cysts from entities in the sellar/suprasellar region with overlapping histologic features such as craniopharyngiomas. Co-immunohistochemistry for FOXJ1 and markers that highlight motile cilia such as acetylated tubulin (TUBA4A) and the small GTPase ARL13B further enhance the ability to identify diagnostic epithelial cells. In addition to highlighting motile cilia, ARL13B immunohistochemistry also robustly highlights primary cilia in formalin-fixed paraffin-embedded sections. Primary cilia are present throughout the neoplastic epithelium of adamantinomatous craniopharyngioma, but are limited to basally oriented cells near the fibrovascular stroma in papillary craniopharyngioma. Consistent with this differing pattern of primary ciliation, adamantinomatous craniopharyngiomas express significantly higher levels of SHH, and downstream targets such as PTCH1 and GLI2, compared with papillary craniopharyngiomas. In conclusion, motile ciliated epithelium can be readily identified using immunohistochemistry for FOXJ1, TUBA4A, and

  18. Distinct Patterns of Primary and Motile Cilia in Rathke’s Cleft Cysts and Craniopharyngioma Subtypes

    PubMed Central

    Coy, Shannon; Du, Ziming; Sheu, Shu-Hsien; Woo, Terri; Rodriguez, Fausto J.; Kieran, Mark W.; Santagata, Sandro

    2017-01-01

    Cilia are highly conserved organelles which serve critical roles in development and physiology. Motile cilia are expressed in a limited range of tissues, where they principally regulate local extracellular fluid dynamics. In contrast, primary cilia are expressed by many vertebrate cell types during interphase, and are intimately involved in the cell cycle and signal transduction. Notably, primary cilia are essential for vertebrate hedgehog pathway activity. Improved detection of motile cilia may assist in the diagnosis of some pathologic entities such as Rathke’s cleft cysts while characterizing primary cilia in neoplastic tissues may implicate cilia-dependent signaling pathways as critical for tumorigenesis. We show that immunohistochemistry for the nuclear transcription factor FOXJ1, a master regulator of motile ciliogenesis, robustly labels the motile ciliated epithelium of Rathke’s cleft cysts. FOXJ1 expression discriminates Rathke’s cleft cysts from entities in the sellar/suprasellar region with overlapping histologic features such as craniopharyngiomas. Co-immunohistochemistry for FOXJ1 and markers that highlight motile cilia such as acetylated tubulin (TUBA4A) and the small GTPase ARL13B further enhance the ability to identify diagnostic epithelial cells. In addition to highlighting motile cilia, ARL13B immunohistochemistry also robustly highlights primary cilia in formalin-fixed paraffin-embedded sections. Primary cilia are present throughout the neoplastic epithelium of adamantinomatous craniopharyngioma, but are limited to basally oriented cells near the fibrovascular stroma in papillary craniopharyngioma. Consistent with this differing pattern of primary ciliation, adamantinomatous craniopharyngiomas express significantly higher levels of SHH, and downstream targets such as PTCH1 and GLI2, compared to papillary craniopharyngiomas. In conclusion, motile ciliated epithelium can be readily identified using immunohistochemistry for FOXJ1, TUBA4A and

  19. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    PubMed

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. Copyright © 2014 Wiley Periodicals, Inc.

  20. New frontiers: discovering cilia-independent functions of cilia proteins.

    PubMed

    Vertii, Anastassiia; Bright, Alison; Delaval, Benedicte; Hehnly, Heidi; Doxsey, Stephen

    2015-10-01

    In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non-cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and orientation of the cell division axis. Intriguingly, both cilia and spindle poles are centrosome-based, functionally distinct structures that require the action of microtubule-mediated, motor-driven transport for their assembly. Cilia proteins have been found at non-cilia sites, where they have distinct functions, illustrating a diverse and growing list of cellular processes and structures that utilize cilia proteins for crucial functions. In this review, we discuss cilia-independent functions of cilia proteins and re-evaluate their potential contributions to "cilia" disorders. © 2015 The Authors.

  1. An Experimental and Computational Analysis of Primary Cilia Deflection Under Fluid Flow

    PubMed Central

    Downs, Matthew E.; Nguyen, An M.; Herzog, Florian A.; Hoey, David A.; Jacobs, Christopher R.

    2013-01-01

    In this work we have developed a novel model of the deflection of primary cilia experiencing fluid flow accounting for phenomena not previously considered. Specifically, we developed a large rotation formulation that accounts for rotation at the base of the cilium, the initial shape of the cilium and fluid drag at high deflection angles. We utilized this model to analyze full three dimensional datasets of primary cilia deflecting under fluid flow acquired with high-speed confocal microscopy. We found a wide variety of previously unreported bending shapes and behaviors. We also analyzed post-flow relaxation patterns. Results from our combined experimental and theoretical approach suggest that the average flexural rigidity of primary cilia might be higher than previously reported (Schwartz et al. 1997). In addition our findings indicate the mechanics of primary cilia are richly varied and mechanisms may exist to alter their mechanical behavior. PMID:22452422

  2. Microgravity induces inhibition of osteoblastic differentiation and mineralization through abrogating primary cilia.

    PubMed

    Shi, Wengui; Xie, Yanfang; He, Jinpeng; Zhou, Jian; Gao, Yuhai; Wei, Wenjun; Ding, Nan; Ma, Huiping; Xian, Cory J; Chen, Keming; Wang, Jufang

    2017-05-12

    It is well documented that microgravity in space environment leads to bone loss in astronauts. These physiological changes have also been validated by human and animal studies and modeled in cell-based analogs. However, the underlying mechanisms are elusive. In the current study, we identified a novel phenomenon that primary cilia (key sensors and functioning organelles) of rat calvarial osteoblasts (ROBs) gradually shrank and disappeared almost completely after exposure to simulated microgravity generated by a random positioning machine (RPM). Along with the abrogation of primary cilia, the differentiation, maturation and mineralization of ROBs were inhibited. We also found that the disappearance of primary cilia was prevented by treating ROBs with cytochalasin D, but not with LiCl or dynein light chain Tctex-type 1 (Dynlt1) siRNA. The repression of the differentiation, maturation and mineralization of ROBs was effectively offset by cytochalasin D treatment in microgravity conditions. Blocking ciliogenesis using intraflagellar transport protein 88 (IFT88) siRNA knockdown inhibited the ability of cytochalasin D to counteract this reduction of osteogenesis. These results indicate that the abrogation of primary cilia may be responsible for the microgravity's inhibition on osteogenesis. Reconstruction of primary cilia may become a potential strategy against bone loss induced by microgravity.

  3. Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.

    PubMed

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.

  4. Primary cilia are increased in number and demonstrate structural abnormalities in human cancer.

    PubMed

    Yasar, Binnaz; Linton, Kim; Slater, Christian; Byers, Richard

    2017-07-01

    Primary cilia play an important role in the regulation of cell signalling pathways and are thought to have a role in cancer but have seldom been studied in human cancer samples. Primary cilia were visualised by dual immunofluorescence for anti-CROCC (ciliary rootlet coiled-coil) and anti-tubulin in a range of human cancers (including carcinomas of stomach, pancreas, prostate, lung and colon, lobular and ductal breast cancers and follicular lymphoma) and in matched normal tissue (stomach, pancreas, lung, large and small intestines, breast and reactive lymph nodes) samples using a tissue microarray; their frequency, association with proliferation, was measured by Ki-67 staining and their structure was analysed. Compared with normal tissues, primary cilia frequency was significantly elevated in adenocarcinoma of the lung (2.75% vs 1.85%, p=0.016), adenocarcinoma of the colon (3.80% vs 2.43%, respectively, p=0.017), follicular lymphoma (1.18% vs 0.83%, p=0.003) and pancreatic adenocarcinoma (7.00% vs 5.26%, p=0.002); there was no statistically significant difference compared with normal control tissue for gastric and prostatic adenocarcinomas or for lobular and ductal breast cancers. Additionally, structural abnormalities of primary cilia were identified in cancer tissues, including elongation of the axoneme, multiple basal bodies and branching of the axoneme. Ki-67 scores ranged from 0.7% to 78.4% and showed no statistically significant correlation with primary cilia frequency across all tissues (p=0.1501). The results show upregulation of primary cilia and the presence of structural defects in a wide range of human cancer tissue samples demonstrating association of dysregulation of primary cilia with human cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Asymmetric Distribution of Primary Cilia Allocates Satellite Cells for Self-Renewal.

    PubMed

    Jaafar Marican, Nur Hayati; Cruz-Migoni, Sara B; Borycki, Anne-Gaëlle

    2016-06-14

    Regeneration of vertebrate skeletal muscles requires satellite cells, a population of stem cells that are quiescent in normal conditions and divide, differentiate, and self-renew upon activation triggered by exercise, injury, and degenerative diseases. Satellite cell self-renewal is essential for long-term tissue homeostasis, and previous work has identified a number of external cues that control this process. However, little is known of the possible intrinsic control mechanisms of satellite cell self-renewal. Here, we show that quiescent satellite cells harbor a primary cilium, which is rapidly disassembled upon entry into the cell cycle. Contrasting with a commonly accepted belief, cilia reassembly does not occur uniformly in cells exiting the cell cycle. We found that primary cilia reassemble preferentially in cells committed to self-renew, and disruption of cilia reassembly causes a specific deficit in self-renewing satellite cells. These observations indicate that primary cilia provide an intrinsic cue essential for satellite cell self-renewal. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Cytoskeleton-related regulation of primary cilia shortening mediated by melanin-concentrating hormone receptor 1.

    PubMed

    Tomoshige, Sakura; Kobayashi, Yuki; Hosoba, Kosuke; Hamamoto, Akie; Miyamoto, Tatsuo; Saito, Yumiko

    2017-11-01

    Primary cilia are specialized microtubule-based organelles. Their importance is highlighted by the gamut of ciliary diseases associated with various syndromes including diabetes and obesity. Primary cilia serve as signaling hubs through selective interactions with ion channels and conventional G-protein-coupled receptors (GPCRs). Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a key regulator of feeding, is selectively expressed in neuronal primary cilia in distinct regions of the mouse brain. We previously found that MCH acts on ciliary MCHR1 and induces cilia shortening through a Gi/o-dependent Akt pathway with no cell cycle progression. Many factors can participate in cilia length control. However, the mechanisms for how these molecules are relocated and coordinated to activate cilia shortening are poorly understood. In the present study, we investigated the role of cytoskeletal dynamics in regulating MCH-induced cilia shortening using clonal MCHR1-expressing hTERT-RPE1 cells. Pharmacological and biochemical approaches showed that cilia shortening mediated by MCH was associated with increased soluble cytosolic tubulin without changing the total tubulin amount. Enhanced F-actin fiber intensity was also observed in MCH-treated cells. The actions of various pharmacological agents revealed that coordinated actin machinery, especially actin polymerization, was required for MCHR1-mediated cilia shortening. A recent report indicated the existence of actin-regulated machinery for cilia shortening through GPCR agonist-dependent ectosome release. However, our live-cell imaging experiments showed that MCH progressively elicited cilia shortening without exclusion of fluorescence-positive material from the tip. Short cilia phenotypes have been associated with various metabolic disorders. Thus, the present findings may contribute toward better understanding of how the cytoskeleton is involved in the GPCR ligand-triggered cilia shortening with cell mechanical

  7. Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors.

    PubMed

    Moser, Joanna J; Fritzler, Marvin J; Rattner, Jerome B

    2014-01-01

    Primary cilia are non-motile sensory cytoplasmic organelles that are involved in cell cycle progression. Ultrastructurally, the primary cilium region is complex, with normal ciliogenesis progressing through five distinct morphological stages in human astrocytes. Defects in early stages of ciliogenesis are key features of astrocytoma/glioblastoma cell lines and provided the impetus for the current study which describes the morphology of primary cilia in molecularly characterized human glioblastoma multiforme (GBM) tumors. Seven surgically resected human GBM tissue samples were molecularly characterized according to IDH1/2 mutation status, EGFR amplification status and MGMT promoter methylation status and were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. We report for the first time that primary cilia are disrupted in the early stages of ciliogenesis in human GBM tumors. We confirm that immature primary cilia and basal bodies/centrioles have aberrant ciliogenesis characteristics including absent paired vesicles, misshaped/swollen vesicular hats, abnormal configuration of distal appendages, and discontinuity of centriole microtubular blades. Additionally, the transition zone plate is able to form in the absence of paired vesicles on the distal end of the basal body and when a cilium progresses beyond the early stages of ciliogenesis, it has electron dense material clumped along the transition zone and a darkening of the microtubules at the proximal end of the cilium. Primary cilia play a role in a variety of human cancers. Previously primary cilia structure was perturbed in cultured cell lines derived from astrocytomas/glioblastomas; however there was always some question as to whether these findings were a cell culture phenomena. In this study we confirm that disruptions in ciliogenesis at early stages do occur in GBM tumors and that these ultrastructural findings bear resemblance to those previously

  8. Can Tissue Cilia Lengths and Urine Cilia Proteins Be Markers of Kidney Diseases?

    PubMed

    Park, Kwon Moo

    2018-05-01

    The primary cilium is an organelle which consists of a microtubule in the core and a surrounding cilia membrane, and has long been recognized as a "vestigial organelle". However, new evidence demonstrates that the primary cilium has a notable effect on signal transduction in the cell and is associated with some genetic and non-genetic diseases. In the kidney, the primary cilium protrudes into the Bowman's space and the tubular lumen from the apical side of epithelial cells. The length of primary cilia is dynamically altered during the normal cell cycle, being shortened by retraction into the cell body at the entry of cell division and elongated at differentiation. Furthermore, the length of primary cilia is also dynamically changed in the cells, as a result and/or cause, during the progression of various kidney diseases including acute kidney injury and chronic kidney disease. Notably, recent data has demonstrated that the shortening of the primary cilium in the cell is associated with fragmentation, apart from retraction into the cell body, in the progression of diseases and that the fragmented primary cilia are released into the urine. This data reveals that the alteration of primary cilia length could be related to the progression of diseases. This review will consider if primary cilia length alteration is associated with the progression of kidney diseases and if the length of tissue primary cilia and the presence or increase of cilia proteins in the urine is indicative of kidney diseases.

  9. Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway

    PubMed Central

    Grisanti, Laura; Revenkova, Ekaterina; Gordon, Ronald E.

    2016-01-01

    Primary cilia have been linked to signaling pathways involved in cell proliferation, cell motility and cell polarity. Defects in ciliary function result in developmental abnormalities and multiple ciliopathies. Patients affected by severe ciliopathies, such as Meckel syndrome, present several ocular surface disease conditions of unclear pathogenesis. Here, we show that primary cilia are predominantly present on basal cells of the mouse corneal epithelium (CE) throughout development and in the adult. Conditional ablation of cilia in the CE leads to an increase in proliferation and vertical migration of basal corneal epithelial cells (CECs). A consequent increase in cell density of suprabasal layers results in a thicker than normal CE. Surprisingly, in cilia-deficient CE, cilia-mediated signaling pathways, including Hh and Wnt pathways, were not affected but the intensity of Notch signaling was severely diminished. Although Notch1 and Notch2 receptors were expressed normally, nuclear Notch1 intracellular domain (N1ICD) expression was severely reduced. Postnatal development analysis revealed that in cilia-deficient CECs downregulation of the Notch pathway precedes cell proliferation defects. Thus, we have uncovered a function of the primary cilium in maintaining homeostasis of the CE by balancing proliferation and vertical migration of basal CECs through modulation of Notch signaling. PMID:27122169

  10. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyoshi, Ko, E-mail: miyoshi@cc.okayama-u.ac.jp; Kasahara, Kyosuke; Miyazaki, Ikuko

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed withmore » Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.« less

  11. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

    PubMed Central

    McMurray, R. J.; Wann, A. K. T.; Thompson, C. L.; Connelly, J. T.; Knight, M. M.

    2013-01-01

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation. PMID:24346024

  12. Biophysics and biofluid dynamics of primary cilia: evidence for and against the flow-sensing function.

    PubMed

    Nag, Subhra; Resnick, Andrew

    2017-09-01

    Primary cilia have been called "the forgotten organelle" for over 20 yr. As cilia now have their own journal and several books devoted to their study, perhaps it is time to reconsider the moniker "forgotten organelle." In fact, during the drafting of this review, 12 relevant publications have been issued; we therefore apologize in advance for any relevant work we inadvertently omitted. What purpose is yet another ciliary review? The primary goal of this review is to specifically examine the evidence for and against the hypothesized flow-sensing function of primary cilia expressed by differentiated epithelia within a kidney tubule, bringing together differing disciplines and their respective conceptual and experimental approaches. We will show that understanding the biophysics/biomechanics of primary cilia provides essential information for understanding any potential role of ciliary function in disease. We will summarize experimental and mathematical models used to characterize renal fluid flow and incident force on primary cilia and to characterize the mechanical response of cilia to an externally applied force and discuss possible ciliary-mediated cell signaling pathways triggered by flow. Throughout, we stress the importance of separating the effects of fluid shear and stretch from the action of hydrodynamic drag. Copyright © 2017 the American Physiological Society.

  13. Primary Cilia in Breast Cancer Progression

    DTIC Science & Technology

    2010-06-01

    differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage ...disrupted. Nevertheless, minimal disruption to normal mammary development was observed. Studies to determine the role of PC in tumor progression are...the role of PC in normal mammary development or tumor formation. The purpose of this synergistic study was to begin to address the role of this

  14. Lack of centrioles and primary cilia in STIL−/− mouse embryos

    PubMed Central

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474

  15. Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules

    PubMed Central

    Armour, Eric A.; Carson, Robert P.

    2012-01-01

    Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia. PMID:22674026

  16. Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules.

    PubMed

    Armour, Eric A; Carson, Robert P; Ess, Kevin C

    2012-08-15

    Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia.

  17. Imaging intraflagellar transport in mammalian primary cilia.

    PubMed

    Besschetnova, Tatiana Y; Roy, Barnali; Shah, Jagesh V

    2009-01-01

    The primary cilium is a specialized organelle that projects from the surface of many cell types. Unlike its motile counterpart it cannot beat but does transduce extracellular stimuli into intracellular signals and acts as a specialized subcellular compartment. The cilium is built and maintained by the transport of proteins and other biomolecules into and out of this compartment. The trafficking machinery for the cilium is referred to as IFT or intraflagellar transport. It was originally identified in the green algae Chlamydomonas and has been discovered throughout the evolutionary tree. The IFT machinery is widely conserved and acts to establish, maintain, and disassemble cilia and flagella. Understanding the role of IFT in cilium signaling and regulation requires a methodology for observing it directly. Here we describe current methods for observing the IFT process in mammalian primary cilia through the generation of fluorescent protein fusions and their expression in ciliated cell lines. The observation protocol uses high-resolution time-lapse microscopy to provide detailed quantitative measurements of IFT particle velocities in wild-type cells or in the context of genetic or other perturbations. Direct observation of IFT trafficking will provide a unique tool to dissect the processes that govern cilium regulation and signaling. 2009 Elsevier Inc. All rights reserved.

  18. Primary Cilia and Dendritic Spines: Different but Similar Signaling Compartments

    PubMed Central

    Nechipurenko, Inna V.; Doroquez, David B.; Sengupta, Piali

    2013-01-01

    Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures. PMID:24048681

  19. RAPAMYCIN INCREASES LENGTH AND MECHANOSENSORY FUNCTION OF PRIMARY CILIA IN RENAL EPITHELIAL AND VASCULAR ENDOTHELIAL CELLS.

    PubMed

    Sherpa, Rinzhin T; Atkinson, Kimberly F; Ferreira, Viviana P; Nauli, Surya M

    2016-12-01

    Primary cilia arebiophysically-sensitive organelles responsible for sensing fluid-flow and transducing this stimulus into intracellular responses. Previous studies have shown that the primary cilia mediate flow-induced calcium influx, and sensitivity of cilia function to flow is correlated to cilia length. Cells with abnormal cilia length or function can lead to a host of diseases that are collectively termed as ciliopathies. Rapamycin, a potent inhibitor of mTOR (mammalian target of rapamycin), has been demonstrated to be a potential pharmacological agent against the aberrant mTOR signaling seen in ciliopathies such as polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC). Here we look at the effects of rapamycin on ciliary length and function for the first time. Compared to controls, primary cilia in rapamycin-treated porcine renal epithelial and mouse vascular endothelial cells showed a significant increase in length. Graded increases in fluid-shear stress further indicates that rapamycin enhances cilia sensitivity to fluid flow. Treatment with rapamycin led to G0 arrest in porcine epithelial cells while no significant change in cell cycle were observed in rapamycin-treated mouse epithelial or endothelial cells, indicating a species-specific effect of rapamycin. Given the previousin vitro and in vivo studies establishing rapamycin as a potential therapeutic agent for ciliopathies, such as PKD and TSC, our studies show that rapamycin enhances ciliary function and sensitivity to fluid flow. The results of our studies suggest a potential ciliotherapeutic effect of rapamycin.

  20. Primary Cilia Modulate IHH Signal Transduction in Response to Hydrostatic Loading of Growth Plate Chondrocytes

    PubMed Central

    Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy

    2011-01-01

    Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256

  1. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis.

    PubMed

    Zhang, Jingwei; Dalbay, Melis T; Luo, Xiaoman; Vrij, Erik; Barbieri, Davide; Moroni, Lorenzo; de Bruijn, Joost D; van Blitterswijk, Clemens A; Chapple, J Paul; Knight, Martin M; Yuan, Huipin

    2017-07-15

    The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery

  2. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes.

    PubMed

    Shao, Yvonne Y; Wang, Lai; Welter, Jean F; Ballock, R Tracy

    2012-01-01

    Indian hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The Roles of Primary Cilia in Cardiovascular System

    DTIC Science & Technology

    2015-10-01

    defect, oral facial syndrome, obesity , hypertension and others [60]. Primary cilia can be activated by bending through perfusing cells with fluid...synthase, was found to be elevated in PKD patients [125]. The correlation between hypertension and kidney volume occurs in the early childhood stages...involvement of centrosome and basal body dysfunction in the pathogenesis of obesity , insulin resistance, and type 2 diabetes. Diabetes 2005; 54(5

  4. Identification of G Protein-Coupled Receptors (GPCRs) in Primary Cilia and Their Possible Involvement in Body Weight Control.

    PubMed

    Omori, Yoshihiro; Chaya, Taro; Yoshida, Satoyo; Irie, Shoichi; Tsujii, Toshinori; Furukawa, Takahisa

    2015-01-01

    Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs). We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR), neuropeptide FF receptor 1 (NPFFR1), and neuromedin U receptor 1 (NMUR1), localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S) is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L) is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO) mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control.

  5. Identification of G Protein-Coupled Receptors (GPCRs) in Primary Cilia and Their Possible Involvement in Body Weight Control

    PubMed Central

    Omori, Yoshihiro; Chaya, Taro; Yoshida, Satoyo; Irie, Shoichi; Tsujii, Toshinori; Furukawa, Takahisa

    2015-01-01

    Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs). We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR), neuropeptide FF receptor 1 (NPFFR1), and neuromedin U receptor 1 (NMUR1), localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S) is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L) is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO) mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control. PMID:26053317

  6. Axonemal Positioning and Orientation in 3-D Space for Primary Cilia: What is Known, What is Assumed, and What Needs Clarification

    PubMed Central

    Farnum, Cornelia E.; Wilsman, Norman J.

    2012-01-01

    Two positional characteristics of the ciliary axoneme – its location on the plasma membrane as it emerges from the cell, and its orientation in three-dimensional space – are known to be critical for optimal function of actively motile cilia (including nodal cilia), as well as for modified cilia associated with special senses. However, these positional characteristics have not been analyzed to any significant extent for primary cilia. This review briefly summarizes the history of knowledge of these two positional characteristics across a wide spectrum of cilia, emphasizing their importance for proper function. Then the review focuses what is known about these same positional characteristics for primary cilia in all major tissue types where they have been reported. The review emphasizes major areas that would be productive for future research for understanding how positioning and 3-D orientation of primary cilia may be related to their hypothesized signaling roles within different cellular populations. PMID:22012592

  7. Silibinin negatively contributes to primary cilia length via autophagy regulated by histone deacetylase 6 in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Wei; Liu, Xiaoling; Liu, Weiwei; Wang, Hongju; Yao, Guodong; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2016-09-01

    Primary cilium is a cellular antenna, signalling as a sensory organelle. Numerous pathological manifestation is associated with change of its length. Although the interaction between autophagy and primary cilia has been suggested, the role of autophagy in primary cilia length is largely unknown. In this study the primary cilia were immunostained and observed by using confocal fluorescence microscopy, and we found that silibinin, a natural flavonoid, shortened the length of primary cilia, meanwhile it also induced autophagy in 3T3-L1 cells. This study was designed to investigate the significance of silibinin-induced autophagy in primary ciliary structure in confluent mouse embryo fibroblast 3T3-L1 cells. Either blocking the autophagic flux with pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), or transfection of siRNA targeting LC3 inhibited the reduction of cilia length caused by silibinin exposure. Autophagy induced by silibinin decreased expressions of the cilia-associated proteins, such as IFT88, KIF3a and Ac-tubulin, while 3-MA restored it, indicating that autophagy induced by silibinin led to a reduction of primary cilia length. Histone deacetylase 6 (HDAC6), which was suggested as a mediator of autophagy, was up-regulated by silibinin in a time-dependent manner. In addition, 3T3-L1 cells treated with siRNA against HDAC6 had a reduced autophagic level and were protected from silibinin-induced cilia shortening. Taken together, we conclude that the HDAC6-mediated autophagy negatively regulates primary cilia length during silibinin treatment and has the potential to serve as a therapeutic target for primary cilia-associated ciliopathies. These findings thus provide new information about the potential link between autophagy and primary cilia.

  8. CCDC65 Mutation Causes Primary Ciliary Dyskinesia with Normal Ultrastructure and Hyperkinetic Cilia

    PubMed Central

    Horani, Amjad; Brody, Steven L.; Ferkol, Thomas W.; Shoseyov, David; Wasserman, Mollie G.; Ta-shma, Asaf; Wilson, Kate S.; Bayly, Philip V.; Amirav, Israel; Cohen-Cymberknoh, Malena; Dutcher, Susan K.; Elpeleg, Orly; Kerem, Eitan

    2013-01-01

    Background Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by impaired ciliary function, leading to chronic sinopulmonary disease. The genetic causes of PCD are still evolving, while the diagnosis is often dependent on finding a ciliary ultrastructural abnormality and immotile cilia. Here we report a novel gene associated with PCD but without ciliary ultrastructural abnormalities evident by transmission electron microscopy, but with dyskinetic cilia beating. Methods Genetic linkage analysis was performed in a family with a PCD subject. Gene expression was studied in Chlamydomonas reinhardtii and human airway epithelial cells, using RNA assays and immunostaining. The phenotypic effects of candidate gene mutations were determined in primary culture human tracheobronchial epithelial cells transduced with gene targeted shRNA sequences. Video-microscopy was used to evaluate cilia motion. Results A single novel mutation in CCDC65, which created a termination codon at position 293, was identified in a subject with typical clinical features of PCD. CCDC65, an orthologue of the Chlamydomonas nexin-dynein regulatory complex protein DRC2, was localized to the cilia of normal nasal epithelial cells but was absent in those from the proband. CCDC65 expression was up-regulated during ciliogenesis in cultured airway epithelial cells, as was DRC2 in C. reinhardtii following deflagellation. Nasal epithelial cells from the affected individual and CCDC65-specific shRNA transduced normal airway epithelial cells had stiff and dyskinetic cilia beating patterns compared to control cells. Moreover, Gas8, a nexin-dynein regulatory complex component previously identified to associate with CCDC65, was absent in airway cells from the PCD subject and CCDC65-silenced cells. Conclusion Mutation in CCDC65, a nexin-dynein regulatory complex member, resulted in a frameshift mutation and PCD. The affected individual had altered cilia beating patterns, and no detectable

  9. The Type 3 Adenylyl Cyclase is Required for Novel Object Learning and Extinction of Contextual Memory: Role of cAMP Signaling in Primary Cilia

    PubMed Central

    Wang, Zhenshan; Phan, Trongha; Storm, Daniel R.

    2011-01-01

    Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3−/− mice for several forms of learning and memory. Here, we report that AC3−/− mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociated passive avoidance (TDPA). Since AC3 is exclusively expressed in primary cilia we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory including extinction of contextual fear conditioning. PMID:21490195

  10. The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia.

    PubMed

    Wang, Zhenshan; Phan, Trongha; Storm, Daniel R

    2011-04-13

    Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects, and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein-coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase, this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3(-/-) mice for several forms of learning and memory. Here, we report that AC3(-/-) mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociative passive avoidance. Since AC3 is exclusively expressed in primary cilia, we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory, including extinction of contextual fear conditioning.

  11. A primary cilia-dependent etiology for midline facial disorders

    PubMed Central

    Brugmann, Samantha A.; Allen, Nancy C.; James, Aaron W.; Mekonnen, Zesemayat; Madan, Elena; Helms, Jill A.

    2010-01-01

    Human faces exhibit enormous variation. When pathological conditions are superimposed on normal variation, a nearly unbroken series of facial morphologies is produced. When viewed in full, this spectrum ranges from cyclopia and hypotelorism to hypertelorism and facial duplications. Decreased Hedgehog pathway activity causes holoprosencephaly and hypotelorism. Here, we show that excessive Hedgehog activity, caused by truncating the primary cilia on cranial neural crest cells, causes hypertelorism and frontonasal dysplasia (FND). Elimination of the intraflagellar transport protein Kif3a leads to excessive Hedgehog responsiveness in facial mesenchyme, which is accompanied by broader expression domains of Gli1, Ptc and Shh, and reduced expression domains of Gli3. Furthermore, broader domains of Gli1 expression correspond to areas of enhanced neural crest cell proliferation in the facial prominences of Kif3a conditional knockouts. Avian Talpid embryos that lack primary cilia exhibit similar molecular changes and similar facial phenotypes. Collectively, these data support our hypothesis that a severe narrowing of the facial midline and excessive expansion of the facial midline are both attributable to disruptions in Hedgehog pathway activity. These data also raise the possibility that genes encoding ciliary proteins are candidates for human conditions of hypertelorism and FNDs. PMID:20106874

  12. Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization.

    PubMed

    Cano, David A; Murcia, Noel S; Pazour, Gregory J; Hebrok, Matthias

    2004-07-01

    Polycystic kidney disease (PKD) includes a group of disorders that are characterized by the presence of cysts in the kidney and other organs, including the pancreas. Here we show that in orpk mice, a model system for PKD that harbors a mutation in the gene that encodes the polaris protein, pancreatic defects start to occur at the end of gestation, with an initial expansion of the developing pancreatic ducts. Ductal dilation continues rapidly after birth and results in the formation of large, interconnected cysts. Expansion of pancreatic ducts is accompanied by apoptosis of neighboring acinar cells, whereas endocrine cell differentiation and islet formation appears to be unaffected. Polaris has been shown to co-localize with primary cilia, and these structures have been implicated in the formation of renal cysts. In the orpk pancreas, cilia numbers are reduced and cilia length is decreased. Expression of polycystin-2, a protein involved in PKD, is mislocalized in orpk mice. Furthermore, the cellular localization of beta-catenin, a protein involved in cell adhesion and Wnt signaling, is altered. Thus, polaris and primary cilia function are required for the maturation and maintenance of proper tissue organization in the pancreas.

  13. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia.

    PubMed

    Ishikawa, Hiroaki; Kubo, Akiharu; Tsukita, Shoichiro; Tsukita, Sachiko

    2005-05-01

    Outer dense fibre 2 (Odf2; also known as cenexin) was initially identified as a main component of the sperm tail cytoskeleton, but was later shown to be a general scaffold protein that is specifically localized at the distal/subdistal appendages of mother centrioles. Here we show that Odf2 expression is suppressed in mouse F9 cells when both alleles of Odf2 genes are deleted. Unexpectedly, the cell cycle of Odf2(-/-) cells does not seem to be affected. Immunofluorescence and ultrathin-section electron microscopy reveals that in Odf2(-/-) cells, distal/subdistal appendages disappear from mother centrioles, making it difficult to distinguish mother from daughter centrioles. In Odf2(-/-) cells, however, the formation of primary cilia is completely suppressed, although approximately 25% of wild-type F9 cells are ciliated under the steady-state cell cycle. The loss of primary cilia in Odf2(-/-) F9 cells can be rescued by exogenous Odf2 expression. These findings indicate that Odf2 is indispensable for the formation of distal/subdistal appendages and the generation of primary cilia, but not for other cell-cycle-related centriolar functions.

  14. Reduced primary cilia length and altered Arl13b expression are associated with deregulated chondrocyte Hedgehog signaling in alkaptonuria

    PubMed Central

    Thorpe, Stephen D.; Gambassi, Silvia; Thompson, Clare L.; Chandrakumar, Charmilie

    2017-01-01

    Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2‐dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog‐related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU. PMID:28158906

  15. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model.

    PubMed

    Choi, Hyunjung; Shin, Ji Hyun; Kim, Eun Sung; Park, So Jung; Bae, Il-Hong; Jo, Yoon Kyung; Jeong, In Young; Kim, Hyoung-June; Lee, Youngjin; Park, Hea Chul; Jeon, Hong Bae; Kim, Ki Woo; Lee, Tae Ryong; Cho, Dong-Hyung

    2016-01-01

    The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling.

  16. A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma.

    PubMed

    Conduit, S E; Ramaswamy, V; Remke, M; Watkins, D N; Wainwright, B J; Taylor, M D; Mitchell, C A; Dyson, J M

    2017-10-26

    Sonic Hedgehog (SHH) signaling at primary cilia drives the proliferation and progression of a subset of medulloblastomas, the most common malignant paediatric brain tumor. Severe side effects associated with conventional treatments and resistance to targeted therapies has led to the need for new strategies. SHH signaling is dependent on primary cilia for signal transduction suggesting the potential for cilia destabilizing mechanisms as a therapeutic target. INPP5E is an inositol polyphosphate 5-phosphatase that hydrolyses PtdIns(4,5)P 2 and more potently, the phosphoinositide (PI) 3-kinase product PtdIns(3,4,5)P 3 . INPP5E promotes SHH signaling during embryonic development via PtdIns(4,5)P 2 hydrolysis at cilia, that in turn regulates the cilia recruitment of the SHH suppressor GPR161. However, the role INPP5E plays in cancer is unknown and the contribution of PI3-kinase signaling to cilia function is little characterized. Here, we reveal INPP5E promotes SHH signaling in SHH medulloblastoma by negatively regulating a cilia-compartmentalized PI3-kinase signaling axis that maintains primary cilia on tumor cells. Conditional deletion of Inpp5e in a murine model of constitutively active Smoothened-driven medulloblastoma slowed tumor progression, suppressed cell proliferation, reduced SHH signaling and promoted tumor cell cilia loss. PtdIns(3,4,5)P 3 , its effector pAKT and the target pGSK3β, which when non-phosphorylated promotes cilia assembly/stability, localized to tumor cell cilia. The number of PtdIns(3,4,5)P 3 /pAKT/pGSK3β-positive cilia was increased in cultured Inpp5e-null tumor cells relative to controls. PI3-kinase inhibition or expression of wild-type, but not catalytically inactive HA-INPP5E partially rescued cilia loss in Inpp5e-null tumor cells in vitro. INPP5E mRNA and copy number were reduced in human SHH medulloblastoma compared to other molecular subtypes and consistent with the murine model, reduced INPP5E was associated with improved overall

  17. Reduced primary cilia length and altered Arl13b expression are associated with deregulated chondrocyte Hedgehog signaling in alkaptonuria.

    PubMed

    Thorpe, Stephen D; Gambassi, Silvia; Thompson, Clare L; Chandrakumar, Charmilie; Santucci, Annalisa; Knight, Martin M

    2017-09-01

    Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2-dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog-related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  18. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism

    PubMed Central

    Chen, Julia C.; Hoey, David A.; Chua, Mardonn; Bellon, Raymond; Jacobs, Christopher R.

    2016-01-01

    It has long been suspected, but never directly shown, that bone formed to accommodate an increase in mechanical loading is related to the creation of osteoblasts from skeletal stem cells. Indeed, biophysical stimuli potently regulate osteogenic lineage commitment in vitro. In this study, we transplanted bone marrow cells expressing green fluorescent protein, to enable lineage tracing, and subjected mice to a biophysical stimulus, to elicit a bone-forming response. We detected cells derived from transplanted progenitors embedded within the bone matrix near active bone-forming surfaces in response to loading, demonstrating for the first time, that mechanical signals enhance the homing and attachment of bone marrow cells to bone surfaces and the commitment to an osteogenic lineage of these cells in vivo. Furthermore, we used an inducible Cre/Lox recombination system to delete kinesin family member 3A (Kif3a), a gene that is essential for primary cilia formation, at will in transplanted cells and their progeny, regardless of which tissue may have incorporated them. Disruption of the mechanosensing organelle, the primary cilium in a progenitor population, significantly decreased the amount of bone formed in response to mechanical stimulation. The collective results of our study directly demonstrate that, in a novel experimental stem cell mechanobiology model, mechanical signals enhance osteogenic lineage commitment in vivo and that the primary cilium contributes to this process.—Chen, J. C., Hoey, D. A., Chua, M., Bellon, R., Jacobs, C. R. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. PMID:26675708

  19. Type I collagen-induced YAP nuclear expression promotes primary cilia growth and contributes to cell migration in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Xiaoling; Liu, Weiwei; Hayashi, Toshihiko; Yamato, Masayuki; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2018-05-30

    The extracellular matrix (ECM) is a major biomechanical environment for all cells in vivo, and tightly controls wound healing and cancer progression. Type I collagen (Col I) is the most abundant component in ECM and plays an essential role for cell motility control and migration beyond structural support. Our previous results showed that Col I increased the length of primary cilia and the expression of primary cilia-associated proteins in 3T3-L1 cells. The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes for the development and maintenance of tissue functions. In this study, we investigated the role of Hippo/YAP signaling in primary cilia growth of cells cultured on Col I-coated plate, as well as the potential link between primary cilia and migration. At 2-day post-confluence, YAP localization in the nucleus was dramatically increased when the cells were cultured on Col I-coated plate, accompanied by cilia growth. YAP inhibitor verteporfin repressed the growth of primary cilia as well as the expressions of ciliogenesis-associated proteins in confluent 3T3-L1 cells cultured on Col I-coated plate. Moreover, knockdown of either YAP or IFT88, one of the ciliogenesis-associated proteins, reversed the migration of confluent 3T3-L1 cells promoted by Col I-coating. In conclusion, activation of YAP pathway by Col I-coating of culture plate for confluent 3T3-L1 cells is positively associated with the primary cilia growth, which eventually results in promoted migration.

  20. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia.

    PubMed

    Loktev, Alexander V; Jackson, Peter K

    2013-12-12

    Human monogenic obesity syndromes, including Bardet-Biedl syndrome (BBS), implicate neuronal primary cilia in regulation of energy homeostasis. Cilia in hypothalamic neurons have been hypothesized to sense and regulate systemic energy status, but the molecular mechanism of this signaling remains unknown. Here, we report a comprehensive localization screen of 42 G-protein-coupled receptors (GPCR) revealing seven ciliary GPCRs, including the neuropeptide Y (NPY) receptors NPY2R and NPY5R. We show that mice modeling BBS disease or obese tubby mice fail to localize NPY2R to cilia in the hypothalamus and that BBS mutant mice fail to activate c-fos or decrease food intake in response to the NPY2R ligand PYY3-36. We find that cells with ciliary NPY2R show augmented PYY3-36-dependent cAMP signaling. Our data demonstrate that ciliary targeting of NPY receptors is important for controlling energy balance in mammals, revealing a physiologically defined ligand-receptor pathway signaling within neuronal cilia. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Chemically-inducible diffusion trap at cilia (C-IDTc) reveals molecular sieve-like barrier

    PubMed Central

    Lin, Yu-Chun; Phua, Siew Cheng; Jiao, John; Levchenko, Andre; Inoue, Takafumi; Rohatgi, Rajat; Inoue, Takanari

    2013-01-01

    Primary cilia function as specialized compartments for signal transduction. The stereotyped structure and signaling function of cilia inextricably depend on the selective segregation of molecules in cilia. However, the fundamental principles governing the access of soluble proteins to primary cilia remain unresolved. We developed a methodology termed Chemically-Inducible Diffusion Trap at Cilia (C-IDTc) to visualize the diffusion process of a series of fluorescent proteins ranging in size from 3.2 to 7.9 nm into primary cilia. We found that the interior of the cilium was accessible to proteins as large as 7.9 nm. The kinetics of ciliary accumulation of this panel of proteins was exponentially limited by their Stokes radii. Quantitative modeling suggests that the diffusion barrier operates as a molecular sieve at the base of cilia. Our study presents a set of powerful, generally applicable tools for the quantitative monitoring of ciliary protein diffusion under both physiological and pathological conditions. PMID:23666116

  2. Maintaining protein composition in cilia.

    PubMed

    Stephen, Louise A; Elmaghloob, Yasmin; Ismail, Shehab

    2017-12-20

    The primary cilium is a sensory organelle that is vital in regulating several signalling pathways. Unlike most organelles cilia are open to the rest of the cell, not enclosed by membranes. The distinct protein composition is crucial to the function of cilia and many signalling proteins and receptors are specifically concentrated within distinct compartments. To maintain this composition, a mechanism is required to deliver proteins to the cilium whilst another must counter the entropic tendency of proteins to distribute throughout the cell. The combination of the two mechanisms should result in the concentration of ciliary proteins to the cilium. In this review we will look at different cellular mechanisms that play a role in maintaining the distinct composition of cilia, including regulation of ciliary access and trafficking of ciliary proteins to, from and within the cilium.

  3. Myosin VIIa as a common component of cilia and microvilli.

    PubMed

    Wolfrum, U; Liu, X; Schmitt, A; Udovichenko, I P; Williams, D S

    1998-01-01

    The distribution of myosin VIIa, which is defective or absent in Usher syndrome 1B, was studied in a variety of tissues by immunomicroscopy. The primary aim was to determine whether this putative actin-based mechanoenzyme is a common component of cilia. Previously, it has been proposed that defective ciliary function might be the basis of some forms of Usher syndrome. Myosin VIIa was detected in cilia from cochlear hair cells, olfactory neurons, kidney distal tubules, and lung bronchi. It was also found to cofractionate with the axonemal fraction of retinal photoreceptor cells. Immunolabeling appeared most concentrated in the periphery of the transition zone of the cilia. This general presence of a myosin in cilia is surprising, given that cilia are dominated by microtubules, and not actin filaments. In addition to cilia, myosin VIIa was also found in actin-rich microvilli of different types of cell. We conclude that myosin VIIa is a common component of cilia and microvilli.

  4. Cilia/Ift protein and motor -related bone diseases and mouse models.

    PubMed

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.

  5. STUDIES ON CILIA

    PubMed Central

    Satir, Peter

    1963-01-01

    Upon excision into spring water, the lateral cilia of the gill of the freshwater mussel Elliptio complanatus (Solander) stop beating, but 0.04 M potassium ion can activate the gill so that these cilia again beat with metachronal rhythm. One per cent osmium tetroxide quickly pipetted onto a fully activated gill fixes the lateral cilia in a pattern that preserves the form and arrangement of the metachronal wave, and permits the cilia to be studied with the electron microscope in all stages of their beat cycle. Changes are seen in the fixed active preparation that are not present in the inactive control, i.e., in the packing of the cilia, the position of the axis of the ciliary cross-section, and the diameter of the ring of peripheral filaments. Analysis of these parameters may lead to new correlations between ciliary fine structure and function. PMID:14079494

  6. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases.

    PubMed

    Trulioff, Andrey; Ermakov, Alexander; Malashichev, Yegor

    2017-01-25

    Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry.

  7. Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling.

    PubMed

    Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J

    2018-02-06

    Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.

  8. Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases

    PubMed Central

    Trulioff, Andrey; Ermakov, Alexander; Malashichev, Yegor

    2017-01-01

    Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry. PMID:28125008

  9. Metachronal Motion of Artificial Magnetic Cilia

    NASA Astrophysics Data System (ADS)

    Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2017-11-01

    Most microorganisms use asymmetrically oscillating hair like cilia on their surface to achieve fluid transport. These cilia are often seen to beat in a metachronal fashion with a constant phase difference with the neighbors which generates a travelling wave. Although the origin of metachronal waves in such cilia is not well understood, mimicking such behavior in synthetic systems could prove useful in achieving similar advantages. In this work, we demonstrate metachronal waves in synthetic magnetic ciliary systems. The soft magnetic cilia are forced by a uniform rotating magnetic field. The cilia bend as the field rotates and tend to align along the direction of field to minimize the potential energy. Longer cilia bend to a larger degree, while the shorter cilia show less bending. This difference in the bending of cilia based on their length leads to a phase difference in their oscillation cycle. We exploit this phase differences to metachronally oscillate the synthetic cilia. We fabricate an array consisting of cilia with increasing lengths, in which the cilia beat with a constant phase difference with the neighboring cilia, producing a travelling wave. Such behavior could potentially be useful in enhanced fluid and particle transport as seen in natural systems. USDA.

  10. Primary cilia disruption differentially affects the infiltrating and resident macrophage compartment in the liver.

    PubMed

    Zimmerman, Kurt A; Song, Cheng Jack; Gonzalez-Mize, Nancy; Li, Zhang; Yoder, Bradley K

    2018-06-01

    Hepatorenal fibrocystic disease (HRFCD) is characterized by cysts in the kidney and liver with associated fibrosis and is the result of defects in proteins required for cilia function or assembly. Previous reports indicate that macrophages, mainly M2-like macrophages, contribute to HRFCD, although the origin of these cells (yolk sac-derived resident macrophages vs. bone marrow-derived infiltrating macrophages) and their contribution to the observed phenotypes are unknown. We utilize a congenital model of cilia dysfunction (IFT88 Orpk ) to study the importance of macrophages in HRFCD. Our data show a rapid expansion of the bile duct region and development of fibrosis between 2 and 4 wk of age. Immunofluorescence microscopy analysis reveals an accumulation of F4/80 + macrophages in regions exhibiting biliary hyperplasia in IFT88 Orpk mice. Flow cytometry data show that cilia dysfunction leads to an accumulation of infiltrating macrophages (CD11b hi , F4/80 lo ) and a reduction of resident macrophage (CD11b lo , F4/80 hi ) number. A majority of the infiltrating macrophages are Ly6c hi profibrogenic macrophages. Along with the accumulation of immune cells, expression of proinflammatory and profibrotic transcripts, including TGF-β, TNF-α, IL-1β, and chemokine (C-C) motif ligand 2, is increased. Quantitative RT-PCR analysis of flow-sorted cells shows enhanced expression of CCL2 in cholangiocytes and enhanced expression of VEGF-A and IL-6 in Ly6c hi macrophages. Genetic inhibition of Ly6c hi macrophage accumulation in IFT88 Orpk FVB CCR2 -/- mice reduced biliary fibrosis but did not affect epithelial expansion. Collectively, these studies suggest that biliary epithelium with defects in primary cilia preferentially recruits Ly6c hi infiltrating macrophages, which promote fibrotic progression in HRFCD pathogenesis. NEW & NOTEWORTHY These studies are the first to address the contribution of the infiltrating and resident macrophage niche during progression of hepatorenal

  11. The Roles of Primary Cilia in Cardiovascular System

    DTIC Science & Technology

    2016-10-01

    mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen . Biochem J 134:707–716. Boveris A, Oshino N, Chance B. 1972...The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen . Biochem J 134:707–716. Boveris A, Oshino N...Aim 1.2 (months 13-30): We will examine signaling mechanisms of cilia & their effects on blood pressure. Aim 2 (months 7-36). We will study

  12. Magnetically Actuated Cilia for Microfluidic Manipulation

    NASA Astrophysics Data System (ADS)

    Hanasoge, Srinivas; Owen, Drew; Ballard, Matt; Hesketh, Peter J.; Alexeev, Alexander; Woodruff School of Mechanical Engineering Collaboration; Petit InstituteBioengineering; Biosciences Collaboration

    2015-11-01

    We demonstrate magnetic micro-cilia based microfluidic mixing and capture techniques. For this, we use a simple and easy to fabricate high aspect ratio cilia, which are actuated magnetically. These micro-features are fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The evaporated alloy curls upwards when the seed layer is removed to release the cilia, thus making a free standing `C' shaped magnetic microstructure. This is actuated using an external electromagnet or a rotating magnet. The artificial cilia can be actuated upto 20Hz. We demonstrate the active mixing these cilia can produce in the microchannel. Also, we demonstrate the capture of target species in a sample using these fast oscillating cilia. The surface of the cilia is functionalized by streptavidin which binds to biotin labelled fluorescent microspheres and mimic the capture of bacteria. We show very high capture efficiencies by using these methods. These simple to fabricate micro cilia can easily be incorporated into many microfluidic systems which require high mixing and capture efficiencies.

  13. Magnetically-actuated artificial cilia for microfluidic propulsion.

    PubMed

    Khaderi, S N; Craus, C B; Hussong, J; Schorr, N; Belardi, J; Westerweel, J; Prucker, O; Rühe, J; den Toonder, J M J; Onck, P R

    2011-06-21

    In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for lab-on-a-chip applications. The artificial cilia are fabricated using thin polymer films with embedded magnetic nano-particles and their deformation is studied under different external magnetic fields and flows. A coupled magneto-mechanical solid-fluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.

  14. Unique among ciliopathies: primary ciliary dyskinesia, a motile cilia disorder.

    PubMed

    Praveen, Kavita; Davis, Erica E; Katsanis, Nicholas

    2015-01-01

    Primary ciliary dyskinesia (PCD) is a ciliopathy, but represents the sole entity from this class of disorders that results from the dysfunction of motile cilia. Characterized by respiratory problems appearing in childhood, infertility, and situs defects in ~50% of individuals, PCD has an estimated prevalence of approximately 1 in 10,000 live births. The diagnosis of PCD can be prolonged due to a lack of disease awareness, coupled with the fact that symptoms can be confused with other more common genetic disorders, such as cystic fibrosis, or environmental insults that result in frequent respiratory infections. A primarily autosomal recessive disorder, PCD is genetically heterogeneous with >30 causal genes identified, posing significant challenges to genetic diagnosis. Here, we provide an overview of PCD as a disorder underscored by impaired ciliary motility; we discuss the recent advances towards uncovering the genetic basis of PCD; we discuss the molecular knowledge gained from PCD gene discovery, which has improved our understanding of motile ciliary assembly; and we speculate on how accelerated diagnosis, together with detailed phenotypic data, will shape the genetic and functional architecture of this disorder.

  15. [Non-ciliary functions of cilia proteins].

    PubMed

    Taulet, Nicolas; Delaval, Bénédicte

    2014-11-01

    Cilia proteins have long been characterized for their role in cilia formation and function, and their implications in ciliopathies. However, several cellular defects induced by cilia proteins deregulation suggest that they could have non-ciliary roles. Indeed, several non-ciliary functions have been recently characterized for cilia proteins including roles in intra-cellular and in vesicular transport, in spindle orientation or in the maintenance of genomic stability. These observations thus raise the crucial question of the contribution of non-ciliary functions of cilia proteins to the pathological manifestations associated with ciliopathies such as polycystic kidney disease. © 2014 médecine/sciences – Inserm.

  16. Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome.

    PubMed

    Clotman, Frédéric; Libbrecht, Louis; Killingsworth, Murray C; Loo, Christine C K; Roskams, Tania; Lemaigre, Frédéric P

    2008-03-01

    Meckel syndrome is an autosomal-recessive disease characterized by a combination of renal cysts, anomalies of the central nervous system, polydactyly and ductal plate malformations (DPM), which are hepatic anomalies consisting of excessive and abnormal foetal biliary structures. Among the genomic loci associated with Meckel syndrome, mutations in four genes were recently identified. These genes code for proteins associated with primary cilia and are possibly involved in cell differentiation. The aim of the present work was to investigate the formation of the primary cilia and the differentiation of the hepatic cells in foetuses with Meckel syndrome. Sections of livers from human foetuses with Meckel syndrome were analysed by immunofluorescence, immunohistochemistry and electron microscopy. The primary cilia of the biliary cells were absent in some Meckel foetuses, but were present in others. In addition, defects in hepatic differentiation were observed in Meckel livers, as evidenced by the presence of hybrid cells co-expressing hepatocytic and biliary markers. Defects in cilia formation occur in some Meckel livers, and most cases show DPM associated with abnormal hepatic cell differentiation. Because differentiation precedes the formation of the cilia during liver development, we propose that defective differentiation may constitute the initial defect in the liver of Meckel syndrome foetuses.

  17. Primary cilia in gastric Gastrointestinal Stromal Tumours (GISTs): an ultrastructural study

    PubMed Central

    Castiella, Tomás; Muñoz, Guillermo; Luesma, María José; Santander, Sonia; Soriano, Mario; Junquera, Concepción

    2013-01-01

    Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal (non-epithelial) neoplasms of the human gastrointestinal (GI) tract. They are thought to derive from interstitial cells of Cajal (ICCs) or an ICC progenitor based on immunophenotypical and ultrastructural similarities. Because ICCs show primary cilium, our hypothesis is based on the possibility that some of these neoplastic cells could also present it. To determine this, an exhaustive ultrastructural study has been developed on four gastric GISTs. Previous studies had demonstrated considerable variability in tumour cells with two dominating phenotypes, spindly and epithelioid. In addition to these two types, we have found another cell type reminiscent of adult ICCs with a voluminous nucleus surrounded by narrow perinuclear cytoplasm with long slender cytoplasmic processes. We have also noted the presence of small undifferentiated cells. In this study, we report for the first time the presence of primary cilia (PCs) in spindle and epithelioid tumour cells, an ultrastructural feature we consider of special interest that has hitherto been ignored in the literature dealing with the ultrastructure of GISTs. We also point out the frequent occurrence of multivesicular bodies (MVBs). The ultrastructural findings described in gastric GISTs in this study appear to be relevant considering the critical roles played by PCs and MVBs recently demonstrated in tumourigenic processes. PMID:23672577

  18. Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease.

    PubMed

    Lewis, Wesley R; Malarkey, Erik B; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C; Porath, Jonathan D; Birket, Susan E; Saunier, Sophie; Antignac, Corinne; Knowles, Michael R; Leigh, Margaret W; Zariwala, Maimoona A; Challa, Anil K; Kesterson, Robert A; Rowe, Steven M; Drummond, Iain A; Parant, John M; Hildebrandt, Friedhelm; Porter, Mary E; Yoder, Bradley K; Berbari, Nicolas F

    2016-07-01

    Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or 'primary' cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in

  19. Emerging ciliopathies: are respiratory cilia compromised in Usher syndrome?

    PubMed

    Piatti, G; De Santi, M M; Brogi, M; Castorina, P; Ambrosetti, U

    2014-01-01

    Usher syndrome is a ciliopathy involving photoreceptors and cochlear hair cells (sensory cilia): since sensory and motor ciliopathies can overlap, we analysed the respiratory cilia (motile) in 17 patients affected by Usher syndrome and 18 healthy control subject. We studied the mucociliary transport time with the saccharine test, ciliary motility and ultrastructure of respiratory cilia obtained by nasal brushing; we also recorded the classical respiratory function values by spirometry. All enrolled subjects showed normal respiratory function values. The mean mucociliary transport time with saccharine was 22.33 ± 17.96 min, which is in the range of normal values. The mean ciliary beat frequency of all subjects was 8.81 ± 2.18 Hz, which is a value approaching the lower physiological limit. None of the classical ciliary alterations characterizing the "ciliary primary dyskinesia" was detected, although two patients showed alterations in number and arrangement of peripheral microtubules and one patient had abnormal ciliary roots. Respiratory cilia in Usher patients don't seem to have evident ultrastructural alterations, as expected, but the fact that the ciliary motility appeared slightly reduced could emphasize that a rigid distinction between sensory and motor ciliopathies may not reflect what really occurs. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Fluid pumping using magnetic cilia

    NASA Astrophysics Data System (ADS)

    Hanasoge, Srinivas; Ballard, Matt; Alexeev, Alexander; Hesketh, Peter; Woodruff School of Mechanical Engineering Team

    2016-11-01

    Using experiments and computer simulations, we examine fluid pumping by artificial magnetic cilia fabricated using surface micromachining techniques. An asymmetry in forward and recovery strokes of the elastic cilia causes the net pumping in a creeping flow regime. We show this asymmetry in the ciliary strokes is due to the change in magnetization of the elastic cilia combined with viscous force due to the fluid. Specifically, the time scale for forward stroke is mostly governed by the magnetic forces, whereas the time scale for the recovery stroke is determined by the elastic and viscous forces. These different time scales result in different cilia deformation during forward and backward strokes which in turn lead to the asymmetry in the ciliary motion. To disclose the physics of magnetic cilia pumping we use a hybrid lattice Boltzmann and lattice spring method. We validate our model by comparing the simulation results with the experimental data. The results of our study will be useful to design microfluidic systems for fluid mixing and particle manipulation including different biological particles. USDA and NSF.

  1. Particle sorting by Paramecium cilia arrays.

    PubMed

    Mayne, Richard; Whiting, James G H; Wheway, Gabrielle; Melhuish, Chris; Adamatzky, Andrew

    Motile cilia are cell-surface organelles whose purposes, in ciliated protists and certain ciliated metazoan epithelia, include generating fluid flow, sensing and substance uptake. Certain properties of cilia arrays, such as beating synchronisation and manipulation of external proximate particulate matter, are considered emergent, but remain incompletely characterised despite these phenomena having being the subject of extensive modelling. This study constitutes a laboratory experimental characterisation of one of the emergent properties of motile cilia: manipulation of adjacent particulates. The work demonstrates through automated videomicrographic particle tracking that interactions between microparticles and somatic cilia arrays of the ciliated model organism Paramecium caudatum constitute a form of rudimentary 'sorting'. Small particles are drawn into the organism's proximity by cilia-induced fluid currents at all times, whereas larger particles may be held immobile at a distance from the cell margin when the cell generates characteristic feeding currents in the surrounding media. These findings can contribute to the design and fabrication of biomimetic cilia, with potential applications to the study of ciliopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier

    PubMed Central

    Breslow, David K.; Koslover, Elena F.; Seydel, Federica; Spakowitz, Andrew J.

    2013-01-01

    Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia. PMID:24100294

  3. An age of enlightenment for cilia: The FASEB Summer Research Conference on the “Biology of Cilia and Flagella”

    PubMed Central

    Tran, Pamela V.; Lechtreck, Karl F.

    2015-01-01

    From July 19–24, 2015, 169 clinicians and basic scientists gathered in the vertiginous heights of Snowmass, Colorado (2,502 m) for the fourth FASEB summer research conference on the ‘Biology of Cilia and Flagella’. Organizers Maureen Barr (Rutgers University), Iain Drummond (Massachusetts General Hospital/Harvard Medical School), and Jagesh Shah (Brigham and Women’s Hospital/Harvard Medical School) assembled a program filled with new data and forward-thinking ideas documenting the ongoing growth of the field. Sixty oral presentations and 77 posters covered novel aspects of cilia structure, ciliogenesis, cilia motility, cilia-mediated signaling, and cilia-related disease. In this report, we summarize the meeting, highlight exciting developments and discuss open questions. PMID:26597000

  4. Swimming like algae: biomimetic soft artificial cilia

    PubMed Central

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond E.

    2013-01-01

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia. PMID:23097503

  5. Directed Fluid Transport and Mixing with Biomimetic Cilia Arrays

    NASA Astrophysics Data System (ADS)

    Shields, A. R.; Evans, B. A.; Carstens, B. L.; Falvo, M. R.; Washburn, S.; Superfine, R.

    2009-03-01

    We present results on the long-range, directed fluid transport and fluidic mixing produced by the collective beating of arrays of biomimetic cilia. These artificial cilia are arrays of free-standing nanorods roughly the size of biological cilia, which we fabricate from a polymer-magnetic nanoparticle composite material and actuate with permanent magnets to mimic biological cilia. Biological cilia have evolved to produce microscale fluid transport and are increasingly being recognized as critical components in a wide range of biological systems. However, despite much effort cilia generated fluid flows remain an area of active study. In the last decade, cilia-driven fluid flow in the embryonic node of vertebrates has been implicated as the initial left-right symmetry breaking event in these embryos. With silia we generate directional fluid transport by mimicking the tilted conical beating of these nodal cilia. By seeding fluorescent microparticles into the fluid we have noted the existence of two distinct flow regimes. The fluid flow is directional and coherent above the cilia tips, while between the cilia tips and the floor particle motion is complicated and suggestive of chaotic advection.

  6. Cilia in vertebrate left–right patterning

    PubMed Central

    Dasgupta, Agnik

    2016-01-01

    Understanding how left–right (LR) asymmetry is generated in vertebrate embryos is an important problem in developmental biology. In humans, a failure to align the left and right sides of cardiovascular and/or gastrointestinal systems often results in birth defects. Evidence from patients and animal models has implicated cilia in the process of left–right patterning. Here, we review the proposed functions for cilia in establishing LR asymmetry, which include creating transient leftward fluid flows in an embryonic ‘left–right organizer’. These flows direct asymmetric activation of a conserved Nodal (TGFβ) signalling pathway that guides asymmetric morphogenesis of developing organs. We discuss the leading hypotheses for how cilia-generated asymmetric fluid flows are translated into asymmetric molecular signals. We also discuss emerging mechanisms that control the subcellular positioning of cilia and the cellular architecture of the left–right organizer, both of which are critical for effective cilia function during left–right patterning. Finally, using mosaic cell-labelling and time-lapse imaging in the zebrafish embryo, we provide new evidence that precursor cells maintain their relative positions as they give rise to the ciliated left–right organizer. This suggests the possibility that these cells acquire left–right positional information prior to the appearance of cilia. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821522

  7. Cilia in vertebrate left-right patterning.

    PubMed

    Dasgupta, Agnik; Amack, Jeffrey D

    2016-12-19

    Understanding how left-right (LR) asymmetry is generated in vertebrate embryos is an important problem in developmental biology. In humans, a failure to align the left and right sides of cardiovascular and/or gastrointestinal systems often results in birth defects. Evidence from patients and animal models has implicated cilia in the process of left-right patterning. Here, we review the proposed functions for cilia in establishing LR asymmetry, which include creating transient leftward fluid flows in an embryonic 'left-right organizer'. These flows direct asymmetric activation of a conserved Nodal (TGFβ) signalling pathway that guides asymmetric morphogenesis of developing organs. We discuss the leading hypotheses for how cilia-generated asymmetric fluid flows are translated into asymmetric molecular signals. We also discuss emerging mechanisms that control the subcellular positioning of cilia and the cellular architecture of the left-right organizer, both of which are critical for effective cilia function during left-right patterning. Finally, using mosaic cell-labelling and time-lapse imaging in the zebrafish embryo, we provide new evidence that precursor cells maintain their relative positions as they give rise to the ciliated left-right organizer. This suggests the possibility that these cells acquire left-right positional information prior to the appearance of cilia.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  8. Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease

    PubMed Central

    Lewis, Wesley R.; Malarkey, Erik B.; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C.; Porath, Jonathan D.; Birket, Susan E.; Saunier, Sophie; Antignac, Corinne; Leigh, Margaret W.; Zariwala, Maimoona A.; Drummond, Iain A.; Parant, John M.; Hildebrandt, Friedhelm; Yoder, Bradley K.

    2016-01-01

    Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or ‘primary’ cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants

  9. A Wnt/beta-catenin pathway antagonist Chibby binds Cenexin at the distal end of mother centrioles and functions in primary cilia formation.

    PubMed

    Steere, Nathan; Chae, Vanessa; Burke, Michael; Li, Feng-Qian; Takemaru, Ken-ichi; Kuriyama, Ryoko

    2012-01-01

    The mother centriole of the centrosome is distinguished from immature daughter centrioles by the presence of accessory structures (distal and subdistal appendages), which play an important role in the organization of the primary cilium in quiescent cells. Primary cilia serve as sensory organelles, thus have been implicated in mediating intracellular signal transduction pathways. Here we report that Chibby (Cby), a highly conserved antagonist of the Wnt/β-catenin pathway, is a centriolar component specifically located at the distal end of the mother centriole and essential for assembly of the primary cilium. Cby appeared as a discrete dot in the middle of a ring-like structure revealed by staining with a distal appendage component of Cep164. Cby interacted with one of the appendage components, Cenexin (Cnx), which thereby abrogated the inhibitory effect of Cby on β-catenin-mediated transcriptional activation in a dose-dependent manner. Cby and Cnx did not precisely align, as Cby was detected at a more distal position than Cnx. Cnx emerged earlier than Cby during the cell cycle and was required for recruitment of Cby to the mother centriole. However, Cby was dispensable for Cnx localization to the centriole. During massive centriogenesis in in vitro cultured mouse tracheal epithelial cells, Cby and Cnx were expressed in a similar pattern, which was coincident with the expression of Foxj1. Our results suggest that Cby plays an important role in organization of both primary and motile cilia in collaboration with Cnx.

  10. Reptin/Ruvbl2 is a Lrrc6/Seahorse interactor essential for cilia motility

    PubMed Central

    Zhao, Lu; Yuan, Shiaulou; Cao, Ying; Kallakuri, Sowjanya; Li, Yuanyuan; Kishimoto, Norihito; DiBella, Linda; Sun, Zhaoxia

    2013-01-01

    Primary ciliary dyskinesia (PCD) is an autosomal recessive disease caused by defective cilia motility. The identified PCD genes account for about half of PCD incidences and the underlying mechanisms remain poorly understood. We demonstrate that Reptin/Ruvbl2, a protein known to be involved in epigenetic and transcriptional regulation, is essential for cilia motility in zebrafish. We further show that Reptin directly interacts with the PCD protein Lrrc6/Seahorse and this interaction is critical for the in vivo function of Lrrc6/Seahorse in zebrafish. Moreover, whereas the expression levels of multiple dynein arm components remain unchanged or become elevated, the density of axonemal dynein arms is reduced in reptinhi2394 mutants. Furthermore, Reptin is highly enriched in the cytosol and colocalizes with Lrrc6/Seahorse. Combined, these results suggest that the Reptin-Lrrc6/Seahorse complex is involved in dynein arm formation. We also show that although the DNA damage response is induced in reptinhi2394 mutants, it remains unchanged in cilia biogenesis mutants and lrrc6/seahorse mutants, suggesting that increased DNA damage response is not intrinsic to ciliary defects and that in vertebrate development, Reptin functions in multiple processes, both cilia specific and cilia independent. PMID:23858445

  11. Reptin/Ruvbl2 is a Lrrc6/Seahorse interactor essential for cilia motility.

    PubMed

    Zhao, Lu; Yuan, Shiaulou; Cao, Ying; Kallakuri, Sowjanya; Li, Yuanyuan; Kishimoto, Norihito; DiBella, Linda; Sun, Zhaoxia

    2013-07-30

    Primary ciliary dyskinesia (PCD) is an autosomal recessive disease caused by defective cilia motility. The identified PCD genes account for about half of PCD incidences and the underlying mechanisms remain poorly understood. We demonstrate that Reptin/Ruvbl2, a protein known to be involved in epigenetic and transcriptional regulation, is essential for cilia motility in zebrafish. We further show that Reptin directly interacts with the PCD protein Lrrc6/Seahorse and this interaction is critical for the in vivo function of Lrrc6/Seahorse in zebrafish. Moreover, whereas the expression levels of multiple dynein arm components remain unchanged or become elevated, the density of axonemal dynein arms is reduced in reptin(hi2394) mutants. Furthermore, Reptin is highly enriched in the cytosol and colocalizes with Lrrc6/Seahorse. Combined, these results suggest that the Reptin-Lrrc6/Seahorse complex is involved in dynein arm formation. We also show that although the DNA damage response is induced in reptin(hi2394) mutants, it remains unchanged in cilia biogenesis mutants and lrrc6/seahorse mutants, suggesting that increased DNA damage response is not intrinsic to ciliary defects and that in vertebrate development, Reptin functions in multiple processes, both cilia specific and cilia independent.

  12. Acoustic actuation of in situ fabricated artificial cilia

    NASA Astrophysics Data System (ADS)

    Orbay, Sinem; Ozcelik, Adem; Bachman, Hunter; Huang, Tony Jun

    2018-02-01

    We present on-chip acoustic actuation of in situ fabricated artificial cilia. Arrays of cilia structures are UV polymerized inside a microfluidic channel using a photocurable polyethylene glycol (PEG) polymer solution and photomasks. During polymerization, cilia structures are attached to a silane treated glass surface inside the microchannel. Then, the cilia structures are actuated using acoustic vibrations at 4.6 kHz generated by piezo transducers. As a demonstration of a practical application, DI water and fluorescein dye solutions are mixed inside a microfluidic channel. Using pulses of acoustic excitations, and locally fabricated cilia structures within a certain region of the microchannel, a waveform of mixing behavior is obtained. This result illustrates one potential application wherein researchers can achieve spatiotemporal control of biological microenvironments in cell stimulation studies. These acoustically actuated, in situ fabricated, cilia structures can be used in many on-chip applications in biological, chemical and engineering studies.

  13. Cilia driven flow networks in the brain

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Faubel, Regina; Westendorf, Chrsitian; Eichele, Gregor; Bodenschatz, Eberhard

    Neurons exchange soluble substances via the cerebrospinal fluid (CSF) that fills the ventricular system. The walls of the ventricular cavities are covered with motile cilia that constantly beat and thereby induce a directional flow. We recently discovered that cilia in the third ventricle generate a complex flow pattern leading to partitioning of the ventricular volume and site-directed transport paths along the walls. Transient and daily recurrent alterations in the cilia beating direction lead to changes in the flow pattern. This has consequences for delivery of CSF components along the near wall flow. The contribution of this cilia-induced flow to overall CSF flow remains to be investigated. The state-of-art lattice Boltzmann method is adapted for studying the CFS flow. The 3D geometry of the third ventricle at high resolution was reconstructed. Simulation of CSF flow without cilia in this geometry confirmed that the previous idea about unidirectional flow does not explain how different components of CSF can be delivered to their various target sites. We study the contribution of the cilia-induced flow pattern to overall CSF flow and identify target areas for site-specific delivery of CSF-constituents with respect to the temporal changes.

  14. Propulsion and trapping of microparticles by active cilia arrays.

    PubMed

    Bhattacharya, Amitabh; Buxton, Gavin A; Usta, O Berk; Balazs, Anna C

    2012-02-14

    We model the transport of a microscopic particle via a regular array of beating elastic cilia, whose tips experience an adhesive interaction with the particle's surface. At optimal adhesion strength, the average particle velocity is maximized. Using simulations spanning a range of cilia stiffness and cilia-particle adhesion strength, we explore the parameter space over which the particle can be "released", "propelled", or "trapped" by the cilia. We use a lower-order model to predict parameters for which the cilia are able to "propel" the particle. This is the first study that shows how both stiffness and adhesion strength are crucial for manipulation of particles by active cilia arrays. These results can facilitate the design of synthetic cilia that integrate adhesive and hydrodynamic interactions to selectively repel or trap particulates. Surfaces that are effective at repelling particulates are valuable for antifouling applications, while surfaces that can trap and, thus, remove particulates from the solution are useful for efficient filtration systems.

  15. A truncating mutation of Alms1 reduces the number of hypothalamic neuronal cilia in obese mice.

    PubMed

    Heydet, Déborah; Chen, Lesley X; Larter, Claire Z; Inglis, Chrystal; Silverman, Michael A; Farrell, Geoffrey C; Leroux, Michel R

    2013-01-01

    Primary cilia are ubiquitous cellular antennae whose dysfunction collectively causes various disorders, including vision and hearing impairment, as well as renal, skeletal, and central nervous system anomalies. One ciliopathy, Alström syndrome, is closely related to Bardet-Biedl syndrome (BBS), sharing amongst other phenotypic features morbid obesity. As the cellular and molecular links between weight regulation and cilia are poorly understood, we used the obese mouse strain foz/foz, bearing a truncating mutation in the Alström syndrome protein (Alms1), to help elucidate why it develops hyperphagia, leading to early onset obesity and metabolic anomalies. Our in vivo studies reveal that Alms1 localizes at the base of cilia in hypothalamic neurons, which are implicated in the control of satiety. Alms1 is lost from this location in foz/foz mice, coinciding with a strong postnatal reduction (∼70%) in neurons displaying cilia marked with adenylyl cyclase 3 (AC3), a signaling protein implicated in obesity. Notably, the reduction in AC3-bearing cilia parallels the decrease in cilia containing two appetite-regulating proteins, Mchr1 and Sstr3, as well as another established Arl13b ciliary marker, consistent with progressive loss of cilia during development. Together, our results suggest that Alms1 maintains the function of neuronal cilia implicated in weight regulation by influencing the maintenance and/or stability of the organelle. Given that Mchr1 and Sstr3 localization to remaining cilia is maintained in foz/foz animals but known to be lost from BBS knockout mice, our findings suggest different molecular etiologies for the satiety defects associated with the Alström syndrome and BBS ciliopathies. Copyright © 2012 Wiley Periodicals, Inc.

  16. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways.

    PubMed

    Sigg, Monika Abedin; Menchen, Tabea; Lee, Chanjae; Johnson, Jeffery; Jungnickel, Melissa K; Choksi, Semil P; Garcia, Galo; Busengdal, Henriette; Dougherty, Gerard W; Pennekamp, Petra; Werner, Claudius; Rentzsch, Fabian; Florman, Harvey M; Krogan, Nevan; Wallingford, John B; Omran, Heymut; Reiter, Jeremy F

    2017-12-18

    Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Sperm-Associated Antigen–17 Gene Is Essential for Motile Cilia Function and Neonatal Survival

    PubMed Central

    Teves, Maria Eugenia; Zhang, Zhibing; Costanzo, Richard M.; Henderson, Scott C.; Corwin, Frank D.; Zweit, Jamal; Sundaresan, Gobalakrishnan; Subler, Mark; Salloum, Fadi N.; Rubin, Bruce K.

    2013-01-01

    Primary ciliary dyskinesia (PCD), resulting from defects in cilia assembly or motility, is caused by mutations in a number of genes encoding axonemal proteins. PCD phenotypes are variable, and include recurrent respiratory tract infections, bronchiectasis, hydrocephaly, situs inversus, and male infertility. We generated knockout mice for the sperm-associated antigen–17 (Spag17) gene, which encodes a central pair (CP) protein present in the axonemes of cells with “9 + 2” motile cilia or flagella. The targeting of Spag17 resulted in a severe phenotype characterized by immotile nasal and tracheal cilia, reduced clearance of nasal mucus, profound respiratory distress associated with lung fluid accumulation and disruption of the alveolar epithelium, cerebral ventricular expansion consistent with emerging hydrocephalus, failure to suckle, and neonatal demise within 12 hours of birth. Ultrastructural analysis revealed the loss of one CP microtubule in approximately one quarter of tracheal cilia axonemes, an absence of a C1 microtubule projection, and other less frequent CP structural abnormalities. SPAG6 and SPAG16 (CP proteins that interact with SPAG17) were increased in tracheal tissue from SPAG17-deficient mice. We conclude that Spag17 plays a critical role in the function and structure of motile cilia, and that neonatal lethality is likely explained by impaired airway mucociliary clearance. PMID:23418344

  18. Cilia distribution and polarity in the epithelial lining of the mouse middle ear cavity

    PubMed Central

    Luo, Wenwei; Yi, Hong; Taylor, Jeannette; Li, Jian-dong; Chi, Fanglu; Todd, N. Wendell; Lin, Xi; Ren, Dongdong; Chen, Ping

    2017-01-01

    The middle ear conducts sound to the cochlea for hearing. Otitis media (OM) is the most common illness in childhood. Moreover, chronic OM with effusion (COME) is the leading cause of conductive hearing loss. Clinically, COME is highly associated with Primary Ciliary Dyskinesia, implicating significant contributions of cilia dysfunction to COME. The understanding of middle ear cilia properties that are critical to OM susceptibility, however, is limited. Here, we confirmed the presence of a ciliated region near the Eustachian tube orifice at the ventral region of the middle ear cavity, consisting mostly of a lumen layer of multi-ciliated and a layer of Keratin-5-positive basal cells. We also found that the motile cilia are polarized coordinately and display a planar cell polarity. Surprisingly, we also found a region of multi-ciliated cells that line the posterior dorsal pole of the middle ear cavity which was previously thought to contain only non-ciliated cells. Our study provided a more complete understanding of cilia distribution and revealed for the first time coordinated polarity of cilia in the epithelium of the mammalian middle ear, thus illustrating novel structural features that are likely critical for middle ear functions and related to OM susceptibility. PMID:28358397

  19. Emergence of multiple synchronization modes in hydrodynamically-coupled cilia

    NASA Astrophysics Data System (ADS)

    Guo, Hanliang; Kanso, Eva

    2016-11-01

    Motile cilia and flagella exhibit different phase coordinations. For example, closely swimming spermatozoa are observed to synchronize together; bi-flagellates Chlamydomonas regulate the flagella in a "breast-stroke" fashion; cilia on the surface of Paramecium beat in a fixed phase lag in an orchestrated wave like fashion. Experimental evidence suggests that phase coordinations can be achieved solely via hydrodynamical interactions. However, the exact mechanisms behind it remain illusive. Here, adapting a "geometric switch" model, we observe different synchronization modes in pairs of hydrodynamically-coupled cilia by changing physical parameters such as the strength of the cilia internal motor and the separation distance between cilia. Interestingly, we find regions in the parameter space where the coupled cilia reach stable phase coordinations and regions where the phase coordinations are sensitive to perturbations. We also find that leaning into the fluid reduces the sensitivity to perturbations, and produces stable phase coordination that is neither in-phase nor anti-phase, which could explain the origin of metachronal waves in large cilia populations.

  20. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro

    PubMed Central

    Chhor, Vibol; Le Charpentier, Tifenn; Lebon, Sophie; Oré, Marie-Virgine; Celador, Idoia Lara; Josserand, Julien; Degos, Vincent; Jacotot, Etienne; Hagberg, Henrik; Sävman, Karin; Mallard, Carina; Gressens, Pierre; Fleiss, Bobbi

    2013-01-01

    Microglia mediate multiple facets of neuroinflammation, including cytotoxicity, repair, regeneration, and immunosuppression due to their ability to acquire diverse activation states, or phenotypes. Modulation of microglial phenotype is an appealing neurotherapeutic strategy but a comprehensive study of classical and more novel microglial phenotypic markers in vitro is lacking. The aim of this study was to outline the temporal expression of a battery of phenotype markers from polarised microglia to generate an in vitro tool for screening the immunomodulatory potential of novel compounds. We characterised expression of thirty-one macrophage/microglial phenotype markers in primary microglia over time (4, 12, 36, and 72 h), using RT-qPCR or multiplex protein assay. Firstly, we selected Interleukin-4 (IL-4) and lipopolysaccharide (LPS) as the strongest M1–M2 polarising stimuli, from six stimuli tested. At each time point, markers useful to identify that microglia were M1 included iNOS, Cox-2 and IL-6 and a loss of M2a markers. Markers useful for quantifying M2b-immunomodulatory microglia included, increased IL-1RA and SOCS3 and for M2a-repair and regeneration, included increased arginase-1, and a loss of the M1 and M2b markers were discriminatory. Additional markers were regulated at fewer time points, but are still likely important to monitor when assessing the immunomodulatory potential of novel therapies. Further, to facilitate identification of how novel immunomodulatory treatments alter the functional affects of microglia, we characterised how the soluble products from polarised microglia affected the type and rate of neuronal death; M1/2b induced increasing and M2a-induced decreasing neuronal loss. We also assessed any effects of prior activation state, to provide a way to identify how a novel compound may alter phenotype depending on the stage of injury/insult progression. We identified generally that a prior M1/2b reduced the ability of microglia to switch to

  1. Methods for imaging individual cilia in living echinoid embryos.

    PubMed

    Morris, Robert L; Pope, Hans W; Sholi, Adam N; Williams, Leah M; Ettinger, Chelsea R; Beacham, Gwendolyn M; Shintaku, Tatsushi; Abbott, Zachary D; Doherty, Elyse M

    2015-01-01

    The embryos of echinoids (sea urchins and sand dollars) serve as excellent models for studying cilia differentiation and stages of the cilia life cycle including ciliogenic initiation, growth, maintenance, and retraction. Early in echinoid development, uniform motile cilia form on all cells simultaneously but then rapidly differentiate into multiple cilia types that differ in morphology, motility, and signaling sensitivity. Metal ion treatments that shift germ layer boundaries and thereby "animalize" or "vegetalize" embryos can be used to enrich for low-abundance cilia types rendering those specialized cilia and the differentiation processes they exhibit much easier to study. The experimental advantages of having robust cilia growth and differentiation is tempered by the challenge of restraining ciliated embryos well enough to view the process of ciliogenesis live. We have developed four observation chambers as modifications of the Kiehart chamber for long-term light microscopic imaging of ciliated echinoid embryos. One of these systems employs paramagnetic beads to render ciliated larvae magnetic so they can be gently and reversibly trapped directly under the objective lens. With this magnetic trapping system, the larva can be positioned and repositioned until they achieve the orientation with the clearest view of any cilia of interest. These methods of gentle embryo restraint allow normal embryo development and the normal ciliogenic cycle and ciliary differentiation processes to continue in direct view. Sequential image series can then be collected and analyzed to quantitatively study the wide spectrum of cilia behaviors and properties that arise in developing echinoid embryos. Copyright © 2015. Published by Elsevier Inc.

  2. Asynchronous beating of cilia enhances particle capture rate

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Kanso, Eva

    2014-11-01

    Many aquatic micro-organisms use beating cilia to generate feeding currents and capture particles in surrounding fluids. One of the capture strategies is to ``catch up'' with particles when a cilium is beating towards the overall flow direction (effective stroke) and intercept particles on the downstream side of the cilium. Here, we developed a 3D computational model of a cilia band with prescribed motion in a viscous fluid and calculated the trajectories of the particles with different sizes in the fluid. We found an optimal particle diameter that maximizes the capture rate. The flow field and particle motion indicate that the low capture rate of smaller particles is due to the laminar flow in the neighbor of the cilia, whereas larger particles have to move above the cilia tips to get advected downstream which decreases their capture rate. We then analyzed the effect of beating coordination between neighboring cilia on the capture rate. Interestingly, we found that asynchrony of the beating of the cilia can enhance the relative motion between a cilium and the particles near it and hence increase the capture rate.

  3. BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia

    PubMed Central

    2017-01-01

    Primary cilia perceive the extracellular environment through receptors localized in the ciliary membrane, but mechanisms directing specific proteins to this domain are poorly understood. To address this question, we knocked down proteins potentially important for ciliary membrane targeting and determined how this affects the ciliary trafficking of fibrocystin, polycystin-2, and smoothened. Our analysis showed that fibrocystin and polycystin-2 are dependent on IFT20, GMAP210, and the exocyst complex, while smoothened delivery is largely independent of these components. In addition, we found that polycystin-2, but not smoothened or fibrocystin, requires the biogenesis of lysosome-related organelles complex-1 (BLOC-1) for ciliary delivery. Consistent with the role of BLOC-1 in sorting from the endosome, we find that disrupting the recycling endosome reduces ciliary polycystin-2 and causes its accumulation in the recycling endosome. This is the first demonstration of a role for BLOC-1 in ciliary assembly and highlights the complexity of pathways taken to the cilium. PMID:28576874

  4. Functional characterization of putative cilia genes by high-content analysis

    PubMed Central

    Lai, Cary K.; Gupta, Nidhi; Wen, Xiaohui; Rangell, Linda; Chih, Ben; Peterson, Andrew S.; Bazan, J. Fernando; Li, Li; Scales, Suzie J.

    2011-01-01

    Cilia are microtubule-based protrusions from the cell surface that are involved in a number of essential signaling pathways, yet little is known about many of the proteins that regulate their structure and function. A number of putative cilia genes have been identified by proteomics and comparative sequence analyses, but functional data are lacking for the vast majority. We therefore monitored the effects in three cell lines of small interfering RNA (siRNA) knockdown of 40 of these genes by high-content analysis. We assayed cilia number, length, and transport of two different cargoes (membranous serotonin receptor 6-green fluorescent protein [HTR6-GFP] and the endogenous Hedgehog [Hh] pathway transcription factor Gli3) by immunofluorescence microscopy; and cilia function using a Gli-luciferase Hh signaling assay. Hh signaling was most sensitive to perturbations, with or without visible structural cilia defects. Validated hits include Ssa2 and mC21orf2 with ciliation defects; Ift46 with short cilia; Ptpdc1 and Iqub with elongated cilia; and Arl3, Nme7, and Ssna1 with distinct ciliary transport but not length defects. Our data confirm various ciliary roles for several ciliome proteins and show it is possible to uncouple ciliary cargo transport from cilia formation in vertebrates. PMID:21289087

  5. Hydrodynamic interactions of cilia on a spherical body

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2015-11-01

    The emergence of metachronal waves in ciliated microorganisms can arise solely from the hydrodynamic interactions between the cilia. For a chain of cilia attached to a flat ciliate, it was observed that fluid forces can lead the system to form a metachronal wave. However, several microorganisms such as paramecium and volvox possess a curved shaped ciliate body. To understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the embedded periodicity in the geometry leads the system to synchronize. We also report an emergent wave-like behavior when an asymmetry is introduced to the system.

  6. Left-right asymmetry: cilia and calcium revisited.

    PubMed

    Blum, Martin; Vick, Philipp

    2015-03-02

    Leftward flow generated by motile cilia is known to underlie left-right asymmetry in vertebrate embryos. A new study now links intraciliary calcium oscillations to cilia motility and the downstream nodal signaling cascade that drives left-sided development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans.

    PubMed

    Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali

    2013-04-01

    The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.

  8. Branchial Cilia and Sperm Flagella Recruit Distinct Axonemal Components

    PubMed Central

    Konno, Alu; Shiba, Kogiku; Cai, Chunhua; Inaba, Kazuo

    2015-01-01

    Eukaryotic cilia and flagella have highly conserved 9 + 2 structures. They are functionally diverged to play cell-type-specific roles even in a multicellular organism. Although their structural components are therefore believed to be common, few studies have investigated the molecular diversity of the protein components of the cilia and flagella in a single organism. Here we carried out a proteomic analysis and compared protein components between branchial cilia and sperm flagella in a marine invertebrate chordate, Ciona intestinalis. Distinct feature of protein recruitment in branchial cilia and sperm flagella has been clarified; (1) Isoforms of α- and β-tubulins as well as those of actins are distinctly used in branchial cilia or sperm flagella. (2) Structural components, such as dynein docking complex, tektins and an outer dense fiber protein, are used differently by the cilia and flagella. (3) Sperm flagella are specialized for the cAMP- and Ca2+-dependent regulation of outer arm dynein and for energy metabolism by glycolytic enzymes. Our present study clearly demonstrates that flagellar or ciliary proteins are properly recruited according to their function and stability, despite their apparent structural resemblance and conservation. PMID:25962172

  9. Pneumatically-actuated artificial cilia array for biomimetic fluid propulsion.

    PubMed

    Gorissen, Benjamin; de Volder, Michaël; Reynaerts, Dominiek

    2015-11-21

    Arrays of beating cilia emerged in nature as one of the most efficient propulsion mechanisms at a small scale, and are omnipresent in microorganisms. Previous attempts at mimicking these systems have foundered against the complexity of fabricating small-scale cilia exhibiting complex beating motions. In this paper, we propose for the first time arrays of pneumatically-actuated artificial cilia that are able to address some of these issues. These artificial cilia arrays consist of six highly flexible silicone rubber actuators with a diameter of 1 mm and a length of 8 mm that can be actuated independently from each other. In an experimental setup, the effects of the driving frequency, phase difference and duty cycle on the net flow in a closed-loop channel have been studied. Net fluid speeds of up to 19 mm s(-1) have been measured. Further, it is possible to invert the flow direction by simply changing the driving frequency or by changing the duty cycle of the driving block pulse pressure wave without changing the bending direction of the cilia. Using PIV measurements, we corroborate for the first time existing mathematical models of cilia arrays to measurements on prototypes.

  10. Inactivation of Chibby affects function of motile airway cilia

    PubMed Central

    Voronina, Vera A.; Treuting, Piper; Love, Damon; Grubb, Barbara R.; Hajjar, Adeline M.; Adams, Allison; Li, Feng-Qian; Moon, Randall T.

    2009-01-01

    Chibby (Cby) is a conserved component of the Wnt–β-catenin pathway. Cby physically interacts with β-catenin to repress its activation of transcription. To elucidate the function of Cby in vertebrates, we generated Cby−/− mice and found that after 2–3 d of weight loss, the majority of mice die before or around weaning. All Cby−/− mice develop rhinitis and sinusitis. When challenged with Pseudomonas aeruginosa isolates, Cby−/− mice are unable to clear the bacteria from the nasal cavity. Notably, Cby−/− mice exhibit a complete absence of mucociliary transport caused by a marked paucity of motile cilia in the nasal epithelium. Moreover, ultrastructural experiments reveal impaired basal body docking to the apical surface of multiciliated cells. In support of these phenotypes, endogenous Cby protein is localized at the base of cilia. As the phenotypes of Cby−/− mice bear striking similarities to primary ciliary dyskinesia, Cby−/− mice may prove to be a useful model for this condition. PMID:19364920

  11. Cross-polarised and parallel-polarised light: Viewing and photography for examination and documentation of biological materials in medicine and forensics.

    PubMed

    Hanlon, Katharine L

    2018-01-01

    Cross-polarisation, with regard to visible light, is a process wherein two polarisers with perpendicular orientation to one another are used on the incident and reflected lights. Under cross-polarised light birefringent structures which are otherwise invisible become apparent. Cross-polarised light eliminates glare and specular highlights, allowing for an unobstructed view of subsurface pathology. Parallel-polarisation occurs when the polarisers are rotated to the same orientation. When cross- or parallel-polarisation is applied to photography, images can be generated which aid in visualisation of surface and subsurface elements. Improved access to equipment and education has the potential to benefit practitioners, researchers, investigators and patients.

  12. Neuronal NOS localises to human airway cilia.

    PubMed

    Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M

    2015-01-30

    Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Life without centrioles: cilia in the spotlight.

    PubMed

    Badano, Jose L; Katsanis, Nicholas

    2006-06-30

    Centrioles are critical cellular components that form the architectural core of both centrosomes and basal bodies, the nucleating structures of cilia. New work, including a study in this issue (), highlights the unexpected finding that lack of centrioles does not impede development in the fruit fly. Rather, flies reach maturity but then die because their sensory neurons lack cilia.

  14. Large Interstellar Polarisation Survey:The Dust Elongation When Combining Optical-Submm Polarisation

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, Ralf; Voschinnikov, N.; Bagnulo, S.; Cox, N.; Cami, J.

    2017-10-01

    The Planck mission has shown that dust properties of the diffuse ISM varies on a large scale and we present variability on a small scales. We present FORS spectro-polarimetry obtained by the Large Interstellar Polarisation Survey along 60 sight-lines. We fit these combined with extinction data by a silicate and carbon dust model with grain sizes ranging from the molecular to the sub-mic. domain. Large silicates of prolate shape account for the observed polarisation. For 37 sight-lines we complement our data set with UVES high-resolution spectra that establish the presence of single or multiple clouds along individual sight-lines. We find correlations between extinction and Serkowski parameters with the dust model and that the presence of multiple clouds depolarises the incoming radiation. However, there is a degeneracy in the dust model between alignment efficiency and the elongation of the grains. This degeneracy can be broken by combining polarization data in the optical-to-submm. This is of wide general interest as it improves the accuracy of deriving dust masses. We show that a flat IR/submm polarisation spectrum with substantial polarisation is predicted from dust models.

  15. Cilia are required for asymmetric nodal induction in the sea urchin embryo.

    PubMed

    Tisler, Matthias; Wetzel, Franziska; Mantino, Sabrina; Kremnyov, Stanislav; Thumberger, Thomas; Schweickert, Axel; Blum, Martin; Vick, Philipp

    2016-08-23

    Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet. Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos. Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes.

  16. Microscopic study of dental hard tissues in primary teeth with Dentinogenesis Imperfecta Type II: Correlation of 3D imaging using X-ray microtomography and polarising microscopy.

    PubMed

    Davis, Graham R; Fearne, Janice M; Sabel, Nina; Norén, Jörgen G

    2015-07-01

    The aim of this study was to examine the histological appearance of dental hard tissues in primary teeth from children with DI using conventional polarised light microscopy and correlate that with 3D imaging using X-ray microtomograpy (XMT) to gain a further understanding of the dentine structure of teeth diagnosed with dentinogenesis imperfecta. Undecalcified sections of primary teeth from patients diagnosed with Dentinogenesis Imperfecta Type II were examined using polarised light microscopy. XMT was employed for 3D-imaging and analysis of the dentine. The polarised light microscopy and XMT revealed tubular structures in the dentine seen as vacuoles coinciding with the path of normal dentinal tubules but not continuous tubules. The size of the tubules was close to that of capillaries. The largest tubular structures had a direction corresponding to where the pulp tissue would have been located during primary dentine formation. The dysfunctional mineralisation of the dentine and obliteration of the pulp evidently leaves blood vessels in the dentine which have in the main been tied off and, in the undecalcified sections, appear as vacuoles. Although from radiographs, the pulp in teeth affected by Dentinogenesis Imperfect type II appears to be completely obliterated, a network of interconnected vessels may remain. The presence of large dentinal tubules and blood vessels, or the remnants of blood vessels, could provide a pathway for bacteria from the oral cavity. This might account for why some of these teeth develop periapical abscesses in spite of apparently having no pulp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mathematical embryology: the fluid mechanics of nodal cilia

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Smith, A. A.; Blake, J. R.

    2011-07-01

    Left-right symmetry breaking is critical to vertebrate embryonic development; in many species this process begins with cilia-driven flow in a structure termed the `node'. Primary `whirling' cilia, tilted towards the posterior, transport morphogen-containing vesicles towards the left, initiating left-right asymmetric development. We review recent theoretical models based on the point-force stokeslet and point-torque rotlet singularities, explaining how rotation and surface-tilt produce directional flow. Analysis of image singularity systems enforcing the no-slip condition shows how tilted rotation produces a far-field `stresslet' directional flow, and how time-dependent point-force and time-independent point-torque models are in this respect equivalent. Associated slender body theory analysis is reviewed; this approach enables efficient and accurate simulation of three-dimensional time-dependent flow, time-dependence being essential in predicting features of the flow such as chaotic advection, which have subsequently been determined experimentally. A new model for the nodal flow utilising the regularized stokeslet method is developed, to model the effect of the overlying Reichert's membrane. Velocity fields and particle paths within the enclosed domain are computed and compared with the flow profiles predicted by previous `membrane-less' models. Computations confirm that the presence of the membrane produces flow-reversal in the upper region, but no continuous region of reverse flow close to the epithelium. The stresslet far-field is no longer evident in the membrane model, due to the depth of the cavity being of similar magnitude to the cilium length. Simulations predict that vesicles released within one cilium length of the epithelium are generally transported to the left via a `loopy drift' motion, sometimes involving highly unpredictable detours around leftward cilia [truncated

  18. The Gene Ontology of eukaryotic cilia and flagella.

    PubMed

    Roncaglia, Paola; van Dam, Teunis J P; Christie, Karen R; Nacheva, Lora; Toedt, Grischa; Huynen, Martijn A; Huntley, Rachael P; Gibson, Toby J; Lomax, Jane

    2017-01-01

    Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO. Members of the SYSCILIA and Gene Ontology Consortia suggested additions and changes to GO, to reflect new knowledge in the field. The project initially aimed to improve coverage of ciliary parts, and was then broadened to cilia-related biological processes. Discussions were documented in a public tracker. We engaged the broader cilia community via direct consultation and by referring to the literature. Ontology updates were implemented via ontology editing tools. So far, we have created or modified 127 GO terms representing parts and processes related to eukaryotic cilia/flagella or prokaryotic flagella. A growing number of biological pathways are known to involve cilia, and we continue to incorporate this knowledge in GO. The resulting expansion in GO allows more precise representation of experimentally derived knowledge, and SYSCILIA and GO biocurators have created 199 annotations to 50 human ciliary proteins. The revised ontology was also used to curate mouse proteins in a collaborative project. The revised GO and annotations, used in comparative 'before and after' analyses of representative ciliary datasets, improve enrichment results significantly. Our work has resulted in a broader and deeper coverage of ciliary composition and function. These improvements in ontology and protein annotation will benefit all users of GO enrichment analysis tools, as well as the ciliary research community, in areas ranging from microscopy image annotation to interpretation of high-throughput studies. We welcome feedback to

  19. Polarised Photon Beams for the BGO-OD Experiment at ELSA

    NASA Astrophysics Data System (ADS)

    Zimmermann, T.; Bella, A.; Alef, S.; Bayadilov, D.; Beck, R.; Becker, M.; Bielefeldt, P.; Boese, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Curciarello, F.; De Leo, V.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Gervino, G.; Ghio, F.; Giardina, G.; Goertz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hartmann, P.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.

    The new BGO-OD experiment at the electron accelerator ELSA, of the University of Bonn, is designed to study the reaction dynamics of nucleon excitations in meson photoproduction. It consists of a central BGO calorimeter with a magnetic spectrometer in forward direction. The physics programme includes the measurement of polarisation observables using linearly and circularly polarised photon beams. Linear polarisation is obtained by coherent bremsstrahlung off a diamond crystal, and circular polarisation is obtained via bremsstrahlung from longitudinally polarised electrons. The degree of linear polarisation is determined from the bremsstrahlung spectrum itself. To determine the polarisation of the circularly polarised photon beam, the polarisation of the electron beam is measured by a Møller polarimeter. As a preliminary consistency check, the (linear) polarisation observable, Σ, was compared to world data for π0 and η photoproduction. To determine the degree of circular polarisation, a Møller polarimeter was setup and first measurements of the electron beam polarisation performed.

  20. Linking the Primary Cilium to Cell Migration in Tissue Repair and Brain Development

    PubMed Central

    Veland, Iben Rønn; Lindbæk, Louise; Christensen, Søren Tvorup

    2014-01-01

    Primary cilia are unique sensory organelles that coordinate cellular signaling networks in vertebrates. Inevitably, defects in the formation or function of primary cilia lead to imbalanced regulation of cellular processes that causes multisystemic disorders and diseases, commonly known as ciliopathies. Mounting evidence has demonstrated that primary cilia coordinate multiple activities that are required for cell migration, which, when they are aberrantly regulated, lead to defects in organogenesis and tissue repair, as well as metastasis of tumors. Here, we present an overview on how primary cilia may contribute to the regulation of the cellular signaling pathways that control cyclic processes in directional cell migration. PMID:26955067

  1. Generation of a three-dimensional ultrastructural model of human respiratory cilia.

    PubMed

    Burgoyne, Thomas; Dixon, Mellisa; Luther, Pradeep; Hogg, Claire; Shoemark, Amelia

    2012-12-01

    The ultrastructures of cilia and flagella are highly similar and well conserved through evolution. Consequently, Chlamydomonas is commonly used as a model organism for the study of human respiratory cilia. Since detailed models of Chlamydomonas axonemes were generated using cryoelectron tomography, disparities among some of the ultrastructural features have become apparent when compared with human cilia. Extrapolating information on human disease from the Chlamydomonas model may lead to discrepancies in translational research. This study aimed to establish the first three-dimensional ultrastructural model of human cilia. Tomograms of transverse sections (n = 6) and longitudinal sections (n = 9) of human nasal respiratory cilia were generated from three healthy volunteers. Key features of the cilium were resolved using subatomic averaging, and were measured. For validation of the method, a model of the well characterized structure of Chlamydomonas reinhardtii was simultaneously generated. Data were combined to create a fully quantified three-dimensional reconstruction of human nasal respiratory cilia. We highlight key differences in the axonemal sheath, microtubular doublets, radial spokes, and dynein arms between the two structures. We show a decreased axial periodicity of the radial spokes, inner dynein arms, and central pair protrusions in the human model. We propose that this first human model will provide a basis for research into the function and structure of human respiratory cilia in health and in disease.

  2. ciliaFA: a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software

    PubMed Central

    2012-01-01

    Background Analysis of ciliary function for assessment of patients suspected of primary ciliary dyskinesia (PCD) and for research studies of respiratory and ependymal cilia requires assessment of both ciliary beat pattern and beat frequency. While direct measurement of beat frequency from high-speed video recordings is the most accurate and reproducible technique it is extremely time consuming. The aim of this study was to develop a freely available automated method of ciliary beat frequency analysis from digital video (AVI) files that runs on open-source software (ImageJ) coupled to Microsoft Excel, and to validate this by comparison to the direct measuring high-speed video recordings of respiratory and ependymal cilia. These models allowed comparison to cilia beating between 3 and 52 Hz. Methods Digital video files of motile ciliated ependymal (frequency range 34 to 52 Hz) and respiratory epithelial cells (frequency 3 to 18 Hz) were captured using a high-speed digital video recorder. To cover the range above between 18 and 37 Hz the frequency of ependymal cilia were slowed by the addition of the pneumococcal toxin pneumolysin. Measurements made directly by timing a given number of individual ciliary beat cycles were compared with those obtained using the automated ciliaFA system. Results The overall mean difference (± SD) between the ciliaFA and direct measurement high-speed digital imaging methods was −0.05 ± 1.25 Hz, the correlation coefficient was shown to be 0.991 and the Bland-Altman limits of agreement were from −1.99 to 1.49 Hz for respiratory and from −2.55 to 3.25 Hz for ependymal cilia. Conclusions A plugin for ImageJ was developed that extracts pixel intensities and performs fast Fourier transformation (FFT) using Microsoft Excel. The ciliaFA software allowed automated, high throughput measurement of respiratory and ependymal ciliary beat frequency (range 3 to 52 Hz) and avoids operator error due to selection bias. We have

  3. Transport and Mixing Induced by Beating Cilia in Human Airways

    PubMed Central

    Chateau, Sylvain; D'Ortona, Umberto; Poncet, Sébastien; Favier, Julien

    2018-01-01

    The fluid transport and mixing induced by beating cilia, present in the bronchial airways, are studied using a coupled lattice Boltzmann—Immersed Boundary solver. This solver allows the simulation of both single and multi-component fluid flows around moving solid boundaries. The cilia are modeled by a set of Lagrangian points, and Immersed Boundary forces are computed onto these points in order to ensure the no-slip velocity conditions between the cilia and the fluids. The cilia are immersed in a two-layer environment: the periciliary layer (PCL) and the mucus above it. The motion of the cilia is prescribed, as well as the phase lag between two cilia in order to obtain a typical collective motion of cilia, known as metachronal waves. The results obtained from a parametric study show that antiplectic metachronal waves are the most efficient regarding the fluid transport. A specific value of phase lag, which generates the larger mucus transport, is identified. The mixing is studied using several populations of tracers initially seeded into the pericilary liquid, in the mucus just above the PCL-mucus interface, and in the mucus far away from the interface. We observe that each zone exhibits different chaotic mixing properties. The larger mixing is obtained in the PCL layer where only a few beating cycles of the cilia are required to obtain a full mixing, while above the interface, the mixing is weaker and takes more time. Almost no mixing is observed within the mucus, and almost all the tracers do not penetrate the PCL layer. Lyapunov exponents are also computed for specific locations to assess how the mixing is performed locally. Two time scales are introduced to allow a comparison between mixing induced by fluid advection and by molecular diffusion. These results are relevant in the context of respiratory flows to investigate the transport of drugs for patients suffering from chronic respiratory diseases. PMID:29559920

  4. Transport and Mixing Induced by Beating Cilia in Human Airways.

    PubMed

    Chateau, Sylvain; D'Ortona, Umberto; Poncet, Sébastien; Favier, Julien

    2018-01-01

    The fluid transport and mixing induced by beating cilia, present in the bronchial airways, are studied using a coupled lattice Boltzmann-Immersed Boundary solver. This solver allows the simulation of both single and multi-component fluid flows around moving solid boundaries. The cilia are modeled by a set of Lagrangian points, and Immersed Boundary forces are computed onto these points in order to ensure the no-slip velocity conditions between the cilia and the fluids. The cilia are immersed in a two-layer environment: the periciliary layer (PCL) and the mucus above it. The motion of the cilia is prescribed, as well as the phase lag between two cilia in order to obtain a typical collective motion of cilia, known as metachronal waves. The results obtained from a parametric study show that antiplectic metachronal waves are the most efficient regarding the fluid transport. A specific value of phase lag, which generates the larger mucus transport, is identified. The mixing is studied using several populations of tracers initially seeded into the pericilary liquid, in the mucus just above the PCL-mucus interface, and in the mucus far away from the interface. We observe that each zone exhibits different chaotic mixing properties. The larger mixing is obtained in the PCL layer where only a few beating cycles of the cilia are required to obtain a full mixing, while above the interface, the mixing is weaker and takes more time. Almost no mixing is observed within the mucus, and almost all the tracers do not penetrate the PCL layer. Lyapunov exponents are also computed for specific locations to assess how the mixing is performed locally. Two time scales are introduced to allow a comparison between mixing induced by fluid advection and by molecular diffusion. These results are relevant in the context of respiratory flows to investigate the transport of drugs for patients suffering from chronic respiratory diseases.

  5. Revealing the Molecular Structure and the Transport Mechanism at the Base of Primary Cilia Using Superresolution STED Microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Tung-Lin

    The primary cilium is an organelle that serves as a signaling center of the cell and is involved in the hedgehog signaling, cAMP pathway, Wnt pathways, etc. Ciliary function relies on the transportation of molecules between the primary cilium and the cell, which is facilitated by intraflagellar transport (IFT). IFT88, one of the important IFT proteins in complex B, is known to play a role in the formation and maintenance of cilia in various types of organisms. The ciliary transition zone (TZ), which is part of the gating apparatus at the ciliary base, is home to a large number of ciliopathy molecules. Recent studies have identified important regulating elements for TZ gating in cilia. However, the architecture of the TZ region and its arrangement relative to intraflagellar transport (IFT) proteins remain largely unknown, hindering the mechanistic understanding of the regulation processes. One of the major challenges comes from the tiny volume at the ciliary base packed with numerous proteins, with the diameter of the TZ close to the diffraction limit of conventional microscopes. Using a series of stimulated emission depletion (STED) superresolution images mapped to electron microscopy images, we analyzed the structural organization of the ciliary base. Subdiffraction imaging of TZ components defines novel geometric distributions of RPGRIP1L, MKS1, CEP290, TCTN2 and TMEM67, shedding light on their roles in TZ structure, assembly, and function. We found TCTN2 at the outmost periphery of the TZ close to the ciliary membrane, with a 227+/-18 nm diameter. TMEM67 was adjacent to TCTN2, with a 205+/-20 nm diameter. RPGRIP1L was localized toward the axoneme at the same axial level as TCTN2 and TMEM67, with a 165+/-8 nm diameter. MKS1 was situated between TMEM67 and RPGRIP1L, with an 186+/-21 nm diameter. Surprisingly, CEP290 was localized at the proximal side of the TZ close to the distal end of the centrin-labeled basal body. The lateral width was unexpectedly close to

  6. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia

    PubMed Central

    Huang, Peng; Schier, Alexander F.

    2009-01-01

    Summary Cilia have been implicated in Hedgehog (Hh) and Wnt signaling in mouse but not in Drosophila. To determine whether the role of cilia is conserved in zebrafish, we generated maternal-zygotic (MZ) oval (ovl; ift88) mutants that lack all cilia. MZovl mutants display normal canonical and non-canonical Wnt signaling but show defects in Hh signaling. As in mouse, zebrafish cilia are required to mediate the activities of Hh, Ptc, Smo and PKA. However, in contrast to mouse Ift88 mutants, which show a dramatic reduction in Hh signaling, zebrafish MZovl mutants display dampened, but expanded, Hh pathway activity. This activity is largely due to gli1, the expression of which is fully dependent on Hh signaling in mouse but not in zebrafish. These results reveal a conserved requirement for cilia in transducing the activity of upstream regulators of Hh signaling but distinct phenotypic effects due to differential regulation and differing roles of transcriptional mediators. PMID:19700616

  7. Artificial Muscle (AM) Cilia Array for Underwater Systems

    DTIC Science & Technology

    2016-12-15

    structures, including cilia-like structures. Specifically, a custom 3D printer was created that utilizes custom-made Nafion filament for 30 printing of custom... printing ) of IPMC material to create custom-shaped AM structures, including cilia-like structures. Various custom-shaped AM structures were fabricated via...integrating square cross-section IPMC actuators with a printed circuit board power delivery system. IV. Concise Accomplishments Performance

  8. Novel Insights into the Development and Function of Cilia Using the Advantages of the Paramecium Cell and Its Many Cilia

    PubMed Central

    Yano, Junji; Valentine, Megan S.; Van Houten, Judith L.

    2015-01-01

    Paramecium species, especially P. tetraurelia and caudatum, are model organisms for modern research into the form and function of cilia. In this review, we focus on the ciliary ion channels and other transmembrane proteins that control the beat frequency and wave form of the cilium by controlling the signaling within the cilium. We put these discussions in the context of the advantages that Paramecium brings to the understanding of ciliary motility: mutants for genetic dissections of swimming behavior, electrophysiology, structural analysis, abundant cilia for biochemistry and modern proteomics, genomics and molecular biology. We review the connection between behavior and physiology, which allows the cells to broadcast the function of their ciliary channels in real time. We build a case for the important insights and advantages that this model organism continues to bring to the study of cilia. PMID:26230712

  9. Novel Insights into the Development and Function of Cilia Using the Advantages of the Paramecium Cell and Its Many Cilia.

    PubMed

    Yano, Junji; Valentine, Megan S; Van Houten, Judith L

    2015-07-29

    Paramecium species, especially P. tetraurelia and caudatum, are model organisms for modern research into the form and function of cilia. In this review, we focus on the ciliary ion channels and other transmembrane proteins that control the beat frequency and wave form of the cilium by controlling the signaling within the cilium. We put these discussions in the context of the advantages that Paramecium brings to the understanding of ciliary motility: mutants for genetic dissections of swimming behavior, electrophysiology, structural analysis, abundant cilia for biochemistry and modern proteomics, genomics and molecular biology. We review the connection between behavior and physiology, which allows the cells to broadcast the function of their ciliary channels in real time. We build a case for the important insights and advantages that this model organism continues to bring to the study of cilia.

  10. Nucleon Polarisabilities and Effective Field Theories

    NASA Astrophysics Data System (ADS)

    Griesshammer, Harald W.

    2017-09-01

    Low-energy Compton scattering probes the nucleon's two-photon response to electric and magnetic fields at fixed photon frequency and multipolarity. It tests the symmetries and strengths of the interactions between constituents, and with photons. For convenience, this energy-dependent information is often compressed into the two scalar dipole polarisabilities αE 1 and βM 1 at zero photon energy. These are fundamental quantities, and important for the proton charge radius puzzle and the Lamb shift of muonic hydrogen. Combined with emerging lattice QCD computations, they provide stringent tests for our understanding of hadron structure. Extractions of the proton and neutron polarisabilities from all published elastic data below 300 MeV in Chiral Effective Field Theory with explicit Δ (1232) are now available. This talk emphasises χEFT as natural bridge between lattice QCD and ongoing or approved efforts at HI γS, MAMI and MAX-lab. Chiral lattice extrapolations from mπ > 200 MeV to the physical point compare well to lattice computations. Combining χEFT with high-intensity experiments with polarised targets and polarised beams will extract not only scalar polarisabilities, but in particular the four so-far poorly explored spin-polarisabilities. These parametrise the stiffness of the spin in external electro-magnetic fields (nucleonic bi-refringence/Faraday effect). New chiral predictions for proton, deuteron and 3He observables show intriguing sensitivities on spin and neutron polarisabilities. Data consistency and a model-independent quantification of residual theory uncertainties by Bayesian analysis are also discussed. Proton-neutron differences explore the interplay between chiral symmetry breaking and short-distance Physics. Finally, I address their impact on the neutron-proton mass difference, big-bang nucleosynthesis, and their relevance for anthropic arguments. Supported in part by DOE DE-SC0015393 and George Washington University.

  11. Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans.

    PubMed

    Serwas, Daniel; Su, Tiffany Y; Roessler, Max; Wang, Shaohe; Dammermann, Alexander

    2017-06-05

    Cilia are cellular projections that assemble on centriole-derived basal bodies. While cilia assembly is absolutely dependent on centrioles, it is not known to what extent they contribute to downstream events. The nematode C. elegans provides a unique opportunity to address this question, as centrioles do not persist at the base of mature cilia. Using fluorescence microscopy and electron tomography, we find that centrioles degenerate early during ciliogenesis. The transition zone and axoneme are not completely formed at this time, indicating that cilia maturation does not depend on intact centrioles. The hydrolethalus syndrome protein HYLS-1 is the only centriolar protein known to remain at the base of mature cilia and is required for intraflagellar transport trafficking. Surprisingly, targeted degradation of HYLS-1 after initiation of ciliogenesis does not affect ciliary structures. Taken together, our results indicate that while centrioles are essential to initiate cilia formation, they are dispensable for cilia maturation and maintenance. © 2017 Serwas et al.

  12. Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans

    PubMed Central

    Roessler, Max

    2017-01-01

    Cilia are cellular projections that assemble on centriole-derived basal bodies. While cilia assembly is absolutely dependent on centrioles, it is not known to what extent they contribute to downstream events. The nematode C. elegans provides a unique opportunity to address this question, as centrioles do not persist at the base of mature cilia. Using fluorescence microscopy and electron tomography, we find that centrioles degenerate early during ciliogenesis. The transition zone and axoneme are not completely formed at this time, indicating that cilia maturation does not depend on intact centrioles. The hydrolethalus syndrome protein HYLS-1 is the only centriolar protein known to remain at the base of mature cilia and is required for intraflagellar transport trafficking. Surprisingly, targeted degradation of HYLS-1 after initiation of ciliogenesis does not affect ciliary structures. Taken together, our results indicate that while centrioles are essential to initiate cilia formation, they are dispensable for cilia maturation and maintenance. PMID:28411189

  13. Invariants for correcting field polarisation effect in MT-VLF resistivity mapping

    NASA Astrophysics Data System (ADS)

    Guérin, Roger; Tabbagh, Alain; Benderitter, Yves; Andrieux, Pierre

    1994-12-01

    MT-VLF resistivity mapping is well suited to perform hydrology and environment studies. However, the apparent anistropy generated by the polarisation of the primary field requires the use of two transmitters at a right angle to each other in order to prevent errors in interpretation. We propose a processing technique that uses approximate invariants derived from classical developments in tensor magnetotellurics. They consist of the calculation at each station of ?. Both synthetic and field cases show that they give identical results and correct perfectly for the apparent anisotropy generated by the polarisation of the transmitted field. They should be preferred to verticalization of the electric field which remains of interest when only transmitter data are available.

  14. Metachronal wave of artificial cilia array actuated by applied magnetic field

    NASA Astrophysics Data System (ADS)

    Tsumori, Fujio; Marume, Ryuma; Saijou, Akinori; Kudo, Kentaro; Osada, Toshiko; Miura, Hideshi

    2016-06-01

    In this paper, a biomimetic microstructure related to cilia, which are effective fluidic and conveying systems in nature, is described. Authors have already reported that a magnetic elastomer pillar actuated by a rotating magnetic field can work like a natural cilium. In the present work, we show examples of a cilia array with a metachronal wave as the next step. A metachronal wave is a sequential action of a number of cilia. It is theoretically known that a metachronal wave gives a higher fluidic efficiency; however, there has been no report on a metachronal wave by artificial cilia. We prepared magnetic elastomer pillars that contain chainlike clusters of magnetic particles. The orientation of chains was set to be different in each pillar so that each pillar will deform with a different phase.

  15. A sliding-control switch stabilizes synchronized states in a model of actuated cilia

    NASA Astrophysics Data System (ADS)

    Buchmann, Amy; Cortez, Ricardo; Fauci, Lisa

    2017-11-01

    A key function of cilia, flexible hairlike appendages located on the surface of a cell, is the transport of mucus in the lungs, where the cilia self-organize forming a metachronal wave that propels the surrounding fluid. Cilia also play an important role in the locomotion of ciliated microswimmers and other biological processes. To analyze the coordinated movement of cilia interacting through a fluid, we model each cilium as an elastic, actuated body whose beat pattern is driven by a geometric switch that drives the motion of the power and recovery strokes. The cilia are coupled to the viscous fluid using a numerical method based upon a centerline distribution of regularized Stokeslets. We first characterize the beat cycle and flow produced by a single cilium and then present results on the synchronization states between two cilia that show that the in-phase equilibrium is unstable while the anti-phase equilibrium is stable under the geometric switch model. Adding a sliding-control switching mechanism stabilizes the in-phase motion.

  16. Microtubules Enable the Planar Cell Polarity of Airway Cilia

    PubMed Central

    Vladar, Eszter K.; Bayly, Roy D.; Sangoram, Ashvin; Scott, Matthew P.; Axelrod, Jeffrey D.

    2012-01-01

    Summary Background Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance. Results We show that Planar Cell Polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; non-autonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established, are polarized nearly simultaneously, and refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia. Conclusions A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin based network of ciliary basal bodies below the apical surface. PMID:23122850

  17. How to polarise all neutrons in one beam: a high performance polariser and neutron transport system

    NASA Astrophysics Data System (ADS)

    Rodriguez, D. Martin; Bentley, P. M.; Pappas, C.

    2016-09-01

    Polarised neutron beams are used in disciplines as diverse as magnetism,soft matter or biology. However, most of these applications often suffer from low flux also because the existing neutron polarising methods imply the filtering of one of the spin states, with a transmission of 50% at maximum. With the purpose of using all neutrons that are usually discarded, we propose a system that splits them according to their polarisation, flips them to match the spin direction, and then focuses them at the sample. Monte Carlo (MC) simulations show that this is achievable over a wide wavelength range and with an outstanding performance at the price of a more divergent neutron beam at the sample position.

  18. Left-right asymmetry: cilia stir up new surprises in the node.

    PubMed

    Babu, Deepak; Roy, Sudipto

    2013-05-29

    Cilia are microtubule-based hair-like organelles that project from the surface of most eukaryotic cells. They play critical roles in cellular motility, fluid transport and a variety of signal transduction pathways. While we have a good appreciation of the mechanisms of ciliary biogenesis and the details of their structure, many of their functions demand a more lucid understanding. One such function, which remains as intriguing as the time when it was first discovered, is how beating cilia in the node drive the establishment of left-right asymmetry in the vertebrate embryo. The bone of contention has been the two schools of thought that have been put forth to explain this phenomenon. While the 'morphogen hypothesis' believes that ciliary motility is responsible for the transport of a morphogen preferentially to the left side, the 'two-cilia model' posits that the motile cilia generate a leftward-directed fluid flow that is somehow sensed by the immotile sensory cilia on the periphery of the node. Recent studies with the mouse embryo argue in favour of the latter scenario. Yet this principle may not be generally conserved in other vertebrates that use nodal flow to specify their left-right axis. Work with the teleost fish medaka raises the tantalizing possibility that motility as well as sensory functions of the nodal cilia could be residing within the same organelle. In the end, how ciliary signalling is transmitted to institute asymmetric gene expression that ultimately induces asymmetric organogenesis remains unresolved.

  19. From single cilia to collective waves in human airway ciliated tissues

    NASA Astrophysics Data System (ADS)

    Cicuta, Pietro; Chioccioli, Maurizio; Feriani, Luigi; Pellicciotta, Nicola; Kotar, Jurij

    I will present experimental results on activity of motile cilia on various scales: from waveforms on individual cilia to the synchronised motion in cilia carpets of airway cells. Model synthetic experiments have given us an understanding of how cilia could couple with each other through forces transmitted by the fluid, and thus coordinate to beat into well organized waves (previous work is reviewed in Annu. Rev. Condens. Matter Phys. 7, 1-26 (2016)). Working with live imaging of airway human cells at the different scales, we can now test whether the biological system satisfies the ``simple'' behavior expected of the fluid flow coupling, or if other factors of mechanical forces transmission need to be accounted for. In general being able to link from the scale of molecular biological activity up to the phenomenology of collective dynamics requires to understand the relevant physical mechanism. This understanding then allows informed diagnostics (and perhaps therapeutic) approaches to a variety of diseases where mucociliary clearance in the airways is compromised. We have started exploring particularly cystic fibrosis, where the rheological properties of the mucus are affected and prevent efficient cilia synchronization. ERC Grant HydroSync.

  20. Reduction of the immunostainable length of the hippocampal dentate granule cells' primary cilia in 3xAD-transgenic mice producing human A{beta}{sub 1-42} and tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarthy, Balu, E-mail: Balu.Chakravarthy@nrc-cnrc.gc.ca; Gaudet, Chantal; Menard, Michel

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A{beta} and tau-induced neurofibrillary tangles play a key role in Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}{sub 1-42} and mutant tau protein together reduce the primary cilium length. Black-Right-Pointing-Pointer This shortening likely reduces cilium-dependent neurogenesis and memory function. Black-Right-Pointing-Pointer This provides a model of an A{beta}/tau targeting of a neuronal signaling organelle. -- Abstract: The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatinmore » receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75{sup NTR}). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6-24-months-old triple transgenic Alzheimer's disease model mice (3xTg-AD) producing both A{beta}{sub 1-42} and the mutant human tau protein tau{sub P301L,} the dentate granule cells still had immunostainable SSTR3- and p75{sup NTR}-bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of A{beta}{sub 1-42} or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of A{beta}{sub 1-42} and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.« less

  1. Synchronization and Collective Dynamics of Flagella and Cilia as Hydrodynamically Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Uchida, Nariya; Golestanian, Ramin; Bennett, Rachel R.

    2017-10-01

    Cooperative motion of flagella and cilia faciliates swimming of microorganisms and material transport in the body of multicellular organisms. Using minimal models, we address the roles of hydrodynamic interaction in synchronization and collective dynamics of flagella and cilia. Collective synchronization of bacterial flagella is studied with a model of bacterial carpets. Cilia and eukaryotic flagella are characterized by periodic modulation of their driving forces, which produces various patterns of two-body synchronization and metachronal waves. Long-range nature of the interaction introduces novel features in the dynamics of these model systems. The flagella of a swimmer synchronize also by a viscous drag force mediated through the swimmer's body. Recent advance in experimental studies of the collective dynamics of flagella, cilia and related artificial systems are summarized.

  2. Evolution: Tracing the origins of centrioles, cilia, and flagella.

    PubMed

    Carvalho-Santos, Zita; Azimzadeh, Juliette; Pereira-Leal, José B; Bettencourt-Dias, Mónica

    2011-07-25

    Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.

  3. Flow Induced by Ex-Vivo Nasal Cilia: Developing an Index of Dyskinesis

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Bottier, Mathieu; Pena-Fernandez, Marta; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Isabey, Daniel; Coste, Andre; Escudier, Estelle; Papon, Jean-Francois; Filoche, Marcel; Louis, Bruno

    2017-11-01

    Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivomeasurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the steady velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. This compares well to a 2D mathematical model for ciliary fluid propulsion using an envelope model. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress is proposed as a new index for characterizing the efficiency of ciliary beating and diagnosing dyskinesis.

  4. Voltage-gated calcium channels of Paramecium cilia

    PubMed Central

    Lodh, Sukanya; Valentine, Megan S.; Van Houten, Judith L.

    2016-01-01

    ABSTRACT Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca2+ entering the cilium through voltage-gated Ca2+ (CaV) channels that are found exclusively in the cilia. As ciliary Ca2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the CaV channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary CaV channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three CaVα1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary CaV channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of CaV channel activity do not express any of the three CaV1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three CaV channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the CaV1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. PMID:27707864

  5. Voltage-gated calcium channels of Paramecium cilia.

    PubMed

    Lodh, Sukanya; Yano, Junji; Valentine, Megan S; Van Houten, Judith L

    2016-10-01

    Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca 2+ entering the cilium through voltage-gated Ca 2+ (Ca V ) channels that are found exclusively in the cilia. As ciliary Ca 2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the Ca V channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary Ca V channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three Ca V α1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary Ca V channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of Ca V channel activity do not express any of the three Ca V 1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three Ca V channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the Ca V 1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. © 2016. Published by The Company of Biologists Ltd.

  6. Left–right asymmetry: cilia stir up new surprises in the node

    PubMed Central

    Babu, Deepak; Roy, Sudipto

    2013-01-01

    Cilia are microtubule-based hair-like organelles that project from the surface of most eukaryotic cells. They play critical roles in cellular motility, fluid transport and a variety of signal transduction pathways. While we have a good appreciation of the mechanisms of ciliary biogenesis and the details of their structure, many of their functions demand a more lucid understanding. One such function, which remains as intriguing as the time when it was first discovered, is how beating cilia in the node drive the establishment of left–right asymmetry in the vertebrate embryo. The bone of contention has been the two schools of thought that have been put forth to explain this phenomenon. While the ‘morphogen hypothesis’ believes that ciliary motility is responsible for the transport of a morphogen preferentially to the left side, the ‘two-cilia model’ posits that the motile cilia generate a leftward-directed fluid flow that is somehow sensed by the immotile sensory cilia on the periphery of the node. Recent studies with the mouse embryo argue in favour of the latter scenario. Yet this principle may not be generally conserved in other vertebrates that use nodal flow to specify their left–right axis. Work with the teleost fish medaka raises the tantalizing possibility that motility as well as sensory functions of the nodal cilia could be residing within the same organelle. In the end, how ciliary signalling is transmitted to institute asymmetric gene expression that ultimately induces asymmetric organogenesis remains unresolved. PMID:23720541

  7. Centrioles, centrosomes, and cilia in health and disease.

    PubMed

    Nigg, Erich A; Raff, Jordan W

    2009-11-13

    Centrioles are barrel-shaped structures that are essential for the formation of centrosomes, cilia, and flagella. Here we review recent advances in our understanding of the function and biogenesis of these organelles, and we emphasize their connection to human disease. Deregulation of centrosome numbers has long been proposed to contribute to genome instability and tumor formation, whereas mutations in centrosomal proteins have recently been genetically linked to microcephaly and dwarfism. Finally, structural or functional centriole aberrations contribute to ciliopathies, a variety of complex diseases that stem from the absence or dysfunction of cilia.

  8. Primary Cilium-Regulated EG-VEGF Signaling Facilitates Trophoblast Invasion.

    PubMed

    Wang, Chia-Yih; Tsai, Hui-Ling; Syu, Jhih-Siang; Chen, Ting-Yu; Su, Mei-Tsz

    2017-06-01

    Trophoblast invasion is an important event in embryo implantation and placental development. During these processes, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is the key regulator mediating the crosstalk at the feto-maternal interface. The primary cilium is a cellular antenna receiving environmental signals and is crucial for proper development. However, little is known regarding the role of the primary cilium in early human pregnancy. Here, we demonstrate that EG-VEGF regulates trophoblast cell invasion via primary cilia. We found that EG-VEGF activated ERK1/2 signaling and subsequent upregulation of MMP2 and MMP9, thereby facilitating cell invasion in human trophoblast HTR-8/SVneo cells. Inhibition of ERK1/2 alleviated the expression of MMPs and trophoblast cell invasion after EG-VEGF treatment. In addition, primary cilia were observed in all the trophoblast cell lines tested and, more importantly, in human first-trimester placental tissue. The receptor of EG-VEGF, PROKR1, was detected in primary cilia. Depletion of IFT88, the intraflagellar transporter required for ciliogenesis, inhibited primary cilium growth, thereby ameliorating ERK1/2 activation, MMP upregulation, and trophoblast cell invasion promoted by EG-VEGF. These findings demonstrate a novel function of primary cilia in controlling EG-VEGF-regulated trophoblast invasion and reveal the underlying molecular mechanism. J. Cell. Physiol. 232: 1467-1477, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Polarisation analysis on the LET time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Nilsen, G. J.; Košata, J.; Devonport, M.; Galsworthy, P.; Bewley, R. I.; Voneshen, D. J.; Dalgliesh, R.; Stewart, J. R.

    2017-06-01

    We present a design for implementing uniaxial polarisation analysis on the LET cold neutron time-of-flight spectrometer, installed on the second target station at ISIS. The polarised neutron beam is to be produced by a transmission-based supermirror polariser with the polarising mirrors arranged in a “double-V” formation. This will be followed by a Mezei-type precession coil spin flipper, selected for its small spatial requirements, as well as a permanent magnet guide field to transport the beam polarisation to the sample position. The sample area will contain a set of holding field coils, whose purpose is to produce a highly homogenous magnetic field for the wide-angle 3He analyser cell. To facilitate fast cell changes and reduce the risk of cell failure, we intend to separate the cell and cryostat from the vacuum of the sample tank by installing both in a vessel at atmospheric pressure. When the instrument upgrade is complete, the performance of LET is expected to be commensurate with existing and planned polarised cold neutron spectrometers at other sources. Finally, we discuss the implications of performing uniaxial polarisation analysis only, and identify quasi-elastic neutron scattering (QENS) on ionic conducting materials as an interesting area to apply the technique.

  10. Be together, not the same: Spatiotemporal organization of different cilia types generates distinct transport functions

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Guo, Hanliang; Ruby, Edward; Dabiri, John; McFall-Ngai, Margaret; Kanso, Eva

    2016-11-01

    Motile cilia are microscopic, hair-like structures on the cell surface that can sense and propel the extracellular fluid environment. Cilia are often thought to be limited to stereotypic morphologies, beat kinematics and non-discriminatory clearance functions, but we find that the spatiotemporal organization of different cilia types and beat behaviors can generate complex flow patterns and transport functions. Here, we present a case study in the Hawaiian bobtail squid where collective ciliary activity and resulting flow fields help recruit symbiont bacteria to the animal host. In particular, we demonstrate empirically and computationally how the squid's internal cilia act like a microfluidic device that actively filters the water for potential bacterial candidates and also provides a sheltered zone allowing for accumulation of mucus and bacteria into a biofilm. Moreover, in this sheltered zone, different cilia-driven flows enhance diffusion of biochemical signals, which could accelerate specific bacteria-host recognition. These results suggest that studying cilia activity on the population level might reveal a diverse range of biological transport and sensing functions. Moreover, understanding cilia as functional building blocks could inspire the design of ciliated robots and devices.

  11. Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging.

    PubMed

    Cornils, Astrid; Maurya, Ashish K; Tereshko, Lauren; Kennedy, Julie; Brear, Andrea G; Prahlad, Veena; Blacque, Oliver E; Sengupta, Piali

    2016-12-01

    The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies.

  12. Nature-inspired micro-fluidic manipulation using artificial cilia

    NASA Astrophysics Data System (ADS)

    den Toonder, Jaap; de Goede, Judith; Khatavkar, Vinayak; Anderson, Patrick

    2006-11-01

    One particular micro-fluidics manipulation mechanism ``designed'' by nature is that due to a covering of beating cilia over the external surface of micro-organisms (e.g. Paramecium). A cilium can be viewed as a small hair or flexible rod (in protozoa: typical length 10 μm and diameter 0.1 μm) which is attached to the surface. We have developed polymer micro-actuators, made with standard micro-technology processing, which respond to an applied electrical or magnetic field by changing their shape. The shape and size of the polymer actuators mimics that of cilia occurring in nature. We have shown experimentally that, indeed, our artificial cilia can induce significant flow velocities of at least 75 μm/s in a fluid with a viscosity of 10 mPas. In this paper we will give an overview of our activities in developing the polymer actuators and the corresponding technology, show experimental and numerical fluid flow results, and finally assess the feasibility of applying this new and attractive micro-fluidic actuation method in functional biosensors.

  13. Spatial distribution of calcium-gated chloride channels in olfactory cilia.

    PubMed

    French, Donald A; Badamdorj, Dorjsuren; Kleene, Steven J

    2010-12-30

    In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.

  14. A Simple Homemade Polarised Sunglasses Test Card

    ERIC Educational Resources Information Center

    Bamdad, Farzad

    2016-01-01

    In this article construction of a simple and inexpensive test card which can be used to demonstrate the polarisation ability of sunglasses is described. The card was fabricated simply by using a piece of polariser sheet with one to three layers of cellophane tape fixed on it.

  15. IFT46 plays an essential role in cilia development

    PubMed Central

    Lee, Mi-Sun; Hwang, Kyu-Seok; Oh, Hyun-Woo; Ji-Ae, Kim; Kim, Hyun-Taek; Cho, Hyun-Soo; Lee, Jeong-Ju; Ko, Je Yeong; Choi, Jung-Hwa; Jeong, Yun-Mi; You, Kwan-Hee; Kim, Joon; Park, Doo-Sang; Nam, Ki-Hoan; Aizawa, Shinichi; Kiyonari, Hiroshi; Shioi, Go; Park, Jong-Hoon; Zhou, Weibin; Kim, Nam-Soon; Kim, Cheol-Hee

    2015-01-01

    Cilia are microtubule-based structures that project into the extracellular space. Ciliary defects are associated with several human diseases, including polycystic kidney disease, primary ciliary dyskinesia, left-right axis patterning, hydrocephalus and retinal degeneration. However, the genetic and cellular biological control of ciliogenesis remains poorly understood. The IFT46 is one of the highly conserved intraflagellar transport complex B proteins. In zebrafish, ift46 is expressed in various ciliated tissues such as Kupffer’s vesicle, pronephric ducts, ears and spinal cord. We show that ift46 is localized to the basal body. Knockdown of ift46 gene results in multiple phenotypes associated with various ciliopathies including kidney cysts, pericardial edema and ventral axis curvature. In ift46 morphants, cilia in kidney and spinal canal are shortened and abnormal. Similar ciliary defects are observed in otic vesicles, lateral line hair cells, olfactory pits, but not in Kupffer’s vesicle. To explore the functions of Ift46 during mouse development, we have generated Ift46 knock-out mice. The Ift46 mutants have developmental defects in brain, neural tube and heart. In particular Ift46(−/−) homozygotes displays randomization of the embryo heart looping, which is a hallmark of defective left-right (L/R) axis patterning. Taken together, our results demonstrated that IFT46 has an essential role in vertebrate ciliary development. PMID:25722189

  16. Odorants selectively activate distinct G protein subtypes in olfactory cilia.

    PubMed

    Schandar, M; Laugwitz, K L; Boekhoff, I; Kroner, C; Gudermann, T; Schultz, G; Breer, H

    1998-07-03

    Chemoelectrical signal transduction in olfactory neurons appears to involve intracellular reaction cascades mediated by heterotrimeric GTP-binding proteins. In this study attempts were made to identify the G protein subtype(s) in olfactory cilia that are activated by the primary (odorant) signal. Antibodies directed against the alpha subunits of distinct G protein subtypes interfered specifically with second messenger reponses elicited by defined subsets of odorants; odor-induced cAMP-formation was attenuated by Galphas antibodies, whereas Galphao antibodies blocked odor-induced inositol 1,4, 5-trisphosphate (IP3) formation. Activation-dependent photolabeling of Galpha subunits with [alpha-32P]GTP azidoanilide followed by immunoprecipitation using subtype-specific antibodies enabled identification of particular individual G protein subtypes that were activated upon stimulation of isolated olfactory cilia by chemically distinct odorants. For example odorants that elicited a cAMP response resulted in labeling of a Galphas-like protein, whereas odorants that elicited an IP3 response led to the labeling of a Galphao-like protein. Since odorant-induced IP3 formation was also blocked by Gbeta antibodies, activation of olfactory phospholipase C might be mediated by betagamma subunits of a Go-like G protein. These results indicate that different subsets of odorants selectively trigger distinct reaction cascades and provide evidence for dual transduction pathways in olfactory signaling.

  17. Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase

    PubMed Central

    Brown, Jason M.; Sampaio, Julio L.; Craft, Julie M.; Shevchenko, Andrej; Evans, James E.; Witman, George B.

    2013-01-01

    The BBSome is a complex of seven proteins, including BBS4, that is cycled through cilia by intraflagellar transport (IFT). Previous work has shown that the membrane-associated signaling protein phospholipase D (PLD) accumulates abnormally in cilia of Chlamydomonas reinhardtii bbs mutants. Here we show that PLD is a component of wild-type cilia but is enriched ∼150-fold in bbs4 cilia; this accumulation occurs progressively over time and results in altered ciliary lipid composition. When wild-type BBSomes were introduced into bbs cells, PLD was rapidly removed from the mutant cilia, indicating the presence of an efficient BBSome-dependent mechanism for exporting ciliary PLD. This export requires retrograde IFT. Importantly, entry of PLD into cilia is BBSome and IFT independent. Therefore, the BBSome is required only for the export phase of a process that continuously cycles PLD through cilia. Another protein, carbonic anhydrase 6, is initially imported normally into bbs4 cilia but lost with time, suggesting that its loss is a secondary effect of BBSome deficiency. PMID:23589493

  18. Effects of theophylline on expression of the long cilia phenotype in sand dollar blastulae.

    PubMed

    Riederer-Henderson, M A

    1988-04-01

    Previously, increases in ciliary length have only been obtained through genetic mutation in Chlamydomonas or by incubation of swimming echinoderm blastulae in trypsin or elastase. We have found that the phenotypic switch from short to long cilia on sand dollar blastulae can also be effected by incubation in theophylline. Cilia detached from control blastulae have a mean length of 21 +/- 7 microns with 10% of the cilia being greater than 30 microns. Upon incubation in 10 mM theophylline additional long cilia appeared after 10 hours and by 24-32 hours 1/2-3/4 of the embryo was covered with long cilia. The percentage of long cilia increased to 65% with a mean length of 40.0 +/- 17.6 microns. Incubation in other methylxanthines, such as aminophylline, caffeine, or isobutylmethylxanthine, inhibited development but had no effect on ciliary length distribution. Dibutyryl cAMP, 8-bromoadenosine, and calcium ionophore also had no effect on ciliary length. Cyclic AMP levels were measured and showed only slight differences among controls and embryos incubated in trypsin, caffeine, or theophylline. These data suggest that theophylline may be altering ciliary length control through some mechanism other than elevations in cAMP.

  19. Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging

    PubMed Central

    Kennedy, Julie; Brear, Andrea G.; Prahlad, Veena; Blacque, Oliver E.; Sengupta, Piali

    2016-01-01

    The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies. PMID:27906968

  20. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography.

    PubMed

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex.

  1. Polarisation of Social Studies Textbooks in Pakistan

    ERIC Educational Resources Information Center

    Zaidi, Syed Manzar Abbas

    2011-01-01

    This article looks at the evolution of the social studies curricula in Pakistan, which are of critical importance in shaping the outlook of many young Pakistanis, who are affected by this polarised discourse. The author argues that this trend of polarisation springing from dynamics of education also effectively contributes to a widening social…

  2. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia

    NASA Astrophysics Data System (ADS)

    Rahbar, Mona; Shannon, Lesley; Gray, Bonnie L.

    2014-02-01

    We present a new micromixer based on highly magnetic, flexible, high aspect-ratio, artificial cilia that are fabricated as individual micromixer elements or in arrays for improved mixing performance. These new cilia enable high efficiency, fast mixing in a microchamber, and are controlled by small electromagnetic fields. The artificial cilia are fabricated using a new micromolding process for nano-composite polymers. Cilia fibers with aspect-ratios as high as 8:0.13 demonstrate the fabrication technique's capability in creating ultra-high aspect-ratio microstructures. Cilia, which are realized in polydimethylsiloxane doped with rare-earth magnetic powder, are magnetized to produce permanent magnetic structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled by electromagnetic fields. Due to the high magnetization level of the polarized nano-composite polymer, we are able to use miniature electromagnets providing relatively small magnetic fields of 1.1 to 7 mT to actuate the cilia microstructures over a very wide motion range. Mixing performances of a single cilium, as well as different arrays of multiple cilia ranging from 2 to 8 per reaction chamber, are characterized and compared with passive diffusion mixing performance. The mixer cilia are actuated at different amplitudes and frequencies to optimize mixing performance. We demonstrate that more than 85% of the total volume of the reaction chamber is fully mixed after 3.5 min using a single cilium mixer at 7 mT compared with only 20% of the total volume mixed with passive diffusion. The time to achieve over 85% mixing is further reduced to 70 s using an array of eight cilia microstructures. The novel microfabrication technique and use of rare-earth permanently-magnetizable nano-composite polymers in mixer applications has not been reported elsewhere by other researchers. We further demonstrate improved mixing over other cilia micromixers as enabled by the high aspect

  3. A Initio Studies of Polarisabilities of Ions in Crystals.

    NASA Astrophysics Data System (ADS)

    Tole, Philip

    Available from UMI in association with The British Library. This thesis is concerned with the ab initio calculation of polarisabilities of ions in crystals. For a binary salt the Clausius-Mossotti equation relates the refractive index to the in-crystal polarisability of the ion-pair. However, there is no experimental means of separating the sum into anion and cation components. Theoretical models which use isolated ion polarisabilities to do this are physically unrealistic and have met with little success. A much better model has been developed using ab initio all-electron CHF calculations. The in-crystal environment is represented by a 'molecular' cluster embedded in a point-charge lattice. The physical features important to the success of the model are the nearest-neighbour overlap compression and the isotropic part of the electrostatic potential arising from the point -charge lattice. Calculations on simple first row alkali halides show the cation to be independent of these forces whereas the anion becomes, smaller, more bound and less polarisable in the crystal. When corrections for correlation are added the agreement with Clausius-Mossotti polarisabilities is at the 5% level or better. This implies a reduction in polarisability by factors of up to 2 with respect to the free ion. The polarisabilities for the anions in LiF, NaF, KF, LiCl, NaCl, KCl, LiBr, NaBr, KBr, CaF _2, BeO, MgO, CaO, Li_2O, Na_2O, K_2O, BeS, CaS, Li_2S, Na_2 S and K_2S were calculated. Anion polarisability is found to vary with lattice parameter but hardly at all with coordination number. Calculations on Be_2C show that in-crystal compression is sufficient to stabilise even C^{4 -}, which has a polarisability of over 20 au. Anions at the surface of LiF and MgO were also modelled. Because anisotropic overlap and electrostatic factors tend to cancel, the ion in 5-, 4- and 3-coordinate surface sites has a polarisability only a few per cent greater than in the bulk solid. Implications for

  4. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres

    NASA Astrophysics Data System (ADS)

    Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu

    2009-11-01

    Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.

  5. Independent polarisation control of multiple optical traps

    PubMed Central

    Preece, Daryl; Keen, Stephen; Botvinick, Elliot; Bowman, Richard; Padgett, Miles; Leach, Jonathan

    2009-01-01

    We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a “split-screen” configuration to generate beams of orthogonal polarisation states which are subsequently combined at a polarising beam splitter. Defining the phase difference between the beams with the spatial light modulator enables control of the polarisation state of the light. We demonstrate the functionality of the system by controlling the rotation and orientation of birefringent vaterite crystals within holographic optical tweezers. PMID:18825226

  6. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome.

    PubMed

    Leigh, Margaret W; Pittman, Jessica E; Carson, Johnny L; Ferkol, Thomas W; Dell, Sharon D; Davis, Stephanie D; Knowles, Michael R; Zariwala, Maimoona A

    2009-07-01

    Primary ciliary dyskinesia is a genetically heterogeneous disorder of motile cilia. Most of the disease-causing mutations identified to date involve the heavy (dynein axonemal heavy chain 5) or intermediate(dynein axonemal intermediate chain 1) chain dynein genes in ciliary outer dynein arms, although a few mutations have been noted in other genes. Clinical molecular genetic testing for primary ciliary dyskinesia is available for the most common mutations. The respiratory manifestations of primary ciliary dyskinesia (chronic bronchitis leading to bronchiectasis, chronic rhino-sinusitis, and chronic otitis media)reflect impaired mucociliary clearance owing to defective axonemal structure. Ciliary ultrastructural analysis in most patients (>80%) reveals defective dynein arms, although defects in other axonemal components have also been observed. Approximately 50% of patients with primary ciliary dyskinesia have laterality defects (including situs inversus totalis and, less commonly, heterotaxy, and congenital heart disease),reflecting dysfunction of embryological nodal cilia. Male infertility is common and reflects defects in sperm tail axonemes. Most patients with primary ciliary dyskinesia have a history of neonatal respiratory distress, suggesting that motile cilia play a role in fluid clearance during the transition from a fetal to neonatal lung. Ciliopathies involving sensory cilia, including autosomal dominant or recessive polycystic kidney disease, Bardet-Biedl syndrome, and Alstrom syndrome, may have chronic respiratory symptoms and even bronchiectasis suggesting clinical overlap with primary ciliary dyskinesia.

  7. Variations in the ultrastructure of human nasal cilia including abnormalities found in retinitis pigmentosa.

    PubMed Central

    Fox, B; Bull, T B; Arden, G B

    1980-01-01

    The electron microscopic structure of cilia from the inferior turbinate of the nose was studied in 12 adults, four with chronic sinusitis, one with allergic rhinitis, two with bronchiectasis, three with deviated nasal septum, and two normals. The changes are compared with those found in nasal cilia in 14 patients with retinitis pigmentosa. There were compound cilia in the seven cases with chronic sinusitis, allergic rhinitis, and bronchiectasis but, apart from this, the structure of the cilia was similar in all 12 cases. There were variations in the microtubular pattern in about 4% of cilia, dynein arms were not seen in 4%, and in the rest an average of 5-6 dynein arms were seen in each cilium. The orientation of the cilia was 0 to 90 degrees. In the retinitis pigmentosa patients there was a highly significant increase in cilial abnormalities. The establishment on a quantitative basis of the variations in normal structure of nasal cilila facilitated the recognition of an association between cilial abnormalities and retinitis pigmentosa and should help in the identification of associations that may exist between cilial abnormalities and other diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 PMID:7400333

  8. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography

    PubMed Central

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex. PMID:27493552

  9. A Novel Silicone-Magnetite Composite Material Used in the Fabrication of Biomimetic Cilia

    NASA Astrophysics Data System (ADS)

    Carstens, B. L.; Evans, B. A.; Shields, A. R.; Su, J.; Washburn, S.; Falvo, M. R.; Superfine, R.

    2008-10-01

    We have developed a novel polymer-magnetite composite that we use to fabricate arrays of magnetically actuable biomimetic cilia. Biomimetic cilia are flexible nanorods 750 nm in diameter and 25 microns tall. They generate fluid flows similar to those produced by biological cilia. Polymer-magnetic nanoparticle materials such as ours are becoming increasingly useful in biomedical applications and microelectromechanical systems (MEMS). Comprised of magnetite (Fe3O4), the nanoparticles have a diameter of 5-7 nm and are complexed with a silicone copolymer and crosslinked into a flexible, magnetic solid. Amine groups make up 6-7 percent of the silicone copolymer, providing a simple means of functionalization. We present a detailed mechanical and magnetic analysis of our bulk crosslinked material. The high-aspect ratio biomimetic cilia we create with this magnetite-copolymer complex may have applications in microfluidic mixing, biofouling, and MEMS.

  10. Cilia induced cerebrospinal fluid flow in the third ventricle of brain

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Westendorf, Christian; Faubel, Regina; Eichele, Gregor; Bodenschatz, Eberhard

    2016-11-01

    Cerebrospinal fluid (CSF) conveys many physiologically important signaling factors through the ventricles of the mammalian brain. The walls of the ventricles are covered with motile cilia that were thought to generate a laminar flow purely following the curvature of walls. However, we recently discovered that cilia of the ventral third ventricle (v3V) generate a complex flow network along the wall, leading to subdivision of the v3V. The contribution of such cilia induced flow to the overall three dimensional volume flow remains to be investigated by using numerical simulation, arguably the best approach for such investigations. The lattice Boltzmann method is used to study the CFS flow in a reconstructed geometry of the v3V. Simulation of CSF flow neglecting cilia in this geometry confirmed that the previous idea about pure confined flow does not reflect the reality observed in experiment. The experimentally recorded ciliary flow network along the wall was refined with the smoothed particle hydrodynamics and then adapted as boundary condition in simulation. We study the contribution of the ciliary network to overall CSF flow and identify site-specific delivery of CSF constituents with respect to the temporal changes.

  11. Metachronal waves in epithelium cilia to transport bronchial mucus in airways

    NASA Astrophysics Data System (ADS)

    Favier, Julien; Sylvain, Chateau; D'Ortona, Umberto; Poncet, Sébastien

    2017-11-01

    Metachronal waves of beating cilia are an efficient mechanism to transport mucus in human airways. The numerical results we will present will shed new light on the understanding of chronic respiratory diseases, such as Asthma of COPD. A coupled lattice Boltzmann - Immersed Boundary is used to simulate the multiphase environment in which the cilia are immersed: a periciliary layer and the mucus layer. A purely hydrodynamical feedback of the fluids is taken into account, and a coupling parameter α is introduced, allowing the tuning of both the direction of the wave propagation, and the strength of the fluid feedback. The cilia, initially set in a random state, quickly synchronize with their immediate neighbors giving birth to metachronal waves. A comparative study of both antipleptic and sympleptic waves is performed by imposing the metachrony. Antiplectic waves are found to be the most efficient to transport and mix fluids compared to other random or synchronised cilia motions. The numerical results will be discussed and compared to experimental and clinical results obtained by collaborators, to progress on the understanding of the inner mechanisms of chronic respiratory diseases.

  12. ARL2BP, a protein linked to Retinitis Pigmentosa, is needed for normal photoreceptor cilia doublets and outer segment structure.

    PubMed

    Moye, Abigail R; Singh, Ratnesh; Kimler, Victoria A; Dilan, Tanya L; Munezero, Daniella; Saravanan, Thamaraiselvi; Goldberg, Andrew F X; Ramamurthy, Visvanathan

    2018-05-02

    The outer segment (OS) of photoreceptor cells is an elaboration of a primary cilium with organized stacks of membranous discs that contain the proteins needed for phototransduction and vision. Though cilia formation and function has been well characterized, little is known about the role of cilia in the development of photoreceptor OS. Nevertheless, progress has been made by studying mutations in ciliary proteins which often result in malformed outer segments and lead to blinding diseases. To investigate how ciliary proteins contribute to outer segment formation, we generated a knockout mouse model for ARL2BP, a ciliary protein linked to Retinitis Pigmentosa. The knockout mice display an early and progressive reduction in visual response. Prior to photoreceptor degeneration we observed disorganization of the photoreceptor OS, with vertically aligned discs and shortened axonemes. Interestingly, ciliary doublet microtubule structure was also impaired, displaying open B-tubule doublets, paired with loss of singlet microtubules. Based on results from this study, we conclude that ARL2BP is necessary for photoreceptor cilia doublet formation and axoneme elongation, which is required for outer segment morphogenesis and vision.

  13. Construction of artificial cilia from microtubules and kinesins through a well-designed bottom-up approach.

    PubMed

    Sasaki, Ren; Kabir, Arif Md Rashedul; Inoue, Daisuke; Anan, Shizuka; Kimura, Atsushi P; Konagaya, Akihiko; Sada, Kazuki; Kakugo, Akira

    2018-04-05

    Self-organized structures of biomolecular motor systems, such as cilia and flagella, play key roles in the dynamic processes of living organisms, like locomotion or the transportation of materials. Although fabrication of such self-organized structures from reconstructed biomolecular motor systems has attracted much attention in recent years, a systematic construction methodology is still lacking. In this work, through a bottom-up approach, we fabricated artificial cilia from a reconstructed biomolecular motor system, microtubule/kinesin. The artificial cilia exhibited a beating motion upon the consumption, by the kinesins, of the chemical energy obtained from the hydrolysis of adenosine triphosphate (ATP). Several design parameters, such as the length of the microtubules, the density of the kinesins along the microtubules, the depletion force among the microtubules, etc., have been identified, which permit tuning of the beating frequency of the artificial cilia. The beating frequency of the artificial cilia increases upon increasing the length of the microtubules, but declines for the much longer microtubules. A high density of the kinesins along the microtubules is favorable for the beating motion of the cilia. The depletion force induced bundling of the microtubules accelerated the beating motion of the artificial cilia and increased the beating frequency. This work helps understand the role of self-assembled structures of the biomolecular motor systems in the dynamics of living organisms and is expected to expedite the development of artificial nanomachines, in which the biomolecular motors may serve as actuators.

  14. The sunstone and polarised skylight: ancient Viking navigational tools?

    NASA Astrophysics Data System (ADS)

    Ropars, Guy; Lakshminarayanan, Vasudevan; Le Floch, Albert

    2014-10-01

    Although the polarisation of the light was discovered at the beginning of the nineteenth century, the Vikings could have used the polarised light around the tenth century in their navigation to America, using a 'sunstone' evoked in the Icelandic Sagas. Indeed, the birefringence of the Iceland spar (calcite), a common crystal in Scandinavia, permits a simple observation of the axis of polarisation of the skylight at the zenith. From this, it is possible to guess the azimuth of a hidden Sun below the horizon, for instance. The high sensitivity of the differential method provided by the ordinary and extraordinary beams of calcite at its so-called isotropy point is about two orders higher than that of the best dichroic polariser and permits to reach an accuracy of ±1° for the Sun azimuth (at sunrise and sunset). Unfortunately, due to the relative fragility of calcite, only the so-called Alderney crystal was discovered on board a 16th ancient ship. Curiously, beyond its use as a sunstone by the Vikings, during these last millennia calcite has led to the discovery of the polarisation of the light itself by Malus and is currently being used to detect the atmospheres of exoplanets. Moreover, the differential method for the light polarisation detection is widely used in the animal world.

  15. Wettability and surface free energy of polarised ceramic biomaterials.

    PubMed

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2015-01-13

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces.

  16. Sentan: A Novel Specific Component of the Apical Structure of Vertebrate Motile Cilia

    PubMed Central

    Yuba-Kubo, Akiko; Tsukita, Sachiko; Tsukita, Shoichiro; Amagai, Masayuki

    2008-01-01

    Human respiratory and oviductal cilia have specific apical structures characterized by a narrowed distal portion and a ciliary crown. These structures are conserved among vertebrates that have air respiration systems; however, the molecular components of these structures have not been defined, and their functions are unknown. To identify the molecular component(s) of the cilia apical structure, we screened EST libraries to identify gene(s) that are exclusively expressed in ciliated tissues, are transcriptionally up-regulated during in vitro ciliogenesis, and are not expressed in testis (because sperm flagella have no such apical structures). One of the identified gene products, named sentan, was localized to the distal tip region of motile cilia. Using anti-sentan polyclonal antibodies and electron microscopy, sentan was shown to localize exclusively to the bridging structure between the cell membrane and peripheral singlet microtubules, which specifically exists in the narrowed distal portion of cilia. Exogenously expressed sentan showed affinity for the membrane protrusions, and a protein–lipid binding assay revealed that sentan bound to phosphatidylserine. These findings suggest that sentan is the first molecular component of the ciliary tip to bridge the cell membrane and peripheral singlet microtubules, making the distal portion of the cilia narrow and stiff to allow for better airway clearance or ovum transport. PMID:18829862

  17. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms

    PubMed Central

    Panizzi, Jennifer R.; Becker-Heck, Anita; Castleman, Victoria H.; Al-Mutairi, Dalal; Liu, Yan; Loges, Niki T.; Pathak, Narendra; Austin-Tse, Christina; Sheridan, Eamonn; Schmidts, Miriam; Olbrich, Heike; Werner, Claudius; Häffner, Karsten; Hellman, Nathan; Chodhari, Rahul; Gupta, Amar; Kramer-Zucker, Albrecht; Olale, Felix; Burdine, Rebecca D.; Schier, Alexander F.; O’Callaghan, Christopher; Chung, Eddie MK; Reinhardt, Richard; Mitchison, Hannah M.; King, Stephen M.; Omran, Heymut; Drummond, Iain A.

    2012-01-01

    Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation, and to establish laterality1. Cilia motility defects cause Primary Ciliary Dyskinesia (PCD, MIM 242650), a disorder affecting 1:15-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive cilia bending2. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD linked loci3. Here we show that the zebrafish cilia paralysis mutant schmalhanstn222 (smh) mutant encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a regulated gene. Screening 146 unrelated PCD families identified patients in six families with reduced outer dynein arms, carrying mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103 functions as a tightly bound, axoneme-associated protein. The results identify Ccdc103 as a novel dynein arm attachment factor that when mutated causes Primary Ciliary Dyskinesia. PMID:22581229

  18. Cilia-like structures anchor the amphioxus notochord to its sheath.

    PubMed

    Bočina, Ivana; Ljubešić, Nikola; Saraga-Babić, Mirna

    2011-01-01

    Body stiffness is important during undulatory locomotion in fish. In amphioxus, the myosepta play an important role in transmission of muscular forces to the notochord. In order to define the specific supporting role of the notochord in amphioxus during locomotion, the ultrastructure of 10 adult amphioxus specimens was analyzed using transmission electron microscopy. Numerous cilia-like structures were found on the surface of each notochordal cell at the sites of their attachment to the notochordal sheath. Ultrastructurally, these structures consisted of the characteristic arrangement of peripheral and central microtubular doublets and were anchored to the inner layer of the notochordal sheath. Immunohistochemically, a positive reaction to applied dynein and β-tubulin antibodies characterized the area of the cilia-like structures. We propose that reduced back-and-forth movements of the cilia-like structures might contribute to the flow of the fluid content inside the notochord, thus modulating the stiffness of the amphioxus body during its undulatory locomotion. Copyright © 2009 Elsevier GmbH. All rights reserved.

  19. Notch/Her12 signalling modulates, motile/immotile cilia ratio downstream of Foxj1a in zebrafish left-right organizer

    PubMed Central

    Sampaio, Pedro; Pestana, Sara; Pinto, Andreia; Vaz, Andreia; Roxo-Rosa, Mónica; Gardner, Rui; Lopes, Telma; Schilling, Britta; Henry, Ian; Saúde, Leonor

    2017-01-01

    Foxj1a is necessary and sufficient to specify motile cilia. Using transcriptional studies and slow-scan two-photon live imaging capable of identifying the number of motile and immotile cilia, we now established that the final number of motile cilia depends on Notch signalling (NS). We found that despite all left-right organizer (LRO) cells express foxj1a and the ciliary axonemes of these cells have dynein arms, some cilia remain immotile. We identified that this decision is taken early in development in the Kupffer’s Vesicle (KV) precursors the readout being her12 transcription. We demonstrate that overexpression of either her12 or Notch intracellular domain (NICD) increases the number of immotile cilia at the expense of motile cilia, and leads to an accumulation of immotile cilia at the anterior half of the KV. This disrupts the normal fluid flow intensity and pattern, with consequent impact on dand5 expression pattern and left-right (L-R) axis establishment. PMID:28875937

  20. Deterministic optical polarisation in nitride quantum dots at thermoelectrically cooled temperatures.

    PubMed

    Wang, Tong; Puchtler, Tim J; Patra, Saroj K; Zhu, Tongtong; Jarman, John C; Oliver, Rachel A; Schulz, Stefan; Taylor, Robert A

    2017-09-21

    We report the successful realisation of intrinsic optical polarisation control by growth, in solid-state quantum dots in the thermoelectrically cooled temperature regime (≥200 K), using a non-polar InGaN system. With statistically significant experimental data from cryogenic to high temperatures, we show that the average polarisation degree of such a system remains constant at around 0.90, below 100 K, and decreases very slowly at higher temperatures until reaching 0.77 at 200 K, with an unchanged polarisation axis determined by the material crystallography. A combination of Fermi-Dirac statistics and k·p theory with consideration of quantum dot anisotropy allows us to elucidate the origin of the robust, almost temperature-insensitive polarisation properties of this system from a fundamental perspective, producing results in very good agreement with the experimental findings. This work demonstrates that optical polarisation control can be achieved in solid-state quantum dots at thermoelectrically cooled temperatures, thereby opening the possibility of polarisation-based quantum dot applications in on-chip conditions.

  1. Radio polarisation measurements of meteor trail echoes with BRAMS

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Ranvier, S.; Anciaux, M.; Calders, S.; De Keyser, J.; Gamby, E.

    2012-04-01

    BRAMS, the Belgian RAdio Meteor Stations, is a network of radio receiving stations using forward scatter techniques to detect and characterize meteors. The transmitter is a dedicated beacon located in Dourbes in the south-west of Belgium. It emits towards the zenith a purely sinusoidal wave circularly polarised, at a frequency of 49.97 MHz and with a power of 150 watts. The main goals of the project are to compute meteoroid flux rates and trajectories. Most receiving stations are using a 3 element Yagi antenna and are therefore only sensitive to one polarisation. The station located in Uccle has also a crossed 3 element Yagi antenna and therefore allows measurements of horizontal and vertical polarisations. We present the preliminary radio polarisation measurements of meteor trail echoes and compare them with the theoretical predictions of Jones & Jones (1991) for oblique scattering of radio waves from meteor trails.

  2. Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser

    NASA Astrophysics Data System (ADS)

    Tsatourian, Veronika; Sergeyev, Sergey V.; Mou, Chengbo; Rozhin, Alex; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.; Turitsyn, Sergei K.

    2013-11-01

    Two fundamental laser physics phenomena - dissipative soliton and polarisation of light are recently merged to the concept of vector dissipative soliton (VDS), viz. train of short pulses with specific state of polarisation (SOP) and shape defined by an interplay between anisotropy, gain/loss, dispersion, and nonlinearity. Emergence of VDSs is both of the fundamental scientific interest and is also a promising technique for control of dynamic SOPs important for numerous applications from nano-optics to high capacity fibre optic communications. Using specially designed and developed fast polarimeter, we present here the first experimental results on SOP evolution of vector soliton molecules with periodic polarisation switching between two and three SOPs and superposition of polarisation switching with SOP precessing. The underlying physics presents an interplay between linear and circular birefringence of a laser cavity along with light induced anisotropy caused by polarisation hole burning.

  3. Microfabrication of IPMC cilia for bio-inspired flow sensing

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Li, Wen; Tan, Xiaobo

    2012-04-01

    As the primary flow sensing organ for fishes, the lateral line system plays a critical role in fish behavior. Analogous to its biological counterpart, an artificial lateral line system, consisting of arrays of micro flow sensors, is expected to be instrumental in the navigation and control of underwater robots. In this paper we investigate the microfabrication of ionic polymer-metal composite (IPMC) cilia for the purpose of flow sensing. While existing macro- and microfabrication methods for IPMCs have predominantly focused on planar structures, we propose a device where micro IPMC beams stand upright on a substrate to effectively interact with the flow. Challenges in the casting of 3D Nafion structure and selective formation of electrodes are discussed, and potential solutions for addressing these challenges are presented together with preliminary microfabrication results.

  4. Role of spatial heterogeneity in the collective dynamics of cilia beating in a minimal one-dimensional model

    NASA Astrophysics Data System (ADS)

    Dey, Supravat; Massiera, Gladys; Pitard, Estelle

    2018-01-01

    Cilia are elastic hairlike protuberances of the cell membrane found in various unicellular organisms and in several tissues of most living organisms. In some tissues such as the airway tissues of the lung, the coordinated beating of cilia induces a fluid flow of crucial importance as it allows the continuous cleaning of our bronchia, known as mucociliary clearance. While most of the models addressing the question of collective dynamics and metachronal wave consider homogeneous carpets of cilia, experimental observations rather show that cilia clusters are heterogeneously distributed over the tissue surface. The purpose of this paper is to investigate the role of spatial heterogeneity on the coherent beating of cilia using a very simple one-dimensional model for cilia known as the rower model. We systematically study systems consisting of a few rowers to hundreds of rowers and we investigate the conditions for the emergence of collective beating. When considering a small number of rowers, a phase drift occurs, hence, a bifurcation in beating frequency is observed as the distance between rower clusters is changed. In the case of many rowers, a distribution of frequencies is observed. We found in particular the pattern of the patchy structure that shows the best robustness in collective beating behavior, as the density of cilia is varied over a wide range.

  5. The polarised internal target for the PAX experiment

    NASA Astrophysics Data System (ADS)

    Ciullo, G.; Barion, L.; Barschel, C.; Grigoriev, K.; Lenisa, P.; Nass, A.; Sarkadi, J.; Statera, M.; Steffens, E.; Tagliente, G.

    2011-05-01

    The PAX (Polarized Antiproton eXperiment) collaboration aims to polarise antiproton beams stored in ring by means of spin-filtering. The experimental setup is based on a polarised internal gas target, surrounded by a detection system for the measurement of spin observables. In this report, we present results from the commission of the PAX target (atomic beam source, openable cell, and polarimeter).

  6. Mechanical Strain Determines Cilia Length, Motility, and Planar Position in the Left-Right Organizer.

    PubMed

    Chien, Yuan-Hung; Srinivasan, Shyam; Keller, Ray; Kintner, Chris

    2018-05-07

    The Xenopus left-right organizer (LRO) breaks symmetry along the left-right axis of the early embryo by producing and sensing directed ciliary flow as a patterning cue. To carry out this process, the LRO contains different ciliated cell types that vary in cilia length, whether they are motile or sensory, and how they position their cilia along the anterior-posterior (A-P) planar axis. Here, we show that these different cilia features are specified in the prospective LRO during gastrulation, based on anisotropic mechanical strain that is oriented along the A-P axis, and graded in levels along the medial-lateral axis. Strain instructs ciliated cell differentiation by acting on a mesodermal prepattern present at blastula stages, involving foxj1. We propose that differential strain is a graded, developmental cue, linking the establishment of an A-P planar axis to cilia length, motility, and planar location during formation of the Xenopus LRO. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser

    PubMed Central

    Tsatourian, Veronika; Sergeyev, Sergey V.; Mou, Chengbo; Rozhin, Alex; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.; Turitsyn, Sergei K.

    2013-01-01

    Two fundamental laser physics phenomena - dissipative soliton and polarisation of light are recently merged to the concept of vector dissipative soliton (VDS), viz. train of short pulses with specific state of polarisation (SOP) and shape defined by an interplay between anisotropy, gain/loss, dispersion, and nonlinearity. Emergence of VDSs is both of the fundamental scientific interest and is also a promising technique for control of dynamic SOPs important for numerous applications from nano-optics to high capacity fibre optic communications. Using specially designed and developed fast polarimeter, we present here the first experimental results on SOP evolution of vector soliton molecules with periodic polarisation switching between two and three SOPs and superposition of polarisation switching with SOP precessing. The underlying physics presents an interplay between linear and circular birefringence of a laser cavity along with light induced anisotropy caused by polarisation hole burning. PMID:24193374

  8. A technique for detecting and locating polarisation nonuniformities in an anisotropic optical fibre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdin, V V; Konstantinov, Yurii A; Pervadchuk, Vladimir P

    2013-06-30

    One of the most important requirements for optical fibres as waveguiding media is uniformity. Polarisation-maintaining anisotropic fibres contain a special type of nonuniformity, which leads to polarisation cross-talk: optical power is transferred from one polarisation mode to the orthogonal mode. In this paper, we report a technique for detecting and locating such nonuniformities in a PANDA anisotropic single-mode fibre using polarised reflectometry. (fiber optics)

  9. Dynamics of Individual cilia to external loading- A simple one dimensional picture

    NASA Astrophysics Data System (ADS)

    Swaminathan, Vinay; Hill, David; Superfine, R.

    2008-10-01

    From being called the cellular janitors to swinging debauchers, cilia have captured the fascinations of researchers for over 200 years. In cystic fibrosis and chronic obstructive pulmonary disease where the cilia loses it's function, the protective mucus layer in the lung thickens and mucociliary clearance breaks down, leading to inflammation along the airways and an increased rate of infection. The mechanistic understanding of mucus clearance depends on a quantitative assessment of the axoneme dynamics and the maximum force the cilia are capable of generating and imparting to the mucus layer. Similar to the situation in molecular motors, detailed quantitative measurements of dynamics under applied load conditions are expected to be essential in developing predictive models. Based on our measurements of the dynamics of individual ciliary motion in the human bronchial epithelial cell under the application of an applied load, we present a simple one dimensional model for the axoneme dynamics and quantify the axoneme stiffness, the internal force generated by the axoneme, the stall force and show how the dynamics sheds insight on the time dependence of the internal force generation. The internal force generated by the axoneme is related to the ability of cilia to propel fluids and to their potential role in force sensing.

  10. Polarisation Spectral Synthesis For Type Ia Supernova Explosion Models

    NASA Astrophysics Data System (ADS)

    Bulla, Mattia

    2017-02-01

    Despite their relevance across a broad range of astrophysical research topics, Type Ia supernova explosions are still poorly understood and answers to the questions of when, why and how these events are triggered remain unclear. In this respect, polarisation offers a unique opportunity to discriminate between the variety of possible scenarios. The observational evidence that Type Ia supernovae are associated with rather low polarisation signals (smaller than a few per cent) places strong constraints for models and calls for modest asphericities in the progenitor system and/or explosion mechanism.The goal of this thesis is to assess the validity of contemporary Type Ia supernova explosion models by testing whether their predicted polarisation signatures can account for the small signals usually observed. To this end, we have implemented and tested an innovative Monte Carlo scheme in the radiative transfer code artis. Compared to previous Monte Carlo approaches, this technique produces synthetic observables (light curves, flux and polarisation spectra) with a substantial reduction in the Monte Carlo noise and therefore in the required computing time. This improvement is particularly crucial for our study as we aim to extract very weak polarisation signals, comparable to those detected in Type Ia supernovae. We have also demonstrated the applicability of this method to other classes of supernovae via a preliminary study of the first spectropolarimetry observations of superluminous supernovae.Using this scheme, we have calculated synthetic spectropolarimetry for three multi-dimensional explosion models recently proposed as promising candidates to explain Type Ia supernovae. Our findings highlight the power of spectropolarimetry in testing and discriminating between different scenarios. While all the three models predict light curves and flux spectra that are similar to each others and reproduce those observed in Type Ia supernovae comparably well, polarisation does

  11. Double polarisation experiments in meson photoproduction

    NASA Astrophysics Data System (ADS)

    Hartmann, Jan

    2016-11-01

    One of the remaining challenges within the standard model is to gain a good understanding of QCD in the non-perturbative regime. A key step towards this aim is baryon spectroscopy, investigating the spectrum and the properties of baryon resonances. To gain access to resonances with small πN partial width, photoproduction experiments provide essential information. Partial wave analyses need to be performed to extract the contributing resonances. Here, a complete experiment is required to unambiguously determine the contributing amplitudes. This involves the measurement of carefully chosen single and double polarisation observables. In a joint endeavour by MAMI, ELSA, and Jefferson Laboratory, a new generation of experiments with polarised beams, polarised proton and neutron targets, and 4π particle detectors have been performed in recent years. Many results of unprecedented quality were recently published by all three experiments, and included by the various partial wave analysis groups in their analyses, leading to substantial improvements, e.g. a more precise determination of resonance parameters. An overview of recent results is given, with an emphasis on results from the CBELSA/TAPS experiment, and their impact on our understanding of the nucleon excitation spectrum is discussed.

  12. Discrete multi-physics simulations of diffusive and convective mass transfer in boundary layers containing motile cilia in lungs.

    PubMed

    Ariane, Mostapha; Kassinos, Stavros; Velaga, Sitaram; Alexiadis, Alessio

    2018-04-01

    In this paper, the mass transfer coefficient (permeability) of boundary layers containing motile cilia is investigated by means of discrete multi-physics. The idea is to understand the main mechanisms of mass transport occurring in a ciliated-layer; one specific application being inhaled drugs in the respiratory epithelium. The effect of drug diffusivity, cilia beat frequency and cilia flexibility is studied. Our results show the existence of three mass transfer regimes. A low frequency regime, which we called shielding regime, where the presence of the cilia hinders mass transport; an intermediate frequency regime, which we have called diffusive regime, where diffusion is the controlling mechanism; and a high frequency regime, which we have called convective regime, where the degree of bending of the cilia seems to be the most important factor controlling mass transfer in the ciliated-layer. Since the flexibility of the cilia and the frequency of the beat changes with age and health conditions, the knowledge of these three regimes allows prediction of how mass transfer varies with these factors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Study of clathrate hydrates via equilibrium molecular-dynamics simulation employing polarisable and non-polarisable, rigid and flexible water models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, Christian J., E-mail: christian.burnham@ucd.ie, E-mail: niall.english@ucd.ie; English, Niall J., E-mail: christian.burnham@ucd.ie, E-mail: niall.english@ucd.ie

    Equilibrium molecular-dynamics (MD) simulations have been performed on metastable sI and sII polymorphs of empty hydrate lattices, in addition to liquid water and ice Ih. The non-polarisable TIP4P-2005, simple point charge model (SPC), and polarisable Thole-type models (TTM): TTM2, TTM3, and TTM4 water models were used in order to survey the differences between models and to see what differences can be expected when polarisability is incorporated. Rigid and flexible variants were used of each model to gauge the effects of flexibility. Power spectra are calculated and compared to density-of-states spectra inferred from inelastic neutron scattering (INS) measurements. Thermodynamic properties weremore » also calculated, as well as molecular-dipole distributions. It was concluded that TTM models offer optimal fidelity vis-à-vis INS spectra, together with thermodynamic properties, with the flexible TTM2 model offering optimal placement of vibrational modes.« less

  14. Anatomical and physiological evidence for polarisation vision in the nocturnal bee Megalopta genalis.

    PubMed

    Greiner, Birgit; Cronin, Thomas W; Ribi, Willi A; Wcislo, William T; Warrant, Eric J

    2007-06-01

    The presence of a specialised dorsal rim area with an ability to detect the e-vector orientation of polarised light is shown for the first time in a nocturnal hymenopteran. The dorsal rim area of the halictid bee Megalopta genalis features a number of characteristic anatomical specialisations including an increased rhabdom diameter and a lack of primary screening pigments. Optically, these specialisations result in wide spatial receptive fields (Deltarho = 14 degrees ), a common adaptation found in the dorsal rim areas of insects used to filter out interfering effects (i.e. clouds) from the sky. In this specialised eye region all nine photoreceptors contribute their microvilli to the entire length of the ommatidia. These orthogonally directed microvilli are anatomically arranged in an almost linear, anterior-posterior orientation. Intracellular recordings within the dorsal rim area show very high polarisation sensitivity and a sensitivity peak within the ultraviolet part of the spectrum.

  15. Resolving dispersion and induction components for polarisable molecular simulations of ionic liquids

    NASA Astrophysics Data System (ADS)

    Pádua, Agílio A. H.

    2017-05-01

    One important development in interaction potential models, or atomistic force fields, for molecular simulation is the inclusion of explicit polarisation, which represents the induction effects of charged or polar molecules on polarisable electron clouds. Polarisation can be included through fluctuating charges, induced multipoles, or Drude dipoles. This work uses Drude dipoles and is focused on room-temperature ionic liquids, for which fixed-charge models predict too slow dynamics. The aim of this study is to devise a strategy to adapt existing non-polarisable force fields upon addition of polarisation, because induction was already contained to an extent, implicitly, due to parametrisation against empirical data. Therefore, a fraction of the van der Waals interaction energy should be subtracted so that the Lennard-Jones terms only account for dispersion and the Drude dipoles for induction. Symmetry-adapted perturbation theory is used to resolve the dispersion and induction terms in dimers and to calculate scaling factors to reduce the Lennard-Jones terms from the non-polarisable model. Simply adding Drude dipoles to an existing fixed-charge model already improves the prediction of transport properties, increasing diffusion coefficients, and lowering the viscosity. Scaling down the Lennard-Jones terms leads to still faster dynamics and densities that match experiment extremely well. The concept developed here improves the overall prediction of density and transport properties and can be adapted to other models and systems. In terms of microscopic structure of the ionic liquids, the inclusion of polarisation and the down-scaling of Lennard-Jones terms affect only slightly the ordering of the first shell of counterions, leading to small decreases in coordination numbers. Remarkably, the effect of polarisation is major beyond first neighbours, significantly weakening spatial correlations, a structural effect that is certainly related to the faster dynamics of

  16. Somatostatin Signaling in Neuronal Cilia Is Criticalfor Object Recognition Memory

    PubMed Central

    Einstein, Emily B.; Patterson, Carlyn A.; Hon, Beverly J.; Regan, Kathleen A.; Reddi, Jyoti; Melnikoff, David E.; Mateer, Marcus J.; Schulz, Stefan; Johnson, Brian N.

    2010-01-01

    Most neurons possess a single, nonmotile cilium that projects out from the cell surface. These microtubule-based organelles are important in brain development and neurogenesis; however, their function in mature neurons is unknown. Cilia express a complement of proteins distinct from other neuronal compartments, one of which is the somatostatin receptor subtype SST3. We show here that SST3 is critical for object recognition memory in mice. sst3 knock-out mice are severely impaired in discriminating novel objects, whereas they retain normal memory for object location. Further, systemic injection of an SST3 antagonist (ACQ090) disrupts recall of familiar objects in wild-type mice. To examine mechanisms of SST3, we tested synaptic plasticity in CA1 hippocampus. Electrically evoked long-term potentiation (LTP) was normal in sst3 knock-out mice, while adenylyl cyclase/cAMP-mediated LTP was impaired. The SST3 antagonist also disrupted cAMP-mediated LTP. Basal cAMP levels in hippocampal lysate were reduced in sst3 knock-out mice compared with wild-type mice, while the forskolin-induced increase in cAMP levels was normal. The SST3 antagonist inhibited forskolin-stimulated cAMP increases, whereas the SST3 agonist L-796,778 increased basal cAMP levels in hippocampal slices but not hippocampal lysate. Our results show that somatostatin signaling in neuronal cilia is critical for recognition memory and suggest that the cAMP pathway is a conserved signaling motif in cilia. Neuronal cilia therefore represent a novel nonsynaptic compartment crucial for signaling involved in a specific form of synaptic plasticity and in novelty detection. PMID:20335466

  17. Improving Image Matching by Reducing Surface Reflections Using Polarising Filter Techniques

    NASA Astrophysics Data System (ADS)

    Conen, N.; Hastedt, H.; Kahmen, O.; Luhmann, T.

    2018-05-01

    In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera's orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002) using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm) with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  18. Polarisation Of High-Energy Emission In A Pulsar Striped Wind

    NASA Astrophysics Data System (ADS)

    Petri, J. A.; Kirk, J. G.

    2006-08-01

    Recent observations of the polarisation of the optical pulses from the Crab pulsar (Kanbach et al. 2005, AIP Proceedings, astro-ph/0511636) motivated detailed comparative studies of the emission predicted by the polar cap, the outer gap and the two-pole caustics models. In this work, we study the polarisation properties of the synchrotron emission emanating from the striped wind model. We use an explicit asymptotic solution for the large-scale field structure related to the oblique split monopole and valid for the case of an ultrarelativistic plasma (Bogovalov, A&A, 1999, 349, 1017). This is combined with a crude model for the emissivity of the striped wind and of the magnetic field within the dissipating stripes themselves. We calculate the polarisation properties of the high-energy pulsed emission and compare our results with optical observations of the Crab pulsar. The resulting radiation is linearly polarized. In the off-pulse region, the electric vector lies in the direction of the projection on the sky of the rotation axis of the pulsar, in good agreement with the data. Other properties such as a reduced degree of polarisation and a characteristic sweep of the polarisation angle within the pulses are also reproduced (Petri & Kirk, ApJ Letters, 2005, 627, L37).

  19. Caenorhabditis elegans as a model to study renal development and disease: sexy cilia.

    PubMed

    Barr, Maureen M

    2005-02-01

    The nematode Caenorhabditis elegans has no kidney per se, yet "the worm" has proved to be an excellent model to study renal-related issues, including tubulogenesis of the excretory canal, membrane transport and ion channel function, and human genetic diseases including autosomal dominant polycystic kidney disease (ADPKD). The goal of this review is to explain how C. elegans has provided insight into cilia development, cilia function, and human cystic kidney diseases.

  20. Mechanical Properties of a Primary Cilium Measured by Resonant Oscillation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regulatory pathways. The well-established `ciliary hypothesis' states that physical bending of the cilium (for example, due to fluid flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confusion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1), the primary cilium is not a simple cantilevered beam, 2), the base of the cilium may be modeled as a nonlinear rotatory spring, the linear spring constant `k' of the cilium base calculated to be (4.6 +/- 0.62)*10-12 N/rad and nonlinear spring constant ` α' to be (-1 +/- 0.34) *10-10 N/rad2 , and 3) the ciliary base may be an essential regulator of mechanotransduction signalling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile cilia, anatomically similar structures with very different physiological functions.

  1. High Extinction Ratio In-Fibre Polarisers by Exploiting Tilted Fibre Bragg Grating Structures for Single-Polarisation High-Power Fibre Lasers and Amplifiers

    DTIC Science & Technology

    2009-11-01

    maintaining (PM) fibre, utilising polarisation hole-burning ( PHB ) effect to reduce homogeneous linewidth of the EDFL. In our work, we demonstrate a stable...loss filter which will induce some loss to the cavity around its paired attenuation band region, thus imposing PHB effect to the gain medium. The...polarisation-hole-burning ( PHB ) effect to realise multi-wavelength switchable function in proposed fibre ring laser system. In the proposed fibre ring laser

  2. Birefringence in anisotropic optical fibres studied by polarised light Brillouin reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, A S; Burdin, V V; Konstantinov, Yu A

    2015-01-31

    Modal birefringence (the difference between the effective refractive indices of orthogonal polarisation modes) is one of the key parameters of anisotropic single-mode fibres, characterising their ability to preserve a linearly polarised state of input light. This parameter is commonly measured using short pieces of fibre, but such procedures are destructive and allow the birefringence to be determined only at the ends of long fibres. In this study, polarised light Brillouin reflectometry is used to assess birefringence uniformity throughout the length of an anisotropic fibre. (optical fibres)

  3. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus

    PubMed Central

    Ohata, Shinya; Nakatani, Jin; Herranz-Pérez, Vicente; Cheng, JrGang; Belinson, Haim; Inubushi, Toshiro; Snider, William D.; García-Verdugo, Jose Manuel; Wynshaw-Boris, Anthony; Álvarez-Buylla, Arturo

    2014-01-01

    SUMMARY Defects in ependymal (E) cells, which line the ventricle and generate cerebrospinal fluid flow through ciliary beating, can cause hydrocephalus. Dishevelled genes (Dvls) are essential for Wnt signaling and Dvl2 has been shown to localize to the rootlet of motile cilia. Using the hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− mouse, we show that compound genetic ablation of Dvls causes hydrocephalus. In hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− mutants, E cells differentiated normally, but the intracellular and intercellular rotational alignments of ependymal motile cilia were disrupted. As a consequence, the fluid flow generated by the hGFAP-Cre;Dvl1−/−;2flox/flox;3+/− E cells was significantly slower than that observed in control mice. Dvls were also required for the proper positioning of motile cilia on the apical surface. Tamoxifen-induced conditional removal of Dvls in adult mice also resulted in defects in intracellular rotational alignment and positioning of ependymal motile cilia. These results suggest that Dvls are continuously required for E cell planar polarity and may prevent hydrocephalus. PMID:25043421

  4. Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure.

    PubMed

    O'Toole, Eileen T; Giddings, Thomas H; Porter, Mary E; Ostrowski, Lawrence E

    2012-08-01

    In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD. Copyright © 2012 Wiley Periodicals, Inc.

  5. Effect of Cilia Beat Frequency on Muco-ciliary Clearance

    PubMed Central

    Sedaghat, M.H.; Shahmardan, M.M.; Norouzi, M.; Heydari, M.

    2016-01-01

    Background: The airway surface liquid (ASL), which is a fluid layer coating the interior epithelial surface of the bronchi and bronchiolesis, plays an important defensive role against foreign particles and chemicals entering lungs. Objective: Numerical investigation has been employed to solve two-layer model consisting of mucus layer as a viscoelastic fluid and periciliary liquid layer as a Newtonian fluid to study the effects of cilia beat frequency (CBF) at various amounts of mucus properties on muco-ciliary transport problem. Methods: Hybrid finite difference-lattice Boltzmann-method (FB-LBM) has been used to solve the momentum equations and to simulate cilia forces, and also the PCL-mucus interface more accurately, immersed boundary method (IBM) has been employed. The main contribution of the current study is to use an Oldroyd-B model as the constitutive equation of mucus. Results: Our results show that increasing CBF and decreasing mucus viscosity ratio have great effects on mucus flow, but the effect of viscosity ratio is more significant. The results also illustrate that the relation between cilia beat frequency and mean mucus velocity is almost linear and it has similar behavior at different values of viscosity ratio. Conclusion: Numerical investigation based on hybrid IB-FD-LBM has been used to study the effect of CBF at various mounts of mucus viscosity ratio on the muco-ciliary clearance. The results showed that the effect of viscosity ratio on the muco-ciliary transport process is more significant compared with CBF. PMID:28144596

  6. Centrioles want to move out and make cilia.

    PubMed

    Pearson, Chad G; Culver, Brady P; Winey, Mark

    2007-09-01

    Cilia formation in mammalian cells requires basal bodies that are either derived from centrioles that transition from their cytoplasmic role in centrosome organization or that form en masse in multiciliated cells. Several recent studies have begun to uncover the links between centriole duplication and their transformation to basal bodies.

  7. Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid.

    PubMed

    Smith, D J; Gaffney, E A; Blake, J R

    2007-07-01

    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous 'singularity models' is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a 'posterior tilt,' and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 mum/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this

  8. Kinesin 1 regulates cilia length through an interaction with the Bardet-Biedl syndrome related protein CCDC28B.

    PubMed

    Novas, Rossina; Cardenas-Rodriguez, Magdalena; Lepanto, Paola; Fabregat, Matías; Rodao, Magela; Fariello, María Inés; Ramos, Mauricio; Davison, Camila; Casanova, Gabriela; Alfaya, Lucía; Lecumberry, Federico; González-Sapienza, Gualberto; Irigoín, Florencia; Badano, Jose L

    2018-02-14

    Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, polydactyly, renal disease and mental retardation. CCDC28B is a BBS-associated protein that we have previously shown plays a role in cilia length regulation whereby its depletion results in shortened cilia both in cells and Danio rerio (zebrafish). At least part of that role is achieved by its interaction with the mTORC2 component SIN1, but the mechanistic details of this interaction and/or additional functions that CCDC28B might play in the context of cilia remain poorly understood. Here we uncover a novel interaction between CCDC28B and the kinesin 1 molecular motor that is relevant to cilia. CCDC28B interacts with kinesin light chain 1 (KLC1) and the heavy chain KIF5B. Notably, depletion of these kinesin 1 components results in abnormally elongated cilia. Furthermore, through genetic interaction studies we demonstrate that kinesin 1 regulates ciliogenesis through CCDC28B. We show that kinesin 1 regulates the subcellular distribution of CCDC28B, unexpectedly, inhibiting its nuclear accumulation, and a ccdc28b mutant missing a nuclear localization motif fails to rescue the phenotype in zebrafish morphant embryos. Therefore, we uncover a previously unknown role of kinesin 1 in cilia length regulation that relies on the BBS related protein CCDC28B.

  9. The impact of chemical structure and molecular packing on the electronic polarisation of fullerene arrays.

    PubMed

    Few, Sheridan; Chia, Cleaven; Teo, Daniel; Kirkpatrick, James; Nelson, Jenny

    2017-07-19

    Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C 60 and phenyl-C 61 -butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.

  10. Cilia in the head of hornets: form and function.

    PubMed

    Ishay, Jacob S; Plotkin, Marian; Ermakov, Natalya; Jongebloed, Willem L; Kalicharan, Dharamdajal; Bergman, David J

    2005-06-01

    In the head of the Oriental hornet, beneath the cuticle, there are plaques of hair cells. These are distributed throughout the upper front part of the head; to wit: in the region of the vertex (i.e., around and behind the ocelli), in the genae around and behind the compound eyes (the ommatidia), and in the region of the forehead or frons. These hair cells are arranged with their thin whip-like part (i.e., cilia) directed outward and morphologically fall into three distinct groups: type (a) thin elongated cilia connected to each other alongside by side-links; type (b) thin elongated cilia of which two or more interconnect at their distal ends via a delicate nerve fiber bearing a knob at its center; and type (c) shorter and thicker cilia that roughly resemble a triangular thorn and are also interconnected by a thin thread, which, however, bears a ball rather then a knob at its center. The knob in the one case and the ball in the other vary in their diameter, but in both instances the interconnecting elements, be they nerve fibers or threads, are seemingly multidirectional. Beneath the frons, in the region of the coronal suture, the hair cells (cilial plaques) are inwardly directed and bear a large trachea at their center. Presumably, the "weighted" cilial cells that are directed toward the exterior of the body aid the hornet in navigation and gravity determination whereas the inwardly directed ciliary cells may possibly serve in acoustic communication. Another element worthy of mention within the hair cells are yellow granules (yg). These yg's originate from the whip-like portion of the ciliary cells that are distributed beneath the frons plate, and also in the yellow stripes of the gastral cuticle. Conceivably, these yellow granules, in both cases, may play a role in the absorption and storage of solar energy. In summary, ciliary structures are involved in the hornet in gravity sensing, in acoustical communication and in light sensing, i.e., with some similarity

  11. Polarisation of auroral emission lines in the Earth's upper atmosphere : first results and perspectives

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Barthelemy, M.; Simon Wedlund, C.; Lilensten, J.; Bommier, V.

    2011-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Following the pioneering and controversial work of Duncan in 1959, the polarisation of auroral emission lines in the Earth's upper atmosphere has been overlooked for a long time, even though the red intense auroral line (6300Å) produced by collisional impacts with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated again by Lilensten et al (2006) and observations were obtained by Lilensten et al (2008) confirming that the red auroral emission line is polarised. More recent measurements obtained by Barthélemy et al (2011) are presented and discussed. The results are compared to predictions of the theoretical work of Bommier et al (2011) and are in good agreement. Following these encouraging results, a new dedicated spectropolarimeter is currently under construction between BIRA-IASB and IPAG to provide simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... Perspectives regarding the theoretical polarisation of some of these lines will be presented. The importance of these polarisation measurements in the framework of atmospheric modeling and geomagnetic activity will be discussed.

  12. Polarisation vision: overcoming challenges of working with a property of light we barely see

    NASA Astrophysics Data System (ADS)

    Foster, James J.; Temple, Shelby E.; How, Martin J.; Daly, Ilse M.; Sharkey, Camilla R.; Wilby, David; Roberts, Nicholas W.

    2018-04-01

    In recent years, the study of polarisation vision in animals has seen numerous breakthroughs, not just in terms of what is known about the function of this sensory ability, but also in the experimental methods by which polarisation can be controlled, presented and measured. Once thought to be limited to only a few animal species, polarisation sensitivity is now known to be widespread across many taxonomic groups, and advances in experimental techniques are, in part, responsible for these discoveries. Nevertheless, its study remains challenging, perhaps because of our own poor sensitivity to the polarisation of light, but equally as a result of the slow spread of new practices and methodological innovations within the field. In this review, we introduce the most important steps in designing and calibrating polarised stimuli, within the broader context of areas of current research and the applications of new techniques to key questions. Our aim is to provide a constructive guide to help researchers, particularly those with no background in the physics of polarisation, to design robust experiments that are free from confounding factors.

  13. The intrinsic B-mode polarisation of the Cosmic Microwave Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Pettinari, Guido W.; Crittenden, Robert

    2014-07-01

    We estimate the B-polarisation induced in the Cosmic Microwave Background by the non-linear evolution of density perturbations. Using the second-order Boltzmann code SONG, our analysis incorporates, for the first time, all physical effects at recombination. We also include novel contributions from the redshift part of the Boltzmann equation and from the bolometric definition of the temperature in the presence of polarisation. The remaining line-of-sight terms (lensing and time-delay) have previously been studied and must be calculated non-perturbatively. The intrinsic B-mode polarisation is present independent of the initial conditions and might contaminate the signal from primordial gravitational waves. We find thismore » contamination to be comparable to a primordial tensor-to-scalar ratio of r ≅ 10{sup −7} at the angular scale ℓ ≅ 100, where the primordial signal peaks, and r ≅ 5 × 10{sup −5} at ℓ ≅ 700, where the intrinsic signal peaks. Therefore, we conclude that the intrinsic B-polarisation from second-order effects is not likely to contaminate future searches of primordial gravitational waves.« less

  14. Polarisation Measurement with a Dual Beam Interferometer (CATSI). Exploratory Results and Preliminary Phenomenological Analysis

    DTIC Science & Technology

    2006-06-01

    Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M... Polarisation measurement with a dual beam interferometer (CATSI) Exploratory results and preliminary phenomenological analysis H. Lavoie J.-M. Thériault... Polarisation measurement with a dual beam interferometer (CATSI) - Exploratory results and preliminary phenomenological analysis. ECR 2004-372. DRDC Valcartier

  15. [The effect of 18β-sodium glycyrrhetinic acid on the nasal mucosa epithelial cilia in rat models of allergic rhinitis].

    PubMed

    Yang, Jing; Xi, Kehu; Gui, Yan; Wang, Youhu; Zhang, Fuhong; Ma, Chunxia; Hong, Hao; Liu, Xiangyi; Meng, Nannan; Zhang, Xiaobing

    2015-12-01

    To investigate 18β-sodium glycyrrhetinic acid impact on nasal mucosa epithelial cilia in rat models of allergic rhinitis (AR). AR models were established by ovalbumin-induction. Wister rats were randomly divided into groups as normal group, model group, budesonide (0.2 mg/kg) group and sodium glycyrrhetinic acid (20 mg/kg and 40 mg/kg) group after the success of AR models. At 2 weeks and 4 weeks after treatment, the behavioral changes of rats were observed and recorded, and nasal septum mucosae were collected after 2 week and 4 week intervention, and the morphological changes of nasal mucosae were observed by electron microscope. Model group developed typical AR symptoms, the total score in all animals was > 5. With budesonide and sodium glycyrrhetinic acid treatment, the AR symptoms were relieved, and the total scores were reduced significantly (P < 0.01). Compared with the model group: after 2 weeks' intervention, thick mucous secretions on the top of columnar epithelium cilia in rat nasal mucosa was significantly reduced, and cilia adhesion, lodging, shedding were relieved in budesonide group and sodium glycyrrhetinic acid group, the relieve in budesonide group was slightly better than that in sodium glycyrrhetinic acid group; after 4 week intervention, Cilia adhesion, lodging, shedding were completely vanished, and the cilia were ranged in regular direction in budesonide group and sodium glycyrrhetinic acid group. Cilia in sodium glycyrrhetinic acid (20 mg/kg) group was more orderly, smooth than that in budesonide group and sodium glycyrrhetinic acid group (40 mg/kg), and the condition of cilia in sodium glycyrrhetinic acid group (20 mg/kg) was similar to the normal group. 18β-sodium glycyrrhetinic acid is effective to restrain the pathological changes of nasal mucosa cilia in rat models of AR.

  16. Presence of Ca2+-dependent K+ channels in chemosensory cilia support a role in odor transduction.

    PubMed

    Delgado, Ricardo; Saavedra, M Veronica; Schmachtenberg, Oliver; Sierralta, Jimena; Bacigalupo, Juan

    2003-09-01

    Olfactory receptor neurons (ORNs) respond to odorants with changes in the action potential firing rate. Excitatory responses, consisting of firing increases, are mediated by a cyclic AMP cascade that leads to the activation of cationic nonselective cyclic nucleotide-gated (CNG) channels and Ca2+-dependent Cl- (ClCa) channels. This process takes place in the olfactory cilia, where all protein components of this cascade are confined. ORNs from various vertebrate species have also been shown to generate inhibitory odor responses, expressed as decreases in action potential discharges. Odor inhibition appears to rely on Ca2+-dependent K+ (KCa) channels, but the underlying transduction mechanism remains unknown. If these channels are involved in odor transduction, they are expected to be present in the olfactory cilia. We found that a specific antibody against a large conductance KCa recognized a protein of approximately 116 kDa in Western blots of purified rat olfactory ciliary membranes. Moreover, the antibody labeled ORN cilia in isolated ORNs from rat and toad (Caudiverbera caudiverbera). In addition, single-channel recordings from inside-out membrane patches excised from toad chemosensory cilia showed the presence of 4 different types of KCa channels, with unitary conductances of 210, 60, 12, and 29 and 60 pS, high K+-selectivity, and Ca2+ sensitivities in the low micromolar range. Our work demonstrates the presence of K+ channels in the ORN cilia and supports their participation in odor transduction.

  17. Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.

    PubMed

    Drozd, M; Baran, J

    2006-07-01

    Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  18. The anhysteretic polarisation of ferroelectrics

    NASA Astrophysics Data System (ADS)

    Kaeswurm, B.; Segouin, V.; Daniel, L.; Webber, K. G.

    2018-02-01

    Measurement and calculation of anhysteretic curves is a well-established method in the field of magnetic materials and is applied to ferroelectric materials here. The anhysteretic curve is linked to a stable equilibrium state in the domain structure, and ignores dissipative effects related to mechanisms such as domain wall pinning. In this study, an experimental method for characterising the anhysteretic behaviour of ferroelectrics is presented, which is subsequently used to determine the anhysteretic polarisation response of polycrystalline barium titanate and a doped lead zirconate titanate composition at room temperature. Various external parameters, such as electric field, stress, and temperature, can significantly affect ferroelectric behaviour. Ferroelectric hysteresis curves can assess the importance of such effects but cannot distinguish their contribution on the different intrinsic and extrinsic mechanisms involved in ferroelectric behaviour. In this work, the influence of compressive stress on the anhysteretic polarisation is measured and discussed. The comparison of the polarization loop to the anhysteretic curve under compressive stress elucidates the effects on the stable equilibrium domain configuration and dynamic effects associated to dissipation.

  19. C2cd3 is required for cilia formation and Hedgehog signaling in mouse

    PubMed Central

    Hoover, Amber N.; Wynkoop, Aaron; Zeng, Huiqing; Jia, Jinping; Niswander, Lee A.; Liu, Aimin

    2011-01-01

    Cilia are essential for mammalian embryonic development as well as for the physiological activity of various adult organ systems. Despite the multiple crucial roles that cilia play, the mechanisms underlying ciliogenesis in mammals remain poorly understood. Taking a forward genetic approach, we have identified Hearty (Hty), a recessive lethal mouse mutant with multiple defects, including neural tube defects, abnormal dorsal-ventral patterning of the spinal cord, a defect in left-right axis determination and severe polydactyly (extra digits). By genetic mapping, sequence analysis of candidate genes and characterization of a second mutant allele, we identify Hty as C2cd3, a novel gene encoding a vertebrate-specific C2 domain-containing protein. Target gene expression and double-mutant analyses suggest that C2cd3 is an essential regulator of intracellular transduction of the Hedgehog signal. Furthering a link between Hedgehog signaling and cilia function, we find that cilia formation and proteolytic processing of Gli3 are disrupted in C2cd3 mutants. Finally, we observe C2cd3 protein at the basal body, consistent with its essential function in ciliogenesis. Interestingly, the human ortholog for this gene lies in proximity to the critical regions of Meckel-Gruber syndrome 2 (MKS2) and Joubert syndrome 2 (JBTS2), making it a potential candidate for these two human genetic disorders. PMID:19004860

  20. PASTIS2 and CROCODILE: XYZ-wide angle polarisation analysis for thermal neutrons

    NASA Astrophysics Data System (ADS)

    Enderle, Mechthild; Jullien, David; Petoukhov, Alexander; Mouveau, Pascal; Andersen, Ken; Courtois, Pierre

    2017-06-01

    We present a wide-angle device for inelastic neutron scattering with XYZ-polarisation analysis (PASTIS2). PASTIS2 employs a banana-shaped Si-walled 3He-filter for the polarisation analysis and allows pillar-free neutron scattering for horizontal scattering angles 0-100◦. The guide field direction at the sample can be chosen vertical or with 45◦ incremental steps in the horizontal scattering plane. When PASTIS2 is implemented on a polarised neutron beam, the incident neutron spin can be flipped with an easy-to-optimise broad-band adiabatic resonant flipper (CROCODILE) independent of the guide field direction at the sample position. We have tested the performance of this new device on the polarised thermal triple-axis spectrometer IN20 at the Institut Laue-Langevin, equipped with Heusler monochromator and the FlatCone multi-analyser, and discuss its potential for future instruments.

  1. Investigation of stress-induced birefringence of tissue determined with polarisation sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Karnowski, Karol; Li, Qingyun; Villiger, Martin; Sampson, David D.

    2017-02-01

    Polarisation sensitive optical coherence tomography (PS-OCT) offers additional intrinsic contrast to probe differences between healthy tissue and cancer that are often barely visible due to limited scattering contrast in an OCT image. PS-OCT reconstructs tissue birefringence from phase-sensitive measurements of orthogonal polarisation components of backscattering. In material science, polarisation has been used to study stress distribution, including the birefringence induced by stress in an otherwise isotropic material. Similar effects in biological tissues have not been well studied yet; however, may have application to tissues subjected to stress, e.g., tendons, muscles, lens, cornea or airway smooth muscle (ASM). The objective of this work is to explore stress-induced birefringence in tissue. We employ an advanced swept source-based PS-OCT system capable of measurement of tissue local polarisation properties. The sample in both cases is illuminated with orthogonal, passively depth-encoded polarisation states. Light returning from the tissue is detected via a polarisation-diversity detection module and a Mueller formalism is used to reconstruct polarisation properties (including retardation, diattenuation, and depolarisation) of the tissue. In this study, we demonstrate the measurement of stress-induced birefringence in phantoms and in soft tissues with polarisation sensitive optical coherence tomography.

  2. Propagation of polarised light in bent hi-bi spun fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przhiyalkovsky, Ya V; Morshnev, S K; Starostin, N I

    The evolution of polarisation states (PS's) of broadband light propagating through a bent optical fibre with a helical structure of its refractive index anisotropy (hi-bi spun fibre) has been studied theoretically and experimentally. It has been shown that there exists a coordinate system of PS's in which the differential Jones matrix can be replaced by a diagonal matrix, which allows the polarisation parameters of the output broadband light to be readily calculated with sufficient accuracy. We have derived a formula for evaluating the magneto-optical sensitivity of a bent spun fibre. An approach has been proposed for restoring the degree ofmore » polarisation of light in a bent hi-bi spun fibre and, as a consequence, the visibility (contrast) of the interferometer in a current sensor with a sensing element based on the fibre under consideration. (optical fibres)« less

  3. Frequency dependent polarisation switching in h-ErMnO3

    NASA Astrophysics Data System (ADS)

    Ruff, Alexander; Li, Ziyu; Loidl, Alois; Schaab, Jakob; Fiebig, Manfred; Cano, Andres; Yan, Zewu; Bourret, Edith; Glaum, Julia; Meier, Dennis; Krohns, Stephan

    2018-04-01

    We report an electric-field poling study of the geometrically-driven improper ferroelectric h-ErMnO3. From a detailed dielectric analysis, we deduce the temperature and the frequency dependent range for which single-crystalline h-ErMnO3 exhibits purely intrinsic dielectric behaviour, i.e., free from the extrinsic so-called Maxwell-Wagner polarisations that arise, for example, from surface barrier layers. In this regime, ferroelectric hysteresis loops as a function of frequency, temperature, and applied electric fields are measured, revealing the theoretically predicted saturation polarisation on the order of 5-6 μC/cm2. Special emphasis is put on frequency dependent polarisation switching, which is explained in terms of domain-wall movement similar to proper ferroelectrics. Controlling the domain walls via electric fields brings us an important step closer to their utilization in domain-wall-based electronics.

  4. Propagation of polarised light in bent hi-bi spun fibres

    NASA Astrophysics Data System (ADS)

    Przhiyalkovsky, Ya V.; Morshnev, S. K.; Starostin, N. I.; Gubin, V. P.

    2015-11-01

    The evolution of polarisation states (PS's) of broadband light propagating through a bent optical fibre with a helical structure of its refractive index anisotropy (hi-bi spun fibre) has been studied theoretically and experimentally. It has been shown that there exists a coordinate system of PS's in which the differential Jones matrix can be replaced by a diagonal matrix, which allows the polarisation parameters of the output broadband light to be readily calculated with sufficient accuracy. We have derived a formula for evaluating the magneto-optical sensitivity of a bent spun fibre. An approach has been proposed for restoring the degree of polarisation of light in a bent hi-bi spun fibre and, as a consequence, the visibility (contrast) of the interferometer in a current sensor with a sensing element based on the fibre under consideration.

  5. A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN)

    NASA Astrophysics Data System (ADS)

    Hernández-Hernández, Valeria; Barrio, Rafael A.; Benítez, Mariana; Nakayama, Naomi; Romero-Arias, José Roberto; Villarreal, Carlos

    2018-05-01

    Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane. We propose a physico-genetic module of PIN polarisation that integrates biomechanical, molecular, and cellular processes as well as their non-linear interactions. The module was implemented as a discrete Boolean model and then approximated to a continuous dynamic system, in order to explore the relative contribution of the factors mediating PIN polarisation at the scale of single cell. Our models recovered qualitative behaviours that have been experimentally observed and enable us to predict that, in the context of PIN polarisation, the effects of the mechanical forces can predominate over the activity of molecular factors such as the GTPase ROP6 and the ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN RIC1.

  6. Magnetically aligned dust and SiO maser polarisation in the envelope of the red supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Khouri, T.; Martí-Vidal, I.; Tafoya, D.; Baudry, A.; Etoka, S.; Humphreys, E. M. L.; Jones, T. J.; Kemball, A.; O'Gorman, E.; Pérez-Sánchez, A. F.; Richards, A. M. S.

    2017-07-01

    Aims: Polarisation observations of circumstellar dust and molecular (thermal and maser) lines provide unique information about dust properties and magnetic fields in circumstellar envelopes of evolved stars. Methods: We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 science verification observations of the red supergiant VY CMa to study the polarisation of SiO thermal/maser lines and dust continuum at 1.7 mm wavelength. We analyse both linear and circular polarisation and derive the magnetic field strength and structure, assuming the polarisation of the lines originates from the Zeeman effect, and that of the dust originates from aligned dust grains. We also discuss other effects that could give rise to the observed polarisation. Results: We detect, for the first time, significant polarisation ( 3%) of the circumstellar dust emission at millimeter wavelengths. The polarisation is uniform with an electric vector position angle of 8°. Varying levels of linear polarisation are detected for the J = 4 - 328SiO v = 0, 1, 2, and 29SiO v = 0, 1 lines, with the strongest polarisation fraction of 30% found for the 29SiO v = 1 maser. The linear polarisation vectors rotate with velocity, consistent with earlier observations. We also find significant (up to 1%) circular polarisation in several lines, consistent with previous measurements. We conclude that the detection is robust against calibration and regular instrumental errors, although we cannot yet fully rule out non-standard instrumental effects. Conclusions: Emission from magnetically aligned grains is the most likely origin of the observed continuum polarisation. This implies that the dust is embedded in a magnetic field >13 mG. The maser line polarisation traces the magnetic field structure. The magnetic field in the gas and dust is consistent with an approximately toroidal field configuration, but only higher angular resolution observations will be able to reveal more detailed field structure. If the

  7. Polarisation of the Balmer-α emission in crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Thorman, Alex

    2018-03-01

    An analysis of the polarisation structure of the Balmer-α emission in the presence of electric and magnetic fields is presented, with an emphasis on motional Stark effect polarimetry for fusion plasma diagnostics. When the fields are orthogonal, as is the case for neutral heating beams injected into a magnetised plasma, some degeneracy remains in the Stark-Zeeman energy levels and the magnetic quantum number is not well defined. The polarisation structure from the degenerate states is underdetermined and therefore volatile to weaker interactions that resolve this degeneracy, a critical subtlety that has previously been overlooked. A perturbation theory analysis finds distinct polarisation structures for the σ emission that apply when the fine-structure and microscopic electric fields are considered. It is found that only the σ ± 1 polarisation orientation is sensitive to upper-state populations (which are non-statistically weighted for neutral beam injection into a target gas), but with appropriate viewing geometries and beam injection directions the effect can be made negligible.

  8. Integrin α8 and Pcdh15 act as a complex to regulate cilia biogenesis in sensory cells.

    PubMed

    Goodman, Linda; Zallocchi, Marisa

    2017-11-01

    The way an organism perceives its surroundings depends on sensory systems and the highly specialized cilia present in the neurosensory cells. Here, we describe the existence of an integrin α8 (Itga8) and protocadherin-15a (Pcdh15a) ciliary complex in neuromast hair cells in a zebrafish model. Depletion of the complex via downregulation or loss-of-function mutation leads to a dysregulation of cilia biogenesis and endocytosis. At the molecular level, removal of the complex blocks the access of Rab8a into the cilia as well as normal recruitment of ciliary cargo by centriolar satellites. These defects can be reversed by the introduction of a constitutively active form of Rhoa, suggesting that Itga8-Pcdh15a complex mediates its effect through the activation of this small GTPase and probably by the regulation of actin cytoskeleton dynamics. Our data points to a novel mechanism involved in the regulation of sensory cilia development, with the corresponding implications for normal sensory function. © 2017. Published by The Company of Biologists Ltd.

  9. Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays.

    PubMed

    Zheng, Guoxing; Liu, Guogen; Kenney, Mitchell Guy; Li, Zile; He, Ping'an; Li, Song; Ren, Zhi; Deng, Qiling

    2016-03-21

    Since the transmission of anisotropic nano-structures is sensitive to the polarisation of an incident beam, a novel polarising beam splitter (PBS) based on silicon nanobrick arrays is proposed. With careful design of such structures, an incident beam with polarisation direction aligned with the long axis of the nanobrick is almost totally reflected (~98.5%), whilst that along the short axis is nearly totally transmitted (~94.3%). More importantly, by simply changing the width of the nanobrick we can shift the peak response wavelength from 1460 nm to 1625 nm, covering S, C and L bands of the fiber telecommunications windows. The silicon nanobrick-based PBS can find applications in many fields which require ultracompactness, high efficiency, and compatibility with semiconductor industry technologies.

  10. Polarisation in spin-echo experiments: Multi-point and lock-in measurements

    NASA Astrophysics Data System (ADS)

    Tamtögl, Anton; Davey, Benjamin; Ward, David J.; Jardine, Andrew P.; Ellis, John; Allison, William

    2018-02-01

    Spin-echo instruments are typically used to measure diffusive processes and the dynamics and motion in samples on ps and ns time scales. A key aspect of the spin-echo technique is to determine the polarisation of a particle beam. We present two methods for measuring the spin polarisation in spin-echo experiments. The current method in use is based on taking a number of discrete readings. The implementation of a new method involves continuously rotating the spin and measuring its polarisation after being scattered from the sample. A control system running on a microcontroller is used to perform the spin rotation and to calculate the polarisation of the scattered beam based on a lock-in amplifier. First experimental tests of the method on a helium spin-echo spectrometer show that it is clearly working and that it has advantages over the discrete approach, i.e., it can track changes of the beam properties throughout the experiment. Moreover, we show that real-time numerical simulations can perfectly describe a complex experiment and can be easily used to develop improved experimental methods prior to a first hardware implementation.

  11. Modelling the circular polarisation of Earth-like exoplanets: constraints on detecting homochirality

    NASA Astrophysics Data System (ADS)

    Hogenboom, Michael; Stam, Daphne; Rossi, Loic; Snik, Frans

    2016-04-01

    The circular polarisation of light is a property of electromagnetic radiation from which extensive information can be extracted. It is oft-neglected due to its small signal relative to linear polarisation and the need for advanced instrumentation in measuring it. Additionally, numerical modelling is complex as the full Stokes vector must always be computed. Circular polarisation is commonly induced through the multiple scattering of light by aerosols te{hansen} and multiple reflections of light by rough surfaces te{circplanets}. Most interestingly, distinctive spectral circular polarimetric behaviour is exhibited by light reflected by organisms due to the homochiral molecular structure of all known organisms te{chiralbailey}. Especially fascinating is the unique circular polarimetric behaviour of light reflected by photosynthesising organisms at the absorption wavelength of the chlorophyll pigment te{circpolchar}. This presents the previously unexplored possibility of circular polarimetry as a method for identifying and characterising the presence of organisms, a method which could be applied in the hunt for extraterrestrial life. To date, few telescopes exist that measure circular polarisation and none that have been deployed in space. Observations of the circular polarisation reflected by other planets in the solar system have been made with ground-based telescopes, with significant results te{circplanets}. However, none of these observations have been made at the phase angles at which exoplanets will be observed. Also, none have been made of the Earth, which is the logical starting point for the study of biologically induced circular polarisation signals. This introduces the need for numerical modelling to determine the extent to which circular polarisation is present in light reflected by exoplanets or the Earth. In this study, we model the multiple scattering and reflection of light using the doubling-adding method te{dehaan}. We will present circular

  12. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells

    NASA Technical Reports Server (NTRS)

    Nauli, Surya M.; Alenghat, Francis J.; Luo, Ying; Williams, Eric; Vassilev, Peter; Li, Xiaogang; Elia, Andrew E H.; Lu, Weining; Brown, Edward M.; Quinn, Stephen J.; hide

    2003-01-01

    Several proteins implicated in the pathogenesis of polycystic kidney disease (PKD) localize to cilia. Furthermore, cilia are malformed in mice with PKD with mutations in TgN737Rpw (encoding polaris). It is not known, however, whether ciliary dysfunction occurs or is relevant to cyst formation in PKD. Here, we show that polycystin-1 (PC1) and polycystin-2 (PC2), proteins respectively encoded by Pkd1 and Pkd2, mouse orthologs of genes mutated in human autosomal dominant PKD, co-distribute in the primary cilia of kidney epithelium. Cells isolated from transgenic mice that lack functional PC1 formed cilia but did not increase Ca(2+) influx in response to physiological fluid flow. Blocking antibodies directed against PC2 similarly abolished the flow response in wild-type cells as did inhibitors of the ryanodine receptor, whereas inhibitors of G-proteins, phospholipase C and InsP(3) receptors had no effect. These data suggest that PC1 and PC2 contribute to fluid-flow sensation by the primary cilium in renal epithelium and that they both function in the same mechanotransduction pathway. Loss or dysfunction of PC1 or PC2 may therefore lead to PKD owing to the inability of cells to sense mechanical cues that normally regulate tissue morphogenesis.

  13. Orientational analysis of dodecanethiol and p-nitrothiophenol SAMs on metals with polarisation-dependent SFG spectroscopy.

    PubMed

    Cecchet, Francesca; Lis, Dan; Guthmuller, Julien; Champagne, Benoît; Caudano, Yves; Silien, Christophe; Mani, Alaa Addin; Thiry, Paul A; Peremans, André

    2010-02-22

    Polarisation-dependent sum frequency generation (SFG) spectroscopy is used to investigate the orientation of molecules on metallic surfaces. In particular, self-assembled monolayers (SAMs) of dodecanethiol (DDT) and of p-nitrothiophenol (p-NTP), grown on Pt and on Au, have been chosen as models to highlight the ability of combining ppp and ssp polarisations sets (representing the polarisation of the involved beams in the conventional order of SFG, Vis and IR beam) to infer orientational information at metallic interfaces. Indeed, using only the ppp set of data, as it is usually done for metallic surfaces, is not sufficient to determine the full molecular orientation. We show here that simply combining ppp and ssp polarisations enables both the tilt and rotation angles of methyl groups in DDT SAMs to be determined. Moreover, for p-NTP, while the SFG active vibrations detected with the ppp polarisation alone provide no orientational information, however, the combination with ssp spectra enables to retrieve the tilt angle of the p-NTP 1,4 axis. Though orientational information obtained by polarisation-dependent measurements has been extensively used at insulating interfaces, we report here their first application to metallic surfaces.

  14. Manipulating and probing the polarisation of a methyl tunnelling system by field-cycling NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Abu-Khumra, Sabah M. M.; Aibout, Abdellah; Horsewill, Anthony J.

    2017-02-01

    In NMR the polarisation of the Zeeman system may be routinely probed and manipulated by applying resonant rf pulses. As with spin-1/2 nuclei, at low temperature the quantum tunnelling states of a methyl rotor are characterised by two energy levels and it is interesting to consider how these tunnelling states might be probed and manipulated in an analogous way to nuclear spins in NMR. In this paper experimental procedures based on magnetic field-cycling NMR are described where, by irradiating methyl tunnelling sidebands, the polarisations of the methyl tunnelling systems are measured and manipulated in a prescribed fashion. At the heart of the technique is a phenomenon that is closely analogous to dynamic nuclear polarisation and the solid effect where forbidden transitions mediate polarisation transfer between 1H Zeeman and methyl tunnelling systems. Depending on the irradiated sideband, both positive and negative polarisations of the tunnelling system are achieved, the latter corresponding to population inversion and negative tunnelling temperatures. The transition mechanics are investigated through a series of experiments and a theoretical model is presented that provides good quantitative agreement.

  15. Levonorgestrel decreases cilia beat frequency of human fallopian tubes and rat oviducts without changing morphological structure.

    PubMed

    Zhao, Weihong; Zhu, Qian; Yan, Mingxing; Li, Cheng; Yuan, Jiangjing; Qin, Guojuan; Zhang, Jian

    2015-02-01

    Levonorgestrel, a derivative of progesterone, effectively protects women against unwanted pregnancy as an emergency contraceptive. Previous studies have not been successful in determining the mechanism by which levonorgestrel acts. In the present study we analysed cilia beat action and cilia morphology following levonorgestrel exposure in vitro and in vivo using both light and electron microscopy. There was a significant decrease in the ciliary beat frequency (CBF) of human fallopian tubes between mucosal explants bathed in 5 μmol/L levonorgestrel and those bathed in medium alone (P < 0.05). There was a tendency for CBF to decrease more in the ampulla than in isthmus, but there were no differences between the proliferative and secretory phases. In rat oviducts, levonorgestrel produced a similar reduction in CBF (~ 10%) compared with the saline control group (P < 0.05). Histological and ultrastructural analysis demonstrated no changes in the percentage of ciliated cells or in the classic '9 + 2' structure of cilia following levonorgestrel treatment in either system. Thus, levonorgestrel reduces CBF without damaging cilia morphology. Decreases in CBF may indicate a pathological role for levonorgestrel in the transportation of the ovum and zygote in the fallopian tube. © 2014 Wiley Publishing Asia Pty Ltd.

  16. An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.

    2010-01-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081

  17. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing

    PubMed Central

    Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho

    2016-01-01

    Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for ‘stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces. PMID:27248982

  18. Nodal Cilia Dynamics and the Specification of the Left/Right Axis in Early Vertebrate Embryo Development

    PubMed Central

    Buceta, Javier; Ibañes, Marta; Rasskin-Gutman, Diego; Okada, Yasushi; Hirokawa, Nobutaka; Izpisúa-Belmonte, Juan Carlos

    2005-01-01

    Nodal cilia dynamics is a key factor for left/right axis determination in mouse embryos through the induction of a leftward fluid flow. So far it has not been clearly established how such dynamics is able to induce the asymmetric leftward flow within the node. Herein we propose that an asymmetric two-phase nonplanar beating cilia dynamics that involves the bending of the ciliar axoneme is responsible for the leftward fluid flow. We support our proposal with a host of hydrodynamic arguments, in silico experiments and in vivo video microscopy data in wild-type embryos and inv mutants. Our phenomenological modeling approach underscores how the asymmetry and speed of the flow depends on different relevant parameters. In addition, we discuss how the combination of internal and external mechanisms might cause the two-phase beating cilia dynamics. PMID:16040754

  19. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia.

    PubMed

    Khanal, Ichha; Elbediwy, Ahmed; Diaz de la Loza, Maria Del Carmen; Fletcher, Georgina C; Thompson, Barry J

    2016-07-01

    In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf-Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli. © 2016. Published by The Company of Biologists Ltd.

  20. Comparative Proteomics Reveals Timely Transport into Cilia of Regulators or Effectors as a Mechanism Underlying Ciliary Disassembly.

    PubMed

    Wang, Limei; Gu, Lixiao; Meng, Dan; Wu, Qiong; Deng, Haiteng; Pan, Junmin

    2017-07-07

    Primary cilia are assembled and disassembled during cell cycle progression. During ciliary disassembly, ciliary axonemal microtubules (MTs) are depolymerized accompanied by extensive posttranslational protein modifications of ciliary proteins including protein phosphorylation, methylation, and ubiquitination. These events are hypothesized to involve transport of effectors or regulators into cilia at the time of ciliary disassembly from the cell body. To prove this hypothesis and identify new proteins involved in ciliary disassembly, we analyzed disassembling flagella in Chlamydomonas using comparative proteomics with TMT labeling. Ninety-one proteins were found to increase more than 1.4-fold in four replicates. The proteins of the IFT machinery not only increase but also exhibit stoichiometric changes. The other proteins that increase include signaling molecules, chaperones, and proteins involved in microtubule dynamics or stability. In particular, we have identified a ciliopathy protein C21orf2, the AAA-ATPase CDC48, that is involved in segregating polypeptides from large assemblies or cellular structures, FAP203 and FAP236, which are homologous to stabilizers of axonemal microtubules. Our data demonstrate that ciliary transport of effectors or regulators is one of the mechanisms underlying ciliary disassembly. Further characterization of the proteins identified will provide new insights into our understanding of ciliary disassembly and likely ciliopathy.

  1. A novel zf-MYND protein, CHB-3, mediates guanylyl cyclase localization to sensory cilia and controls body size of Caenorhabditis elegans.

    PubMed

    Fujiwara, Manabi; Teramoto, Takayuki; Ishihara, Takeshi; Ohshima, Yasumi; McIntire, Steven L

    2010-11-24

    Cilia are important sensory organelles, which are thought to be essential regulators of numerous signaling pathways. In Caenorhabditis elegans, defects in sensory cilium formation result in a small-body phenotype, suggesting the role of sensory cilia in body size determination. Previous analyses suggest that lack of normal cilia causes the small-body phenotype through the activation of a signaling pathway which consists of the EGL-4 cGMP-dependent protein kinase and the GCY-12 receptor-type guanylyl cyclase. By genetic suppressor screening of the small-body phenotype of a cilium defective mutant, we identified a chb-3 gene. Genetic analyses placed chb-3 in the same pathway as egl-4 and gcy-12 and upstream of egl-4. chb-3 encodes a novel protein, with a zf-MYND motif and ankyrin repeats, that is highly conserved from worm to human. In chb-3 mutants, GCY-12 guanylyl cyclase visualized by tagged GFP (GCY-12::GFP) fails to localize to sensory cilia properly and accumulates in cell bodies. Our analyses suggest that decreased GCY-12 levels in the cilia of chb-3 mutants may cause the suppression of the small-body phenotype of a cilium defective mutant. By observing the transport of GCY-12::GFP particles along the dendrites to the cilia in sensory neurons, we found that the velocities and the frequencies of the particle movement are decreased in chb-3 mutant animals. How membrane proteins are trafficked to cilia has been the focus of extensive studies in vertebrates and invertebrates, although only a few of the relevant proteins have been identified. Our study defines a new regulator, CHB-3, in the trafficking process and also shows the importance of ciliary targeting of the signaling molecule, GCY-12, in sensory-dependent body size regulation in C. elegans. Given that CHB-3 is highly conserved in mammal, a similar system may be used in the trafficking of signaling proteins to the cilia of other species.

  2. Primary ciliary dyskinesia: current state of the art

    PubMed Central

    Bush, Andrew; Chodhari, Rahul; Collins, Nicola; Copeland, Fiona; Hall, Pippa; Harcourt, Jonny; Hariri, Mohamed; Hogg, Claire; Lucas, Jane; Mitchison, Hannah M; O'Callaghan, Christopher; Phillips, Gill

    2007-01-01

    Primary ciliary dyskinesia (PCD) is usually inherited as an autosomal recessive disorder and presents with upper and lower respiratory tract infection, and mirror image arrangement in around 50% of cases. Cilia dysfunction is also implicated in a wider spectrum of disease, including polycystic liver and kidney disease, central nervous system problems including retinopathy and hydrocephalus, and biliary atresia. Cilia are complex structures, containing more than 250 proteins; recent studies have begun to locate PCD genes scattered throughout the genome. Screening tests for PCD include nasal nitric oxide and in vivo tests of ciliary motility such as the saccharin test. Specific diagnosis requires examination of cilia by light and electron microscopy, with epithelial culture in doubtful cases. This is only available in supra‐regional centres, recently centrally funded by the National Commissioning Group. Treatment is not evidence based and recommendations are largely extrapolated from cystic fibrosis and other suppurative lung diseases. PMID:17634184

  3. Semi-inclusive polarised lepton-nucleon scattering and the anomalous gluon contribution

    NASA Astrophysics Data System (ADS)

    Güllenstern, St.; Veltri, M.; Górnicki, P.; Mankiewicz, L.; Schäfer, A.

    1993-08-01

    We discuss a new observable for semi-inclusive pion production in polarised lepton-nucleon collisions. This observable is sensitive to the polarised and unpolarised strange quark distribution and the anomalous gluon contribution, provided that their fragmentation functions into pions differ substantially from that of light quarks. From Monte Carlo data generated with our PEPSI code we conclude that HERMES might be able to decide whether the polarized strange quark and gluon distributions are large.

  4. Spin chirality and polarised neutron scattering

    NASA Astrophysics Data System (ADS)

    Plakhty, V. P.; Maleyev, S. V.; Kulda, J.; Visser, E. D.; Wosnitza, J.; Moskvin, E. V.; Brückel, Th.; Kremer, R. K.

    2001-03-01

    Possibilities of polarised neutrons in studies of chiral criticality are discussed. The critical exponents β C of the average chirality below TN, as well as φ C=β C+γ C and, therefore, γ C of the chiral susceptibility above TN are determined for a XY triangular lattice antiferromagnet (TLA) CsMnBr3: β C=0.44(2) , γ C=0.84(7) . The critical behaviour of the chirality that orders at TN with a relative precision of 5×10 -4 proves that the phase transition belongs to a new chiral universality class. For the TLA CsNiCl 3 ( S=1) we found in the XY region ( B=3 T) φ C=1.24(7) in agreement with the Monte-Carlo value φ C=1.22(6) for the chiral universality class. In the easy-axis region at B=1 T, φ C=0.54(4) , and the Haldane excitations are observed in the polarisation-dependent inelastic cross section above TN. The helimagnet holmium exhibits a different chiral criticality with φ C=1.56(5) , essentially higher than for TLAs.

  5. Spontaneous oscillation and fluid-structure interaction of cilia.

    PubMed

    Han, Jihun; Peskin, Charles S

    2018-04-24

    The exact mechanism to orchestrate the action of hundreds of dynein motor proteins to generate wave-like ciliary beating remains puzzling and has fascinated many scientists. We present a 3D model of a cilium and the simulation of its beating in a fluid environment. The model cilium obeys a simple geometric constraint that arises naturally from the microscopic structure of a real cilium. This constraint allows us to determine the whole 3D structure at any instant in terms of the configuration of a single space curve. The tensions of active links, which model the dynein motor proteins, follow a postulated dynamical law, and together with the passive elasticity of microtubules, this dynamical law is responsible for the ciliary motions. In particular, our postulated tension dynamics lead to the instability of a symmetrical steady state, in which the cilium is straight and its active links are under equal tensions. The result of this instability is a stable, wave-like, limit cycle oscillation. We have also investigated the fluid-structure interaction of cilia using the immersed boundary (IB) method. In this setting, we see not only coordination within a single cilium but also, coordinated motion, in which multiple cilia in an array organize their beating to pump fluid, in particular by breaking phase synchronization.

  6. Multiscale Modeling of Primary Cilium Deformations Under Local Forces and Shear Flows

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Feng, Zhe; Resnick, Andrew; Young, Yuan-Nan

    2017-11-01

    We study the detailed deformations of a primary cilium under local forces and shear flows by developing a multiscale model based on the state-of-the-art understanding of its molecular structure. Most eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, thermosensation, and mechanosensation, but the detailed mechanism for mechanosensation is not well understood. We apply the dissipative particle dynamics (DPD) to model an entire well with a primary cilium and consider its different components, including the basal body, microtubule doublets, actin cortex, and lipid bilayer. We calibrate the mechanical properties of individual components and their interactions from experimental measurements and molecular dynamics simulations. We validate the simulations by comparing the deformation profile of the cilium and the rotation of the basal body with optical trapping experiments. After validations, we investigate the deformation of the primary cilium under shear flows. Furthermore, we calculate the membrane tensions and cytoskeleton stresses, and use them to predict the activation of mechanosensitive channels.

  7. Algebraic expressions for the polarisation response of spin-VCSELs

    NASA Astrophysics Data System (ADS)

    Adams, Mike; Li, Nianqiang; Cemlyn, Ben; Susanto, Hadi; Henning, Ian

    2018-06-01

    Closed-form expressions are derived for the relationship between the polarisation of the output and that of the pump for spin-polarised vertical-cavity surface-emitting lasers. These expressions are based on the spin-flip model (SFM) combined with the condition that the carrier recombination time is much greater than both the spin relaxation time and the photon lifetime. Allowance is also included for misalignment between the principal axes of birefringence and dichroism. These expressions yield results that are in excellent agreement both with previously published numerical calculations and with further tests for a wide range of parameters. Trends with key parameters of the SFM are easily deduced from these expressions.

  8. Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots.

    PubMed

    Wang, T; Puchtler, T J; Zhu, T; Jarman, J C; Nuttall, L P; Oliver, R A; Taylor, R A

    2017-07-13

    Solid-state single photon sources with polarisation control operating beyond the Peltier cooling barrier of 200 K are desirable for a variety of applications in quantum technology. Using a non-polar InGaN system, we report the successful realisation of single photon emission with a g (2) (0) of 0.21, a high polarisation degree of 0.80, a fixed polarisation axis determined by the underlying crystallography, and a GHz repetition rate with a radiative lifetime of 357 ps at 220 K in semiconductor quantum dots. The temperature insensitivity of these properties, together with the simple planar epitaxial growth method and absence of complex device geometries, demonstrates that fast single photon emission with polarisation control can be achieved in solid-state quantum dots above the Peltier temperature threshold, making this system a potential candidate for future on-chip applications in integrated systems.

  9. Towards an integrated AlGaAs waveguide platform for phase and polarisation shaping

    NASA Astrophysics Data System (ADS)

    Maltese, G.; Halioua, Y.; Lemaître, A.; Gomez-Carbonell, C.; Karimi, E.; Banzer, P.; Ducci, S.

    2018-05-01

    We propose, design and fabricate an on-chip AlGaAs waveguide capable of generating a controlled phase delay of π/2 between the guided transverse electric and magnetic modes. These modes possess significantly strong longitudinal field components as a direct consequence of their strong lateral confinement in the waveguide. We demonstrate that the effect of the device on a linearly polarised input beam is the generation of a field, which is circularly polarised in its transverse components and carries a phase vortex in its longitudinal component. We believe that the discussed integrated platform enables the generation of light beams with tailored phase and polarisation distributions.

  10. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    PubMed

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  11. The pressure is all in your head: A cilia-driven high-pressure pump in the head of a deep-sea animal

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Katija, Kakani; Shelley, Michael; Kanso, Eva

    2017-11-01

    Motile cilia are microscopic, hair-like structures on the cell surface that can sense and propel the extracellular fluid environment. In many ciliated systems found in nature, such as the mammalian airways and marine sponges, the organization and collective behavior of the cilia favors the pumping of fluids at low pressures and high volumes. We recently discovered an alternate design located in the head of a deep-sea animal called Larvacean. Here, cilia morphology, kinematics and flow indicate a role in maintaining the hydrostatic skeleton of the animal by generating a high-pressure flow. We describe our empirical and computational approaches toward understanding the design principles and dynamic range of this newly discovered pumping mechanism. In ongoing work, we further explore the fluid dynamic constraints on the morphological diversity of cilia and the resulting categories of fluid transport functions.

  12. dTULP, the Drosophila melanogaster Homolog of Tubby, Regulates Transient Receptor Potential Channel Localization in Cilia

    PubMed Central

    Shim, Jaewon; Han, Woongsu; Lee, Jinu; Bae, Yong Chul; Chung, Yun Doo; Kim, Chul Hoon; Moon, Seok Jun

    2013-01-01

    Mechanically gated ion channels convert sound into an electrical signal for the sense of hearing. In Drosophila melanogaster, several transient receptor potential (TRP) channels have been implicated to be involved in this process. TRPN (NompC) and TRPV (Inactive) channels are localized in the distal and proximal ciliary zones of auditory receptor neurons, respectively. This segregated ciliary localization suggests distinct roles in auditory transduction. However, the regulation of this localization is not fully understood. Here we show that the Drosophila Tubby homolog, King tubby (hereafter called dTULP) regulates ciliary localization of TRPs. dTULP-deficient flies show uncoordinated movement and complete loss of sound-evoked action potentials. Inactive and NompC are mislocalized in the cilia of auditory receptor neurons in the dTulp mutants, indicating that dTULP is required for proper cilia membrane protein localization. This is the first demonstration that dTULP regulates TRP channel localization in cilia, and suggests that dTULP is a protein that regulates ciliary neurosensory functions. PMID:24068974

  13. Wnt/PCP Instructions for Cilia in Left-Right Asymmetry.

    PubMed

    Wu, Jun; Mlodzik, Marek

    2017-03-13

    Wnt-Frizzled/planar cell polarity (PCP) signaling establishes cell orientation within the epithelial plane, but whether Wnts are instructive or permissive is debated. Reporting in Developmental Cell, Minegishi et al. (2017) uncover an instructive link from Wnt5a/b gradients to PCP-factor-regulated polarized cilia positioning that is essential to mouse embryo left-right asymmetry establishment. Copyright © 2017. Published by Elsevier Inc.

  14. Handedness and situs inversus in primary ciliary dyskinesia.

    PubMed Central

    McManus, I. C.; Martin, N.; Stubbings, G. F.; Chung, E. M. K.; Mitchison, H. M.

    2004-01-01

    ...The limbs on the right side are stronger. [The] cause may be ... [that] ... motion, and abilities of moving, are somewhat holpen from the liver, which lieth on the right side. (Sir Francis Bacon, Sylva sylvarum (1627).)Fifty per cent of people with primary ciliary dyskinesia (PCD) (also known as immotile cilia syndrome or Siewert-Kartagener syndrome) have situs inversus, which is thought to result from absent nodal ciliary rotation and failure of normal symmetry breaking. In a study of 88 people with PCD, only 15.2% of 46 individuals with situs inversus, and 14.3% of 42 individuals with situs solitus, were left handed. Because cerebral lateralization is therefore still present, the nodal cilia cannot be the primary mechanism responsible for symmetry breaking in the vertebrate body. Intriguingly, one behavioural lateralization, wearing a wrist-watch on the right wrist, did correlate with situs inversus. PMID:15615683

  15. Handedness and situs inversus in primary ciliary dyskinesia.

    PubMed

    McManus, I C; Martin, N; Stubbings, G F; Chung, E M K; Mitchison, H M

    2004-12-22

    ... The limbs on the right side are stronger. [The] cause may be ... [that] ... motion, and abilities of moving, are somewhat holpen from the liver, which lieth on the right side. (Sir Francis Bacon, Sylva sylvarum (1627).)Fifty per cent of people with primary ciliary dyskinesia (PCD) (also known as immotile cilia syndrome or Siewert-Kartagener syndrome) have situs inversus, which is thought to result from absent nodal ciliary rotation and failure of normal symmetry breaking. In a study of 88 people with PCD, only 15.2% of 46 individuals with situs inversus, and 14.3% of 42 individuals with situs solitus, were left handed. Because cerebral lateralization is therefore still present, the nodal cilia cannot be the primary mechanism responsible for symmetry breaking in the vertebrate body. Intriguingly, one behavioural lateralization, wearing a wrist-watch on the right wrist, did correlate with situs inversus.

  16. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans

    PubMed Central

    Burghoorn, Jan; Dekkers, Martijn P. J.; Rademakers, Suzanne; de Jong, Ton; Willemsen, Rob; Jansen, Gert

    2007-01-01

    In the cilia of the nematode Caenorhabditis elegans, anterograde intraflagellar transport (IFT) is mediated by two kinesin-2 complexes, kinesin II and OSM-3 kinesin. These complexes function together in the cilia middle segments, whereas OSM-3 alone mediates transport in the distal segments. Not much is known about the mechanisms that compartmentalize the kinesin-2 complexes or how transport by both kinesins is coordinated. Here, we identify DYF-5, a conserved MAP kinase that plays a role in these processes. Fluorescence microscopy and EM revealed that the cilia of dyf-5 loss-of-function (lf) animals are elongated and are not properly aligned into the amphid channel. Some cilia do enter the amphid channel, but the distal ends of these cilia show accumulation of proteins. Consistent with these observations, we found that six IFT proteins accumulate in the cilia of dyf-5(lf) mutants. In addition, using genetic analyses and live imaging to measure the motility of IFT proteins, we show that dyf-5 is required to restrict kinesin II to the cilia middle segments. Finally, we show that, in dyf-5(lf) mutants, OSM-3 moves at a reduced speed and is not attached to IFT particles. We propose that DYF-5 plays a role in the undocking of kinesin II from IFT particles and in the docking of OSM-3 onto IFT particles. PMID:17420466

  17. Influence of laser radiation polarisation on small-scale self-focusing in isotropic crystals

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. N.; Kochetkov, A. A.; Kuz'mina, M. S.; Burdonov, K. F.; Shaykin, A. A.; Khazanov, E. A.

    2017-04-01

    The gain of spatial noise in the field of an intense linearly polarised wave, propagating in a BaF2 cubic crystal with orientation [001], is directly measured. The previously predicted strong dependence of the evolution of small-scale self-focusing on the angle between the radiation polarisation vector and the crystallographic axis of crystal is demonstrated.

  18. Time-resolved proton polarisation (TPP) images tyrosyl radical sites in bovine liver catalase.

    NASA Astrophysics Data System (ADS)

    Zimmer, Oliver; Jouve, Hélène M.; Stuhrmann, Heinrich B.

    2017-05-01

    A differentiation between dynamic polarised protons close to tyrosyl radical sites in catalase and those of the bulk is achieved by time-resolved polarised neutron scattering. Three radical sites, all of them being close to the molecular centre and the heme, appear to be equally possible. Among these is tyr-369 the radial site of which had previously been proven by EPR.

  19. Verification of polarising optics for the LISA optical bench.

    PubMed

    Dehne, Marina; Tröbs, Michael; Heinzel, Gerhard; Danzmann, Karsten

    2012-12-03

    The Laser Interferometer Space Antenna (LISA) is a space-based interferometric gravitational wave detector. In the current baseline design for the optical bench, the use of polarising optics is foreseen to separate optical beams. Therefore it is important to investigate the influence of polarising components on the interferometer sensitivity and validate that the required picometre stability in the low-frequency band (1 mHz - 1 Hz) is achievable. This paper discusses the design of the experiment and the implemented stabilisation loops. A displacement readout fulfilling the requirement in the whole frequency band is presented. Alternatively, we demonstrate improvement of the noise performance by implementing various algorithms in data post-processing, which leads to an additional robustness for the LISA mission.

  20. Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; , M. Finger, Jr.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2017-04-01

    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q^2>1 (GeV/c)^2. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/ c polarised muon beam impinging on a polarised ^6LiD target. By analysing the full range in hadron transverse momentum p_T, the different p_T-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δ g/g is evaluated at leading order in pQCD at a hard scale of μ ^2= < Q^2 \\rangle = 3 (GeV/c)^2. It is determined in three intervals of the nucleon momentum fraction carried by gluons, x_g, covering the range 0.04 < x_{g} < 0.28 and does not exhibit a significant dependence on x_g. The average over the three intervals, < Δ g/g \\rangle = 0.113 ± 0.038_(stat.)± 0.036_(syst.) at < x_g \\rangle ≈ 0.10, suggests that the gluon polarisation is positive in the measured x_g range.

  1. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice.

    PubMed

    Abdelhamed, Zakia; Vuong, Shawn M; Hill, Lauren; Shula, Crystal; Timms, Andrew; Beier, David; Campbell, Kenneth; Mangano, Francesco T; Stottmann, Rolf W; Goto, June

    2018-01-09

    Pediatric hydrocephalus is characterized by an abnormal accumulation of cerebrospinal fluid (CSF) and is one of the most common congenital brain abnormalities. However, little is known about the molecular and cellular mechanisms regulating CSF flow in the developing brain. Through whole-genome sequencing analysis, we report that a homozygous splice site mutation in coiled-coil domain containing 39 ( Ccdc39 ) is responsible for early postnatal hydrocephalus in the progressive hydrocephal us ( prh ) mouse mutant. Ccdc39 is selectively expressed in embryonic choroid plexus and ependymal cells on the medial wall of the forebrain ventricle, and the protein is localized to the axoneme of motile cilia. The Ccdc39 prh/prh ependymal cells develop shorter cilia with disorganized microtubules lacking the axonemal inner arm dynein. Using high-speed video microscopy, we show that an orchestrated ependymal ciliary beating pattern controls unidirectional CSF flow on the ventricular surface, which generates bulk CSF flow in the developing brain. Collectively, our data provide the first evidence for involvement of Ccdc39 in hydrocephalus and suggest that the proper development of medial wall ependymal cilia is crucial for normal mouse brain development. © 2018. Published by The Company of Biologists Ltd.

  2. Large Interstellar Polarisation Survey (LIPS). I. FORS2 spectropolarimetry in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Bagnulo, Stefano; Cox, Nick L. J.; Cikota, Aleksandar; Siebenmorgen, Ralf; Voshchinnikov, Nikolai V.; Patat, Ferdinando; Smith, Keith T.; Smoker, Jonathan V.; Taubenberger, Stefan; Kaper, Lex; Cami, Jan; LIPS Collaboration

    2017-12-01

    Polarimetric studies of light transmitted through interstellar clouds may give constraints on the properties of the interstellar dust grains. Traditionally, broadband linear polarisation (BBLP) measurements have been considered an important diagnostic tool for the study of the interstellar dust, while comparatively less attention has been paid to spectropolarimetric measurements. However, spectropolarimetry may offer stronger constraints than BBLP, for example by revealing narrowband features, and by allowing us to distinguish the contribution of dust from the contribution of interstellar gas. Therefore, we have decided to carry out a Large Interstellar Polarisation Survey (LIPS) using spectropolarimetric facilities in both hemispheres. Here we present the results obtained in the Southern Hemisphere with the FORS2 instrument of the ESO Very Large Telescope. Our spectra cover the wavelength range 380-950 nm at a spectral resolving power of about 880. We have produced a publicly available catalogue of 127 linear polarisation spectra of 101 targets. We also provide the Serkowski-curve parameters, as well as the wavelength gradient of the polarisation position angle for the interstellar polarisation along 76 different lines of sight. In agreement with previous literature, we found that the best-fit parameters of the Serkowski-curve are not independent of each other. However, the relationships that we obtained are not always consistent with what has been found in previous studies. Table 2 and reduced data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A146

  3. Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties.

    PubMed

    Liu, Tongyu; Jin, Xingjian; Prasad, Rahul M; Sari, Youssef; Nauli, Surya M

    2014-09-01

    Ependymal cells are multiciliated epithelial cells that line the ventricles in the adult brain. Abnormal function or structure of ependymal cilia has been associated with various neurological deficits. For the first time, we report three distinct ependymal cell types, I, II, and III, based on their unique ciliary beating frequency and beating angle. These ependymal cells have specific localizations within the third ventricle of the mouse brain. Furthermore, neither ependymal cell types nor their localizations are altered by aging. Our high-speed fluorescence imaging analysis reveals that these ependymal cells have an intracellular pacing calcium oscillation property. Our study further shows that alcohol can significantly repress the amplitude of calcium oscillation and the frequency of ciliary beating, resulting in an overall decrease in volume replacement by the cilia. Furthermore, the pharmacological agent cilostazol could differentially increase cilia beating frequency in type II, but not in type I or type III, ependymal cells. In summary, we provide the first evidence of three distinct types of ependymal cells with calcium oscillation properties. © 2014 Wiley Periodicals, Inc.

  4. Clinical and Genetic Aspects of Primary Ciliary Dyskinesia / Kartagener Syndrome

    PubMed Central

    Leigh, Margaret W.; Pittman, Jessica E.; Carson, Johnny L.; Ferkol, Thomas W.; Dell, Sharon D.; Davis, Stephanie D.; Knowles, Michael R.; Zariwala, Maimoona A.

    2013-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder of motile cilia. Most of the disease-causing mutations identified to date involve the heavy (DNAH5) or intermediate (DNAI1) chain dynein genes in ciliary outer dynein arms, although a few mutations have been noted in other genes. Clinical molecular genetic testing for PCD is available for the most common mutations. The respiratory manifestations of PCD (chronic bronchitis leading to bronchiectasis, chronic rhino-sinusitis and chronic otitis media) reflect impaired mucociliary clearance owing to defective axonemal structure. Ciliary ultrastructural analysis in most patients (>80%) reveals defective dynein arms, although defects in other axonemal components have also been observed. Approximately 50% of PCD patients have laterality defects (including situs inversus totalis and, less commonly, heterotaxy and congenital heart disease), reflecting dysfunction of embryological nodal cilia. Male infertility is common and reflects defects in sperm tail axonemes. Most PCD patients have a history of neonatal respiratory distress, suggesting that motile cilia play a role in fluid clearance during the transition from a fetal to neonatal lung. Ciliopathies involving sensory cilia, including autosomal dominant or recessive polycystic kidney disease, Bardet-Biedl syndrome, and Alstrom syndrome, may have chronic respiratory symptoms and even bronchiectasis suggesting clinical overlap with PCD. PMID:19606528

  5. Reconstruction of the primordial power spectrum using temperature and polarisation data from multiple experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Gavin; Contaldi, Carlo R., E-mail: gavin.nicholson05@imperial.ac.uk, E-mail: c.contaldi@imperial.ac.uk

    2009-07-01

    We develop a method to reconstruct the primordial power spectrum, P(k), using both temperature and polarisation data from the joint analysis of a number of Cosmic Microwave Background (CMB) observations. The method is an extension of the Richardson-Lucy algorithm, first applied in this context by Shafieloo and Souradeep [1]. We show how the inclusion of polarisation measurements can decrease the uncertainty in the reconstructed power spectrum. In particular, the polarisation data can constrain oscillations in the spectrum more effectively than total intensity only measurements. We apply the estimator to a compilation of current CMB results. The reconstructed spectrum is consistentmore » with the best-fit power spectrum although we find evidence for a 'dip' in the power on scales k ≈ 0.002 Mpc{sup −1}. This feature appears to be associated with the WMAP power in the region 18 ≤ l ≤ 26 which is consistently below best-fit models. We also forecast the reconstruction for a simulated, Planck-like [2] survey including sample variance limited polarisation data.« less

  6. Late summer sea ice segmentation with multi-polarisation SAR features in C- and X-band

    NASA Astrophysics Data System (ADS)

    Fors, A. S.; Brekke, C.; Doulgeris, A. P.; Eltoft, T.; Renner, A. H. H.; Gerland, S.

    2015-09-01

    In this study we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around zero degrees Celsius. In situ data consisting of sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporally consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set, and for a reduced SAR feature set limited to temporally consistent features. In general, the algorithm produces a good late summer sea ice segmentation. Excluding temporally inconsistent SAR features improved the segmentation at air temperatures above zero degrees Celcius.

  7. Counterintuitive electron localisation from density-functional theory with polarisable solvent models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Stephen G., E-mail: sdale@ucmerced.edu; Johnson, Erin R., E-mail: erin.johnson@dal.ca

    2015-11-14

    Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minimamore » thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.« less

  8. Polarisation effects in twin-core fibre: Application for mode locking in a fibre laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobach, I A; Kablukov, S I; Podivilov, Evgenii V

    2012-09-30

    We report the first measurements of the longitudinal power distribution in a twin-core optical fibre at different input light polarisations. Experimental evidence is presented that, because of the difference in birefringence between the cores, the power in them depends on which core the beam is launched into. Experimental data are interpreted in terms of a modified polarisation model for mode coupling in twin-core fibres which takes into account the birefringence of the cores. In addition, we demonstrate for the first time the use of the polarisation properties of a twincore fibre for mode locking in a fibre laser. (optical fibres,more » lasers and amplifiers. properties and applications)« less

  9. Dynamic nuclear polarisation via the integrated solid effect II: experiments on naphthalene-h8 doped with pentacene-d14

    NASA Astrophysics Data System (ADS)

    Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.

    2014-07-01

    In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.

  10. Smoothened-antagonists reverse homogentisic acid-induced alterations of Hedgehog signaling and primary cilium length in alkaptonuria.

    PubMed

    Gambassi, Silvia; Geminiani, Michela; Thorpe, Stephen D; Bernardini, Giulia; Millucci, Lia; Braconi, Daniela; Orlandini, Maurizio; Thompson, Clare L; Petricci, Elena; Manetti, Fabrizio; Taddei, Maurizio; Knight, Martin M; Santucci, Annalisa

    2017-11-01

    Alkaptonuria (AKU) is an ultra-rare genetic disease, in which the accumulation of a toxic metabolite, homogentisic acid (HGA) leads to the systemic development of ochronotic aggregates. These aggregates cause severe complications mainly at the level of joints with extensive degradation of the articular cartilage. Primary cilia have been demonstrated to play an essential role in development and the maintenance of articular cartilage homeostasis, through their involvement in mechanosignaling and Hedgehog signaling pathways. Hedgehog signaling has been demonstrated to be activated in osteoarthritis (OA) and to drive cartilage degeneration in vivo. The numerous similarities between OA and AKU suggest that primary cilia Hedgehog signaling may also be altered in AKU. Thus, we characterized an AKU cellular model in which healthy chondrocytes were treated with HGA (66 µM) to replicate AKU cartilage pathology. We investigated the degree of activation of the Hedgehog signaling pathway and how treatment with inhibitors of the receptor Smoothened (Smo) influenced Hedgehog activation and primary cilia structure. The results obtained in this work provide a further step in the comprehension of the pathophysiological features of AKU, suggesting a potential therapeutic approach to modulate AKU cartilage degradation processes through manipulation of the Hedgehog pathway. © 2016 Wiley Periodicals, Inc.

  11. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia

    PubMed Central

    Patel-King, Ramila S.; Gilberti, Renée M.; Hom, Erik F. Y.; King, Stephen M.

    2013-01-01

    Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle–like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly. PMID:23864713

  12. VizieR Online Data Catalog: Broadband polarisation of radio AGN (O'Sullivan+, 2017)

    NASA Astrophysics Data System (ADS)

    O'Sullivan, S. P.; Purcell, C. R.; Anderson, C. S.; Farnes, J. S.; Sun, X. H.; Gaensler, B. M.

    2017-08-01

    Linear polarisation data as a function of wavelength-squared for 100 extragalactic radio sources, selected to be highly polarised at 1.4GHz. The data presented here were obtained using the Australia Telescope Compact Array (ATCA) over 1.1-3.1GHz (16cm) with 1MHz spectral resolution between 2014 April 19-28. The integrated emission from each source, imaged at 10 MHz intervals, is presented below. See Section 2 for details. (2 data files).

  13. Polarisation of the auroral red line in the Earth's upper atmosphere: a review (Invited)

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Barthelemy, M.; Lilensten, J.; Bommier, V.; Simon Wedlund, C.

    2013-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Polarimetry of auroral emission lines in the Earth's upper atmosphere has been overlooked for decades. However, the bright red auroral line (6300Å) produced by collisional impact with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated recently with observations obtained by Lilensten et al (2008), Barthélemy et al (2011) and Lilensten et al (2013) with a photopolarimeter. Analysis of the data indicates that the red auroral emission line is polarised at a level of a few percent. The results are compared to theoretical predictions of Bommier et al (2011) that were obtained for a collimated beam. The comparison suggests the existence of depolarization processes whose origin will be discussed. A new dedicated spectropolarimeter currently under development will also be presented. This instrument will cover the optical spectrum from approximately 400 to 700 nm providing simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... The importance of these polarisation measurements in the context of upper atmosphere modelling and geomagnetic activity will be discussed. Lilensten, J. et al, Polarization in aurorae: A new dimension for space environments studies, Geophys. Res. Lett., 26, 269, 2008 Barthélemy M. et al, Polarisation in the auroral red line during coordinated EISCAT Svalbard Radar/optical experiments, Annales Geophysicae, Volume 29, Issue 6, 2011, 1101-1112, 2011. Bommier V. et al, The Theoretical Impact Polarization of the O I 6300 Å Red Line of Earth Auroræ, Annales Geophysicae, Volume 29, Issue 1, 2011, 71-79, 2011 Lilensten, J. et al, The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis, Journal of Space Weather and Space

  14. A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia

    PubMed Central

    Patel-King, Ramila S.; King, Stephen M.

    2016-01-01

    WDR92 is a highly conserved WD-repeat protein that has been proposed to be involved in apoptosis and also to be part of a prefoldin-like cochaperone complex. We found that WDR92 has a phylogenetic signature that is generally compatible with it playing a role in the assembly or function of specifically motile cilia. To test this hypothesis, we performed an RNAi-based knockdown of WDR92 gene expression in the planarian Schmidtea mediterranea and were able to achieve a robust reduction in mRNA expression to levels undetectable under our standard RT-PCR conditions. We found that this treatment resulted in a dramatic reduction in the rate of organismal movement that was caused by a switch in the mode of locomotion from smooth, cilia-driven gliding to muscle-based, peristaltic contractions. Although the knockdown animals still assembled cilia of normal length and in similar numbers to controls, these structures had reduced beat frequency and did not maintain hydrodynamic coupling. By transmission electron microscopy we observed that many cilia had pleiomorphic defects in their architecture, including partial loss of dynein arms, incomplete closure of the B-tubule, and occlusion or replacement of the central pair complex by accumulated electron-dense material. These observations suggest that WDR92 is part of a previously unrecognized cytoplasmic chaperone system that is specifically required to fold key components necessary to build motile ciliary axonemes. PMID:26912790

  15. Optimisation of dynamic nuclear polarisation of [1-13C] pyruvate by addition of gadolinium-based contrast agents

    NASA Astrophysics Data System (ADS)

    Friesen-Waldner, Lanette; Chen, Albert; Mander, Will; Scholl, Timothy J.; McKenzie, Charles A.

    2012-10-01

    Dynamic nuclear polarisation (DNP) of carbon-13 (13C) enriched endogenous compounds provides a novel means for magnetic resonance imaging and spectroscopy of biological processes. Adding small amounts of gadolinium-based contrast agents (GBCAs) to the 13C-enriched substrate matrix increases the amount of hyperpolarisation that can be achieved, but also may decrease the longitudinal relaxation time (T1) of the 13C nucleus in solution. This study examined the effects of five different GBCA at concentrations of 0.5, 1, 2, and 3 mM on [1-13C]-enriched pyruvic acid. It was found that contrast agents with an open chain structure (Gadobenate dimeglumine, Gadopentetate dimeglumine, Gadodiamide) caused the largest enhancement (up to 82%) in solid state polarisation relative to solutions without GBCA. In the liquid state, T1 of pyruvate decreased by as much as 62% and polarisation was much lower (70%) relative to solutions without GBCA added. Conversely, for GBCA with macrocyclic structures (Gadoterate meglumine, Gadoteridol), the solid state polarisation enhancement was only slightly less than the open chain GBCA, but enhanced polarisation was retained much better in the liquid state with minimal decrease in T1 (25% at the highest GBCA concentrations). Near maximum polarisation in the solid state was obtained at a GBCA concentration of 2 mM, with a higher concentration of 3 mM producing minimal improvement. These results indicate that the macrocyclic contrast agents provide the best combination of high solid state and liquid state polarisations with minimal loss of T1 in experiments with hyperpolarised 13C-enriched pyruvate. This suggests that macrocyclic contrast agents should be the GBCA of choice for maximising signal in experiments with hyperpolarised 13C-enriched pyruvate, particularly for in vivo measurements where shortened substrate T1 is especially problematic.

  16. Centrioles are freed from cilia by severing prior to mitosis.

    PubMed

    Parker, Jeremy D K; Hilton, Laura K; Diener, Dennis R; Rasi, M Qasim; Mahjoub, Moe R; Rosenbaum, Joel L; Quarmby, Lynne M

    2010-07-01

    Cilia are necessary for normal tissue development and homeostasis and are generally present during interphase, but not in mitosis. The precise mechanism of premitotic ciliary loss has been controversial, with data supporting either sequential disassembly through the transition zone or, alternatively, a severing event at the base of the cilia. Here we show by live cell imaging and immunofluorescence microscopy that resorbing flagella of Chlamydomonas leave remnants associated with the mother cell wall. We postulated that the remnants are the product of severing of doublet microtubules between the basal bodies and the flagellar transition zone, thereby freeing the centrioles to participate in spindle organization. We show via TEM that flagellar remnants are indeed flagellar transition zones encased in vesicles derived from the flagellar membrane. This transition zone vesicle can be lodged within the cell wall or it can be expelled into the environment. This process is observable in Chlamydomonas, first because the released flagellar remnants can remain associated with the cell by virtue of attachments to the cell wall, and second because the Chlamydomonas transition zone is particularly rich with electron-dense structure. However, release of basal bodies for spindle-associated function is likely to be conserved among the eukaryotes. 2010 Wiley-Liss, Inc.

  17. Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band

    NASA Astrophysics Data System (ADS)

    Fors, Ane S.; Brekke, Camilla; Doulgeris, Anthony P.; Eltoft, Torbjørn; Renner, Angelika H. H.; Gerland, Sebastian

    2016-02-01

    In this study, we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around 0 °C. Sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporal consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set and for a reduced SAR feature set limited to temporally consistent features. In C band, the algorithm produced a good late-summer sea ice segmentation, separating the scenes into segments that could be associated with different sea ice types in the next step. The X-band performance was slightly poorer. Excluding temporally inconsistent SAR features improved the segmentation in one of the X-band scenes.

  18. An all-sky survey of circular polarisation at 200 MHz

    NASA Astrophysics Data System (ADS)

    Lenc, Emil; Murphy, Tara; Lynch, C. R.; Kaplan, D. L.; Zhang, S. N.

    2018-05-01

    We present results from the first all-sky radio survey in circular polarisation. The survey uses the Murchison Widefield Array (MWA) to cover 30 900 sq. deg., over declinations south of +30° and north of -86° centred at 200 MHz (over a 169 - 231 MHz band). We achieve a spatial resolution of ˜3' and a typical sensitivity of 3.0 mJy PSF-1 over most of the survey region. We demonstrate a new leakage mitigation technique that reduces the leakage from total intensity into circular polarisation by an order of magnitude. In a blind survey of the imaged region, we detect 14 pulsars in circular polarisation above a 6σ threshold. We also detect six transient sources associated with artificial satellites. A targeted survey of 2 376 pulsars within the surveyed region yielded 33 detections above 4σ. Looking specifically at pulsars previously detected at 200 MHz in total intensity, this represents a 35% detection rate. We also conducted a targeted survey of 2 400 known flare stars, this resulted in two tentative detections above 4σ. A similar targeted search for 1 506 known exoplanets in the field yielded no detections above 4σ. The success of the survey suggests that similar surveys at longer wavelength bands and of deeper fields are warranted.

  19. Studies on ciliated epithelia of the human genital tract. I. Swelling of the cilia of Fallopian tube epithelium in organ cultures infected with Mycoplasma hominis.

    PubMed Central

    Mårdh, P A; Weström, L; von Mecklenburg, C; Hammar, E

    1976-01-01

    Organ cultures of human Fallopian tubes were infected with Mycoplasma hominis. Scanning and transmission electron microscopy revealed swelling of the cilia of the tubal epithelial cells in infected cultures. In some, the entire cilia were swollen; in others, only the tips. Uninfected cultures kept for up to 7 days showed no structural changes in the cilia or other surface structures. M. hominis multiplied in organ cultures, but not in culture medium without tissue. A practical organ culture technique for the preparation of specimens for electron microscopy is described. Images PMID:1260408

  20. Erratum: Correction to: Polarisation vision: overcoming challenges of working with a property of light we barely see

    NASA Astrophysics Data System (ADS)

    Foster, James J.; Temple, Shelby E.; How, Martin J.; Daly, Ilse M.; Sharkey, Camilla R.; Wilby, David; Roberts, Nicholas W.

    2018-06-01

    In "Polarisation vision: overcoming challenges of working with a property of light we barely see" (Foster et al. 2018) we provide a basic description of how Stokes parameters can be estimated and used to calculate the angle of polarisation (AoP).

  1. Culture of Primary Ciliary Dyskinesia Epithelial Cells at Air-Liquid Interface Can Alter Ciliary Phenotype but Remains a Robust and Informative Diagnostic Aid

    PubMed Central

    Coles, Janice L.; Williams, Gwyneth; Rutman, Andrew; Goggin, Patricia M.; Adam, Elizabeth C.; Page, Anthony; Evans, Hazel J.; Lackie, Peter M.; O’Callaghan, Christopher; Lucas, Jane S.

    2014-01-01

    Background The diagnosis of primary ciliary dyskinesia (PCD) requires the analysis of ciliary function and ultrastructure. Diagnosis can be complicated by secondary effects on cilia such as damage during sampling, local inflammation or recent infection. To differentiate primary from secondary abnormalities, re-analysis of cilia following culture and re-differentiation of epithelial cells at an air-liquid interface (ALI) aids the diagnosis of PCD. However changes in ciliary beat pattern of cilia following epithelial cell culture has previously been described, which has brought the robustness of this method into question. This is the first systematic study to evaluate ALI culture as an aid to diagnosis of PCD in the light of these concerns. Methods We retrospectively studied changes associated with ALI-culture in 158 subjects referred for diagnostic testing at two PCD centres. Ciliated nasal epithelium (PCD n = 54; non-PCD n = 111) was analysed by high-speed digital video microscopy and transmission electron microscopy before and after culture. Results Ciliary function was abnormal before and after culture in all subjects with PCD; 21 PCD subjects had a combination of static and uncoordinated twitching cilia, which became completely static following culture, a further 9 demonstrated a decreased ciliary beat frequency after culture. In subjects without PCD, secondary ciliary dyskinesia was reduced. Conclusions The change to ciliary phenotype in PCD samples following cell culture does not affect the diagnosis, and in certain cases can assist the ability to identify PCD cilia. PMID:24586956

  2. Physiological Control of Molluscan Gill Cilia by 5-Hydroxytryptamine

    PubMed Central

    Gosselin, R. E.; Moore, K. E.; Milton, A. S.

    1962-01-01

    An examination is made of the hypothesis that endogenous 5-hydroxytryptamine (5-HT) serves as a local hormone regulating ciliary activity in the lamellibranch gill. These cilia are sensitive to exogenous 5-HT and respond to it by a prompt, sustained, and reversible rise in beat frequency; at the same time the carbohydrate metabolism is stimulated, as described elsewhere. Control gill contains small but definite amounts of endogenous 5-HT according to bioassay, fluorometry, and chromatography. The amount can be increased markedly by exposing the isolated gill to the precursor substance 5-hydroxytryptophan but not l-tryptophan. As the tissue level of 5-HT rises, the spontaneous beat frequency also rises. Both remain elevated for hours and perhaps for days. The gill of Mytilus edulis is richer than the gill of Modiolus demissus in both endogenous 5-HT and effective 5-hydroxytryptophan decarboxylase activity. Modiolus gill lacks the 5-hydroxyindole oxidase by which Mytilus gill destroys 5-HT. What if any mechanism exists in Modiolus for degrading 5-HT is not known, but monoamine oxidase is not present. The 5-HT content of Mytilus and Modiolus gill cannot be modified by treatment with reserpine or α-methyl-dopa. Which cells of the gill synthesize and destroy 5-HT has not been established, but these observations support the concept that the physiological activity of lamellibranch gill cilia is controlled by a serotonergic mechanism. PMID:13949402

  3. Ciliatoxicity in human primary bronchiolar epithelial cells after repeated exposure at the air-liquid interface with native mainstream smoke of K3R4F cigarettes with and without charcoal filter.

    PubMed

    Aufderheide, Michaela; Scheffler, Stefanie; Ito, Shigeaki; Ishikawa, Shinkichi; Emura, Makito

    2015-01-01

    Mucociliary clearance is the primary physical mechanism to protect the human airways against harmful effects of inhaled particles. Environmental factors play a significant role in the impairment of this defense mechanism, whereas cigarette smoke is discussed to be one of the clinically most important causes. Impaired mucociliary clearance in smokers has been connected to changes in ciliated cells such as decreased numbers, altered structure and beat frequency. Clinical studies have shown that cilia length is reduced in healthy smokers and that long-term exposure to cigarette smoke leads to reduced numbers of ciliated cells in mice. We present an in vitro model of primary normal human bronchiolar epithelial (NHBE) cells with in vivo like morphology to study the influence of cigarette mainstream smoke on ciliated cells. We exposed mucociliary differentiated cultures repeatedly to non-toxic concentrations of mainstream cigarette smoke (4 cigarettes, 5 days/week, 8 repetitions in total) at the air-liquid interface. Charcoal filter tipped cigarettes were compared to those being equipped with standard cellulose acetate filters. Histopathological analyses of the exposed cultures showed a reduction of cilia bearing cells, shortening of existing cilia and finally disappearance of all cilia in cigarette smoke exposed cells. In cultures exposed to charcoal filtered cigarette smoke, little changes in cilia length were seen after four exposure repetitions, but those effects were reversed after a two day recovery period. Those differences indicate that volatile organic compounds, being removed by the charcoal filter tip, affect primary bronchiolar epithelial cells concerning their cilia formation and function comparable with the in vivo situation. In conclusion, our in vitro model presents a valuable tool to study air-borne ciliatoxic compounds. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Measurement and interpretation of fluorescence polarisations in phospholipid dispersions.

    PubMed

    Bashford, C L; Morgan, C G; Radda, G K

    1976-03-05

    An instrument that measures the temperature dependence of fluorescence polarisation and intensity directly and continuously is described. The behaviour of four fluorescent probes bound to a number of well characterised model systems was then examined. The motional properties of the probes were determined from the polarisation and intensity data and were found to be sensitive to the crystalline-liquid crystalline phase transitions in phospholipid vesicles of dimyristoly and dipalmitoly phosphatidylcholine. Binary mixture of dilauroyl and dipalmitoyl phosphatidylcholine show lateral phase separation and in this system the probes parition preferentially into the more 'fluid' phase. In systems that have been reported to contain 'short range order' or 'liquid clustering', such as dioleoyl phosphatidylcholine and liquid paraffin, the motion of the probes was found to have anomalous Arrhenius behaviour consistent with the idea that homogeneous phases were not being sampled. The significance of these findings for the interpretation of the behaviour of fluorescent probes bound to natural membranes is discussed.

  5. Threshold π 0 Photoproduction on Transverse Polarised Protons at MAMI

    DOE PAGES

    Schumann, S.

    2015-09-14

    Polarisation-dependent differential cross sections σ T associated with the target asymmetry T have been measured for the reaction γ p -→ p π 0 with transverse target polarisation from π 0 threshold up to photon energies of 190 MeV. Additionally, the data were obtained using a frozen-spin butanol target with the Crystal Ball / TAPS detector set-up and the Glasgow photon tagging system at the Mainz Microtron MAMI. Our results for σ T have been used in combination with our previous measurements of the unpolarised cross section σ 0 and the beam asymmetry Σ for a model-independent determination of Smore » and P wave multipoles in the π 0 threshold region, which includes for the first time a direct determination of the imaginary part of the E 0+ multipole.« less

  6. Odor-induced phosphorylation of olfactory cilia proteins.

    PubMed Central

    Boekhoff, I; Schleicher, S; Strotmann, J; Breer, H

    1992-01-01

    Stimulation of isolated rat olfactory cilia in the presence of [gamma-32P]ATP leads to a significantly enhanced incorporation of [32P]phosphate. Depending on the type of odorants applied, the induced phosphorylation is completely blocked by specific inhibitors of either protein kinase A or protein kinase C. Time-course experiments indicate that the odor-induced modification of ciliary proteins is transient; the intensity of labeling decayed over time (1-10 sec). Separation of ciliary proteins by SDS/polyacrylamide gel electrophoresis followed by autoradiography demonstrated that upon stimulation with lilial, a single polypeptide (50,000 Da) was phosphorylated; the size of the modified protein is in line with the hypothesis that odorant receptors are phosphorylated subsequent to activation by specific odors. Images PMID:1334554

  7. A morphological study of the sulfurisation of digenite to covellite using reflected polarised light microscopy

    NASA Astrophysics Data System (ADS)

    Rask Møller Frøkiær, Heidi; Warner, Terence E.

    2017-08-01

    A series of copper rods were reacted with sulfur vapour in evacuated glass ampoules at ∼445 °C. Product materials were characterised by powder X-ray diffraction and reflected polarised light microscopy. Copper sulfurised rapidly to digenite, γ-Cu2-xS, under these conditions, whereas the subsequent sulfurisation to covellite, CuS, was notably slower, yielding texturally distinguishable inner (secondary) and outer (primary) CuS regions. A two-stage partial sulfurisation of γ-Cu1.8S resulted in the external growth of two successive layers of primary CuS, which demonstrates decisively that covellite - besides being a p-type metal - is ionically conducting at 445 °C, although considerably less so than digenite. We infer that the growth of platy covellite crystals and their radial alignment in the primary CuS layer are a consequence of copper ion mobility being restricted to the basal plane of the covellite structure. Sulfurising a coil of copper wire at ∼445 °C is an effective method for synthesising covellite.

  8. New Roles of the Primary Cilium in Autophagy

    PubMed Central

    Ávalos, Yenniffer; Peña-Oyarzun, Daniel; Budini, Mauricio

    2017-01-01

    The primary cilium is a nonmotile organelle that emanates from the surface of multiple cell types and receives signals from the environment to regulate intracellular signaling pathways. The presence of cilia, as well as their length, is important for proper cell function; shortened, elongated, or absent cilia are associated with pathological conditions. Interestingly, it has recently been shown that the molecular machinery involved in autophagy, the process of recycling of intracellular material to maintain cellular and tissue homeostasis, participates in ciliogenesis. Cilium-dependent signaling is necessary for autophagosome formation and, conversely, autophagy regulates both ciliogenesis and cilium length by degrading specific ciliary proteins. Here, we will discuss the relationship that exists between the two processes at the cellular and molecular level, highlighting what is known about the effects of ciliary dysfunction in the control of energy homeostasis in some ciliopathies. PMID:28913352

  9. New Roles of the Primary Cilium in Autophagy.

    PubMed

    Ávalos, Yenniffer; Peña-Oyarzun, Daniel; Budini, Mauricio; Morselli, Eugenia; Criollo, Alfredo

    2017-01-01

    The primary cilium is a nonmotile organelle that emanates from the surface of multiple cell types and receives signals from the environment to regulate intracellular signaling pathways. The presence of cilia, as well as their length, is important for proper cell function; shortened, elongated, or absent cilia are associated with pathological conditions. Interestingly, it has recently been shown that the molecular machinery involved in autophagy, the process of recycling of intracellular material to maintain cellular and tissue homeostasis, participates in ciliogenesis. Cilium-dependent signaling is necessary for autophagosome formation and, conversely, autophagy regulates both ciliogenesis and cilium length by degrading specific ciliary proteins. Here, we will discuss the relationship that exists between the two processes at the cellular and molecular level, highlighting what is known about the effects of ciliary dysfunction in the control of energy homeostasis in some ciliopathies.

  10. The Ringo2 Optical Polarisation Catalogue of 13 High-Energy Blazars

    NASA Astrophysics Data System (ADS)

    Barres de Almeida, Ulisses; Jermak, Helen; Mundell, Carole; Lindfors, Elina; Nilsson, Kari; Steele, Iain

    2015-08-01

    We present the findings of the Ringo2 3-year survey of 13 blazars (3 FSRQs and 10 BL Lacs) with regular coverage and reasonably fast cadence of one to three observations a week. Ringo2 was installed on the Liverpool Robotic Telescope (LT) on the Canary Island of La Palma between 2009 and 2012 and monitored thirteen high-energy-emitting blazars in the northern sky. The objects selected as well as the observational strategy were tuned to maximise the synergies with high-energy X- to gamma-ray observations. Therefore this sample stands out as a well-sampled, long-term view of high-energy AGN jets in polarised optical light. Over half of the sources exhibited an increase in optical flux during this period and almost a quarter were observed in outburst. We compare the optical data to gamma (Fermi/LAT) and X-ray data during these periods of outburst. In this talk we present the data obtained for all sources over the lifetime of Ringo2 with additional optical data from the KVA telescope and the SkyCamZ wide-field camera (on the LT), we explore the relationship between the change in polarisation angle as a function of time (dEVPA/dMJD), flux and polarisation degree along with cross correlation comparisons of optical and high-energy flux.

  11. The spatiotemporal organization of cilia activity drives multiscale circular flows of mucus in reconstituted human bronchial epithelium

    NASA Astrophysics Data System (ADS)

    Loiseau, Etienne; Gras, Delphine; Chanez, Pascal; Viallat, Annie

    2017-11-01

    Chronic respiratory diseases affect hundreds of millions of people worldwide. The bronchial epithelium is the first barrier to protect the respiratory tract via an innate mechanism called mucociliary clearance. It consists in the active transport of a sticky fluid, the mucus, via a myriad of cilia at the epithelial surface of the airways. The mucus traps inhaled pathogens and the protective role of the mucociliary clearance relies on the ability of the cilia to self-organize and coordinate their beating to transport the mucus over the full bronchial tree till its elimination through swallowing or expectoration. Despite a rich corpus of clinical studies, chronic respiratory diseases remain poorly understood and quantitative biophysical studies are still missing. Here we will present the physical mechanisms underlying the mucociliary transport. We will show how the cilia self-organize during the ciliogenesis and how the coordination of their beating direction leads to the formation of fluid flow patterns at the macroscopic scale. Finally, we will discuss the role of long range hydrodynamics interactions in this intricate coupled system. ANR MUCOCIL project, Grant ANR-13-BSV5-0015 and European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement n. PCOFUND-GA-2013-609102.

  12. The NIMA-like kinase Nek2 is a key switch balancing cilia biogenesis and resorption in the development of left-right asymmetry.

    PubMed

    Endicott, S Joseph; Basu, Basudha; Khokha, Mustafa; Brueckner, Martina

    2015-12-01

    Vertebrate left-right (LR) asymmetry originates at a transient left-right organizer (LRO), a ciliated structure where cilia play a crucial role in breaking symmetry. However, much remains unknown about the choreography of cilia biogenesis and resorption at this organ. We recently identified a mutation affecting NEK2, a member of the NIMA-like serine-threonine kinase family, in a patient with congenital heart disease associated with abnormal LR development. Here, we report how Nek2 acts through cilia to influence LR patterning. Both overexpression and knockdown of nek2 in Xenopus result in abnormal LR development and reduction of LRO cilia count and motility, phenotypes that are modified by interaction with the Hippo signaling pathway. nek2 knockdown leads to a centriole defect at the LRO, consistent with the known role of Nek2 in centriole separation. Nek2 overexpression results in premature ciliary resorption in cultured cells dependent on function of the tubulin deacetylase Hdac6. Finally, we provide evidence that the known interaction between Nek2 and Nup98, a nucleoporin that localizes to the ciliary base, is important for regulating cilium resorption. Together, these data show that Nek2 is a switch balancing ciliogenesis and resorption in the development of LR asymmetry. © 2015. Published by The Company of Biologists Ltd.

  13. Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants

    PubMed Central

    Sullivan-Brown, Jessica; Schottenfeld, Jodi; Okabe, Noriko; Hostetter, Christine L.; Serluca, Fabrizio C.; Thiberge, Stephan Y.; Burdine, Rebecca D.

    2008-01-01

    Zebrafish are an attractive model for studying the earliest cellular defects occurring during renal cyst formation because its kidney (the pronephros) is simple and genes that cause cystic kidney diseases (CKD) in humans, cause pronephric dilations in zebrafish. By comparing phenotypes in three different mutants, locke, swt and kurly, we find that dilations occur prior to 48 hpf in the medial tubules, a location similar to where cysts form in some mammalian diseases. We demonstrate that the first observeable phenotypes associated with dilation include cilia motility and luminal remodeling defects. Importantly, we show that some phenotypes common to human CKD, such as an increased number of cells, are secondary consequences of dilation. Despite having differences in cilia motility, locke, swt and kurly share similar cystic phenotypes, suggesting that they function in a common pathway. To begin to understand the molecular mechanisms involved in cyst formation, we have cloned the swt mutation and find that it encodes a novel leucine rich repeat containing protein (LRRC50), which is thought to function in correct dynein assembly in cilia. Finally, we show that knockdown of polycystic kidney disease 2 (pkd2) specifically causes glomerular cysts and does not affect cilia motility, suggesting multiple mechanisms exist for cyst formation. PMID:18178183

  14. Variable polarisation and Doppler tomography of PSR J1023+0038 - Evidence for the magnetic propeller during flaring?

    NASA Astrophysics Data System (ADS)

    Hakala, Pasi; Kajava, Jari J. E.

    2018-03-01

    Transitional millisecond pulsars are systems that alternate between an accreting low-mass X-ray binary (LMXB) state and a non-accreting radio pulsar state. When at the LMXB state, their X-ray and optical light curves show rapid flares and dips, the origin of which is not well understood. We present results from our optical and NIR observing campaign of PSR J1023+0038, a transitional millisecond pulsar observed in an accretion state. Our wide-band optical photopolarimetry indicates that the system shows intrinsic linear polarisation, the degree of which is anticorrelated with optical emission, i.e. the polarisation could be diluted during the flares. However, the change in position angle during the flares suggests an additional emerging polarised component during the flares. We also find, based on our H α spectroscopy and Doppler tomography, that there is indication for change in the accretion disc structure/emission during the flares, possibly due to a change in accretion flow. This, together with changing polarisation during the flares, could mark the existence of magnetic propeller mass ejection process in the system. Furthermore, our analysis of flare profiles in both optical and NIR shows that NIR flares are at least as powerful as the optical ones and both can exhibit transition time-scales less than 3 s. The optical/NIR flares therefore seem to originate from a separate, polarised transient component, which might be due to Thomson scattering from propeller ejected matter.

  15. Active polarisation control of a quantum cascade laser using tuneable birefringence in waveguides.

    PubMed

    Dhirhe, D; Slight, T J; Holmes, B M; Ironside, C N

    2013-10-07

    We discuss the design, modelling, fabrication and characterisation of an integrated tuneable birefringent waveguide for quantum cascade lasers. We have fabricated quantum cascade lasers operating at wavelengths around 4450 nm that include polarisation mode converters and a differential phase shift section. We employed below laser threshold electroluminescence to investigate the single pass operation of the integrated device. We use a theory based on the electro-optic properties of birefringence in quantum cascade laser waveguides combined with a Jones matrix based description to gain an understanding of the electroluminescence results. With the quantum cascade lasers operating above threshold we demonstrated polarisation control of the output.

  16. What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia.

    PubMed

    Walentek, Peter; Quigley, Ian K

    2017-01-01

    Over the past years, the Xenopus embryo has emerged as an incredibly useful model organism for studying the formation and function of cilia and ciliated epithelia in vivo. This has led to a variety of findings elucidating the molecular mechanisms of ciliated cell specification, basal body biogenesis, cilia assembly, and ciliary motility. These findings also revealed the deep functional conservation of signaling, transcriptional, post-transcriptional, and protein networks employed in the formation and function of vertebrate ciliated cells. Therefore, Xenopus research can contribute crucial insights not only into developmental and cell biology, but also into the molecular mechanisms underlying cilia related diseases (ciliopathies) as well as diseases affecting the ciliated epithelium of the respiratory tract in humans (e.g., chronic lung diseases). Additionally, systems biology approaches including transcriptomics, genomics, and proteomics have been rapidly adapted for use in Xenopus, and broaden the applications for current and future translational biomedical research. This review aims to present the advantages of using Xenopus for cilia research, highlight some of the evolutionarily conserved key concepts and mechanisms of ciliated cell biology that were elucidated using the Xenopus model, and describe the potential for Xenopus research to address unresolved questions regarding the molecular mechanisms of ciliopathies and airway diseases. © 2017 Wiley Periodicals, Inc.

  17. Polarised Multiangular Reflectance Measurements Using the Finnish Geodetic Institute Field Goniospectrometer

    PubMed Central

    Suomalainen, Juha; Hakala, Teemu; Peltoniemi, Jouni; Puttonen, Eetu

    2009-01-01

    The design, operation, and properties of the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO) are presented. FIGIFIGO is a portable instrument for the measurement of surface Bidirectional Reflectance Factor (BRF) for samples with diameters of 10 – 50 cm. A set of polarising optics enable the measurement of linearly polarised BRF over the full solar spectrum (350 – 2,500 nm). FIGIFIGO is designed mainly for field operation using sunlight, but operation in a laboratory environment is also possible. The acquired BRF have an accuracy of 1 – 5% depending on wavelength, sample properties, and measurement conditions. The angles are registered at accuracies better than 2°. During 2004 – 2008, FIGIFIGO has been used in the measurement of over 150 samples, all around northern Europe. The samples concentrate mostly on boreal forest understorey, snow, urban surfaces, and reflectance calibration surfaces. PMID:22412342

  18. Flow pattern in the ventricle of brain with cilia beating and CSF circulation

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Westendorf, Christian; Faubel, Regina; Eichele, Gregor; Bodenschatz, Eberhard

    We recently discovered that cilia of the ventral third ventricle (v3V) of mammalian brain generate a complex flow network close to the wall. However, the flow pattern in the overall three dimensional v3V, especially under physiological condition, remains to be investigated. Computational fluid dynamics is arguably the best approach for such investigations. Several v3V geometries are reconstructed from different data for comparison study. The lattice Boltzmann method and immersed boundary method are used to reproduce the experimental set-up for an opened v3V firstly. The experimentally recorded cilia induced flow network is projected on the curved v3V wall. The flow maps obtained numerically at different heights from the v3V wall agree with the experimental data qualitatively. We then consider the entire v3V with ciliary flow network along the wall for boundary condition. Moreover, we add a time dependent flow rate to represent the CSF circulation, and study flow pattern in the ventricle. We thank the Max Planck Society (MPG) for financial support. This work is conducted within the Physics and Medicine Initiative at Goettingen Campus between MPG and University Medical Center.

  19. Two Heteromeric Kinesin Complexes in Chemosensory Neurons and Sensory Cilia of Caenorhabditis elegans

    PubMed Central

    Signor, Dawn; Wedaman, Karen P.; Rose, Lesilee S.; Scholey, Jonathan M.

    1999-01-01

    Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia. PMID:9950681

  20. High-Accuracy Analysis of Compton Scattering in Chiral EFT: Proton and Neutron Polarisabilities

    NASA Astrophysics Data System (ADS)

    Griesshammer, Harald W.; Phillips, Daniel R.; McGovern, Judith A.

    2013-10-01

    Compton scattering from protons and neutrons provides important insight into the structure of the nucleon. A new extraction of the static electric and magnetic dipole polarisabilities αE 1 and βM 1 of the proton and neutron from all published elastic data below 300 MeV in Chiral Effective Field Theory shows that within the statistics-dominated errors, the proton and neutron polarisabilities are identical, i.e. no iso-spin breaking effects of the pion cloud are seen. Particular attention is paid to the precision and accuracy of each data set, and to an estimate of residual theoretical uncertainties. ChiEFT is ideal for that purpose since it provides a model-independent estimate of higher-order corrections and encodes the correct low-energy dynamics of QCD, including, for few-nucleon systems used to extract neutron polarisabilities, consistent nuclear currents, rescattering effects and wave functions. It therefore automatically respects the low-energy theorems for photon-nucleus scattering. The Δ (1232) as active degree of freedom is essential to realise the full power of the world's Compton data.Its parameters are constrained in the resonance region. A brief outlook is provided on what kind of future experiments can improve the database. Supported in part by UK STFC, DOE, NSF, and the Sino-German CRC 110.

  1. LRRC6 Mutation Causes Primary Ciliary Dyskinesia with Dynein Arm Defects

    PubMed Central

    Horani, Amjad; Ferkol, Thomas W.; Shoseyov, David; Wasserman, Mollie G.; Oren, Yifat S.; Kerem, Batsheva; Amirav, Israel; Cohen-Cymberknoh, Malena; Dutcher, Susan K.; Brody, Steven L.; Elpeleg, Orly; Kerem, Eitan

    2013-01-01

    Despite recent progress in defining the ciliome, the genetic basis for many cases of primary ciliary dyskinesia (PCD) remains elusive. We evaluated five children from two unrelated, consanguineous Palestinian families who had PCD with typical clinical features, reduced nasal nitric oxide concentrations, and absent dynein arms. Linkage analyses revealed a single common homozygous region on chromosome 8 and one candidate was conserved in organisms with motile cilia. Sequencing revealed a single novel mutation in LRRC6 (Leucine-rich repeat containing protein 6) that fit the model of autosomal recessive genetic transmission, leading to a change of a highly conserved amino acid from aspartic acid to histidine (Asp146His). LRRC6 was localized to the cytoplasm and was up-regulated during ciliogenesis in human airway epithelial cells in a Foxj1-dependent fashion. Nasal epithelial cells isolated from affected individuals and shRNA-mediated silencing in human airway epithelial cells, showed reduced LRRC6 expression, absent dynein arms, and slowed cilia beat frequency. Dynein arm proteins were either absent or mislocalized to the cytoplasm in airway epithelial cells from a primary ciliary dyskinesia subject. These findings suggest that LRRC6 plays a role in dynein arm assembly or trafficking and when mutated leads to primary ciliary dyskinesia with laterality defects. PMID:23527195

  2. ULTRASTRUCTURAL ORGANIZATION OF CILIA AND BASAL BODIES OF THE EPITHELIUM OF THE CHOROID PLEXUS IN THE CHICK EMBRYO

    PubMed Central

    Doolin, Paul F.; Birge, Wesley J.

    1966-01-01

    Ultrastructural studies were performed on normal and abnormal cilia and basal bodies associated with the choroidal epithelium of the chick embryo. Tissues were prepared in each of several fixatives including: 1% osmium tetroxide, in both phosphate and veronal acetate buffers; 2% glutaraldehyde, followed by postfixation in osmium tetroxide; 1% potassium permanganate in veronal acetate buffer. Normal cilia display the typical pattern of 9 peripheral doublets and 2 central fibers, as well as a system of 9 secondary fibers. The latter show distinct interconnections between peripheral and central fibers. Supernumerary fibers were found to occur in certain abnormal cilia. The basal body is complex, bearing 9 transitional fibers at the distal end and numerous cross-striated rootlets at the proximal end. The distal end of the basal body is delimited by a basal plate of moderate density. The tubular cylinder consists of 9 triple fibers. The C subfibers end at the basal plate, whereas subfibers A and B continue into the shaft of the cilium. The 9 transitional fibers radiate out from the distal end of the basal body, ending in bulblike terminal enlargements which are closely associated with the cell membrane in the area of the basal cup. One or 2 prominent basal feet project laterally from the basal body. These structures characteristically show several dense cross-bands and, on occasion, are found associated with microtubules. PMID:5335827

  3. Primary Ciliary Dyskinesia.

    PubMed

    Knowles, Michael R; Zariwala, Maimoona; Leigh, Margaret

    2016-09-01

    Primary ciliary dyskinesia (PCD) is a recessive genetically heterogeneous disorder of motile cilia with chronic otosinopulmonary disease and organ laterality defects in ∼50% of cases. The prevalence of PCD is difficult to determine. Recent diagnostic advances through measurement of nasal nitric oxide and genetic testing has allowed rigorous diagnoses and determination of a robust clinical phenotype, which includes neonatal respiratory distress, daily nasal congestion, and wet cough starting early in life, along with organ laterality defects. There is early onset of lung disease in PCD with abnormal airflow mechanics and radiographic abnormalities detected in infancy and early childhood. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis.

    PubMed

    Conroy, Pauline C; Saladino, Chiara; Dantas, Tiago J; Lalor, Pierce; Dockery, Peter; Morrison, Ciaran G

    2012-10-15

    Cilia are found on most human cells and exist as motile cilia or non-motile primary cilia. Primary cilia play sensory roles in transducing various extracellular signals, and defective ciliary functions are involved in a wide range of human diseases. Centrosomes are the principal microtubule-organizing centers of animal cells and contain two centrioles. We observed that DNA damage causes centriole splitting in non-transformed human cells, with isolated centrioles carrying the mother centriole markers CEP170 and ninein but not kizuna or cenexin. Loss of centriole cohesion through siRNA depletion of C-NAP1 or rootletin increased radiation-induced centriole splitting, with C-NAP1-depleted isolated centrioles losing mother markers. As the mother centriole forms the basal body in primary cilia, we tested whether centriole splitting affected ciliogenesis. While irradiated cells formed apparently normal primary cilia, most cilia arose from centriolar clusters, not from isolated centrioles. Furthermore, C-NAP1 or rootletin knockdown reduced primary cilium formation. Therefore, the centriole cohesion apparatus at the proximal end of centrioles may provide a target that can affect primary cilium formation as part of the DNA damage response.

  5. Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control.

    PubMed

    Bandyopadhyay, Promode R; Hansen, Joshua C

    2013-01-01

    Functioning as sensors and propulsors, cilia are evolutionarily conserved organelles having a highly organized internal structure. How a paramecium's cilium produces off-propulsion-plane curvature during its return stroke for symmetry breaking and drag reduction is not known. We explain these cilium deformations by developing a torsional pendulum model of beat frequency dependence on viscosity and an olivo-cerebellar model of self-regulation of posture control. The phase dependence of cilia torsion is determined, and a bio-physical model of hardness control with predictive features is offered. Crossbridge links between the central microtubule pair harden the cilium during the power stroke; this stroke's end is a critical phase during which ATP molecules soften the crossbridge-microtubule attachment at the cilium inflection point where torsion is at its maximum. A precipitous reduction in hardness ensues, signaling the start of ATP hydrolysis that re-hardens the cilium. The cilium attractor basin could be used as reference for perturbation sensing.

  6. Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.; Hansen, Joshua C.

    2013-06-01

    Functioning as sensors and propulsors, cilia are evolutionarily conserved organelles having a highly organized internal structure. How a paramecium's cilium produces off-propulsion-plane curvature during its return stroke for symmetry breaking and drag reduction is not known. We explain these cilium deformations by developing a torsional pendulum model of beat frequency dependence on viscosity and an olivo-cerebellar model of self-regulation of posture control. The phase dependence of cilia torsion is determined, and a bio-physical model of hardness control with predictive features is offered. Crossbridge links between the central microtubule pair harden the cilium during the power stroke; this stroke's end is a critical phase during which ATP molecules soften the crossbridge-microtubule attachment at the cilium inflection point where torsion is at its maximum. A precipitous reduction in hardness ensues, signaling the start of ATP hydrolysis that re-hardens the cilium. The cilium attractor basin could be used as reference for perturbation sensing.

  7. Breakup and then makeup: a predictive model of how cilia self-regulate hardness for posture control

    PubMed Central

    Bandyopadhyay, Promode R.; Hansen, Joshua C.

    2013-01-01

    Functioning as sensors and propulsors, cilia are evolutionarily conserved organelles having a highly organized internal structure. How a paramecium's cilium produces off-propulsion-plane curvature during its return stroke for symmetry breaking and drag reduction is not known. We explain these cilium deformations by developing a torsional pendulum model of beat frequency dependence on viscosity and an olivo-cerebellar model of self-regulation of posture control. The phase dependence of cilia torsion is determined, and a bio-physical model of hardness control with predictive features is offered. Crossbridge links between the central microtubule pair harden the cilium during the power stroke; this stroke's end is a critical phase during which ATP molecules soften the crossbridge-microtubule attachment at the cilium inflection point where torsion is at its maximum. A precipitous reduction in hardness ensues, signaling the start of ATP hydrolysis that re-hardens the cilium. The cilium attractor basin could be used as reference for perturbation sensing. PMID:23739771

  8. Planar cell polarity: one or two pathways?

    PubMed Central

    Lawrence, Peter A; Struhl, Gary; Casal, José

    2009-01-01

    In multicellular organisms, cells are polarised in the plane of the epithelial sheet, demonstrated in some cell types by oriented hairs or cilia. Many of the genes involved have been identified in Drosophila and are conserved in vertebrates. Here we dissect the logic of planar cell polarity (PCP). We review studies of genetic mosaics in adult flies. Marked cells of different genotypes are confronted, the aim being to understand how polarising information is generated and how it passes from one cell to another. We argue that the prevailing opinion that planar polarity depends on a single genetic pathway is wrong and conclude there are (at least) two independently acting processes. This conclusion has major consequences for the PCP field. PMID:17563758

  9. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Time-domain polarisation scrambler on one bulk LiNbO3 crystal with quadrupole electrodes

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.; Mironov, V. Yu

    2010-02-01

    As distinct from the classic Billings depolariser, a simple time-domain polarisation scrambler can be made on one crystal possessing a threefold axis among its symmetry elements and displaying a linear electro-optical effect (Pockels effect). We demonstrate a polarisation scrambler on a LiNbO3 uniaxial crystal with two pairs of electrodes to which two harmonic voltages identical in amplitude and differing in phase by 90° are applied. The residual degree of polarisation of the depolarised light, quantified by the polarisation extinction ratio, is less than 0.1 dB. Tolerances on the crystal orientation and the phase difference between the control voltages are estimated. The quality of the crystal is shown to be critical to the performance of the scrambler.

  10. Cilia play a role in breaking left-right symmetry of the sea urchin embryo.

    PubMed

    Takemoto, Ayumi; Miyamoto, Tatsuo; Simono, Fumie; Kurogi, Nao; Shirae-Kurabayashi, Maki; Awazu, Akinori; Suzuki, Ken-Ichi T; Yamamoto, Takashi; Sakamoto, Naoaki

    2016-06-01

    Left-right asymmetry of bilaterian animals is established during early development. In mice, frogs and fishes, the ciliated left-right organizer plays an essential role in establishing bilateral asymmetry, and leftward flow of extracellular fluid generated by ciliary motion results in Nodal activity on the left side. However, H(+) /K(+) -ATPase activity is also involved in the determination of left-right asymmetry in a variety of animals, and it has been thought to be an ancestral mechanism in deuterostomes. In sea urchin, the determination of the left-right asymmetry based on H(+) /K(+) -ATPase activity was already clarified, but it remains to be uncovered whether ciliary motion is involved in the left-right asymmetry of the embryo. Here, we show evidence that ciliary motion is involved in the establishment of left-right asymmetry of sea urchin embryo. Furthermore, we show that the initial cilia generated on small micromeres during the early stage of embryogenesis may be involved in this process. These results suggest that the cilia-mediated mechanism for the determination of left-right asymmetry may be acquired at the base of the deuterostomes. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  11. Measurement of top quark polarisation in t-channel single top quark production

    DOE PAGES

    Khachatryan, Vardan

    2016-04-13

    Our first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb -1. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. Furthermore, a differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution ismore » used to extract a top quark spin asymmetry of 0.26 ± 0.03 (stat) ± 0.10 (syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44.« less

  12. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics.

    PubMed

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-18

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37-0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics.

  13. Breaking the GaN material limits with nanoscale vertical polarisation super junction structures: A simulation analysis

    NASA Astrophysics Data System (ADS)

    Unni, Vineet; Sankara Narayanan, E. M.

    2017-04-01

    This is the first report on the numerical analysis of the performance of nanoscale vertical superjunction structures based on impurity doping and an innovative approach that utilizes the polarisation properties inherent in III-V nitride semiconductors. Such nanoscale vertical polarisation super junction structures can be realized by employing a combination of epitaxial growth along the non-polar crystallographic axes of Wurtzite GaN and nanolithography-based processing techniques. Detailed numerical simulations clearly highlight the limitations of a doping based approach and the advantages of the proposed solution for breaking the unipolar one-dimensional material limits of GaN by orders of magnitude.

  14. Variation in Cilia Protein Genes and Progression of Lung Disease in Cystic Fibrosis.

    PubMed

    Blue, Elizabeth; Louie, Tin L; Chong, Jessica X; Hebbring, Scott J; Barnes, Kathleen C; Rafaels, Nicholas M; Knowles, Michael R; Gibson, Ronald L; Bamshad, Michael J; Emond, Mary J

    2018-04-01

    Cystic fibrosis, like primary ciliary dyskinesia, is an autosomal recessive disorder characterized by abnormal mucociliary clearance and obstructive lung disease. We hypothesized that genes underlying the development or function of cilia may modify lung disease severity in persons with cystic fibrosis. To test this hypothesis, we compared variants in 93 candidate genes in both upper and lower tertiles of lung function in a large cohort of children and adults with cystic fibrosis with those of a population control dataset. Variants within candidate genes were tested for association using the SKAT-O test, comparing cystic fibrosis cases defined by poor (n = 127) or preserved (n = 127) lung function with population controls (n = 3,269 or 3,148, respectively). Associated variants were then tested for association with related phenotypes in independent datasets. Variants in DNAH14 and DNAAF3 were associated with poor lung function in cystic fibrosis, whereas variants in DNAH14 and DNAH6 were associated with preserved lung function in cystic fibrosis. Associations between DNAH14 and lung function were replicated in disease-related phenotypes characterized by obstructive lung disease in adults. Genetic variants within DNAH6, DNAH14, and DNAAF3 are associated with variation in lung function among persons with cystic fibrosis.

  15. Characterisation of slope directional resonance by analysing ambient noise instantaneous polarisation

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Vincenzo; Wasowski, Janusz

    2014-05-01

    Several studies have shown that the dynamic response of landslide prone slopes to seismic shaking can play an important role in failure triggering during earthquakes. It was also demonstrated that slope seismic response is often characterised by directional resonance phenomena. Directivity can be revealed by the analysis of ambient noise recordings according to a technique known as HVNR method based on the analysis of azimuthal variation of spectral ratios between the spectral amplitude of horizontal H and vertical V component of noise recording. Directional resonance is then revealed by the presence of a preferential polarisation of H/V ratio peaks, whose frequencies correspond to resonance frequencies and whose amplitudes depend on the impedance contrast between surface material and bedrock. H/V ratio amplitudes can potentially provide information also on amplification factors. However, the relation is not straightforward depending on the nature of the waves contributing to the ambient noise. Thus, it is desirable to distinguish different kinds of noise wave packets, possibly isolating the contribution of Rayleigh waves, which appear to better reflect site response properties. To identify Rayleigh wave packets in noise recording a new approach was tested, based on a technique of analysis of instantaneous polarisation. The results are promising for the investigation of site response directional properties, particularly in the case of complex site conditions, where resonance can be characterised by multiple anisotropic peaks. In our preliminary tests of noise recordings carried out at a site located on a slope affected by landslides, only a small fraction of data samples (in the order of 1 %) were identified as Rayleigh type waves: this was likely due the fact that the noise recording was dominated by an overlapping of signals with different kinds of polarisation. Thus, it was possible to recognise Rayleigh polarisation only when the energy of this kind of wave was

  16. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    PubMed Central

    Olcese, Chiara; Patel, Mitali P.; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J.; Vaughan, Cara K.; Hayward, Jane; Goldenberg, Alice; Emes, Richard D.; Munye, Mustafa M.; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean- François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R.; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M. K.; Antonarakis, Stylianos E.; Loebinger, Michael R.; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Beales, Philip L.; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Allan, Daly; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; McCarthy, Shane; Muddyman, Dawn; Muntoni, Francesco; Parker, Victoria; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter J.; Schmidts, Miriam; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M.

    2017-01-01

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins. PMID:28176794

  17. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3.

    PubMed

    Olcese, Chiara; Patel, Mitali P; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J; Vaughan, Cara K; Hayward, Jane; Goldenberg, Alice; Emes, Richard D; Munye, Mustafa M; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean-François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M K; Antonarakis, Stylianos E; Loebinger, Michael R; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M

    2017-02-08

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2-DNAAF4-HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins.

  18. Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2.

    PubMed

    Iwaya, K; Kohsaka, Y; Okawa, K; Machida, T; Bahramy, M S; Hanaguri, T; Sasagawa, T

    2017-10-17

    A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi 2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi 2 .Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi 2 and find the superconducting gap opening in all spin-polarised surface states.

  19. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    PubMed

    Barros, Mário Henrique M; Hauck, Franziska; Dreyer, Johannes H; Kempkes, Bettina; Niedobitek, Gerald

    2013-01-01

    Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for

  20. Effect of mycotoxins on in vitro movement of tracheal cilia from one-day-old chicks.

    PubMed

    Jesenská, Z; Bernát, D

    1994-01-01

    The effect of 11 mycotoxins on the ciliary movement of tracheal epithelium from one-day-old chicks in vitro was examined. Sterigmatocystin and diacetoxyscirpenol were most ciliostatically active in vitro; the ciliostatic effect was observed after 2 d if the amount concentration was 30 micrograms/L. In contrast, patulin stopped the movement of cilia after 2 d only if its concentration was 20 mg/L.

  1. Phase noise cancellation in polarisation-maintaining fibre links

    NASA Astrophysics Data System (ADS)

    Rauf, B.; Vélez López, M. C.; Thoumany, P.; Pizzocaro, M.; Calonico, D.

    2018-03-01

    The distribution of ultra-narrow linewidth laser radiation is an integral part of many challenging metrological applications. Changes in the optical pathlength induced by environmental disturbances compromise the stability and accuracy of optical fibre networks distributing the laser light and call for active phase noise cancellation. Here we present a laboratory scale optical (at 578 nm) fibre network featuring all polarisation maintaining fibres in a setup with low optical powers available and tracking voltage-controlled oscillators implemented. The stability and accuracy of this system reach performance levels below 1 × 10-19 after 10 000 s of averaging.

  2. Local birefringence of the anterior segment of the human eye in a single capture with a full range polarisation-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, Qingyun; Karnowski, Karol; Villiger, Martin; Sampson, David D.

    2017-04-01

    A fibre-based full-range polarisation-sensitive optical coherence tomography system is developed to enable complete capture of the structural and birefringence properties of the anterior segment of the human eye in a single acquisition. The system uses a wavelength swept source centered at 1.3 μm, passively depth-encoded, orthogonal polarisation states in the illumination path and polarisation-diversity detection. Off-pivot galvanometer scanning is used to extend the imaging range and compensate for sensitivity drop-off. A Mueller matrix-based method is used to analyse data. We demonstrate the performance of the system and discuss issues relating to its optimisation.

  3. Loss of Centrobin Enables Daughter Centrioles to Form Sensory Cilia in Drosophila.

    PubMed

    Gottardo, Marco; Pollarolo, Giulia; Llamazares, Salud; Reina, Jose; Riparbelli, Maria G; Callaini, Giuliano; Gonzalez, Cayetano

    2015-08-31

    Sensory cilia are organelles that convey information to the cell from the extracellular environment. In vertebrates, ciliary dysfunction results in ciliopathies that in humans comprise a wide spectrum of developmental disorders. In Drosophila, sensory cilia are found only in the neurons of type I sensory organs, but ciliary dysfunction also has dramatic consequences in this organism because it impairs the mechanosensory properties of bristles and chaetae and leads to uncoordination, a crippling condition that causes lethality shortly after eclosion. The cilium is defined by the ciliary membrane, a protrusion of the cell membrane that envelops the core structure known as the axoneme, a microtubule array that extends along the cilium from the basal body. In vertebrates, basal body function requires centriolar distal and subdistal appendages and satellites. Because these structures are acquired through centriole maturation, only mother centrioles can serve as basal bodies. Here, we show that although centriole maturity traits are lacking in Drosophila, basal body fate is reserved to mother centrioles in Drosophila type I neurons. Moreover, we show that depletion of the daughter-centriole-specific protein Centrobin (CNB) enables daughter centrioles to dock on the cell membrane and to template an ectopic axoneme that, although structurally defective, protrudes out of the cell and is enveloped by a ciliary membrane. Conversely, basal body capability is inhibited in mother centrioles modified to carry CNB. These results reveal the crucial role of CNB in regulating basal body function in Drosophila ciliated sensory organs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Genetic Analysis Reveals a Hierarchy of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function during Left-Right Determination

    PubMed Central

    Grimes, Daniel T.; Keynton, Jennifer L.; Buenavista, Maria T.; Jin, Xingjian; Patel, Saloni H.; Kyosuke, Shinohara; Williams, Debbie J.; Hamada, Hiroshi; Hussain, Rohanah; Nauli, Surya M.; Norris, Dominic P.

    2016-01-01

    During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo. PMID:27272319

  5. Defective ciliogenesis in thyroid hürthle cell tumors is associated with increased autophagy

    PubMed Central

    Lee, Junguee; Yi, Shinae; Kang, Yea Eun; Chang, Joon Young; Kim, Jung Tae; Sul, Hae Joung; Kim, Jong Ok; Kim, Jin Man; Kim, Joon; Porcelli, Anna Maria; Kim, Koon Soon; Shong, Minho

    2016-01-01

    Primary cilia are found in the apical membrane of thyrocytes, where they may play a role in the maintenance of follicular homeostasis. In this study, we examined the distribution of primary cilia in the human thyroid cancer to address the involvement of abnormal ciliogenesis in different thyroid cancers. We examined 92 human thyroid tissues, including nodular hyperplasia, Hashimoto's thyroiditis, follicular tumor, Hürthle cell tumor, and papillary carcinoma to observe the distribution of primary cilia. The distribution and length of primary cilia facing the follicular lumen were uniform across variable-sized follicles in the normal thyroid gland. However, most Hürthle cells found in benign and malignant thyroid diseases were devoid of primary cilia. Conventional variant of papillary carcinoma (PTC) displayed longer primary cilia than those of healthy tissue, whereas both the frequency and length of primary cilia were decreased in oncocytic variant of PTC. In addition, ciliogenesis was markedly defective in primary Hürthle cell tumors, including Hürthle cell adenomas and carcinomas, which showed higher level of autophagosome biogenesis. Remarkably, inhibition of autophagosome formation by Atg5 silencing or treatment with pharmacological inhibitors of autophagosome formation restored ciliogenesis in the Hürthle cell carcinoma cell line XTC.UC1 which exhibits a high basal autophagic flux. Moreover, the inhibition of autophagy promoted the accumulation of two factors critical for ciliogenesis, IFT88 and ARL13B. These results suggest that abnormal ciliogenesis, a common feature of Hürthle cells in diseased thyroid glands, is associated with increased basal autophagy. PMID:27816963

  6. Loss of SPEF2 Function in Mice Results in Spermatogenesis Defects and Primary Ciliary Dyskinesia1

    PubMed Central

    Sironen, Anu; Kotaja, Noora; Mulhern, Howard; Wyatt, Todd A.; Sisson, Joseph H.; Pavlik, Jacqueline A.; Miiluniemi, Mari; Fleming, Mark D.; Lee, Lance

    2011-01-01

    Primary ciliary dyskinesia (PCD) results from defects in motile cilia function. Mice homozygous for the mutation big giant head (bgh) have several abnormalities commonly associated with PCD, including hydrocephalus, male infertility, and sinusitis. In the present study, we use a variety of histopathological and cell biological techniques to characterize the bgh phenotype, and we identify the bgh mutation using a positional cloning approach. Histopathological, immunofluorescence, and electron microscopic analyses demonstrate that the male infertility results from shortened flagella and disorganized axonemal and accessory structures in elongating spermatids and mature sperm. In addition, there is a reduced number of elongating spermatids during spermatogenesis and mature sperm in the epididymis. Histological analyses show that the hydrocephalus is characterized by severe dilatation of the lateral ventricles and that bgh sinuses have an accumulation of mucus infiltrated by neutrophils. In contrast to the sperm phenotype, electron microscopy demonstrates that mutant respiratory epithelial cilia are ultrastructurally normal, but video microscopic analysis shows that their beat frequency is lower than that of wild-type cilia. Through a positional cloning approach, we identified two sequence variants in the gene encoding sperm flagellar protein 2 (SPEF2), which has been postulated to play an important role in spermatogenesis and flagellar assembly. A causative nonsense mutation was validated by Western blot analysis, strongly suggesting that the bgh phenotype results from the loss of SPEF2 function. Taken together, the data in this study demonstrate that SPEF2 is required for cilia function and identify a new genetic cause of PCD in mice. PMID:21715716

  7. Fundamental Limits on the Imaging and Polarisation Properties of Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher N.; Withington, Stafford; Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey

    2009-01-01

    Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behaviour precisely. We have studied the intensity and polarisation response of free-space bolometers, and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns, and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behaviour. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behaviour. The ability to model easily the intensity, polarisation, and straylight characteristics of electrically-small detectors will be of great value when designing high-performance polarimetric imaging arrays.

  8. Polarisation observations of VY Canis Majoris H2O 532-441 620.701 GHz maser emission with HIFI

    NASA Astrophysics Data System (ADS)

    Harwit, M.; Houde, M.; Sonnentrucker, P.; Boogert, A. C. A.; Cernicharo, J.; De Beck, E.; Decin, L.; Henkel, C.; Higgins, R. D.; Jellema, W.; Kraus, A.; McCoey, C.; Melnick, G. J.; Menten, K. M.; Risacher, C.; Teyssier, D.; Vaillancourt, J. E.; Alcolea, J.; Bujarrabal, V.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Olofsson, H.; Planesas, P.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M.

    2010-10-01

    Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims: We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods: In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s-1, which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut für Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results: We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org

  9. Stabilisation de l'etat de polarisation d'un laser par la conception et fabrication d'un miroir polarisant fait de couches minces nanostructurees

    NASA Astrophysics Data System (ADS)

    Doucet, Alexandre

    Ce manuscrit presente la conception et la fabrication d'un miroir polarisant fabrique avec la methode de deposition par incidence oblique communement appelee en anglais GLAD (GLancing Angle Deposition). Cette methode de deposition par GLAD permet de changer la nanostructure des revetements avec l'inclinaison et la rotation du substrat par rapport au flux de materiau evapore. Ceci nous permet d'ajuster l'indice de refraction et d'obtenir des revetements birefringents avec un materiau intrinsequement isotrope. Puisque l'indice de refraction peut etre change, les miroirs sont fabriques avec un seul materiau contrairement aux methodes usuelles qui necessite deux materiaux. Les proprietes optiques des echantillons sont mesurees avec l'aide de l'ellipsometrie. Des images avec un microscope electronique a balayage par transmission permettent de verifier Ia structure des revetements deposes. Les miroirs sont utilises comme coupleurs de sortie du resonateur d'un laser avec un milieu actif d'(Yb3+0.1 Y 0.9)3Al5O12, ou plus simplement Yb: YAG, pompe optiquement avec une diode laser. Ces cristaux presentent des proprietes optiques interessantes pour leur utilisation comme milieu actif, mais avec une structure cristalline cubique, ils donnent lieu a des faisceaux polarises aleatoirement. Les miroirs que nous fabriquons permettent d'obtenir une emission polarisee lineairement sans avoir a ajouter d'autres elements au resonateur. Les tests sont faits en regime continu et pulse avec un absorbant saturable de Cr : Y AG. Deux materiaux sont etudies, soit le WO3 et le TiO2, et ils nous permettent d'obtenir une emission polarisee lineairement dans le mode TEM 00 avec un rapport d'extinction de 1000 (30 dB), mais seuls les miroirs de TiO2 permettent une emission pulsee periodique avec une densite de puissance crete pres de 700+/-80 MW/cm2. En etudiant le rapport d'extinction en fonction du temps de pompage, nous remarquons que l'etat de polarisation est beaucoup plus stable que celui

  10. A new simple concept for ocean colour remote sensing using parallel polarisation radiance

    PubMed Central

    He, Xianqiang; Pan, Delu; Bai, Yan; Wang, Difeng; Hao, Zengzhou

    2014-01-01

    Ocean colour remote sensing has supported research on subjects ranging from marine ecosystems to climate change for almost 35 years. However, as the framework for ocean colour remote sensing is based on the radiation intensity at the top-of-atmosphere (TOA), the polarisation of the radiation, which contains additional information on atmospheric and water optical properties, has largely been neglected. In this study, we propose a new simple concept to ocean colour remote sensing that uses parallel polarisation radiance (PPR) instead of the traditional radiation intensity. We use vector radiative transfer simulation and polarimetric satellite sensing data to demonstrate that using PPR has two significant advantages in that it effectively diminishes the sun glint contamination and enhances the ocean colour signal at the TOA. This concept may open new doors for ocean colour remote sensing. We suggest that the next generation of ocean colour sensors should measure PPR to enhance observational capability. PMID:24434904

  11. Ultrafast polarisation spectroscopy of photoinduced charges in a conjugated polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakulin, A A; Loosdrecht, P van; Pshenichnikov, M S

    2009-07-31

    Tunable optical parametric generators and amplifiers (OPA), proposed and developed by Akhmanov and his colleagues, have become the working horses in exploration of dynamical processes in physics, chemistry, and biology. In this paper, we demonstrate the possibility of using ultrafast polarisation-sensitive two-colour spectroscopy, performed with a set of two OPAs, to study charge photogeneration and transport in conjugated polymers and their donor-acceptor blends. (special issue devoted to the 80th birthday of S.A. Akhmanov)

  12. Electron Acceleration from the Interaction of VULCAN 100TW Laser with Au Foils and its Dependence on Laser Polarisation

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Bellei, C.; Kneip, S.; Mangles, S. P. D.; Palmer, C.; Willingale, L.; Dangor, A. E.; Najmudin, Z.; Clarke, R. J.; Heathcote, R.; Henig, A.; Schreiber, J.; Saevert, A.; Kaluza, M.

    2008-11-01

    Electrons as well as ions can be accelerated to high energies (MeV) by high intensity laser interactions with solid targets. An overview of an experiment on the Vulcan laser (pulse length cτ˜150μm, energy on target ˜60 J), will be presented. In this experiment electron acceleration from thick overdense plasmas is investigated by conducting thickness scans using Au foil targets ranging from 10 to 100 μm. The electron spectra, of the most energetic electrons produced in the interaction, are measured along the laser direction and extend up to 40MeV. Surprisingly the electron acceleration depends on target thickness. Simultaneously rear surface proton beam profiles show a dependence of target thickness. Both effects are attributed to electron recirculation. In addition the effects of polarisation was investigated. A decrease in number and effective temperature of energetic electrons is observed for circular polarisation as compared to linear polarisation.

  13. Formation of periodic surface structures on dielectrics after irradiation with laser beams of spatially variant polarisation: a comparative study

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Antonis; Skoulas, Evangelos; Tsibidis, George D.; Stratakis, Emmanuel

    2018-02-01

    A comparative study is performed to explore the periodic structure formation upon intense femtosecond-pulsed irradiation of dielectrics with radially and azimuthally polarised beams. Laser conditions have been selected appropriately to produce excited carriers with densities below the optical breakdown threshold in order to highlight the role of phase transitions in surface modification mechanisms. The frequency of the laser-induced structures is calculated based on a theoretical model that comprises estimation of electron density excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. The influence of the laser wavelength in the periodicity of the structures is also unveiled. The decreased energy absorption for azimuthally polarised beams yields periodic structures with smaller frequencies which are more pronounced as the number of laser pulses applied to the irradiation spot increases. Similar results are obtained for laser pulses of larger photon energy and higher fluences. All induced periodic structures are oriented parallel to the laser beam polarisation.

  14. The history of polarisation measurements: their role in studies of magnetic fields

    NASA Astrophysics Data System (ADS)

    Wielebinski, R.

    2015-03-01

    Radio astronomy gave us new methods to study magnetic fields. Synchrotron radiation, the main cause of comic radio waves, is highly linearly polarised with the `E' vector normal to the magnetic field. The Faraday Effect rotates the `E' vector in thermal regions by the magnetic field in the line of sight. Also the radio Zeeman Effect has been observed.

  15. Identification of metal s states in Sn-doped anatase by polarisation dependent hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Regoutz, A.; Oropeza, F. E.; Poll, C. G.; Payne, D. J.; Palgrave, R. G.; Panaccione, G.; Borgatti, F.; Agrestini, S.; Utsumi, Y.; Tsuei, K. D.; Liao, Y. F.; Watson, G. W.; Egdell, R. G.

    2016-03-01

    The contributions of Sn 5s and Ti 4s states to the valence band electronic structure of Sn-doped anatase have been identified by hard X-ray photoelectron spectroscopy. The metal s state intensity is strongly enhanced relative to that of O 2p states at high photon energies due to matrix element effects when electrons are detected parallel to the direction of the polarisation vector of the synchrotron beam, but becomes negligible in the perpendicular direction. The experimental spectra in both polarisations are in good agreement with cross section and asymmetry parameter weighted partial densities of states derived from density functional theory calculations.

  16. Forkhead Transcription Factor Fd3F Cooperates with Rfx to Regulate a Gene Expression Program for Mechanosensory Cilia Specialization

    PubMed Central

    Newton, Fay G.; zur Lage, Petra I.; Karak, Somdatta; Moore, Daniel J.; Göpfert, Martin C.; Jarman, Andrew P.

    2012-01-01

    Summary Cilia have evolved hugely diverse structures and functions to participate in a wide variety of developmental and physiological processes. Ciliary specialization requires differences in gene expression, but few transcription factors are known to regulate this, and their molecular function is unclear. Here, we show that the Drosophila Forkhead box (Fox) gene, fd3F, is required for specialization of the mechanosensory cilium of chordotonal (Ch) neurons. fd3F regulates genes for Ch-specific axonemal dyneins and TRPV ion channels, which are required for sensory transduction, and retrograde transport genes, which are required to differentiate their distinct motile and sensory ciliary zones. fd3F is reminiscent of vertebrate Foxj1, a motile cilia regulator, but fd3F regulates motility genes as part of a broader sensory regulation program. Fd3F cooperates with the pan-ciliary transcription factor, Rfx, to regulate its targets directly. This illuminates pathways involved in ciliary specialization and the molecular mechanism of transcription factors that regulate them. PMID:22698283

  17. Mutations in ZMYND10, a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms in Humans and Flies, Cause Primary Ciliary Dyskinesia

    PubMed Central

    Moore, Daniel J.; Onoufriadis, Alexandros; Shoemark, Amelia; Simpson, Michael A.; zur Lage, Petra I.; de Castro, Sandra C.; Bartoloni, Lucia; Gallone, Giuseppe; Petridi, Stavroula; Woollard, Wesley J.; Antony, Dinu; Schmidts, Miriam; Didonna, Teresa; Makrythanasis, Periklis; Bevillard, Jeremy; Mongan, Nigel P.; Djakow, Jana; Pals, Gerard; Lucas, Jane S.; Marthin, June K.; Nielsen, Kim G.; Santoni, Federico; Guipponi, Michel; Hogg, Claire; Antonarakis, Stylianos E.; Emes, Richard D.; Chung, Eddie M.K.; Greene, Nicholas D.E.; Blouin, Jean-Louis; Jarman, Andrew P.; Mitchison, Hannah M.

    2013-01-01

    Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia immotility, except in hypomorphic p.Val16Gly (c.47T>G) homozygote individuals, whose cilia retained a stiff and slowed beat. In mice, Zmynd10 mRNA is restricted to regions containing motile cilia. In a Drosophila model of PCD, Zmynd10 is exclusively expressed in cells with motile cilia: chordotonal sensory neurons and sperm. In these cells, P-element-mediated gene silencing caused IDA and ODA defects, proprioception deficits, and sterility due to immotile sperm. Drosophila Zmynd10 with an equivalent c.47T>G (p.Val16Gly) missense change rescued mutant male sterility less than the wild-type did. Tagged Drosophila ZMYND10 is localized primarily to the cytoplasm, and human ZMYND10 interacts with LRRC6, another cytoplasmically localized protein altered in PCD. Using a fly model of PCD, we conclude that ZMYND10 is a cytoplasmic protein required for IDA and ODA assembly and that its variants cause ciliary dysmotility and PCD with laterality defects. PMID:23891471

  18. Polarisation-preserving photon frequency conversion from a trapped-ion-compatible wavelength to the telecom C-band

    NASA Astrophysics Data System (ADS)

    Krutyanskiy, V.; Meraner, M.; Schupp, J.; Lanyon, B. P.

    2017-09-01

    We demonstrate polarisation-preserving frequency conversion of single-photon-level light at 854 nm, resonant with a trapped-ion transition and qubit, to the 1550-nm telecom C band. A total photon in / fiber-coupled photon out efficiency of ˜30% is achieved, for a free-running photon noise rate of ˜60 Hz. This performance would enable telecom conversion of 854 nm polarisation qubits, produced in existing trapped-ion systems, with a signal-to-noise ratio greater than 1. In combination with near-future trapped-ion systems, our converter would enable the observation of entanglement between an ion and a photon that has travelled more than 100 km in optical fiber: three orders of magnitude further than the state-of-the-art.

  19. Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Sokolowski, M.; Colegate, T.; Sutinjo, A. T.; Ung, D.; Wayth, R.; Hurley-Walker, N.; Lenc, E.; Pindor, B.; Morgan, J.; Kaplan, D. L.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; For, Bi-Qing; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wu, C.; Zheng, Q.

    2017-11-01

    The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science programme, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programmes for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky Murchison Widefield Array (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20% in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 × 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen, and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200-231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.

  20. The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    PubMed Central

    2007-01-01

    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use. PMID:17903277

  1. Recessive HYDIN Mutations Cause Primary Ciliary Dyskinesia without Randomization of Left-Right Body Asymmetry

    PubMed Central

    Olbrich, Heike; Schmidts, Miriam; Werner, Claudius; Onoufriadis, Alexandros; Loges, Niki T.; Raidt, Johanna; Banki, Nora Fanni; Shoemark, Amelia; Burgoyne, Tom; Al Turki, Saeed; Hurles, Matthew E.; Köhler, Gabriele; Schroeder, Josef; Nürnberg, Gudrun; Nürnberg, Peter; Chung, Eddie M.K.; Reinhardt, Richard; Marthin, June K.; Nielsen, Kim G.; Mitchison, Hannah M.; Omran, Heymut

    2012-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder characterized by defective cilia and flagella motility. Chronic destructive-airway disease is caused by abnormal respiratory-tract mucociliary clearance. Abnormal propulsion of sperm flagella contributes to male infertility. Genetic defects in most individuals affected by PCD cause randomization of left-right body asymmetry; approximately half show situs inversus or situs ambiguous. Almost 70 years after the hy3 mouse possessing Hydin mutations was described as a recessive hydrocephalus model, we report HYDIN mutations in PCD-affected persons without hydrocephalus. By homozygosity mapping, we identified a PCD-associated locus, chromosomal region 16q21-q23, which contains HYDIN. However, a nearly identical 360 kb paralogous segment (HYDIN2) in chromosomal region 1q21.1 complicated mutational analysis. In three affected German siblings linked to HYDIN, we identified homozygous c.3985G>T mutations that affect an evolutionary conserved splice acceptor site and that subsequently cause aberrantly spliced transcripts predicting premature protein termination in respiratory cells. Parallel whole-exome sequencing identified a homozygous nonsense HYDIN mutation, c.922A>T (p.Lys307∗), in six individuals from three Faroe Island PCD-affected families that all carried an 8.8 Mb shared haplotype across HYDIN, indicating an ancestral founder mutation in this isolated population. We demonstrate by electron microscopy tomography that, consistent with the effects of loss-of-function mutations, HYDIN mutant respiratory cilia lack the C2b projection of the central pair (CP) apparatus; similar findings were reported in Hydin-deficient Chlamydomonas and mice. High-speed videomicroscopy demonstrated markedly reduced beating amplitudes of respiratory cilia and stiff sperm flagella. Like the hy3 mouse model, all nine PCD-affected persons had normal body composition because nodal cilia function is apparently

  2. Realisation Of Polarisation Sensitive And Frequency Selective Surfaces On Microwave Reflectors By Laser Evaporation

    NASA Astrophysics Data System (ADS)

    Halm, R.; Kupper, Th.; Fischer, A.

    1987-01-01

    Gridded reflectors are used on communication satellites antennas to provide frequency reuse in dual linear polarisation mode of operation. The polarisation sensitive surface consists of metallic strips, forming a grid with width and spacings of the order of 0.1 mm. The use of frequency-selective surface (FSS) subreflectors allows the simultaneous generation of different microwave beams with the same main reflector. Such a reflector will require a structure of conductive arrays of either dipoles, rings, squares or square loops with typical dimensions of the order of 3-6 mm. Optimisation of the electrical design leads to critical dimensioning of these structures. By direct ablation of an aluminium surface coating by means of laser evaporation, high accuracies can be achieved. The major requirements were to minimize thermal damage of the substrate material and to produce dimensionally accurate grids. Experiments were carried out using a pulsed TEA-CO2 laser and a Q-switched Alexandrite laser. Details of the experimental set-up and conditions are described.

  3. Measurement of the W boson polarisation in $$t\\bar{t}$$ events from pp collisions at $$\\sqrt{s} = 8$$ TeV in the lepton + jets channel with ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    This paper presents a measurement of the polarisation of W bosons from tt¯ decays, reconstructed in events with one high-p T lepton and at least four jets. Data from pp collisions at the LHC were collected at √s = 8 TeV and correspond to an integrated luminosity of 20.2 fb –1. The angle θ* between the b-quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark formore » the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of cosθ* is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b-quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are F 0 = 0.709 ± 0.019, F L = 0.299 ± 0.015 and F R = –0.008 ± 0.014, and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set.« less

  4. Measurement of the W boson polarisation in $$t\\bar{t}$$ events from pp collisions at $$\\sqrt{s} = 8$$ TeV in the lepton + jets channel with ATLAS

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-04-26

    This paper presents a measurement of the polarisation of W bosons from tt¯ decays, reconstructed in events with one high-p T lepton and at least four jets. Data from pp collisions at the LHC were collected at √s = 8 TeV and correspond to an integrated luminosity of 20.2 fb –1. The angle θ* between the b-quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark formore » the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of cosθ* is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b-quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are F 0 = 0.709 ± 0.019, F L = 0.299 ± 0.015 and F R = –0.008 ± 0.014, and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set.« less

  5. Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits

    PubMed Central

    Heilmann, René; Gräfe, Markus; Nolte, Stefan; Szameit, Alexander

    2014-01-01

    Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light. PMID:24534893

  6. [INVITED] Coupling of polarisation of high frequency electric field and electronic heat conduction in laser created plasma

    NASA Astrophysics Data System (ADS)

    Gamaly, Eugene G.; Rode, Andrei V.

    2016-08-01

    Powerful short laser pulse focused on a surface swiftly transforms the solid into the thermally and electrically inhomogeneous conductive plasma with the large temperature and dielectric permeability gradients across the focal spot. The laser-affected spot becomes thermally inhomogeneous with where temperature has maximum in the centre and gradually decreasing to the boundaries of the spot in accord to the spatial intensity distribution of the Gaussian pulse. Here we study the influence of laser polarisation on ionization and absorption of laser radiation in the focal spot. In this paper we would like to discuss new effect in thermally inhomogeneous plasma under the action of imposed high frequency electric field. We demonstrate that high-frequency (HF) electric field is coupled with the temperature gradient generating the additional contribution to the conventional electronic heat flow. The additional heat flow strongly depends on the polarisation of the external field. It appears that effect has maximum when the imposed electric field is collinear to the thermal gradient directed along the radius of a circular focal spot. Therefore, the linear polarised field converts the circular laser affected spot into an oval with the larger oval's axis parallel to the field direction. We compare the developed theory to the available experiments, discuss the results and future directions.

  7. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Intrafibre rotation of the plane of polarisation

    NASA Astrophysics Data System (ADS)

    Zel'dovich, Boris Ya; Kundikova, N. D.

    1995-02-01

    Rotation of the plane of polarisation during propagation of sagittal rays in a rectilinear multimode fibre was observed experimentally. The angle of rotation was in good agreement with the results predicted on the basis of the Rytov—Vladimirskii—Berry theory.

  8. Spin-Resolved Circularly Polarised Resonant Photoemission: Cu as a Model System

    NASA Astrophysics Data System (ADS)

    Brookes, N. B.

    A brief introduction to the technique of spin resolved resonant photoemission using circularly polarised soft x-rays is given. The method is illustrated by considering the simple case of Cu2+. Starting from CuO we show how the same ideas can be applied to more complex and interesting cases, such as the model compound Sr2CuO2Cl2 and an optimally doped high temperature superconductor, Bi2Sr2CaCu2O8+δ.

  9. Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following.

    PubMed

    Reid, Samuel F; Narendra, Ajay; Hemmi, Jan M; Zeil, Jochen

    2011-02-01

    Navigating animals are known to use a number of celestial and terrestrial compass cues that allow them to determine and control their direction of travel. Which of the cues dominate appears to depend on their salience. Here we show that night-active bull ants attend to both the pattern of polarised skylight and the landmark panorama in their familiar habitat. When the two directional cues are in conflict, ants choose a compromise direction. However, landmark guidance appears to be the primary mechanism of navigation used by forager ants, with those cues in the direction of heading having the greatest influence on navigation. Different colonies respond to the removal of these cues to different degrees, depending on the directional information provided by the local landmark panorama. Interestingly, other parts of the surrounding panorama also influence foraging speed and accuracy, suggesting that they too play a role in navigation.

  10. Measurement of the W boson polarisation in [Formula: see text] events from pp collisions at [Formula: see text] = 8 TeV in the lepton + jets channel with ATLAS.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Araujo Ferraz, V; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Bianchi, R M; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; Bilbao De Mendizabal, J; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Cornell, S Díez; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Duncan, A K; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Flierl, B M; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Gama, R; Goncalves Pinto Firmino Da Costa, J; Gonella, G; Gonella, L; Gongadze, A; González de la Hoz, S; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Han, S; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hladik, O; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Juste Rozas, A; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; La Rosa Navarro, J L; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyton, M; Li, B; Li, C; Li, H; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Loebinger, F K; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez Lopez, J A; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lopez Solis, A; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Mellado Garcia, B R; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganini, M; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perez Codina, E; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Rodriguez Perez, A; Rodriguez Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Sanchez Martinez, V; Sanchez Pineda, A; Sandaker, H; Sandbach, R L; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shirabe, S; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valdes Santurio, E; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vishwakarma, A; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, Q; Wang, R; Wang, S M; Wang, T; Wang, W; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zwalinski, L

    2017-01-01

    This paper presents a measurement of the polarisation of W bosons from [Formula: see text] decays, reconstructed in events with one high-[Formula: see text] lepton and at least four jets. Data from pp collisions at the LHC were collected at [Formula: see text] = 8 TeV and correspond to an integrated luminosity of 20.2 fb[Formula: see text]. The angle [Formula: see text] between the b -quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark for the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of [Formula: see text] is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b -quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are [Formula: see text], [Formula: see text] and [Formula: see text], and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set.

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Polarisation splitting of laser beams by large angles with minimal reflection losses

    NASA Astrophysics Data System (ADS)

    Davydov, B. L.

    2006-05-01

    New crystal anisotropic prisms for splitting orthogonally polarised components of laser radiation by large angles with minimal reflection losses caused by the Brewster refraction and total internal reflection of polarised waves from the crystal—air interface are considered and the method for their calculation is described. It is shown that, by assembling glue-free combinations of two or three prisms, thermally stable beamsplitters can be fabricated, which are free from the beam astigmatism and the wave dispersion of the output angles of the beams. The parameters and properties of new beamsplitters are presented in a convenient form in figures and tables.

  12. Explaining opinion polarisation with opinion copulas.

    PubMed

    Askitas, Nikolaos

    2017-01-01

    An empirically founded and widely established driving force in opinion dynamics is homophily i.e. the tendency of "birds of a feather" to "flock together". The closer our opinions are the more likely it is that we will interact and converge. Models using these assumptions are called bounded confidence models (BCM) as they assume a tolerance threshold after which interaction is unlikely. They are known to produce one or more clusters, depending on the size of the bound, with more than one cluster being possible only in the deterministic case. Introducing noise, as is likely to happen in a stochastic world, causes BCM to produce consensus which leaves us with the open problem of explaining the emergence and sustainance of opinion clusters and polarisation. We investigate the role of heterogeneous priors in opinion formation, introduce the concept of opinion copulas, argue that it is well supported by findings in Social Psychology and use it to show that the stochastic BCM does indeed produce opinion clustering without the need for extra assumptions.

  13. Explaining opinion polarisation with opinion copulas

    PubMed Central

    2017-01-01

    An empirically founded and widely established driving force in opinion dynamics is homophily i.e. the tendency of “birds of a feather” to “flock together”. The closer our opinions are the more likely it is that we will interact and converge. Models using these assumptions are called bounded confidence models (BCM) as they assume a tolerance threshold after which interaction is unlikely. They are known to produce one or more clusters, depending on the size of the bound, with more than one cluster being possible only in the deterministic case. Introducing noise, as is likely to happen in a stochastic world, causes BCM to produce consensus which leaves us with the open problem of explaining the emergence and sustainance of opinion clusters and polarisation. We investigate the role of heterogeneous priors in opinion formation, introduce the concept of opinion copulas, argue that it is well supported by findings in Social Psychology and use it to show that the stochastic BCM does indeed produce opinion clustering without the need for extra assumptions. PMID:28829802

  14. Long-range interactions, wobbles, and phase defects in chains of model cilia

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas R.; Bruot, Nicolas; Kotar, Jurij; Goldstein, Raymond E.; Cicuta, Pietro; Polin, Marco

    2016-12-01

    Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.

  15. Improving the efficiency of optical coherence tomography by using the non-ideal behaviour of a polarising beam splitter.

    PubMed

    Lippok, Norman; Nielsen, Poul; Vanholsbeeck, Frédérique

    2011-04-11

    We present a new way of improving the efficiency of optical coherence tomography by using the polarisation crosstalk of a polarising beam splitter to direct most of the available source optical power to the sample. The use of a quarter wave plate in both the reference and the sample arms allows most of the sample power to be directed to the detector while adjusting the reference arm to ensure noise optimised operation. As a result, the sensitivity of such a system can be improved by 6 dB, or alternatively the acquisition time can be improved by a factor of 4 for shot noise limited performance,compared to a traditional OCT configuration using a 50/50 beam splitter. © 2011 Optical Society of America

  16. Genetics Home Reference: Joubert syndrome

    MedlinePlus

    ... sensing the physical environment and in chemical signaling. Primary cilia are important for the structure and function of many types of cells, including brain cells (neurons) and certain cells in the kidneys and liver. Primary cilia are also necessary for the perception ...

  17. Cryoelectron tomography of radial spokes in cilia and flagella

    PubMed Central

    Pigino, Gaia; Bui, Khanh Huy; Maheshwari, Aditi; Lupetti, Pietro; Diener, Dennis

    2011-01-01

    Radial spokes (RSs) are ubiquitous components in the 9 + 2 axoneme thought to be mechanochemical transducers involved in local control of dynein-driven microtubule sliding. They are composed of >23 polypeptides, whose interactions and placement must be deciphered to understand RS function. In this paper, we show the detailed three-dimensional (3D) structure of RS in situ in Chlamydomonas reinhardtii flagella and Tetrahymena thermophila cilia that we obtained using cryoelectron tomography (cryo-ET). We clarify similarities and differences between the three spoke species, RS1, RS2, and RS3, in T. thermophila and in C. reinhardtii and show that part of RS3 is conserved in C. reinhardtii, which only has two species of complete RSs. By analyzing C. reinhardtii mutants, we identified the specific location of subsets of RS proteins (RSPs). Our 3D reconstructions show a twofold symmetry, suggesting that fully assembled RSs are produced by dimerization. Based on our cryo-ET data, we propose models of subdomain organization within the RS as well as interactions between RSPs and with other axonemal components. PMID:22065640

  18. Measurement of $$\\tau$$ polarisation in $$Z/\\gamma ^{*}\\rightarrow\\tau\\tau$$→decays in proton–proton collisions at $$\\sqrt{s}=8$$ with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2018-02-24

    This article presents a measurement of the polarisation of τ leptons produced in Z/ γ * → ττ decays which is performed with a dataset of proton—proton collisions atmore » $$\\sqrt{s}$$=8 TeV, corresponding to an integrated luminosity of 20.2 fb -1 recorded with the ATLAS detector at the LHC in 2012. The Z/γ* → ττ decays are reconstructed from a hadronically decaying τ lepton with a single charged particle in the final state, accompanied by a τ lepton that decays leptonically. The τ polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic τ decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The τ polarisation extracted over the full phase space within the Z/γ* mass range of 66 < m Z/γ* < 116 GeV is found to be P τ = - 0.14 ± 0.02 (stat) ± 0.04 (syst). It is in agreement with the Standard Model prediction of P τ = - 0.1517 ± 0.0019 , which is obtained from the ALPGEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA τ decay library.« less

  19. Measurement of $$\\tau$$ polarisation in $$Z/\\gamma ^{*}\\rightarrow\\tau\\tau$$→decays in proton–proton collisions at $$\\sqrt{s}=8$$ with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    This article presents a measurement of the polarisation of τ leptons produced in Z/ γ * → ττ decays which is performed with a dataset of proton—proton collisions atmore » $$\\sqrt{s}$$=8 TeV, corresponding to an integrated luminosity of 20.2 fb -1 recorded with the ATLAS detector at the LHC in 2012. The Z/γ* → ττ decays are reconstructed from a hadronically decaying τ lepton with a single charged particle in the final state, accompanied by a τ lepton that decays leptonically. The τ polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic τ decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The τ polarisation extracted over the full phase space within the Z/γ* mass range of 66 < m Z/γ* < 116 GeV is found to be P τ = - 0.14 ± 0.02 (stat) ± 0.04 (syst). It is in agreement with the Standard Model prediction of P τ = - 0.1517 ± 0.0019 , which is obtained from the ALPGEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA τ decay library.« less

  20. Correlations between polarisation states of W particles in the reaction e - e +→ W - W + at LEP2 energies 189-209 GeV

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2009-10-01

    In a study of the reaction e - e +→ W - W + with the DELPHI detector, the probabilities of the two W particles occurring in the joint polarisation states transverse-transverse ( TT), longitudinal-transverse plus transverse-longitudinal ( LT) and longitudinal-longitudinal ( LL) have been determined using the final states WW{rightarrow}lν qbar{q} ( l= e, μ). The two-particle joint polarisation probabilities, i.e. the spin density matrix elements ρ TT , ρ LT , ρ LL , are measured as functions of the W - production angle, θ _{W-}, at an average reaction energy of 198.2 GeV. Averaged over all \\cosθ_{W-}, the following joint probabilities are obtained: bar{ρ}_{TT}=(67±8)%, bar{ρ}_{LT}=(30±8)%, bar{ρ}_{LL}=(3±7)%. These results are in agreement with the Standard Model predictions of 63.0%, 28.9% and 8.1%, respectively. The related polarisation cross-sections σ TT , σ LT and σ LL are also presented.

  1. Long spin lifetime and large barrier polarisation in single electron transport through a CoFe nanoparticle

    PubMed Central

    Temple, R. C.; McLaren, M.; Brydson, R. M. D.; Hickey, B. J.; Marrows, C. H.

    2016-01-01

    We have investigated single electron spin transport in individual single crystal bcc Co30Fe70 nanoparticles using scanning tunnelling microscopy with a standard tungsten tip. Particles were deposited using a gas-aggregation nanoparticle source and individually addressed as asymmetric double tunnel junctions with both a vacuum and a MgO tunnel barrier. Spectroscopy measurements on the particles show a Coulomb staircase that is correlated with the measured particle size. Field emission tunnelling effects are incorporated into standard single electron theory to model the data. This formalism allows spin-dependent parameters to be determined even though the tip is not spin-polarised. The barrier spin polarisation is very high, in excess of 84%. By variation of the resistance, several orders of magnitude of the system timescale are probed, enabling us to determine the spin relaxation time on the island. It is found to be close to 10 μs, a value much longer than previously reported. PMID:27329575

  2. Measurement of τ polarisation in Z/γ ^{*}→ τ τ decays in proton-proton collisions at √{s}=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonski, J. L.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; McFadden, N. C.; McGoldrick, G.; McKee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Ruettinger, E. M.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, D. M. S.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.

    2018-02-01

    This paper presents a measurement of the polarisation of τ leptons produced in Z/γ ^{*}→ τ τ decays which is performed with a dataset of proton—proton collisions at √{s}=8 TeV, corresponding to an integrated luminosity of 20.2 fb^{-1} recorded with the ATLAS detector at the LHC in 2012. The Z/γ ^{*}→ τ τ decays are reconstructed from a hadronically decaying τ lepton with a single charged particle in the final state, accompanied by a τ lepton that decays leptonically. The τ polarisation is inferred from the relative fraction of energy carried by charged and neutral hadrons in the hadronic τ decays. The polarisation is measured in a fiducial region that corresponds to the kinematic region accessible to this analysis. The τ polarisation extracted over the full phase space within the Z/γ ^{*} mass range of 66 < m_{Z/γ ^{*}} < 116 GeV is found to be P_{τ } =-0.14 ± 0.02 ( {stat}) ± 0.04 ( {syst}). It is in agreement with the Standard Model prediction of P_{τ } =-0.1517 ± 0.0019, which is obtained from the ALPGEN event generator interfaced with the PYTHIA 6 parton shower modelling and the TAUOLA τ decay library.

  3. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis.

    PubMed

    Glazer, Andrew M; Wilkinson, Alex W; Backer, Chelsea B; Lapan, Sylvain W; Gutzman, Jennifer H; Cheeseman, Iain M; Reddien, Peter W

    2010-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian Schmidtea mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates.

  4. ZMYND10--Mutation Analysis in Slavic Patients with Primary Ciliary Dyskinesia.

    PubMed

    Kurkowiak, Małgorzata; Ziętkiewicz, Ewa; Greber, Agnieszka; Voelkel, Katarzyna; Wojda, Alina; Pogorzelski, Andrzej; Witt, Michał

    2016-01-01

    Primary ciliary dyskinesia (PCD) is a rare recessive disease with a prevalence of 1/10,000; its symptoms are caused by a kinetic dysfunction of motile cilia in the respiratory epithelium, flagella in spermatozoids, and primary cilia in the embryonic node. PCD is genetically heterogeneous: genotyping the already known PCD-related genes explains the genetic basis in 60-65% of the cases, depending on the population. While identification of new genes involved in PCD pathogenesis remains crucial, the search for new, population-specific mutations causative for PCD is equally important. The Slavs remain far less characterized in this respect compared to West European populations, which significantly limits diagnostic capability. The main goal of this study was to characterize the profile of causative genetic defects in one of the PCD-causing genes, ZMYND10, in the cohort of PCD patients of Slavic origin. The study was carried out using biological material from 172 unrelated PCD individuals of Polish origin, with no causative mutation found in nine major PCD genes. While none of the previously described mutations was found using the HRM-based screening, a novel frameshift mutation (c.367delC) in ZMYND10, unique for Slavic PCD population, was found in homozygous state in two unrelated PCD patients. Immunofluorescence analysis confirmed the absence of outer and inner dynein arms from the ciliary axoneme, consistent with the already published ZMYND10-mutated phenotype; cDNA analysis revealed the lack of ZMYND10 mRNA, indicating nonsense-mediated decay of the truncated transcript.

  5. Investigating pitting in X65 carbon steel using potentiostatic polarisation

    NASA Astrophysics Data System (ADS)

    Mohammed, Sikiru; Hua, Yong; Barker, R.; Neville, A.

    2017-11-01

    Although pitting corrosion in passive materials is generally well understood, the growth of surface pits in actively-corroding materials has received much less attention to date and remains poorly understood. One of the key challenges which exists is repeatedly and reliably generating surface pits in a practical time-frame in the absence of deformation and/or residual stress so that studies on pit propagation and healing can be performed. Another pertinent issue is how to evaluate pitting while addressing general corrosion in low carbon steel. In this work, potentiostatic polarisation was employed to induce corrosion pits (free from deformation or residual stress) on actively corroding X65 carbon steel. The influence of applied potential (50 mV, 100 mV and 150 mV vs open circuit potential) was investigated over 24 h in a CO2-saturated, 3.5 wt.% NaCl solution at 30 °C and pH 3.8. Scanning electron microscopy (SEM) was utilised to examine pits, while surface profilometry was conducted to measure pit depth as a function of applied potential over the range considered. Analyses of light pitting (up to 120 μm) revealed that pit depth increased linearly with increase in applied potential. This paper relates total pit volume (measured using white light interferometry) to dissipated charge or total mass loss (using the current response for potentiostatic polarisation in conjunction with Faraday's law). By controlling the potential of the surface (anodic) the extent of pitting and general corrosion could be controlled. This allowed pits to be evaluated for their ability to continue to propagate after the potentiostatic technique was employed. Linear growth from a depth of 70 μm at pH 3.8, 80 °C was demonstrated. The technique offers promise for the study of inhibition of pitting.

  6. Primary cilium - antenna-like structure on the surface of most mammalian cell types

    NASA Astrophysics Data System (ADS)

    Dvorak, J.; Sitorova, V.; Hadzi Nikolov, D.; Mokry, J.; Richter, I.; Kasaova, L.; Filip, S.; Ryska, A.; Petera, J.

    2011-12-01

    The primary cilium is a sensory solitary non-motile microtubule-based organelle protruding in the quiescent phase of the cell cycle from the surface of the majority of human cells, including embryonic cells, stem cells and stromal cells of malignant tumors. The presence of a primary cilium on the surface of a cell is transient, limited to the quiescent G1(G0) phase and the beginning of the S phase of the cell cycle. The primary cilium is formed from the mother centriole. Primary cilia are key coordinators of signaling pathways during development and tissue homeostasis and, when deffective, they are a major cause of human diseases and developmental disorders, now commonly referred to as ciliopathies. Most cancer cells do not possess a primary cilium. The loss of the primary cilium is a regular feature of neoplastic transformation in the majority of solid tumors. The primary cilium could serve as a tumor suppressor organelle. The aim of this paper was to provide a review of the current knowledge of the primary cilium.

  7. Hippi is essential for node cilia assembly and Sonic hedgehog signaling

    PubMed Central

    Houde, Caroline; Dickinson, Robin J.; Houtzager, Vicky M.; Cullum, Rebecca; Montpetit, Rachel; Metzler, Martina; Simpson, Elizabeth M.; Roy, Sophie; Hayden, Michael R.; Hoodless, Pamela A.; Nicholson, Donald W.

    2016-01-01

    Hippi functions as an adapter protein that mediates pro-apoptotic signaling from poly-glutamine-expanded huntingtin, an established cause of Huntington disease, to the extrinsic cell death pathway. To explore other functions of Hippi we generated Hippi knock-out mice. This deletion causes randomization of the embryo turning process and heart looping, which are hallmarks of defective left–right (LR) axis patterning. We report that motile monocilia normally present at the surface of the embryonic node, and proposed to initiate the break in LR symmetry, are absent on Hippi−/− embryos. Furthermore, defects in central nervous system development are observed. The Sonic hedgehog (Shh) pathway is downregulated in the neural tube in the absence of Hippi, which results in failure to establish ventral neural cell fate. Together, these findings demonstrate a dual role for Hippi in cilia assembly and Shh signaling during development, in addition to its proposed role in apoptosis signal transduction in the adult brain under pathogenically stressful conditions. PMID:17027958

  8. Ethnography's Capacity to Contribute to the Cumulation of Theory: A Case Study of Differentiation-Polarisation Theory

    ERIC Educational Resources Information Center

    Hillyard, Sam

    2010-01-01

    The paper sets out to examine the role that ethnographic work can and should play in the development of sociological theory, focusing on the case study of differentiation-polarisation theory. It provides a detailed discussion of the work of Hargreaves (1967), Lacey (1970) and Ball (1981) and assesses the degree to which their work was ethnographic…

  9. Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model

    NASA Astrophysics Data System (ADS)

    Hughes, Zak E.; Tomásio, Susana M.; Walsh, Tiffany R.

    2014-04-01

    To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter

  10. Cilia- and Flagella-Associated Protein 69 Regulates Olfactory Transduction Kinetics in Mice

    PubMed Central

    Dong, Frederick N.

    2017-01-01

    Animals detect odorous chemicals through specialized olfactory sensory neurons (OSNs) that transduce odorants into neural electrical signals. We identified a novel and evolutionarily conserved protein, cilia- and flagella-associated protein 69 (CFAP69), in mice that regulates olfactory transduction kinetics. In the olfactory epithelium, CFAP69 is enriched in OSN cilia, where olfactory transduction occurs. Bioinformatic analysis suggests that a large portion of CFAP69 can form Armadillo-type α-helical repeats, which may mediate protein–protein interactions. OSNs lacking CFAP69, remarkably, displayed faster kinetics in both the on and off phases of electrophysiological responses at both the neuronal ensemble level as observed by electroolfactogram and the single-cell level as observed by single-cell suction pipette recordings. In single-cell analysis, OSNs lacking CFAP69 showed faster response integration and were able to fire APs more faithfully to repeated odor stimuli. Furthermore, both male and female mutant mice that specifically lack CFAP69 in OSNs exhibited attenuated performance in a buried food pellet test when a background of the same odor to the food pellet was present even though they should have better temporal resolution of coding olfactory stimulation at the peripheral. Therefore, the role of CFAP69 in the olfactory system seems to be to allow the olfactory transduction machinery to work at a precisely regulated range of response kinetics for robust olfactory behavior. SIGNIFICANCE STATEMENT Sensory receptor cells are generally thought to evolve to respond to sensory cues as fast as they can. This idea is consistent with mutational analyses in various sensory systems, where mutations of sensory receptor cells often resulted in reduced response size and slowed response kinetics. Contrary to this idea, we have found that there is a kinetic “damper” present in the olfactory transduction cascade of the mouse that slows down the response kinetics and

  11. Output Beam Polarisation of X-ray Lasers with Transient Inversion

    NASA Astrophysics Data System (ADS)

    Janulewicz, K. A.; Kim, C. M.; Matouš, B.; Stiel, H.; Nishikino, M.; Hasegawa, N.; Kawachi, T.

    It is commonly accepted that X-ray lasers, as the devices based on amplified spontaneous emission (ASE), did not show any specific polarization in the output beam. The theoretical analysis within the uniform (single-mode) approximation suggested that the output radiation should show some defined polarization feature, but randomly changing from shot-to-shot. This hypothesis has been verified by experiment using traditional double-pulse scheme of transient inversion. Membrane beam-splitter was used as a polarization selector. It was found that the output radiation has a significant component of p-polarisation in each shot. To explain the effect and place it in the line with available, but scarce data, propagation and kinetic effects in the non-uniform plasma have been analysed.

  12. Value of transmission electron microscopy for primary ciliary dyskinesia diagnosis in the era of molecular medicine: Genetic defects with normal and non-diagnostic ciliary ultrastructure.

    PubMed

    Shapiro, Adam J; Leigh, Margaret W

    2017-01-01

    Primary ciliary dyskinesia (PCD) is a genetic disorder causing chronic oto-sino-pulmonary disease. No single diagnostic test will detect all PCD cases. Transmission electron microscopy (TEM) of respiratory cilia was previously considered the gold standard diagnostic test for PCD, but 30% of all PCD cases have either normal ciliary ultrastructure or subtle changes which are non-diagnostic. These cases are identified through alternate diagnostic tests, including nasal nitric oxide measurement, high-speed videomicroscopy analysis, immunofluorescent staining of axonemal proteins, and/or mutation analysis of various PCD causing genes. Autosomal recessive mutations in DNAH11 and HYDIN produce normal TEM ciliary ultrastructure, while mutations in genes encoding for radial spoke head proteins result in some cross-sections with non-diagnostic alterations in the central apparatus interspersed with normal ciliary cross-sections. Mutations in nexin link and dynein regulatory complex genes lead to a collection of different ciliary ultrastructures; mutations in CCDC65, CCDC164, and GAS8 produce normal ciliary ultrastructure, while mutations in CCDC39 and CCDC40 cause absent inner dynein arms and microtubule disorganization in some ciliary cross-sections. Mutations in CCNO and MCIDAS cause near complete absence of respiratory cilia due to defects in generation of multiple cellular basal bodies; however, the scant cilia generated may have normal ultrastructure. Lastly, a syndromic form of PCD with retinal degeneration results in normal ciliary ultrastructure through mutations in the RPGR gene. Clinicians must be aware of these genetic causes of PCD resulting in non-diagnostic TEM ciliary ultrastructure and refrain from using TEM of respiratory cilia as a test to rule out PCD.

  13. Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser

    NASA Astrophysics Data System (ADS)

    Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.

    2017-12-01

    A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.

  14. Polarised Organisation of the Cytoskeleton: Regulation by Cell Polarity Proteins.

    PubMed

    Raman, Renuka; Savio, Clyde; Sonawane, Mahendra

    2018-06-24

    Polarity is one of the fundamental properties displayed by living organisms. In metazoans, cell polarity governs developmental processes and plays an essential role during maintenance of forms of tissues as well as their functions. The mechanisms of establishment and maintenance of cell polarity have been investigated extensively in the last two decades. This has resulted in identification of "core cell polarity modules" that control anterior-posterior, front-rear and apical-basal polarity across various cell types. Here, we review how these polarity modules interact closely with the cytoskeleton during establishment and maintenance of cytoskeletal polarity. We further suggest that reciprocal interactions between cell polarity modules and the cytoskeleton consolidate the initial weaker polarity, arising from an external cue, into a committed polarised system. Copyright © 2018. Published by Elsevier Ltd.

  15. Remodeling Cildb, a popular database for cilia and links for ciliopathies

    PubMed Central

    2014-01-01

    Background New generation technologies in cell and molecular biology generate large amounts of data hard to exploit for individual proteins. This is particularly true for ciliary and centrosomal research. Cildb is a multi–species knowledgebase gathering high throughput studies, which allows advanced searches to identify proteins involved in centrosome, basal body or cilia biogenesis, composition and function. Combined to localization of genetic diseases on human chromosomes given by OMIM links, candidate ciliopathy proteins can be compiled through Cildb searches. Methods Othology between recent versions of the whole proteomes was computed using Inparanoid and ciliary high throughput studies were remapped on these recent versions. Results Due to constant evolution of the ciliary and centrosomal field, Cildb has been recently upgraded twice, with new species whole proteomes and new ciliary studies, and the latter version displays a novel BioMart interface, much more intuitive than the previous ones. Conclusions This already popular database is designed now for easier use and is up to date in regard to high throughput ciliary studies. PMID:25422781

  16. Pre-conditioned backward Monte Carlo solutions to radiative transport in planetary atmospheres. Fundamentals: Sampling of propagation directions in polarising media

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.; Mills, F. P.

    2015-01-01

    Context. The interpretation of polarised radiation emerging from a planetary atmosphere must rely on solutions to the vector radiative transport equation (VRTE). Monte Carlo integration of the VRTE is a valuable approach for its flexible treatment of complex viewing and/or illumination geometries, and it can intuitively incorporate elaborate physics. Aims: We present a novel pre-conditioned backward Monte Carlo (PBMC) algorithm for solving the VRTE and apply it to planetary atmospheres irradiated from above. As classical BMC methods, our PBMC algorithm builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. Methods: We show that the neglect of polarisation in the sampling of photon propagation directions in classical BMC algorithms leads to unstable and biased solutions for conservative, optically-thick, strongly polarising media such as Rayleigh atmospheres. The numerical difficulty is avoided by pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions. Pre-conditioning introduces a sense of history in the photon polarisation states through the simulated trajectories. Results: The PBMC algorithm is robust, and its accuracy is extensively demonstrated via comparisons with examples drawn from the literature for scattering in diverse media. Since the convergence rate for MC integration is independent of the integral's dimension, the scheme is a valuable option for estimating the disk-integrated signal of stellar radiation reflected from planets. Such a tool is relevant in the prospective investigation of exoplanetary phase curves. We lay out two frameworks for disk integration and, as an application, explore the impact of atmospheric stratification on planetary phase curves for large star-planet-observer phase angles. By construction, backward integration provides a better

  17. Primary ciliary dyskinesia.

    PubMed

    Lobo, L J; Zariwala, M A; Noone, P G

    2014-09-01

    Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder of cilia structure and function, leading to chronic infections of the respiratory tract, fertility problems and disorders of organ laterality. Making a definitive diagnosis is challenging, utilizing characteristic phenotypes, ciliary functional and ultra-structural defects in addition to newer screening tools such as nasal nitric oxide and genetic testing. There are 21 known PCD causing genes and in the future, comprehensive genetic testing may help diagnosis young infants prior to developing symptoms thus improving survival. Therapy includes surveillance of pulmonary function and microbiology in addition to, airway clearance, antibiotics and early referral to bronchiectasis centers. Standardized care at specialized centers using a multidisciplinary approach is likely to improve outcomes. In conjunction with the PCD foundation and lead investigators and clinicians are developing a network of PCD clinical centers to coordinate the effort in North America and Europe. As the network grows, care and knowledge will undoubtedly improve. © The Author 2014. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Identification of BCAP, a new protein associated with basal bodies and centrioles.

    PubMed

    Ponsard, Cecile; Seltzer, Virginie; Perret, Eric; Tournier, Frederic; Middendorp, Sandrine

    2007-05-01

    Cilia exert critical functions in numerous organisms, including that of cell motility, fluid transport and protozoan locomotion. Defects in this organelle can lead to lethal pathologies in humans, including primary ciliary dyskinesia. An understanding of the cilia formation process would lead to better characterization of defects involved in such pathologies. In the present study, we identified a gene encoding a novel human protein, BCAP for Basal body Centriole-Associated Protein, which shares homologies with a previously described protein, Outer Dense Fiber 2 (ODF2). ODF2, a major component of the sperm tail cytoskeleton, is required for the formation of mother centriole distal/subdistal appendages and the generation of primary cilia. Here, we show that the bcap gene contains 18 alternatively spliced exons and encodes five different isoforms, three long and two short ones. BCAP is preferentially expressed in cilia/flagella containing tissues. Moreover, its expression is correlated with cilia formation during mucociliary differentiation of human nasal epithelial cells. Using immunofluorescence analyses, BCAP was localized within basal bodies of ciliated cells and within centrioles of proliferating cells. In light of the several spliced isoforms of BCAP and the particular localization of the protein, BCAP isoforms could play distinct roles in cilia and in centrosomes.

  19. Denoising time-domain induced polarisation data using wavelet techniques

    NASA Astrophysics Data System (ADS)

    Deo, Ravin N.; Cull, James P.

    2016-05-01

    Time-domain induced polarisation (TDIP) methods are routinely used for near-surface evaluations in quasi-urban environments harbouring networks of buried civil infrastructure. A conventional technique for improving signal to noise ratio in such environments is by using analogue or digital low-pass filtering followed by stacking and rectification. However, this induces large distortions in the processed data. In this study, we have conducted the first application of wavelet based denoising techniques for processing raw TDIP data. Our investigation included laboratory and field measurements to better understand the advantages and limitations of this technique. It was found that distortions arising from conventional filtering can be significantly avoided with the use of wavelet based denoising techniques. With recent advances in full-waveform acquisition and analysis, incorporation of wavelet denoising techniques can further enhance surveying capabilities. In this work, we present the rationale for utilising wavelet denoising methods and discuss some important implications, which can positively influence TDIP methods.

  20. The role of the cilium in hereditary tumor predisposition syndromes

    PubMed Central

    Klasson, Timothy D.; Giles, Rachel H.

    2014-01-01

    The primary cilium is a highly conserved cell organelle that is closely connected to processes involved in cell patterning and replication. Amongst their many functions, cilia act as “signal towers” through which cell-cell signaling cascades pass. Dysfunction of cilia or the myriad processes that are connected with cilium function can lead to disease. Due to the sheer number of cellular processes that at some point involve the primary cilium, the effects of misregulation are highly heterogeneous between different cell populations. However, because of the importance of primary cilia in the development, growth, patterning and orientation of cells and tissues, a common thread has emerged in which defective cilia can lead to disorganization, which can contribute to the growth of neoplasms, including cancer and pre-cancerous phenotypes. Because cilia are so vital for signaling during cell replication and the cell fate decisions that are important in childhood growth, symptoms often arise early in life. Here we review recent work connecting misregulation of the primary cilium with tumor formation in a variety of tissues in the developing body, with a particular focus on the syndromes in which classic tumor genes are mutated, including von Hippel-Lindau disease (OMIM 193300), adenomatous polyposis coli (OMIM 175100), tuberous sclerosis (OMIM 191100) and Birt-Hogg-Dubé syndrome (OMIM 135150). Timely diagnosis of these syndromes is essential for entry into appropriate screening protocols, which have been shown to effectively prolong life expectancy in these cohorts of patients. PMID:27625869

  1. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype.

    PubMed

    Knowles, Michael R; Ostrowski, Lawrence E; Leigh, Margaret W; Sears, Patrick R; Davis, Stephanie D; Wolf, Whitney E; Hazucha, Milan J; Carson, Johnny L; Olivier, Kenneth N; Sagel, Scott D; Rosenfeld, Margaret; Ferkol, Thomas W; Dell, Sharon D; Milla, Carlos E; Randell, Scott H; Yin, Weining; Sannuti, Aruna; Metjian, Hilda M; Noone, Peadar G; Noone, Peter J; Olson, Christina A; Patrone, Michael V; Dang, Hong; Lee, Hye-Seung; Hurd, Toby W; Gee, Heon Yung; Otto, Edgar A; Halbritter, Jan; Kohl, Stefan; Kircher, Martin; Krischer, Jeffrey; Bamshad, Michael J; Nickerson, Deborah A; Hildebrandt, Friedhelm; Shendure, Jay; Zariwala, Maimoona A

    2014-03-15

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia, but the genetic cause is not defined for all patients with PCD. To identify disease-causing mutations in novel genes, we performed exome sequencing, follow-up characterization, mutation scanning, and genotype-phenotype studies in patients with PCD. Whole-exome sequencing was performed using NimbleGen capture and Illumina HiSeq sequencing. Sanger-based sequencing was used for mutation scanning, validation, and segregation analysis. We performed exome sequencing on an affected sib-pair with normal ultrastructure in more than 85% of cilia. A homozygous splice-site mutation was detected in RSPH1 in both siblings; parents were carriers. Screening RSPH1 in 413 unrelated probands, including 325 with PCD and 88 with idiopathic bronchiectasis, revealed biallelic loss-of-function mutations in nine additional probands. Five affected siblings of probands in RSPH1 families harbored the familial mutations. The 16 individuals with RSPH1 mutations had some features of PCD; however, nasal nitric oxide levels were higher than in patients with PCD with other gene mutations (98.3 vs. 20.7 nl/min; P < 0.0003). Additionally, individuals with RSPH1 mutations had a lower prevalence (8 of 16) of neonatal respiratory distress, and later onset of daily wet cough than typical for PCD, and better lung function (FEV1), compared with 75 age- and sex-matched PCD cases (73.0 vs. 61.8, FEV1 % predicted; P = 0.043). Cilia from individuals with RSPH1 mutations had normal beat frequency (6.1 ± Hz at 25°C), but an abnormal, circular beat pattern. The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.

  2. Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma.

    PubMed

    Emlet, R B

    1995-02-01

    Nonfeeding larvae of the echinoid Heliocidaris erythrogramma were raised in culture and examined for expression of a larval skeleton and for the arrangement of the ciliated band. Opaque larvae were fixed, cleared, and examined under polarized light for evidence of calcification. By 35 hr after fertilization (at 22 degrees C), a pair of triradiate spicules was present at the posterior end of the larvae. Each member of this pair formed a fenestrated spicule as it grew laterally. This pair and another pair which formed subsequently, were arranged across a plane of bilateral symmetry orthagonal to the juvenile oral aboral axis. These paired larval spicules can be identified as reduced expressions of postoral and posterodorsal rods found in plutei, and their expression indicates that the juvenile rudiment of H. erythrogramma forms on the left side and that larval body axes are conserved in this modified larva. By 44 hr the ciliated band formed as an incomplete transverse loop of three segments at the posterior end and on the dorsal surface of the ovoid larva. Cilia in these segments grew to lengths of 45-50 microns, longer than other swimming and feeding cilia reported for echinoderm larvae. Band segments are interpreted as expressions of epaulettes (specialized swimming bands) rather than the feeding ciliated band of the pluteus. The ciliated band segments and the larval spicules are both bilaterally symmetrical with respect to the same plane and indicate conserved larval bilateral symmetry despite the major asymmetry of the fates of cells on either side of this plane in their contribution to juvenile development.

  3. Study of Amorphous Ferrimagnet Fe0.66Er0.19B0.15 by Means of Monochromatic Circularly Polarised Source

    NASA Astrophysics Data System (ADS)

    Kalska, B.; Szymański, K.; Dobrzyński, L.; Satuła, D.; Wäppling, R.; Broddefalk, A.; Nordblad, P.

    2002-06-01

    Properties of amorphous alloy Fe0.66Er0.19B0.15 are reported. A reorientation of the Fe and Er magnetic moments during sample cooling through the compensation point in a large magnetic field is found by means of monochromatic circularly polarised radiation.

  4. Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

    DOE PAGES

    Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; ...

    2015-05-01

    Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.

  5. Primary Ciliary Dyskinesia Caused by Homozygous Mutation in DNAL1, Encoding Dynein Light Chain 1

    PubMed Central

    Mazor, Masha; Alkrinawi, Soliman; Chalifa-Caspi, Vered; Manor, Esther; Sheffield, Val C.; Aviram, Micha; Parvari, Ruti

    2011-01-01

    In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the β strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD. PMID:21496787

  6. Ionic Control of the Reversal Response of Cilia in Paramecium caudatum

    PubMed Central

    Naitoh, Yutaka

    1968-01-01

    The duration of ciliary reversal of Paramecium caudatum in response to changes in external ionic factors was determined with various ionic compositions of both equilibration and stimulation media. The reversal response was found to occur when calcium ions bound by an inferred cellular cation exchange system were liberated in exchange for externally applied cations other than calcium. Factors which affect the duration of the response were (a) initial amount of calcium bound by the cation exchange system, (b) final amount of calcium bound by the system after equilibration with the stimulation medium, and (c) concentration of calcium ions in the stimulation medium. An empirical equation is presented which relates the duration of the response to these three factors. On the basis of these and previously published data, the following hypothesis is proposed for the mechanism underlying ciliary reversal in response to cationic stimulation: Ca++ liberated from the cellular cation exchange system activates a contractile system which is energized by ATP. Contraction of this component results in the reversal of effective beat direction of cilia by a mechanism not yet understood. The duration of reversal in live paramecia is related to the time course of bound calcium release. PMID:4966766

  7. Large Interstellar Polarisation Survey. II. UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.

    2018-03-01

    It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.

  8. Low-intensity pulsed ultrasound stimulation promotes osteoblast differentiation through hedgehog signaling.

    PubMed

    Matsumoto, Kenichi; Shimo, Tsuyoshi; Kurio, Naito; Okui, Tatsuo; Ibaragi, Soichiro; Kunisada, Yuki; Obata, Kyoichi; Masui, Masanori; Pai, Pang; Horikiri, Yuu; Yamanaka, Nobuyuki; Takigawa, Masaharu; Sasaki, Akira

    2018-06-01

    Low-intensity pulsed ultrasound (LIPUS) has been used as an adjunct to fracture healing therapies, but the mechanisms underlying its action are not known. We reported that sonic hedgehog (SHH) signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture. Mechanical stimulation is a crucial factor in bone remodeling, and it is related to the primary cilia as a sensor of hedgehog signaling. Here we observed that LIPUS promoted callus formation in accord with Gli2-positive cells after 14 days at the mouse femur fractured site compared with a control group. An immunofluorescence analysis showed that the numbers of primary cilia and cilia/osterix double-positive osteoblasts were increased at the fracture site by LIPUS. LIPUS stimulated not only the number and the length of primary cilia, but also the levels of ciliated protein, Ift88 mRNA, and SHH, Gli1, and Gli2 in MC3T3-E1 cells. Further experiments revealed that LIPUS stimulated osteogenic differentiation in the presence of smoothened agonist (SAG) treatment. These results indicate that LIPUS stimulates osteogenic differentiation and the maturation of osteoblasts by a primary cilium-mediated activation of hedgehog signaling. © 2017 Wiley Periodicals, Inc.

  9. Kif3a Controls Murine Nephron Number Via GLI3 Repressor, Cell Survival, and Gene Expression in a Lineage-Specific Manner

    PubMed Central

    Chi, Lijun; Galtseva, Alevtina; Chen, Lin; Mo, Rong; Hui, Chi-chung; Rosenblum, Norman D.

    2013-01-01

    The primary cilium is required during early embryo patterning, epithelial tubulogenesis, and growth factor-dependent signal transduction. The requirement for primary cilia during renal epithelial-mesenchymal tissue interactions that give rise to nephrons is undefined. Here, we used Cre-mediated recombination to generate mice with Kif3a deficiency targeted to the ureteric and/or metanephric mesenchyme cell lineages in the embryonic kidney. Gradual loss of primary cilia in either lineage leads to a phenotype of reduced nephron number. Remarkably, in addition to cyst formation, loss of primary cilia in the ureteric epithelial cell leads to decreased expression of Wnt11 and Ret and reduced ureteric branching. Constitutive expression of GLI3 repressor (Gli3Δ699/+) rescues these abnormalities. In embryonic metanephric mesenchyme cells, Kif3a deficiency limits survival of nephrogenic progenitor cells and expression of genes required for nephron formation. Together, our data demonstrate that Kif3a controls nephron number via distinct cell lineage-specific mechanisms. PMID:23762375

  10. Gibbs-Donnan ratio and channel conductance of Tetrahymena cilia in mixed solution of K+ and Ca2+.

    PubMed Central

    Oosawa, Y; Kasai, M

    1988-01-01

    A single cation-channel from Tetrahymena cilia was incorporated into planar lipid bilayers. This channel was voltage-independent and is permeable to K+ and Ca2+. In the experiments with mixed solutions where the concentrations of K+ and Ca2+ were varied, the single-channel conductance was found to be influenced by the Gibbs-Donnan ratio. The data are explained by assuming that the binding sites of this channel were always occupied by two potassium ions or one calcium ion under the present experimental conditions (5 mM-90 mM K+ and 0.5 mM-35 mM Ca2+) and these bound cations determined the channel conductivity. PMID:2462927

  11. Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion

    PubMed Central

    Mutch, Laura Jane; Howden, Jake Davey; Jenner, Emma Poppy Louise; Poulter, Natalie Sarah; Rappoport, Joshua Zachary

    2014-01-01

    Directed cell migration is critical for numerous physiological processes including development and wound healing. However chemotaxis is also exploited during cancer progression. Recent reports have suggested links between vesicle trafficking pathways and directed cell migration. Very little is known about the potential roles of endocytosis pathways during metastasis. Therefore we performed a series of studies employing a previously characterised model for chemotactic invasion of cancer cells to assess specific hypotheses potentially linking endocytosis to directed cell migration. Our results demonstrate that clathrin-mediated endocytosis is indispensable for epidermal growth factor (EGF) directed chemotactic invasion of MDA-MB-231 cells. Conversely, caveolar endocytosis is not required in this mode of migration. We further found that chemoattractant receptor (EGFR) trafficking occurs by clathrin-mediated endocytosis and is polarised towards the front of migrating cells. However, we found no role for clathrin-mediated endocytosis in focal adhesion disassembly in this migration model. Thus, this study has characterised the role of endocytosis during chemotactic invasion and has identified functions mechanistically linking clathrin-mediated endocytosis to directed cell motility. PMID:24921075

  12. Monitoring of the ADP/ATP Ratio by Induced Circularly Polarised Europium Luminescence.

    PubMed

    Shuvaev, Sergey; Fox, Mark A; Parker, David

    2018-06-18

    A series of three europium complexes bearing picolyl amine moieties was found to possess differing binding affinities towards Zn 2+ and three nucleotides: AMP, ADP, and ATP. A large increase in the total emission intensity was observed upon binding Zn 2+ , followed by signal amplification upon the addition of nucleotides. The resulting adducts possessed strong induced circularly polarised emission, with ADP and ATP signals of opposite sign. Model DFT geometries of the adducts suggest the Δ diastereoisomer is preferred for ATP and the Λ isomer for ADP/AMP. This change in sign allows the ADP/ATP (or AMP/ATP) ratio to be assessed by monitoring changes in the emission dissymmetry factor, g em . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium

    PubMed Central

    Herranz-Pérez, Vicente; Nakatani, Jin; Boletta, Alessandra; García-Verdugo, José Manuel

    2015-01-01

    Directional beating of ependymal (E) cells' cilia in the walls of the ventricles in the brain is essential for proper CSF flow. E cells display two forms of planar cell polarity (PCP): rotational polarity of individual cilium and translational polarity (asymmetric positioning of cilia in the apical area). The orientation of individual E cells varies according to their location in the ventricular wall (location-specific PCP). It has been hypothesized that hydrodynamic forces on the apical surface of radial glia cells (RGCs), the embryonic precursors of E cells, could guide location-specific PCP in the ventricular epithelium. However, the detection mechanisms for these hydrodynamic forces have not been identified. Here, we show that the mechanosensory proteins polycystic kidney disease 1 (Pkd1) and Pkd2 are present in primary cilia of RGCs. Ablation of Pkd1 or Pkd2 in Nestin-Cre;Pkd1flox/flox or Nestin-Cre;Pkd2flox/flox mice, affected PCP development in RGCs and E cells. Early shear forces on the ventricular epithelium may activate Pkd1 and Pkd2 in primary cilia of RGCs to properly polarize RGCs and E cells. Consistently, Pkd1, Pkd2, or primary cilia on RGCs were required for the proper asymmetric localization of the PCP protein Vangl2 in E cells' apical area. Analyses of single- and double-heterozygous mutants for Pkd1 and/or Vangl2 suggest that these genes function in the same pathway to establish E cells' PCP. We conclude that Pkd1 and Pkd2 mechanosensory proteins contribute to the development of brain PCP and prevention of hydrocephalus. SIGNIFICANCE STATEMENT This study identifies key molecules in the development of planar cell polarity (PCP) in the brain and prevention of hydrocephalus. Multiciliated ependymal (E) cells within the brain ventricular epithelium generate CSF flow through ciliary beating. E cells display location-specific PCP in the orientation and asymmetric positioning of their cilia. Defects in this PCP can result in hydrocephalus. Hydrodynamic

  14. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster

    PubMed Central

    Lattao, Ramona; Kovács, Levente; Glover, David M.

    2017-01-01

    Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila. Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division. PMID:28476861

  15. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster.

    PubMed

    Lattao, Ramona; Kovács, Levente; Glover, David M

    2017-05-01

    Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster , highlighting their contributions to different aspects of development and cell division. Copyright © 2017 Lattao et al.

  16. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1.

    PubMed

    Mazor, Masha; Alkrinawi, Soliman; Chalifa-Caspi, Vered; Manor, Esther; Sheffield, Val C; Aviram, Micha; Parvari, Ruti

    2011-05-13

    In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the β strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Genome-wide screen identifies novel machineries required for both ciliogenesis and cell cycle arrest upon serum starvation

    PubMed Central

    Kim, Ji Hyun; Ki, Soo Mi; Joung, Je-Gun; Scott, Eric; Heynen-Genel, Susanne; Aza-Blanc, Pedro; Kwon, Chang Hyuk; Kim, Joon; Gleeson, Joseph G.; Lee, Ji Eun

    2016-01-01

    Biogenesis of the primary cilium, a cellular organelle mediating various signaling pathways, is generally coordinated with cell cycle exit/re-entry. Although the dynamic cell cycle-associated profile of the primary cilium has been largely accepted, the mechanism governing the link between ciliogenesis and cell cycle progression has been poorly understood. Using a human genome-wide RNAi screen, we identify genes encoding subunits of the spliceosome and proteasome as novel regulators of ciliogenesis. We demonstrate that 1) the mRNA processing-related hits are essential for RNA expression of molecules acting in cilia disassembly, such as AURKA and PLK1, and 2) the ubiquitin-proteasome systems (UPS)-involved hits are necessary for proteolysis of molecules acting in cilia assembly, such as IFT88 and CPAP. In particular, we show that these screen hit-associated mechanisms are crucial for both cilia assembly and cell cycle arrest in response to serum withdrawal. Finally, our data suggest that the mRNA processing mechanism may modulate the UPS-dependent decay of cilia assembly regulators to control ciliary resorption-coupled cell cycle re-entry. PMID:27033521

  18. Quantifying Ciliary Dynamics during Assembly Reveals Step-wise Waveform Maturation in Airway Cells.

    PubMed

    Oltean, Alina; Schaffer, Andrew J; Bayly, Philip V; Brody, Steven L

    2018-05-31

    Motile cilia are essential for clearance of particulates and pathogens from airways. For effective transport, ciliary motor proteins and axonemal structures interact to generate the rhythmic, propulsive bending, but the mechanisms that produce a dynamic waveform remain incompletely understood. Biomechanical measures of human cilia motion and their relationships to cilia assembly are needed to illuminate the biophysics of normal cilia function, and to quantify dysfunction in ciliopathies. To these ends, we analyzed cilia motion from high-speed video microscopy of ciliated cells sampled from human lung airways compared to primary-culture cells that undergo ciliogenesis in vitro. Quantitative assessment of waveform parameters showed variations in waveform shape between individual cilia; however, general trends in waveform parameters emerged, associated with progression of cilia length and stage of differentiation. When cilia emerged from cultured cells, beat frequency was initially elevated, then fell and remained stable as cilia lengthened. In contrast, the average bending amplitude and the ability to generate force gradually increased and eventually approached values observed in ex vivo samples. Dynein arm motor proteins DNAH5, DNAH9, DNAH11, and DNAH6 were localized within specific regions of the axoneme in the ex vivo cells; however distinct stages of in vitro waveform development identified by biomechanical features were associated with the progressive movement of dyneins to the appropriate proximal or distal sections of the cilium. These observations suggest that the step-wise variation in waveform development during ciliogenesis is dependent on cilia length and potentially outer dynein arm assembly.

  19. Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways

    PubMed Central

    Geneva, Ivayla I.; Tan, Han Yen; Calvert, Peter D.

    2017-01-01

    Resolution limitations of optical systems are major obstacles for determining whether proteins are enriched within cell compartments. Here we use an approach to determine the degree of membrane protein ciliary enrichment that quantitatively accounts for the differences in sampling of the ciliary and apical membranes inherent to confocal microscopes. Theory shows that cilia will appear more than threefold brighter than the surrounding apical membrane when the densities of fluorescently labeled proteins are the same, thus providing a benchmark for ciliary enrichment. Using this benchmark, we examined the ciliary enrichment signals of two G protein–coupled receptors (GPCRs)—the somatostatin receptor 3 and rhodopsin. Remarkably, we found that the C-terminal VxPx motif, required for efficient enrichment of rhodopsin within rod photoreceptor sensory cilia, inhibited enrichment of the somatostatin receptor in primary cilia. Similarly, VxPx inhibited primary cilium enrichment of a chimera of rhodopsin and somatostatin receptor 3, where the dual Ax(S/A)xQ ciliary targeting motifs within the third intracellular loop of the somatostatin receptor replaced the third intracellular loop of rhodopsin. Rhodopsin was depleted from primary cilia but gained access, without being enriched, with the dual Ax(S/A)xQ motifs. Ciliary enrichment of these GPCRs thus operates via distinct mechanisms in different cells. PMID:27974638

  20. Diverse Roles of Axonemal Dyneins in Drosophila Auditory Neuron Function and Mechanical Amplification in Hearing.

    PubMed

    Karak, Somdatta; Jacobs, Julie S; Kittelmann, Maike; Spalthoff, Christian; Katana, Radoslaw; Sivan-Loukianova, Elena; Schon, Michael A; Kernan, Maurice J; Eberl, Daniel F; Göpfert, Martin C

    2015-11-26

    Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly's ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility.

  1. Diagnosis and management of primary ciliary dyskinesia.

    PubMed

    Lucas, Jane S; Burgess, Andrea; Mitchison, Hannah M; Moya, Eduardo; Williamson, Michael; Hogg, Claire

    2014-09-01

    Primary ciliary dyskinesia (PCD) is an inherited autosomal-recessive disorder of motile cilia characterised by chronic lung disease, rhinosinusitis, hearing impairment and subfertility. Nasal symptoms and respiratory distress usually start soon after birth, and by adulthood bronchiectasis is invariable. Organ laterality defects, usually situs inversus, occur in ∼50% of cases. The estimated prevalence of PCD is up to ∼1 per 10,000 births, but it is more common in populations where consanguinity is common. This review examines who to refer for diagnostic testing. It describes the limitations surrounding diagnosis using currently available techniques and considers whether recent advances to genotype patients with PCD will lead to genetic testing and screening to aid diagnosis in the near future. It discusses the challenges of monitoring and treating respiratory and ENT disease in children with PCD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system.

    PubMed

    Becker, Laren; Nguyen, Linh; Gill, Jaspreet; Kulkarni, Subhash; Pasricha, Pankaj Jay; Habtezion, Aida

    2018-05-01

    The enteric nervous system (ENS) undergoes neuronal loss and degenerative changes with age. The cause of this neurodegeneration is poorly understood. Muscularis macrophages residing in close proximity to enteric ganglia maintain neuromuscular function via direct crosstalk with enteric neurons and have been implicated in the pathogenesis of GI motility disorders like gastroparesis and postoperative ileus. The aim of this study was to assess whether ageing causes alterations in macrophage phenotype that contributes to age-related degeneration of the ENS. Longitudinal muscle and myenteric plexus from small intestine of young, mid-aged and old mice were dissected and prepared for whole mount immunostaining, flow cytometry, Luminex immunoassays, western blot analysis, enteric neural stem cell (ENSC) isolation or conditioned media. Bone marrow derived macrophages were prepared and polarised to classic (M1) or alternative (M2) activation states. Markers for macrophage phenotype were measured using quantitative RT-PCR. Ageing causes a shift in macrophage polarisation from anti-inflammatory 'M2' to proinflammatory 'M1' that is associated with a rise in cytokines and immune cells in the ENS. This phenotypic shift is associated with a neural response to inflammatory signals, increase in apoptosis and loss of enteric neurons and ENSCs, and delayed intestinal transit. An age-dependent decrease in expression of the transcription factor FoxO3, a known longevity gene, contributes to the loss of anti-inflammatory behaviour in macrophages of old mice, and FoxO3-deficient mice demonstrate signs of premature ageing of the ENS. A shift by macrophages towards a proinflammatory phenotype with ageing causes inflammation-mediated degeneration of the ENS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Multi-pulse operation of a dissipative soliton fibre laser based on nonlinear polarisation rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H L; Wang, X L; Zhou, P

    We report an experimental observation of multiple dissipative soliton (DS) operation states in an all-normal-dispersion passively mode-locked Yb-doped fibre laser, including DS bound and oscillating states. In the bound state, multiple DSs up to 11 can coexist in the cavity. In the oscillating state, the DSs' movements are not purely random and three typical states are generalised and illustrated. A single-pulse mode-locked state is established at a high pump power by carefully adjusting the polarisation controllers. The broad spectrum indicates that it may be noise-like pulses, which can serve as a pump to generate a supercontinuum. (control of laser radiationmore » parameters)« less

  4. Ciliary proteins Bbs8 and Ift20 promote planar cell polarity in the cochlea

    PubMed Central

    May-Simera, Helen L.; Petralia, Ronald S.; Montcouquiol, Mireille; Wang, Ya-Xian; Szarama, Katherine B.; Liu, Yun; Lin, Weichun; Deans, Michael R.; Pazour, Gregory J.; Kelley, Matthew W.

    2015-01-01

    Primary cilia have been implicated in the generation of planar cell polarity (PCP). However, variations in the severity of polarity defects in different cilia mutants, coupled with recent demonstrations of non-cilia-related actions of some cilia genes, make it difficult to determine the basis of these polarity defects. To address this issue, we evaluated PCP defects in cochlea from a selection of mice with mutations in cilia-related genes. Results indicated notable PCP defects, including mis-oriented hair cell stereociliary bundles, in Bbs8 and Ift20 single mutants that are more severe than in other cilia gene knockouts. In addition, deletion of either Bbs8 or Ift20 results in disruptions in asymmetric accumulation of the core PCP molecule Vangl2 in cochlear cells, suggesting a role for Bbs8 and/or Ift20, possibly upstream of core PCP asymmetry. Consistent with this, co-immunoprecipitation experiments indicate direct interactions of Bbs8 and Ift20 with Vangl2. We observed localization of Bbs and Ift proteins to filamentous actin as well as microtubules. This could implicate these molecules in selective trafficking of membrane proteins upstream of cytoskeletal reorganization, and identifies new roles for cilia-related proteins in cochlear PCP. PMID:25605782

  5. The mechanics of the primary cilium: an intricate structure with complex function.

    PubMed

    Hoey, David A; Downs, Matthew E; Jacobs, Christopher R

    2012-01-03

    The primary cilium is a non-motile singular cellular structure that extends from the surface of nearly every cell in the body. The cilium has been shown to play numerous roles in maintaining tissue homeostasis, through regulating signaling pathways and sensing both biophysical and biochemical changes in the extracellular environment. The structural performance of the cilium is paramount to its function as defective cilia have been linked to numerous pathologies. In particular, the cilium has demonstrated a mechanosensory role in tissues such as the kidney, liver, endothelium and bone, where cilium deflection under mechanical loading triggers a cellular response. Understanding of how cilium structure and subsequent mechanical behavior contributes to the roles that cilium plays in regulating cellular behavior is a compelling question, yet is a relatively untouched research area. Recent advances in biophysical measurements have demonstrated the cilium to be a structurally intricate organelle containing an array of load bearing proteins. Furthermore advances in modeling of this organelle have revealed the importance of these proteins at regulating the cilium's mechanosensitivity. Remarkably, the cilium is capable of adapting its mechanical state, altering its length and possibly it's bending resistance, to regulate its mechanosensitivity demonstrating the importance of cilium mechanics in cellular responses. In this review, we introduce the cilium as a mechanosensor; discuss the advances in the mechanical modeling of cilia; explore the structural features of the cilium, which contribute to its mechanics and finish with possible mechanisms in which alteration in structure may affect ciliary mechanics, consequently affecting ciliary based mechanosensing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Creating a hyperpolarised pseudo singlet state through polarisation transfer from parahydrogen under SABRE.

    PubMed

    Olaru, Alexandra M; Roy, Soumya S; Lloyd, Lyrelle S; Coombes, Steven; Green, Gary G R; Duckett, Simon B

    2016-06-14

    The creation of magnetic states that have long lifetimes has been the subject of intense investigation, in part because of their potential to survive the time taken to travel from the point of injection in a patient to the point where a clinically diagnostic MRI trace is collected. We show here that it is possible to harness the signal amplification by reversible exchange (SABRE) process to create such states in a hyperpolarised form that improves their detectability in seconds without the need for any chemical change by reference to the model substrate 2-aminothiazole. We achieve this by transferring Zeeman derived polarisation that is 1500 times larger than that normally available at 400 MHz with greater than 90% efficiency into the new state, which in this case has a 27 second lifetime.

  7. Modelling the fluid mechanics of cilia and flagella in reproduction and development.

    PubMed

    Montenegro-Johnson, Thomas D; Smith, Andrew A; Smith, David J; Loghin, Daniel; Blake, John R

    2012-10-01

    Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher-order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: 1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and 2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite-element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.

  8. A new tabanid trap applying a modified concept of the old flypaper: linearly polarising sticky black surfaces as an effective tool to catch polarotactic horseflies.

    PubMed

    Egri, Ádám; Blahó, Miklós; Száz, Dénes; Barta, András; Kriska, György; Antoni, Györgyi; Horváth, Gábor

    2013-06-01

    Trapping flies with sticky paper sheets is an ancient method. The classic flypaper has four typical characteristics: (i) its sticky paper is bright (chamois, light yellow or white), (ii) it is strip-shaped, (iii) it hangs vertically, and (iv) it is positioned high (several metres) above ground level. Such flypapers, however, do not trap horseflies (tabanids). There is a great need to kill horseflies with efficient traps because they are vectors of dangerous diseases, and due to their continuous annoyance livestock cannot graze, horses cannot be ridden, and meat and milk production from cattle is drastically reduced. Based on earlier findings on the positive polarotaxis (attraction to linearly polarised light) in tabanid flies and modifying the concept of the old flypaper, we constructed a new horsefly trap called "horseflypaper". In four field experiments we showed that the ideal horseflypaper (i) is shiny black, (ii) has an appropriately large (75×75 cm(2)) surface area, (iii) has sticky black vertical and horizontal surfaces in an L-shaped arrangement, and (iv) its horizontal surface should be at ground level for maximum effectiveness. Using imaging polarimetry, we measured the reflection-polarisation characteristics of this new polarisation tabanid trap. The ideal optical and geometrical characteristics of this trap revealed in field experiments are also explained. The horizontal part of the trap captures water-seeking male and female tabanids, while the vertical part catches host-seeking female tabanids. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  9. The ciliogenic transcription factor Rfx3 is required for the formation of the thalamocortical tract by regulating the patterning of prethalamus and ventral telencephalon.

    PubMed

    Magnani, Dario; Morlé, Laurette; Hasenpusch-Theil, Kerstin; Paschaki, Marie; Jacoby, Monique; Schurmans, Stéphane; Durand, Bénédicte; Theil, Thomas

    2015-05-01

    Primary cilia are complex subcellular structures that play key roles during embryogenesis by controlling the cellular response to several signaling pathways. Defects in the function and/or structure of primary cilia underlie a large number of human syndromes collectively referred to as ciliopathies. Often, ciliopathies are associated with mental retardation (MR) and malformation of the corpus callosum. However, the possibility of defects in other forebrain axon tracts, which could contribute to the cognitive disorders of these patients, has not been explored. Here, we investigate the formation of the corticothalamic/thalamocortical tracts in mice mutant for Rfx3, which regulates the expression of many genes involved in ciliogenesis and cilia function. Using DiI axon tracing and immunohistochemistry experiments, we show that some Rfx3(-/-) corticothalamic axons abnormally migrate toward the pial surface of the ventral telencephalon (VT). Some thalamocortical axons (TCAs) also fail to leave the diencephalon or abnormally project toward the amygdala. Moreover, the Rfx3(-/-) VT displays heterotopias containing attractive guidance cues and expressing the guidance molecules Slit1 and Netrin1. Finally, the abnormal projection of TCAs toward the amygdala is also present in mice carrying a mutation in the Inpp5e gene, which is mutated in Joubert Syndrome and which controls cilia signaling and stability. The presence of identical thalamocortical malformations in two independent ciliary mutants indicates a novel role for primary cilia in the formation of the corticothalamic/thalamocortical tracts by establishing the correct cellular environment necessary for its development. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Filtration rate dependence of hyaluronan reflection by joint-to-lymph barrier: evidence for concentration polarisation

    PubMed Central

    Sabaratnam, S; Mason, RM; Levick, JR

    2004-01-01

    Hyaluronan (HA), a component of synovial fluid, buffers fluid loss from joints. To explain this, a quantitative theory for HA concentration polarisation at a partially sieving synovial lining was developed. The theory predicts a fall in HA reflected fraction R with increased filtration rate. To test this, knees of anaesthetised rabbits were infused with HA and fluorescein–dextran (FD) at constant trans-synovial filtration rates of 6–89 μl min−1. Samples of femoral lymph, mixed intra-articular fluid and subsynovial fluid after ≥ 3 h were analysed by high-performance liquid chromatography. R was calculated as (1 – downstream/upstream concentration), using [FD] to adjust for joint lymph dilution in femoral lymph. Intra-articular HA concentration after ≥ 3 h, 0.47 ± 0.02 mg ml−1 (mean ±s.e.m., n = 31), exceeded the infusate concentration, 0.20 mg ml−1, while subsynovial and lymph [HA] were reduced relative to [FD]. The changes in [HA] demonstrated synovial molecular sieving of HA. R from cavity to lymph (Rlymph) fell monotonically from 0.93 at 6 μl min−1 to 0.14 at 89 μl min−1 (P < 0.0001, regression analysis, n = 33). R values calculated from the intra-articular HA accumulation (Rasp) or the low subsynovial concentrations (Rsyn) were similar negative functions of filtration rate. R for lymphatic capillary endothelium (Rendo), calculated from lymph/subsynovial concentration ratios, was effectively zero (−0.03 ± 0.18, n = 21), confirming that synovium, not initial lymphatic endothelium, is the reflection site. Logarithmic linearisation of the results evaluated the synovial HA reflection coefficient as 0.91. In conclusion, the existence of concentration polarisation during joint fluid drainage was supported by the demonstration of a negative relation between filtration rate and Rlymph, Rasp and Rsyn. PMID:15073278

  11. Primary Events in Olfactory Receptiom

    DTIC Science & Technology

    1989-10-10

    phase after extraction with Triton X-1 14 and does not bind either concanavalin A or wheat germ agglutinin. When phosphorylation is allowed to proceed in...a low basal level of endogenous activity. Phosphorylation is reversible by treatment of phosphorylated cilia with alkaline phosphatase . Comparing...not with the non-phosphorylated peptide or individual phosphorylated amino acids , such as phosphoserine and phosphotyrosine. We will use these antisera

  12. Ndel1 suppresses ciliogenesis in proliferating cells by regulating the trichoplein-Aurora A pathway.

    PubMed

    Inaba, Hironori; Goto, Hidemasa; Kasahara, Kousuke; Kumamoto, Kanako; Yonemura, Shigenobu; Inoko, Akihito; Yamano, Shotaro; Wanibuchi, Hideki; He, Dongwei; Goshima, Naoki; Kiyono, Tohru; Hirotsune, Shinji; Inagaki, Masaki

    2016-02-15

    Primary cilia protrude from the surface of quiescent cells and disassemble at cell cycle reentry. We previously showed that ciliary reassembly is suppressed by trichoplein-mediated Aurora A activation pathway in growing cells. Here, we report that Ndel1, a well-known modulator of dynein activity, localizes at the subdistal appendage of the mother centriole, which nucleates a primary cilium. In the presence of serum, Ndel1 depletion reduces trichoplein at the mother centriole and induces unscheduled primary cilia formation, which is reverted by forced trichoplein expression or coknockdown of KCTD17 (an E3 ligase component protein for trichoplein). Serum starvation induced transient Ndel1 degradation, subsequent to the disappearance of trichoplein at the mother centriole. Forced expression of Ndel1 suppressed trichoplein degradation and axonemal microtubule extension during ciliogenesis, similar to trichoplein induction or KCTD17 knockdown. Most importantly, the proportion of ciliated and quiescent cells was increased in the kidney tubular epithelia of newborn Ndel1-hypomorphic mice. Thus, Ndel1 acts as a novel upstream regulator of the trichoplein-Aurora A pathway to inhibit primary cilia assembly. © 2016 Inaba et al.

  13. Systematic discovery of novel ciliary genes through functional genomics in the zebrafish

    PubMed Central

    Choksi, Semil P.; Babu, Deepak; Lau, Doreen; Yu, Xianwen; Roy, Sudipto

    2014-01-01

    Cilia are microtubule-based hair-like organelles that play many important roles in development and physiology, and are implicated in a rapidly expanding spectrum of human diseases, collectively termed ciliopathies. Primary ciliary dyskinesia (PCD), one of the most prevalent of ciliopathies, arises from abnormalities in the differentiation or motility of the motile cilia. Despite their biomedical importance, a methodical functional screen for ciliary genes has not been carried out in any vertebrate at the organismal level. We sought to systematically discover novel motile cilia genes by identifying the genes induced by Foxj1, a winged-helix transcription factor that has an evolutionarily conserved role as the master regulator of motile cilia biogenesis. Unexpectedly, we find that the majority of the Foxj1-induced genes have not been associated with cilia before. To characterize these novel putative ciliary genes, we subjected 50 randomly selected candidates to a systematic functional phenotypic screen in zebrafish embryos. Remarkably, we find that over 60% are required for ciliary differentiation or function, whereas 30% of the proteins encoded by these genes localize to motile cilia. We also show that these genes regulate the proper differentiation and beating of motile cilia. This collection of Foxj1-induced genes will be invaluable for furthering our understanding of ciliary biology, and in the identification of new mutations underlying ciliary disorders in humans. PMID:25139857

  14. Real time diffuse reflectance polarisation spectroscopy imaging to evaluate skin microcirculation

    NASA Astrophysics Data System (ADS)

    O'Doherty, Jim; Henricson, Joakim; Nilsson, Gert E.; Anderson, Chris; Leahy, Martin J.

    2007-07-01

    This article describes the theoretical development and design of a real-time microcirculation imaging system, an extension from a previously technology developed by our group. The technology utilises polarisation spectroscopy, a technique used in order to selectively gate photons returning from various compartments of human skin tissue, namely from the superficial layers of the epidermis, and the deeper backscattered light from the dermal matrix. A consumer-end digital camcorder captures colour data with three individual CCDs, and a custom designed light source consisting of a 24 LED ring light provides broadband illumination over the 400 nm - 700 nm wavelength region. Theory developed leads to an image processing algorithm, the output of which scales linearly with increasing red blood cell (RBC) concentration. Processed images are displayed online in real-time at a rate of 25 frames s -1, at a frame size of 256 x 256 pixels, and is limited only by computer RAM memory and processing speed. General demonstrations of the technique in vivo display several advantages over similar technology.

  15. Effect of ferromagnetic exchange field on band gap and spin polarisation of graphene on a TMD substrate

    NASA Astrophysics Data System (ADS)

    Goswami, Partha

    2018-03-01

    We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around K and K^' } points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spin-orbit interaction (SOI), the extrinsic Rashba spin-orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field ( M) in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particle-hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on WY2, exhibit (direct) band-gap narrowing / widening (Moss-Burstein (MB) gap shift) including the increase in spin polarisation ( P) at low temperature due to the increase in the exchange field ( M) at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like BiFeO3 (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.

  16. Evaluation and Comparison of the Biopathology of Collagen and Inflammation in the Extracellular Matrix of Oral Epithelial Dysplasias and Inflammatory Fibrous Hyperplasia Using Picrosirius Red Stain and Polarising Microscopy: A Preliminary Study

    PubMed Central

    Varghese, Soma Susan; Sarojini, Sreenivasan Bargavan; George, Giju Baby; Vinod, Sankar; Mathew, Philips; Babu, Anulekh; Sebastian, Joseph

    2015-01-01

    Background: The role of tumour inflammation and the dysplastic epithelial-stromal interactions on the nature of collagen fibres in the extracellular matrix of dysplastic epithelium is not fully understood. The present study was aimed to evaluate and compare the inflammation and pathological stromal collagen (loosely packed thin disorganized collagen) present in mild, moderate and severe epithelial dysplasias with that of inflammatory fibrous hyperplasias. The basement membrane intactness of epithelial dysplasias was also evaluated to determine if dysplastic epithelial mesenchymal interaction has any role in the integrity of stromal collagen in epithelial dysplasia. Methods: Oral epithelial dysplasias, inflammatory fibrous hyperplasia and normal oral mucosal samples were used for the study. Packing, thickness and orientation of collagen fibres in mild, moderate and severe grades of oral epithelial dysplasias (n = 24), inflammatory fibrous hyperplasia (n = 8) and normal oral mucosal samples (n = 8) were analysed based on the polarisation of collagen fibres in picrosirius red polarising stain under polarising microscope. Results: All the grades of epithelial dysplasias showed greenish yellow birefringence confirming the presence of loosely arranged pathological collagen in the presence of moderate inflammation. All the cases of inflammatory fibrous hyperplasia showed red polarisation hue and moderate inflammation. A statistically significant difference was found in the packing and orientation of collagen when epithelial dysplasias and inflammatory fibrous hyperplasia were compared (P < 0.01). When the intactness of basement membrane integrity was compared in all the groups of epithelial dysplasia, a statistically significant result was obtained (P < 0.05). Conclusions: Presence of significant amount of loosely packed thin disoriented collagen even in mild epithelial dysplasia suggests that tumourigenic factors are released to connective tissue stroma much earlier than

  17. Evaluation and Comparison of the Biopathology of Collagen and Inflammation in the Extracellular Matrix of Oral Epithelial Dysplasias and Inflammatory Fibrous Hyperplasia Using Picrosirius Red Stain and Polarising Microscopy: A Preliminary Study.

    PubMed

    Varghese, Soma Susan; Sarojini, Sreenivasan Bargavan; George, Giju Baby; Vinod, Sankar; Mathew, Philips; Babu, Anulekh; Sebastian, Joseph

    2015-12-01

    The role of tumour inflammation and the dysplastic epithelial-stromal interactions on the nature of collagen fibres in the extracellular matrix of dysplastic epithelium is not fully understood. The present study was aimed to evaluate and compare the inflammation and pathological stromal collagen (loosely packed thin disorganized collagen) present in mild, moderate and severe epithelial dysplasias with that of inflammatory fibrous hyperplasias. The basement membrane intactness of epithelial dysplasias was also evaluated to determine if dysplastic epithelial mesenchymal interaction has any role in the integrity of stromal collagen in epithelial dysplasia. Oral epithelial dysplasias, inflammatory fibrous hyperplasia and normal oral mucosal samples were used for the study. Packing, thickness and orientation of collagen fibres in mild, moderate and severe grades of oral epithelial dysplasias (n = 24), inflammatory fibrous hyperplasia (n = 8) and normal oral mucosal samples (n = 8) were analysed based on the polarisation of collagen fibres in picrosirius red polarising stain under polarising microscope. All the grades of epithelial dysplasias showed greenish yellow birefringence confirming the presence of loosely arranged pathological collagen in the presence of moderate inflammation. All the cases of inflammatory fibrous hyperplasia showed red polarisation hue and moderate inflammation. A statistically significant difference was found in the packing and orientation of collagen when epithelial dysplasias and inflammatory fibrous hyperplasia were compared (P < 0.01). When the intactness of basement membrane integrity was compared in all the groups of epithelial dysplasia, a statistically significant result was obtained (P < 0.05). Presence of significant amount of loosely packed thin disoriented collagen even in mild epithelial dysplasia suggests that tumourigenic factors are released to connective tissue stroma much earlier than expected. Hence we suggest considering the

  18. Laterality Defects Other Than Situs Inversus Totalis in Primary Ciliary Dyskinesia

    PubMed Central

    Davis, Stephanie D.; Ferkol, Thomas; Dell, Sharon D.; Rosenfeld, Margaret; Olivier, Kenneth N.; Sagel, Scott D.; Milla, Carlos; Zariwala, Maimoona A.; Wolf, Whitney; Carson, Johnny L.; Hazucha, Milan J.; Burns, Kimberlie; Robinson, Blair; Knowles, Michael R.; Leigh, Margaret W.

    2014-01-01

    BACKGROUND: Motile cilia dysfunction causes primary ciliary dyskinesia (PCD), situs inversus totalis (SI), and a spectrum of laterality defects, yet the prevalence of laterality defects other than SI in PCD has not been prospectively studied. METHODS: In this prospective study, participants with suspected PCD were referred to our multisite consortium. We measured nasal nitric oxide (nNO) level, examined cilia with electron microscopy, and analyzed PCD-causing gene mutations. Situs was classified as (1) situs solitus (SS), (2) SI, or (3) situs ambiguus (SA), including heterotaxy. Participants with hallmark electron microscopic defects, biallelic gene mutations, or both were considered to have classic PCD. RESULTS: Of 767 participants (median age, 8.1 years, range, 0.1-58 years), classic PCD was defined in 305, including 143 (46.9%), 125 (41.0%), and 37 (12.1%) with SS, SI, and SA, respectively. A spectrum of laterality defects was identified with classic PCD, including 2.6% and 2.3% with SA plus complex or simple cardiac defects, respectively; 4.6% with SA but no cardiac defect; and 2.6% with an isolated possible laterality defect. Participants with SA and classic PCD had a higher prevalence of PCD-associated respiratory symptoms vs SA control participants (year-round wet cough, P < .001; year-round nasal congestion, P = .015; neonatal respiratory distress, P = .009; digital clubbing, P = .021) and lower nNO levels (median, 12 nL/min vs 252 nL/min; P < .001). CONCLUSIONS: At least 12.1% of patients with classic PCD have SA and laterality defects ranging from classic heterotaxy to subtle laterality defects. Specific clinical features of PCD and low nNO levels help to identify PCD in patients with laterality defects. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00323167; URL: www.clinicaltrials.gov PMID:24577564

  19. Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents.

    PubMed

    Leigh, Margaret W; Ferkol, Thomas W; Davis, Stephanie D; Lee, Hye-Seung; Rosenfeld, Margaret; Dell, Sharon D; Sagel, Scott D; Milla, Carlos; Olivier, Kenneth N; Sullivan, Kelli M; Zariwala, Maimoona A; Pittman, Jessica E; Shapiro, Adam J; Carson, Johnny L; Krischer, Jeffrey; Hazucha, Milan J; Knowles, Michael R

    2016-08-01

    Primary ciliary dyskinesia (PCD), a genetically heterogeneous, recessive disorder of motile cilia, is associated with distinct clinical features. Diagnostic tests, including ultrastructural analysis of cilia, nasal nitric oxide measurements, and molecular testing for mutations in PCD genes, have inherent limitations. To define a statistically valid combination of systematically defined clinical features that strongly associates with PCD in children and adolescents. Investigators at seven North American sites in the Genetic Disorders of Mucociliary Clearance Consortium prospectively and systematically assessed individuals (aged 0-18 yr) referred due to high suspicion for PCD. The investigators defined specific clinical questions for the clinical report form based on expert opinion. Diagnostic testing was performed using standardized protocols and included nasal nitric oxide measurement, ciliary biopsy for ultrastructural analysis of cilia, and molecular genetic testing for PCD-associated genes. Final diagnoses were assigned as "definite PCD" (hallmark ultrastructural defects and/or two mutations in a PCD-associated gene), "probable/possible PCD" (no ultrastructural defect or genetic diagnosis, but compatible clinical features and nasal nitric oxide level in PCD range), and "other diagnosis or undefined." Criteria were developed to define early childhood clinical features on the basis of responses to multiple specific queries. Each defined feature was tested by logistic regression. Sensitivity and specificity analyses were conducted to define the most robust set of clinical features associated with PCD. From 534 participants 18 years of age and younger, 205 were identified as having "definite PCD" (including 164 with two mutations in a PCD-associated gene), 187 were categorized as "other diagnosis or undefined," and 142 were defined as having "probable/possible PCD." Participants with "definite PCD" were compared with the "other diagnosis or undefined" group. Four

  20. Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents

    PubMed Central

    Ferkol, Thomas W.; Davis, Stephanie D.; Lee, Hye-Seung; Rosenfeld, Margaret; Dell, Sharon D.; Sagel, Scott D.; Milla, Carlos; Olivier, Kenneth N.; Sullivan, Kelli M.; Zariwala, Maimoona A.; Pittman, Jessica E.; Shapiro, Adam J.; Carson, Johnny L.; Krischer, Jeffrey; Hazucha, Milan J.

    2016-01-01

    Rationale: Primary ciliary dyskinesia (PCD), a genetically heterogeneous, recessive disorder of motile cilia, is associated with distinct clinical features. Diagnostic tests, including ultrastructural analysis of cilia, nasal nitric oxide measurements, and molecular testing for mutations in PCD genes, have inherent limitations. Objectives: To define a statistically valid combination of systematically defined clinical features that strongly associates with PCD in children and adolescents. Methods: Investigators at seven North American sites in the Genetic Disorders of Mucociliary Clearance Consortium prospectively and systematically assessed individuals (aged 0–18 yr) referred due to high suspicion for PCD. The investigators defined specific clinical questions for the clinical report form based on expert opinion. Diagnostic testing was performed using standardized protocols and included nasal nitric oxide measurement, ciliary biopsy for ultrastructural analysis of cilia, and molecular genetic testing for PCD-associated genes. Final diagnoses were assigned as “definite PCD” (hallmark ultrastructural defects and/or two mutations in a PCD-associated gene), “probable/possible PCD” (no ultrastructural defect or genetic diagnosis, but compatible clinical features and nasal nitric oxide level in PCD range), and “other diagnosis or undefined.” Criteria were developed to define early childhood clinical features on the basis of responses to multiple specific queries. Each defined feature was tested by logistic regression. Sensitivity and specificity analyses were conducted to define the most robust set of clinical features associated with PCD. Measurements and Main Results: From 534 participants 18 years of age and younger, 205 were identified as having “definite PCD” (including 164 with two mutations in a PCD-associated gene), 187 were categorized as “other diagnosis or undefined,” and 142 were defined as having “probable/possible PCD.” Participants

  1. The ciliopathy gene Rpgrip1l is essential for hair follicle development.

    PubMed

    Chen, Jiang; Laclef, Christine; Moncayo, Alejandra; Snedecor, Elizabeth R; Yang, Ning; Li, Li; Takemaru, Ken-Ichi; Paus, Ralf; Schneider-Maunoury, Sylvie; Clark, Richard A

    2015-03-01

    The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgrip1l gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.

  2. Centrosome Defects, Genetic Instability and Breast Cancer Progression

    DTIC Science & Technology

    2005-08-01

    and is associated with cell cycle progression. Primary cilia loss is thought to be the cause of polycystic kidney disease, a condition in which kidney...polycyctin2 which is also implicated in polycystic kidney disease (Pazour, Baker et al. 2002; Pazour anrd Rosenbaum 2002; Pazour, San Agustin et al. 2002...1941-51. Pazour, G. J. (2004). "Intraflagellar transport and cilia-dependent renal disease: the ciliary hypothesis of polycystic kidney disease." J

  3. Characteristics of Polarisation in the Ramsauer-Townsend Minima in Strongly Coupled Semiclassic Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-10-01

    The influence of quantum shielding on the Ramsauer-Townsend phenomena for the total electron-atom polarisation collision cross-section is investigated in partially ionised strongly coupled semiclassic plasmas. The result shows that the quantum shielding effect changes the position of the Ramsauer energy in partially ionised strongly coupled plasmas. It is also found that the quantum shielding effect enhances the total electron-atom collision cross-section when the collision energy is greater than the Ramsauer energy; however, it suppresses the collision cross-section when the collision energy is smaller than the Ramsauer energy. In addition, it is shown that the plasma screening effect significantly changes the position of the Ramsauer energy and the influence of plasma screening on the magnitude of the collision cross-section is more significant near the Ramsauer energy domain. The variations of the Ramsauer energy and the collision cross-section due to the quantum shielding effect are also discussed.

  4. A TPC as high performance gamma-ray telescope and polarimeter: polarisation measurement in a beam between 1.7 and 74MeV with HARPO

    NASA Astrophysics Data System (ADS)

    Gros, P.; Amano, S.; Attié, D.; Baron, P.; Baudin, D.; Bernard, D.; Bruel, P.; Calvet, D.; Colas, P.; Daté, S.; Delbart, A.; Frotin, M.; Geerebaert, Y.; Giebels, B.; Götz, D.; Hashimoto, S.; Horan, D.; Kotaka, T.; Louzir, M.; Magniette, F.; Minamiyama, Y.; Miyamoto, S.; Ohkuma, H.; Poilleux, P.; Semeniouk, I.; Sizun, P.; Takemoto, A.; Yamaguchi, M.; Yonamine, R.; Wang, S.

    2018-05-01

    We presented in 2014 the very first data from a polarised gamma-ray beam between 1.7 and 74MeV. We now show the results of their analysis, and in particular the polarimetry measurements. With these results, we are establishing a new, high-performance way to do gamma-ray astronomy and, for the first time, polarimetry, in the e+e- pair regime.

  5. Inactivation of Ca2+-induced ciliary reversal by high-salt extraction in the cilia of Paramecium.

    PubMed

    Kutomi, Osamu; Seki, Makoto; Nakamura, Shogo; Kamachi, Hiroyuki; Noguchi, Munenori

    2013-10-01

    Intracellular Ca(2+) induces ciliary reversal and backward swimming in Paramecium. However, it is not known how the Ca(2+) signal controls the motor machinery to induce ciliary reversal. We found that demembranated cilia on the ciliated cortical sheets from Paramecium caudatum lost the ability to undergo ciliary reversal after brief extraction with a solution containing 0.5 M KCl. KNO(3), which is similar to KCl with respect to chaotropic effect; it had the same effect as that of KCl on ciliary response. Cyclic AMP antagonizes Ca(2+)-induced ciliary reversal. Limited trypsin digestion prevents endogenous A-kinase and cAMP-dependent phosphorylation of an outer arm dynein light chain and induces ciliary reversal. However, the trypsin digestion prior to the high-salt extraction did not affect the inhibition of Ca(2+)-induced ciliary reversal caused by the high-salt extraction. Furthermore, during the course of the high-salt extraction, some axonemal proteins were extracted from ciliary axonemes, suggesting that they may be responsible for Ca(2+)-induced ciliary reversal.

  6. Recent advances in primary ciliary dyskinesia genetics

    PubMed Central

    Kurkowiak, Małgorzata; Ziętkiewicz, Ewa; Witt, Michał

    2015-01-01

    Primary ciliary dyskinesia (PCD) is a rare genetically heterogeneous disorder caused by the abnormal structure and/or function of motile cilia. The PCD diagnosis is challenging and requires a well-described clinical phenotype combined with the identification of abnormalities in ciliary ultrastructure and/or beating pattern as well as the recognition of genetic cause of the disease. Regarding the pace of identification of PCD-related genes, a rapid acceleration during the last 2–3 years is notable. This is the result of new technologies, such as whole-exome sequencing, that have been recently applied in genetic research. To date, PCD-causative mutations in 29 genes are known and the number of causative genes is bound to rise. Even though the genetic causes of approximately one-third of PCD cases still remain to be found, the current knowledge can already be used to create new, accurate genetic tests for PCD that can accelerate the correct diagnosis and reduce the proportion of unexplained cases. This review aims to present the latest data on the relations between ciliary structure aberrations and their genetic basis. PMID:25351953

  7. Loss-of-Function Mutations in a Human Gene Related to Chlamydomonas reinhardtii Dynein IC78 Result in Primary Ciliary Dyskinesia

    PubMed Central

    Pennarun, Gaëlle; Escudier, Estelle; Chapelin, Catherine; Bridoux, Anne-Marie; Cacheux, Valère; Roger, Gilles; Clément, Annick; Goossens, Michel; Amselem, Serge; Duriez, Bénédicte

    1999-01-01

    Summary Primary ciliary dyskinesia (PCD) is a group of heterogeneous disorders of unknown origin, usually inherited as an autosomal recessive trait. Its phenotype is characterized by axonemal abnormalities of respiratory cilia and sperm tails leading to bronchiectasis and sinusitis, which are sometimes associated with situs inversus (Kartagener syndrome) and male sterility. The main ciliary defect in PCD is an absence of dynein arms. We have isolated the first gene involved in PCD, using a candidate-gene approach developed on the basis of documented abnormalities of immotile strains of Chlamydomonas reinhardtii, which carry axonemal ultrastructural defects reminiscent of PCD. Taking advantage of the evolutionary conservation of genes encoding axonemal proteins, we have isolated a human sequence (DNAI1) related to IC78, a C. reinhardtii gene encoding a dynein intermediate chain in which mutations are associated with the absence of outer dynein arms. DNAI1 is highly expressed in trachea and testis and is composed of 20 exons located at 9p13-p21. Two loss-of-function mutations of DNAI1 have been identified in a patient with PCD characterized by immotile respiratory cilia lacking outer dynein arms. In addition, we excluded linkage between this gene and similar PCD phenotypes in five other affected families, providing a clear demonstration of locus heterogeneity. These data reveal the critical role of DNAI1 in the development of human axonemal structures and open up new means for identification of additional genes involved in related developmental defects. PMID:10577904

  8. Spin polarisation of tt¯γγ production at NLO+PS with GoSam interfaced to MadGraph5_aMC@NLO

    DOE PAGES

    van Deurzen, Hans; Frederix, Rikkert; Hirschi, Valentin; ...

    2016-04-22

    Here, we present an interface between the multipurpose Monte Carlo tool MadGraph5_aMC@NLO and the automated amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections to pp→ tt¯H and pp→ tt¯γγ matched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks.

  9. Spin polarisation of tt¯γγ production at NLO+PS with GoSam interfaced to MadGraph5_aMC@NLO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Deurzen, Hans; Frederix, Rikkert; Hirschi, Valentin

    Here, we present an interface between the multipurpose Monte Carlo tool MadGraph5_aMC@NLO and the automated amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections to pp→ tt¯H and pp→ tt¯γγ matched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks.

  10. The Orphan G Protein-coupled Receptor Gpr175 (Tpra40) Enhances Hedgehog Signaling by Modulating cAMP Levels.

    PubMed

    Singh, Jaskirat; Wen, Xiaohui; Scales, Suzie J

    2015-12-04

    The Hedgehog (Hh) signaling pathway plays an essential role in vertebrate embryonic tissue patterning of many developing organs. Signaling occurs predominantly in primary cilia and is initiated by the entry of the G protein-coupled receptor (GPCR)-like protein Smoothened into cilia and culminates in gene transcription via the Gli family of transcription factors upon their nuclear entry. Here we identify an orphan GPCR, Gpr175 (also known as Tpra1 or Tpra40: transmembrane protein, adipocyte associated 1 or of 40 kDa), which also localizes to primary cilia upon Hh stimulation and positively regulates Hh signaling. Interaction experiments place Gpr175 at the level of PKA and upstream of the Gαi component of heterotrimeric G proteins, which itself localizes to cilia and can modulate Hh signaling. Gpr175 or Gαi1 depletion leads to increases in cellular cAMP levels and in Gli3 processing into its repressor form. Thus we propose that Gpr175 coupled to Gαi1 normally functions to inhibit the production of cAMP by adenylyl cyclase upon Hh stimulation, thus maximizing signaling by turning off PKA activity and hence Gli3 repressor formation. Taken together our data suggest that Gpr175 is a novel positive regulator of the Hh signaling pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components.

    PubMed

    Qin, Jian; Lin, Yulian; Norman, Ryan X; Ko, Hyuk W; Eggenschwiler, Jonathan T

    2011-01-25

    Primary cilia are required for proper Sonic Hedgehog (Shh) signaling in mammals. However, their role in the signal transduction process remains unclear. We have identified sister of open brain (sopb), a null allele of mouse Intraflagellar transport protein 122 (Ift122). IFT122 negatively regulates the Shh pathway in the cilium at a step downstream of the Shh ligand and the transmembrane protein Smoothened, but upstream of the Gli2 transcription factor. Ift122(sopb) mutants generate primary cilia, but they show features of defective retrograde intraflagellar transport. IFT122 controls the ciliary localization of Shh pathway regulators in different ways. Disruption of IFT122 leads to accumulation of Gli2 and Gli3 at cilia tips while blocking the ciliary localization of the antagonist TULP3. Suppressor of Fused and Smoothened localize to the cilium through an IFT122-independent mechanism. We propose that the balance between positive and negative regulators of the Shh pathway at the cilium tip controls the output of the pathway and that Shh signaling regulates this balance through intraflagellar transport.

  12. The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, J M; Michaud III, Edward J; Schoeb, T

    2008-08-01

    The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can bemore » analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.« less

  13. A novel form of ciliopathy underlies hyperphagia and obesity in Ankrd26 knockout mice.

    PubMed

    Acs, Peter; Bauer, Peter O; Mayer, Balazs; Bera, Tapan; Macallister, Rhonda; Mezey, Eva; Pastan, Ira

    2015-01-01

    Human ciliopathies are genetic disorders caused by mutations in genes responsible for the formation and function of primary cilia. Some are associated with hyperphagia and obesity (e.g., Bardet-Biedl Syndrome, Alström Syndrome), but the mechanisms underlying these problems are not fully understood. The human gene ANKRD26 is located on 10p12, a locus that is associated with some forms of hereditary obesity. Previously, we reported that disruption of this gene causes hyperphagia, obesity and gigantism in mice. In the present study, we looked for the mechanisms that induce hyperphagia in the Ankrd26-/- mice and found defects in primary cilia in regions of the central nervous system that control appetite and energy homeostasis.

  14. Dual polarisation C-band weather radar imagery of the 6 August 2012 Te Maari Eruption, Mount Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Crouch, John F.; Pardo, Natalia; Miller, Craig A.

    2014-10-01

    The 6 August 2012 eruption of Mt. Tongariro from Upper Te Maari Crater in the central North Island of New Zealand was the first volcanic eruption observed by an operational weather radar in New Zealand, and is believed to be one of only a small number of eruptions observed by a dual-polarisation radar worldwide. The eruption was also observed by a GeoNet webcam, and detailed ash deposit studies have permitted analysis of the plume characteristics. A combination of radar and webcam imagery show 5 pulses within the first 13 min of the eruption, and also the subsequent ash transport downwind. Comparison with ash samples show the radar was likely detecting ash particles down to about 0.5 mm diameter. The maximum plume height estimated by the radar is 7.8 ± 1.0 km above mean sea level (amsl), although it is possible this may be a slight under estimation if very small ash particles not detected by the radar rose higher and comprised the very top of the plume. The correlation coefficient and differential reflectivity fields that are additionally measured by the dual polarisation radar provide extra information about the structure and composition of the eruption column and ash cloud. The correlation coefficient easily discriminates between the eruption column and the ash plume, and provides some information about the diversity of ash particle size within both the ash plume and the subsequent detached ash cloud drifting downwind. The differential reflectivity shows that the larger ash particles are falling with a horizontal orientation, and indicates that ice nucleation and aggregation of fine ash particles was probably occurring at high altitudes within 20-25 min of the eruption.

  15. hemingway is required for sperm flagella assembly and ciliary motility in Drosophila.

    PubMed

    Soulavie, Fabien; Piepenbrock, David; Thomas, Joëlle; Vieillard, Jennifer; Duteyrat, Jean-Luc; Cortier, Elisabeth; Laurençon, Anne; Göpfert, Martin C; Durand, Bénédicte

    2014-04-01

    Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left-right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604-amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly.

  16. Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways.

    PubMed

    Geneva, Ivayla I; Tan, Han Yen; Calvert, Peter D

    2017-02-15

    Resolution limitations of optical systems are major obstacles for determining whether proteins are enriched within cell compartments. Here we use an approach to determine the degree of membrane protein ciliary enrichment that quantitatively accounts for the differences in sampling of the ciliary and apical membranes inherent to confocal microscopes. Theory shows that cilia will appear more than threefold brighter than the surrounding apical membrane when the densities of fluorescently labeled proteins are the same, thus providing a benchmark for ciliary enrichment. Using this benchmark, we examined the ciliary enrichment signals of two G protein-coupled receptors (GPCRs)-the somatostatin receptor 3 and rhodopsin. Remarkably, we found that the C-terminal VxPx motif, required for efficient enrichment of rhodopsin within rod photoreceptor sensory cilia, inhibited enrichment of the somatostatin receptor in primary cilia. Similarly, VxPx inhibited primary cilium enrichment of a chimera of rhodopsin and somatostatin receptor 3, where the dual Ax(S/A)xQ ciliary targeting motifs within the third intracellular loop of the somatostatin receptor replaced the third intracellular loop of rhodopsin. Rhodopsin was depleted from primary cilia but gained access, without being enriched, with the dual Ax(S/A)xQ motifs. Ciliary enrichment of these GPCRs thus operates via distinct mechanisms in different cells. © 2017 Geneva et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Cilia and Ear.

    PubMed

    Piatti, Gioia; De Santi, Maria Margherita; Torretta, Sara; Pignataro, Lorenzo; Soi, Daniela; Ambrosetti, Umberto

    2017-04-01

    To investigate the prevalence of otological complications derived from primary ciliary dyskinesia (PCD) in adulthood. Twenty-three patients with diagnosed PCD underwent medical history aimed at recording the presence of ear, nose, and throat manifestations (ENT) and any surgical treatments. The ENT objectivity was annotated, and then patients were subjected to audiometric test, tympanometry, registration of otoacoustic emission, and vestibular evaluation. Otitis media with chronic middle ear effusion (OME) during childhood was reported in 52% of the subjects, no patient had undergone ear surgery, and only 2 patients had an episode of otitis in the last year. Eleven of 23 patients showed normal hearing, 11 had a conductive hearing impairment, and 1 showed a severe sensorineural hearing loss unrelated to the syndrome. The bilateral stapedial reflex was only found in all cases of normoacusia and type A tympanogram, distortion product otoacoustic emissions (DPOAE) were present in 8 patients, and no patient had vestibular alterations. Our study confirms a very frequent prevalence of OME in PCD during childhood. Careful monitoring of otological complications of the syndrome is always desirable, also given the high presence in adults of other manifestations in the upper airways, such as chronic rhinosinusitis and nasal polyposis.

  18. Integration and flight test of a biomimetic heading sensor

    NASA Astrophysics Data System (ADS)

    Chahl, Javaan; Mizutani, Akiko

    2013-04-01

    We report on the first successful development and implementation of an automatic polarisation compass as the primary heading sensor for a UAV. Polarisation compassing is the primary navigation sense of many flying and walking insects, including bees, ants and crickets. Manually operated polarisation astrolabes were fitted in some passenger airliners prior to the implementation of the global positioning system, to compensate for the overal degradation of magnetic and gyrocompass sensors in polar regions. The device we developed demonstrated accurate determination of the direction of the Sun, with repeatability of better than 0.2 degrees. These figures are comparable to any solid state magnetic compass, including flux gate based devices. Flight trials were undertaken in which the output of the polarimeter was the only heading reference used by the aircraft as it flew through GPS waypoints.

  19. Ellipsometry with polarisation analysis at cryogenic temperatures inside a vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, S.; Grees, B.; Spitzer, D.

    2013-12-15

    In this paper we describe a new variant of null ellipsometry to determine thicknesses and optical properties of thin films on a substrate at cryogenic temperatures. In the PCSA arrangement of ellipsometry the polarizer and the compensator are placed before the substrate and the analyzer after it. Usually, in the null ellipsometry the polarizer and the analyzer are rotated to find the searched minimum in intensity. In our variant we rotate the polarizer and the compensator instead, both being placed in the incoming beam before the substrate. Therefore the polarisation analysis of the reflected beam can be realized by anmore » analyzer at fixed orientation. We developed this method for investigations of thin cryogenic films inside a vacuum chamber where the analyzer and detector had to be placed inside the cold shield at a temperature of T≈ 90 K close to the substrate. All other optical components were installed at the incoming beam line outside the vacuum chamber, including all components which need to be rotated during the measurements. Our null ellipsometry variant has been tested with condensed krypton films on a highly oriented pyrolytic graphite substrate (HOPG) at a temperature of T≈ 25 K. We show that it is possible to determine the indices of refraction of condensed krypton and of the HOPG substrate as well as thickness of krypton films with reasonable accuracy.« less

  20. The intrahepatic signalling niche of hedgehog is defined by primary cilia positive cells during chronic liver injury.

    PubMed

    Grzelak, Candice Alexandra; Martelotto, Luciano Gastón; Sigglekow, Nicholas David; Patkunanathan, Bramilla; Ajami, Katerina; Calabro, Sarah Ruth; Dwyer, Benjamin James; Tirnitz-Parker, Janina Elke Eleonore; Watkins, D Neil; Warner, Fiona Jane; Shackel, Nicholas Adam; McCaughan, Geoffrey William

    2014-01-01

    In vertebrates, canonical Hedgehog (Hh) pathway activation requires Smoothened (SMO) translocation to the primary cilium (Pc), followed by a GLI-mediated transcriptional response. In addition, a similar gene regulation occurs in response to growth factors/cytokines, although independently of SMO signalling. The Hh pathway plays a critical role in liver fibrosis/regeneration, however, the mechanism of activation in chronic liver injury is poorly understood. This study aimed to characterise Hh pathway activation upon thioacetamide (TAA)-induced chronic liver injury in vivo by defining Hh-responsive cells, namely cells harbouring Pc and Pc-localised SMO. C57BL/6 mice (wild-type or Ptc1(+/-)) were TAA-treated. Liver injury and Hh ligand/pathway mRNA and protein expression were assessed in vivo. SMO/GLI manipulation and SMO-dependent/independent activation of GLI-mediated transcriptional response in Pc-positive (Pc(+)) cells were studied in vitro. In vivo, Hh activation was progressively induced following TAA. At the epithelial-mesenchymal interface, injured hepatocytes produced Hh ligands. Progenitors, myofibroblasts, leukocytes and hepatocytes were GLI2(+). Pc(+) cells increased following TAA, but only EpCAM(+)/GLI2(+) progenitors were Pc(+)/SMO(+). In vitro, SMO knockdown/hGli3-R overexpression reduced proliferation/viability in Pc(+) progenitors, whilst increased proliferation occurred with hGli1 overexpression. HGF induced GLI transcriptional activity independently of Pc/SMO. Ptc1(+/-) mice exhibited increased progenitor, myofibroblast and fibrosis responses. In chronic liver injury, Pc(+) progenitors receive Hh ligand signals and process it through Pc/SMO-dependent activation of GLI-mediated transcriptional response. Pc/SMO-independent GLI activation likely occurs in Pc(-)/GLI2(+) cells. Increased fibrosis in Hh gain-of-function mice likely occurs by primary progenitor expansion/proliferation and secondary fibrotic myofibroblast expansion, in close contact with

  1. Sperm Associated Antigen 6 (SPAG6) Regulates Fibroblast Cell Growth, Morphology, Migration and Ciliogenesis

    PubMed Central

    Li, Wei; Mukherjee, Abir; Wu, Jinhua; Zhang, Ling; Teves, Maria E.; Li, Hongfei; Nambiar, Shanti; Henderson, Scott C.; Horwitz, Alan R.; Strauss III, Jerome F.; Fang, Xianjun; Zhang, Zhibing

    2015-01-01

    Mammalian Spag6 is the orthologue of Chlamydomonas PF16, which encodes a protein localized in the axoneme central apparatus, and regulates flagella/cilia motility. Most Spag6-deficient mice are smaller in size than their littermates. Because SPAG6 decorates microtubules, we hypothesized that SPAG6 has other roles related to microtubule function besides regulating flagellar/cilia motility. Mouse embryonic fibroblasts (MEFs) were isolated from Spag6-deficient and wild-type embryos for these studies. Both primary and immortalized Spag6-deficient MEFs proliferated at a much slower rate than the wild-type MEFs, and they had a larger surface area. Re-expression of SPAG6 in the Spag6-deficient MEFs rescued the abnormal cell morphology. Spag6-deficient MEFs were less motile than wild-type MEFs, as shown by both chemotactic analysis and wound-healing assays. Spag6-deficient MEFs also showed reduced adhesion associated with a non-polarized F-actin distribution. Multiple centrosomes were observed in the Spag6-deficient MEF cultures. The percentage of cells with primary cilia was significantly reduced compared to the wild-type MEFs, and some Spag6-deficient MEFs developed multiple cilia. Furthermore, SPAG6 selectively increased expression of acetylated tubulin, a microtubule stability marker. The Spag6-deficient MEFs were more sensitive to paclitaxel, a microtubule stabilizer. Our studies reveal new roles for SPAG6 in modulation of cell morphology, proliferation, migration, and ciliogenesis. PMID:26585507

  2. Observing planar cell polarity in multiciliated mouse airway epithelial cells.

    PubMed

    Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Birse, M. C.; McGovern, J. A.

    2012-09-01

    We calculate the amplitude T1 for forward doubly virtual Compton scattering in heavy-baryon chiral perturbation theory, to fourth order in the chiral expansion and with the leading contribution of the γ N Δ form factor. This provides a model-independent expression for the amplitude in the low-momentum region, which is the dominant one for its contribution to the Lamb shift. It allows us to significantly reduce the theoretical uncertainty in the proton polarisability contributions to the Lamb shift in muonic hydrogen. We also stress the importance of consistency between the definitions of the Born and structure parts of the amplitude. Our result leaves no room for any effect large enough to explain the discrepancy between proton charge radii as determined from muonic and normal hydrogen.

  4. A novel form of ciliopathy underlies hyperphagia and obesity in Ankrd26 knockout mice

    PubMed Central

    Acs, Peter; Bauer, Peter O.; Mayer, Balazs; Bera, Tapan; Macallister, Rhonda; Pastan, Ira

    2015-01-01

    Human ciliopathies are genetic disorders caused by mutations in genes responsible for the formation and function of primary cilia. Some are associated with hyperphagia and obesity (e.g., Bardet–Biedl Syndrome, Alström Syndrome), but the mechanisms underlying these problems are not fully understood. The human gene ANKRD26 is located on 10p12, a locus that is associated with some forms of hereditary obesity. Previously, we reported that disruption of this gene causes hyperphagia, obesity and gigantism in mice. In the present study, we looked for the mechanisms that induce hyperphagia in the Ankrd26−/− mice and found defects in primary cilia in regions of the central nervous system that control appetite and energy homeostasis. PMID:24633808

  5. A novel murine allele of Intraflagellar Transport Protein 172 causes a syndrome including VACTERL-like features with hydrocephalus.

    PubMed

    Friedland-Little, Joshua M; Hoffmann, Andrew D; Ocbina, Polloneal Jymmiel R; Peterson, Mike A; Bosman, Joshua D; Chen, Yan; Cheng, Steven Y; Anderson, Kathryn V; Moskowitz, Ivan P

    2011-10-01

    The primary cilium is emerging as a crucial regulator of signaling pathways central to vertebrate development and human disease. We identified atrioventricular canal 1 (avc1), a mouse mutation that caused VACTERL association with hydrocephalus, or VACTERL-H. We showed that avc1 is a hypomorphic mutation of intraflagellar transport protein 172 (Ift172), required for ciliogenesis and Hedgehog (Hh) signaling. Phenotypically, avc1 caused VACTERL-H but not abnormalities in left-right (L-R) axis formation. Avc1 resulted in structural cilia defects, including truncated cilia in vivo and in vitro. We observed a dose-dependent requirement for Ift172 in ciliogenesis using an allelic series generated with Ift172(avc1) and Ift172(wim), an Ift172 null allele: cilia were present on 42% of avc1 mouse embryonic fibroblast (MEF) and 28% of avc1/wim MEFs, in contrast to >90% of wild-type MEFs. Furthermore, quantitative cilium length analysis identified two specific cilium populations in mutant MEFS: a normal population with normal IFT and a truncated population, 50% of normal length, with disrupted IFT. Cells from wild-type embryos had predominantly full-length cilia, avc1 embryos, with Hh signaling abnormalities but not L-R abnormalities, had cilia equally divided between full-length and truncated, and avc1/wim embryos, with both Hh signaling and L-R abnormalities, were primarily truncated. Truncated Ift172 mutant cilia showed defects of the distal ciliary axoneme, including disrupted IFT88 localization and Hh-dependent Gli2 localization. We propose a model in which mutation of Ift172 results in a specific class of abnormal cilia, causing disrupted Hh signaling while maintaining L-R axis determination, and resulting in the VACTERL-H phenotype.

  6. Hook2 is involved in the morphogenesis of the primary cilium

    PubMed Central

    Baron Gaillard, Carole L.; Pallesi-Pocachard, Emilie; Massey-Harroche, Dominique; Richard, Fabrice; Arsanto, Jean-Pierre; Chauvin, Jean-Paul; Lecine, Patrick; Krämer, Helmut; Borg, Jean-Paul; Le Bivic, André

    2011-01-01

    Primary cilia originate from the centrosome and play essential roles in several cellular, developmental, and pathological processes, but the underlying mechanisms of ciliogenesis are not fully understood. Given the involvement of the adaptor protein Hook2 in centrosomal homeostasis and protein transport to pericentrosomal aggresomes, we explored its role in ciliogenesis. We found that in human retinal epithelial cells, Hook2 localizes at the Golgi apparatus and centrosome/basal body, a strategic partitioning for ciliogenesis. Of importance, Hook2 depletion disrupts ciliogenesis at a stage before the formation of the ciliary vesicle at the distal tip of the mother centriole. Using two hybrid and immunoprecipitation assays and a small interfering RNA strategy, we found that Hook2 interacts with and stabilizes pericentriolar material protein 1 (PCM1), which was reported to be essential for the recruitment of Rab8a, a GTPase that is believed to be crucial for membrane transport to the primary cilium. Of interest, GFP::Rab8a coimmunoprecipitates with endogenous Hook2 and PCM1. Finally, GFP::Rab8a can overcome Hook2 depletion, demonstrating a functional interaction between Hook2 and these two important regulators of ciliogenesis. The data indicate that Hook2 interacts with PCM1 in a complex that also contains Rab8a and regulates a limiting step required for further initiation of ciliogenesis after centriole maturation. PMID:21998199

  7. Methods for Studying Ciliary-Mediated Chemoresponse in Paramecium.

    PubMed

    Valentine, Megan Smith; Van Houten, Judith L

    2016-01-01

    Paramecium is a useful model organism for the study of ciliary-mediated chemical sensing and response. Here we describe ways to take advantage of Paramecium to study chemoresponse.Unicellular organisms like the ciliated protozoan Paramecium sense and respond to chemicals in their environment (Van Houten, Ann Rev Physiol 54:639-663, 1992; Van Houten, Trends Neurosci 17:62-71, 1994). A thousand or more cilia that cover Paramecium cells serve as antennae for chemical signals, similar to ciliary function in a large variety of metazoan cell types that have primary or motile cilia (Berbari et al., Curr Biol 19(13):R526-R535, 2009; Singla V, Reiter J, Science 313:629-633, 2006). The Paramecium cilia also produce the motor output of the detection of chemical cues by controlling swimming behavior. Therefore, in Paramecium the cilia serve multiple roles of detection and response.We present this chapter in three sections to describe the methods for (1) assaying populations of cells for their behavioral responses to chemicals (attraction and repulsion), (2) characterization of the chemoreceptors and associated channels of the cilia using proteomics and binding assays, and (3) electrophysiological analysis of individual cells' responses to chemicals. These methods are applied to wild type cells, mutants, transformed cells that express tagged proteins, and cells depleted of gene products by RNA Interference (RNAi).

  8. Calcium signals act through histone deacetylase to mediate pronephric kidney morphogenesis.

    PubMed

    Rothschild, Sarah C; Lee, Hunter J; Ingram, Sarah R; Mohammadi, Daniel K; Walsh, Gregory S; Tombes, Robert M

    2018-06-01

    Autosomal dominant polycystic kidney disease is the most common monogenetic kidney disorder and is linked to mutations in PKD1 and PKD2. PKD2, a Ca 2+ -conducting TRP channel enriched in ciliated cells and gated by extracellular signals, is necessary to activate the multifunctional Ca 2+/ calmodulin-dependent protein kinase type 2 (CaMK-II), enabling kidney morphogenesis and cilia stability. In this study, antisense morpholino oligonucleotides and pharmacological compounds were employed to investigate the roles of class II HDAC family members (HDAC 4, 5, and 6) in Zebrafish kidney development. While all three class II HDAC genes were expressed throughout the embryo during early development, HDAC5-morphant embryos exhibited anterior cysts and destabilized cloacal cilia, similar to PKD2 and CaMK-II morphants. In contrast, HDAC4-morphant embryos exhibited elongated cloacal cilia and lacked anterior kidney defects. Suppression of HDAC4 partially reversed the cilia shortening and anterior convolution defects caused by CaMK-II deficiency, whereas HDAC5 loss exacerbated these defects. EGFP-HDAC4, but not EGFP-HDAC5, translocated into the nucleus upon CaMK-II suppression in pronephric kidney cells. These results support a model by which activated CaMK-II sequesters HDAC4 in the cytosol to enable primary cilia formation and kidney morphogenesis. Developmental Dynamics 247:807-817, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. The Neomuran Revolution and Phagotrophic Origin of Eukaryotes and Cilia in the Light of Intracellular Coevolution and a Revised Tree of Life

    PubMed Central

    Cavalier-Smith, Thomas

    2014-01-01

    Three kinds of cells exist with increasingly complex membrane-protein targeting: Unibacteria (Archaebacteria, Posibacteria) with one cytoplasmic membrane (CM); Negibacteria with a two-membrane envelope (inner CM; outer membrane [OM]); eukaryotes with a plasma membrane and topologically distinct endomembranes and peroxisomes. I combine evidence from multigene trees, palaeontology, and cell biology to show that eukaryotes and archaebacteria are sisters, forming the clade neomura that evolved ∼1.2 Gy ago from a posibacterium, whose DNA segregation and cell division were destabilized by murein wall loss and rescued by the evolving novel neomuran endoskeleton, histones, cytokinesis, and glycoproteins. Phagotrophy then induced coevolving serial major changes making eukaryote cells, culminating in two dissimilar cilia via a novel gliding–fishing–swimming scenario. I transfer Chloroflexi to Posibacteria, root the universal tree between them and Heliobacteria, and argue that Negibacteria are a clade whose OM, evolving in a green posibacterium, was never lost. PMID:25183828

  10. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia

    PubMed Central

    Duriez, Bénédicte; Duquesnoy, Philippe; Escudier, Estelle; Bridoux, Anne-Marie; Escalier, Denise; Rayet, Isabelle; Marcos, Elisabeth; Vojtek, Anne-Marie; Bercher, Jean-François; Amselem, Serge

    2007-01-01

    Thioredoxins belong to a large family of enzymatic proteins that function as general protein disulfide reductases, therefore participating in several cellular processes via redox-mediated reactions. So far, none of the 18 members of this family has been involved in human pathology. Here we identified TXNDC3, which encodes a thioredoxin–nucleoside diphosphate kinase, as a gene implicated in primary ciliary dyskinesia (PCD), a genetic condition characterized by chronic respiratory tract infections, left–right asymmetry randomization, and male infertility. We show that the disease, which segregates as a recessive trait, results from the unusual combination of the following two transallelic defects: a nonsense mutation and a common intronic variant found in 1% of control chromosomes. This variant affects the ratio of two physiological TXNDC3 transcripts: the full-length isoform and a novel isoform, TXNDC3d7, carrying an in-frame deletion of exon 7. In vivo and in vitro expression data unveiled the physiological importance of TXNDC3d7 (whose expression was reduced in the patient) and the corresponding protein that was shown to bind microtubules. PCD is known to result from defects of the axoneme, an organelle common to respiratory cilia, embryonic nodal cilia, and sperm flagella, containing dynein arms, with, to date, the implication of genes encoding dynein proteins. Our findings, which identify a another class of molecules involved in PCD, disclose the key role of TXNDC3 in ciliary function; they also point to an unusual mechanism underlying a Mendelian disorder, which is an SNP-induced modification of the ratio of two physiological isoforms generated by alternative splicing. PMID:17360648

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumat, Muhammad Raihan; Yan, Yan; Ravi, Laxmi Iyer

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in themore » cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function.« less

  12. SAR target recognition using behaviour library of different shapes in different incidence angles and polarisations

    NASA Astrophysics Data System (ADS)

    Fallahpour, Mojtaba Behzad; Dehghani, Hamid; Jabbar Rashidi, Ali; Sheikhi, Abbas

    2018-05-01

    Target recognition is one of the most important issues in the interpretation of the synthetic aperture radar (SAR) images. Modelling, analysis, and recognition of the effects of influential parameters in the SAR can provide a better understanding of the SAR imaging systems, and therefore facilitates the interpretation of the produced images. Influential parameters in SAR images can be divided into five general categories of radar, radar platform, channel, imaging region, and processing section, each of which has different physical, structural, hardware, and software sub-parameters with clear roles in the finally formed images. In this paper, for the first time, a behaviour library that includes the effects of polarisation, incidence angle, and shape of targets, as radar and imaging region sub-parameters, in the SAR images are extracted. This library shows that the created pattern for each of cylindrical, conical, and cubic shapes is unique, and due to their unique properties these types of shapes can be recognised in the SAR images. This capability is applied to data acquired with the Canadian RADARSAT1 satellite.

  13. A study in motion sickness - Saccular hair cells in the adult bullfrog

    NASA Technical Reports Server (NTRS)

    Cohen, G. M.; Reschke, M.; Homick, J.

    1982-01-01

    The bullfrog's saccule were examined using light and scanning electron microscopy. No evidence of a striola was found. Type A hair cells were not only distributed peripherally, but also throughout the central macula, though far less frequently than the dominant type D. Two primary hair cell types were distinguished, which corresponded to the ciliary patterns: type A cilia are associated with short, conical hair cells, and type D cilia are associated with long, cylindrical hair cells. Each displays at least one subtype, which may represent developmental precursors. The otolithic membrane is crisscrossed with tunnels and topped with statoconia.

  14. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells

    PubMed Central

    Li, Li; Grausam, Katie B.; Wang, Jun; Lun, Melody P.; Ohli, Jasmin; Lidov, Hart G. W.; Calicchio, Monica L.; Zeng, Erliang; Salisbury, Jeffrey L.; Wechsler-Reya, Robert J.; Lehtinen, Maria K.; Schüller, Ulrich; Zhao, Haotian

    2016-01-01

    Aberrant Notch signaling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly pediatric brain neoplasms. We developed animal models of CP tumours by inducing sustained expression of Notch1 that recapitulate properties of human CP tumours with aberrant NOTCH signaling. Whole transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate diffferentiation. A Shh-driven signaling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from mono-ciliated progenitors in the roof plate characterized by elevated Notch signaling. Abnormal SHH signaling and distinct ciliogenesis are detected in human CP tumours, suggesting SHH pathway and cilia differentiation as potential therapeutic avenues. PMID:26999738

  15. Mutations in CSPP1 lead to classical Joubert syndrome.

    PubMed

    Akizu, Naiara; Silhavy, Jennifer L; Rosti, Rasim Ozgur; Scott, Eric; Fenstermaker, Ali G; Schroth, Jana; Zaki, Maha S; Sanchez, Henry; Gupta, Neerja; Kabra, Madhulika; Kara, Majdi; Ben-Omran, Tawfeg; Rosti, Basak; Guemez-Gamboa, Alicia; Spencer, Emily; Pan, Roger; Cai, Na; Abdellateef, Mostafa; Gabriel, Stacey; Halbritter, Jan; Hildebrandt, Friedhelm; van Bokhoven, Hans; Gunel, Murat; Gleeson, Joseph G

    2014-01-02

    Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Reflection of a TE-polarised Gaussian beam from a layered structure under conditions of resonance excitation of waveguide modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, V I; Marusin, N V; Molchanova, S I

    2014-11-30

    The problem of reflection of a TE-polarised Gaussian light beam from a layered structure under conditions of resonance excitation of waveguide modes using a total internal reflection prism is considered. Using the spectral approach we have derived the analytic expressions for the mode propagation lengths, widths and depths of m-lines (sharp and narrow dips in the angular dependence of the specular reflection coefficient), depending on the structure parameters. It is shown that in the case of weak coupling, when the propagation lengths l{sub m} of the waveguide modes are mainly determined by the extinction coefficient in the film, the depthmore » of m-lines grows with the mode number m. In the case of strong coupling, when l{sub m} is determined mainly by the radiation of modes into the prism, the depth of m-lines decreases with increasing m. The change in the TE-polarised Gaussian beam shape after its reflection from the layered structure is studied, which is determined by the energy transfer from the incident beam into waveguide modes that propagate along the structure by the distance l{sub m}, are radiated in the direction of specular reflection and interfere with a part of the beam reflected from the working face of the prism. It is shown that this interference can lead to the field intensity oscillations near m-lines. The analysis of different methods for determining the parameters of thin-film structures is presented, including the measurement of mode angles θ{sub m} and the reflected beam shape. The methods are based on simultaneous excitation of a few waveguide modes in the film with a strongly focused monochromatic Gaussian beam, the waist width of which is much smaller than the propagation length of the modes. As an example of using these methods, the refractive index and the thickness of silicon monoxide film on silica substrate at the wavelength 633 nm are determined. (fibre and integrated-optical structures)« less

  17. Control of femtosecond laser interference ejection with angle and polarisation

    NASA Astrophysics Data System (ADS)

    Roper, David M.; Ho, Stephen; Haque, Moez; Herman, Peter R.

    2017-03-01

    The nonlinear interactions of femtosecond lasers are driving multiple new application directions for nanopatterning and structuring of thin transparent dielectric films that serve in range of technological fields. Fresnel reflections generated by film interfaces were recently shown to confine strong nonlinear interactions at the Fabry-Perot fringe maxima to generate thin nanoscale plasma disks of 20 to 40 nm thickness stacked on half wavelength spacing, λ/2nfilm, inside a film (refractive index, nfilm). The following phase-explosion and ablation dynamics have resulted in a novel means for intrafilm processing that includes `quantized' half-wavelength machining steps and formation of blisters with embedded nanocavities. This paper presents an extension in the control of interferometric laser processing around our past study of Si3N4 and SiOx thin films at 515 nm, 800 nm, and 1044 nm laser wavelengths. The role of laser polarization and incident angle is explored on fringe visibility and improving interferometric processing inside the film to dominate over interface and / or surface ablation. SiOx thin films of 1 μm thickness on silicon substrates were irradiated with a 515 nm wavelength, 280 fs duration laser pulses at 0° to 65° incident angles. A significant transition in ablation region from complete film removal to structured quantized ejection is reported for p- and s-polarised light that is promising to improve control and expand the versatility of the technique to a wider range of applications and materials. The research is aimed at creating novel bio-engineered surfaces for cell culture, bacterial studies and regenerative medicine, and nanofluidic structures that underpin lab-in-a-film. Similarly, the formation of intrafilm blisters and nanocavities offers new opportunities in structuring existing thin film devices, such as CMOS microelectronics, LED, lab-on-chips, and MEMS.

  18. The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life.

    PubMed

    Cavalier-Smith, Thomas

    2014-09-02

    Three kinds of cells exist with increasingly complex membrane-protein targeting: Unibacteria (Archaebacteria, Posibacteria) with one cytoplasmic membrane (CM); Negibacteria with a two-membrane envelope (inner CM; outer membrane [OM]); eukaryotes with a plasma membrane and topologically distinct endomembranes and peroxisomes. I combine evidence from multigene trees, palaeontology, and cell biology to show that eukaryotes and archaebacteria are sisters, forming the clade neomura that evolved ~1.2 Gy ago from a posibacterium, whose DNA segregation and cell division were destabilized by murein wall loss and rescued by the evolving novel neomuran endoskeleton, histones, cytokinesis, and glycoproteins. Phagotrophy then induced coevolving serial major changes making eukaryote cells, culminating in two dissimilar cilia via a novel gliding-fishing-swimming scenario. I transfer Chloroflexi to Posibacteria, root the universal tree between them and Heliobacteria, and argue that Negibacteria are a clade whose OM, evolving in a green posibacterium, was never lost. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Human basal body basics.

    PubMed

    Vertii, Anastassiia; Hung, Hui-Fang; Hehnly, Heidi; Doxsey, Stephen

    2016-01-01

    In human cells, the basal body (BB) core comprises a ninefold microtubule-triplet cylindrical structure. Distal and subdistal appendages are located at the distal end of BB, where they play indispensable roles in cilium formation and function. Most cells that arrest in the G0 stage of the cell cycle initiate BB docking at the plasma membrane followed by BB-mediated growth of a solitary primary cilium, a structure required for sensing the extracellular environment and cell signaling. In addition to the primary cilium, motile cilia are present in specialized cells, such as sperm and airway epithelium. Mutations that affect BB function result in cilia dysfunction. This can generate syndromic disorders, collectively called ciliopathies, for which there are no effective treatments. In this review, we focus on the features and functions of BBs and centrosomes in Homo sapiens.

  20. What is the function of centrioles?

    PubMed

    Marshall, Wallace F

    2007-03-01

    The function of centrioles has been controversial and remains incompletely resolved. This is because centrioles, in and of themselves, do not directly perform any physiological activity. Instead, their role is only to act as a jig or breadboard onto which other functional structures can be built. Centrioles are primarily involved in forming two structures-centrosomes and cilia. Centrioles bias the position of spindle pole formation, but because spindle poles can self-organize, the function of the centriole in mitosis is not obligatory. Consequently, lack of centrioles does not generally prevent mitosis, although recent experiments suggest acentriolar spindles have reduced fidelity of chromosome segregation. In contrast, centrioles are absolutely required for the assembly of cilia, including primary cilia that act as cellular antennae. Consistent with this requirement, it is now becoming clear that many ciliary diseases, including nephronophthisis, Bardet-Biedl syndrome, Meckel Syndrome, and Oral-Facial-Digital syndrome, are caused by defects in centriole-associated proteins.

  1. Traumatic Brain Injury-Induced Ependymal Ciliary Loss Decreases Cerebral Spinal Fluid Flow

    PubMed Central

    Xiong, Guoxiang; Elkind, Jaclynn A.; Kundu, Suhali; Smith, Colin J.; Antunes, Marcelo B.; Tamashiro, Edwin; Kofonow, Jennifer M.; Mitala, Christina. M.; Stein, Sherman C.; Grady, M. Sean; Einhorn, Eugene; Cohen, Noam A.

    2014-01-01

    Abstract Traumatic brain injury (TBI) afflicts up to 2 million people annually in the United States and is the primary cause of death and disability in young adults and children. Previous TBI studies have focused predominantly on the morphological, biochemical, and functional alterations of gray matter structures, such as the hippocampus. However, little attention has been given to the brain ventricular system, despite the fact that altered ventricular function is known to occur in brain pathologies. In the present study, we investigated anatomical and functional alterations to mouse ventricular cilia that result from mild TBI. We demonstrate that TBI causes a dramatic decrease in cilia. Further, using a particle tracking technique, we demonstrate that cerebrospinal fluid flow is diminished, thus potentially negatively affecting waste and nutrient exchange. Interestingly, injury-induced ventricular system pathology resolves completely by 30 days after injury as ependymal cell ciliogenesis restores cilia density to uninjured levels in the affected lateral ventricle. PMID:24749541

  2. Type-1 polarised dendritic cells are a potent immunogen against Mycobacterium tuberculosis.

    PubMed

    Satake, Y; Nakamura, Y; Kono, M; Hozumi, H; Nagata, T; Tsujimura, K; Enomoto, N; Fujisawa, T; Inui, N; Fujiyama, T; Tokura, Y; Matsui, T; Yokomura, K; Shirai, M; Hayakawa, H; Suda, T

    2017-05-01

    Application of immunotherapy using dendritic cells (DCs) is considered an effective treatment strategy against persistent Mycobacterium tuberculosis infection. With the goal of developing improved therapeutic vaccination strategies for patients with tuberculosis (TB), we tested the ability of ex vivo-generated DCs to induce an effective TB antigen-specific type-1 immune response. Monocyte-derived DCs from TB patients were induced to mature using a 'standard' cytokine cocktail (interleukin [IL] 1β, tumour necrosis factor alpha [TNF-α], IL-6 and prostaglandin E2) or a type 1-polarised DC (DC1) cocktail (IL-1β, TNF-α, interferon [IFN] α, IFN-γ and polyinosinic:polycytidylic acid), and were loaded with the established TB antigen 6-kDa early secretory antigenic target protein (ESAT-6). Although DC1s from TB patients expressed the same levels of multiple co-stimulatory molecules (CD83, CD86, CD80 and CD40) as the standard DCs (sDCs), DC1s secreted substantially higher levels of IL-12p70. Furthermore, when DCs pulsed with or without ESAT-6 were cultured with lymphocytes from the same patients, DC1s induced much higher numbers of ESAT-6-specific IFN-γ-producing T-cells than sDCs, as manifested by their superior induction of natural killer cell activation and antigen-independent suppression of regulatory T-cells. TB antigen-loaded DC1s are potent inducers of antigen-specific T-cells, which could be used to develop improved immunotherapies of TB.

  3. TGFβ1 - induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner.

    PubMed

    Labour, Marie-Noëlle; Riffault, Mathieu; Christensen, Søren T; Hoey, David A

    2016-10-17

    The recruitment of mesenchymal stem cells (MSCs) is a crucial process in the development, maintenance and repair of tissues throughout the body. Transforming growth factor-β1 (TGFβ1) is a potent chemokine essential for the recruitment of MSCs in bone, coupling the remodelling cycle. The primary cilium is a sensory organelle with important roles in bone and has been associated with cell migration and more recently TGFβ signalling. Dysregulation of TGFβ signalling or cilia has been linked to a number of skeletal pathologies. Therefore, this study aimed to determine the role of the primary cilium in TGFβ1 signalling and associated migration in human MSCs. In this study we demonstrate that low levels of TGFβ1 induce the recruitment of MSCs, which relies on proper formation of the cilium. Furthermore, we demonstrate that receptors and downstream signalling components in canonical TGFβ signalling localize to the cilium and that TGFβ1 signalling is associated with activation of SMAD3 at the ciliary base. These findings demonstrate a novel role for the primary cilium in the regulation of TGFβ signalling and subsequent migration of MSCs, and highlight the cilium as a target to manipulate this key pathway and enhance MSC recruitment for the treatment of skeletal diseases.

  4. Force-response considerations in ciliary mechanosensation.

    PubMed

    Resnick, Andrew; Hopfer, Ulrich

    2007-08-15

    Considerable experimental evidence indicates that the primary, nonmotile cilium is a mechanosensory organelle in several epithelial cell types. As the relationship between cellular responses and nature and magnitude of applied forces is not well understood, we have investigated the effects of exposure of monolayers of renal collecting duct chief cells to orbital shaking and quantified the forces incident on cilia. An exposure of 24 h of these cells to orbital shaking resulted in a decrease of amiloride-sensitive sodium current by approximately 60% and ciliary length by approximately 30%. The sensitivity of the sodium current to shaking was dependent on intact cilia. The drag force on cilia due to induced fluid flow during orbital shaking was estimated at maximally 5.2x10(-3) pN at 2 Hz, approximately 4 times that of thermal noise. The major structural feature of cilia contributing to their sensitivity appears to be ciliary length. As more than half of the total drag force is exerted on the ciliary cap, one function of the slender stalk may be to expose the cap to greater drag force. Regardless, the findings indicate that the cilium is a mechanosensory organelle with a sensitivity much lower than previously recognized.

  5. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease.

    PubMed

    Hoh, Ramona A; Stowe, Timothy R; Turk, Erin; Stearns, Tim

    2012-01-01

    Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP). The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease.

  6. Transcriptional Program of Ciliated Epithelial Cells Reveals New Cilium and Centrosome Components and Links to Human Disease

    PubMed Central

    Hoh, Ramona A.; Stowe, Timothy R.; Turk, Erin; Stearns, Tim

    2012-01-01

    Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP). The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease. PMID:23300604

  7. Automatic analysis of ciliary beat frequency using optical flow

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Lechner, Manuel; Werther, Tobias; Horak, Fritz; Hummel, Johann; Birkfellner, Wolfgang

    2012-02-01

    Ciliary beat frequency (CBF) can be a useful parameter for diagnosis of several diseases, as e.g. primary ciliary dyskinesia. (PCD). CBF computation is usually done using manual evaluation of high speed video sequences, a tedious, observer dependent, and not very accurate procedure. We used the OpenCV's pyramidal implementation of the Lukas-Kanade algorithm for optical flow computation and applied this to certain objects to follow the movements. The objects were chosen by their contrast applying the corner detection by Shi and Tomasi. Discrimination between background/noise and cilia by a frequency histogram allowed to compute the CBF. Frequency analysis was done using the Fourier transform in matlab. The correct number of Fourier summands was found by the slope in an approximation curve. The method showed to be usable to distinguish between healthy and diseased samples. However there remain difficulties in automatically identifying the cilia, and also in finding enough high contrast cilia in the image. Furthermore the some of the higher contrast cilia are lost (and sometimes found) by the method, an easy way to distinguish the correct sub-path of a point's path have yet to be found in the case where the slope methods doesn't work.

  8. The NOD3 software package: A graphical user interface-supported reduction package for single-dish radio continuum and polarisation observations

    NASA Astrophysics Data System (ADS)

    Müller, Peter; Krause, Marita; Beck, Rainer; Schmidt, Philip

    2017-10-01

    Context. The venerable NOD2 data reduction software package for single-dish radio continuum observations, which was developed for use at the 100-m Effelsberg radio telescope, has been successfully applied over many decades. Modern computing facilities, however, call for a new design. Aims: We aim to develop an interactive software tool with a graphical user interface for the reduction of single-dish radio continuum maps. We make a special effort to reduce the distortions along the scanning direction (scanning effects) by combining maps scanned in orthogonal directions or dual- or multiple-horn observations that need to be processed in a restoration procedure. The package should also process polarisation data and offer the possibility to include special tasks written by the individual user. Methods: Based on the ideas of the NOD2 package we developed NOD3, which includes all necessary tasks from the raw maps to the final maps in total intensity and linear polarisation. Furthermore, plot routines and several methods for map analysis are available. The NOD3 package is written in Python, which allows the extension of the package via additional tasks. The required data format for the input maps is FITS. Results: The NOD3 package is a sophisticated tool to process and analyse maps from single-dish observations that are affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. The "basket-weaving" tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. The new restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density. Conclusions: This software package is available under the open source license GPL for free use at other single-dish radio telescopes of the astronomical community. The NOD3 package is designed to be

  9. Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects.

    PubMed

    Nikopoulos, Konstantinos; Farinelli, Pietro; Giangreco, Basilio; Tsika, Chrysanthi; Royer-Bertrand, Beryl; Mbefo, Martial K; Bedoni, Nicola; Kjellström, Ulrika; El Zaoui, Ikram; Di Gioia, Silvio Alessandro; Balzano, Sara; Cisarova, Katarina; Messina, Andrea; Decembrini, Sarah; Plainis, Sotiris; Blazaki, Styliani V; Khan, Muhammad Imran; Micheal, Shazia; Boldt, Karsten; Ueffing, Marius; Moulin, Alexandre P; Cremers, Frans P M; Roepman, Ronald; Arsenijevic, Yvan; Tsilimbaris, Miltiadis K; Andréasson, Sten; Rivolta, Carlo

    2016-09-01

    Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Paramecia swimming in viscous flow

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Jana, S.; Giarra, M.; Vlachos, P. P.; Jung, S.

    2015-12-01

    Ciliates like Paramecia exhibit fore-aft asymmetry in their body shapes, and preferentially swim in the direction of the slender anterior rather than the wider posterior. However, the physical reasons for this preference are not well understood. In this work, we propose that specific features of the fluid flow around swimming Paramecia confer some energetic advantage to the preferred swimming direction. Therefore, we seek to understand the effects of body asymmetry and swimming direction on the efficiency of swimming and the flux of fluid into the cilia layer (and thus of food into the oral groove), which we assumed to be primary factors in the energy budgets of these organisms. To this end, we combined numerical techniques (the boundary element method) and laboratory experiments (micro particle image velocimetry) to develop a quantitative model of the flow around a Paramecium and investigate the effect of the body shape on the velocity fields, as well as on the swimming and feeding behaviors. Both simulation and experimental results show that velocity fields exhibit fore-aft asymmetry. Moreover, the shape asymmetry revealed an increase of the fluid flux into the cilia layer compared to symmetric body shapes. Under the assumption that cilia fluid intake and feeding efficiency are primary factors in the energy budgets of Paramecia, our model predicts that the anterior swimming direction is energetically favorable to the posterior swimming direction.

  11. The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking.

    PubMed

    Wang, Jing; Fresquez, Theresa; Kandachar, Vasundhara; Deretic, Dusanka

    2017-12-01

    The small GTPase Arf4 and the Arf GTPase-activating protein (GAP) ASAP1 cooperatively sequester sensory receptor cargo into transport carriers targeted to primary cilia, but the input that drives Arf4 activation in this process remains unknown. Here, we show, by using frog retinas and recombinant human proteins, that during the carrier biogenesis from the photoreceptor Golgi/ trans -Golgi network (TGN) a functional complex is formed between Arf4, the Arf guanine nucleotide exchange factor (GEF) GBF1 and the light-sensing receptor, rhodopsin. Rhodopsin and Arf4 bind the regulatory N-terminal dimerization and cyclophillin-binding (DCB)-homology upstream of Sec7 (HUS) domain of GBF1. The complex is sensitive to Golgicide A (GCA), a selective inhibitor of GBF1 that accordingly blocks rhodopsin delivery to the cilia, without disrupting the photoreceptor Golgi. The emergence of newly synthesized rhodopsin in the endomembrane system is essential for GBF1-Arf4 complex formation in vivo Notably, GBF1 interacts with the Arf GAP ASAP1 in a GCA-resistant manner. Our findings indicate that converging signals on GBF1 from the influx of cargo into the Golgi/TGN and the feedback from Arf4, combined with input from ASAP1, control Arf4 activation during sensory membrane trafficking to primary cilia. © 2017. Published by The Company of Biologists Ltd.

  12. Functional Surface of the golden mussel's foot: morphology, structures and the role of cilia on underwater adhesion.

    PubMed

    Andrade, Gabriela Rabelo; de Araújo, João Locke Ferreira; Nakamura Filho, Arnaldo; Guañabens, Anna Carolina Paganini; Carvalho, Marcela David de; Cardoso, Antônio Valadão

    2015-09-01

    In this study we characterized the surface morphology and ultrastructure of the foot of the golden mussel, Limnoperna fortunei (Dunker, 1857), relating its characteristics to the attaching mechanisms of this mollusk. The observation of the foot of this bivalve reveals the presence of micro-scaled cilia with a unique shape, which has a narrowing at its end. This characteristic was associated to the capacity for underwater adhesion to substrates through the employment of van der Waals forces, resembling the adhesion phenomenon of the gecko foot. The temporary attachment during locomotion by means of the foot to substrates was observed to be strong even on smooth surfaces, like glass, or hydrophobic waxy surfaces. Comparing TEM and light microscopy results it was possible to associate the mucous secretions and secreting cells found along the tissues to the production of the byssus inside the groove on the ventral portion of the foot. Not only our experiments, but also the state of the art allowed us to discard the involvement of secretions produced in the foot of the mussel to the temporary adhesion. Through SEM images it was possible to build a virtual three-dimensional model where total foot surface was measured for the estimated calculation of van der Waals forces. Also, some theoretical analysis and considerations have been made concerning the characteristics of the functional surface of L. fortunei foot. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Restoration of mutant bestrophin-1 expression, localisation and function in a polarised epithelial cell model

    PubMed Central

    Briant, Kit; Streit, Anne-Kathrin; Thomson, Steven; Koay, Yee Hui

    2016-01-01

    ABSTRACT Autosomal recessive bestrophinopathy (ARB) is a retinopathy caused by mutations in the bestrophin-1 protein, which is thought to function as a Ca2+-gated Cl− channel in the basolateral surface of the retinal pigment epithelium (RPE). Using a stably transfected polarised epithelial cell model, we show that four ARB mutant bestrophin-1 proteins were mislocalised and subjected to proteasomal degradation. In contrast to the wild-type bestrophin-1, each of the four mutant proteins also failed to conduct Cl− ions in transiently transfected cells as determined by whole-cell patch clamp. We demonstrate that a combination of two clinically approved drugs, bortezomib and 4-phenylbutyrate (4PBA), successfully restored the expression and localisation of all four ARB mutant bestrophin-1 proteins. Importantly, the Cl− conductance function of each of the mutant bestrophin-1 proteins was fully restored to that of wild-type bestrophin-1 by treatment of cells with 4PBA alone. The functional rescue achieved with 4PBA is significant because it suggests that this drug, which is already approved for long-term use in infants and adults, might represent a promising therapy for the treatment of ARB and other bestrophinopathies resulting from missense mutations in BEST1. PMID:27519691

  14. Restoration of mutant bestrophin-1 expression, localisation and function in a polarised epithelial cell model.

    PubMed

    Uggenti, Carolina; Briant, Kit; Streit, Anne-Kathrin; Thomson, Steven; Koay, Yee Hui; Baines, Richard A; Swanton, Eileithyia; Manson, Forbes D

    2016-11-01

    Autosomal recessive bestrophinopathy (ARB) is a retinopathy caused by mutations in the bestrophin-1 protein, which is thought to function as a Ca 2+ -gated Cl - channel in the basolateral surface of the retinal pigment epithelium (RPE). Using a stably transfected polarised epithelial cell model, we show that four ARB mutant bestrophin-1 proteins were mislocalised and subjected to proteasomal degradation. In contrast to the wild-type bestrophin-1, each of the four mutant proteins also failed to conduct Cl - ions in transiently transfected cells as determined by whole-cell patch clamp. We demonstrate that a combination of two clinically approved drugs, bortezomib and 4-phenylbutyrate (4PBA), successfully restored the expression and localisation of all four ARB mutant bestrophin-1 proteins. Importantly, the Cl - conductance function of each of the mutant bestrophin-1 proteins was fully restored to that of wild-type bestrophin-1 by treatment of cells with 4PBA alone. The functional rescue achieved with 4PBA is significant because it suggests that this drug, which is already approved for long-term use in infants and adults, might represent a promising therapy for the treatment of ARB and other bestrophinopathies resulting from missense mutations in BEST1. © 2016. Published by The Company of Biologists Ltd.

  15. Design of a Microstrip Fed Circularly Polarised Printed Antenna for an AEHF Phased Array : Improving Impedance Bandwidth of Printed Radiating Antennas Using the Proximity Coupling Technique

    DTIC Science & Technology

    2004-06-01

    element can be applied to achieve this goal. Résumé Ce document décrit l’étude d’une antenne imprimée à polarisation circulaire réalisée sur un...matériau LTCC (low temperature co-fired ceramic). Cette antenne est utilisée comme élément rayonnant d’un réseau à déphasage ayant une architecture de...l’analyse d’une antenne élémentaire pouvant être utilisée dans réseau à déphasage ayant une architecture de type “tuile” fonctionnant en bande EHF. La

  16. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.

    PubMed

    Tian, Hua; Feng, Jifan; Li, Jingyuan; Ho, Thach-Vu; Yuan, Yuan; Liu, Yang; Brindopke, Frederick; Figueiredo, Jane C; Magee, William; Sanchez-Lara, Pedro A; Chai, Yang

    2017-03-01

    Ciliopathies are pleiotropic human diseases resulting from defects of the primary cilium, and these patients often have cleft lip and palate. IFT88 is required for the assembly and function of the primary cilia, which mediate the activity of key developmental signaling pathways. Through whole exome sequencing of a family of three affected siblings with isolated cleft lip and palate, we discovered that they share a novel missense mutation in IFT88 (c.915G > C, p.E305D), suggesting this gene should be considered a candidate for isolated orofacial clefting. In order to evaluate the function of IFT88 in regulating craniofacial development, we generated Wnt1-Cre;Ift88fl/fl mice to eliminate Ift88 specifically in cranial neural crest (CNC) cells. Wnt1-Cre;Ift88fl/flpups died at birth due to severe craniofacial defects including bilateral cleft lip and palate and tongue agenesis, following the loss of the primary cilia in the CNC-derived palatal mesenchyme. Loss of Ift88 also resulted in a decrease in neural crest cell proliferation during early stages of palatogenesis as well as a downregulation of the Shh signaling pathway in the palatal mesenchyme. Importantly, Osr2KI-Cre;Ift88fl/flmice, in which Ift88 is lost specifically in the palatal mesenchyme, exhibit isolated cleft palate. Taken together, our results demonstrate that IFT88 has a highly conserved function within the primary cilia of the CNC-derived mesenchyme in the lip and palate region in mice and is a strong candidate as an orofacial clefting gene in humans. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. On the Correlation Between Biomass and the P-Band Polarisation Phase Difference, and Its Potential for Biomass and Tree Number Density Estimation

    NASA Astrophysics Data System (ADS)

    Soja, Maciej J.; Blomberg, Erik; Ulander, Lars M. H.

    2015-04-01

    In this paper, a significant correlation between the HH/VV phase difference (polarisation phase difference, PPD) and the above-ground biomass (AGB) is observed for incidence angles above 30° in airborne P-band SAR data acquired over two boreal test sites in Sweden. A geometric model is used to explain the dependence of the AGB on tree height, stem radius, and tree number density, whereas a cylinder-over-ground model is used to explain the dependence of the PPD on the same three forest parameters. The models show that forest anisotropy need to be accounted for at P-band in order to obtain a linear relationship between the PPD and the AGB. An approach to the estimation of tree number density is proposed, based on a comparison between the modelled and observed PPDs.

  18. Do Deregulated Cas Proteins Induce Genomic Instability In Early Stage Ovarian Cancer?

    DTIC Science & Technology

    2007-12-01

    3457–3467. Ezratty, E.J., Partridge, M.A., and Gundersen, G.G. (2005). Microtu- bule -induced focal adhesion disassembly is mediated by dynamin and... bule -associated deacetylase. Nature 417, 455–458. Iomini, C., Tejada, K., Mo, W., Vaananen, H., and Piperno, G. (2004). Primary cilia of human

  19. The Challenges of Diagnosing Primary Ciliary Dyskinesia

    PubMed Central

    O'Callaghan, Christopher; Knowles, Michael R.

    2011-01-01

    Primary ciliary dyskinesia (PCD) is a rare genetic disorder of ciliary structure and function. The diagnosis can be challenging, particularly when using nongenetic assays. The “gold standard” diagnostic test is ultrastructural analysis of respiratory cilia obtained by nasal scrape or brush biopsy. A few specialized centers use high-speed videomicroscopy to examine ciliary beat. Certain beat patterns correlate with ultrastructural defects, and, in some cases, subtle alterations in beat pattern can be seen when ultrastructure is normal. Recent studies have shown that nasal nitric oxide (NO) is very low in patients with PCD compared with healthy control subjects; therefore, this assay may be a useful screening or adjunctive test for PCD. Because acute respiratory illnesses may yield alterations in ciliary ultrastructure, ciliary beat, and nasal NO values, these tests should be performed during a stable baseline period. Identification of an array of PCD genes has provided the opportunity for making a definitive genetic diagnosis for PCD in some cases. All of these approaches have a role in diagnosing PCD. For example, PCD has been confirmed by identifying disease-causing mutations in a heavy dynein chain gene in individuals with normal ciliary ultrastructure but subtle defects in ciliary beat and low nasal NO. Priorities to improve nongenetic diagnostic capability include standardization of nasal NO as a screening test and the development of specialized centers using uniform approaches for the analysis of ciliary ultrastructure and ciliary beat pattern. Another chapter in this issue (see Zariwala and colleagues, pp. 430) addresses the progress toward improved capabilities for definitive genetic testing PMID:21926395

  20. Power generating reflective-type liquid crystal displays using a reflective polariser and a polymer solar cell.

    PubMed

    Ho Huh, Yoon; Park, Byoungchoo

    2015-06-23

    We herein report the results of a study of a power generating reflective-type liquid crystal display (LCD), composed of a 90° twisted nematic (TN) LC cell attached to the top of a light-absorbing polymer solar cell (PSC), i.e., a Solar-LCD. The PSC consisted of a polymer bulk-heterojunction photovoltaic (PV) layer of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and [6,6]-phenyl C71 butyric acid methyl ester (PCDTBT:PCBM70), and showed a high power conversion efficiency of about 5%. In order to improve the visibility of the Solar-LCD, between the TN-LC and the PV cells we inserted a reflective polariser of a giant birefringent optical (GBO) film. The reflectivity from the Solar-LCD was observed to be considerably increased by more than 13-15% under illumination by visible light. The Solar-LCD also exhibited a significantly improved contrast ratio of more than 17-19. We believe there is a clear case for using such Solar-LCDs in new power-generating reflective-type displays; taken as a whole these results also demonstrate the possibility of their application in a number of energy-harvesting opto-electrical display devices.

  1. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans.

    PubMed

    Wojtyniak, Martin; Brear, Andrea G; O'Halloran, Damien M; Sengupta, Piali

    2013-10-01

    Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions.

  2. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans

    PubMed Central

    Wojtyniak, Martin; Brear, Andrea G.; O'Halloran, Damien M.; Sengupta, Piali

    2013-01-01

    Summary Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions. PMID:23886944

  3. Theoretical investigation of the dipole polarisability and second hyperpolarisability of cyclopentadiene homologues C 4H 4XH 2 (X=C, Si, Ge, Sn)

    NASA Astrophysics Data System (ADS)

    Alparone, A.; Millefiori, A.; Millefiori, S.

    2004-03-01

    Static and frequency-dependent electronic dipole polarisability, α, and second hyperpolarisability, γ, of the cyclopentadiene homologues C 4H 4XH 2 (X=C, Si, Ge, Sn) were calculated by ab initio HF, MP2 and DFT-B3LYP methods using Sadlej POL basis sets, including vibrational and relativistic effects. The latter calculations were extended also to the furan homologues for comparison. The results show that both α and γ values increase monotonically as the heteroatom size increases. The energy values of the electronic transitions to the two lowest singlet 1 1B2 and 2 1A1 excited states decrease not uniformly as the heteroatom becomes heavier and the two-state model approximation is not adequate to explain the evolution of the (hyper)polarisability along the series, which indeed is essentially determined by the heteroatom property. Frequency dispersion correction on α increases down the group, by contrast γ dispersion is highest in cyclopentadiene and almost constant, at a lower value, in the heavier homologues. Electron correlation correction on the calculated properties is positive and rather large on γ. HF relativistic effects on < α> and < γ> are of little importance for both stannole and tellurophene and cannot account for the observed large discrepancy between the experimental and theoretical < γe>(- ω; ω, ω,- ω) value in the latter compound. Vibrational contributions are calculated for the optically-heterodyned optical Kerr process (OHD-OKE). They are non negligible and show a clear heavy atom dependence. In the cyclopentadiene series they amount to 4-10% of < αe> and to 8-16% of < γe>(- ω; ω, ω,- ω), while they are somewhat lower in the furan series. The transversal γxxxx value is higher in the cyclopentadiene than in the furan series by ca. 30-40%, suggesting that α- α'-linked cyclopentadiene homologues can be considered as valid alternatives to the corresponding furan homologues in projecting π-conjugated oligomers and polymers for NLO

  4. Automated software for analysis of ciliary beat frequency and metachronal wave orientation in primary ciliary dyskinesia.

    PubMed

    Mantovani, Giulia; Pifferi, Massimo; Vozzi, Giovanni

    2010-06-01

    Patients with primary ciliary dyskinesia (PCD) have structural and/or functional alterations of cilia that imply deficits in mucociliary clearance and different respiratory pathologies. A useful indicator for the difficult diagnosis is the ciliary beat frequency (CBF) that is significantly lower in pathological cases than in physiological ones. The CBF computation is not rapid, therefore, the aim of this study is to propose an automated method to evaluate it directly from videos of ciliated cells. The cells are taken from inferior nasal turbinates and videos of ciliary movements are registered and eventually processed by the developed software. The software consists in the extraction of features from videos (written with C++ language) and the computation of the frequency (written with Matlab language). This system was tested both on the samples of nasal cavity and software models, and the results were really promising because in a few seconds, it can compute a reliable frequency if compared with that measured with visual methods. It is to be noticed that the reliability of the computation increases with the quality of acquisition system and especially with the sampling frequency. It is concluded that the developed software could be a useful mean for PCD diagnosis.

  5. Ciliary heterogeneity within a single cell: the Paramecium model.

    PubMed

    Aubusson-Fleury, Anne; Cohen, Jean; Lemullois, Michel

    2015-01-01

    Paramecium is a single cell able to divide in its morphologically differentiated stage that has many cilia anchored at its cell surface. Many thousands of cilia are thus assembled in a short period of time during division to duplicate the cell pattern while the cell continues swimming. Most, but not all, of these sensory cilia are motile and involved in two main functions: prey capture and cell locomotion. These cilia display heterogeneity, both in their length and their biochemical properties. Thanks to these properties, as well as to the availability of many postgenomic tools and the possibility to follow the regrowth of cilia after deciliation, Paramecium offers a nice opportunity to study the assembly of the cilia, as well as the genesis of their diversity within a single cell. In this paper, after a brief survey of Paramecium morphology and cilia properties, we describe the tools and the protocols currently used for immunofluorescence, transmission electron microscopy, and ultrastructural immunocytochemistry to analyze cilia, with special recommendations to overcome the problem raised by cilium diversity. Copyright © 2015. Published by Elsevier Inc.

  6. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins

    PubMed Central

    Shimada, Issei S.; Loriot, Evan

    2017-01-01

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. PMID:28154160

  7. Harnessing polarisation transfer to indazole and imidazole through signal amplification by reversible exchange to improve their NMR detectability

    PubMed Central

    Fekete, Marianna; Rayner, Peter J.; Green, Gary G. R.

    2017-01-01

    The signal amplification by reversible exchange (SABRE) approach has been used to hyperpolarise the substrates indazole and imidazole in the presence of the co‐ligand acetonitrile through the action of the precataysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)]. 2H‐labelled forms of these catalysts were also examined. Our comparison of the two precatalysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)], coupled with 2H labelling of the N‐heterocyclic carbene and associated relaxation and polarisation field variation studies, demonstrates the critical and collective role these parameters play in controlling the efficiency of signal amplification by reversible exchange. Ultimately, with imidazole, a 700‐fold1H signal gain per proton is produced at 400 MHz, whilst for indazole, a 90‐fold increase per proton is achieved. The co‐ligand acetonitrile proved to optimally exhibit a 190‐fold signal gain per proton in these measurements, with the associated studies revealing the importance the substrate plays in controlling this value. Copyright © 2017 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. PMID:28497481

  8. The Developmental Process of the Growing Motile Ciliary Tip Region.

    PubMed

    Reynolds, Matthew J; Phetruen, Tanaporn; Fisher, Rebecca L; Chen, Ke; Pentecost, Brian T; Gomez, George; Ounjai, Puey; Sui, Haixin

    2018-05-22

    Eukaryotic motile cilia/flagella play vital roles in various physiological processes in mammals and some protists. Defects in cilia formation underlie multiple human disorders, known as ciliopathies. The detailed processes of cilia growth and development are still far from clear despite extensive studies. In this study, we characterized the process of cilium formation (ciliogenesis) by investigating the newly developed motile cilia of deciliated protists using complementary techniques in electron microscopy and image analysis. Our results demonstrated that the distal tip region of motile cilia exhibit progressive morphological changes as cilia develop. This developmental process is time-dependent and continues after growing cilia reach their full lengths. The structural analysis of growing ciliary tips revealed that B-tubules of axonemal microtubule doublets terminate far away from the tip end, which is led by the flagellar tip complex (FTC), demonstrating that the FTC might not directly mediate the fast turnover of intraflagellar transport (IFT).

  9. Nutritional status of children under 5 years of age in Brazil: evidence of nutritional epidemiological polarisation.

    PubMed

    Pereira, Ingrid Freitas da Silva; Andrade, Lára de Melo Barbosa; Spyrides, Maria Helena Constatino; Lyra, Clélia de Oliveira

    2017-10-01

    The objective of this study was to evaluate the nutritional status of children under 5 years of age in Brazil in 2009 and its association with social and demographic factors. Data from the Household Budget Survey (Pesquisa de Orçamento Familiar - POF 2008-2009) were used, in which the nutritional profile was evaluated according to the weight-for-age (W/A), height-for-age (H/A) and weight-for-height (W/H) indices (n = 14,569). The association was estimated by applying the Pearson association test, a logistic regression and a correspondence analysis. The correspondence analysis showed a higher association of thinness with children in the North and Northeast regions, in families with lower levels of income and in those of black colour/race. Overweight and obesity had a stronger relationship with children living in the South, Southeast and Central-West, in males, in those from urban areas, in those of Caucasian colour/race, in those aged 3 years and in those from families with intermediate income ranges. Overweight and obesity showed a heterogeneous spatial distribution amongst Brazilian states. A nutritional epidemiological polarisation that presents a major challenge for public health is indicated: we must reduce nutritional deficiencies and promote healthy eating habits from childhood to improve the nutritional and epidemiological profiles and mortality of the population.

  10. Chronic Fluid Flow Is an Environmental Modifier of Renal Epithelial Function

    PubMed Central

    Resnick, Andrew

    2011-01-01

    Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression. PMID:22046444

  11. An NMR study of cobalt-catalyzed hydroformylation using para-hydrogen induced polarisation.

    PubMed

    Godard, Cyril; Duckett, Simon B; Polas, Stacey; Tooze, Robert; Whitwood, Adrian C

    2009-04-14

    The syntheses of Co(eta3-C3H5)(CO)2PR2R' (R, R' = Ph, Me; R, R' = Me, Ph; R = R' = Ph, Cy, CH2Ph) and Co(eta3-C3H5)(CO)(L) (L = dmpe and dppe) are described, and X-ray structures for Co(eta3-C3H5)(CO)(dppe) and the PPh2Me, PCy3 derivatives reported. The relative ability of Co(eta3-C3H5)(CO)2(PR2R') to exchange phosphine for CO follows the trend PMe2Ph < PPh2Me < PCy3 < P(CH2Ph)3 < PPh3. Reactions of the allyl complexes with para-hydrogen (p-H2) lead to the observation of para-hydrogen induced polarisation (PHIP) in both liberated propene and propane. Reaction of these complexes with both CO and H2 leads to the detection of linear acyl containing species Co(COCH2CH2CH3)(CO)3(PR2R') and branched acyl complexes Co(COCH(CH3)2)(CO)3(PR2R') via the PHIP effect. In the case of PPh2Me, additional signals for Co(COCH2CH2CH3)(CO)2(PPh2Me)(propene) and Co(COCH(CH3)2)(CO)2(PPh2Me)(propene) are also detected. When the reactions of H2 and diphenylacetylene are studied with the same precursor, Co(CO)3(PPh2Me)(CHPhCH2Ph) is seen. Studies on how the appearance and ratio, of the PHIP enhanced signals vary as a function of reaction temperature and H2 : CO ratio are reported. These profiles are used to learn about the mechanism of catalysis and reveal how the rates of key steps leading to linear and branched hydroformylation products vary with the phosphine. These data also reveal that the PMe2Ph and PPh2Me based systems yield the highest selectivity for linear hydroformylation products.

  12. Deciliation Is Associated with Dramatic Remodeling of Epithelial Cell Junctions and Surface Domains

    PubMed Central

    Overgaard, Christian E.; Sanzone, Kaitlin M.; Spiczka, Krystle S.; Sheff, David R.; Sandra, Alexander

    2009-01-01

    Stress-induced shedding of motile cilia (autotomy) has been documented in diverse organisms and likely represents a conserved cellular reaction. However, little is known about whether primary cilia are shed from mammalian epithelial cells and what impact deciliation has on polarized cellular organization. We show that several chemically distinct agents trigger autotomy in epithelial cells. Surprisingly, deciliation is associated with a significant, but reversible increase in transepithelial resistance. This reflects substantial reductions in tight junction proteins associated with “leaky” nephron segments (e.g., claudin-2). At the same time, apical trafficking of gp80/clusterin and gp114/CEACAM becomes randomized, basal-lateral delivery of Na,K-ATPase is reduced, and expression of the nonciliary apical protein gp135/podocalyxin is greatly decreased. However, ciliogenesis-impaired MDCK cells do not undergo continual junction remodeling, and mature cilia are not required for autotomy-associated remodeling events. Deciliation and epithelial remodeling may be mechanistically linked processes, because RNAi-mediated reduction of Exocyst subunit Sec6 inhibits ciliary shedding and specifically blocks deciliation-associated down-regulation of claudin-2 and gp135. We propose that ciliary autotomy represents a signaling pathway that impacts the organization and function of polarized epithelial cells. PMID:19005211

  13. Bright optical centre in diamond with narrow, highly polarised and nearly phonon-free fluorescence at room temperature

    NASA Astrophysics Data System (ADS)

    John, Roger; Lehnert, Jan; Mensing, Michael; Spemann, Daniel; Pezzagna, Sébastien; Meijer, Jan

    2017-05-01

    Using shallow implantation of ions and molecules with masses centred at 27 atomic mass units (amu) in diamond, a new artificial optical centre with unique properties has been created. The centre shows a linearly polarised fluorescence with a main narrow emission line mostly found at 582 nm, together with a weak vibronic sideband at room temperature. The fluorescence lifetime is ∼2 ns and the brightest centres are more than three times brighter than the nitrogen-vacancy centres. A majority of the centres shows stable fluorescence whereas some others present a blinking behaviour, at faster or slower rates. Furthermore, a second kind of optical centre has been simultaneously created in the same diamond sample, within the same ion implantation run. This centre has a narrow zero-phonon line (ZPL) at ∼546 nm and a broad phonon sideband at room temperature. Interestingly, optically detected magnetic resonance (ODMR) has been measured on several single 546 nm centres and two resonance peaks are found at 0.99 and 1.27 GHz. In view of their very similar ODMR and optical spectra, the 546 nm centre is likely to coincide with the ST1 centre, reported once (with a ZPL at 550 nm), but of still unknown nature. These new kinds of centres are promising for quantum information processing, sub-diffraction optical imaging or use as single-photon sources.

  14. Stimulation of Electro-Olfactogram Responses in the Main Olfactory Epithelia by Airflow Depend on the Type 3 Adenylyl Cyclase

    PubMed Central

    Chen, Xuanmao; Xia, Zhengui; Storm, Daniel R.

    2012-01-01

    Cilia of olfactory sensory neurons (OSN) are the primary sensory organelles for olfaction. The detection of odorants by the main olfactory epithelium (MOE) depends on coupling of odorant receptors to the type 3 adenylyl cyclase (AC3) in olfactory cilia. We monitored the effect of airflow on electro-olfactogram (EOG) responses and found that the MOE of mice can sense mechanical forces generated by airflow. The airflow-sensitive EOG response in the MOE was attenuated when cAMP was increased by odorants or by forskolin suggesting a common mechanism for airflow and odorant detection. In addition, the sensitivity to airflow was significantly impaired in the MOE from AC3−/− mice. We conclude that AC3 in the MOE is required for detecting the mechanical force of airflow, which in turn may regulate odorant perception during sniffing. PMID:23136416

  15. New ADCY3 Variants Dance in Obesity Etiology.

    PubMed

    Tian, Yan; Peng, Boqiang; Fu, Xianghui

    2018-02-14

    The genetic etiology for obesity-related traits remains elusive. Recent studies link novel ADCY3 variants to obesity and diabetes, and identify an important role of ADCY3-mediated signaling at neuronal primary cilia in the predisposition of obesity. These findings provide new information on obesity etiology and suggest potential anti-obesity therapeutic strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. SEPT9_v1 Functions in Breast Cancer Cell Division

    DTIC Science & Technology

    2012-01-01

    the regulation and function of septin filaments, and define new mechanisms regulating important cellular functions. BODY: 1). Study the effects...ciliogenesis. However, mechanisms for retaining these proteins and lipids in the primary cilia are not clear. We directly tested the presence of a diffusion...polarity and morphogenesis;  Defined mechanisms involving the roles of septins and microtubules in vesicle trafficking and epithelial morphogenesis

  17. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.

    PubMed

    Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klüter, Harald; Gratchev, Alexei; Harmsen, Martin C; Kzhyshkowska, Julia

    2017-10-01

    Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. A novel mutation causing nephronophthisis in the Lewis polycystic kidney rat localises to a conserved RCC1 domain in Nek8

    PubMed Central

    2012-01-01

    Background Nephronophthisis (NPHP) as a cause of cystic kidney disease is the most common genetic cause of progressive renal failure in children and young adults. NPHP is characterized by abnormal and/or loss of function of proteins associated with primary cilia. Previously, we characterized an autosomal recessive phenotype of cystic kidney disease in the Lewis Polycystic Kidney (LPK) rat. Results In this study, quantitative trait locus analysis was used to define a ~1.6Mbp region on rat chromosome 10q25 harbouring the lpk mutation. Targeted genome capture and next-generation sequencing of this region identified a non-synonymous mutation R650C in the NIMA (never in mitosis gene a)- related kinase 8 ( Nek8) gene. This is a novel Nek8 mutation that occurs within the regulator of chromosome condensation 1 (RCC1)-like region of the protein. Specifically, the R650C substitution is located within a G[QRC]LG repeat motif of the predicted seven bladed beta-propeller structure of the RCC1 domain. The rat Nek8 gene is located in a region syntenic to portions of human chromosome 17 and mouse 11. Scanning electron microscopy confirmed abnormally long cilia on LPK kidney epithelial cells, and fluorescence immunohistochemistry for Nek8 protein revealed altered cilia localisation. Conclusions When assessed relative to other Nek8 NPHP mutations, our results indicate the whole propeller structure of the RCC1 domain is important, as the different mutations cause comparable phenotypes. This study establishes the LPK rat as a novel model system for NPHP and further consolidates the link between cystic kidney disease and cilia proteins. PMID:22899815

  19. An update on the pathophysiology and management of polycystic liver disease.

    PubMed

    Wong, May Yw; McCaughan, Geoffrey W; Strasser, Simone I

    2017-06-01

    Polycystic liver disease (PLD) is characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. They are classified as an inherited ciliopathy /cholangiopathy as pathology exists at the level of the primary cilia of cholangiocytes. Aberrant expression of the proteins in primary cilia can impair their structures and functions, thereby promoting cystogenesis. Areas covered: This review begins by looking at the epidemiology of PLD and its natural history. It then describes the pathophysiology and corresponding potential treatment strategies for PLD. Expert commentary: Traditionally, therapies for symptomatic PLD have been limited to symptomatic management and surgical interventions. Such techniques are not completely effective, do not alter the natural history of the disease, and are linked with high rate of re-accumulation of cysts. As a result, there has been a push for drugs targeted at abnormal cellular signaling cascades to address deregulated proliferation, cell dedifferentiation, apoptosis and fluid secretion. Currently, the only available drug treatments that halt disease progression and improve quality of life in PLD patients are somatostatin analogues. Numerous preclinical studies suggest that targeting components of the signaling pathways that influence cyst development can ameliorate growth of hepatic cysts.

  20. Statistical Modeling of an Optically Trapped Cilium

    NASA Astrophysics Data System (ADS)

    Flaherty, Justin; Resnick, Andrew

    We explore, analytically and experimentally, the stochastic dynamics of a biologically significant slender microcantilever, the primary cilium, held within an optical trap. Primary cilia are cellular organelles, present on most vertebrate cells, hypothesized to function as a fluid flow sensor. The mechanical properties of a cilium remain incompletely characterized. Optical trapping is an ideal method to probe the mechanical response of a cilium due to the spatial localization and non-contact nature of the applied force. However, analysis of an optically trapped cilium is complicated both by the geometry of a cilium and boundary conditions. Here, we present experimentally measured mean-squared displacement data of trapped cilia where the trapping force is oppositely directed to the elastic restoring force of the ciliary axoneme, analytical modeling results deriving the mean-squared displacement of a trapped cilium using the Langevin approach, and apply our analytical results to the experimental data. We demonstrate that mechanical properties of the cilium can be accurately determined and efficiently extracted from the data using our model. It is hoped that improved measurements will result in deeper understanding of the biological function of cellular flow sensing by this organelle.