Ladder-structured photonic variable delay device
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
1998-01-01
An ladder-structured variable delay device for providing variable true time delay to multiple optical beams simultaneously. The device comprises multiple basic units stacked on top of each other resembling a ladder. Each basic unit comprises a polarization sensitive corner reflector formed by two polarization beamsplitters and a polarization rotator array placed parallel to the hypotenuse of the corner reflector. Controlling an array element of the polarization rotator array causes an optical beam passing through the array element to either go up to a basic unit above it or reflect back towards output. The beams going higher on the ladder experience longer optical path delay. Finally, the ladder-structured variable device can be cascaded with another multi-channel delay device to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
NASA Astrophysics Data System (ADS)
Bagci, Fulya; Akaoglu, Baris
2018-05-01
In this study, a classical analogue of electromagnetically induced transparency (EIT) that is completely independent of the polarization direction of the incident waves is numerically and experimentally demonstrated. The unit cell of the employed planar symmetric metamaterial structure consists of one square ring resonator and four split ring resonators (SRRs). Two different designs are implemented in order to achieve a narrow-band and wide-band EIT-like response. In the unit cell design, a square ring resonator is shown to serve as a bright resonator, whereas the SRRs behave as a quasi-dark resonator, for the narrow-band (0.55 GHz full-width at half-maximum bandwidth around 5 GHz) and wide-band (1.35 GHz full-width at half-maximum bandwidth around 5.7 GHz) EIT-like metamaterials. The observed EIT-like transmission phenomenon is theoretically explained by a coupled-oscillator model. Within the transmission window, steep changes of the phase result in high group delays and the delay-bandwidth products reach 0.45 for the wide-band EIT-like metamaterial. Furthermore, it has been demonstrated that the bandwidth and group delay of the EIT-like band can be controlled by changing the incidence angle of electromagnetic waves. These features enable the proposed metamaterials to achieve potential applications in filtering, switching, data storing, and sensing.
Phase-Controlled Polarization Modulators
NASA Technical Reports Server (NTRS)
Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.
2012-01-01
We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.
Secure communications with low-orbit spacecraft using quantum cryptography
Hughes, Richard J.; Buttler, William T.; Kwiat, Paul G.; Luther, Gabriel G.; Morgan, George L; Nordholt, Jane E.; Peterson, Charles G.; Simmons, Charles M.
1999-01-01
Apparatus and method for secure communication between an earth station and spacecraft. A laser outputs single pulses that are split into preceding bright pulses and delayed attenuated pulses, and polarized. A Pockels cell changes the polarization of the polarized delayed attenuated pulses according to a string of random numbers, a first polarization representing a "1," and a second polarization representing a "0." At the receiving station, a beamsplitter randomly directs the preceding bright pulses and the polarized delayed attenuated pulses onto longer and shorter paths, both terminating in a beamsplitter which directs the preceding bright pulses and a first portion of the polarized delayed attenuated pulses to a first detector, and a second portion of the polarized delayed attenuated pulses to a second detector to generate a key for secure communication between the earth station and the spacecraft.
Time delay in atomic photoionization with circularly polarized light
NASA Astrophysics Data System (ADS)
Ivanov, I. A.; Kheifets, A. S.
2013-03-01
We study time delay in atomic photoionization by circularly polarized light. By considering the Li atom in an excited 2p state, we demonstrate a strong time-delay asymmetry between the photoemission of the target electrons that are co- and counter-rotating with the electromagnetic field in the polarization plane. In addition, we observe the time-delay sensitivity to the polar angle of the photoelectron emission in the polarization plane. This modulation depends on the shape and duration of the electromagnetic pulse.
Compact programmable photonic variable delay devices
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
1999-01-01
Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
Photonic variable delay devices based on optical birefringence
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2005-01-01
Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
77 FR 76456 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... reach, x-ray beams with controllable polarization, and ``pump'' pulses over a vastly extended range of... project's ray probe pulses with controllable inter-pulse time delay. Justification for Duty-Free Entry... undergoes a metal to insulator transition when the LAO thickness is greater than 3 unit cells. The unique...
Variable-Delay Polarization Modulators for Cryogenic Millimeter-Wave Applications
NASA Technical Reports Server (NTRS)
Chuss, D. T.; Eimer, J. R.; Fixsen, D. J.; Hinderks, J.; Kogut, A. J.; Lazear, J.; Mirel, P.; Switzer, E.; Voellmer, G. M.; Wollack, E. J..
2014-01-01
We describe the design, construction, and initial validation of the variable-delay polarization modulator (VPM) designed for the PIPER cosmic microwave background polarimeter. The VPM modulates between linear and circular polarization by introducing a variable phase delay between orthogonal linear polarizations. Each VPM has a diameter of 39 cm and is engineered to operate in a cryogenic environment (1.5 K). We describe the mechanical design and performance of the kinematic double-blade flexure and drive mechanism along with the construction of the high precision wire grid polarizers.
Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian
2018-03-30
To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.
Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian
2018-01-01
To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region. PMID:29601537
Properties of a Variable-Delay Polarization Modulator
NASA Technical Reports Server (NTRS)
Chuss, David T.; Wollack, Edward J.; Henry, Ross; Hui, Howard; Juarez, Aaron J.; Krenjy, Megan; Moseley, Harvey; Novak, Giles
2011-01-01
We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM). The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mirror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires that comprise the grid, the phase delay derived from the geometric separation between the mirror and the grid is sufficient to characterize the device. However, outside of this range, additional parameters describing the polarizing grid geometry must be included to fully characterize the modulator response. In this paper, we report test results of a VPM at wavelengths of 350 micron and 3 mm. Electromagnetic simulations of wire grid polarizers were performed and are summarized using a simple circuit model that incorporates the loss and polarization properties of the device.
FREQUENCY DEPENDENCE OF POLARIZATION OF ZEBRA PATTERN IN TYPE-IV SOLAR RADIO BURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneda, Kazutaka; Misawa, H.; Tsuchiya, F.
2015-08-01
We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZPs. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50%–70% right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50–70 ms relative to the right-handed component over the entiremore » frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double-plasma-resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in the O-mode and was partly converted into the X-mode near the source. Subsequently, the difference between the group velocities of the O-mode and X-mode caused the temporal delay.« less
A liquid lens switching-based motionless variable fiber-optic delay line
NASA Astrophysics Data System (ADS)
Khwaja, Tariq Shamim; Reza, Syed Azer; Sheikh, Mumtaz
2018-05-01
We present a Variable Fiber-Optic Delay Line (VFODL) module capable of imparting long variable delays by switching an input optical/RF signal between Single Mode Fiber (SMF) patch cords of different lengths through a pair of Electronically Controlled Tunable Lenses (ECTLs) resulting in a polarization-independent operation. Depending on intended application, the lengths of the SMFs can be chosen accordingly to achieve the desired VFODL operation dynamic range. If so desired, the state of the input signal polarization can be preserved with the use of commercially available polarization-independent ECTLs along with polarization-maintaining SMFs (PM-SMFs), resulting in an output polarization that is identical to the input. An ECTL-based design also improves power consumption and repeatability. The delay switching mechanism is electronically-controlled, involves no bulk moving parts, and can be fully-automated. The VFODL module is compact due to the use of small optical components and SMFs that can be packaged compactly.
Lysenko, Larisa V; Kim, Jeesun; Madamba, Francisco; Tyrtyshnaia, Anna A; Ruparelia, Aarti; Kleschevnikov, Alexander M
2018-07-01
Down syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS. Cultures of DIV3-DIV13 Ts65Dn and control normosomic (2 N) neurons were loaded with FURA-2 AM, and GABA action was assessed using local applications. In 2 N cultures, the number of GABA-activated cells dropped from ~100% to 20% between postnatal days 3-13 (P3-P13) reflecting the switch in GABA action polarity. In Ts65Dn cultures, the timing of this switch was delayed by 2-3 days. Next, microelectrode recordings of multi-unit activity (MUA) were performed in CA3 slices during bath application of the GABA A agonist isoguvacine. MUA frequency was increased in P8-P12 and reduced in P14-P22 slices reflecting the switch of GABA action from excitatory to inhibitory mode. The timing of this switch was delayed in Ts65Dn by approximately 2 days. Finally, frequency of giant depolarizing potentials (GDPs), a form of primordial neural activity, was significantly increased in slices from Ts65Dn pups at P12 and P14. These experimental evidences show that GABA action polarity switch is delayed in Ts65Dn model of DS, and that these changes lead to a delay in maturation of nascent neural circuits. These alterations may affect properties of neural circuits in adult animals and, therefore, represent a prospective target for pharmacotherapy of cognitive impairment in DS. Copyright © 2018 Elsevier Inc. All rights reserved.
Variable-delay Polarization Modulators (VPMs) for Far-infrared through Millimeter Astronomy
NASA Technical Reports Server (NTRS)
Chuss, David T.
2008-01-01
This viewgraph presentation reviews the use of Variable-delay Polarization Modulators (VPMs) for Far-infrared through Millimeter Astronomy. The two science goals are to use polarized emission from the partially-aligned dust that provides a probe of the role of magnetic fields in star formation and to use the polarization of the cosmic microwave background radiation CMB to test theories of the very early universe and provide a probe of fundamental physics.
Asymptotically stable phase synchronization revealed by autoregressive circle maps
NASA Astrophysics Data System (ADS)
Drepper, F. R.
2000-11-01
A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.
Polarization Characteristics of Zebra Patterns in Type IV Solar Radio Bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneda, K.; Misawa, H.; Tsuchiya, F.
The polarization characteristics of zebra patterns (ZPs) in type IV solar bursts were studied. We analyzed 21 ZP events observed by the Assembly of Metric-band Aperture Telescope and Real-time Analysis System between 2010 and 2015 and identified the following characteristics: a degree of circular polarization (DCP) in the range of 0%–70%, a temporal delay of 0–70 ms between the two circularly polarized components (i.e., the right- and left-handed components), and dominant ordinary-mode emission in about 81% of the events. For most events, the relation between the dominant and delayed components could be interpreted in the framework of fundamental plasma emissionmore » and depolarization during propagation, though the values of DCP and delay were distributed across wide ranges. Furthermore, it was found that the DCP and delay were positively correlated (rank correlation coefficient R = 0.62). As a possible interpretation of this relationship, we considered a model based on depolarization due to reflections at sharp density boundaries assuming fundamental plasma emission. The model calculations of depolarization including multiple reflections and group delay during propagation in the inhomogeneous corona showed that the DCP and delay decreased as the number of reflections increased, which is consistent with the observational results. The dispersive polarization characteristics could be explained by the different numbers of reflections causing depolarization.« less
NASA Astrophysics Data System (ADS)
Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.
2017-06-01
In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.
Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI.
Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José
2013-09-23
We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.
High Resolution Exponential Modeling of Fully Polarized Radar Returns
1989-11-01
the Poincare I polarization sphere. To avoid this ambiguity, the following alterations to the tilt need to...at the back end, and back toward the front (delayed by one- half the cylinder diameter to account for the two-way propagation delay). The two scatterers...tail responses correspond to the trailing edge of the fuselage-cylinder and to the creeping wave response (delayed by one- half the cylinder
NASA Astrophysics Data System (ADS)
Fraggelakis, F.; Stratakis, E.; Loukakos, P. A.
2018-06-01
We demonstrate the capability to exercise advanced control on the laser-induced periodic surface structures (LIPSS) on silicon by combining the effect of temporal shaping, via tuning the interpulse temporal delay between double femtosecond laser pulses, along with the independent manipulation of the polarization state of each of the individual pulses. For this, cross-polarized (CP) as well as counter-rotating (CR) double circularly polarized pulses have been utilized. The pulse duration was 40 fs and the central wavelength of 790 nm. The linearly polarized double pulses are generated by a modified Michelson interferometer allowing the temporal delay between the pulses to vary from Δτ = -80 ps to Δτ = +80 ps with an accuracy of 0.2 fs. We show the significance of fluence balance between the two pulse components and its interplay with the interpulse delay and with the order of arrival of the individually polarized pulse components of the double pulse sequence on the final surface morphology. For the case of CR pulses we found that when the pulses are temporally well separated the surface morphology attains no axial symmetry. But strikingly, when the two CP pulses temporally overlap, we demonstrate, for the first time in our knowledge, the detrimental effect that the phase delay has on the ripple orientation. Our results provide new insight showing that temporal pulse shaping in combination with polarization control gives a powerful tool for drastically controlling the surface nanostructure morphology.
He, Wanlin; Yang, Jianjun; Guo, Chunlei
2017-03-06
The control of laser-induced periodic ripple microstructures on 4H-SiC crystal surface is studied using temporally delayed collinear three femtosecond laser pulse trains linearly polarized in different directions. The ripple orientation appears to develop independent of the individual laser polarizations and exhibits non-monotonical change with variable time delays, whose variation tendency is also affected by the polarization intersection angles. Remarkably, the ripple period is observed to transfer from high- to low-spatial-frequency regions, accompanied by distinctly improved morphological uniformity and clearness. The results are satisfactorily interpreted based on a physical model of the surface wave excitation on a transient index metasurface, which is confirmed by further experiments. Our investigations indicate that transient noneqilibrium dynamics of the material surface provides an effective way to manipulate the laser-induced microstructures.
Two Effects of Electrical Fields on Chloroplasts 1
Arnold, William A.; Azzi, Jim R.
1977-01-01
An electrical field across a suspension of Chenopodium chloroplasts stimulates the emission of delayed light during the time the field is on. This stimulation can be used to calculate the distance over which the electron moves in the untrapping process that gives the delayed light. An electrical field applied at the time of illumination gives a polarization to the suspension of chloroplasts that lasts for some seconds. This polarization is a new way to study delayed light and fluorescence from chloroplasts. Images PMID:16660112
An optically passive method that doubles the rate of 2-Ghz timing fiducials
NASA Astrophysics Data System (ADS)
Boni, R.; Kendrick, J.; Sorce, C.
2017-08-01
Solid-state optical comb-pulse generators provide a convenient and accurate method to include timing fiducials in a streak camera image for time base correction. Commercially available vertical-cavity surface-emitting lasers (VCSEL's) emitting in the visible currently in use can be modulated up to 2 GHz. An optically passive method is presented to interleave a time-delayed path of the 2-GHz comb with itself, producing a 4-GHz comb. This technique can be applied to VCSEL's with higher modulation rates. A fiber-delivered, randomly polarized 2-GHz VCSEL comb is polarization split into s-polarization and p-polarization paths. One path is time delayed relative to the other by twice the 2-GHz rate with +/-1-ps accuracy; the two paths then recombine at the fiber-coupled output. High throughput (>=90%) is achieved by carefully using polarization beam-splitting cubes, a total internal reflection beam-path-steering prism, and antireflection coatings. The glass path-length delay block and turning prism are optically contacted together. The beam polarizer cubes that split and recombine the paths are precision aligned and permanently cemented into place. We expect the palm-sized, inline fiber-coupled, comb-rate-doubling device to maintain its internal alignment indefinitely.
Seismic anisotropy of northeastern Algeria from shear-wave splitting analysis
NASA Astrophysics Data System (ADS)
Radi, Zohir; Yelles-Chaouche, Abdelkrim; Bokelmann, Götz
2015-11-01
There are few studies of internal deformation under northern Africa; here we present such a study. We analyze teleseismic shear-wave splitting for northeast Algeria, to improve our knowledge of lithospheric and asthenospheric deformation mechanisms in this region. We study waveform data generated by tens of teleseismic events recorded at five recently installed broadband (BB) stations in Algeria. These stations cover an area 2° across, extending from the Tellian geological units in the North to the Saharan Atlas units in the South. Analysis of SKS-wave splitting results insignificant spatial variations in fast polarization orientation, over a scale length of at most 100 km. The seismic anisotropy shows three clear spatial patterns. A general ENE-WSW orientation is observed under the stations in the north. This polarization orientation follows the direction of the Tell Atlas mountain chain, which is perpendicular to the convergence direction between Africa and Eurasia. Delay times vary significantly across the region, between 0.6 and 2.0 s. At several stations there is an indication of a WNW-ESE polarization orientation, which is apparently related to a later geodynamic evolutionary phase in this region. A third pattern of seismic anisotropy emerges in the South, with an orientation of roughly N-S. We discuss these observations in light of geodynamic models and present-day geodetic motion.
Morosi, J; Berti, N; Akrout, A; Picozzi, A; Guasoni, M; Fatome, J
2018-01-22
In this manuscript, we experimentally and numerically investigate the chaotic dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction between an incident signal and its intense backward replica generated at the fiber-end through an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off Keying telecom signal achieving an error-free transmission. We also describe how these temporal and chaotic polarization fluctuations can be exploited as an all-optical random number generator. To this aim, a billion-bit sequence was experimentally generated and successfully confronted to the dieharder benchmarking statistic tools. Our experimental analysis are supported by numerical simulations based on the resolution of counter-propagating coupled nonlinear propagation equations that confirm the observed behaviors.
Device For Trapping Laser Pulses In An Optical Delay Line
Yu, David U. L.; Bullock, Donald L.
1997-12-23
A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.
An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface.
Wang, Dacheng; Gu, Yinghong; Gong, Yandong; Qiu, Cheng-Wei; Hong, Minghui
2015-05-04
Metamaterials promise an exotic approach to artificially manipulate the polarization state of electromagnetic waves and boost the design of polarimetric devices for sensitive detection, imaging and wireless communication. Here, we present the design and experimental demonstration of an ultrathin (0.29λ) terahertz quarter-wave plate based on planar babinet-inverted metasurface. The quarter-wave plate consisting of arrays of asymmetric cross apertures reveals a high transmission of 0.545 with 90 degrees phase delay at 0.870 THz. The calculated ellipticity indicates a high degree of polarization conversion from linear to circular polarization. With respect to different incident polarization angles, left-handed circular polarized light, right-handed circular polarized light and elliptically polarized light can be created by this novel design. An analytical model is applied to describe transmitted amplitude, phase delay and ellipticitiy, which are in good agreement with the measured and simulated results. The planar babinet-inverted metasurface with the analytical model opens up avenues for new functional terahertz devices design.
NASA Astrophysics Data System (ADS)
Chatterjee, Subhamoy; Hegde, Manjunath; Banerjee, Dipankar; Ravindra, B.
2017-11-01
The century long (1914-2007) {{{H}}}α (656.28 nm) spectroheliograms from the Kodaikanal Solar Observatory (KSO) have been recently digitized. Using these newly calibrated, processed images we study the evolution of dark elongated on-disk structures called filaments, which are potential representatives of magnetic activities on the Sun. To our knowledge, this is the oldest uniform digitized data set with daily images available today in {{{H}}}α . We generate Carrington maps for the entire time duration and try to find the correlations with maps of the same Carrington rotation from the Ca II K KSO data. Filaments are segmented from the Carrington maps using a semi-automated technique and are studied individually to extract their centroids and tilts. We plot the time-latitude distribution of the filament centroids, producing a butterfly diagram which clearly shows the presence of poleward migration. We separate polar filaments for each cycle and try to estimate the delay between the polar filament number cycle and the sunspot number cycle peaks. We correlate this delay with the delay between polar reversal and sunspot number maxima. This provides new insight on the role of polar filaments on polar reversal.
Holmlid, Leif
2009-01-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
NASA Astrophysics Data System (ADS)
Holmlid, Leif
2009-08-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes
NASA Astrophysics Data System (ADS)
Wölbern, I.; Löbl, U.; Rümpker, G.
2014-04-01
In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.
Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL.
Zhong, Zhu-Qiang; Li, Song-Sui; Chan, Sze-Chun; Xia, Guang-Qiong; Wu, Zheng-Mao
2015-06-15
Polarization-resolved chaotic emission intensities from a vertical-cavity surface-emitting laser (VCSEL) subject to feedback from a fiber Bragg grating (FBG) are numerically investigated. Time-delay (TD) signatures of the feedback are examined through various means including self-correlations of intensity time-series of individual polarizations, cross-correlation of intensities time-series between both polarizations, and permutation entropies calculated for the individual polarizations. The results show that the TD signatures can be clearly suppressed by selecting suitable operation parameters such as the feedback strength, FBG bandwidth, and Bragg frequency. Also, in the operational parameter space, numerical maps of TD signatures and effective bandwidths are obtained, which show regions of chaotic signals with both wide bandwidths and weak TD signatures. Finally, by comparing with a VCSEL subject to feedback from a mirror, the VCSEL subject to feedback from the FBG generally shows better concealment of the TD signatures with similar, or even wider, bandwidths.
Spin-dependent delay time and Hartman effect in asymmetrical graphene barrier under strain
NASA Astrophysics Data System (ADS)
Sattari, Farhad; Mirershadi, Soghra
2018-01-01
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin-orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.
Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback.
Li, Yan; Wu, Zheng-Mao; Zhong, Zhu-Qiang; Yang, Xian-Jie; Mao, Song; Xia, Guang-Qiong
2014-08-11
Based on the framework of spin-flip model (SFM), the output characteristics of a 1550 nm vertical-cavity surface-emitting laser (VCSEL) subject to variable-polarization fiber Bragg grating (FBG) feedback (VPFBGF) have been investigated. With the aid of the self-correlation function (SF) and the permutation entropy (PE) function, the time-delay signature (TDS) of chaos in the VPFBGF-VCSEL is evaluated, and then the influences of the operation parameters on the TDS of chaos are analyzed. The results show that the TDS of chaos can be suppressed efficiently through selecting suitable coupling coefficient and feedback rate of the FBG, and is weaker than that of chaos generated by traditional variable-polarization mirror feedback VCSELs (VPMF-VCSELs) or polarization-preserved FBG feedback VCSELs (PPFBGF-VCSELs).
NASA Astrophysics Data System (ADS)
Harrington, Kathleen; CLASS Collaboration
2018-01-01
The search for inflationary primordial gravitational waves and the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subjected to instrumental and atmospheric 1/f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a moveable flat mirror; varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The reflective and scalable nature of the VPM enables its placement as the first optical element in a reflecting telescope. This simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization farther along in the optical chain.The Q-Band CLASS VPM was the first VPM to begin observing the CMB full time in 2016. I will be presenting its design and characterization as well as demonstrating how modulating polarization significantly rejects atmospheric and instrumental long time scale noise.
NASA Technical Reports Server (NTRS)
Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.
2008-01-01
We describe the design of the linear motion stage for a Variable-delay Polarization Modulator (VPM) and of a grid flattener that has been built and integrated into the Hertz ground-based, submillimeter polarimeter. VPMs allow the modulation of a polarized source by controlling the phase difference between two linear, orthogonal polarizations. The size of the gap between a mirror and a very flat polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. A novel, kinematic, flexure-based mechanism is described that passively maintains the parallelism of the mirror and the grid to 1.5 pm over a 150 mm diameter, with a 400 pm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. A simple device that ensures the planarity of the polarizing grid is also described. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.
Variable-delay Polarization Modulators for the CLASS Telescope
NASA Astrophysics Data System (ADS)
Harrington, Kathleen; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Mirel, P.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.
2014-01-01
The challenges of measuring faint polarized signals at microwave wavelengths have motivated the development of rapid polarization modulators. One scalable technique, called a Variable-delay Polarization Modulator (VPM), consists of a stationary wire array in front of a movable mirror. The mirror motion creates a changing phase difference between the polarization modes parallel and orthogonal to the wire array. The Cosmology Large Angular Scale Surveyor (CLASS) will use a VPM as the first optical element in a telescope array that will search for the signature of inflation through the “B-mode” pattern in the polarization of the cosmic microwave background. In the CLASS VPMs, parallel transport of the mirror is maintained by a voice-coil actuated flexure system which will translate the mirror in a repeatable manner while holding tight parallelism constraints with respect to the wire array. The wire array will use 51 μm diameter copper-plated tungsten wire with 160 μm pitch over a 60 cm clear aperture. We present the status of the construction and testing of the mirror transport mechanism and wire arrays for the CLASS VPMs.
A Quasioptical Vector Interferometer for Polarization Control
NASA Technical Reports Server (NTRS)
Chuss, David T.; Wollack, Edward J.; Moseley, Harvey S.; Novak, Giles
2005-01-01
We present a mathematical description of a Quasioptical Vector Interferometer (QVI), a device that maps an input polarization state to an output polarization state by introducing a phase delay between two linear orthogonal components of the input polarization. The advantages of such a device over a spinning wave-plate modulator for measuring astronomical polarization in the far-infrared through millimeter are: 1. The use of small, linear motions eliminates the need for cryogenic rotational bearings, 2. The phase flexibility allows measurement of Stokes V as well as Q and U, and 3. The QVI allows for both multi-wavelength and broadband modulation. We suggest two implementations of this device as an astronomical polarization modulator. The first involves two such modulators placed in series. By adjusting the two phase delays, it is possible to use such a modulator to measure Stokes Q, U, and V for passbands that are not too large. Conversely, a single QVI may be used to measure Q and V independent of frequency. In this implementation, Stokes U must be measured by rotating the instrument. We conclude this paper by presenting initial laboratory results.
NASA Astrophysics Data System (ADS)
Bagci, Fulya; Akaoglu, Baris
2017-08-01
We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.
Sahu, P P
2008-02-10
A thermally tunable erbium-doped fiber amplifier (EDFA) gain equalizer filter based on compact point symmetric cascaded Mach-Zehnder (CMZ) coupler is presented with its mathematical model and is found to be polarization dependent due to stress anisotropy caused by local heating for thermo-optic phase change from its mathematical analysis. A thermo-optic delay line structure with a stress releasing groove is proposed and designed for the reduction of polarization dependent characteristics of the high index contrast point symmetric delay line structure of the device. It is found from thermal analysis by using an implicit finite difference method that temperature gradients of the proposed structure, which mainly causes the release of stress anisotropy, is approximately nine times more than that of the conventional structure. It is also seen that the EDFA gain equalized spectrum by using the point symmetric CMZ device based on the proposed structure is almost polarization independent.
Shao, Jing; Sun, Junqiang
2012-08-15
We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.
Kume, Kazunori; Hashimoto, Tomoyo; Suzuki, Masashi; Mizunuma, Masaki; Toda, Takashi; Hirata, Dai
2017-09-30
Cell polarity is coordinately regulated with the cell cycle. Growth polarity of the fission yeast Schizosaccharomyces pombe transits from monopolar to bipolar during G2 phase, termed NETO (new end take off). Upon perturbation of DNA replication, the checkpoint kinase Cds1/CHK2 induces NETO delay through activation of Ca 2+ /calmodulin-dependent protein phosphatase calcineurin (CN). CN in turn regulates its downstream targets including the microtubule (MT) plus-end tracking CLIP170 homologue Tip1 and the Casein kinase 1γ Cki3. However, whether and which Ca 2+ signaling molecules are involved in the NETO delay remains elusive. Here we show that 3 genes (trp1322, vcx1 and SPAC6c3.06c encoding TRP channel, antiporter and P-type ATPase, respectively) play vital roles in the NETO delay. Upon perturbation of DNA replication, these 3 genes are required for not only the NETO delay but also for the maintenance of cell viability. Trp1322 and Vcx1 act downstream of Cds1 and upstream of CN for the NETO delay, whereas SPAC6c3.06c acts downstream of CN. Consistently, Trp1322 and Vcx1, but not SPAC6c3.06c, are essential for activation of CN. Interestingly, we have found that elevated extracellular Ca 2+ per se induces a NETO delay, which depends on CN and its downstream target genes. These findings imply that Ca 2+ -CN signaling plays a central role in cell polarity control by checkpoint activation. Copyright © 2017 Elsevier Inc. All rights reserved.
Imprinting superconducting vortex footsteps in a magnetic layer
NASA Astrophysics Data System (ADS)
Brisbois, Jérémy; Motta, Maycon; Avila, Jonathan I.; Shaw, Gorky; Devillers, Thibaut; Dempsey, Nora M.; Veerapandian, Savita K. P.; Colson, Pierre; Vanderheyden, Benoît; Vanderbemden, Philippe; Ortiz, Wilson A.; Nguyen, Ngoc Duy; Kramer, Roman B. G.; Silhanek, Alejandro V.
2016-06-01
Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.
Imprinting superconducting vortex footsteps in a magnetic layer
Brisbois, Jérémy; Motta, Maycon; Avila, Jonathan I.; Shaw, Gorky; Devillers, Thibaut; Dempsey, Nora M.; Veerapandian, Savita K. P.; Colson, Pierre; Vanderheyden, Benoît; Vanderbemden, Philippe; Ortiz, Wilson A.; Nguyen, Ngoc Duy; Kramer, Roman B. G.; Silhanek, Alejandro V.
2016-01-01
Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories. PMID:27263660
Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser
NASA Technical Reports Server (NTRS)
Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan
2010-01-01
The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome losses in the ring. When mode locking is achieved, oscillation occurs in all the modes having the same phase and same polarization. The frequency interval between modes, often denoted the free spectral range (FSR), is given by c/nL, where c is the speed of light in vacuum, n is the effective index of refraction of the fiber, and L is the total length of optical path around the ring. Therefore, the length of the fiber-optic delay line, as part of the length around the ring, can be calculated from the FSRs measured with and without the delay line incorporated into the ring. For this purpose, the FSR measurements are made by use of the optical and radio-frequency spectrum analyzers. In experimentation on a 10-km-long fiber-optic delay line, it was found that this setup made it possible to measure the length to within a fractional error of about 3 10(exp -6), corresponding to a length error of 3 cm. In contrast, measurements by optical time-domain reflectometry and mechanical measurement were found to be much less precise: For optical time-domain reflectometry, the fractional error was found no less than 10(exp -4) (corresponding to a length error of 1 m) and for mechanical measurement, the fractional error was found to be about 10(exp -2) (corresponding to a length error of 100 m).
A Translational Polarization Rotator
NASA Technical Reports Server (NTRS)
Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah
2012-01-01
We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.
NASA Astrophysics Data System (ADS)
Chen, Linghua; Jiang, Yingjie; Xing, Li; Yao, Jun
2017-10-01
We have proposed a full dielectric (silicon) nanocube array polarizer based on a silicon dioxide substrate. Each polarization unit column includes a plurality of equal spaced polarization units. By optimizing the length, the width, the height of the polarization units and the center distance of adjacent polarization unit (x direction and y direction), an extinction ratio (ER) of higher than 25dB was obtained theoretically when the incident light wavelength is 1550nm. while for applications of most polarization optical elements, ER above 10dB is enough. With this condition, the polarizer we designed can work in a wide wavelength range from 1509.31nm to 1611.51nm. Compared with the previous polarizer, we have introduced a polarizer which is a full dielectric device, which solves the problems of low efficiency caused by Ohmic loss and weak coupling. Furthermore, compared with the existing optical polarizers, our polarizer has the advantages of thin thickness, small size, light weight, and low processing difficulty, which is in line with the future development trend of optical elements.
Oculomotor capture by supraliminal and subliminal onset singletons: the role of contrast polarity.
Weichselbaum, Hanna; Fuchs, Isabella; Ansorge, Ulrich
2014-07-01
According to a top-down explanation of subliminal oculomotor capture, only subliminal distractors with a contrast polarity matching that of the searched-for targets should capture attention. For instance, when looking for white targets only subliminal white but not black distractors should capture attention. In contrast, according to a bottom-up explanation of such capture effects, subliminal distractors with a contrast polarity different to that of the searched-for targets should also capture attention. For instance, even when looking for white targets, subliminal black distractors should capture attention. Here, we used subliminal singleton-onset distractors in the same vertical hemifield as the target versus singleton-onset distractors in the opposite vertical field to the target, and tested whether oculomotor capture by these distractors depended on a match between the searched-for target contrasts and the distractor contrasts, by measuring saccade latency, saccade trajectory deviation, and saccade endpoint deviation. We found evidence for oculomotor capture: subliminal distractors in the opposite field delayed saccade execution towards the target. This delay was found in comparison to subliminal distractors in the same hemifield as the target. In line with a bottom-up explanation, this delay was independent of the similarity between the distractor contrast polarity and the searched-for target contrast polarity. Together with the subliminality of the distractors, the experiment confirmed bottom-up oculomotor capture by subliminal singleton-onsets. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Juan; Tao, Wenjun; Song, Hui; Gong, Min; Ma, Guohong; Dai, Ye; Zhao, Quanzhong; Qiu, Jianrong
2016-04-01
In this paper, a time-delay-adjustable double-pulse train with 800-nm wavelength, 200-fs pulse duration and a repetition rate of 1 kHz, produced by a collinear two-beam optical system like a Mach-Zehnder interferometer, was employed for irradiation of 6H-SiC crystal. The dependence of the induced structures on time delay of double-pulse train for parallel-polarization configuration was studied. The results show that as the time delay of collinear parallel-polarization dual-pulse train increased, the induced near-subwavelength ripples (NSWRs) turn from irregular rippled pattern to regularly periodic pattern and have their grooves much deepened. The characteristics timescale for this transition is about 6.24 ps. Besides, the areas of NSWR were found to decay exponentially for time delay from 0 to 1.24 ps and then slowly increase for time delay from 1.24 to 14.24 ps. Analysis shows that multiphoton ionization effect, grating-assisted surface plasmon coupling effect, and timely intervene of second pulse in a certain physical stage experienced by 6H-SiC excited upon first pulse irradiation may contribute to the transition of morphology details.
Feed network and electromagnetic radiation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ardavan, Arzhang; Singleton, John; Linehan, Kevin E.
An antenna may include a volume polarization current radiator and a feed network. The volume polarization current radiator, includes a dielectric solid (such as a dielectric strip), and a plurality of closely-spaced excitation elements (24), each excitation element (24) being configured to induce a volume polarization current distribution in the dielectric solid proximate to the excitation element when a voltage is applied to the excitation element. The feed network is coupled to the volume polarization current radiator. The feed network also includes a plurality of passive power divider elements (32) and a plurality of passive delay elements (d1-d6) coupling themore » first port (30) and the plurality of second ports (108, 109, 164), the plurality of power divider elements (32) and the plurality of phase delay elements (d1-d6) being configured such that a radio-frequency signal that is applied to the first port (30) experiences a progressive change of phase as it is coupled to the plurality of second ports (108, 109, 164) so as to cause the volume polarization current distribution to propagate along the dielectric solid.« less
NASA Technical Reports Server (NTRS)
Dennison, B. K.
1976-01-01
The gravitational field is probed in a search for polarization dependence in the light bending. This involves searching for a splitting of a source image into orthogonal polarizations as the radiation passes through the solar gravitational field. This search was carried out using the techniques of very long and intermediate baseline interferometry, and by seeking a relative phase delay in orthogonal polarizations of microwaves passing through the solar gravitational field. In this last technique a change in the total polarization of the Helios 1 carrier wave was sought as the spacecraft passed behind the sun. No polarization splitting was detected.
A Large, Free-Standing Wire Grid for Microwave Variable-delay Polarization Modulation
NASA Technical Reports Server (NTRS)
Voellmer, George
2008-01-01
One technique for mapping the polarization signature of the cosmic microwave background uses large, polarizing grids in reflection. We present the system requirements, the fabrication, assembly, and alignment procedures, and the test results for the polarizing grid component of a 50 cm clear aperture, Variable-delay Polarization Modulator (VPM). This grid is being built and tested at the Goddard Space Flight Center as part of the Polarimeter for Observing Inflationary Cosmology at the Reionization Epoch (POINCARE). VPMs modulate the polarized component of a radiation source by splitting the incoming beam into two orthogonal polarization components using a free-standing wire grid. The path length difference between these components is varied with a translating mirror, and then they are recombined. This precision instrumentation technique can be used to encode and demodulate the cosmic microwave background's polarization signature. For the demonstration instrument, 64 micrometer diameter tungsten wires are being assembled into a 200 pm pitch, free-standing wire grid with a 50 cm clear aperture, and an expected overall flatness better than 30 micrometers. A rectangular, aluminum stretching frame holds the wires with sufficient tension to achieve a minimum resonant frequency of 185 Hz, allowing VPM mirror translation frequencies of several Hz. A lightly loaded, flattening ring with a 50 cm inside diameter rests against the wires and brings them into accurate planarity.
New test of weak equivalence principle using polarized light from astrophysical events
NASA Astrophysics Data System (ADS)
Wu, Xue-Feng; Wei, Jun-Jie; Lan, Mi-Xiang; Gao, He; Dai, Zi-Gao; Mészáros, Peter
2017-05-01
Einstein's weak equivalence principle (WEP) states that any freely falling, uncharged test particle follows the same identical trajectory independent of its internal structure and composition. Since the polarization of a photon is considered to be part of its internal structure, we propose that polarized photons from astrophysical transients, such as gamma-ray bursts (GRBs) and fast radio bursts (FRBs), can be used to constrain the accuracy of the WEP through the Shapiro time delay effect. Assuming that the arrival time delays of photons with different polarizations are mainly attributed to the gravitational potential of the Laniakea supercluster of galaxies, we show that a strict upper limit on the differences of the parametrized post-Newtonian parameter γ value for the polarized optical emission of GRB 120308A is Δ γ <1.2 ×10-10 , for the polarized gamma-ray emission of GRB 100826A is Δ γ <1.2 ×10-10 , and for the polarized radio emission of FRB 150807 is Δ γ <2.2 ×10-16 . These are the first direct verifications of the WEP for multiband photons with different polarizations. In particular, the result from FRB 150807 provides the most stringent limit to date on a deviation from the WEP, improving by one order of magnitude the previous best result based on Crab pulsar photons with different energies.
Implementation of a Digital Signal Processing Subsystem for a Long Wavelength Array Station
NASA Technical Reports Server (NTRS)
Soriano, Melissa; Navarro, Robert; D'Addario, Larry; Sigman, Elliott; Wang, Douglas
2011-01-01
This paper describes the implementation of a Digital Signal Processing (DP) subsystem for a single Long Wavelength Array (LWA) station.12 The LWA is a radio telescope that will consist of many phased array stations. Each LWA station consists of 256 pairs of dipole-like antennas operating over the 10-88 MHz frequency range. The Digital Signal Processing subsystem digitizes up to 260 dual-polarization signals at 196 MHz from the LWA Analog Receiver, adjusts the delay and amplitude of each signal, and forms four independent beams. Coarse delay is implemented using a first-in-first-out buffer and fine delay is implemented using a finite impulse response filter. Amplitude adjustment and polarization corrections are implemented using a 2x2 matrix multiplication
A revised lens time delay for JVAS B0218+357 from a reanalysis of VLA monitoring data
NASA Astrophysics Data System (ADS)
Biggs, A. D.; Browne, I. W. A.
2018-06-01
We have reanalysed the 1996/1997 Very Large Array monitoring data of the gravitational lens system JVAS B0218+357 to produce improved total flux density and polarization variability curves at 15, 8.4, and 5 GHz. This has been done using improved calibration techniques, accurate subtraction of the emission from the Einstein ring, and careful correction of various systematic effects, especially an offset in polarization position angle that is hour-angle dependent. The variations in total and polarized flux density give the best constraints and we determine a combined delay estimate of 11.3 ± 0.2 d (1σ). This is consistent with the γ-ray value recently derived using the Fermi Gamma-ray Space Telescope and thus we find no evidence for a positional shift between the radio and γ-ray emitting regions. Combined with the previously published lens model found using LENSCLEAN, the new delay gives a value for the Hubble constant of H0 = 72.9 ± 2.6 km s-1 Mpc-1 (1σ).
PARALYZER FOR PULSE HEIGHT DISTRIBUTION ANALYZER
Fairstein, E.
1960-01-19
A paralyzer circuit is described for use with a pulseheight distribution analyzer to prevent the analyzer from counting overlapping pulses where they would serve to provide a false indication. The paralyzer circuit comprises a pair of cathode-coupled amplifiers for amplifying pulses of opposite polarity. Diodes are provided having their anodes coupled to the separate outputs of the amplifiers to produce only positive signals, and a trigger circuit is coupled to the diodes ior operation by input pulses of either polarity from the amplifiers. A delay network couples the output of the trigger circuit for delaying the pulses.
AgRISTARS. Supporting research: MARS x-band scatterometer
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Gabel, P. F., Jr.; Brunfeldt, D. R.
1981-01-01
The design, construction, and data collection procedures of the mobile agricultural radar sensor (MARS) x band scatterometer are described. This system is an inexpensive, highly mobile, truck mounted FM-CW radar operating at a center frequency of 10.2 GHz. The antennas, which allow for VV and VH polarizations, are configured in a side looking mode that allows for drive by data collection. This configuration shortens fieldwork time considerably while increasing statistical confidence in the data. Both internal calibration, via a delay line, and external calibration with a Luneberg lens are used to calibrate the instrument in terms of sigma(o). The radar scattering cross section per unit area, sigma(o), is found using the radar equation.
Formation of nanograting in fused silica by temporally delayed femtosecond double-pulse irradiation
NASA Astrophysics Data System (ADS)
Wang, Haodong; Song, Juan; Li, Qin; Zeng, Xianglong; Dai, Ye
2018-04-01
A 1 kHz femtosecond double-pulse sequence irradiation is used to study the temporal evolution of nanograting in fused silica by controlling the delay times and polarization combinations of two independent beams from a Mach–Zehnder interferometer. A lateral laser-scan experiment with speed at 5 µm s‑1 and each pulse energy of 1 µJ is firstly performed with the delay time from sub-picosecond to 10 ps, and then the written nanostructures are systematically studied under a cross-polarized microscope because the intensity of birefringence signal nearly corresponds to optical retardance and development level of the induced nanograting. The trend shows that the induced nanogratings can continue developing with a decrease of delay time in the case of the linear polarization pulse arriving before. In another vertical laser-scan experiment at the same speed and pulse energy, the morphologies of nanogratings embedded in the lines are characterized by scanning electron microscope after mechanical polishing and chemical etching. The self-organized patterns have a commonly spatial period of 200–300 nm and the orientation is always perpendicular to the polarization of the first laser pulse, and the second pulse in each sequence seems to promote the as-formed nanograting developing further even if the polarized direction is different from the previous pulse. These new findings verify again that a localized memory effect can make positive feedback to reinforce the patterned nanostripes. In that process, the impact ionization from the seed electrons left by the first pulse excitation and the photoionization of self-trapped excitons with lower ionization threshold results in an increase of the re-excited carriers during the second pulse irradiation and the subsequent development of the as-formed nanograting. Our result provides further proofs for understanding the physical mechanism of nanograting strongly connection with the interplay on multiple ionization channels.
Han, Weina; Jiang, Lan; Li, Xiaowei; Wang, Qingsong; Li, Hao; Lu, YongFeng
2014-06-30
We demonstrate that the polarization-dependent anisotropy of the laser-induced periodic surface structure (LIPSS) on silicon can be adjusted by designing a femtosecond laser pulse train (800 nm, 50 fs, 1 kHz). By varying the pulse delay from 100 to 1600 fs within a double pulse train to reduce the deposited pulse energy, which weakens the directional surface plasmon polarition (SPP)-laser energy coupling based on the initial formed ripple structure, the polarization-dependent geometrical morphology of the LIPSS evolves from a nearly isotropic circular shape to a somewhat elongated elliptical shape. Meanwhile, the controllable anisotropy of the two-dimensional scanned-line widths with different directions is achieved based on a certain pulse delay combined with the scanning speed. This can effectively realize better control over large-area uniform LIPSS formation. As an example, we further show that the large-area LIPSS can be formed with different scanning times under different pulse delays.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Chuss, David T.
2010-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a ba1loon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (CMB). PIPER will measure the CMB polarization at 4 frequencies (l per flight) using a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 by 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the Stokes parameter to which the telescope is sensitive.
Dual-view integral imaging three-dimensional display using polarized glasses.
Wu, Fei; Lv, Guo-Jiao; Deng, Huan; Zhao, Bai-Chuan; Wang, Qiong-Hua
2018-02-20
We propose a dual-view integral imaging (DVII) three-dimensional (3D) display using polarized glasses. The DVII 3D display consists of a display panel, a polarized parallax barrier, a microlens array, and two pairs of polarized glasses. Two kinds of elemental images, which are captured from two different 3D scenes, are alternately arranged on the display panel. The polarized parallax barrier is attached to the display panel and composed of two kinds of units that are also alternately arranged. The polarization directions between adjacent units are perpendicular. The polarization directions of the two pairs of polarized glasses are the same as those of the two kinds of units of the polarized parallax barrier, respectively. The lights emitted from the two kinds of elemental images are modulated by the corresponding polarizer units and microlenses, respectively. Two different 3D images are reconstructed in the viewing zone and separated by using two pairs of polarized glasses. A prototype of the DVII 3D display is developed and two 3D images can be presented simultaneously, verifying the hypothesis.
NASA Astrophysics Data System (ADS)
El-Saba, Aed; Alsharif, Salim; Jagapathi, Rajendarreddy
2011-04-01
Fingerprint recognition is one of the first techniques used for automatically identifying people and today it is still one of the most popular and effective biometric techniques. With this increase in fingerprint biometric uses, issues related to accuracy, security and processing time are major challenges facing the fingerprint recognition systems. Previous work has shown that polarization enhancementencoding of fingerprint patterns increase the accuracy and security of fingerprint systems without burdening the processing time. This is mainly due to the fact that polarization enhancementencoding is inherently a hardware process and does not have detrimental time delay effect on the overall process. Unpolarized images, however, posses a high visual contrast and when fused (without digital enhancement) properly with polarized ones, is shown to increase the recognition accuracy and security of the biometric system without any significant processing time delay.
NASA Astrophysics Data System (ADS)
Yasa, U. G.; Giden, I. H.; Turduev, M.; Kurt, H.
2017-09-01
We present an intrinsic polarization splitting characteristic of low-symmetric photonic crystals (PCs) formed by unit-cells with C 2 rotational symmetry. This behavior emerges from the polarization sensitive self-collimation effect for both transverse-magnetic (TM) and transverse-electric (TE) modes depending on the rotational orientations of the unit-cell elements. Numerical analyzes are performed in both frequency and time domains for different types of square lattice two-fold rotational symmetric PC structures. At incident wavelength of λ = 1550 nm, high polarization extinction ratios with ˜26 dB (for TE polarization) and ˜22 dB (for TM polarization) are obtained with an operating bandwidth of 59 nm. Moreover, fabrication feasibilities of the designed structure are analyzed to evaluate their robustness in terms of the unit-cell orientation: for the selected PC unit-cell composition, corresponding extinction ratios for both polarizations still remain to be over 18 dB for the unit-cell rotation interval of θ = [40°-55°]. Taking all these advantages, two-fold rotationally symmetric PCs could be considered as an essential component in photonic integrated circuits for polarization control of light.
NASA Technical Reports Server (NTRS)
Preisig, Joseph Richard Mark
1988-01-01
A Kalman filter was designed to yield optimal estimates of geophysical parameters from Very Long Baseline Interferometry (VLBI) group delay data. The geophysical parameters are the polar motion components, adjustments to nutation in obliquity and longitude, and a change in the length of day parameter. The VLBI clock (and clock rate) parameters and atmospheric zenith delay parameters are estimated simultaneously. Filter background is explained. The IRIS (International Radio Interferometric Surveying) VLBI data are Kalman filtered. The resulting polar motion estimates are examined. There are polar motion signatures at the times of three large earthquakes occurring in 1984 to 1986: Mexico, 19 September, 1985 (Magnitude M sub s = 8.1); Chile, 3 March, 1985 (M sub s = 7.8); and Taiwan, 14 November, 1986 (M sub s = 7.8). Breaks in polar motion occurring about 20 days after the earthquakes appear to correlate well with the onset of increased regional seismic activity and a return to more normal seismicity (respectively). While the contribution of these three earthquakes to polar motion excitations is small, the cumulative excitation due to earthquakes, or seismic phenomena over a Chandler wobble damping period may be significant. Mechanisms for polar motion excitation due to solid earth phenomena are examined. Excitation functions are computed, but the data spans are too short to draw conclusions based on these data.
A study on crustal shear wave splitting in the western part of the Banda arc-continent collision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syuhada, E-mail: hadda9@gmail.com; Research Centre for Physics - Indonesian Institute of Sciences; Hananto, Nugroho D.
2016-03-11
We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with themore » earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.« less
Huang, Ningfeng; Martínez, Luis Javier; Povinelli, Michelle L
2013-09-09
We demonstrate a system consisting of a two-dimensional photonic crystal slab and two polarizers which has a tunable transmission lineshape. The lineshape can be tuned from a symmetric Lorentzian to a highly asymmetric Fano lineshape by rotating the output polarizer. We use temporal coupled mode theory to explain the measurement results. The theory also predicts tunable phase shift and group delay.
Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique
NASA Astrophysics Data System (ADS)
Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew
2013-05-01
Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.
NASA Technical Reports Server (NTRS)
Trenkle, Timothy; Driggers, Phillip
2011-01-01
The Joint Polar Satellite System (JPSS) is a joint NOAA/NASA mission comprised of a series of polar orbiting weather and climate monitoring satellites which will fly in a sun-synchronous orbit, with a 1330 equatorial crossing time. JPSS resulted from the decision to reconstitute the National Polar-orbiting Operational Environmental Satellite System (NPOESS) into two separate programs, one to be run by the Department of Defense (DOD) and the other by NOAA. This decision was reached in early 2010, after numerous development issues caused a series of unacceptable delays in launching the NPOESS system.
Single-shot polarimetry imaging of multicore fiber.
Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé
2016-05-01
We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.
Characterization of a remote optical element with bi-photons
NASA Astrophysics Data System (ADS)
Puhlmann, D.; Henkel, C.; Heuer, A.; Pieplow, G.; Menzel, R.
2016-02-01
We present a simple setup that exploits the interference of entangled photon pairs. ‘Signal’ photons are sent through a Mach-Zehnder-like interferometer, while ‘idlers’ are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger-Yelin-Englert inequality between contrast and predictability.
Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng
2018-04-30
Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.
A 100-Gb/s noncoherent silicon receiver for PDM-DBPSK/DQPSK signals.
Klamkin, Jonathan; Gambini, Fabrizio; Faralli, Stefano; Malacarne, Antonio; Meloni, Gianluca; Berrettini, Gianluca; Contestabile, Giampiero; Potì, Luca
2014-01-27
An integrated noncoherent silicon receiver for demodulation of 100-Gb/s polarization-division multiplexed differential quadrature phase-shift keying and polarization-division multiplexed differential binary phase-shift keying signals is demonstrated. The receiver consists of a 2D surface grating coupler, four Mach-Zehnder delay interferometers and four germanium balanced photodetectors.
Metal-Ferroelectric-Semiconductor Field-Effect Transistor NAND Gate Switching Time Analysis
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; Macleod, Todd C.; Ho, Fat D.
2006-01-01
Previous research investigated the modeling of a N Wga te constructed of Metal-Ferroelectric- Semiconductor Field-Effect Transistors (MFSFETs) to obtain voltage transfer curves. The NAND gate was modeled using n-channel MFSFETs with positive polarization for the standard CMOS n-channel transistors and n-channel MFSFETs with negative polarization for the standard CMOS p-channel transistors. This paper investigates the MFSFET NAND gate switching time propagation delay, which is one of the other important parameters required to characterize the performance of a logic gate. Initially, the switching time of an inverter circuit was analyzed. The low-to-high and high-to-low propagation time delays were calculated. During the low-to-high transition, the negatively polarized transistor pulls up the output voltage, and during the high-to-low transition, the positively polarized transistor pulls down the output voltage. The MFSFETs were simulated by using a previously developed model which utilized a partitioned ferroelectric layer. Then the switching time of a 2-input NAND gate was analyzed similarly to the inverter gate. Extension of this technique to more complicated logic gates using MFSFETs will be studied.
Ozone Depletion in the Arctic Lower Stratosphere; Timing and Impacts on the Polar Vortex.
NASA Astrophysics Data System (ADS)
Rae, Cameron; Pyle, John
2017-04-01
There a strong link between ozone depletion in the Antarctic lower stratosphere and the strength/duration of the southern hemisphere polar vortex. Ozone depletion arising from enhanced levels of ODS in the lower stratosphere during the last few decades of the 20th century has been accompanied by a delay in the final warming date in the southern hemisphere. The delay in final warming is associated with anomalous tropospheric conditions. The relationship in the Arctic, however, is less clear as the northern hemisphere experiences relatively less intense ozone destruction in the Arctic lower stratosphere and the polar vortex is generally less stable. This study investigates the impacts of imposed lower stratospheric ozone depletion on the evolution of the polar vortex, particularly in the late-spring towards the end of its lifetime. A perpetual-year integration is compared with a series of near-identical seasonal integrations which differ only by an imposed artificial ozone depletion event, occurring a fixed number of days before the polar vortex final warming date each year. Any differences between the seasonal forecasts and perpetual year simulation are due to the timely occurrence of a strong ozone depletion event in the late-spring Arctic polar vortex. This ensemble of seasonal forecasts demonstrates the impacts that a strong ozone depletion event in the Arctic lower stratosphere will have on the evolution of the polar vortex, and highlights tropospheric impacts associated with this phenomenon.
Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota
2015-10-30
The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.
Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota
2015-01-01
The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax. PMID:26529015
NASA Astrophysics Data System (ADS)
Guo, Mengchao; Zhou, Kan; Wang, Xiaokun; Zhuang, Haiyan; Tang, Dongming; Zhang, Baoshan; Yang, Yi
2018-04-01
In this paper, the impact of coupling between unit cells on the performance of linear-to-circular polarization conversion metamaterial with half transmission and half reflection is analyzed by changing the distance between the unit cells. An equivalent electrical circuit model is then built to explain it based on the analysis. The simulated results show that, when the distance between the unit cells is 23 mm, this metamaterial converts half of the incident linearly-polarized wave into reflected left-hand circularly-polarized wave and converts the other half of it into transmitted left-hand circularly-polarized wave at 4.4 GHz; when the distance is 28 mm, this metamaterial reflects all of the incident linearly-polarized wave at 4.4 GHz; and when the distance is 32 mm, this metamaterial converts half of the incident linearly-polarized wave into reflected right-hand circularly-polarized wave and converts the other half of it into transmitted right-hand circularly-polarized wave at 4.4 GHz. The tunability is realized successfully. The analysis shows that the changes of coupling between unit cells lead to the changes of performance of this metamaterial. The coupling between the unit cells is then considered when building the equivalent electrical circuit model. The built equivalent electrical circuit model can be used to perfectly explain the simulated results, which confirms the validity of it. It can also give help to the design of tunable polarization conversion metamaterials.
NASA Astrophysics Data System (ADS)
Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.
2006-06-01
We describe the design and construction of a Variable-delay Polarization Modulator (VPM) that has been built and integrated into the Hertz ground-based, submillimeter polarimeter at the SMTO on Mt. Graham in Arizona. VPMs allow polarization modulation by controlling the phase difference between two linear, orthogonal polarizations. This is accomplished by utilizing a grid-mirror pair with a controlled separation. The size of the gap between the mirror and the polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. The necessity of controlling the phase of the radiation across this device drives the two novel features of the VPM. First, a novel, kinematic, flexure is employed that passively maintains the parallelism of the mirror and the grid to 1.5 μm over a 150 mm diameter, with a 400 μm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. Second, the VPM uses a grid flattener that highly constrains the planarity of the polarizing grid. In doing so, the phase error across the device is minimized. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.
Angular displacement measuring device
NASA Technical Reports Server (NTRS)
Seegmiller, H. Lee B. (Inventor)
1992-01-01
A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.
Arnab, Banerjee; Amitabh, Krishna
2011-02-10
The aim of this study was to compare the changes in concentration of glucose and glucose transporters (GLUTs) in the utero-embryonic unit, consisting of decidua, trophoblast and embryo, during delayed and non-delayed periods to understand the possible cause of delayed embryonic development in Cynopterus sphinx. The results showed a significantly decreased concentration of glucose in the utero-embryonic unit due to decline in the expression of insulin receptor (IR) and GLUT 3, 4 and 8 proteins in the utero-embryonic unit during delayed period. The in vitro study showed suppressive effect of insulin on expression of GLUTs 4 and 8 in the utero-embryonic unit and a significant positive correlation between the decreased amount of glucose consumed by the utero-embryonic unit and decreased expression of GLUTs 4 (r=0.99; p<0.05) and 8 (r=0.98; p<0.05). The in vivo study showed expression of IR and GLUT 4 proteins in adipose tissue during November suggesting increased transport of glucose to adipose tissue for adipogenesis. This study showed increased expression of HSL and OCTN2 and increased availability of l-carnitine to utero-embryonic unit suggesting increased transport of fatty acid to utero-embryonic unit during the period of delayed embryonic development. Hence it appears that due to increased transport of glucose for adipogenesis prior to winter, glucose utilization by utero-embryonic unit declines and this may be responsible for delayed embryonic development in C. sphinx. Increased supply of fatty acid to the delayed embryo may be responsible for its survival under low glucose condition but unable to promote embryonic development in C. sphinx. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen
2017-09-01
With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.
Multiple pass laser amplifier system
Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent
1977-01-01
A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.
Rogers, A E; Cappallo, R J; Hinteregger, H F; Levine, J I; Nesman, E F; Webber, J C; Whitney, A R; Clark, T A; Ma, C; Ryan, J; Corey, B E; Counselman, C C; Herring, T A; Shapiro, I I; Knight, C A; Shaffer, D B; Vandenberg, N R; Lacasse, R; Mauzy, R; Rayhrer, B; Schupler, B R; Pigg, J C
1983-01-07
The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.
Myosin-X functions in polarized epithelial cells
Liu, Katy C.; Jacobs, Damon T.; Dunn, Brian D.; Fanning, Alan S.; Cheney, Richard E.
2012-01-01
Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of filopodia and has critical functions in filopodia. Although Myo10 has been studied primarily in nonpolarized, fibroblast-like cells, Myo10 is expressed in vivo in many epithelia-rich tissues, such as kidney. In this study, we investigate the localization and functions of Myo10 in polarized epithelial cells, using Madin-Darby canine kidney II cells as a model system. Calcium-switch experiments demonstrate that, during junction assembly, green fluorescent protein–Myo10 localizes to lateral membrane cell–cell contacts and to filopodia-like structures imaged by total internal reflection fluorescence on the basal surface. Knockdown of Myo10 leads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation, as indicated by a delay in the development of peak transepithelial electrical resistance (TER). Although Myo10 knockdown cells eventually mature into monolayers with normal TER, these monolayers do exhibit increased paracellular permeability to fluorescent dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and in three-dimensional culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together these results reveal that Myo10 functions in polarized epithelial cells in junction formation, regulation of paracellular permeability, and epithelial morphogenesis. PMID:22419816
Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages
Canton, Johnathan; Khezri, Rojyar; Glogauer, Michael; Grinstein, Sergio
2014-01-01
Macrophages respond to changes in environmental stimuli by assuming distinct functional phenotypes, a phenomenon referred to as macrophage polarization. We generated classically (M1) and alternatively (M2) polarized macrophages—two extremes of the polarization spectrum—to compare the properties of their phagosomes. Specifically, we analyzed the regulation of the luminal pH after particle engulfment. The phagosomes of M1 macrophages had a similar buffering power and proton (equivalent) leakage permeability but significantly reduced proton-pumping activity compared with M2 phagosomes. As a result, only the latter underwent a rapid and profound acidification. By contrast, M1 phagosomes displayed alkaline pH oscillations, which were caused by proton consumption upon dismutation of superoxide, followed by activation of a voltage- and Zn2+-sensitive permeation pathway, likely HV1 channels. The paucity of V-ATPases in M1 phagosomes was associated with, and likely caused by, delayed fusion with late endosomes and lysosomes. The delayed kinetics of maturation was, in turn, promoted by the failure of M1 phagosomes to acidify. Thus, in M1 cells, elimination of pathogens through deployment of the microbicidal NADPH oxidase is given priority at the expense of delayed acidification. By contrast, M2 phagosomes proceed to acidify immediately in order to clear apoptotic bodies rapidly and effectively. PMID:25165138
Two-photon interference of polarization-entangled photons in a Franson interferometer.
Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb
2017-07-18
We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.
Fairn, Gregory D; Hermansson, Martin; Somerharju, Pentti; Grinstein, Sergio
2011-10-02
Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine--and presumably its polarization--are required for optimal Cdc42 targeting and activation during cell division and mating.
DOT National Transportation Integrated Search
2010-10-01
Flight delay is a serious and widespread problem in the United States. Increasing flight delays place a significant strain on the US air travel system and cost airlines, passengers, and society at many billions of dollars each year. While a number of...
The polar cusp: Cluster observations and simulations
NASA Astrophysics Data System (ADS)
Escoubet, C. Philippe; Berchem, Jean; Pitout, Frederic; Richard, Robert; Trattner, Karlheinz; Grison, Benjamin; Taylor, Matthew; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew N.
The polar cusp, together with the magnetopause, are the magnetospheric regions in direct contact with the shocked solar wind flowing continuously from the Sun. Therefore any changes in the solar wind plasma reaching the magnetopause induce changes in the polar cusp with a delay of a few minutes to a few tens of minutes. For instance a change of the interplanetary magnetic field (IMF) direction from South to North will displace the polar cusp poleward and at the same time will change the injection of ions from the subsolar magnetopause to the magnetotail lobes. In the mid and low-altitude cusp a spacecraft will then observe a reversal of the dispersion in energy of the ions. We will use Cluster string of pearl configuration in the mid-altitude polar cusp to investigate the temporal variations of ion injections in the polar cusp. In the period from July to September, the Cluster spacecraft follow each other in the mid-altitude cusp with a delay of few minutes up to one hour. A few examples of cusp crossings will be presented to illustrate the influence of solar wind changes in the polar cusp. We will show that a sudden change in the IMF direction from South to North produces a double cusp crossing. By opposition, a change of the IMF from North to South produces a temporal injection on the equatorward side of the cusp and an erosion of the magnetosphere. Finally, we will show that when the interplanetary conditions are stable with the IMF pointing Northward or Southward for more than 10 min the polar cusp ion dispersion stays constant. MHD and large-scale particle simulations will also be used to complement the Cluster data.
Thorman, A; Michael, C; De Bock, M; Howard, J
2016-07-01
A motional Stark effect polarimeter insensitive to polarized broadband light is proposed. Partially polarized background light is anticipated to be a significant source of systematic error for the ITER polarimeter. The proposed polarimeter is based on the standard dual photoelastic modulator approach, but with the introduction of a birefringent delay plate, it generates a sinusoidal spectral filter instead of the usual narrowband filter. The period of the filter is chosen to match the spacing of the orthogonally polarized Stark effect components, thereby increasing the effective signal level, but resulting in the destructive interference of the broadband polarized light. The theoretical response of the system to an ITER like spectrum is calculated and the broadband polarization tolerance is verified experimentally.
First Polarized Power Spectra from HERA-19 Commissioning Data: Comparison with Simulations
NASA Astrophysics Data System (ADS)
Igarashi, Amy; Chichura, Paul; Fox Fortino, Austin; Kohn, Saul; Aguirre, James; HERA Collaboration, CHAMP
2018-01-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio telescope whose primary goal is the detection of redshifted 21-cm line radiation produced from the spin-flip transition of HI during the Epoch of Reionization (EoR). HERA is currently under construction in South Africa, and will eventually be an array of 350 14-m antennas. HERA aims for a statistical detection of the power spectrum of this emission, using the so-called delay spectrum technique (Parsons et al 2012). We examine a first season of commissioning data from the first 19 elements (HERA-19) to characterize Galactic and extragalactic foregrounds. We compare the delay spectrum for HERA-19 constructed from data to those constructed from simulations done using a detailed instrument electromagnetic model and using the unpolarized Global Sky Model (GSM2008). We compare the data and simulations to explore the effects of Stokes-I to Q and U leakage, and further examine whether statistical models of polarization match the observed polarized power spectra.
Assessment of the Breakup of the Antarctic Polar Vortex in Two New Chemistry-Climate Models
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.; Newman, P. A.; Oman, L. D.; Li, F.; Morgenstern, O.; Braesicke, P.; Pyle, J. A.
2010-01-01
Successful simulation of the breakup of the Antarctic polar vortex depends on the representation of tropospheric stationary waves at Southern Hemisphere middle latitudes. This paper assesses the vortex breakup in two new chemistry-climate models (CCMs). The stratospheric version of the UK Chemistry and Aerosols model is able to reproduce the observed timing of the vortex breakup. Version 2 of the Goddard Earth Observing System (GEOS V2) model is typical of CCMs in that the Antarctic polar vortex breaks up too late; at 10 hPa, the mean transition to easterlies at 60 S is delayed by 12-13 days as compared with the ERA-40 and National Centers for Environmental Prediction reanalyses. The two models' skill in simulating planetary wave driving during the October-November period accounts for differences in their simulation of the vortex breakup, with GEOS V2 unable to simulate the magnitude and tilt of geopotential height anomalies in the troposphere and thus underestimating the wave driving. In the GEOS V2 CCM the delayed breakup of the Antarctic vortex biases polar temperatures and trace gas distributions in the upper stratosphere in November and December.
Birefringence in a chiral medium, via temporal cloaking
NASA Astrophysics Data System (ADS)
Khan, Humayun; Haneef, Muhammad
2017-05-01
This paper reports theoretical investigation of birefringence in a chiral medium for the creation of temporal cloaking. The chiral medium splits the input probe beam into left/right circular polarized beams. These left/right circular polarized beams are then controlled and modified within the chiral medium. The left circular polarized beam delays by 24 ns whereas the right circular polarized beam advances by -23 ns at a control field of rabbi frequency 6γ . This opens a 47 ns time gap for temporal cloaking to hide information without noise corruption and energy loss. The results have potential applications in communication devices for secure propagation of light pulse.
NASA Technical Reports Server (NTRS)
Miller, N. J.; Chuss, D. T.; Marriage, T. A.; Wollack, E. J.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Fixsen, D. J.; Harrington, K.;
2016-01-01
Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/ f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r= 0.01. Indeed, r less than 0.01 is achievable with commensurately improved characterizations and controls.
Westfall, Jacob; Van Boven, Leaf; Chambers, John R; Judd, Charles M
2015-03-01
An important component of political polarization in the United States is the degree to which ordinary people perceive political polarization. We used over 30 years of national survey data from the American National Election Study to examine how the public perceives political polarization between the Democratic and Republican parties and between Democratic and Republican presidential candidates. People in the United States consistently overestimate polarization between the attitudes of Democrats and Republicans. People who perceive the greatest political polarization are most likely to report having been politically active, including voting, trying to sway others' political beliefs, and making campaign contributions. We present a 3-factor framework to understand ordinary people's perceptions of political polarization. We suggest that people perceive greater political polarization when they (a) estimate the attitudes of those categorized as being in the "opposing group"; (b) identify strongly as either Democrat or Republican; and (c) hold relatively extreme partisan attitudes-particularly when those partisan attitudes align with their own partisan political identity. These patterns of polarization perception occur among both Democrats and Republicans. © The Author(s) 2015.
Tanizawa, Ken; Suzuki, Keijiro; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi
2017-05-15
We demonstrate a fully integrated polarization-diversity 8 × 8 thermo-optic Si-wire switch that uses only a single path-independent insertion loss (PILOSS) switch matrix. All input/output ports of the PILOSS switch matrix are uniquely assigned for polarization diversity without switch duplication. To integrate polarization splitter-rotators on a chip, we propose a compact path-length-equalized polarization-diversity switch configuration. Polarization-dependent loss (PDL) and differential group delay (DGD) are minimized. The 8 × 8 switch is fabricated by the CMOS-compatible fabrication process on 300-mm diameter wafer and additional etching of upper cladding after dicing. The chip size is 7 × 10.5 mm 2 . A PDL of 2 dB and a DGD of 1.5 ps are achieved. The crosstalk in the worst-case scenario is -20 dB in the full C-band.
The effects of the framing of time on delay discounting.
DeHart, William Brady; Odum, Amy L
2015-01-01
We examined the effects of the framing of time on delay discounting. Delay discounting is the process by which delayed outcomes are devalued as a function of time. Time in a titrating delay discounting task is often framed in calendar units (e.g., as 1 week, 1 month, etc.). When time is framed as a specific date, delayed outcomes are discounted less compared to the calendar format. Other forms of framing time; however, have not been explored. All participants completed a titrating calendar unit delay-discounting task for money. Participants were also assigned to one of two delay discounting tasks: time as dates (e.g., June 1st, 2015) or time in units of days (e.g., 5000 days), using the same delay distribution as the calendar delay-discounting task. Time framed as dates resulted in less discounting compared to the calendar method, whereas time framed as days resulted in greater discounting compared to the calendar method. The hyperboloid model fit best compared to the hyperbola and exponential models. How time is framed may alter how participants attend to the delays as well as how the delayed outcome is valued. Altering how time is framed may serve to improve adherence to goals with delayed outcomes. © Society for the Experimental Analysis of Behavior.
Influence of incident angle on the decoding in laser polarization encoding guidance
NASA Astrophysics Data System (ADS)
Zhou, Muchun; Chen, Yanru; Zhao, Qi; Xin, Yu; Wen, Hongyuan
2009-07-01
Dynamic detection of polarization states is very important for laser polarization coding guidance systems. In this paper, a set of dynamic polarization decoding and detection system used in laser polarization coding guidance was designed. Detection process of the normal incident polarized light is analyzed with Jones Matrix; the system can effectively detect changes in polarization. Influence of non-normal incident light on performance of polarization decoding and detection system is studied; analysis showed that changes in incident angle will have a negative impact on measure results, the non-normal incident influence is mainly caused by second-order birefringence and polarization sensitivity effect generated in the phase delay and beam splitter prism. Combined with Fresnel formula, decoding errors of linearly polarized light, elliptically polarized light and circularly polarized light with different incident angles into the detector are calculated respectively, the results show that the decoding errors increase with increase of incident angle. Decoding errors have relations with geometry parameters, material refractive index of wave plate, polarization beam splitting prism. Decoding error can be reduced by using thin low-order wave-plate. Simulation of detection of polarized light with different incident angle confirmed the corresponding conclusions.
McAlpine, D; Jiang, D; Palmer, A R
1996-08-01
Monaural and binaural response properties of single units in the inferior colliculus (IC) of the guinea pig were investigated. Neurones were classified according to the effect of monaural stimulation of either ear alone and the effect of binaural stimulation. The majority (309/334) of IC units were excited (E) by stimulation of the contralateral ear, of which 41% (127/309) were also excited by monaural ipsilateral stimulation (EE), and the remainder (182/309) were unresponsive to monaural ipsilateral stimulation (EO). For units with best frequencies (BF) up to 3 kHz, similar proportions of EE and EO units were observed. Above 3 kHz, however, significantly more EO than EE units were observed. Units were also classified as either facilitated (F), suppressed (S), or unaffected (O) by binaural stimulation. More EO than EE units were suppressed or unaffected by binaural stimulation, and more EE than EO units were facilitated. There were more EO/S units above 1.5 kHz than below. Binaural beats were used to examine the interaural delay sensitivity of low-BF (BF < 1.5 kHz) units. The distributions of preferred interaural phases and, by extension, interaural delays, resembled those seen in other species, and those obtained using static interaural delays in the IC of the guinea pig. Units with best phase (BP) angles closer to zero generally showed binaural facilitation, whilst those with larger BPs generally showed binaural suppression. The classification of units based upon binaural stimulation with BF tones was consistent with their interaural-delay sensitivity. Characteristic delays (CD) were examined for 96 low-BF units. A clear relationship between BF and CD was observed. CDs of units with very low BFs (< 200 Hz) were long and positive, becoming progressively shorter as BF increased until, for units with BFs between 400 and 800 Hz, the majority of CDs were negative. Above 800 Hz, both positive and negative CDs were observed. A relationship between CD and characteristic phase (CP) was also observed, with CPs increasing in value as CDs became more negative. These results demonstrate that binaural processing in the guinea pig at low frequencies is similar to that reported in all other species studied. However, the dependence of CD on BF would suggest that the delay line system that sets up the interaural-delay sensitivity in the lower brainstem varies across frequency as well as within each frequency band.
Höhm, Sandra; Herzlieb, Marcel; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn
2015-01-12
Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.
Depth perception based 3D holograms enabled with polarization-independent metasurfaces.
Deng, Juan; Li, Zile; Zheng, Guoxing; Tao, Jin; Dai, Qi; Deng, Liangui; He, Ping'an; Deng, Qiling; Mao, Qingzhou
2018-04-30
Metasurfaces consist of dielectric nanobrick arrays with different dimensions in the long and short axes can be used to generate different phase delays, predicting a new way to manipulate an incident beam in the two orthogonal directions separately. Here we demonstrate the concept of depth perception based three-dimensional (3D) holograms with polarization-independent metasurfaces. 4-step dielectric metasurfaces-based fan-out optical elements and holograms operating at 658 nm were designed and simulated. Two different holographic images with high fidelity were generated at the same plane in the far field for different polarization states. One can observe the 3D effect of target objects with polarized glasses. With the advantages of ultracompactness, flexibility and replicability, the polarization-independent metasurfaces open up depth perception based stereoscopic imaging in a holographic way.
Allan, David S; Scrivens, Nicholas; Lawless, Tiffany; Mostert, Karen; Oppenheimer, Lawrence; Walker, Mark; Petraszko, Tanya; Elmoazzen, Heidi
2016-03-01
Public banking of umbilical cord blood units (CBUs) containing higher numbers of cells ensures timely engraftment after transplantation for increasing numbers of patients. Delayed clamping of the umbilical cord after birth may benefit some infants by preventing iron deficiency. Implications of delayed cord clamping for public cord blood banking remains unclear. CBUs collected by Canadian Blood Services at one collection site between November 1, 2014, and March 17, 2015, were analyzed. The delay in cord clamping after birth was timed and classified as "no delay," 20 to 60 seconds, more than 60 seconds, or more than 120 seconds. Of 367 collections, 100 reported no delay in clamping while clamping was delayed by 20 to 60 seconds (n = 69), more than 60 seconds (n = 98), or more than 120 seconds (n = 100) in the remaining cases. The mean volume and total nucleated cells (TNCs) in units with no delay in clamping were significantly greater than mean volumes for all categories of delayed clamping (Tukey's test, p < 0.05 for each comparison). The proportion of units with more than 1.5 × 10(9) TNCs was significantly reduced when clamping was delayed (p = 5.5 × 10(-8) ). The difference was most marked for cords that were clamped more than 120 seconds after delivery (6.2% compared with 39%). Delayed cord clamping greatly diminishes the volume and TNC count of units collected for a public cord blood bank. Creating an inventory of CBUs with high TNC content may take more time than expected. © 2015 AABB.
Angular dependence of EWS time delay for photoionization of @Xe
NASA Astrophysics Data System (ADS)
Mandal, Ankur; Deshmukh, Pranawa; Kheifets, Anatoli; Dolmatov, Valeriy; Manson, Steven
2017-04-01
Interference between photoionization channels leads to angular dependence in photoionization time delay. Angular dependence is found to be a common effect for two-photon absorption experiments very recently. The effect of confinement on the time delay where each partial wave contributions to the ionization are studied. In this work we report angular dependence and confinement effects on Eisenbud-Wigner-Smith (EWS) time delay in atomic photoionization. Using and we computed the EWS time delay for free and confined Xe atom for photoionization from inner 4d3/2 and 4d5/2 and outer 5p1/2 and 5p3/2 subshells at various angles. The calculated EWS time delay is few tens to few hundreds of attoseconds (10-18 second). The photoionization time delay for @Xe follows that in the free Xe atom on which the confinement oscillations are built. The present work reveals the effect of confinement on the photoionization time delay at different angles between photoelectron ejection and the photon polarization.
Method and Apparatus for Improved Spatial Light Modulation
NASA Technical Reports Server (NTRS)
Soutar, Colin (Inventor); Juday, Richard D. (Inventor)
2000-01-01
A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain the optical processing objective.
Method and Apparatus for Improved Spatial Light Modulation
NASA Technical Reports Server (NTRS)
Colin, Soutar (Inventor); Juday, Richard D. (Inventor)
1999-01-01
A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain die optical processing objective.
Employing TDMA Protocol in Neural Nanonetworks in Case of Neuron Specific Faults.
Tezcan, Hakan; Oktug, Sema F; Kök, Fatma Neşe
2015-09-01
Many neurodegenerative diseases arise from the malfunctioning neurons in the pathway where the signal is carried. In this paper, we propose neuron specific TDMA/multiplexing and demultiplexing mechanisms to convey the spikes of a receptor neuron over a neighboring path in case of an irreversible path fault existing in its original path. The multiplexing mechanism depends on neural delay box (NDB) which is composed of a relay unit and a buffering unit. The relay unit can be realized as a nanoelectronic device. The buffering unit can be implemented either via neural delay lines as employed in optical switching systems or via nanoelectronic delay lines, i.e., delay flip flops. Demultiplexing is realized by a demultiplexer unit according to the time slot assignment information. Besides, we propose the use of neural interfaces in the NDBs and the demultiplexer unit for detecting and stimulating the generation of spikes. The objective of the proposed mechanisms is to substitute a malfunctioning path, increase the number of spikes delivered and correctly deliver the spikes to the intended part of the somatosensory cortex. The results demonstrate that significant performance improvement on the successively delivered number of spikes is achievable when delay lines are employed as neural buffers in NDBs.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Astrophysics Data System (ADS)
Gandilo, Natalie; Ade, Peter; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Alan J.; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel H.; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; tucker, carole; Wollack, Edward
2017-01-01
We present an overview of PIPER, the Primordial Inflation Polarization Explorer. PIPER is a balloon-borne telescope designed to map the large scale polarization of the Cosmic Microwave Background as well as the polarized emission from galactic dust at 200, 270, 350, and 600 GHz, with 21, 15, 14, and 14 arcminutes of angular resolution respectively. PIPER uses twin telescopes with Variable-delay Polarization Modulators to simultaneously map Stokes I, Q, U and V. Cold optics and the lack of a warm window allow the instrument to achieve background limited sensitivity. Over the course of 8 conventional balloon flights from the Northern and Southern hemisphere, PIPER will map 85% of the sky, measuring the B-mode polarization spectrum from the reionization bump to l~300, and placing an upper limit on the tensor-to-scalar ratio of r<0.007. PIPER's first science flight will be in June 2017 from Palestine, Texas.
Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch.
Tanizawa, Ken; Suzuki, Keijiro; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi
2016-04-04
We demonstrate the compact polarization diversity based on the bidirectional full-port use of a path-independent-insertion-loss (PILOSS) optical switch. A polarization-diversity 4 × 4 strictly non-blocking optical switch is developed using a single thermooptic PILOSS Si-wire switch and fiber-based polarization beam splitters (PBSs) and combiners (PBCs). We measure characteristics of the switch and confirm that the proposed configuration demonstrates the performance in the insertion loss, polarization-dependent loss (PDL), and differential group delay (DGD) comparable with that of a conventional polarization-diversity 4 × 4 PILOSS switch using double switch elements. On the other hand, higher crosstalk is observed. The crosstalk increase is associated with the backward crosstalk at a waveguide intersection based on a directional coupler. The effect of the backward crosstalk on the total crosstalk is estimated, and future prospects are discussed.
Sofikitis, Dimitris; Rubio-Lago, Luis; Martin, Marion R; Ankeny Brown, Davida J; Bartlett, Nathaniel C-M; Alexander, Andrew J; Zare, Richard N; Rakitzis, T Peter
2007-10-14
H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the (35)Cl((2)P(32)) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The (35)Cl((2)P(32)) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H(35)Cl(v=2,J=1,M=0) molecule to the (35)Cl((2)P(32)) nuclear spin [which is conserved during the photodissociation and thus contributes to the total (35)Cl((2)P(32)) photofragment atomic polarization] and (2) the alignment of the (35)Cl((2)P(32)) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the (35)Cl((2)P(32)) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state (35)Cl((2)P(32)) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, N. J.; Marriage, T. A.; Appel, J. W.
2016-02-20
Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residualmore » modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.« less
Investigation of the polarization state of dual APPLE-II undulators.
Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal
2016-01-01
The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.
Landeiro, F; Leal, J; Gray, A M
2016-02-01
Delayed discharges represent an inefficient use of acute hospital beds. Social isolation and referral to a public-funded rehabilitation unit were significant predictors of delayed discharges while admission from an institution was a protective factor for older hip fracture patients. Preventing delays could save between 11.2 and 30.7 % of total hospital costs for this patient group. Delayed discharges of older patients from acute care hospitals are a major challenge for administrative, humanitarian, and economic reasons. At the same time, older people are particularly vulnerable to social isolation which has a detrimental effect on their health and well-being with cost implications for health and social care services. The purpose of the present study was to determine the impact and costs of social isolation on delayed hospital discharge. A prospective study of 278 consecutive patients aged 75 or older with hip fracture admitted, as an emergency, to the Orthopaedics Department of Hospital Universitário de Santa Maria, Portugal, was conducted. A logistic regression model was used to examine the impact of relevant covariates on delayed discharges, and a negative binomial regression model was used to examine the main drivers of days of delayed discharges. Costs of delayed discharges were estimated using unit costs from national databases. Mean age at admission was 85.5 years and mean length of stay was 13.1 days per patient. Sixty-two (22.3 %) patients had delayed discharges, resulting in 419 bed days lost (11.5 % of the total length of stay). Being isolated or at a high risk of social isolation, measured with the Lubben social network scale, was significantly associated with delayed discharges (odds ratio (OR) 3.5) as was being referred to a public-funded rehabilitation unit (OR 7.6). These two variables also increased the number of days of delayed discharges (2.6 and 4.9 extra days, respectively, holding all else constant). Patients who were admitted from an institution were less likely to have delayed discharges (OR 0.2) with 5.5 fewer days of delay. Total costs of delayed discharges were between 11.2 and 30.7 % of total costs (€2352 and €9317 per patient with delayed discharge) conditional on whether waiting costs for placement in public-funded rehabilitation unit were included. High risk of social isolation, social isolation and referral to public-funded rehabilitation units increase delays in patients' discharges from acute care hospitals.
NASA Astrophysics Data System (ADS)
Feng, Shih-Wei; Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen
2015-07-01
Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw; Liao, Po-Hsun; Leung, Benjamin
2015-07-28
Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantagesmore » of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.« less
ArfB links protein lipidation and endocytosis to polarized growth of Aspergillus nidulans
Lee, Soo Chan
2008-01-01
Aspergillus nidulans undergoes polarized hyphal growth during the majority of its life cycle. Regulatory mechanisms for hyphal polarity have been intensively investigated in a variety of filamentous fungi. Two important cellular processes, which have received recent attention, include protein myristoylation and endocytosis. It is clear that protein myristoylation is essential for polarity establishment because germinating A. nidulans conidia lost polarity in the presence of cerulenin, a lipid metabolism inhibitor and in an N-myristoyl transferase mutant background. Only 41 predicted proteins encoded by A. nidulans posses an N-myristoylation motif, one of which is ADP ribosylation factor B (ArfB). Disruption of ArfB leads to failure of polarity establishment and maintenance during early morphogenesis and in a delay in endocytosis. Therefore, ArfB connects N-myristoylation and endocytosis to polarized growth. Exocytotic vesicle trafficking through the Spitzenkörper may also require Arf proteins in their role in vesicle formation. Taken together, ArfB is one of the important key components for the fungal hyphal growth. PMID:19704790
Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)
2015-11-12
polarization control and the CV state and the LO state are separated at a polarizing beam splitter . The CV state is delayed relative to the LO state, and... splitter or loss imperfections. We have identified a number of risks associated with implementing this design . The two most critical risks are: • The...Contractor Address: 10 Moulton Street, Cambridge, MA 02138 Title of the Project: Seaworthy Quantum Key Distribution Design and Validation (SEAKEY
Galileo radio science investigations
NASA Technical Reports Server (NTRS)
Howard, H. T.; Eshleman, V. R.; Hinson, D. P.; Kliore, A. J.; Lindal, G. F.; Woo, R.; Bird, M. K.; Volland, H.; Edenhoffer, P.; Paetzold, M.
1992-01-01
Galileo radio-propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements can be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system provides linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. A highly-stable, dual-frequency, spacecraft radio system is developed that is suitable for simultaneous measurements of all the parameters normally attributed to radio waves.
Liu, Huijie; Li, Nianqiang; Zhao, Qingchun
2015-05-10
Optical chaos generated by chaotic lasers has been widely used in several important applications, such as chaos-based communications and high-speed random-number generators. However, these applications are susceptible to degradation by the presence of time-delay (TD) signature identified from the chaotic output. Here we propose to achieve the concealment of TD signature, along with the enhancement of chaos bandwidth, in three-cascaded vertical-cavity surface-emitting lasers (VCSELs). The cascaded system is composed of an external-cavity master VCSEL, a solitary intermediate VCSEL, and a solitary slave VCSEL. Through mapping the evolutions of TD signature and chaos bandwidth in the parameter space of the injection strength and frequency detuning, photonic generation of polarization-resolved wideband chaos with TD concealment is numerically demonstrated for wide regions of the injection parameters.
Borgese, Michele; Costa, Filippo; Genovesi, Simone; Monorchio, Agostino; Manara, Giuliano
2018-05-16
An ultra-wideband linear polarization converter based on a reflecting metasurface is presented. The polarizer is composed by a periodic arrangement of miniaturized metallic elements printed on a grounded dielectric substrate. In order to achieve broadband polarization converting properties, the metasurface is optimized by employing a genetic algorithm (GA) which imposes the minimization of the amplitude of the co-polar reflection coefficient over a wide frequency band. The enhanced angular stability of the polarization converter is due to the miniaturized unit cell which is obtained by imposing the maximum periodicity of the metasurface in the GA optimization process. The pixelated polarization converter obtained by the GA exhibits a relative bandwidth of 102% working from 8.12 GHz to 25.16 GHz. The analysis of the surface current distribution of the metasurface led to a methodology for refining the optimized GA solution based on the sequential removal of pixels of the unit cell on which surface currents are not excited. The relative bandwidth of the refined polarizer is extended up to 117.8% with a unit cell periodicity of 0.46 mm, corresponding to λ/20 at the maximum operating frequency. The performance of the proposed ultra-wideband polarization metasurface has been confirmed through full-wave simulations and measurements.
ARI Environmental, Inc. (ARI) was retained by Houston Refining LP (HRO) to conduct an emission test program at their refinery located in Houston, Texas. The testing was conducted on on the 736 Delayed Coking Unit (DCU) in response to EPA's ICR.
Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun
2015-07-23
We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves.
Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun
2015-01-01
We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves. PMID:26202495
Optical proposals for controlled delayed-choice experiment based on weak cross-Kerr nonlinearities
NASA Astrophysics Data System (ADS)
Dong, Li; Lin, Yan-Fang; Li, Qing-Yang; Xiu, Xiao-Ming; Dong, Hai-Kuan; Gao, Ya-Jun
2017-05-01
Employing polarization modes of a photon, we propose two theoretical proposals to exhibit the wave-particle duality of the photon with the assistance of weak cross-Kerr nonlinearities. The first proposal is a classical controlled delayed-choice experiment (that is, Wheeler's delayed-choice experiment), where we can observe selectively wave property or particle property of the photon relying on the experimenter's selection, whereas the second proposal is a quantum controlled delayed-choice experiment, by which the mixture phenomenon of a wave and a particle will be exhibited. Both of them can be realized with near-unity probability and embody the charming characteristics of quantum mechanics. The employment of the mature techniques and simple operations (e.g., Homodyne measurement, classical feed forward, and single-photon transformations) provides the feasibility of the delayed-choice experiment proposals presented here.
Chasma Boreale in the North Polar Region
NASA Technical Reports Server (NTRS)
2006-01-01
This images shows a Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) full-resolution 'targeted image' of the edge of Mars' north polar cap. The region in the image, Chasma Boreale, is a valley several kilometers or miles deep that cuts about 400 kilometers (about 250 miles) into the edge of the cap. This image was acquired at 0851 UTC (4:51 a.m. EDT) on Oct. 1, 2006, near 84.6 degrees north latitude, 3.6 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image the spatial resolution is as good as 18 meters (60 feet) per pixel. The image was taken in 544 colors covering wavelengths of 0.36 to 3.92 micrometers. Two renderings of the data are shown here, both draped over topography without vertical exaggeration, and then viewed from a perspective diagonally above the site. The top view is an approximately true-color representation. The bottom view, constructed from infrared wavelengths, shows strength of the spectral signature of ice. Brighter areas are rich in ice, and dark areas have little ice. The polar cap has long been recognized to contain layers composed of dust and ice, and hence has been named the polar layered deposit. This sits atop an underlying 'basal unit.' The upper part of the basal unit is dark at visible wavelengths and steeply sloped, whereas the lower part of the basal unit is brighter, redder, and layered like the polar layered deposits. The chasma floor is cratered, and in the foreground it is covered by dunes that are outliers of a north polar sand sea that surrounds the polar cap. The polar layered deposits and the basal unit form a steeply sloping scarp about 1.1 kilometers (0.7 miles) high. CRISM's image of this region shows a number of previously unrecognized characteristics of the polar layered deposits and the basal unit. First, the ice-rich polar layered deposits exhibit coherent banding both at visible and infrared wavelengths. This banding shows a history of differences in the abundance of dust that accumulated in polar ice, differences in ice grain size, or both. Second, both parts of the basal unit are depleted in ice, except for triangle-shaped regions on the side of the scarp. Third, the spectral properties of the brighter, layered lower basal unit resemble those of the polar layered deposits. In contrast, the upper basal unit is distinct from both of them. Finally, spectral properties of the foreground dunes closely resemble those of the darkest layers within the upper basal unit, and may be debris from it. CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter mission for the NASA Science Mission Directorate. Lockheed Martin Space Systems, Denver, is the prime contractor and built the spacecraft.Wang, Jindong; Qin, Xiaojuan; Jiang, Yinzhu; Wang, Xiaojing; Chen, Liwei; Zhao, Feng; Wei, Zhengjun; Zhang, Zhiming
2016-04-18
A proof-of-principle demonstration of a one-way polarization encoding quantum key distribution (QKD) system is demonstrated. This approach can automatically compensate for birefringence and phase drift. This is achieved by constructing intrinsically stable polarization-modulated units (PMUs) to perform the encoding and decoding, which can be used with four-state protocol, six-state protocol, and the measurement-device-independent (MDI) scheme. A polarization extinction ratio of about 30 dB was maintained for several hours over a 50 km optical fiber without any adjustments to our setup, which evidences its potential for use in practical applications.
1983-04-11
w - )u - v/T2’ -wKE (2) = -(w + 1)/T + vWE C3) aE + I aE 2_wnpv (4) az cat c where u,v,w are the Bloch components of the pseudo polarization vector , E...The initiation should not be inserted as a homogeneous tipping of all the individual polarization vectors phased to emit a plane wave in the forward...tipping angle. Effects of Fresnel number and of the radial dependence of initial polarization and atom density on ringing, delay, and intensity are
Depolarization of an Ultrashort Pulse in a Disordered Ensemble of Mie Particles
NASA Astrophysics Data System (ADS)
Gorodnichev, E. E.; Ivliev, S. V.; Kuzovlev, A. I.; Rogozkin, D. B.
2017-12-01
We study propagation of an ultrashort pulse of polarized light through a turbid medium with the Reynolds-McCormick phase function. Within the basic mode approach to the vector radiative transfer equation, the temporal profile of the degree of polarization is calculated analytically with the use of the small-angle approximation. The degree of polarization is shown to be described by the self-similar dependence on some combination of the transport scattering coefficient, the temporal delay and the sample thickness. Our results are in excellent agreement with the data of numerical simulations carried out previously for aqueous suspension of polystyrene microspheres.
Juswardy, Budi; Xiao, Feng; Alameh, Kamal
2009-03-16
This paper proposes a novel Opto-VLSI-based tunable true-time delay generation unit for adaptively steering the nulls of microwave phased array antennas. Arbitrary single or multiple true-time delays can simultaneously be synthesized for each antenna element by slicing an RF-modulated broadband optical source and routing specific sliced wavebands through an Opto-VLSI processor to a high-dispersion fiber. Experimental results are presented, which demonstrate the principle of the true-time delay unit through the generation of 5 arbitrary true-time delays of up to 2.5 ns each. (c) 2009 Optical Society of America
Al-Samman, A. M.; Rahman, T. A.; Azmi, M. H.; Hindia, M. N.; Khan, I.; Hanafi, E.
2016-01-01
This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios. PMID:27654703
Al-Samman, A M; Rahman, T A; Azmi, M H; Hindia, M N; Khan, I; Hanafi, E
This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.
Solar Activity Studies using Microwave Imaging Observations
NASA Technical Reports Server (NTRS)
Gopalswamy, N.
2016-01-01
We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.
Investigating tunneling process of atom exposed in circularly polarized strong-laser field
NASA Astrophysics Data System (ADS)
Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing
2017-03-01
We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.
Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin
2016-08-08
We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.
NASA Astrophysics Data System (ADS)
Zhou, Huan; Li, Jin-Hua; Chow, Kwok-Wing; Xiao, Shao-Rong; Sun, Ting-Ting
2017-04-01
The interactions and collisions of time delayed solitons in optical waveguides with orthogonally polarized modes are studied. Direct numerical simulations of the coherently coupled nonlinear Schrödinger equations are performed, and neither the high birefringence nor the low birefringence approximations are invoked. Trapping of solitary pulses occurs when the birefringence parameter is small or the four-wave mixing parameter is large. The distance before the first collision depends strongly on the initial separation of the two solitary pulses. Variational techniques are employed to calculate this distance, and results agree with those from the full simulations very well. Supported by the National Natural Science Foundation of China under Grant Nos. 11605090 and 11447113, Natural Science Foundation of Jiangsu Provincial Universities under Grant No. 14KJB140009 and the startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology under Grant No. 2241131301064
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2008-09-15
We present two PMD compensation schemes suitable for use in multilevel (M>or=2) block-coded modulation schemes with coherent detection. The first scheme is based on a BLAST-type polarization-interference cancellation scheme, and the second scheme is based on iterative polarization cancellation. Both schemes use the LDPC codes as channel codes. The proposed PMD compensations schemes are evaluated by employing coded-OFDM and coherent detection. When used in combination with girth-10 LDPC codes those schemes outperform polarization-time coding based OFDM by 1 dB at BER of 10(-9), and provide two times higher spectral efficiency. The proposed schemes perform comparable and are able to compensate even 1200 ps of differential group delay with negligible penalty.
NASA Astrophysics Data System (ADS)
Yuan, T.; Yu, J. Y.; Liu, W. Y.; Weng, S. M.; Yuan, X. H.; Luo, W.; Chen, M.; Sheng, Z. M.; Zhang, J.
2018-06-01
Two-dimensional particle-in-cell simulations have been performed to study electron-positron pair production and cascade development in single ultra-relativistic laser interaction with solid targets. The spatiotemporal distributions of particles produced via QED processes are illustrated and their dependence on laser polarizations is investigated. The evolution of particle generation displays clear QED cascade characters. Studies show that although a circularly polarized laser delays the QED process due to the effective ion acceleration, it can reduce the target heating and confine high-energy charged particles, which leads to deeper QED cascade order and denser pair plasma production than linearly polarized lasers. These findings may benefit the understanding of the coming experimental studies of ultra-relativistic laser target interaction in the QED dominated regime.
Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.
Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji
2015-05-21
Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.
Experimental demonstration of time- and mode-division multiplexed passive optical network
NASA Astrophysics Data System (ADS)
Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin
2017-07-01
A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.
Orchestration of Angiogenesis by Immune Cells
Bruno, Antonino; Pagani, Arianna; Pulze, Laura; Albini, Adriana; Dallaglio, Katiuscia; Noonan, Douglas M.; Mortara, Lorenzo
2014-01-01
It is widely accepted that the tumor microenvironment (TUMIC) plays a major role in cancer and is indispensable for tumor progression. The TUMIC involves many “players” going well beyond the malignant-transformed cells, including stromal, immune, and endothelial cells (ECs). The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can “orchestrate” the “symphony” of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy. Considerable attention within the context of tumor angiogenesis should focus not only on the ECs, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here, we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation, and angiogenesis to tumor progression. Here, we review the data in the literature and seek to identify the “conductors” of this “orchestra.” We also suggest that interrupting the immune → inflammation → angiogenesis → tumor progression process can delay or prevent tumor insurgence and malignant disease. PMID:25072019
NASA Astrophysics Data System (ADS)
Gillies, R. G.; Yau, A. W.; James, H. G.; Hussey, G. C.; McWilliams, K. A.
2014-12-01
The enhanced Polar Outflow Probe (ePOP) Canadian small-satellite was launched in September 2013. Included in this suite of eight scientific instruments is the Radio Receiver Instrument (RRI). The RRI has been used to measure VLF and HF radio waves from various ground and spontaneous ionospheric sources. The first dedicated ground transmission that was detected by RRI was from the Saskatoon Super Dual Auroral Radar Network (SuperDARN) radar on Nov. 7, 2013 at 14 MHz. Several other passes over the Saskatoon SuperDARN radar have been recorded since then. Ground transmissions have also been observed from other radars, such as the SPEAR, HAARP, and SURA ionospheric heaters. However, the focus of this study will be on the results obtained from the SuperDARN passes. An analysis of the signal recorded by the RRI provides estimates of signal power, Doppler shift, polarization, absolute time delay, differential mode delay, and angle of arrival. By comparing these parameters to similar parameters derived from ray tracing simulations, ionospheric electron density structures may be detected and measured. Further analysis of the results from the other ground transmitters and future SuperDARN passes will be used to refine these results.
Source of polarized ions for the JINR accelerator complex
NASA Astrophysics Data System (ADS)
Belov, A. S.; Donets, D. E.; Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, V. B.; Turbabin, A. V.; Zubets, V. N.
2017-12-01
The JINR atomic beam type polarized ion source is described. Results of tests of the plasma ionizer with a storage cell and of tuning of high frequency transition units are presented. The source was installed in a linac injector hall of NUCLOTRON in May 2016. The source has been commissioned and used in the NUCLOTRON runs in 2016 and February - March 2017. Polarized and unpolarized deuteron beams were produced as well as polarized protons for acceleration in the NUCLOTRON. Polarized deuteron beam with pulsed current up to 2 mA has been produced. Deuteron beam polarization of 0.6-0.9 of theoretical values for different modes of high frequency transition units operation has been measured with the NUCLOTRON ring internal polarimeter for the accelerated deuteron and proton beams.
A Circular Polarizer with Beamforming Feature Based on Frequency Selective Surfaces
NASA Astrophysics Data System (ADS)
Yin, Jia Yuan; Wan, Xiang; Ren, Jian; Cui, Tie Jun
2017-01-01
We propose a circular polarizer with beamforming features based on frequency selective surface (FSS), in which a modified anchor-shaped unit cell is used to reach the circular polarizer function. The beamforming characteristic is realized by a particular design of the unit-phase distribution, which is obtained by varying the scale of the unit cell. Instead of using plane waves, a horn antenna is designed to feed the phase-variant FSS. The proposed two-layer FSS is fabricated and measured to verify the design. The measured results show that the proposed structure can convert the linearly polarized waves to circularly polarized waves. Compared with the feeding horn antenna, the transmitted beam of the FSS-added horn is 14.43° broader in one direction, while 3.77° narrower in the orthogonal direction. To our best knowledge, this is the first time to realize circular polarizer with beamforming as the extra function based on FSS, which is promising in satellite and communication systems for potential applications due to its simple design and good performance.
NASA Astrophysics Data System (ADS)
Chen, Ming; Xiao, Xiaofei; Chang, Linzi; Wang, Congyun; Zhao, Deping
2017-07-01
In this work, a high-efficiency and tunable dual-frequency reflective polarization converter composed of graphene metasurface with twisting double L-shaped unit is firstly realized. Numerical results demonstrate that the device can convert a linearly polarized wave to its cross-polarized wave, and meantime it can also convert to a circularly polarized wave. Subsequently, one thickness of 500 nm SiO2 layer sandwiched by two graphene metasurfaces with similar pattern is stacked on the top of the two-layered structure, a four-frequency efficient reflective polarization converters is realized. Above all, those working frequencies can also be dynamically tuned within a large frequency range by adjusting the Fermi energy of the graphene, without reoptimizing and refabricating the nanostructures, which paves a novel way toward developing a controllable polarization converter for mid-infrared applications.
Chen, Yun; Pasapera, Ana M.; Koretsky, Alan P.; Waterman, Clare M.
2013-01-01
Cells are mechanosensitive to extracellular matrix (ECM) deformation, which can be caused by muscle contraction or changes in hydrostatic pressure. Focal adhesions (FAs) mediate the linkage between the cell and the ECM and initiate mechanically stimulated signaling events. We developed a stretching apparatus in which cells grown on fibronectin-coated elastic substrates can be stretched and imaged live to study how FAs dynamically respond to ECM deformation. Human bone osteosarcoma epithelial cell line U2OS was transfected with GFP-paxillin as an FA marker and subjected to sustained uniaxial stretching. Two responses at different timescales were observed: rapid FA growth within seconds after stretching, and delayed FA disassembly and loss of cell polarity that occurred over tens of minutes. Rapid FA growth occurred in all cells; however, delayed responses to stretch occurred in an orientation-specific manner, specifically in cells with their long axes perpendicular to the stretching direction, but not in cells with their long axes parallel to stretch. Pharmacological treatments demonstrated that FA kinase (FAK) promotes but Src inhibits rapid FA growth, whereas FAK, Src, and calpain 2 all contribute to delayed FA disassembly and loss of polarity in cells perpendicular to stretching. Immunostaining for phospho-FAK after stretching revealed that FAK activation was maximal at 5 s after stretching, specifically in FAs oriented perpendicular to stretch. We hypothesize that orientation-specific activation of strain/stress-sensitive proteins in FAs upstream to FAK and Src promote orientation-specific responses in FA growth and disassembly that mediate polarity rearrangement in response to sustained stretch. PMID:23754369
NASA Astrophysics Data System (ADS)
Homuth, B.; Löbl, U.; Batte, A. G.; Link, K.; Kasereka, C. M.; Rümpker, G.
2016-09-01
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.
Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna
2016-01-01
In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θp. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θp. The maximum value of the cross-correlation coefficient achieved is -0.99 with a zero time delay over a wide range of θp beyond 65° with a poor synchronization dynamic at θp less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θp. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.
Interpreting Radar View near Mars' North Pole, Orbit 1512
NASA Technical Reports Server (NTRS)
2006-01-01
A radargram from the Shallow Subsurface Radar instrument (SHARAD) on NASA's Mars Reconnaissance Orbiter is shown in the upper-right panel and reveals detailed structure in the polar layered deposits of the north pole of Mars (with blowups shown in the upper-left panels). The sounding radar collected the data presented here during orbit 1512 of the mission, on Nov. 22, 2006. The horizontal scale in the radargram is distance along the ground track. It can be referenced to the ground track map shown in the lower right. The radar traversed from about 83.5 degrees to 80.5 degrees north latitude, or about 180 kilometers (110 miles). The ground track map shows elevation measured by the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. Green indicates low elevation; reddish-white indicates higher elevation. The traverse is from the high elevation of the plateau formed by the layers to the lowlands below. The vertical scale on the radargram is time delay of the radar signals reflected back to Mars Reconnaissance Orbiter from the surface and subsurface. For reference, using an assumed velocity of the radar waves in the subsurface, time is converted to depth below the surface in two places: about 600 meters (2,000 feet) to the lowest of an upper series of bright reflectors and about 2,000 meters (6,500 feet) to the base of the polar layered deposits. The color scale of the radargram varies from black for weak reflections to bright yellow for strong reflections. The lower-left panel is a image from the Mars Orbiter Camera on Mars Global Surveyor showing exposed polar layering in the walls of a canyon near the north pole. The layering is divided into a finely structured upper unit (labeled 'Upper PLD') and less-well-defined stratigraphy in the lower unit (labeled 'Lower PLD'). The radargram clearly reveals the complexity of the layering in the upper unit, additional reflections from the lower unit, and the base of the entire stack of layered deposits. The layering manifests the recent climate history of Mars, recorded by the deposition and removal of ice and dust. The Shallow Subsurface Radar was provided by the Italian Space Agency (ASI). Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington.NASA Astrophysics Data System (ADS)
Nunhokee, C. D.; Bernardi, G.; Kohn, S. A.; Aguirre, J. E.; Thyagarajan, N.; Dillon, J. S.; Foster, G.; Grobler, T. L.; Martinot, J. Z. E.; Parsons, A. R.
2017-10-01
A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Array to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc-1 can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.
Polarization curling and flux closures in multiferroic tunnel junctions
NASA Astrophysics Data System (ADS)
Peters, Jonathan J. P.; Apachitei, Geanina; Beanland, Richard; Alexe, Marin; Sanchez, Ana M.
2016-11-01
Formation of domain walls in ferroelectrics is not energetically favourable in low-dimensional systems. Instead, vortex-type structures are formed that are driven by depolarization fields occurring in such systems. Consequently, polarization vortices have only been experimentally found in systems in which these fields are deliberately maximized, that is, in films between insulating layers. As such configurations are devoid of screening charges provided by metal electrodes, commonly used in electronic devices, it is wise to investigate if curling polarization structures are innate to ferroelectricity or induced by the absence of electrodes. Here we show that in unpoled Co/PbTiO3/(La,Sr)MnO3 ferroelectric tunnel junctions, the polarization in active PbTiO3 layers 9 unit cells thick forms Kittel-like domains, while at 6 unit cells there is a complex flux-closure curling behaviour resembling an incommensurate phase. Reducing the thickness to 3 unit cells, there is an almost complete loss of switchable polarization associated with an internal gradient.
Polarization curling and flux closures in multiferroic tunnel junctions
Peters, Jonathan J. P.; Apachitei, Geanina; Beanland, Richard; Alexe, Marin; Sanchez, Ana M.
2016-01-01
Formation of domain walls in ferroelectrics is not energetically favourable in low-dimensional systems. Instead, vortex-type structures are formed that are driven by depolarization fields occurring in such systems. Consequently, polarization vortices have only been experimentally found in systems in which these fields are deliberately maximized, that is, in films between insulating layers. As such configurations are devoid of screening charges provided by metal electrodes, commonly used in electronic devices, it is wise to investigate if curling polarization structures are innate to ferroelectricity or induced by the absence of electrodes. Here we show that in unpoled Co/PbTiO3/(La,Sr)MnO3 ferroelectric tunnel junctions, the polarization in active PbTiO3 layers 9 unit cells thick forms Kittel-like domains, while at 6 unit cells there is a complex flux-closure curling behaviour resembling an incommensurate phase. Reducing the thickness to 3 unit cells, there is an almost complete loss of switchable polarization associated with an internal gradient. PMID:27848970
Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy
Rouxel, Jérémy R.; Kowalewski, Markus; Mukamel, Shaul
2017-07-01
Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. Here, we present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the paritymore » breaking geometry change thus revealing the enantiomer asymmetry.« less
Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouxel, Jérémy R.; Kowalewski, Markus; Mukamel, Shaul
Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. Here, we present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the paritymore » breaking geometry change thus revealing the enantiomer asymmetry.« less
Method for measuring retardation of infrared wave-plate by modulated-polarized visible light
NASA Astrophysics Data System (ADS)
Zhang, Ying; Song, Feijun
2012-11-01
A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.
Reconfigurable pipelined processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saccardi, R.J.
1989-09-19
This patent describes a reconfigurable pipelined processor for processing data. It comprises: a plurality of memory devices for storing bits of data; a plurality of arithmetic units for performing arithmetic functions with the data; cross bar means for connecting the memory devices with the arithmetic units for transferring data therebetween; at least one counter connected with the cross bar means for providing a source of addresses to the memory devices; at least one variable tick delay device connected with each of the memory devices and arithmetic units; and means for providing control bits to the variable tick delay device formore » variably controlling the input and output operations thereof to selectively delay the memory devices and arithmetic units to align the data for processing in a selected sequence.« less
A reflection polarizations zoom metasurfaces
NASA Astrophysics Data System (ADS)
Yang, Fulong; Wang, Xiaoyan
2017-02-01
Based on generalized Snell's law, we propose a dual-polarity zoom metasurfaces operating electromagnetic wave in the reflection geometry. The metasurfaces is constructed by two identical ultrathin metal-backed dielectric slabs with metallic Jerusalem cross patterns on the other sides to form a triangular region. The normally incident waves are totally reflected, but the reflection phases of both x- and y-polarized waves are controlled independently. According to the classical theory of optical imaging, the reflection electromagnetic wave phases were obtained in the different polarizations and focus. Each subwavelength units size were determined with the reflection coefficient of the basic unit, the polarizations zoom metasurfaces was designed in the way. The full-wave simulations are in good agreement with theoretical analysis in microwave lengths.
Time delay and distance measurement
NASA Technical Reports Server (NTRS)
Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)
2011-01-01
A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Chuss, David T.
2008-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment designed to search for the polarized imprint of gravitational waves from cosmic inflation. The discovery of such a signal would provide direct evidence for inflation, and its characterization would provide a means to explore energy scales orders of magnitude larger than any conceivable particle accelerator. PIPER will consist of two cryogenic telescopes-one for each of the Q and U Stokes parameters. Each will use a variable-delay polarization modulator (VPM) as its first element. This architecture is designed to minimize both T->B and E->B systematics. The detectors will be four 32x40 arrays of BUG detectors, utilizing transition-edge sensors and time-domain multiplexing. Each flight will observe approximately 25% of the sky at a single frequency. Additional flights will increase the frequency coverage.
NASA Astrophysics Data System (ADS)
Mao, Yaya; Wu, Chongqing; Liu, Bo; Ullah, Rahat; Tian, Feng
2017-12-01
We experimentally investigate the polarization insensitivity and cascadability of an all-optical wavelength converter for differential phase-shift keyed (DPSK) signals for the first time. The proposed wavelength converter is composed of a one-bit delay interferometer demodulation stage followed by a single semiconductor optical amplifier. The impact of input DPSK signal polarization fluctuation on receiver sensitivity for the converted signal is carried out. It is found that this scheme is almost insensitive to the state of polarization of the input DPSK signal. Furthermore, the cascadability of the converter is demonstrated in a two-path recirculating loop. Error-free transmission is achieved with 20 stage cascaded wavelength conversions over 2800 km, where the power penalty is <3.4 dB at bit error rate of 10-9.
NASA Astrophysics Data System (ADS)
Ramalho, Luciana Maria Pedreira; Weyll, Barbara Mayoral Pedroso; da Costa Lino, Maíra Dória M.; Ramalho, Maria Jose Pedreira; Barbosa Pinheiro, Antonio Luis
2010-02-01
The aim of this study was to assess the influence of low-level laser therapy (LLLT) or polarized light (PL) in cutaneous wound healing of hypothyroid rats at dosages of 20 or 40J/cm2. Bioestimulatory effects of Laser radiation and Polarized light are recognized alternative therapies to improve healing on systemic disease patients, but their usefulness in the improvement of hypothyroidism healing impairment is uncertain till date. Forty Wistar rats were used in this study. Hypothyroidism was propylthiouracil- induced. Standard excisional cutaneous wounds were created without suturing and LLLT (λ660nm, 30mW, φ 3mm) or PL (λ 400-2000nm, 40mW, φ 10mm) was applied every 48 hours up to seven days on experimental groups. The rats were killed on the eighth day when wound contraction was assessed. The healing features were evaluated by light microscopy (H/E and Sirius Red). The cutaneous wounds of hypothyroid rats showed delayed healing process characterized by reduced thickness of epithelial layers, incipient formation of disorganized collagen fibers and wound contraction to a lesser extent (FISHER, p=0.0276), when compared to the euthyroid group. The use of both the Laser and Polarized Light on hypothyroid rats increased the amount of fibroblasts and the thickness of collagen fibers, especially on the L 20J/cm2 group. Euthyroid rats have still demonstrated more regular collagen fibers pattern than hypothyroid rats. It was therefore concluded that hypothyroidism delays wound healing and both Laser photobiomodulation and Polarized Light at 20j/cm2 dosages had improved the healing process in hypothyroid rats.
Emission-angle and polarization-rotation effects in the lensed CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Antony; Hall, Alex; Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk
Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Bornmore » field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.« less
Wound Administration of M2-Polarized Macrophages Does Not Improve Murine Cutaneous Healing Responses
Jetten, Nadine; Roumans, Nadia; Gijbels, Marion J.; Romano, Andrea; Post, Mark J.; de Winther, Menno P. J.; van der Hulst, Rene R. W. J.; Xanthoulea, Sofia
2014-01-01
Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds. PMID:25068282
Anuradha; Krishna, Amitabh
2014-12-01
The aim of this study was to evaluate the role of adiponectin in the delayed embryonic development of Cynopterus sphinx. Adiponectin receptor (ADIPOR1) abundance was first observed to be lower during the delayed versus non-delayed periods of utero-embryonic unit development. The effects of adiponectin treatment on embryonic development were then evaluated during the period of delayed development. Exogenous treatment increased the in vivo rate of embryonic development, as indicated by an increase in weight, ADIPOR1 levels in the utero-embryonic unit, and histological changes in embryonic development. Treatment with adiponectin during embryonic diapause showed a significant increase in circulating progesterone and estradiol concentrations, and in production of their receptors in the utero-embryonic unit. The adiponectin-induced increase in estradiol synthesis was correlated with increased cell survival (BCL2 protein levels) and cell proliferation (PCNA protein levels) in the utero-embryonic unit, suggesting an indirect effect of adiponectin via estradiol synthesis by the ovary. An in vitro study further confirmed the in vivo findings that adiponectin treatment increases PCNA levels together with increased uptake of glucose by increasing the abundance of glucose transporter 8 (GLUT8) in the utero-embryonic unit. The in vitro study also revealed that adiponectin, together with estradiol but not alone, significantly increased ADIPOR1 protein levels. Thus, adiponectin works in concert with estradiol to increase glucose transport to the utero-embryonic unit and promote cell proliferation, which together accelerate embryonic development. © 2014 Wiley Periodicals, Inc.
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
Three dimensional metafilms with dual channel unit cells
Burckel, D. Bruce; Campione, Salvatore; Davids, Paul S.; ...
2017-04-04
Three-dimensional (3D) metafilms composed of periodic arrays of silicon unit cells containing single and multiple micrometer-scale vertical split ring resonators (SRRs) per unit cell were fabricated. In contrast to planar and stacked planar structures, these 3D metafilms have a thickness t ~λ d/4, allowing for classical thin film effects in the long wavelength limit. The infrared specular far-field scattering response was measured for metafilms containing one and two resonators per unit cell and compared to numerical simulations. Excellent agreement in the frequency region below the onset of diffractive scattering was obtained. For dense arrays of unit cells containing single SRRs,more » normally incident linearly polarized plane waves which do not excite a resonant response result in thin film interference fringes in the reflected spectra and are virtually indistinguishable from the scattering response of an undecorated array of unit cells. For the resonant linear polarization, the specular reflection for arrays is highly dependent on the SRR orientation on the vertical face for gap-up, gap-down, and gap-right orientations. For dense arrays of unit cells containing two SRRs per unit cell positioned on adjacent faces, the specular reflection spectra are slightly modified due to near-field coupling between the orthogonally oriented SRRs but otherwise exhibit reflection spectra largely representative of the corresponding single-SRR unit cell structures. Lastly, the ability to pack the unit cell with multiple inclusions which can be independently excited by choice of incident polarization suggests the construction of dual-channel films where the scattering response is selected by altering the incident polarization.« less
Unusual Polar Conditions in Solar Cycle 24 and Their Implications for Cycle 25
NASA Technical Reports Server (NTRS)
Gopalswamy, Nat; Yashiro, Seiji; Akiyama, Sachiko
2016-01-01
We report on the prolonged solar-maximum conditions until late 2015 at the north-polar region of the Sun indicated by the occurrence of high-latitude prominence eruptions (PEs) and microwave brightness temperature close to the quiet-Sun level. These two aspects of solar activity indicate that the polarity reversal was completed by mid-2014 in the south and late 2015 in the north. The microwave brightness in the south-polar region has increased to a level exceeding the level of the Cycle 23/24 minimum, but just started to increase in the north. The northsouth asymmetry in the polarity reversal has switched from that in Cycle 23. These observations lead us to the hypothesis that the onset of Cycle 25 in the northern hemisphere is likely to be delayed with respect to that in the southern hemisphere. We find that the unusual condition in the north is a direct consequence of the arrival of poleward surges of opposite polarity from the active region belt. We also find that multiple rush-to-the-pole episodes were indicated by the PE locations that lined up at the boundary between opposite-polarity surges. The high-latitude PEs occurred in the boundary between the incumbent polar flux and the insurgent flux of opposite polarity.
Three Dimensional Structure of the Mars North Polar Basal Unit from MARSIS data
NASA Astrophysics Data System (ADS)
Frigeri, A.; Orosei, R.; Cartacci, M.; Cicchetti, A.; Mitri, G.; Giuppi, S.; Noschese, R.; Picardi, G.; Plaut, J.
2012-04-01
Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) is an orbital subsurface sounder aboard ESA's Mars Express spacecraft . It transmits a low-frequency radar pulse that is capable of penetrating below the surface, and is reflected by subsurface dielectric discontinuities. MARSIS has been used to probe both the south and the north polar caps of Mars, revealing their thickness and structure. We report on the results of a campaign of observations of the north polar ice cap of Mars that took place between May and December 2011 in uniquely favorable conditions and produced data of unprecedented quality. The focus of this work is the so-called Basal Unit, a dark, ice-rich, complexely layered geologic unit lying stratigraphically between the polar layered deposits and the Vastitas Borealis Formation, and extending beneath most of Planum Boreum and Olympia Planitia. The objective of this work is the to study the full three dimensional structure of the Northern Polar Deposit and in particular of the Basal Unit (BU). It was recently found that the BU consists of two markedly different units, called the Rupes Tenuis unit and the Planum Boreum cavi unit. The Rupes Tenuis unit appears to be older, horizontally layered, and lacking erosional contacts. It has been thus interpreted as the result of precipitation and cold-trapping of dust-laden volatiles. The Planum Boreum cavi unit displays cross-bedding, indicating dune accumulation. Bright layers within it are interpreted as being made of ice-cemented dust, while dark layers should consist of weathered basalt fines. It seems likely that, in places, the Planum Boreum cavi unit rests directly on the Vastitas Borealis, without the Rupes Tenuis unit in between. Because the two units in the BU have formed much earlier than the north polar layered deposits, and at some interval from each other, they bear evidence of past climatic conditions that were very different from present, so that they "could potentially be a Rosetta Stone for the Martian climate". Subsurface sounding radar investigations by both MARSIS and SHARAD revealed that the BU has radar properties that are different from both the polar layered deposits and the Vastitas Borealis Formation, probably because of a mostly icy composition, but with a larger fraction of impurities than the polar layered deposits above. The upper surface of the BU exhibits significant relief, with features appearing to be erosional cutbacks and reentrants, indicating a complex accumulation history. Higher dust content and the resulting stronger attenuation is thought to be the reason why SHARAD radar signal could not penetrate through the BU and detect its bottom face. However, such a volume fraction cannot be much larger than the polar layered deposits, since MARSIS data revealed strong returns from the BU-Vastitas Borealis Formation interface, implying a relatively low fraction of impurities within the BU. From the summer phase of the Polar Campaign of data acquisition we have selected 161 radargrams. The radargrams were processed in order to cancel the effect of the ionosphere and to align the primary echo to a datum. The post-processed radargrams have been ingested into a Free Open Source software stack for geophysical imaging and interpretation. We find weak echoes within the BU that appear to outline a two-layer structure, perhaps corresponding to the Rupes Tenuis unit and the Planum Boreum Cavi unit. This was found through visual inspection, however, because echoes within the BU are too sporadic to be automatically picked, so further data processing and analysis is needed to confirm the result. As first results we found that the BU has a dielectric constant significantly greater than that of water ice, and thus that it contains a much larger dust fraction than the NPLD above them. We find, however, that no single value can produce the correct topographic relationship over the whole BU, which implies either that the topography of Planum Boreum beneath the polar cap is not a regular continuation of the topography outside the cap, or that the dielectric permittivity of the BU, and thus its dust content, is laterally inhomogeneous. Work to verify these two hypotheses is currently ongoing.
He, Feng Jie; Liu, Hui Long; Chen, Long Cong; Xiong, Xing Liang
2018-03-01
Liquid crystal (LC)-based sensors have the advantageous properties of being fast, sensitive, and label-free, the results of which can be accessed directly only through the naked eye. However, the inherent disadvantages possessed by LC sensors, such as relying heavily on polarizing microscopes and the difficulty to quantify, have limited the possibility of field applications. Herein, we have addressed these issues by constructing a portable polarized detection system with constant temperature control. This system is mainly composed of four parts: the LC cell, the optics unit, the automatic temperature control unit, and the image processing unit. The LC cell was based on the ordering transitions of LCs in the presence of analytes. The optics unit based on the imaging principle of LCs was designed to substitute the polarizing microscope for the real-time observation. The image processing unit is expected to quantify the concentration of analytes. The results have shown that the presented system can detect dimethyl methyl phosphonate (a stimulant for organophosphorus nerve gas) within 25 s, and the limit of detection is about 10 ppb. In all, our portable system has potential in field applications.
NASA Astrophysics Data System (ADS)
He, Feng Jie; Liu, Hui Long; Chen, Long Cong; Xiong, Xing Liang
2018-03-01
Liquid crystal (LC)-based sensors have the advantageous properties of being fast, sensitive, and label-free, the results of which can be accessed directly only through the naked eye. However, the inherent disadvantages possessed by LC sensors, such as relying heavily on polarizing microscopes and the difficulty to quantify, have limited the possibility of field applications. Herein, we have addressed these issues by constructing a portable polarized detection system with constant temperature control. This system is mainly composed of four parts: the LC cell, the optics unit, the automatic temperature control unit, and the image processing unit. The LC cell was based on the ordering transitions of LCs in the presence of analytes. The optics unit based on the imaging principle of LCs was designed to substitute the polarizing microscope for the real-time observation. The image processing unit is expected to quantify the concentration of analytes. The results have shown that the presented system can detect dimethyl methyl phosphonate (a stimulant for organophosphorus nerve gas) within 25 s, and the limit of detection is about 10 ppb. In all, our portable system has potential in field applications.
2007-04-01
Guard (enlisted service), 1991-1993. Member of the bars of the Commonwealth of Virginia, the United States Court of Appeals for the Federal Circuit...the United States Court of Appeals for the Armed Forces, the Court of Federal Claims, and the United States Army Court of Criminal Appeals . This...I. Introduction 3 II. Historical Background 6 A. History of Criminal Appeals 6 B. Post-Trial Delay Cases 11 III. United States v. Tardiff. 21 IV
Peltonen, Laura-Maria; McCallum, Louise; Siirala, Eriikka; Haataja, Marjaana; Lundgrén-Laine, Heljä; Salanterä, Sanna; Lin, Frances
2015-01-01
The literature shows that delayed admission to the intensive care unit (ICU) and discharge delays from the ICU are associated with increased adverse events and higher costs. Identifying factors related to delays will provide information to practice improvements, which contribute to better patient outcomes. The aim of this integrative review was to explore the incidence of patients' admission and discharge delays in critical care and to identify organisational factors associated with these delays. Seven studies were included. The major findings are as follows: (1) explanatory research about discharge delays is scarce and one study on admission delays was found, (2) delays are a common problem mostly due to organisational factors, occurring in 38% of admissions and 22–67% of discharges, and (3) redesigning care processes by improving information management and coordination between units and interdisciplinary teams could reduce discharge delays. In conclusion, patient outcomes can be improved through efficient and safe care processes. More exploratory research is needed to identify factors that contribute to admission and discharge delays to provide evidence for clinical practice improvements. Shortening delays requires an interdisciplinary and multifaceted approach to the whole patient flow process. Conclusions should be made with caution due to the limited number of articles included in this review. PMID:26558286
Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity
Mehta, Shalin B.; Shribak, Michael; Oldenbourg, Rudolf
2013-01-01
Polarized light microscopy provides unique opportunities for analyzing the molecular order in man-made and natural materials, including biological structures inside living cells, tissues, and whole organisms. 20 years ago, the LC-PolScope was introduced as a modern version of the traditional polarizing microscope enhanced by liquid crystal devices for the control of polarization, and by electronic imaging and digital image processing for fast and comprehensive image acquisition and analysis. The LCPolScope is commonly used for birefringence imaging, analyzing the spatial and temporal variations of the differential phase delay in ordered and transparent materials. Here we describe an alternative use of the LC-PolScope for imaging the polarization dependent transmittance of dichroic materials. We explain the minor changes needed to convert the instrument between the two imaging modes, discuss the relationship between the quantities measured with either instrument, and touch on the physical connection between refractive index, birefringence, transmittance, diattenuation, and dichroism. PMID:24273640
The Primordial Inflation Polarization ExploreR (PIPER)
NASA Astrophysics Data System (ADS)
Gandilo, Natalie; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Datta, Rahul; Dotson, Jessie; Essinger-Hileman, Thomas; Fixsen, Dale; Halpern, Mark; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward
2018-01-01
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne telescope designed to map the large scale polarization of the Cosmic Microwave Background as well as the polarized emission from galactic dust at 200, 270, 350, and 600 GHz, with 21, 15, 14, and 14 arcminutes of angular resolution respectively. PIPER uses twin telescopes with Variable-delay Polarization Modulators to simultaneously map Stokes I, Q, U and V. Cold optics and the lack of a warm window allow the instrument to achieve background limited sensitivity, with mapping speed approximately 10 times faster than a similar instrument with a single ambient-temperature mirror. Over the course of 8 conventional balloon flights from the Northern and Southern hemisphere, PIPER will map 85% of the sky, measuring the B-mode polarization spectrum from the reionization bump to l~300, and placing an upper limit on the tensor-to-scalar ratio of r<0.007. An engineering flight is planned for October 2017 from Fort Sumner, New Mexico, and the first science flight is planned for June 2018 from Palestine, Texas.
High-Resolution Radar Imagery of Mars
NASA Astrophysics Data System (ADS)
Harmon, John K.; Nolan, M. C.
2009-09-01
We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.
Seismic Anisotropy Beneath the Eastern Flank of the Rio Grande Rift
NASA Astrophysics Data System (ADS)
Benton, N. W.; Pulliam, J.
2015-12-01
Shear wave splitting was measured across the eastern flank of the Rio Grande Rift (RGR) to investigate mechanisms of upper mantle anisotropy. Earthquakes recorded at epicentral distances of 90°-130° from EarthScope Transportable Array (TA) and SIEDCAR (SC) broadband seismic stations were examined comprehensively, via the Matlab program "Splitlab", to determine whether SKS and SKKS phases indicated anisotropic properties. Splitlab allows waveforms to be rotated, filtered, and windowed interactively and splitting measurements are made on a user-specified waveform segment via three independent methods simultaneously. To improve signal-to-noise and improve reliability, we stacked the error surfaces that resulted from grid searches in the measurements for each station location. Fast polarization directions near the Rio Grande Rift tend to be sub-parallel to the RGR but then change to angles that are consistent with North America's average plate motion, to the east. The surface erosional depression of the Pecos Valley coincides with fast polarization directions that are aligned in a more northerly direction than their neighbors, whereas the topographic high to the east coincides with an easterly change of the fast axis.The area above a mantle high velocity anomaly discovered separately via seismic tomography which may indicate thickened lithosphere, corresponds to unusually large delay times and fast polarization directions that are more closely aligned to a north-south orientation. The area of southeastern New Mexico that falls between the mantle fast anomaly and the Great Plains craton displays dramatically smaller delay times, as well as changes in fast axis directions toward the northeast. Changes in fast axis directions may indicate flow around the mantle anomaly; small delay times could indicate vertical or attenuated flow.
Jones, Gregory H.; Carrier, Michael A.; Silver, Richard T.
2016-01-01
High cancer drug prices are influenced by the availability of generic cancer drugs in a timely manner. Several strategies have been used to delay the availability of affordable generic drugs into the United States and world markets. These include reverse payment or pay-for-delay patent settlements, authorized generics, product hopping, lobbying against cross-border drug importation, buying out the competition, and others. In this forum, we detail these strategies and how they can be prevented. PMID:26817958
Nikoopour, Enayat; Schwartz, Jordan A; Huszarik, Katrina; Sandrock, Christian; Krougly, Olga; Lee-Chan, Edwin; Singh, Bhagirath
2010-05-01
IL-17-producing T cells are regarded as potential pathogenic T cells in the induction of autoimmune diseases. Previously, we have shown that injection of adjuvants containing Mycobacterium, such as CFA or bacillus Calmette-Guérin, can prevent type 1 diabetes in NOD mice. We injected NOD mice with mycobacterial products s.c. and analyzed the IL-17-producing cells from the draining lymph nodes and spleen by restimulating whole-cell populations or CD4(+) T cells in vitro with or without IL-17-polarizing cytokines. Mice receiving CFA had a concomitant rise in the level of IL-17, IL-22, IL-10, and IFN-gamma in the draining lymph node and spleen. Adoptive transfer of splenocytes from CFA-injected NOD mice polarized with TGF-beta plus IL-6 or IL-23 delayed the development of diabetes in recipient mice. IL-17-producing cells induced by CFA maintained their IL-17-producing ability in the recipient mice. Injection of CFA also changed the cytokine profile of cells in pancreatic tissue by increasing IL-17, IL-10, and IFN-gamma cytokine gene expression. We suggest that the rise in the level of IL-17 after adjuvant therapy in NOD mice has a protective effect on type 1 diabetes development.
Moisture-Induced Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales
NASA Technical Reports Server (NTRS)
Smialek, James L.
2005-01-01
Thermal expansion mismatch stresses and interfacial sulfur activity are the major factors producing primary Al2O3 scale spallation on high temperature alloys. However, moisture-induced delayed spallation appears as a secondary, but often dramatic, illustration of an additional mechanistic detail. A historical review of delayed failure of alumina scales and TBC s on superalloys is presented herein. Similarities with metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al+3H2O=Al(OH)3+3H(+)+3e(-), is the operative mechanism. This proposal was tested by standard cathodic hydrogen charging in 1N H2SO4, applied to Rene N5 pre-oxidized at 1150 C for 1000 1-hr cycles, and monitored by weight change, induced current, and microstructure. Here cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the electrolyte alone produced neither scale spallation nor alloy dissolution. These experiments thus highlight the detrimental effects of hydrogen charging on alumina scale adhesion. It is proposed that interfacial hydrogen embrittlement is produced by moist air and is the root cause of both moisture-induced, delayed scale spallation and desktop TBC failures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunhokee, C. D.; Bernardi, G.; Foster, G.
A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Arraymore » to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc{sup −1} can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.« less
Theory of attosecond delays in molecular photoionization.
Baykusheva, Denitsa; Wörner, Hans Jakob
2017-03-28
We present a theoretical formalism for the calculation of attosecond delays in molecular photoionization. It is shown how delays relevant to one-photon-ionization, also known as Eisenbud-Wigner-Smith delays, can be obtained from the complex dipole matrix elements provided by molecular quantum scattering theory. These results are used to derive formulae for the delays measured by two-photon attosecond interferometry based on an attosecond pulse train and a dressing femtosecond infrared pulse. These effective delays are first expressed in the molecular frame where maximal information about the molecular photoionization dynamics is available. The effects of averaging over the emission direction of the electron and the molecular orientation are introduced analytically. We illustrate this general formalism for the case of two polyatomic molecules. N 2 O serves as an example of a polar linear molecule characterized by complex photoionization dynamics resulting from the presence of molecular shape resonances. H 2 O illustrates the case of a non-linear molecule with comparably simple photoionization dynamics resulting from a flat continuum. Our theory establishes the foundation for interpreting measurements of the photoionization dynamics of all molecules by attosecond metrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna
2016-01-15
In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θ{sub p}. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θ{sub p}. The maximum value of the cross-correlation coefficient achievedmore » is −0.99 with a zero time delay over a wide range of θ{sub p} beyond 65° with a poor synchronization dynamic at θ{sub p} less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θ{sub p}. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.« less
JPRS Report, Science & Technology USSR: Physics & Mathematics.
1991-06-06
through a fixed delay line ( Porro prism ) and then a polarizer, the transmitted one passed through an adjustable delay line ( Porro prism ) and then a...radiation emitted by a plasma liner upon its compression into a plasma column. The target is a layer of material forming a resonance -bound ion pair...4.8338 nm wavelength corresponding to the resonance line of the 2s2 2S1/2 —> 3p 2P1/2° transition in the lithium-like A1XI ion pumping the 2s2 ’S0
Mnemonic neuronal activity in somatosensory cortex.
Zhou, Y D; Fuster, J M
1996-01-01
Single-unit activity was recorded from the hand areas of the somatosensory cortex of monkeys trained to perform a haptic delayed matching to sample task with objects of identical dimensions but different surface features. During the memory retention period of the task (delay), many units showed sustained firing frequency change, either excitation or inhibition. In some cases, firing during that period was significantly higher after one sample object than after another. These observations indicate the participation of somatosensory neurons not only in the perception but in the short-term memory of tactile stimuli. Neurons most directly implicated in tactile memory are (i) those with object-selective delay activity, (ii) those with nondifferential delay activity but without activity related to preparation for movement, and (iii) those with delay activity in the haptic-haptic delayed matching task but no such activity in a control visuo-haptic delayed matching task. The results indicate that cells in early stages of cortical somatosensory processing participate in haptic short-term memory. PMID:8927629
NASA Astrophysics Data System (ADS)
Gehlot, Bharat K.; Koopmans, Léon V. E.
2018-05-01
Contamination due to foregrounds, calibration errors and ionospheric effects pose major challenges in detection of the cosmic 21 cm signal in various Epoch of Reionization (EoR) experiments. We present the results of a study of a field centered on 3C196 using LOFAR Low Band observations, where we quantify various wide field and calibration effects such as gain errors, polarized foregrounds, and ionospheric effects. We observe a `pitchfork' structure in the power spectrum of the polarized intensity in delay-baseline space, which leaks into the modes beyond the instrumental horizon. We show that this structure arises due to strong instrumental polarization leakage (~30%) towards Cas A which is far away from primary field of view. We measure a small ionospheric diffractive scale towards CasA resembling pure Kolmogorov turbulence. Our work provides insights in understanding the nature of aforementioned effects and mitigating them in future Cosmic Dawn observations.
Compact first and second order polarization mode dispersion emulator
NASA Astrophysics Data System (ADS)
Zhang, Yang; Li, Shiguang; Yang, Changxi
2005-08-01
We propose a 1st and 2nd order polarization mode dispersion emulator (PMDE) with one variable differential group delay (DGD) element using birefringence crystals and four polarization controllers (PCs). Monte Carlo simulations demonstrate that the output 1st and 2nd order polarization mode dispersion (PMD) generated by the PMDE consists with statistic theory. Compared with former PMDEs, this design is tunable, lower-cost, and more integrated for fabrication, which shows response time of 150 ?s, response frequency of 3.8 kHz, working wavelength of 1550 nm, total power consumption of less than 3 W, working range of 0---84 ps and 0---3600 ps2 for 1st and 2nd order PMD emulation, respectively. Also, it is programmable and can be controlled by either singlechip or computer. It can be applied to study the outage probability of optical communication systems due to PMD effect and the effectiveness of PMD compensation.
Intensity correlation measurement system by picosecond single shot soft x-ray laser.
Kishimoto, Maki; Namikawa, Kazumichi; Sukegawa, Kouta; Yamatani, Hiroshi; Hasegawa, Noboru; Tanaka, Momoko
2010-01-01
We developed a new soft x-ray speckle intensity correlation spectroscopy system by use of a single shot high brilliant plasma soft x-ray laser. The plasma soft x-ray laser is characterized by several picoseconds in pulse width, more than 90% special coherence, and 10(11) soft x-ray photons within a single pulse. We developed a Michelson type delay pulse generator using a soft x-ray beam splitter to measure the intensity correlation of x-ray speckles from materials and succeeded in generating double coherent x-ray pulses with picosecond delay times. Moreover, we employed a high-speed soft x-ray streak camera for the picosecond time-resolved measurement of x-ray speckles caused by double coherent x-ray pulse illumination. We performed the x-ray speckle intensity correlation measurements for probing the relaxation phenomena of polarizations in polarization clusters in the paraelectric phase of the ferroelectric material BaTiO(3) near its Curie temperature and verified its performance.
A dual-polarized and reconfigurable reflectarray for generation of vortex radio waves
NASA Astrophysics Data System (ADS)
Li, Chen-Chen; Wu, Lin-Sheng; Yin, Wen-Yan
2018-05-01
Electromagnetic (EM) waves with orbital angular momentum (OAM) provide a new degree of freedom for channel multiplexing to improve the capacity of wireless communication. For OAM-based systems, it is important to design specific configurations to generate vortex radios. In this paper, a reconfigurable reflectarray antenna is proposed with independent control of dual polarizations. A reflective cell is proposed by properly assigning the variable capacitances of four varactors, which are placed between metal square rings of each unit. The varactors of each unit are divided into two groups and the capacitance value of each group controls the reflection phase for a single linear polarization. By using the equivalent circuit model, the reflective units and array can be designed efficiently. Smooth phase variation and good reflection efficiency are achieved. Then, the reflectarray is set into sectors and a simple phase-shifting surface model is used to generate vortex beam. Each sector is realized with reflective units satisfying desired reflection phases for different modes. This kind of OAM-generating method can reduce the required variation range of reflection phase and provide more choices for a specific OAM mode combination with dual polarization, which is helpful to reduce mutual coupling between the two linear polarizations. Finally, full-wave simulations show that the 0, ±1, ±2 modes of vortex beam are successfully generated at 3.5 GHz with arbitrary combination in dual-polarization, which is also supported by OAM modes purity and reflection efficiency analysis. Therefore, in our design, the reconfigurable OAM and spin angular momentum (SAM), related with polarization, can be utilized simultaneously and independently for high-capacity wireless communication.
Tseng, Jui-Pin
2017-02-01
This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.
1998-09-01
potential of the surface wave electromagnetic field; ea is the unit of the polarization vectors : ex = ela. = e2x= (qx/\\q\\)\\/L\\q\\/(ei + e0), ely... polarization basis of the incident wave: EB°=eB^(/kr), (1) where e„ is the cyclic unit vector , n = ±1, k is the wave vector . The equation describing...rectangular grid. From the direction determined by wave vector k0, the plane electromagnetic wave of linear polarization incidents onto the array. It
Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs
NASA Astrophysics Data System (ADS)
Iwanaga, Masanobu
2010-02-01
It has been experimentally and numerically shown that transmission at near infrared wavelengths is selectively controlled by polarizations in two-dimensional complementary plasmonic crystal slabs (2D c-PlCSs) of stacked unit cell. This feature is naturally derived by taking account of Babinet's principle. Moreover, the slight structural modification of the unit cell has been found to result in a drastic change in linear optical responses of stacked 2D c-PlCSs. These results substantiate the feasibility of 2D c-PlCSs for producing efficient polarizers with subwavelength thickness.
The origin of radio pulsar polarization
NASA Astrophysics Data System (ADS)
Dyks, J.
2017-12-01
Polarization of radio pulsar profiles involves a number of poorly understood, intriguing phenomena, such as the existence of comparable amounts of orthogonal polarization modes (OPMs), strong distortions of polarization angle (PA) curves into shapes inconsistent with the rotating vector model (RVM), and the strong circular polarization V which can be maximum (instead of zero) at the OPM jumps. It is shown that the comparable OPMs and large V result from a coherent addition of phase-delayed waves in natural propagation modes, which are produced by a linearly polarized emitted signal. The coherent mode summation implies opposite polarization properties to those known from the incoherent case, in particular, the OPM jumps occur at peaks of V, whereas V changes sign at a maximum linear polarization fraction L/I. These features are indispensable to interpret various observed polarization effects. It is shown that statistical properties of emission and propagation can be efficiently parametrized in a simple model of coherent mode addition, which is successfully applied to complex polarization phenomena, such as the stepwise PA curve of PSR B1913+16 and the strong PA distortions within core components of pulsars B1933+16 and B1237+25. The inclusion of coherent mode addition opens the possibility for a number of new polarization effects, such as inversion of relative modal strength, twin minima in L/I coincident with peaks in V, 45° PA jumps in weakly polarized emission, and loop-shaped core PA distortions. The empirical treatment of the coherency of mode addition makes it possible to advance the understanding of pulsar polarization beyond the RVM model.
Measurement of the magnetotail reconnection rate
NASA Astrophysics Data System (ADS)
Blanchard, G. T.; Lyons, L. R.; de la Beaujardière, O.; Doe, R. A.; Mendillo, M.
1996-07-01
A technique to measure the magnetotail reconnection rate from the ground is described and applied to 71 hours of measurements from 20 nights. The reconnection rate is obtained from the ionospheric flow across the polar cap boundary in the frame of reference of the boundary, measured by the Sondrestrom incoherent scatter radar. For our measurements, the polar cap boundary is located using 6300 Å auroral emissions and E region electron density. The average experimental uncertainty of the reconnection rate measurement is 11.6 mVm-1 in the ionospheric electric field. By using a large data set, we obtain the dependence of the reconnection rate on magnetic local time, the interplanetary magnetic field, and substorm activity, with much higher accuracy. We find that two thirds of the average polar cap potential drop occurs over the 4-hour segment of the separatrix centered on 2330 MLT, that the linear correlation between the reconnection electric field and the half-wave rectified dawn-dusk solar wind electric field VBs peaks between 1.0 and 1.5 hours, with a maximum linear correlation coefficient of 0.46 at 70 min; and that following substorm expansion phase onset, the reconnection electric field becomes larger than the experimental uncertainty, with an average delay of 23 min. The 70-min delay of the reconnection rate with respect to VBs is a typical convection time for a flux tube across the polar cap. This result indicates that reconnection in the magnetotail is influenced by the solar wind electric field VBs on the field line being reconnected.
Marine stratus initiative at San Francisco International Airport
DOT National Transportation Integrated Search
1996-06-25
San Francisco International Airport is one of the busiest airports in the United States and one of the highest delay airports in terms of total aircraft delay hours and number of imposed air traffic delay programs. May through September, weather fore...
NASA Astrophysics Data System (ADS)
Yolsal-Çevikbilen, Seda
2014-08-01
The Cyprean arc is considered to be a convergent boundary in the Eastern Mediterranean where the African plate is being subducted beneath the Anatolian plate. Mapping the lateral variations of seismic anisotropy parameters can provide essential hints to mantle dynamics and flow patterns in relation to the geometry and style of deformation developed under different pressure, temperature conditions around the subducting African lithosphere. In this study, seismic anisotropy parameters, fast polarization directions (ϕ) and delay times (δt) beneath the Cyprean arc and NE Mediterranean Sea are inferred from the shear wave splitting analysis performed on core-mantle refracted teleseismic shear waves (SKS phases). Earthquake data used in the present work are extracted from the continuous recordings of 8 broad-band seismic stations located in the study region for a time period during 1999 and 2012. The overall results exhibits clear evidences of mantle anisotropy with relatively uniform NE-SW aligned fast polarization directions. No abrupt changes in fast polarization directions (ϕ) are observed. However, near the Dead Sea Transform Fault, ϕ values tend to rotate from NE-SW to N-S and NW-SE in accordance with Pn anisotropy observations. Delay times (δt) vary between 0.61 s ± 0.10 s and 1.90 s ± 0.13 s. The range of delay times are generally consistent with those observed in the mantle rather than implying a crustal anisotropy. A predominant pattern of NNE-SSW fast polarization directions that is coherent with earlier SKS splitting measurements observed beneath north, central and East Anatolia suggests a SW directed asthenospheric flow caused by slab rollback process along the Hellenic and Cyprean arcs. Furthermore, apparent splitting parameters did not exhibit any significant directional dependence which may imply possibility of the presence of anisotropic models with two-layer anisotropy or dipping axis of symmetry beneath the northeast Mediterranean Sea and Cyprean arc. Consequently, a simple, single-layered and sub-horizontal anisotropy model is tentatively suggested for the study region.
Tsujimoto, Satoshi; Genovesio, Aldo; Wise, Steven P.
2012-01-01
We compared neuronal activity in the dorsolateral (PFdl), orbital (PFo) and polar (PFp) prefrontal cortex as monkeys performed three tasks. In two tasks, a cue instructed one of two strategies: stay with the previous response or shift to the alternative. Visual stimuli served as cues in one of these tasks; in the other, fluid rewards did so. In the third task, visuospatial cues instructed each response. A delay period followed each cue. As reported previously, PFdl encoded strategies (stay or shift) and responses (left or right) during the cue and delay periods, while PFo encoded strategies and PFp encoded neither strategies nor responses; during the feedback period, all three areas encoded responses, not strategies. Four novel findings emerged from the present analysis. (1) The strategy encoded by PFdl and PFo cells during the cue and delay periods was modality specific. (2) The response encoded by PFdl cells was task- and modality specific during the cue period, but during the delay and feedback periods it became task- and modality general. (3) Although some PFdl and PFo cells responded to or anticipated rewards, we could rule out reward effects for most strategy-and response-related activity. (4) Immediately before feedback, only PFp signaled responses that were correct according to the cued strategy; after feedback, only PFo signaled the response that had been made, whether correct or incorrect. These signals support a role in generating responses by PFdl, assigning outcomes to choices by PFo, and assigning outcomes to cognitive processes by PFp. PMID:22875935
Jones, Gregory H; Carrier, Michael A; Silver, Richard T; Kantarjian, Hagop
2016-03-17
High cancer drug prices are influenced by the availability of generic cancer drugs in a timely manner. Several strategies have been used to delay the availability of affordable generic drugs into the United States and world markets. These include reverse payment or pay-for-delay patent settlements, authorized generics, product hopping, lobbying against cross-border drug importation, buying out the competition, and others. In this forum, we detail these strategies and how they can be prevented. © 2016 by The American Society of Hematology.
NASA Astrophysics Data System (ADS)
Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong
2016-08-01
In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).
Liang, Haixing; Cheng, Long; Zhai, Xiaofang; Pan, Nan; Guo, Hongli; Zhao, Jin; Zhang, Hui; Li, Lin; Zhang, Xiaoqiang; Wang, Xiaoping; Zeng, Changgan; Zhang, Zhenyu; Hou, J. G.
2013-01-01
For polar/nonpolar heterostructures, Maxwell's theory dictates that the electric potential in the polar components will increase divergently with the film thickness. For LaAlO3/SrTiO3, a conceptually intriguing route, termed charge reconstruction, has been proposed to avert such “polar catastrophe”. The existence of a polar potential in LaAlO3 is a prerequisite for the validity of the charge reconstruction picture, yet to date, its direct measurement remains a major challenge. Here we establish unambiguously the existence of the residual polar potential in ultrathin LaAlO3 films on SrTiO3, using a novel photovoltaic device design as an effective probe. The measured lower bound of the residual polar potential is 1.0 V. Such a direct observation of the giant residual polar potential within the unit-cell-scale LaAlO3 films amounts to a definitive experimental evidence for the charge reconstruction picture, and also points to new technological significance of oxide heterostructures in photovoltaic and sensing devices with atomic-scale control. PMID:23756918
Li, Peng; Huang, Chuanhe; Liu, Qin
2014-01-01
In vehicular ad hoc networks, roadside units (RSUs) placement has been proposed to improve the the overall network performance in many ITS applications. This paper addresses the budget constrained and delay-bounded placement problem (BCDP) for roadside units in vehicular ad hoc networks. There are two types of RSUs: cable connected RSU (c-RSU) and wireless RSU (w-RSU). c-RSUs are interconnected through wired lines, and they form the backbone of VANETs, while w-RSUs connect to other RSUs through wireless communication and serve as an economical extension of the coverage of c-RSUs. The delay-bounded coverage range and deployment cost of these two cases are totally different. We are given a budget constraint and a delay bound, the problem is how to find the optimal candidate sites with the maximal delay-bounded coverage to place RSUs such that a message from any c-RSU in the region can be disseminated to the more vehicles within the given budget constraint and delay bound. We first prove that the BCDP problem is NP-hard. Then we propose several algorithms to solve the BCDP problem. Simulation results show the heuristic algorithms can significantly improve the coverage range and reduce the total deployment cost, compared with other heuristic methods. PMID:25436656
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru
In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupledmore » to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.« less
On the role of differenced phase-delays in high-precision wide-field multi-source astrometry
NASA Astrophysics Data System (ADS)
Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.
2007-07-01
Phase-delay is, by far, the most precise observable used in interferometry. In typical very-long-baseline-interferometry (VLBI) observations, the uncertainties of the phase-delays can be about 100 times smaller than those of the group delays. However, the phase-delays have an important handicap: they are ambiguous, since they are computed from the relative phases of the signals of the different antennas, and an indeterminate number of complete 2¶- cycles can be added to those phases leaving them unchanged. There are different approaches to solve the ambiguity problem of the phase delays (Shapiro et al., 1979; Beasley & Conway, 1995), but none of them has been ever used in observations involving more than 2.3 sources. In this contribution, we will report for the first-time wide-field multi-source astrometric analysis that has been performed on a complete set of radio sources using the phase-delay observable. The target of our analysis is the S5 polar cap sample, consisting on 13 bright ICRF sources near the North Celestial Pole. We have developed new algorithms and updated existing software to correct, in an automatic way, the ambiguities of the phase-delay and, therefore, perform a phasedelay astrometric analysis of all the sources in the sample. We will also discuss on the impact of the use of phase-delays in the astrometric precision.
32 CFR 884.12 - Delays in returning members to the United States.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Delays in returning members to the United States. 884.12 Section 884.12 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... one or more of the following are present: (1) Efforts are in progress to resolve the controversy to...
32 CFR 884.12 - Delays in returning members to the United States.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Delays in returning members to the United States. 884.12 Section 884.12 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... one or more of the following are present: (1) Efforts are in progress to resolve the controversy to...
32 CFR 884.12 - Delays in returning members to the United States.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Delays in returning members to the United States. 884.12 Section 884.12 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... one or more of the following are present: (1) Efforts are in progress to resolve the controversy to...
32 CFR 884.12 - Delays in returning members to the United States.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Delays in returning members to the United States. 884.12 Section 884.12 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... one or more of the following are present: (1) Efforts are in progress to resolve the controversy to...
32 CFR 884.12 - Delays in returning members to the United States.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Delays in returning members to the United States. 884.12 Section 884.12 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... one or more of the following are present: (1) Efforts are in progress to resolve the controversy to...
Relativistic Effects and Polarization in Three High-Energy Pulsar Models
NASA Technical Reports Server (NTRS)
Dyks, J.; Harding, Alice K.; Rudak, B.
2004-01-01
We present the influence of the special relativistic effects of aberration and light travel time delay on pulsar high-energy lightcurves and polarization characteristics predicted by three models: the two-pole caustic model, the outer gap model, and the polar cap model. Position angle curves and degree of polarization are calculated for the models and compared with the optical data on the Crab pulsar. The relative positions of peaks in gamma-ray and radio lightcurves are discussed in detail for the models. We find that the two-pole caustic model can reproduce qualitatively the optical polarization characteristics of the Crab pulsar - fast swings of the position angle and minima in polarization degree associated with both peaks. The anticorrelation between the observed flux and the polarization degree (observed in the optical band also for B0656+14) naturally results from the caustic nature of the peaks which are produced in the model due to the superposition of radiation from many different altitudes, ie. polarized at different angles. The two-pole caustic model also provides an acceptable interpretation of the main features in the Crab's radio profile. Neither the outer gap model nor the polar cap model are able to reproduce the optical polarization data on the Crab. Although the outer gap model is very successful in reproducing the relative positions of gamma-ray and radio peaks in pulse profiles, it can reproduce the high-energy lightcurves only when photon emission from regions very close to the light cylinder is included.
Polarization Imaging and Insect Vision
ERIC Educational Resources Information Center
Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.
2010-01-01
For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication.…
Large tuning of birefringence in two strip silicon waveguides via optomechanical motion.
Ma, Jing; Povinelli, Michelle L
2009-09-28
We present an optomechanical method to tune phase and group birefringence in parallel silicon strip waveguides. We first calculate the deformation of suspended, parallel strip waveguides due to optical forces. We optimize the frequency and polarization of the pump light to obtain a 9 nm deformation for an optical power of 20 mW. Widely tunable phase and group birefringence can be achieved by varying the pump power, with maximum values of 0.026 and 0.13, respectively. The giant phase birefringence allows linear to circular polarization conversion within 30 microm for a pump power of 67 mW. The group birefringence gives a tunable differential group delay of 6fs between orthogonal polarizations. We also evaluate the tuning performance of waveguides with different cross sections.
High efficiency and high-energy intra-cavity beam shaping laser
NASA Astrophysics Data System (ADS)
Yang, Hailong; Meng, Junqing; Chen, Weibiao
2015-09-01
We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.
NASA Astrophysics Data System (ADS)
Boll, D. I. R.; Fojón, O. A.
2017-12-01
We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru
To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximummore » position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.« less
Sayles, Mark; Winter, Ian Michael
2007-09-26
Spike trains were recorded from single units in the ventral cochlear nucleus of the anaesthetised guinea-pig in response to dynamic iterated rippled noise with positive and negative gain. The short-term running waveform autocorrelation functions of these stimuli show peaks at integer multiples of the time-varying delay when the gain is +1, and troughs at odd-integer multiples and peaks at even-integer multiples of the time-varying delay when the gain is -1. In contrast, the short-term autocorrelation of the Hilbert envelope shows peaks at integer multiples of the time-varying delay for both positive and negative gain stimuli. A running short-term all-order interspike interval analysis demonstrates the ability of single units to represent the modulated pitch contour in their short-term interval statistics. For units with low best frequency (approximate < or = 1.1 kHz) the temporal discharge pattern reflected the waveform fine structure regardless of unit classification (Primary-like, Chopper). For higher best frequency units the pattern of response varied according to unit type. Chopper units with best frequency approximate > or = 1.1 kHz responded to envelope modulation; showing no difference between their response to stimuli with positive and negative gain. Primary-like units with best frequencies in the range 1-3 kHz were still able to represent the difference in the temporal fine structure between dynamic rippled noise with positive and negative gain. No unit with a best frequency above 3 kHz showed a response to the temporal fine structure. Chopper units in this high frequency group showed significantly greater representation of envelope modulation relative to primary-like units with the same range of best frequencies. These results show that at the level of the cochlear nucleus there exists sufficient information in the time domain to represent the time-varying pitch associated with dynamic iterated rippled noise.
Mars: Stratigraphy of Western Highlands and Polar Regions
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Scott, D. H.; Tuesink, M. F.
1985-01-01
Geologic mapping and stratigraphic studies of Mars based on Viking images improved knowledge of the relative age and occurrence of geologic units on a global scale. Densities of geologic units or features during the Noarchian, Hesperian, and Amazonian periods are indicated for the North and South polar regions as well as the equatorial region of Mars. Cumulative counts of crater size frequencies for craters larger than 2 km in diameter on plateau units mapped in the western region of Mars counts indicate that the plateau terrain as a whole was thinly resurfaced during the Hesperian Period, and a large proportion of pre-existing craters less than 10 to 15 km in diameter was buried. The formation of northern plains, subpolar highlands, and both polar regions is also described.
Dolfi, D; Joffre, P; Antoine, J; Huignard, J P; Philippet, D; Granger, P
1996-09-10
The experimental demonstration and the far-field pattern characterization of an optically controlled phased-array antenna are described. It operates between 2.5 and 3.5 GHz and is made of 16 radiating elements. The optical control uses a two-dimensional architecture based on free-space propagation and on polarization switching by N spatial light modulators of p × p pixels. It provides 2(N-1) time-delay values and an analog control of the 0 to 2π phase for each of the p × p signals feeding the antenna (N = 5, p = 4).
Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development
NASA Technical Reports Server (NTRS)
Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.;
2015-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.
Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development
NASA Astrophysics Data System (ADS)
Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.
2016-08-01
The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.
Metasurface polarization splitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slovick, Brian A.; Zhou, You; Yu, Zhi Gang
Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. Lastly, the high polarization efficiency,more » low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.« less
Metasurface polarization splitter
Slovick, Brian A.; Zhou, You; Yu, Zhi Gang; ...
2017-02-20
Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. Lastly, the high polarization efficiency,more » low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.« less
Early, James W.; Lester, Charles S.
2004-01-13
Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.
A low-cost polarimeter for an undergraduate laboratory to study the polarization pattern of skylight
NASA Astrophysics Data System (ADS)
Abayaratne, Chula P.; Bandara, Vibodha
2017-03-01
A simple, low-cost, fully automated polarimeter, which demonstrates fundamental properties of skylight scattering and polarization for undergraduate physics students, is described. The polarimeter includes a microprocessor-based control unit, a Sun tracker, an elevation-azimuth mount with two degrees of freedom, and a polarization sensor unit equipped with a light-dependent resistor for measuring light intensity. Results obtained in the principal plane of the Sun using the polarimeter on a relatively clear day, together with the theoretically expected results for a molecular atmosphere, are presented. A root-mean-square error comparison indicates fairly good agreement between theory and experiment. Construction and experimentation with the polarimeter will provide students with insight into important physical concepts involved in skylight scattering and polarization as well as improve their instrumentation capabilities.
Pilot tests of a seat belt gearshift delay on the belt use of commercial fleet drivers.
DOT National Transportation Integrated Search
2009-12-01
the seat belt was buckled. Participants, commercial drivers from the United States and Canada who did not consistently wear their seat belts, could avoid the delay by fastening their seat belts. Unbelted participants experienced a delay of either a c...
Shear Wave Splitting Inversion in a Complex Crust
NASA Astrophysics Data System (ADS)
Lucas, A.
2015-12-01
Shear wave splitting (SWS) inversion presents a method whereby the upper crust can be interrogated for fracture density. It is caused when a shear wave traverses an area of anisotropy, splits in two, with each wave experiencing a different velocity resulting in an observable separation in arrival times. A SWS observation consists of the first arrival polarization direction and the time delay. Given the large amount of data common in SWS studies, manual inspection for polarization and time delay is considered prohibitively time intensive. All automated techniques used can produce high amounts of observations falsely interpreted as SWS. Thus introducing error into the interpretation. The technique often used for removing these false observations is to manually inspect all SWS observations defined as high quality by the automated routine, and remove false identifications. We investigate the nature of events falsely identified compared to those correctly identified. Once this identification is complete we conduct a inversion for crack density from SWS time delay. The current body of work on linear SWS inversion utilizes an equation that defines the time delay between arriving shear waves with respect to fracture density. This equation makes the assumption that no fluid flow occurs as a result of the passing shear wave, a situation called squirt flow. We show that the assumption is not applicable in all geological situations. When it is not true, its use in an inversion produces a result which is negatively affected by the assumptions. This is shown to be the case at the test case of 6894 SWS observations gathered in a small area at Puna geothermal field, Hawaii. To rectify this situation, a series of new time delay formulae, applicable to linear inversion, are derived from velocity equations presented in literature. The new formula use a 'fluid influence parameter' which indicates the degree to which squirt flow is influencing the SWS. It is found that accounting for squirt flow better fits the data and is more applicable. The fluid influence factor that best describes the data can be identified prior to solving the inversion. Implementing this formula in a linear inversion has a significantly improved fit to the time delay observations than that of the current methods.
NASA Technical Reports Server (NTRS)
Bagus, P. S.; Hermann, K.; Bauschlicher, C. W., Jr.
1984-01-01
The nature of the bonding of CO and NH3 ligands to Al is analyzed, and the intra-unit charge polarization and inter-unit donation for the interaction of ligands with metals are studied. The consequences of metal-to-ligand and ligand-to-metal charge transfer are separately considered by performing a constrained space orbital variation (CSOV) with the electrons of the metal member of the complex in the field of frozen ligand. The electrons of the metal atoms are then frozen in the relaxed distribution given by the CSOV SCF wave function and the ligand electrons are allowed to relax. Quantitative measures of the importance of inter-unit charge transfers and intra-unit polarization are obtained using results of SCF studies of Al4CO and Al4NH3 clusters chosen to simulate the adsorption of the ligands at an on-top side of the Al(111) surface. The electrostatic attraction of the effective dipole moments of the metal and ligand units makes an important contribution to the bond.
The Primordial Inflation Polarization Explorer: Science from Circular Polarization Measurements
NASA Astrophysics Data System (ADS)
Switzer, Eric; Ade, P.; Benford, D. J.; Bennett, C. L.; Chuss, D. T.; Dotson, J. L.; Eimer, J.; Fixsen, D. J.; Halpern, M.; Hinshaw, G. F.; Irwin, K.; Jhabvala, C.; Johnson, B.; Kogut, A. J.; Lazear, J.; Mirel, P.; Moseley, S. H.; Staguhn, J.; Tucker, C. E.; Weston, A.; Wollack, E.
2014-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne CMB polarimeter designed to constrain the B-mode signature of cosmological inflation. Sequential one-day flights from Northern- and Southern- Hemisphere sites will yield maps of Stokes I, Q, U and V at 200, 270, 350 and 600 GHz over 85% of the sky. The full optical path is cooled to 1.5 K by liquid helium in the ARCADE bucket dewar, and a variable-delay polarization modulator (VPM) at the front of the optics modulates the polarization response. Independent Q and U cameras each have two 32x40 Transition Edge Sensor array receivers. In addition to its primary inflationary science goal, PIPER will also measure the circular (Stokes V) polarization to a depth similar to that of the primary linear polarization. The circular polarization has received relatively little attention in large-area surveys, with constraints from the 1980’s and recent results by the Milan Polarimeter. Astrophysical circular polarization is generally tied to the presence of magnetic fields, either in relativistic plasmas or Zeeman splitting of resonances. These effects are thought to be undetectable at PIPER's frequencies and resolution, despite the depth. The expectation of a null result makes the deep Stokes V map a good cross-check for experimental systematics. More fundamentally, the fact that the sky is expected to be dark in Stokes V makes it a sector sensitive to processes such as Lorentz-violating terms in the standard model or magnetic fields in the CMB era.
Design of a dual linear polarization antenna using split ring resonators at X-band
NASA Astrophysics Data System (ADS)
Ahmed, Sadiq; Chandra, Madhukar
2017-11-01
Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).
Hidalgo, Andrés; Chang, Jungshan; Jang, Jung-Eun; Peired, Anna J.; Chiang, Elaine Y.; Frenette, Paul S.
2009-01-01
Selectins and their ligands mediate leukocyte rolling allowing interactions with chemokines that lead to integrin activation and arrest. Here, we demonstrate that E-selectin is critical to induce a secondary wave of activating signals transduced specifically by E-selectin ligand-1, that induces polarized, activated αMβ2 integrin clusters at the leading edge of crawling neutrophils, allowing the capture of circulating erythrocytes or platelets. In a humanized model of sickle cell disease (SCD), the capture of erythrocytes by αMβ2 microdomains leads to acute lethal vascular occlusions. In a model of transfusion-related acute lung injury, polarized neutrophils capture circulating platelets, resulting in the generation of oxidative species that produces vascular damage and lung injury. Inactivation of E-selectin or αMβ2 prevented tissue injury in both inflammatory models, suggesting broad implications of this paradigm in thrombo-inflammatory diseases. These results indicate that endothelial selectins can influence neutrophil behavior beyond its canonical rolling step through delayed, organ-damaging, polarized activation. PMID:19305412
Beirowski, Bogdan; Gustin, Jason; Armour, Sean M; Yamamoto, Hiroyasu; Viader, Andreu; North, Brian J; Michán, Shaday; Baloh, Robert H; Golden, Judy P; Schmidt, Robert E; Sinclair, David A; Auwerx, Johan; Milbrandt, Jeffrey
2011-10-25
The formation of myelin by Schwann cells (SCs) occurs via a series of orchestrated molecular events. We previously used global expression profiling to examine peripheral nerve myelination and identified the NAD(+)-dependent deacetylase Sir-two-homolog 2 (Sirt2) as a protein likely to be involved in myelination. Here, we show that Sirt2 expression in SCs is correlated with that of structural myelin components during both developmental myelination and remyelination after nerve injury. Transgenic mice lacking or overexpressing Sirt2 specifically in SCs show delays in myelin formation. In SCs, we found that Sirt2 deacetylates Par-3, a master regulator of cell polarity. The deacetylation of Par-3 by Sirt2 decreases the activity of the polarity complex signaling component aPKC, thereby regulating myelin formation. These results demonstrate that Sirt2 controls an essential polarity pathway in SCs during myelin assembly and provide insights into the association between intracellular metabolism and SC plasticity.
Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials
NASA Astrophysics Data System (ADS)
Kang, Lei; Hao Jiang, Zhi; Yue, Taiwei; Werner, Douglas H.
2015-07-01
We provide the first experimental demonstration of the handedness dependent electromagnetically induced transparency (EIT) in chiral metamaterials during the interaction with circularly polarized waves. The observed chiral-sensitive EIT phenomena arise from the coherent excitation of a non-radiative mode in the component split ring resonators (SRRs) produced by the corresponding Born-Kuhn type (radiative) resonators that are responsible for the pronounced chirality. The coherent coupling, which is dominated by the bonding and antibonding resonances of the Born-Kuhn type resonators, leads to an extremely steep dispersion for a circularly polarized wave of predefined handedness. Accordingly, retrieved effective medium parameters from simulated results further reveal a difference of 80 in the group indices for left- and right-handed circularly polarized waves at frequencies within the EIT window, which can potentially result in handedness-sensitive pulse delays. These chiral metamaterials which enable a handedness dependent EIT effect may provide more degrees of freedom for designing circular polarization based communication devices.
Zhu, Yechuan; Yuan, Weizheng; Li, Wenli; Sun, Hao; Qi, Kunlun; Yu, Yiting
2018-01-15
Slit arrays based on noble metals have been widely proposed as planar transverse-magnetic (TM)-lenses, illuminated by a linearly polarized light with the polarization perpendicular to slits and implementing the focusing capability beyond the diffraction limit. However, due to intrinsic plasmonic losses, these TM-lenses cannot work efficiently in the ultraviolet wavelengths. In this Letter, taking advantage of the unique transmission through metallic slits not involving plasmonic losses, a metallic slit array with transverse-electric (TE)-polarized design is proposed, showing for the first time, to the best of our knowledge, the realization of sub-diffraction-limit focusing for ultraviolet light. Additionally, in contrast to the situations of TM-lenses, a wider slit leads to a greater phase delay and much larger slits can be arranged to construct the TE-lenses, which is quite beneficial for practical fabrication. Furthermore, deep-subwavelength focusing can be achieved by utilizing the immersing technology.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Chuss, David T.; Ade, Peter A. R.; Benford, Dominic J.; Bennett, Charles L.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinderks, James;
2010-01-01
The Primordial Inflation Polarization Explorer (PIPER) is it balloon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (C-N-113). Each flight will be configured for a single frequency, but in order to aid in the removal of the polarized foreground signal due to Galactic dust, the filters will be changed between flights. In this way, the CMB polarization at a total of four different frequencies (200, 270, 350, and 600 GHz) will be, measured on large angular scales. PIPER consists of a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 x 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the linear Stokes parameter to which the telescope is sensitive. There are several advantages to this architecture. First, by modulating at the front of the optics, instrumental polarization is unmodulated and is therefore cleanly separated from source polarization. Second, by implementing this system with the appropriate symmetry, systematic effects can be further mitigated. In the PIPER design, many of the. systematics are manifest in the unmeasured linear Stokes parameter for each telescope and this can be separated from the desired signal. Finally, the modulation cycle never mixes the Q and U linear Stokes parameters, and thus residuals in the modulation do not twist the observed polarization vector. This is advantageous because measuring the angle of linear polarization is critical for separating the inflationary signal from other polarized components.
Design study of the PEPSI polarimeter for the LBT
NASA Astrophysics Data System (ADS)
Hofmann, A.; Strassmeier, K. G.; Woche, M.
2002-07-01
We present the conceptual design of the two polarimetric channels of the PEPSI spectropolarimeter for the Large Binocular Telescope (LBT). The two direct Gregorian f/15 focii of the LBT will take up two identical but independent full-Stokes IQUV polarimeters that themselves fiberfeed a high-resolution Echelle spectrograph (see the accompanying paper by Zerbi et al.). The polarizing units will be based on super-achromatic Fresnel-rhomb retarders and Foster prisms. A total of four fibers are foreseen to simultaneously direct two ordinary and two extraordinary light beams to the Echelle spectrograph. Both polarimetric units are layed out in a modular design, each one optimized to the polarization state in which it is used. A number of observing modes can be chosen that are optimized to the type of polarization that is expected from the target, e.g. circularly and linearly polarized light simultaneously, or linearly polarized light in both polarimeters, or integral light from one and polarized light from the other telescope, a.s.o.. Calibration would be provided for each polarimeter separately.
Hospital variation in time to defibrillation after in-hospital cardiac arrest.
Chan, Paul S; Nichol, Graham; Krumholz, Harlan M; Spertus, John A; Nallamothu, Brahmajee K
2009-07-27
Delays to defibrillation are associated with worse survival after in-hospital cardiac arrest, but the degree to which hospitals vary in defibrillation response times and hospital predictors of delays remain unknown. Using hierarchical models, we evaluated hospital variation in rates of delayed defibrillation (>2 minutes) and its impact on survival among 7479 adult inpatients with cardiac arrests at 200 hospitals within the National Registry of Cardiopulmonary Resuscitation. Adjusted rates of delayed defibrillation varied substantially among hospitals (range, 2.4%-50.9%), with hospital-level effects accounting for a significant amount of the total variation in defibrillation delays after adjusting for patient factors. We found a 46% greater odds of patients with identical covariates getting delayed defibrillation at one randomly selected hospital compared with another. Among traditional hospital factors evaluated, however, only bed volume (reference category: <200 beds; 200-499 beds: odds ratio [OR], 0.62 [95% confidence interval {CI}, 0.48-0.80]; >or=500 beds: OR, 0.74 [95% CI, 0.53-1.04]) and arrest location (reference category: intensive care unit; telemetry unit: OR, 1.92 [95% CI, 1.65-2.22]; nonmonitored unit: OR, 1.90 [95% CI, 1.61-2.24]) were associated with differences in rates of delayed defibrillation. Wide variation also existed in adjusted hospital rates of survival to discharge (range, 5.3%-49.6%), with higher survival among hospitals in the top-performing quartile for defibrillation time (compared with the bottom quartile: OR for top quartile, 1.41 [95% CI, 1.11-1.77]). Rates of delayed defibrillation vary widely among hospitals but are largely unexplained by traditional hospital factors. Given its association with improved survival, future research is needed to better understand best practices in the delivery of defibrillation at top-performing hospitals.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... capabilities of this instrument are expanded spectral reach, x-ray beams with controllable polarization, and... optical antennas, plasmonics in metals and semiconductors (including graphene), photonic crystals, and... the Linac Coherent Light Source II project's ray probe pulses with controllable inter-pulse time delay...
Determination of plane stress state using terahertz time-domain spectroscopy
Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili
2016-01-01
THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials. PMID:27824112
NASA Astrophysics Data System (ADS)
Löberich, Eric; Bokelmann, Götz
2016-04-01
Anisotropic effects of wave propagation, observed in the Earth, provide interesting applications in basic research and practice, e.g., in reservoir geophysics and other fields. Teleseismic waves often evidence upper mantle anisotropy, as created by aligned olivine grains. While each grain is associated with orthorhombic symmetry, the preferred alignment may lead to a transversely isotropic characteristic. Considering body waves passing through an anisotropic medium, a splitting of shear waves can usually be observed, since their transverse polarization leads to a separation of the two quasi-shear waves. The associated splitting-delay is generated if the related fast and slow seismic velocities differ. Most of the previous shear-wave splitting investigations were based on the common assumption of near-vertical incidence. However, the influence of increasing incidence angles, which may lead to angular dependent splitting-delay and fast polarization orientation, has been pointed out by Davis (2003). Our study investigates the occurrence of these postulated dependences on azimuth and incidence angle (distance), examining splitting observations in SKS-recordings at selected broadband stations (e.g., Djibouti and Red Lake, Ontario).
Determination of plane stress state using terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili
2016-11-01
THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials.
Metasurface polarization splitter
Slovick, Brian A.; Zhou, You; Yu, Zhi Gang; Kravchenko, Ivan I.; Briggs, Dayrl P.; Moitra, Parikshit; Krishnamurthy, Srini
2017-01-01
Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits. This article is part of the themed issue ‘New horizons for nanophotonics’. PMID:28220002
The United States Polar Rock Repository: A geological resource for the Earth science community
Grunow, Annie M.; Elliot, David H.; Codispoti, Julie E.
2007-01-01
The United States Polar Rock Repository (USPRR) is a U. S. national facility designed for the permanent curatorial preservation of rock samples, along with associated materials such as field notes, annotated air photos and maps, raw analytic data, paleomagnetic cores, ground rock and mineral residues, thin sections, and microfossil mounts, microslides and residues from Polar areas. This facility was established by the Office of Polar Programs at the U. S. National Science Foundation (NSF) to minimize redundant sample collecting, and also because the extreme cold and hazardous field conditions make fieldwork costly and difficult. The repository provides, along with an on-line database of sample information, an essential resource for proposal preparation, pilot studies and other sample based research that should make fieldwork more efficient and effective. This latter aspect should reduce the environmental impact of conducting research in sensitive Polar Regions. The USPRR also provides samples for educational outreach. Rock samples may be borrowed for research or educational purposes as well as for museum exhibits.
A retrospective study of end-stage renal disease in captive polar bears (Ursus maritimus).
LaDouceur, Elise E B; Davis, Barbara; Tseng, Flo
2014-03-01
This retrospective study summarizes 11 cases of end-stage renal disease (ESRD) in captive polar bears (Ursus maritimus) from eight zoologic institutions across the United States and Canada. Ten bears were female, one was male, and the mean age at the time of death was 24 yr old. The most common clinical signs were lethargy, inappetence, and polyuria-polydipsia. Biochemical findings included azotemia, anemia, hyperphosphatemia, and isosthenuria. Histologic examination commonly showed glomerulonephropathies and interstitial fibrosis. Based on submissions to a private diagnostic institution over a 16-yr period, ESRD was the most commonly diagnosed cause of death or euthanasia in captive polar bears in the United States, with an estimated prevalence of over 20%. Further research is needed to discern the etiology of this apparently common disease of captive polar bears.
Xie, Lin; Cui, Xiaowei; Zhao, Sihao; Lu, Mingquan
2017-01-01
It is well known that multipath effect remains a dominant error source that affects the positioning accuracy of Global Navigation Satellite System (GNSS) receivers. Significant efforts have been made by researchers and receiver manufacturers to mitigate multipath error in the past decades. Recently, a multipath mitigation technique using dual-polarization antennas has become a research hotspot for it provides another degree of freedom to distinguish the line-of-sight (LOS) signal from the LOS and multipath composite signal without extensively increasing the complexity of the receiver. Numbers of multipath mitigation techniques using dual-polarization antennas have been proposed and all of them report performance improvement over the single-polarization methods. However, due to the unpredictability of multipath, multipath mitigation techniques based on dual-polarization are not always effective while few studies discuss the condition under which the multipath mitigation using a dual-polarization antenna can outperform that using a single-polarization antenna, which is a fundamental question for dual-polarization multipath mitigation (DPMM) and the design of multipath mitigation algorithms. In this paper we analyze the characteristics of the signal received by a dual-polarization antenna and use the maximum likelihood estimation (MLE) to assess the theoretical performance of DPMM in different received signal cases. Based on the assessment we answer this fundamental question and find the dual-polarization antenna’s capability in mitigating short delay multipath—the most challenging one among all types of multipath for the majority of the multipath mitigation techniques. Considering these effective conditions, we propose a dual-polarization sequential iterative maximum likelihood estimation (DP-SIMLE) algorithm for DPMM. The simulation results verify our theory and show superior performance of the proposed DP-SIMLE algorithm over the traditional one using only an RHCP antenna. PMID:28208832
Geologic map of the MTM 85080 Quadrangle, Chasma Boreale Region of Mars
Herkenhoff, K. E.
2003-01-01
The polar deposits on Mars probably record martian climate history over the last 107 to 109 years (for example, Thomas and others, 1992). The area shown on this map includes polar layered deposits and polar ice, as well as some outcrops of older, underlying terrain. This quadrangle was mapped using Viking Orbiter images in order to study the relations among erosional and depositional processes on the north polar layered deposits and to compare them with the results of previous 1:500,000-scale mapping of the south polar layered deposits. Published geologic maps of the north polar region of Mars are based on images acquired by Mariner 9 and the Viking Orbiters. The extent of the layered deposits and other units varies among previous maps, in particular within Chasma Boreale. The present map agrees most closely with the map by Dial and Dohm (1994): the mantle material is exposed farther north than mapped by Tanaka and Scott (1987). The polar ice cap, areas of partial frost cover, the layered deposits, and two nonvolatile surface units-dust mantle and dark material-were mapped in the south polar region by Herkenhoff and Murray (1990a) at 1:2,000,000 scale using a color mosaic of Viking Orbiter images. Viking Orbiter rev 726, 768, and 771 color mosaics (taken during the northern summer of 1978) were constructed and used to identify similar color/albedo units in the north polar region, including the dark, saltating material that appears to have sources within the layered deposits. However, no dark material has been recognized in this map area. No significant difference in color exists between the layered deposits and the mantle material mapped by Dial and Dohm (1994), indicating that they are either composed of the same materials or are both covered by eolian debris. Therefore, in this map area the color mosaics are most useful for identifying areas of partial frost cover. Because the resolution of the color mosaics is not sufficient to map the color/albedo units in detail at 1:500,000-scale, contacts between them were recognized and mapped using higher resolution black-and-white Viking Orbiter images. The Viking Orbiter 2 images used to construct the map base were taken during the northern summer of 1976 (mostly Ls=133?-135?), with resolutions typically around 60 m/pixel. As noted on the published base, errors of up to 5 km exist in the placement of images in the base map; such errors are evident upon comparison of sheet 1 (summer) and sheet 2 (spring). Therefore, a new photomosaic base was created during map production and the linework was edited to match the new base. No craters have been found in the north polar layered deposits or polar ice cap. The observed lack of craters larger than 300 m implies that the surfaces of these units are no more than 100,000 years old or that they have been resurfaced at a rate of at least 2.3 mm/yr. The recent cratering flux on Mars is poorly constrained, so inferred resurfacing rates and ages of surface units are uncertain by at least a factor of 2.
Rebuttal of "Polar bear population forecasts: a public-policy forecasting audit"
Steven C. Amstrup; Hal Caswell; Eric DeWeaver; Ian Stirling; David C. Douglas; Bruce G. Marcot; Christine M. Hunter
2009-01-01
Observed declines in the Arctic sea ice have resulted in a variety of negative effects on polar bears (Ursus maritimus). Projections for additional future declines in sea ice resulted in a proposal to list polar bears as a threatened species under the United States Endangered Species Act. To provide information for the Department of the Interior...
The Impact of Competing Time Delays in Stochastic Coordination Problems
NASA Astrophysics Data System (ADS)
Korniss, G.; Hunt, D.; Szymanski, B. K.
2011-03-01
Coordinating, distributing, and balancing resources in coupled systems is a complex task as these operations are very sensitive to time delays. Delays are present in most real communication and information systems, including info-social and neuro-biological networks, and can be attributed to both non-zero transmission times between different units of the system and to non-zero times it takes to process the information and execute the desired action at the individual units. Here, we investigate the importance and impact of these two types of delays in a simple coordination (synchronization) problem in a noisy environment. We establish the scaling theory for the phase boundary of synchronization and for the steady-state fluctuations in the synchronizable regime. Further, we provide the asymptotic behavior near the boundary of the synchronizable regime. Our results also imply the potential for optimization and trade-offs in stochastic synchronization and coordination problems with time delays. Supported in part by DTRA, ARL, and ONR.
Shi, Liangyu; Srivastava, Abhishek Kumar; Wai Tam, Alwin Ming; Chigrinov, Vladimir Grigorievich; Kwok, Hoi Sing
2017-09-01
We reveal a 2D-3D switchable lens unit that is based on a polarization-sensitive microlens array and a polarization selector unit made of an electrically suppressed helix ferroelectric liquid crystal (ESHFLC) cell. The ESHFLCs offer a high contrast ratio (∼10k∶1) between the crossed polarizers at a low applied electric field (∼1.7 V/μm) with a small switching time (<50 μs). A special driving scheme, to switch between a 2D and 3D mode, has been developed to avoid unwanted issues related to DC accumulation in the ferroelectric liquid crystal without affecting its optical quality. The proposed lens unit is characterized by low power consumption, ultrafast response, and 3D crosstalk <5%, and can therefore find application in TVs, cell phones, etc.
NASA Astrophysics Data System (ADS)
Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho
2013-07-01
We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.
COR1 Engineering Test Unit Measurements at the Mauna Loa Solar Observatory, September 2003
NASA Technical Reports Server (NTRS)
Thompson, William; Reginald, Nelson; Streander, Kim
2003-01-01
The COR1 Engineering Test Unit (ETU), which had been previously tested at the NCAR/HAO and NRL test facilities, was modified into an instrument capable of observing the Sun. It was then taken to the Mauna Loa Solar Observatory to observe the corona. The changes made to observe the Sun were as follows: 1. The plate scale was changed to accommodate the smaller Apogee camera. This change had already been made for the NRL tests. 2. The previous Oriel polarizer was replaced with a commercial Polarcor polarizer from Newport to be more flight-like. However, because of cost and availability considerations, this polarizer was smaller than those which will be used for flight. 3. A structure was placed around the back section of the instrument, to protect it from stray light. 4. A pointing spar borrowed from HAO was used to track the Sun. A few days into the test, it became evident that some artifacts were appearing in the data, and these artifacts were changing as the polarizer was rotated. It was decided to test two other polarizers, the Oriel polarizer which had been used in the previous tests at HAO and NRL, and a Nikon polarizer which was borrowed from a camera belonging to one of the observatory staff members. These three polarizers had much different qualities are shown.
Seismic Anisotropy Beneath Eastern North America: Results from Multi-Event Inversion
NASA Astrophysics Data System (ADS)
Li, Y.; Levin, V. L.; Chen, X.
2017-12-01
Seismic anisotropy observed from the split core-refracted shear phases reflects upper mantle deformation. To characterize anisotropic signatures beneath eastern North America, we collected observations along a 1300 km long array from James Bay to the Fundy Basin. The averaged splitting parameters of individual sites show uniform fast polarization orientation of 80° and delay times linearly decreasing from 1.0 s in the Appalachians to 0.5 s in the Superior Province. We also see directional variation of fast polarizations at most sites, which is a likely effect of vertical changes in anisotropic properties. For sites with 10 or more observations, we used a multi-event inversion technique to solve for the underlying anisotropic structure. The technique considers the NULL observations from single-event analysis that are excluded from the averaged splitting parameters. For models with a single 100 km thick anisotropic layer with a horizontal fast axis, we find up to 6% of anisotropy in the Appalachian Orogen, equivalent to a splitting delay time of 1.5 s. Anisotropy strength reduces to 1.8% in the Superior Province, equivalent to delay times under 0.5 s. The overall decrease in anisotropic strength is modified by local changes of up to 2%, suggesting small-scale local variations near the surface. Orientations of the fast axes change from 60° in the Appalachian Orogen to 90° in the Superior Province, and are also modulated by local deviations. In the Appalachian Orogen the fast axes are close to the absolute plate motion in a hot-spot reference frame, while those in the Superior Province differ from it by almost 30°. Average values of splitting delays agree well with results of inversions in the Superior Province, and diverge in the Appalachians. Conversely, averaged fast polarizations match inversion results in the Appalachians, and are systematically different in the Superior Province. For an set of sites with recording periods exceeding 5 years, we will test more complicated models of anisotropy, including dipping fast axes and multiple layers. Figure 1. The best fit anisotropic parameters, orientations of fast axes (top) and strength of anisotropy (bottom), assuming a single 100 km thick horizontal layer with a horizontal fast axis. The red line in top represents the absolute plate motion in a hot spot reference frame.
NASA Astrophysics Data System (ADS)
Martini, Lara; Boll, Diego I. R.; Fojón, Omar A.
2017-08-01
Basic reactions involving water molecules are essential to understand the interaction between radiation and the biological tissue because living cells are composed mostly by water. Therefore, the knowledge of ionization of the latter is crucial in many domains of Biology and Physics. So, we study theoretically the photoionization of water molecules by extreme ultraviolet attopulse trains assisted by lasers in the near-infrared range. We use a separable Coulomb-Volkov model in which the temporal evolution of the system can be divided into three stages allowing spatial and temporal separation for the Coulomb and Volkov final state wavefunctions. First, we analyze photoelectron angular distributions for different delays between the attopulse train and the assistant laser field. We compare our results for water and Ne atoms as they belong to the same isoelectronic series. Moreover, we contrast our calculations with previous theoretical and experimental work for Ar atoms due to the similarities of the orbitals involved in the reaction. Second, we study the effect of varying the relative orientations of the attopulse and laser field polarizations and we compare our predictions with other theories and experiments. We expect these studies contribute to the improvement of polarization experiments and the development of the attopulse trains and assistant laser fields technologies. Finally, we hope our work promote progress on the control of the chemical reactivity of water molecules since this could be useful in different fields such as radiobiology and medical physics.
NASA Astrophysics Data System (ADS)
Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej
2017-09-01
We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.
Humic supramolecular structures have polar surfaces and unpolar cores in native soil.
Fischer, Thomas
2017-09-01
It was the aim of our study to prove the hypothesis that humic substances (HS) in native soil are spatially arranged in descending order of polarity, meaning that highly polar supramolecular subunits shield less polar subunits against the free soil solution and form layers of descending polarity. To address this aim, we consecutively extracted humic substances from soil with 8 M (HS1), 4 M (HS2), 2 M (HS3), 1 M (HS4) and 0.5 M LiCl (HS5) solution in 0.2 M LiOH after Cu 2+ adsorption in batch soil column experiments. Adsorption was performed for 1, 10 and 60 min with concentrations ranging from 9.5 to 110 mg L -1 Cu 2+ in 0.02 M CaCl 2 solution. We assumed that high ionic strength facilitates extraction of most polar organic compounds, with polarity of the extracted HS decreasing with decreasing ionic strength, and that Cu extracted together with the successive HS solely formed coordination complexes, facilitating its use as a tracer for organic matter studies. We hypothesized a delayed Cu adsorption on the less polar fractions in case of spatial shielding due to interception on overlying fractions, and a concurrent Cu adsorption in case of random spatial arrangement. It was concluded that humic substances are shielded against each other in the order of descending polarity of the supramolecular subunits (free soil solution | HS1 | HS2 | HS3 | HS4 | HS5). Copyright © 2017 Elsevier Ltd. All rights reserved.
Gravity and Extreme Magnetism SMEX
NASA Technical Reports Server (NTRS)
Swank, Jean; Kallman, Timothy R.; Jahoda, Keith M.
2008-01-01
Gas accreting ont,o black holes and neutron stars form a dynamic system generating X-rays with spectroscopic signatures and varying on time scales determined by the system. The radiation from various parts of these systems is surely polarized and compact sources have been calculated to give rise to net polarization from the unresolved sum of the radiation from the systems. Polarization has been looked to for some time as also bearing the imprint of strong gravity and providing complementary information that could resolve ambiguities between the physical models that can give rise to frequencies, time delays, and spectra. In the cases of both stellar black holes and supermassive black holes the net polarizations predicted for probable disk and corona models are less than 10 needed. This sensitivity can be achieved, even for sources as faint as 1 milliCrab, in the Gravity and Extreme Magnetism SMEX (GEMS) mission that uses foil mirrors and Time Projection Chamber detectors. Similarities have been pointed out between the timing and the spectral characteristics of low mass X-ray binaries and stellar black hole sources. Polarization measurements for these sources could play a role in determining the configuration of the disk and the neutron star.
Distributed vibration fiber sensing system based on Polarization Diversity Receiver
NASA Astrophysics Data System (ADS)
Zhang, Junan; Jiang, Peng; Hu, Zhengliang; Hu, Yongming
2016-10-01
In this paper, we propose a distributed vibration fiber sensing system based on Polarization Diversity Receiver(PDR). We use Acoustic Optical Modulator(AOM) to generate pulse light and an unbalanced M-Z interferometer to generate two pulse light with a certain time delay in the same period. As the pulse lights propagating in fibers, the Backward Rayleigh scattering lights will interfere with each other. The vibration on the fiber will change the length and refractive index of fiber which results in the change of the phase of the interference signal. Hence, one arm of the M-Z interferometer is modulated by a sinusoidal phase-generated carrier(PGC) signal, and PGC demodulation algorithm has been used to acquire phase information from the Backward Rayleigh scattering lights. In order to overcome the influence of polarization-induced fading and enhance Signal Noise Ratio(SNR), we set a PDR before the photo detector. The Polarization Diversity Receiver segregates the interfere light into two lights with orthogonal states of polarization. Hence, there is always one channel has a better interfere light signal. The experiments are presented to verify the effectiveness of the distributed vibration fiber sensing system proposed.
Attosecond delay in the molecular photoionization of asymmetric molecules.
Chacón, Alexis; Ruiz, Camilo
2018-02-19
We report theoretical calculations of the delay in photoemission from CO with particular emphasis on the role of the ultrafast electronic bound dynamics. We study the delays in photoionization in the HOMO and HOMO-1 orbitals of the CO molecule by looking into the stereo Wigner time delay technique. That compares the delay in photoemission from electrons emitted to the left and right to extract structural and dynamical information of the ionization process. For this we apply two techniques: The attosecond streak camera and the time of flight technique. Although they should provide the same results we have found large discrepancies of up to 36 in the case of HOMO, while for the HOMO-1 we obtain the same results with the two techniques. We have found that the large time delays observed in the HOMO orbital with the streaking technique are a consequence of the resonant transition triggered by the streaking field. This resonant transition produces a bound electron wavepacket that modifies the measurements of delay in photoionization. As a result of this observation, our technique allows us to reconstruct the bound wavepacket dynamics induced by the streaking field. By measuring the expected value of the electron momentum along the polarization direction after the streaking field has finished, we can recover the relative phase between the complex amplitudes of the HOMO and LUMO orbitals. These theoretical calculations pave the way for the measurement of ultrafast bound-bound electron transitionsand its crucial role for the delay in photoemission observation.
Teleseismic SKS splitting beneath East Antarctica using broad-band stations around Soya Coast
NASA Astrophysics Data System (ADS)
Usui, Y.; Kanao, M.
2006-12-01
We observed shear wave splitting of SKS waves from digital seismographs that are recorded at 5 stations around Soya Coast in the Lutzow-Holm Bay, East Antarctica. Their recording systems are composed of a three-component broadband seismometer (CMG-40T), a digital recording unit and a solar power battery supply. The events used were selected from 1999 to 2004 and phase arrival times were calculated using the IASPEI91 earth model (Kennet, 1995). In general, we chose the data from earthquakes with m>6.0 and a distance range 85° < Δ < 130° for the most prominent SKS waves We used the methods of Silver and Chan (1991) for the inversion of anisotropy parameters and estimated the splitting parameters φ (fast polarization direction) and δt (delay time between split waves) assuming a single layer of hexagonal symmetry with a horizontal symmetry axis. The weighted averages of all splitting parameters (φ, δt) for each station are AKR (30±4, 1.30±0.2), LNG (58±6, 1.27±0.2), SKL (67±10, 0.94±0.2), SKV (40±6, 1.28±0.3) and TOT (52±8, 1.26±0.3), where the weights are inversely proportional to the standard deviations for each solution. As compared to typical delay times of SKS waves which show 1.2s (Silver and Chan 1991; Vinnik et al., 1992), the result shows generally the same value. In previous study, Kubo and Hiramatsu (1998) estimate the splitting parameter for Syowa station (SYO), where is located near our using stations in East Antarctica, and the results are (49±3, 0.70±0.1). Although it is consistent with our results for fast polarization direction, δt for our results are large relatively to those of SYO. The difference may be due to either different incident angle or more complex anisotropic structure. We found that fast polarization direction is systematically parallel to coast line in the Lutzow-Holm Bay, East Antarctica, which is consistent with NE-SW paleo compressional stress. The absolute plate motion based on the HS2-NUVEL1 (Gripp and Gordon, 1990), that may reflect the present horizontal mantle flow, shows the direction of N120°E and velocity of 1cm/yr in this study region. Since it doesn't coincide with fast polarization direction (the difference is about 50°~90°), we conclude that the mechanism of observed anisotropy is lattice preferred orientation of olivine along the mantle flow which caused NE-SW paleo compressional stress. In future works, we will accomplish the analysis assumed more complex anisotropy systems, such as a two layer model of azimuthal anisotropy, because we could find there is the possibility of azimuthal variations of the splitting parameters in a few station.
Keep it on the edge: The post-mitotic midbody as a polarity signal unit
Lujan, Pablo; Rubio, Teresa; Varsano, Giulia; Köhn, Maja
2017-01-01
ABSTRACT The maintenance of the epithelial architecture during tissue proliferation is achieved by apical positioning of the midbody after cell division. Consequently, midbody mislocalization contributes to epithelial architecture disruption, a fundamental event during epithelial tumorigenesis. Studies in 3D polarized epithelial MDCK or Caco2 cell models, where midbody misplacement leads to multiple ectopic but fully polarized lumen-containing cysts, revealed that this phenotype can be caused by 2 different scenarios: the loss of mitotic spindle orientation or the loss of asymmetric abscission. In addition, we have recently proposed a third cellular mechanism where the midbody mislocalization is achieved through cytokinesis acceleration driven by the cancer-promoting phosphatase of regenerating liver (PRL)-3. Here we critically review these findings, and we furthermore present new data indicating that midbodies themselves might act as signal unit for polarization since they can infer apical characteristics to a basal membrane. PMID:28919938
High frequency modulation circuits based on photoconductive wide bandgap switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less
Delayed emergency department presentation in critically ill patients.
Rodriguez, R M; Passanante, M; Phelps, M A; Dresden, G; Kriza, K; Carrasco, M; Franklin, J
2001-12-01
To determine the frequency and causes of delayed emergency department presentation in critically ill patients who did not have acute myocardial infarction and to evaluate whether factors such as age, gender, prior medical advice, lack of insurance, or low educational level are associated with delayed presentation. Prospective, descriptive analysis. Emergency department and medical intensive care unit of an urban county hospital. All adult patients admitted from the emergency department to the medical intensive care unit for reasons other than unstable angina, acute myocardial infarction, or stroke over two 9-wk blocks. Within 72 hrs of intensive care unit admission, patients or their families were interviewed to determine time elapsed between the onset of symptoms and patient emergency department presentation and to elicit reasons for delays in seeking medical treatment. We interviewed 155 of 173 (90%) of eligible patients and found that 58% waited >24 hrs before presenting to the emergency department. The most commonly cited primary reason for delays were beliefs that symptoms were not serious enough for emergency care (31%) and that symptoms would resolve spontaneously (29%). Most (55%) sought medical treatment only at the urging of family members or other advocates. Although variables such as lack of insurance and low educational level were not associated with delayed presentation, male gender and having sought medical advice before presenting to the emergency department were significantly associated with delay (p =.036 for each). Because of poor understanding of the gravity and natural progression of their symptoms, most critically ill patients waited >24 hrs to present to our emergency department. Education on warning symptom recognition for serious illnesses may be warranted not only for patients themselves but also for family members and caregivers.
Subband-Based Group Delay Segmentation of Spontaneous Speech into Syllable-Like Units
NASA Astrophysics Data System (ADS)
Nagarajan, T.; Murthy, H. A.
2004-12-01
In the development of a syllable-centric automatic speech recognition (ASR) system, segmentation of the acoustic signal into syllabic units is an important stage. Although the short-term energy (STE) function contains useful information about syllable segment boundaries, it has to be processed before segment boundaries can be extracted. This paper presents a subband-based group delay approach to segment spontaneous speech into syllable-like units. This technique exploits the additive property of the Fourier transform phase and the deconvolution property of the cepstrum to smooth the STE function of the speech signal and make it suitable for syllable boundary detection. By treating the STE function as a magnitude spectrum of an arbitrary signal, a minimum-phase group delay function is derived. This group delay function is found to be a better representative of the STE function for syllable boundary detection. Although the group delay function derived from the STE function of the speech signal contains segment boundaries, the boundaries are difficult to determine in the context of long silences, semivowels, and fricatives. In this paper, these issues are specifically addressed and algorithms are developed to improve the segmentation performance. The speech signal is first passed through a bank of three filters, corresponding to three different spectral bands. The STE functions of these signals are computed. Using these three STE functions, three minimum-phase group delay functions are derived. By combining the evidence derived from these group delay functions, the syllable boundaries are detected. Further, a multiresolution-based technique is presented to overcome the problem of shift in segment boundaries during smoothing. Experiments carried out on the Switchboard and OGI-MLTS corpora show that the error in segmentation is at most 25 milliseconds for 67% and 76.6% of the syllable segments, respectively.
NASA Astrophysics Data System (ADS)
Xie, Hui; Li, Min; Luo, Siqiang; Li, Yang; Zhou, Yueming; Cao, Wei; Lu, Peixiang
2017-12-01
We measure the photoelectron momentum distributions from atoms ionized by strong elliptically polarized laser fields at the wavelengths of 400 and 800 nm, respectively. The momentum distributions show distinct angular shifts, which sensitively depend on the electron energy. We find that the deflection angle with respect to the major axis of the laser ellipse decreases with the increase of the electron energy for large ellipticities. This energy-dependent angular shift is well reproduced by both numerical solutions of the time-dependent Schrödinger equation and the classical-trajectory Monte Carlo model. We show that the ionization time delays among the electrons with different energies are responsible for the energy-dependent angular shifts. On the other hand, for small ellipticities, we find the deflection angle increases with increasing the electron energy, which might be caused by electron rescattering in the elliptically polarized fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, David F.; Aguirre, James E.; Parsons, Aaron R.
Experiments aimed at detecting highly-redshifted 21 cm emission from the epoch of reionization (EoR) are plagued by the contamination of foreground emission. A potentially important source of contaminating foregrounds may be Faraday-rotated, polarized emission, which leaks into the estimate of the intrinsically unpolarized EoR signal. While these foregrounds' intrinsic polarization may not be problematic, the spectral structure introduced by the Faraday rotation could be. To better understand and characterize these effects, we present a simulation of the polarized sky between 120 and 180 MHz. We compute a single visibility, and estimate the three-dimensional power spectrum from that visibility using themore » delay spectrum approach presented in Parsons et al. Using the Donald C. Backer Precision Array to Probe the Epoch of Reionization as an example instrument, we show the expected leakage into the unpolarized power spectrum to be several orders of magnitude above the expected 21 cm EoR signal.« less
Polar communications: Status and recommendations. Report of the Science Working Group
NASA Technical Reports Server (NTRS)
Rosenberg, T. J. (Editor); Jezek, K. C. (Editor)
1987-01-01
The capabilities of the existing communication links within the polar regions, as well as between the polar regions and the continental United States, are summarized. These capabilities are placed in the context of the principal scientific disciplines that are active in polar research, and in the context of how scientists both utilize and are limited by present technologies. Based on an assessment of the scientific objectives potentially achievable with improved communication capabilities, a list of requirements on and recommendations for communication capabilities necessary to support polar science over the next ten years is given.
Boruah, B R; Neil, M A A
2009-01-01
We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.
Electronic Combat Hardware-in-the-Loop Testing in an Open Air Environment
1994-09-01
APQ- 126 (F-111) Gun Dish Squat Eye ANAWG-9 (F-14) Grill Pan Straight Flush I-Hawk Hawk Screech Sun Visor Head Light Tall King High Fix Team Work High...the required delay to the IF, the SPCs contain a Teledyne Microwave Bulk Acoustic Wave (BAW) delay line as well as a Coherent Variable Delay Unit
Predictors of Delayed Healthcare Seeking Among American Muslim Women.
Vu, Milkie; Azmat, Alia; Radejko, Tala; Padela, Aasim I
2016-06-01
Delayed care seeking is associated with adverse health outcomes. For Muslim women, delayed care seeking might include religion-related motivations, such as a preference for female clinicians, concerns about preserving modesty, and fatalistic beliefs. Our study assesses associations between religion-related factors and delayed care seeking due to a perceived lack of female clinicians. Surveys were distributed to Muslim women attending mosque and community events in Chicago. Survey items included measures of religiosity, religious fatalism, discrimination, modesty, and alternative medicine utilization and worship practices. The outcome measure asked for levels of agreement to the statement "I have delayed seeking medical care when no woman doctor is available to see me." Two hundred fifty-four women completed the survey with nearly equal numbers of African Americans (26%), Arab Americans (33%), and South Asians (33%). Fifty-three percent reported delays in care seeking due to a perceived lack of female clinicians. In multivariate analysis adjusting for sociodemographic factors, higher religiosity (odds ratio [OR] = 5.2, p < 0.01) and modesty levels (OR = 1.4, p < 0.001) were positively associated with delayed care seeking. Having lived in the United States for >20 years (OR = 0.22, p < 0.05) was negatively associated with delayed care seeking. Many American Muslim women reported delays in care seeking due to a perceived lack of female clinicians. Women with higher levels of modesty and self-rated religiosity had higher odds of delaying care. Women who had lived in the United States for longer durations had lower odds of delaying care. Our research highlights the need for gender-concordant providers and culturally sensitive care for American Muslims.
Hung, Shih-Chiang; Kung, Chia-Te; Hung, Chih-Wei; Liu, Ber-Ming; Liu, Jien-Wei; Chew, Ghee; Chuang, Hung-Yi; Lee, Wen-Huei; Lee, Tzu-Chi
2014-08-23
The adverse effects of delayed admission to the intensive care unit (ICU) have been recognized in previous studies. However, the definitions of delayed admission varies across studies. This study proposed a model to define "delayed admission", and explored the effect of ICU-waiting time on patients' outcome. This retrospective cohort study included non-traumatic adult patients on mechanical ventilation in the emergency department (ED), from July 2009 to June 2010. The primary outcomes measures were 21-ventilator-day mortality and prolonged hospital stays (over 30 days). Models of Cox regression and logistic regression were used for multivariate analysis. The non-delayed ICU-waiting was defined as a period in which the time effect on mortality was not statistically significant in a Cox regression model. To identify a suitable cut-off point between "delayed" and "non-delayed", subsets from the overall data were made based on ICU-waiting time and the hazard ratio of ICU-waiting hour in each subset was iteratively calculated. The cut-off time was then used to evaluate the impact of delayed ICU admission on mortality and prolonged length of hospital stay. The final analysis included 1,242 patients. The time effect on mortality emerged after 4 hours, thus we deduced ICU-waiting time in ED > 4 hours as delayed. By logistic regression analysis, delayed ICU admission affected the outcomes of 21 ventilator-days mortality and prolonged hospital stay, with odds ratio of 1.41 (95% confidence interval, 1.05 to 1.89) and 1.56 (95% confidence interval, 1.07 to 2.27) respectively. For patients on mechanical ventilation at the ED, delayed ICU admission is associated with higher probability of mortality and additional resource expenditure. A benchmark waiting time of no more than 4 hours for ICU admission is recommended.
Predictors of Delayed Healthcare Seeking Among American Muslim Women
Vu, Milkie; Azmat, Alia; Radejko, Tala
2016-01-01
Abstract Background: Delayed care seeking is associated with adverse health outcomes. For Muslim women, delayed care seeking might include religion-related motivations, such as a preference for female clinicians, concerns about preserving modesty, and fatalistic beliefs. Our study assesses associations between religion-related factors and delayed care seeking due to a perceived lack of female clinicians. Materials and Methods: Surveys were distributed to Muslim women attending mosque and community events in Chicago. Survey items included measures of religiosity, religious fatalism, discrimination, modesty, and alternative medicine utilization and worship practices. The outcome measure asked for levels of agreement to the statement “I have delayed seeking medical care when no woman doctor is available to see me.” Results: Two hundred fifty-four women completed the survey with nearly equal numbers of African Americans (26%), Arab Americans (33%), and South Asians (33%). Fifty-three percent reported delays in care seeking due to a perceived lack of female clinicians. In multivariate analysis adjusting for sociodemographic factors, higher religiosity (odds ratio [OR] = 5.2, p < 0.01) and modesty levels (OR = 1.4, p < 0.001) were positively associated with delayed care seeking. Having lived in the United States for >20 years (OR = 0.22, p < 0.05) was negatively associated with delayed care seeking. Conclusion: Many American Muslim women reported delays in care seeking due to a perceived lack of female clinicians. Women with higher levels of modesty and self-rated religiosity had higher odds of delaying care. Women who had lived in the United States for longer durations had lower odds of delaying care. Our research highlights the need for gender-concordant providers and culturally sensitive care for American Muslims. PMID:26890129
Skierucha, Wojciech; Wilczek, Andrzej; Szypłowska, Agnieszka; Sławiński, Cezary; Lamorski, Krzysztof
2012-01-01
Elements of design and a field application of a TDR-based soil moisture and electrical conductivity monitoring system are described with detailed presentation of the time delay units with a resolution of 10 ps. Other issues discussed include the temperature correction of the applied time delay units, battery supply characteristics and the measurement results from one of the installed ground measurement stations in the Polesie National Park in Poland. PMID:23202009
Matuyama-age lithic tools from the Sima del Elefante site, Atapuerca (northern Spain).
Parés, Josep M; Pérez-González, Alfredo; Rosas, Antonio; Benito, A; Bermúdez de Castro, J M; Carbonell, E; Huguet, R
2006-02-01
Paleomagnetic results obtained from the sedimentary fill at the Sima del Elefante site in Atapuerca, Spain, reveal a geomagnetic reversal, interpreted as the Matuyama-Brunhes boundary (0.78 Ma). The uppermost lithostratigraphic units (E17 through E19), which contain Mode II and III archaeological assemblages, display normal polarity magnetization, whereas the six lowermost units (E9 through E16) yield negative latitudinal virtual geomagnetic pole positions. Units E9 through E13, all of which display reverse magnetic polarity, contain Mode I (Oldowan) lithic tools, testifying to the presence of humans in the early Pleistocene (0.78-1.77 Ma).
Maximising platelet availability by delaying cold storage.
Wood, B; Johnson, L; Hyland, R A; Marks, D C
2018-04-06
Cold-stored platelets may be an alternative to conventional room temperature (RT) storage. However, cold-stored platelets are cleared more rapidly from circulation, reducing their suitability for prophylactic transfusion. To minimise wastage, it may be beneficial to store platelets conventionally until near expiry (4 days) for prophylactic use, transferring them to refrigerated storage to facilitate an extended shelf life, reserving the platelets for the treatment of acute bleeding. Two ABO-matched buffy-coat-derived platelets (30% plasma/70% SSP+) were pooled and split to produce matched pairs (n = 8 pairs). One unit was stored at 2-6°C without agitation (day 1 postcollection; cold); the second unit was stored at 20-24°C with constant agitation until day 4 then stored at 2-6°C thereafter (delayed-cold). All units were tested for in vitro quality periodically over 21 days. During storage, cold and delayed-cold platelets maintained a similar platelet count. While pH and HSR were significantly higher in delayed-cold platelets, other metabolic markers, including lactate production and glucose consumption, did not differ significantly. Furthermore, surface expression of phosphatidylserine and CD62P, release of soluble CD62P and microparticles were not significantly different, suggesting similar activation profiles. Aggregation responses of delayed-cold platelets followed the same trend as cold platelets once transferred to cold storage, gradually declining over the storage period. The metabolic and activation profile of delayed-cold platelets was similar to cold-stored platelets. These data suggest that transferring platelets to refrigerated storage when near expiry may be a viable option for maximising platelet inventories. © 2018 International Society of Blood Transfusion.
NASA Astrophysics Data System (ADS)
Murari, Nishit M.; Hong, Seungbum; Lee, Ho Nyung; Katiyar, Ram. S.
2011-08-01
Here, we present a direct observation of fatigue phenomena in epitaxially grown Pb(Zr0.2Ti0.8)O3 (PZT) thin films using second harmonic piezoresponse force microscopy (SH-PFM). We observed strong correlation between the SH-PFM amplitude and phase signals with the remnant piezoresponse at different switching cycles. The SH-PFM results indicate that the average fraction of switchable domains decreases globally and the phase delays of polarization switching differ locally. In addition, we found that the fatigue developed uniformly over the whole area without developing region-by-region suppression of switchable polarization as in polycrystalline PZT thin films.
Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
De Boer, Johannes F.; Milner, Thomas E.; Nelson, J. Stuart
2001-01-01
Employing a low coherence Michelson interferometer, two dimensional images of optical birefringence in turbid samples as a function of depth are measured. Polarization sensitive detection of the signal formed by interference of backscattered light from the sample and a mirror or reference plane in the reference arm which defines a reference optical path length, give the optical phase delay between light propagating along the fast and slow axes of the birefringence sample. Images showing the change in birefringence in response to irradiation of the sample are produced as an example of the detection apparatus and methodology. The technique allow rapid, noncontact investigation of tissue or sample diagnostic imaging for various medical or materials procedures.
Basis-neutral Hilbert-space analyzers
Martin, Lane; Mardani, Davood; Kondakci, H. Esat; Larson, Walker D.; Shabahang, Soroush; Jahromi, Ali K.; Malhotra, Tanya; Vamivakas, A. Nick; Atia, George K.; Abouraddy, Ayman F.
2017-01-01
Interferometry is one of the central organizing principles of optics. Key to interferometry is the concept of optical delay, which facilitates spectral analysis in terms of time-harmonics. In contrast, when analyzing a beam in a Hilbert space spanned by spatial modes – a critical task for spatial-mode multiplexing and quantum communication – basis-specific principles are invoked that are altogether distinct from that of ‘delay’. Here, we extend the traditional concept of temporal delay to the spatial domain, thereby enabling the analysis of a beam in an arbitrary spatial-mode basis – exemplified using Hermite-Gaussian and radial Laguerre-Gaussian modes. Such generalized delays correspond to optical implementations of fractional transforms; for example, the fractional Hankel transform is the generalized delay associated with the space of Laguerre-Gaussian modes, and an interferometer incorporating such a ‘delay’ obtains modal weights in the associated Hilbert space. By implementing an inherently stable, reconfigurable spatial-light-modulator-based polarization-interferometer, we have constructed a ‘Hilbert-space analyzer’ capable of projecting optical beams onto any modal basis. PMID:28344331
Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data
Weekley, R. Andrew; Goodrich, R. Kent; Cornman, Larry B.
2016-04-06
An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinatemore » system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.« less
Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn
2015-10-05
Single- and two-color double-fs-pulse experiments were performed on titanium to study the dynamics of the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder inter-ferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences in two configurations - either at 800 nm only, or at 400 and 800 nm wavelengths. The inter-pulse delays of the individual 50-fs pulses ranged up to some tens of picoseconds. Multiple of these single- or two-color double-fs-pulse sequences were collinearly focused by a spherical mirror to the sample surface. In both experimental configurations, the peak fluence of each individual pulse was kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics were analyzed by scanning electron microscopy and the periods were quantified by Fourier analyses. The LIPSS periods along with the orientation allow a clear identification of the pulse which dominates the energy coupling to the material. A plasmonic model successfully explains the delay-dependence of the LIPSS on titanium and confirms the importance of the ultrafast energy deposition stage for LIPSS formation.
Diesel-Powered Heavy-Duty Refrigeration Unit Noise
DOT National Transportation Integrated Search
1976-01-01
A series of noise measurements were performed on a diesel-powered heavy-duty refrigeration unit. Noise survey information collected included: polar plots of the 'A Weighted' noise levels of the unit under maximum and minimum load conditions; a linear...
NASA Astrophysics Data System (ADS)
Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O. P.; Butala, M.; Mannucci, A. J.
2014-12-01
In this research, we report intermediate scale plasma density irregularities in the high-latitude ionosphere inferred from high-resolution radio occultation (RO) measurements in the CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) - GPS (Global Positioning System) satellites radio link. The high inclination of the CASSIOPE satellite and high rate of signal receptionby the occultation antenna of the GPS Attitude, Positioning and Profiling (GAP) instrument on the Enhanced Polar Outflow Probe platform on CASSIOPE enable a high temporal and spatial resolution investigation of the dynamics of the polar ionosphere, magnetosphere-ionospherecoupling, solar wind effects, etc. with unprecedented details compared to that possible in the past. We have carried out high spatial resolution analysis in altitude and geomagnetic latitude of scintillation-producing plasma density irregularities in the polar ionosphere. Intermediate scale, scintillation-producing plasma density irregularities, which corresponds to 2 to 40 km spatial scales were inferred by applying multi-scale spectral analysis on the RO phase delay measurements. Using our multi-scale spectral analysis approach and Polar Operational Environmental Satellites (POES) and Defense Meteorological Satellite Program (DMSP) observations, we infer that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap regions. In specific terms, we found that large length scales and and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap region. Hence, the irregularity scales and phase scintillation characteristics are a function of the solar wind and the magnetospheric forcing. Multi-scale analysis may become a powerful diagnostic tool for characterizing how the ionosphere is dynamically driven by these factors.
Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.
2002-01-01
1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.
Ferroelectric liquid crystal device based photonic controllers for microwave antenna arrays
NASA Astrophysics Data System (ADS)
Madamopoulos, Nicholas
For the first time, this dissertation proposes, studies, analyzes, and experimentally demonstrates the use of ferroelectric liquid crystal (FLC) technology for wideband phased array control applications. FLC devices are used as polarization switches in photonic delay lines (PDLs) to control and process optical signals that drive the elements of a phased array antenna (PAA). The use of photonics for PAA control is, at present, a vital area of applied research. This dissertation work concludes with the demonstration of a multichannel 7-bit PDL system for a wideband PAA such as the Navy's advanced Aegis radar system. The unique system issues and problems to be examined and solved in this Ph.D. dissertation include the theoretical analysis and experimental demonstration of different PDL architectures covering a sub-nanosecond to several nanoseconds time delay range. New noise reduction/suppression schemes are proposed, studied and applied to give record level time delay system performance in terms of signal-to-leakage noise ratio, and switching speeds (e.g., 35 microseconds) required for fast radar scan. We show that the external modulation FO link gives more degrees of freedom to the system engineer, and we propose a novel synchronous RF signal calibration time delay control technique to obtain optimum dynamic range performance for our PDL. The use of low loss fibers for remoting of the photonic beamformer, as well as the losses associated with multiple fiber interconnects that limit the maximum number of array channels in the systems are studied. Different fiber optic coupling techniques are investigated for enhanced fiber coupling. Multimode fibers are used, for the first time, at the output plane of the PDL to obtain improved coupling efficiency. We demonstrate a low ~1.7 dB optical insertion loss/bit, which is very close to the desired insertion loss required for the Navy system. A novel approach for hardware reduction based on wavelength multiplexing is proposed, where the use of a combination of wavelength dependent and wavelength independent optical paths provides the required time delays. Finally, new switching fabric approaches are studied based on polarization selective holograms and their potential use for the implementation of PDLs is discussed.
NASA Astrophysics Data System (ADS)
Marcos, Susana; Diaz-Santana, Luis; Llorente, Lourdes; Dainty, Chris
2002-06-01
Ocular aberrations were measured in 71 eyes by using two reflectometric aberrometers, employing laser ray tracing (LRT) (60 eyes) and a Shack-Hartmann wave-front sensor (S-H) (11 eyes). In both techniques a point source is imaged on the retina (through different pupil positions in the LRT or a single position in the S-H). The aberrations are estimated by measuring the deviations of the retinal spot from the reference as the pupil is sampled (in LRT) or the deviations of a wave front as it emerges from the eye by means of a lenslet array (in the S-H). In this paper we studied the effect of different polarization configurations in the aberration measurements, including linearly polarized light and circularly polarized light in the illuminating channel and sampling light in the crossed or parallel orientations. In addition, completely depolarized light in the imaging channel was obtained from retinal lipofuscin autofluorescence. The intensity distribution of the retinal spots as a function of entry (for LRT) or exit pupil (for S-H) depends on the polarization configuration. These intensity patterns show bright corners and a dark area at the pupil center for crossed polarization, an approximately Gaussian distribution for parallel polarization and a homogeneous distribution for the autofluorescence case. However, the measured aberrations are independent of the polarization states. These results indicate that the differences in retardation across the pupil imposed by corneal birefringence do not produce significant phase delays compared with those produced by aberrations, at least within the accuracy of these techniques. In addition, differences in the recorded aerial images due to changes in polarization do not affect the aberration measurements in these reflectometric aberrometers.
Embedding the dynamics of a single delay system into a feed-forward ring.
Klinshov, Vladimir; Shchapin, Dmitry; Yanchuk, Serhiy; Wolfrum, Matthias; D'Huys, Otti; Nekorkin, Vladimir
2017-10-01
We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type.
Volcano-ice interactions on Mars
NASA Technical Reports Server (NTRS)
Allen, C. C.
1979-01-01
Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar composition. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick.
Design Notebook for Naval Air Defense Simulation (NADS). Revision.
1986-10-09
OK 304 On Cap 105 Self Assign NoGo *305 TDS Down 106 On Self Control 306 Controller Status Change 107 Red Fighter 307 Reject Control 108 Intercept...range for RED aircraft INTEGER*2 COMTDS, I message delay time between TDS F-19 units COMVCE, I message delay if either unit is F-19 * non- TDS TWAITC...reschedule A/C launch LOGICAL*I NUCREL, I nuclear weapons release for force AUTOESM, I ESM bearing ( jamming strobes) automatically updated in TDS
Zhang, Ming-Zhi; Wang, Xin; Wang, Yinqiu; Niu, Aolei; Wang, Suwan; Zou, Chenhang; Harris, Raymond C
2017-02-01
Cytokines IL-4 and IL-13 play important roles in polarization of macrophages/dendritic cells to an M2 phenotype, which is important for recovery from acute kidney injury. Both IL-4 and IL-13 activate JAK3/STAT6 signaling. In mice with diphtheria toxin receptor expression in proximal tubules (selective injury model), a relatively selective JAK3 inhibitor, tofacitinib, led to more severe kidney injury, delayed recovery from acute kidney injury, increased inflammatory M1 phenotype markers and decreased reparative M2 phenotype markers of macrophages/dendritic cells, and development of more severe renal fibrosis after diphtheria toxin administration. Similarly, there was delayed recovery and increased tubulointerstitial fibrosis in these diphtheria toxin-treated mice following tamoxifen-induced deletion of both IL-4 and IL-13, with increased levels of M1 and decreased levels of M2 markers in the macrophages/dendritic cells. Furthermore, deletion of IL-4 and IL-13 led to a decrease of tissue reparative M2a phenotype markers but had no effect on anti-inflammatory M2c phenotype markers. Deletion of IL-4 and IL-13 also inhibited recovery from ischemia-reperfusion injury in association with increased M1 and decreased M2 markers and promoted subsequent tubulointerstitial fibrosis. Thus, IL-4 and IL-13 are required to effectively polarize macrophages/dendritic cells to an M2a phenotype and to promote recovery from acute kidney injury. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Recent developments in heterodyne laser interferometry at Harbin Institute of Technology
NASA Astrophysics Data System (ADS)
Hu, P. C.; Tan, J. B. B.; Yang, H. X. X.; Fu, H. J. J.; Wang, Q.
2013-01-01
In order to fulfill the requirements for high-resolution and high-precision heterodyne interferometric technologies and instruments, the laser interferometry group of HIT has developed some novel techniques for high-resolution and high-precision heterodyne interferometers, such as high accuracy laser frequency stabilization, dynamic sub-nanometer resolution phase interpolation and dynamic nonlinearity measurement. Based on a novel lock point correction method and an asymmetric thermal structure, the frequency stabilized laser achieves a long term stability of 1.2×10-8, and it can be steadily stabilized even in the air flowing up to 1 m/s. In order to achieve dynamic sub-nanometer resolution of laser heterodyne interferometers, a novel phase interpolation method based on digital delay line is proposed. Experimental results show that, the proposed 0.62 nm, phase interpolator built with a 64 multiple PLL and an 8-tap digital delay line achieves a static accuracy better than 0.31nm and a dynamic accuracy better than 0.62 nm over the velocity ranging from -2 m/s to 2 m/s. Meanwhile, an accuracy beam polarization measuring setup is proposed to check and ensure the light's polarization state of the dual frequency laser head, and a dynamic optical nonlinearity measuring setup is built to measure the optical nonlinearity of the heterodyne system accurately and quickly. Analysis and experimental results show that, the beam polarization measuring setup can achieve an accuracy of 0.03° in ellipticity angles and an accuracy of 0.04° in the non-orthogonality angle respectively, and the optical nonlinearity measuring setup can achieve an accuracy of 0.13°.
Najjar, Raymond P.; Wolf, Luzian; Taillard, Jacques; Schlangen, Luc J. M.; Salam, Alex
2014-01-01
Studies in Polar Base stations, where personnel have no access to sunlight during winter, have reported circadian misalignment, free-running of the sleep-wake rhythm, and sleep problems. Here we tested light as a countermeasure to circadian misalignment in personnel of the Concordia Polar Base station during the polar winter. We hypothesized that entrainment of the circadian pacemaker to a 24-h light-dark schedule would not occur in all crew members (n = 10) exposed to 100–300 lux of standard fluorescent white (SW) light during the daytime, and that chronic non-time restricted daytime exposure to melanopsin-optimized blue-enriched white (BE) light would establish an a stable circadian phase, in participants, together with increased cognitive performance and mood levels. The lighting schedule consisted of an alternation between SW lighting (2 weeks), followed by a BE lighting (2 weeks) for a total of 9 weeks. Rest-activity cycles assessed by actigraphy showed a stable rest-activity pattern under both SW and BE light. No difference was found between light conditions on the intra-daily stability, variability and amplitude of activity, as assessed by non-parametric circadian analysis. As hypothesized, a significant delay of about 30 minutes in the onset of melatonin secretion occurred with SW, but not with BE light. BE light significantly enhanced well being and alertness compared to SW light. We propose that the superior efficacy of blue-enriched white light versus standard white light involves melanopsin-based mechanisms in the activation of the non-visual functions studied, and that their responses do not dampen with time (over 9-weeks). This work could lead to practical applications of light exposure in working environment where background light intensity is chronically low to moderate (polar base stations, power plants, space missions, etc.), and may help design lighting strategies to maintain health, productivity, and personnel safety. PMID:25072880
Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6
Von Stetina, Stephen E.; Liang, Jennifer; Marnellos, Georgios; Mango, Susan E.
2017-01-01
To establish the animal body plan, embryos link the external epidermis to the internal digestive tract. In Caenorhabditis elegans, this linkage is achieved by the arcade cells, which form an epithelial bridge between the foregut and epidermis, but little is known about how development of these three epithelia is coordinated temporally. The arcade cell epithelium is generated after the epidermis and digestive tract epithelia have matured, ensuring that both organs can withstand the mechanical stress of embryo elongation; mistiming of epithelium formation leads to defects in morphogenesis. Using a combination of genetic, bioinformatic, and imaging approaches, we find that temporal regulation of the arcade cell epithelium is mediated by the pioneer transcription factor and master regulator PHA-4/FoxA, followed by the cytoskeletal regulator and kinesin ZEN-4/MKLP1 and the polarity protein PAR-6. We show that PHA-4 directly activates mRNA expression of a broad cohort of epithelial genes, including junctional factor dlg-1. Accumulation of DLG-1 protein is delayed by ZEN-4, acting in concert with its binding partner CYK-4/MgcRacGAP. Our structure–function analysis suggests that nuclear and kinesin functions are dispensable, whereas binding to CYK-4 is essential, for ZEN-4 function in polarity. Finally, PAR-6 is necessary to localize polarity proteins such as DLG-1 within adherens junctions and at the apical surface, thereby generating arcade cell polarity. Our results reveal that the timing of a landmark event during embryonic morphogenesis is mediated by the concerted action of four proteins that delay the formation of an epithelial bridge until the appropriate time. In addition, we find that mammalian FoxA associates with many epithelial genes, suggesting that direct regulation of epithelial identity may be a conserved feature of FoxA factors and a contributor to FoxA function in development and cancer. PMID:28539408
NASA Astrophysics Data System (ADS)
Wanser, Keith H.
1988-06-01
In order to understand the various phenomenon in fiber gyroscopes, we have developed a unified theory of polarization and vector coherence theory for fiber optics, using propagator techniques, which is valid for arbitrarily large relative polarization phase delays, arbitrary source polarization properties, in combination with birefringent phase modulation. The propagator representation makes clear the multi-path nature of the polarization effects, similar to the multiple scattering of waves, and an example illustrating this point is given. A "master" equation has been obtained for fiber gyroscopes which i s sufficiently general to permit modeling of the many parasitic effects and their interactions, as well as allow realistic assessment of methods for their reduction. As a result of the development of the propagator approach, several interesting results have been found. One important issue is the performance and characterization of the polarizer used in the fiber gyro. A theorem has been shown that "not all polarizers are created equal", even though they have equal extinction ratios. We have found that the fiber gyroscope probes properties of polarizers that cannot be probed without an interferometer that is equivalent to a ring interferometer. It has been found that there is a considerable difference in performance between two polarizers having the same extinction ratio, but one short, the other long, depending on the birefringence and mode coupling. This leads to an extended classification of polarizer properties beyond an ordinary Jones matrix. A new bound on polarizer performance using the propagator approach is given. Another important issue with fiber optic gyroscopes is drift as a function of temperature. Those familiar with testing of fiber gyroscopes are well aware of the often bizarre (highly non monotonic) drift behaviour as a function of temperature. It is shown how temperature drift can be related to the location of various types of birefringence in the gyro coil using a realistic coil model. The propagator for this coil model is also obtained.
Relating polarization phase difference of SAR signals to scene properties
NASA Technical Reports Server (NTRS)
Ulaby, Fawwaz T.; Dobson, Myron C.; Mcdonald, Kyle C.; Senior, Thomas B. A.; Held, Daniel
1987-01-01
This paper examines the statistical behavior of the phase difference Delta-phi between the HH-polarized and VV-polarized backscattered signals recorded by an L-band SAR over an agricultural test site in Illinois. Polarization-phase difference distributions were generated for about 200 agricultural fields for which ground information had been acquired in conjunction with the SAR mission. For the overwhelming majority of cases, the Delta-phi distribution is symmetric and has a single major lobe centered at the mean value of the distribution Delta-phi. Whereas the mean Delta-phi was found to be close to zero degrees for bare soil, cut vegetation, alfalfa, soybeans, and clover, a different pattern was observed for the corn fields; the mean Delta-phi increased with increasing incidence angle Theta = 35 deg. The explanation proposed for this variation is that the corn canopy, most of whose mass is contained in its vertical stalks, acts like a uniaxial crystal characterized by different velocities of propagation for waves with horizontal and vertical polarization. Thus, it is hypothesized that the observed backscatter is contributed by a combination of propagation delay, forward scatter by the soil surface, and specular bistatic reflection by the stalks. Model calculations based on this assumption were found to be in general agreement with the phase observations.
Planet Four: Terrains - Discovery of araneiforms outside of the South Polar layered deposits
NASA Astrophysics Data System (ADS)
Schwamb, Megan E.; Aye, Klaus-Michael; Portyankina, Ganna; Hansen, Candice J.; Allen, Campbell; Allen, Sarah; Calef, Fred J.; Duca, Simone; McMaster, Adam; Miller, Grant R. M.
2018-07-01
We present the results of a systematic mapping of seasonally sculpted terrains on the South Polar region of Mars with the Planet Four: Terrains (P4T) online citizen science project. P4T enlists members of the general public to visually identify features in the publicly released Mars Reconnaissance Orbiter Context Camera (CTX) images. In particular, P4T volunteers are asked to identify: (1) araneiforms (including features with a central pit and radiating channels known as 'spiders'); (2) erosional depressions, troughs, mesas, ridges, and quasi-circular pits characteristic of the South Polar Residual Cap (SPRC) which we collectively refer to as 'Swiss cheese terrain', and (3) craters. In this work we present the distributions of our high confidence classic spider araneiforms and Swiss cheese terrain identifications in 90 CTX images covering 11% of the South polar regions at latitudes ≤ -75° N. We find no locations within our high confidence spider sample that also have confident Swiss cheese terrain identifications. Previously spiders were reported as being confined to the South Polar Layered Deposits (SPLD). Our work has provided the first identification of spiders at locations outside of the SPLD, confirmed with high resolution HiRISE (High Resolution Imaging Science Experiment) imaging. We find araneiforms on the Amazonian and Hesperian polar units and the Early Noachian highland units, with 75% of the identified araneiform locations in our high confidence sample residing on the SPLD. With our current coverage, we cannot confirm whether these are the only geologic units conducive to araneiform formation on the Martian South Polar region. Our results are consistent with the current CO2 jet formation scenario with the process exploiting weaknesses in the surface below the seasonal CO2 ice sheet to carve araneiform channels into the regolith over many seasons. These new regions serve as additional probes of the conditions required for channel creation in the CO2 jet process.
Optimizing the use of a sensor resource for opponent polarization coding
Heras, Francisco J.H.
2017-01-01
Flies use specialized photoreceptors R7 and R8 in the dorsal rim area (DRA) to detect skylight polarization. R7 and R8 form a tiered waveguide (central rhabdomere pair, CRP) with R7 on top, filtering light delivered to R8. We examine how the division of a given resource, CRP length, between R7 and R8 affects their ability to code polarization angle. We model optical absorption to show how the length fractions allotted to R7 and R8 determine the rates at which they transduce photons, and correct these rates for transduction unit saturation. The rates give polarization signal and photon noise in R7, and in R8. Their signals are combined in an opponent unit, intrinsic noise added, and the unit’s output analysed to extract two measures of coding ability, number of discriminable polarization angles and mutual information. A very long R7 maximizes opponent signal amplitude, but codes inefficiently due to photon noise in the very short R8. Discriminability and mutual information are optimized by maximizing signal to noise ratio, SNR. At lower light levels approximately equal lengths of R7 and R8 are optimal because photon noise dominates. At higher light levels intrinsic noise comes to dominate and a shorter R8 is optimum. The optimum R8 length fractions falls to one third. This intensity dependent range of optimal length fractions corresponds to the range observed in different fly species and is not affected by transduction unit saturation. We conclude that a limited resource, rhabdom length, can be divided between two polarization sensors, R7 and R8, to optimize opponent coding. We also find that coding ability increases sub-linearly with total rhabdom length, according to the law of diminishing returns. Consequently, the specialized shorter central rhabdom in the DRA codes polarization twice as efficiently with respect to rhabdom length than the longer rhabdom used in the rest of the eye. PMID:28316880
Improved Grid-Array Millimeter-Wave Amplifier
NASA Technical Reports Server (NTRS)
Rosenberg, James J.; Rutledge, David B.; Smith, R. Peter; Weikle, Robert
1993-01-01
Improved grid-array amplifiers operating at millimeter and submillimeter wavelengths developed for use in communications and radar. Feedback suppressed by making input polarizations orthogonal to output polarizations. Amplifier made to oscillate by introducing some feedback. Several grid-array amplifiers concatenated to form high-gain beam-amplifying unit.
76 FR 5407 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... Antarctica and to certain regions of the Arctic under the auspices of the United States Antarctic Program are.... National Science Foundation--Polar Physical Examination (Antarctica/Arctic/Official Visitors) Medical... disqualified, the reasons. 2. Polar Physical Examination--Antarctica/Arctic, will be used by the individual's...
Evidence for a Lithic Unit Within the North Polar Layered Deposits
NASA Astrophysics Data System (ADS)
Horgan, B.; Smith, I.; Seelos, F.
2016-09-01
Orbital spectra suggest that sediments on Planum Boreum are pyroxene-bearing, and the source unit for these "veneers" may be associated with a radar reflection within the PLD. A lithic unit within the PLD may have influenced their thermal stability.
Pliocene geomagnetic polarity epochs
Dalrymple, G.B.; Cox, A.; Doell, Richard R.; Gromme, C.S.
1967-01-01
A paleomagnetic and K-Ar dating study of 44 upper Miocene and Pliocene volcanic units from the western United States suggests that the frequency of reversals of the earth's magnetic field during Pliocene time may have been comparable with that of the last 3.6 m.y. Although the data are too limited to permit the formal naming of any new polarity epochs or events, four polarity transitions have been identified: the W10 R/N boundary at 3.7 ?? 0.1 m.y., the A12 N/R boundary at 4.9 ?? 0.1 m.y., the W32 N/R boundary at 9.0 ?? 0.2m.y., and the W36 R/N boundary at 10.8 ?? 0.3 - 1.0 m.y. The loss of absolute resolution of K-Ar dating in older rocks indicates that the use of well defined stratigraphic successions to identify and date polarity transitions will be important in the study of Pliocene and older reversals. ?? 1967.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanjeewa, Liurukara D.; McGuire, Michael A.; McMillen, Colin D.
Here, crystals of ASr 2V 3O 3(Ge 4O 13)Cl, A = Na, K, were synthesized from high-temperature hydrothermal brines, and their structure and magnetic properties were investigated. These materials present a unique combination of a salt inclusion lattice, a polar crystal structure, and isolated V 4+ ( S = 1/2) trimer magnetic clusters. The structures consist of a trimeric V 3O 13 unit based on V 4+ ( S = 1/2), having rigorous 3-fold symmetry with a short V–V separation of 3.325(3) Å. The trinuclear V 4+ units are formed by three edge shared VO 6 octahedra sharing a centralmore » μ3-oxygen atom, which also imparts a polar sense on the structure. The V 3O 13 units are isolated from one another by tetranuclear Ge 4O 13 units, which are similarly arranged in a polar fashion, providing a unique opportunity to study the magnetic behavior of this triangular d 1 system as a discrete unit. Magnetization measurements indicate spin-1/2 per V atom at high temperature, and spin-1/2 per V 3 trimer at low temperature, where two V moments in each triangle are antiferromagnetically aligned and the third remains paramagnetic. The crossover between these two behaviors occurs between 20 and 100 K and is well-described by a model incorporating strong antiferromagnetic intra-trimer interactions and weak but nonzero inter-trimer interactions. More broadly, the study highlights the ability to obtain new materials with interesting structure–property relationships via chemistry involving unconventional solvents and reaction conditions.« less
Distribution of C22-, C24- and C26-alpha-unit-containing mycolic acid homologues in mycobacteria.
Kaneda, K; Imaizumi, S; Yano, I
1995-01-01
There are three mycolic acid homologues with C22-, C24- and C26-alpha-units in Mycobacterium. In order to reveal the composition and distribution of these homologues in each subclass and molecular species of mycolic acids and to compare them with the composition of constitutive non-polar fatty acids (free and bound forms), we have separated non-polar fatty acids and each subclass of mycolic acids from 21 mycobacterial species by thin-layer chromatography, and analyzed non-polar fatty acid methyl esters by gas chromatography (GC) and the cleavage products of methyl mycolate by pyrolysis GC. We further performed mass chromatographic analysis of trimethylsilyl (TMS) ether derivatives of mycolic acid methyl esters by monitoring [B-29]+ ions (loss of CHO from the alpha-branched-chain structure of mycolic acids) of m/z 426, 454 and 482 which are attributed to C22-, C24- and C26-alpha-units of TMS ether derivatives of methyl mycolates, respectively, (Kaneda, K. et al, J. Clin. Microbiol. 24: 1060-1070, 1986). By pyrolysis GC, C22:0, C24:0 and C26:0 fatty acid methyl esters generated by the C2-C3 cleavage of C22-, C24- and C26-alpha-unit-containing mycolic acid methyl esters, respectively, were detected. Their proportion was almost the same among subclasses of mycolic acids in every Mycobacterium and also similar to the proportion of constitutive non-polar C22:0, C24:0 and C26:0 fatty acids. By mass chromatography, the composition and distribution of C22- and C24-alpha-unit-containing homologues were revealed to be similar between alpha- and alpha'-mycolic acids in every Mycobacterium.(ABSTRACT TRUNCATED AT 250 WORDS)
Sanjeewa, Liurukara D.; McGuire, Michael A.; McMillen, Colin D.; ...
2017-01-03
Here, crystals of ASr 2V 3O 3(Ge 4O 13)Cl, A = Na, K, were synthesized from high-temperature hydrothermal brines, and their structure and magnetic properties were investigated. These materials present a unique combination of a salt inclusion lattice, a polar crystal structure, and isolated V 4+ ( S = 1/2) trimer magnetic clusters. The structures consist of a trimeric V 3O 13 unit based on V 4+ ( S = 1/2), having rigorous 3-fold symmetry with a short V–V separation of 3.325(3) Å. The trinuclear V 4+ units are formed by three edge shared VO 6 octahedra sharing a centralmore » μ3-oxygen atom, which also imparts a polar sense on the structure. The V 3O 13 units are isolated from one another by tetranuclear Ge 4O 13 units, which are similarly arranged in a polar fashion, providing a unique opportunity to study the magnetic behavior of this triangular d 1 system as a discrete unit. Magnetization measurements indicate spin-1/2 per V atom at high temperature, and spin-1/2 per V 3 trimer at low temperature, where two V moments in each triangle are antiferromagnetically aligned and the third remains paramagnetic. The crossover between these two behaviors occurs between 20 and 100 K and is well-described by a model incorporating strong antiferromagnetic intra-trimer interactions and weak but nonzero inter-trimer interactions. More broadly, the study highlights the ability to obtain new materials with interesting structure–property relationships via chemistry involving unconventional solvents and reaction conditions.« less
Optical reversible programmable Boolean logic unit.
Chattopadhyay, Tanay
2012-07-20
Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.
NASA Astrophysics Data System (ADS)
Niepold, F.; Kermond, J.
2006-12-01
The Polar Regions play an integral role in how our Earth system operates. However, the Polar Regions are marginally studied in the K-12 classroom in the United States. The International Polar Year's (IPY) coordinated campaign of polar observations, research, and analysis that will be multidisciplinary in scope and international in participation offers a powerful opportunity for K-12 classroom. The IPY's scientific objective to better understand the key roles of the Polar Regions in global processes will allow students a window into the poles and this unique regions role in the Earth system. IPY will produce careful, useful scientific information that will advance our understanding of the Polar Regions and their connections to the rest of the globe. The IPY is an opportunity to inspire the next generation of very young Earth system scientists. This IPY's will education & outreach position paper asks a key question that must guide future educational projects; "Why is the polar regions and polar research important to all people on earth"? In efforts to coordinate educational activities and collaborate with international projects, United States national agencies, NOAA, NASA, USGS and NSF to mention a few, and other educational initiatives, it is the purpose of this session to explore potential partnerships, while primarily recommending a model for educational product development and review. In the context of the 125 year legacy of IPY, this talk will provide an opportunity to discuss the NOAA Arctic programs current arctic research and explorations, projects being planned for this IPY, its education related activities, new and innovative efforts to capture the inherent mystique of polar regions and describe the process of scientific research relating to IPY. In addition, numerous teacher professional development opportunities, newly developed curricula, and other public events will be introduced so scientists, teachers and their students can find ways to explore the changing arctic in-person or through tele-presences venues.
Melatonin regulates delayed embryonic development in the short-nosed fruit bat, Cynopterus sphinx.
Banerjee, Arnab; Meenakumari, K J; Udin, S; Krishna, A
2009-12-01
The aim of the present study was to evaluate the seasonal variation in serum melatonin levels and their relationship to the changes in the serum progesterone level, ovarian steroidogenesis, and embryonic development during two successive pregnancies of Cynopterus sphinx. Circulating melatonin concentrations showed two peaks; one coincided with the period of low progesterone synthesis and delayed embryonic development, whereas the second peak coincided with regressing corpus luteum. This finding suggests that increased serum melatonin level during November-December may be responsible for delayed embryonic development by suppressing progesterone synthesis. The study showed increased melatonin receptors (MTNR1A and MTNR1B) in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed that a high dose of melatonin suppressed progesterone synthesis, whereas a lower dose of melatonin increased progesterone synthesis by the ovary. The effects of melatonin on ovarian steroidogenesis are mediated through changes in the expression of peripheral-type benzodiazepine receptor, P450 side chain cleavage enzyme, and LH receptor proteins. This study further showed a suppressive impact of melatonin on the progesterone receptor (PGR) in the utero-embryonic unit; this effect might contribute to delayed embryonic development in C. sphinx. The results of the present study thus suggest that a high circulating melatonin level has a dual contribution in retarding embryonic development in C. sphinx by impairing progesterone synthesis as well as by inhibiting progesterone action by reducing expression of PGR in the utero-embryonic unit.
Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System
2015-03-26
through the fiber , we assume Alice and Bob have correct basis alignment and timing control for reference frame correction and precise photon detection...optical components ( laser , polarization modulator, electronic variable optical attenuator, fixed optical attenuator, fiber channel, beamsplitter...generated by the laser in the CPG propagate through multiple optical components, each with a unique propagation delay before reaching the OPM. Timing
Banerjee, A; Meenakumari, K J; Krishna, A
2010-08-01
An adiposity-associated rise in leptin occurs at the time of delayed embryonic development in Cynopterus sphinx. The aim of present study was to examine the mechanism by which leptin may inhibit progesterone, and therefore could be responsible for delayed development. The study showed a significant increase in circulating leptin level during the period of increased fat accumulation, which coincided with significant decrease in serum progesterone level and delayed embryonic development in C. sphinx. The study showed increased Ob-R expression in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed suppressive effect of leptin on progesterone synthesis. The effect of high dose of leptin on ovarian steroidogenesis was found to be mediated through decreased expression of StAR and LH-R proteins in the ovary. The treatment with leptin caused increased expression of STAT 3 and iNOS proteins in the ovary, which correlated with decreased expression of StAR protein in the ovary. The inhibitory effects of leptin on progesterone synthesis in the ovary are thus mediated through STAT 3 and iNOS-NO signaling pathways. This study further demonstrated low expression of PCNA coinciding with the increased concentration of the leptin receptor in the utero-embryonic unit and high circulating leptin level during November. In conclusion, adiposity associated increased leptin level during November-December might play role in suppressing progesterone synthesis in the corpus luteum as well as suppressing the rate of cell-proliferation in the utero-embryonic unit thereby causing delayed embryonic development in C. sphinx. Copyright 2010 Elsevier Inc. All rights reserved.
Shear-wave polarization anisotropy in the mantle wedge beneath the southern part of Tohoku, Japan
NASA Astrophysics Data System (ADS)
Shimizu, J.; Nakajima, J.; Hasegawa, A.
2003-12-01
We investigated shear-wave polarization anisotropy in the mantle wedge beneath the southern part of Tohoku, Japan, by using waveform data of intermediate depth earthquakes with M>2.5 recorded by the seismic networks of Tohoku University and Japan Meteorological Agency (JMA). We selected waveform data with ray paths whose incident angles to the surface are 35 degrees or less to avoid contamination of particle motions by converted phases. All the seismograms thus selected were filtered with bandpassed ranges of 2-8 Hz. Cross-correlation method [Ando et al., 1983] was used for determining delay time between the leading and following shear-waves (delay time) and the leading shear-wave polarization direction (fast direction). Two horizontal components of observed seismograms were rotated with the direction from 0 to 180 degrees with an interval of 5 degrees, and shifted one horizontal component by a time lag. The time lag varied from 0 to 1 s with an interval of 0.01 s. The length of time window used to calculate correlation coefficient was set to be nearly equal to one cycle of the shear-wave. We do not use the data whose maximum correlation coefficient is less than 0.8. Obtained results show that most of the fast directions at stations in the back-arc side are nearly E-W, whereas those at stations in the fore-arc side are N-S. We infer that the anisotropy caused by lattice-preferred orientation of olivine, which is probably produced by flow in the mantle wedge, is a likely candidate for the observed shear-wave splitting with E-W trend fast directions in the back-arc side. Although it is not certain what causes the N-S trend fast directions in the for-arc side, the same trend is seen in the previous studies of other areas in Tohoku [Okada et al.,1995; Nakajima, 2002]. Observed delay times are mostly 0.1-0.3 s, which is consistent with the results of Okada et al. [1995] and Nakajima [2002]. Acknowledgments: We are grateful to the staff of the JMA for allowing us to use their data.
The Utility of SAR to Monitor Ocean Processes.
1981-11-01
echo received from ocean waves include the motion of the a horizontally polarized wave will have its E vector parallel to scattering surfaces, the so...radiation is defined by the direction of the electric field intensity, E, vector . For example, a horizontally polarized wave will have its E vector ...Oil Spill Off the East Coast of the United States ................ .... 55 19. L-band Parallel and Cross Polarized SAR Imagery of Ice in the Beaufort
International solar polar mission: The vector helium magnetometer
NASA Technical Reports Server (NTRS)
1982-01-01
The functional requirements for the vector helium magnetometer (VHM) on the Solar Polar spacecraft are presented. The VHM is one of the two magnetometers on board that will measure the vector magnetic field along the Earth to Jupiter transfer trajectory, as well as in the vicinity of Jupiter and along the solar polar orbit following the Jupiter encounter. The interconnection between these two magnetometers and their shared data processing unit is illustrated.
Highly efficient multifunctional metasurface for high-gain lens antenna application
NASA Astrophysics Data System (ADS)
Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing
2017-07-01
In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.
76 FR 5405 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... Antarctica and to certain regions of the Arctic under the auspices of the United States Antarctic Program are... Science Foundation--Polar Physical Examination (Antarctica/Arctic/Official Visitors) Medical History, will... disqualified, the reasons. 2. Polar Physical Examination--Antarctica/Arctic, will be used by the individual's...
Ultra-wideband reflective polarization converter based on anisotropic metasurface
NASA Astrophysics Data System (ADS)
Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu
2016-08-01
In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).
Polarization-independent broadband meta-holograms via polarization-dependent nanoholes.
Zhang, Xiaohu; Li, Xiong; Jin, Jinjin; Pu, Mingbo; Ma, Xiaoliang; Luo, Jun; Guo, Yinghui; Wang, Changtao; Luo, Xiangang
2018-05-17
Composed of ultrathin metal or dielectric nanostructures, metasurfaces can manipulate the phase, amplitude and polarization of electromagnetic waves at a subwavelength scale, which is promising for flat optical devices. In general, metasurfaces composed of space-variant anisotropic units are sensitive to the incident polarization due to the inherent polarization dependent geometric phase. Here, we implement polarization-independent broadband metasurface holograms constructed by polarization-dependent anisotropic elliptical nanoholes by elaborate design of complex amplitude holograms. The fabricated meta-hologram exhibits a polarization insensitive feature with an acceptable image quality. We verify the feasibility of the design algorithm for three-dimensional (3D) meta-holograms with simulation and the feasibility for two-dimensional (2D) meta-holograms is experimentally demonstrated at a broadband wavelength range from 405 nm to 632.8 nm. The effective polarization-independent broadband complex wavefront control with anisotropic elliptical nanoholes proposed in this paper greatly promotes the practical applications of the metasurface in technologies associated with wavefront manipulation, such as flat lens, colorful holographic displays and optical storage.
Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sen; Zhang, Yan, E-mail: yzhang@mail.cnu.edu.cn; Beijing Key Laboratory for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048
2015-12-14
A practical circular polarization analyzer (CPA) that can selectively focus surface plasmon polaritons (SPPs) at two separate locations, according to the helicity of the circularly polarized light, is designed and experimentally verified in the terahertz frequency range. The CPA consists of fishbone-slit units and is designed using the simulated annealing algorithm. By differentially detecting the intensities of the two SPPs focuses, the helicity of the incident circularly polarized light can be obtained and the CPA is less vulnerable to the noise of incident light. The proposed device may also have wide potential applications in chiral SPPs photonics and the analysismore » of chiral molecules in biology.« less
Multipolarization radar images for geologic mapping and vegetation discrimination
NASA Technical Reports Server (NTRS)
Evans, D. L.; Farr, T. G.; Ford, J. P.; Thompson, T. W.; Werner, C. L.
1986-01-01
NASA has developed an airborne SAR that simultaneously yields image data in four linear polarizations in L-band with 10-m resolution over a swath of about 10 km. Signal data are recorded both optically and digitally and annotated in each of the channels to facilitate completely automated digital correlation. Comparison of the relative intensities of the different polarizations furnishes discriminatory mapping information. Local intensity variations in like-polarization images result from topographic effects, while strong cross polarization responses denote the effects of vegetation cover and, in some cases, possible scattering from the subsurface. In each of the areas studied, multiple polarization data led to the discrimination and mapping of unique surface unit features.
Ganymede and Europa and their Jovian polar footprints
NASA Astrophysics Data System (ADS)
Sejkora, N.; Rucker, H. O.; Panchenko, M.
2017-09-01
The interactions between the Galilean moons Europa and Ganymede and the Jovian magnetosphere are studied. The focus lies on the satellites' auroral footprints observable in the polar regions of Jupiter. The work encompasses case studies of UV observations, obtained by the Hubble Space Telescope (HST), showing auroral features potentially triggered by either Europa or Ganymede. For those situations the footprint lead angles are determined, using different magnetic field models. The aim is to estimate the relationship between satellite longitude and lead angle. The delay between the local interaction at the satellite and the resulting auroral emission, which is implied by the obtained lead angles, is compared to the travel time of an Alfvén wave along a magnetic field line from the satellite to the planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Musson; Reza Kazimi; Benard Poelker
2007-06-25
Fiber-based drive lasers now produce all of the spin-polarized electron beams at CEBAF/Jefferson Lab. The flexibility of these drive lasers, combined with the existing three-beam CEBAF photoinjector Chopper, provides a means to implement a beat frequency technique to produce long time intervals between individual electron microbunches (tens of nanoseconds) by merely varying the nominal 499 MHz drive laser frequency by < 20%. This submission describes the RF Laser modulator that uses a divider and heterodyne scheme to maintain coherence with the accelerator Master Oscillator (MO), while providing delay resolution in increments of 2ns. Some possible uses for such a beammore » are discussed as well as intended future development.« less
Ben, Shuai; Wang, Tian; Xu, Tongtong; Guo, Jing; Liu, Xueshen
2016-04-04
The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.
High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection
NASA Astrophysics Data System (ADS)
Zhang, Jiameng; Yang, Lan; Li, Linpeng; Zhang, Tong; Li, Haihong; Wang, Qingmin; Hao, Yanan; Lei, Ming; Bi, Ke
2017-07-01
An ultra-wideband polarization conversion metasurface based on S-shaped metallic structure is designed and prepared. The simulation results show that the polarization conversion bandwidth is 14 GHz for linearly polarized normally incident electromagnetic waves and the cross-polarized reflectance is more than 99% in the range of 10.3 GHz-20.5 GHz. On the premise of high reflection efficiency, the reflective phase can be regulated by changing the geometrical parameter of the S-shaped metallic structure. A phase gradient metasurface composed of six periodically arrayed S-shaped unit cells is proposed and further demonstrated both numerically and experimentally. The specular cross-polarization reflection of the phase gradient metasurface is below -10 dB, which shows a good performance on manipulating the direction of the reflected electromagnetic waves.
Development of a Precise Polarization Modulator for UV Spectropolarimetry
NASA Astrophysics Data System (ADS)
Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Tsuneta, S.; Nakayama, S.; Tajima, T.
2015-10-01
We developed a polarization modulation unit (PMU) to rotate a waveplate continuously in order to observe solar magnetic fields by spectropolarimetry. The non-uniformity of the PMU rotation may cause errors in the measurement of the degree of linear polarization (scale error) and its angle (crosstalk between Stokes-Q and -U), although it does not cause an artificial linear polarization signal (spurious polarization). We rotated a waveplate with the PMU to obtain a polarization modulation curve and estimated the scale error and crosstalk caused by the rotation non-uniformity. The estimated scale error and crosstalk were {<} 0.01 % for both. This PMU will be used as a waveplate motor for the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) rocket experiment. We confirm that the PMU performs and functions sufficiently well for CLASP.
Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy
NASA Astrophysics Data System (ADS)
Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.
2009-04-01
"Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations show that the addition effect would account for only less than 4 DU which is equivalent to 1% of the current unperturbed ozone layer over the polar regions (? 400 DU). Hence the risk of a substantial damage to the stratospheric ozone layer due to H2-emissions of a hydrogen economy is low compared to the positive climate implications that would evolve from the avoidance of greenhouse gas emissions.
SHARAD Finds Voluminous CO2 Ice Sequestered in the Martian South Polar Layered Deposits
NASA Astrophysics Data System (ADS)
Phillips, R. J.; Davis, B. J.; Byrne, S.; Campbell, B. A.; Carter, L. M.; Haberle, R. M.; Holt, J. W.; Kahre, M. A.; Nunes, D. C.; Plaut, J. J.; Putzig, N. E.; Smith, I. B.; Smrekar, S. E.; Tanaka, K. L.; Titus, T. N.
2010-12-01
The SHARAD instrument on the Mars Reconnaissance Orbiter (MRO) mission has carried out systematic radar soundings of the layered deposits at both martian polar regions. While well-organized sets of radar reflectors are ubiquitous in the North Polar Layered Deposits, those in the South Polar Layered Deposits (SPLD) are limited to specific regions, and it is difficult to map SPLD-wide radar stratigraphy. What is evident in the radar observations are four regional reflection-free zones (RFZ) distinguished qualitatively by their radar characteristics. They are up to a kilometer in thickness and extend downward from near the surface. One such zone (RFZ3) occurs beneath the South Polar Residual Cap (SPRC), which is composed of ~5 m of solid CO2 underlain by an apparently thin layer of water ice. Using a correlation technique, we inverted for the real permittivity, ɛ', on each of 41 usable SHARAD orbits over RFZ3. The results were mean values of ɛ' = 2.0 or 2.1, with a σ of 0.2. A secondary technique based on the “smoothest” solution gave similar results. These values are exceptionally close to the laboratory-measured permittivity value of bulk CO2 ice [Pettinelli et al., 2003] and distant from the bulk water ice value (ɛ' = 3.15); water ice is the dominant volatile in the SPLD. An alternative hypothesis for ɛ' = 2.0-2.1 is that the RFZ3 material is porous water ice, but this can be strongly discounted based on theoretical and empirical models of ɛ' of porous water ice vs. thickness. By the same arguments, the proposed CO2 material also cannot be very porous, and ɛ' should be close to the bulk value. With the permittivity estimates, radar time delays were converted to depth, and for RFZ3 a mean thickness of 210-220 m and a volume of 4,200-4,400 km3 result. This is unlikely to be the entire volume because MRO’s orbital inclination precludes SHARAD sounding poleward of ~87°S, where RFZ3 appears to extend. We do find a very good spatial correlation of RFZ3 with the stratigraphic unit (named “Aa3”) immediately beneath the SPRC [Kolb et al., 2006] and use this geologic unit as a basis for extrapolation, yielding a volume estimate range of 9,500 to 12,500 km3. For comparison, the CO2 in the SPRC is estimated to be < 380 km3 [Thomas et al., 2009]. The equivalent atmospheric pressure of the extrapolated RFZ3 volume is 4-5 mbar, competing in magnitude with the current atmospheric pressure of 6-7 mbar. We have searched the past million year orbit history of Mars for periods when insolation at the south pole would likely render the proposed CO2 mass unstable and are carrying out GCM simulations to evaluate the climate regime at those times with 10-12 mbar of CO2 in the atmosphere. The other three reflection-free zones may also contain a component of CO2, but the reflector geometry is not favorable for estimating permittivity.
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.
2013-04-01
We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.
An Empirical Study of Synchrophasor Communication Delay in a Utility TCP/IP Network
NASA Astrophysics Data System (ADS)
Zhu, Kun; Chenine, Moustafa; Nordström, Lars; Holmström, Sture; Ericsson, Göran
2013-07-01
Although there is a plethora of literature dealing with Phasor Measurement Unit (PMU) communication delay, there has not been any effort made to generalize empirical delay results by identifying the distribution with the best fit. The existing studies typically assume a distribution or simply build on analogies to communication network routing delay. Specifically, this study provides insight into the characterization of the communication delay of both unprocessed PMU data and synchrophasors sorted by a Phasor Data Concentrator (PDC). The results suggest that a bi-modal distribution containing two normal distributions offers the best fit of the delay of the unprocessed data, whereas the delay profile of the sorted synchrophasors resembles a normal distribution based on these results, the possibility of evaluating the reliability of a synchrophasor application with respect to a particular choice of PDC timeout is discussed.
NASA Astrophysics Data System (ADS)
Potemkin, F. V.; Mareev, E. I.; Bezsudnova, Yu I.; Platonenko, V. T.; Bravy, B. G.; Gordienko, V. M.
2017-06-01
We report on an enhancement of deposited energy density of up to 10 kJ cm-3 inside transparent solids (fused silica and quartz) from using two-color µJ energy level tightly focused (NA = 0.5) co-propagating linearly polarized seeding (visible, 0.62 µm) and elliptically polarized heating (near-IR, 1.24 µm) femtosecond laser pulses. The rise in temperature under constant volume causes pressure of up to 12 GPa. It has been shown experimentally and theoretically that the production of seeding electrons through multiphoton ionization by visible laser pulse paves the way for controllability of the energy deposition and laser-induced micromodification via carrier heating by delayed infrared laser pulses inside the material. The developed theoretical approach predicts that the deposited energy density will be enhanced by up to 14 kJ cm-3 when using longer (up to 5 µm) wavelengths for heating laser pulses inside transparent solids.
Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yanpeng; Li Long; Ma Ruiqiong
2005-07-15
Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less
A Saturn launched X-ray astronomy experiment. Volume 1: S-027
NASA Technical Reports Server (NTRS)
1971-01-01
The S-027 X-Ray Astronomy Experiment originally proposed in early 1966, was developed to detect X-rays in the 2 keV to 10 keV range. Both a prototype unit and flight unit were constructed with the prototype unit also serving as the engineering model, the qualification test unit, and after refurbishment, as the back-up flight unit. Two Ground Support Equipment consoles were built to verify the experiment operation. A photograph of one experiment package with its Ground Support Equipment is shown. The S-027 experiment was scheduled for launch in 1968/69 and although both units were completed and tested to the extent that either would be ready for the scheduled launch, delays in the space program resulted in a launch date slip of several years. When the 1968/69 launch delay became official, provisions were made for storage of the two experiment packages at SCI Electronics in Huntsville, Alabama until a new launch date could be established.
The VLBI time delay function for synchronous orbits
NASA Technical Reports Server (NTRS)
Rosenbaum, B.
1972-01-01
The VLBI is a satellite tracking technique that to date was applied largely to the tracking of synchronous orbits. These orbits are favorable for VLBI in that the remote satellite range allows continuous viewing from widely separated stations. The primary observable, geometric time delay is the time difference for signal propagation between satellite and baseline terminals. Extraordinary accuracy in angular position data on the satellite can be obtained by observation from baselines of continental dimensions. In satellite tracking though the common objective is to derive orbital elements. A question arises as to how the baseline vector bears on the accuracy of determining the elements. Our approach to this question is to derive an analytic expression for the time delay function in terms of Kepler elements and station coordinates. The analysis, which is for simplicity based on elliptic motion, shows that the resolution for the inclination of the orbital plane depends on the magnitude of the baseline polar component and the resolution for in-plane elements depends on the magnitude of a projected equatorial baseline component.
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya
2018-02-01
Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.
Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation
Gittens, Rolando A.; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J.; Alamgir, Faisal M.; Boyan, Barbara D.; Schwartz, Zvi
2014-01-01
Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. PMID:23996899
Misra, Himanshu; Soni, Manish; Silawat, Narendra; Mehta, Darshana; Mehta, B. K.; Jain, D. C.
2011-01-01
Objective: To investigate the medicative effects of medium-polar (benzene:acetone, 1:1, v/v) extract of leaves from Stevia rebaudiana (family Asteraceae) on alloxan-induced diabetic rats. Materials and Methods: Diabetes was induced in adult albino Wistar rats by intraperitoneal (i.p.) injection of alloxan (180 mg/kg). Medium-polar extract was administered orally at daily dose of 200 and 400 mg/kg body wt. basis for 10 days. The control group received normal saline (0.9%) for the same duration. Glibenclamide was used as positive control reference drug against Stevia extract. Results: Medium-polar leaf extract of S. rebaudiana (200 and 400 mg/kg) produced a delayed but significant (P < 0.01) decrease in the blood glucose level, without producing condition of hypoglycemia after treatment, together with lesser loss in the body weight as compared with standard positive control drug glibenclamide. Conclusions: Treatment of diabetes with sulfonylurea drugs (glibenclamide) causes hypoglycemia followed by greater reduction in body weight, which are the most worrisome effects of these drugs. Stevia extract was found to antagonize the necrotic action of alloxan and thus had a re-vitalizing effect on β-cells of pancreas. PMID:21687353
Cyclic AMP regulates formation of mammary epithelial acini in vitro
Nedvetsky, Pavel I.; Kwon, Sang-Ho; Debnath, Jayanta; Mostov, Keith E.
2012-01-01
Epithelial cells form tubular and acinar structures notable for a hollow lumen. In three-dimensional culture utilizing MCF10A mammary epithelial cells, acini form due to integrin-dependent polarization and survival of cells contacting extracellular matrix (ECM), and the apoptosis of inner cells of acini lacking contact with the ECM. In this paper, we report that cyclic AMP (cAMP)-dependent protein kinase A (PKA) promotes acinus formation via two mechanisms. First, cAMP accelerates redistribution of α6-integrin to the periphery of the acinus and thus facilitates the polarization of outer acinar cells. Blocking of α6-integrin function by inhibitory antibody prevents cAMP-dependent polarization. Second, cAMP promotes the death of inner cells occupying the lumen. In the absence of cAMP, apoptosis is delayed, resulting in perturbed luminal clearance. cAMP-dependent apoptosis is accompanied by a posttranscriptional PKA-dependent increase in the proapoptotic protein Bcl-2 interacting mediator of cell death. These data demonstrate that cAMP regulates lumen formation in mammary epithelial cells in vitro, both through acceleration of polarization of outer cells and apoptosis of inner cells of the acinus. PMID:22675028
Facciuto, Florencia; Bugnon Valdano, Marina; Marziali, Federico; Massimi, Paola; Banks, Lawrence; Cavatorta, Ana Laura; Gardiol, Daniela
2014-05-01
High-risk human papillomavirus (HPV) infection is the principal risk factor for the development of cervical cancer. The HPV E6 oncoprotein has the ability to target and interfere with several PSD-95/DLG/ZO-1 (PDZ) domain-containing proteins that are involved in the control of cell polarity. This function can be significant for E6 oncogenic activity because a deficiency in cell polarisation is a marker of tumour progression. The establishment and control of polarity in epithelial cells depend on the correct asymmetrical distribution of proteins and lipids at the cell borders and on specialised cell junctions. In this report, we have investigated the effects of HPV E6 protein on the polarity machinery, with a focus on the PDZ partitioning defective 3 (Par3) protein, which is a key component of tight junctions (TJ) and the polarity network. We demonstrate that E6 is able to bind and induce the mislocalisation of Par3 protein in a PDZ-dependent manner without significant reduction in Par3 protein levels. In addition, the high-risk HPV-18 E6 protein promotes a delay in TJ formation when analysed by calcium switch assays. Taken together, the data presented in this study contribute to our understanding of the molecular mechanism by which HPVs induce the loss of cell polarity, with potential implications for the development and progression of HPV-associated tumours. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Carpenter, Tim E; O'Brien, Joshua M; Hagerman, Amy D; McCarl, Bruce A
2011-01-01
The epidemic and economic impacts of Foot-and-mouth disease virus (FMDV) spread and control were examined by using epidemic simulation and economic (epinomic) optimization models. The simulated index herd was a ≥2,000 cow dairy located in California. Simulated disease spread was limited to California; however, economic impact was assessed throughout the United States and included international trade effects. Five index case detection delays were examined, which ranged from 7 to 22 days. The simulated median number of infected premises (IP) ranged from approximately 15 to 745, increasing as the detection delay increased from 7 to 22 days. Similarly, the median number of herds under quarantine increased from approximately 680 to 6,200, whereas animals slaughtered went from approximately 8,700 to 260,400 for detection delays of 7-22 days, respectively. The median economic impact of an FMD outbreak in California was estimated to result in national agriculture welfare losses of $2.3-$69.0 billion as detection delay increased from 7 to 22 days, respectively. If assuming a detection delay of 21 days, it was estimated that, for every additional hr of delay, the impact would be an additional approximately 2,000 animals slaughtered and an additional economic loss of $565 million. These findings underline the critical importance that the United States has an effective early detection system in place before an introduction of FMDV if it hopes to avoid dramatic losses to both livestock and the economy.
Expect the unexpected: A look at teacher-researcher partnerships over the long-term
NASA Astrophysics Data System (ADS)
Warburton, J.; Bartholow, S.; Larson, A.
2016-02-01
For over ten years, the Arctic Research Consortium of the United States (ARCUS) has developed and implemented PolarTREC-Teachers and Researchers Exploring and Collaborating (PolarTREC). This unique program has brought K-12 educators and polar researchers together through an innovative teacher research experience model. Utilizing field-based experiences in the polar regions, PolarTREC provide teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry they need to promote authentic scientific research in their classroom. PolarTREC has the potential to transform the nature of STEM education. In this presentation, we will share how the PolarTREC model has led to teachers and researchers developing positive, professional relationships with the potential to grow into long-term partnerships. And, how these partnerships have led to both unexpected and amazing outcomes.
Ultra-wideband and broad-angle linear polarization conversion metasurface
NASA Astrophysics Data System (ADS)
Sun, Hengyi; Gu, Changqing; Chen, Xinlei; Li, Zhuo; Liu, Liangliang; Martín, Ferran
2017-05-01
In this work, a metasurface acting as a linear polarization rotator, that can efficiently convert linearly polarized electromagnetic waves to cross polarized waves within an ultra wide frequency band and with a broad incident angle, is proposed. Based on the electric and magnetic resonant features of the unit cell, composed by a double-head arrow, a cut-wire, and two short V-shaped wire structures, three resonances, which lead to the bandwidth expansion of cross-polarization reflections, are generated. The simulation results show that an average polarization conversion ratio of 90% from 17.3 GHz to 42.2 GHz can be achieved. Furthermore, the designed metasurface exhibits polarization insensitivity within a broad incident angle, from 0° to 50°. The experiments conducted on the fabricated metasurface are in good agreement with the simulations. The proposed metasurface can find potential applications in reflector antennas, imaging systems, and remote sensors operating at microwave frequencies.
Dual-band high-efficiency polarization converter using an anisotropic metasurface
NASA Astrophysics Data System (ADS)
Lin, Baoqin; Wang, Buhong; Meng, Wen; Da, Xinyu; Li, Wei; Fang, Yingwu; Zhu, Zihang
2016-05-01
In this work, a dual-band and high-efficiency reflective cross-polarization converter based on an anisotropic metasurface for linearly polarized electromagnetic waves is proposed. Its unit cell is composed of an elliptical disk-ring mounted on grounded dielectric substrate, which is an anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along ± 45 ° directions with respect to y-axis direction. Both the simulation and measured results show that the polarization converter can convert x- or y-polarized incident wave to its cross polarized wave in the two frequency bands (6.99-9.18 GHz, 11.66-20.40 GHz) with the conversion efficiency higher than 90%; moreover, the higher frequency band is an ultra-wide one with a relative bandwidth of 54.5% for multiple plasmon resonances. In addition, we present a detailed analysis for the polarization conversion of the polarization converter, and derive a formula to calculate the cross- and co-polarization reflections at y-polarized incidence according to the phase differences between the two reflected coefficients at u-polarized and v-polarized incidences. The simulated, calculated, and measured results are all in agreement with the entire frequency regions.
Delay-aware adaptive sleep mechanism for green wireless-optical broadband access networks
NASA Astrophysics Data System (ADS)
Wang, Ruyan; Liang, Alei; Wu, Dapeng; Wu, Dalei
2017-07-01
Wireless-Optical Broadband Access Network (WOBAN) is capacity-high, reliable, flexible, and ubiquitous, as it takes full advantage of the merits from both optical communication and wireless communication technologies. Similar to other access networks, the high energy consumption poses a great challenge for building up WOBANs. To shot this problem, we can make some load-light Optical Network Units (ONUs) sleep to reduce the energy consumption. Such operation, however, causes the increased packet delay. Jointly considering the energy consumption and transmission delay, we propose a delay-aware adaptive sleep mechanism. Specifically, we develop a new analytical method to evaluate the transmission delay and queuing delay over the optical part, instead of adopting M/M/1 queuing model. Meanwhile, we also analyze the access delay and queuing delay of the wireless part. Based on such developed delay models, we mathematically derive ONU's optimal sleep time. In addition, we provide numerous simulation results to show the effectiveness of the proposed mechanism.
NASA Astrophysics Data System (ADS)
Raposo, M. I. B.; Canon-Tapia, E.; Guimarães, L. F.; Janasi, V. A.
2015-12-01
The magmatism in the LIP Paraná-Etendeka comprises basic and acid rocks. On the Paraná side, these rocks are basalt tholeiitic with high (>2%) and low TiO2 content, and dacites, rhyodacites, rhyolites and quartz latites forming the acid types Chapecó and Palmas. The volcanic acid Palmas are found in the South part of Brazil, and based on TiO2 and P2O5 contents are subdivided into Caxias do Sul, Santa Maria, Anita Garibaldi, Jacuí, Clevelândia and Barros Cassal units. In the studied region, the first stratigraphic sequence is low TiO2 basalt followed by Caxias do Sul, Barros Cassal and Santa Maria on top. We sampled all these units in the Gramado Xavier (Rio Grande do Sul State, South Brazil) region. To determine the mean magnetization directions of each site, samples were demagnetized by both thermal and AF techniques. The results show that the basalt flows recorded both normal and reverse polarities of the geomagnetic field. All sites from Caxias do Sul registered an anomalous direction suggesting an excursion of the geomagnetic field. Sites from Barros Cassal present both normal and reverse polarities. All sites from Santa Maria unit show a reverse polarity of the geomagnetic field. The normal and reverse polarities recorded in the different units are similar indicating contemporaneity of the magmatic source. Due to the existence of only one reversal event, a short duration of volcanism is suspected.
A modelling tool for capacity planning in acute and community stroke services.
Monks, Thomas; Worthington, David; Allen, Michael; Pitt, Martin; Stein, Ken; James, Martin A
2016-09-29
Mathematical capacity planning methods that can take account of variations in patient complexity, admission rates and delayed discharges have long been available, but their implementation in complex pathways such as stroke care remains limited. Instead simple average based estimates are commonplace. These methods often substantially underestimate capacity requirements. We analyse the capacity requirements for acute and community stroke services in a pathway with over 630 admissions per year. We sought to identify current capacity bottlenecks affecting patient flow, future capacity requirements in the presence of increased admissions, the impact of co-location and pooling of the acute and rehabilitation units and the impact of patient subgroups on capacity requirements. We contrast these results to the often used method of planning by average occupancy, often with arbitrary uplifts to cater for variability. We developed a discrete-event simulation model using aggregate parameter values derived from routine administrative data on over 2000 anonymised admission and discharge timestamps. The model mimicked the flow of stroke, high risk TIA and complex neurological patients from admission to an acute ward through to community rehab and early supported discharge, and predicted the probability of admission delays. An increase from 10 to 14 acute beds reduces the number of patients experiencing a delay to the acute stroke unit from 1 in every 7 to 1 in 50. Co-location of the acute and rehabilitation units and pooling eight beds out of a total bed stock of 26 reduce the number of delayed acute admissions to 1 in every 29 and the number of delayed rehabilitation admissions to 1 in every 20. Planning by average occupancy would resulted in delays for one in every five patients in the acute stroke unit. Planning by average occupancy fails to provide appropriate reserve capacity to manage the variations seen in stroke pathways to desired service levels. An appropriate uplift from the average cannot be based simply on occupancy figures. Our method draws on long available, intuitive, but underused mathematical techniques for capacity planning. Implementation via simulation at our study hospital provided valuable decision support for planners to assess future bed numbers and organisation of the acute and rehabilitation services.
Study of positive and negative plasma catalytic oxidation of ethylene.
Van Wesenbeeck, K; Hauchecorne, B; Lenaerts, S
2017-06-01
The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO 2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15 kV. This shows the potential of plasma catalysis as indoor air purification technology.
Immunotherapy for Type 1 Diabetes: Why Do Current Protocols Not Halt the Underlying Disease Process?
Kolb, Hubert; von Herrath, Matthias
2017-02-07
T cell-directed immunosuppression only transiently delays the loss of β cell function in recent-onset type 1 diabetes. We argue here that the underlying disease process is carried by innate immune reactivity. Inducing a non-polarized functional state of local innate immunity will support regulatory T cell development and β cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.
Timing of water plume eruptions on Enceladus explained by interior viscosity structure
NASA Astrophysics Data System (ADS)
Běhounková, Marie; Tobie, Gabriel; Čadek, Ondřej; Choblet, Gaël; Porco, Carolyn; Nimmo, Francis
2015-08-01
At the south pole of Saturn's icy moon Enceladus, eruptions of water vapour and ice emanate from warm tectonic ridges. Observations in the infrared and visible spectra have shown an orbital modulation of the plume brightness, which suggests that the eruption activity is influenced by tidal forces. However, the observed activity seems to be delayed by several hours with respect to predictions based on simple tidal models. Here we simulate the viscoelastic tidal response of Enceladus with a full three-dimensional numerical model and show that the delay in eruption activity may be a natural consequence of the viscosity structure in the south-polar region and the size of the putative subsurface ocean. By systematically comparing simulations of variations in normal stress along faults with plume brightness data, we show that the observed activity is reproduced for two classes of interior models with contrasting thermal histories: a low-viscosity convective region above a polar sea extending about 45°-60° from the south pole at a depth below the surface as small as 30 km, or a convecting ice shell of 60-70 km in thickness above a global ocean. Our analysis further shows that the eruption activity is controlled by the average normal stress applied across the cracks, thus providing a constraint on the eruption mechanism.
40 CFR 63.1090 - What reports must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1090 What reports must I submit? If you delay repair for your heat exchange system, you must report the delay of repair in the...
40 CFR 63.1090 - What reports must I submit?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1090 What reports must I submit? If you delay repair for your heat exchange system, you must report the delay of repair in the...
40 CFR 63.1090 - What reports must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1090 What reports must I submit? If you delay repair for your heat exchange system, you must report the delay of repair in the...
40 CFR 63.1090 - What reports must I submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1090 What reports must I submit? If you delay repair for your heat exchange system, you must report the delay of repair in the...
40 CFR 63.1090 - What reports must I submit?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1090 What reports must I submit? If you delay repair for your heat exchange system, you must report the delay of repair in the...
Air Traffic Control Response to Delays: A System Study of Newark International Airport
NASA Technical Reports Server (NTRS)
Evans, Antony D.; Clarke, John-Paul
2002-01-01
Airport delays are a significant problem in the United States air transportation system. Between 1999 and 2000 the number of flights delayed increased by 20 percent despite only a 0.4% increase in total operations. Newark International Airport (EWR), one of New York City's primary airports, is one of the airports in the United States most impacted by delays. Newark had the highest percentage of operations delayed in 1999, and was second only to LaGuardia Airport in 2000. Nearly 85% of delays at Newark are caused by adverse weather impacting an airport that may be characterized as having limited capacity and a very full schedule. Although Newark is heavily impacted by weather, delays have not increased significantly since 1998. This indicates that the airlines, air traffic control (ATC), and the Port Authority of New York and New Jersey have successfully adapted. On June 29, 2000, a research team from MIT visited Newark airport to assess the effectiveness of any adaptations made, and to collect data on airline and ATC departure operations, and of the national and local weather affecting the airport. Airline and ATC personnel were also interviewed. Results of this study indicate that airspace capacity limitations downstream of the airport are a primary flow constraint at the airport, and that these constraints are the source of most surface delays. A number of tactical ATC responses to delays were examined, including the application of restrictions, re-routing with the help of the National Playbook, and the use of decision-aiding tools such as the Dynamic Spacing Program (DSP) and the Integrated Terminal Weather System (ITWS). Improved interfacility communications and further utilization of runway 11-29 were identified as other tactical responses to delays, whilst the formation of the Air Traffic Control System Command Center and the New York Airspace redesign were identified as thekey strategic ATC responses to delays. Particularly the New York airspace redesign has great potential to reduce delays at the airport. Because delays at Newark are caused by downstream flow constraints, the responses at the airport can be applied to other airports as delays from downstream constraints increase. Such an increase in delays system wide from downstream constraints is inevitable as the system becomes more congested.
McBride, Katherine M; Bromberg, William; Dunne, James
2017-04-01
Venomous snakebites are fairly common in the United States and can present with a wide range of symptoms. A 48-year-old man presented after Eastern Diamondback rattlesnake envenomation. His hospital course was complicated by right leg compartment syndrome and delayed recurrent coagulopathy, requiring multiple doses of Crotalidae Polyvalent Immune Fab (CroFab) antivenom and transfusions. Thromboelastography was used as an adjunct to standard coagulation studies in monitoring his delayed recurrent coagulopathy.
Circadian Rhythm and Sleep During Prolonged Antarctic Residence at Chinese Zhongshan Station.
Chen, Nan; Wu, Quan; Xiong, Yanlei; Chen, Guang; Song, Dandan; Xu, Chengli
2016-12-01
Residence at Zhongshan Station (69°22'24″S, 76°22'40″E) for over 1 year exposes winter-over members to marked changes of light-dark cycle, ranging from the constant daylight of polar days to the constant darkness of polar nights, in addition to geographic and social isolation. This extreme photoperiodic environment may increase the risk of sleep disturbances and circadian desynchrony. The aim of this study was to investigate the circadian rhythm and sleep phase of Chinese winter-over expeditioners at Zhongshan Station. This study was conducted on 17 healthy male participants before departure from Shanghai and during residence at Zhongshan Station for 1 year (before winter, mid-winter, and end of winter). Sequential urine samples over 48 hours were obtained, 6-sulphatoxymelatonin in urine was assessed, and the circadian rhythm was analyzed by a cosine curve-fitting method. Participants' sleep parameters were obtained from wrist actigraphy and sleep logs. Morningness-Eveningness Questionnaire and Seasonal Pattern Assessment Questionnaire were completed. The acrophase of 6-sulphatoxymelatonin rhythm, sleep onset, sleep offset, and mid-sleep time were delayed significantly (P < .05) in Antarctica relative to departure values. The subjects had greater eveningness preference (P < .05) in mid-winter in Antarctica. The Global Seasonality Score and the prevalence of subsyndromal seasonal affective disorder increased (P < .05) during winter. Our results indicate that during polar nights Chinese expeditioners experienced the following problems: delayed circadian rhythm and sleep phase, later chronotype, and incidence of subsyndromal seasonal affective disorder. An appropriate combination of artificial bright light during dark winter months and a strict social schedule are recommended in a winter-over station in Antarctica. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Mapping of Crustal Anisotropy in the New Madrid Seismic Zone with Shear Wave Splitting
NASA Astrophysics Data System (ADS)
Martin, P.; Arroucau, P.; Vlahovic, G.
2013-12-01
Crustal anisotropy in the New Madrid seismic zone (NMSZ) is investigated by analyzing shear wave splitting measurements from local earthquake data. For the initial data set, the Center for Earthquake Research and Information (CERI) provided over 3000 events, along with 900 seismograms recorded by the Portable Array for Numerical Data Acquisition (PANDA) network. Data reduction led to a final data set of 168 and 43 useable events from the CERI and PANDA data, respectively. From this, 186 pairs of measurements were produced from the CERI data set as well as 49 from the PANDA data set, by means of the automated shear wave splitting measurement program MFAST. Results from this study identified two dominant fast polarization directions, striking NE-SW and WNW-ESE. These are interpreted to be due to stress aligned microcracks in the upper crust. The NE-SW polarization direction is consistent with the maximum horizontal stress orientation of the region and has previously been observed in the NMSZ, while the WNW-ESE polarization direction has not. Path normalized time delays from this study range from 1-33 ms/km for the CERI network data, and 2-31 ms/km for the PANDA data, giving a range of estimated differential shear wave anisotropy between 1% and 8%, with the majority of large path normalized time delays (>20 ms/km) located along the Reelfoot fault segment. The estimated differential shear wave anisotropy values from this study are higher than those previously determined in the region, and are attributed to high crack densities and high pore fluid pressures, which agree with previous results from local earthquake tomography and microseismic swarm analysis in the NMSZ.
NASA Astrophysics Data System (ADS)
Taguchi, Masakazu
2017-09-01
This study compares large-scale dynamical variability in the extratropical stratosphere, such as major stratospheric sudden warmings (MSSWs), among the Japanese 55-year Reanalysis (JRA-55) family data sets. The JRA-55 family consists of three products: a standard product (STDD) of the JRA-55 reanalysis data and two sub-products of JRA-55C (CONV) and JRA-55AMIP (AMIP). CONV assimilates only conventional surface and upper-air observations without assimilation of satellite observations, whereas AMIP runs the same numerical weather prediction model without assimilation of observational data. A comparison of the occurrence of MSSWs in Northern Hemisphere (NH) winter shows that, compared to STDD, CONV delays several MSSWs by 1 to 4 days and also misses a few MSSWs. CONV also misses the Southern Hemisphere (SH) MSSW in September 2002. AMIP shows significantly fewer MSSWs in Northern Hemisphere winter and especially lacks MSSWs of the high aspect ratio of the polar vortex in which the vortex is highly stretched or split. A further examination of daily geopotential height differences between STDD and CONV reveals occasional peaks in both hemispheres that are separated from MSSWs. The delayed and missed MSSW cases have smaller height differences in magnitude than such peaks. The height differences for those MSSWs include large contributions from the zonal component, which reflects underestimations in the weakening of the zonal mean polar night jet in CONV. We also explore strong planetary wave forcings and associated polar vortex weakenings for STDD and AMIP. We find a lower frequency of strong wave forcings and weaker vortex responses to such wave forcings in AMIP, consistent with the lower MSSW frequency.
NASA Astrophysics Data System (ADS)
Gajek, Wojciech; Verdon, James; Malinowski, Michał; Trojanowski, Jacek
2017-04-01
Azimuthal anisotropy plays a key-role in hydraulic fracturing experiments, since it provides information on stress orientation and pre-existing fracture system presence. The Lower Paleozoic shale plays in northern Poland are characterized by a strong (15-18%) Vertical Transverse Isotropy (VTI) fabric which dominates weak azimuthal anisotropy being of order of 1-2%. A shear wave travelling in the subsurface after entering an anisotropic medium splits into two orthogonally polarized waves travelling with different velocities. Splitting parameters which can be assessed using a microseismic array are polarization of the fast shear wave and time delay between two modes. Polarization of the fast wave characterizes the anisotropic system on the wave path while the time delay is proportional to the magnitude of anisotropy. We employ Shear Wave Splitting (SWS) technique using a borehole microseismic dataset collected during a hydraulic stimulation treatment located in northern Poland, to image fracture strike masked by a strong VTI signature. During the inversion part, the VTI background parameters were kept constant using information from 3D seismic (VTI model used for pre-stack depth migration). Obtained fracture azimuths averaged over fracturing stages are consistent with the available XRMI imager logs from the nearby vertical well, however they are different from the large-scale maximum stress direction (by 40-45 degrees). Inverted Hudson's crack density (ca. 2%) are compatible with the low shear-wave anisotropy observed in the cross-dipole sonic logs (1-2%). This work has been funded by the Polish National Centre for Research and Development within the Blue Gas project (No BG2/SHALEMECH/14). Data were provided by the PGNiG SA. Collaboration with University of Bristol was supported within TIDES COST Action ES1401.
Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej
2017-01-01
Abstract We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 1013 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus—Tidal deformation—Faults—Variable ice shell thickness—Tidal heating—Plume activity and timing. Astrobiology 17, 941–954. PMID:28816521
Calibration of the Geosar Dual Frequency Interferometric SAR
NASA Technical Reports Server (NTRS)
Chapine, Elaine
1999-01-01
GeoSAR is an airborne, interferometric Synthetic Aperture Radar (INSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation (CalDOC) with funding provided by the Topographic Engineering Center (TEC) of the U.S. Army Corps of Engineers and the Defense Advanced Research Projects Agency (DARPA). The radar simultaneously maps swaths on both sides of the aircraft at two frequencies, X-Band and P-Band. For the P-Band system, data is collected for two across track interferometric baselines and at the crossed polarization. The aircraft position and attitude are measured using two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The mechanical orientation and position of the antennas are actively measured using a Laser Baseline Metrology System (LBMS). In the GeoSAR motion measurement software, these data are optimally combined with data from a nearby ground station using Ashtech PNAV software to produce the position, orientation, and baseline information are used to process the dual frequency radar data. Proper calibration of the GeoSAR system is essential to obtaining digital elevation models (DEMS) with the required sub-meter level planimetric and vertical accuracies. Calibration begins with the determination of the yaw and pitch biases for the two EGI units. Common range delays are determined for each mode, along with differential time and phase delays between channels. Because the antennas are measured by the LBMS, baseline calibration consists primarily of measuring a constant offset between mechanical center and the electrical phase center of the antennas. A phase screen, an offset to the interferometric phase difference which is a function of absolute phase, is applied to the interferometric data to compensate for multipath and leakage. Calibration parameters are calculated for each of the ten processing modes, each of the operational bandwidths (80 and 160 MHZ), and each aircraft altitude. In this talk we will discuss the layout calibration sites, the synthesis of data from multiple flights to improve the calibration, methods for determining time and phase delays, and techniques for determining radiometric and polarimetric quantities. We will describe how calibration quantities are incorporated into the processor and pre-processor. We will demonstrate our techniques applied to GeoSar data and assess the stability and accuracy of the calibration. This will be compared to the modeled performance determined from calibrating the output of a point target simulator. The details of baseline determination and phase screen calculation are covered in related talks.
Personal and contextual factors related to delayed HIV diagnosis among men who have sex with men
Nelson, Kimberly M.; Thiede, Hanne; Jenkins, Richard A.; Carey, James W.; Hutcheson, Rebecca; Golden, Matthew R.
2014-01-01
Delayed HIV diagnosis among men who have sex with men (MSM) in the United States continues to be a significant personal and public health issue. Using qualitative and quantitative data from 75 recently tested, HIV-seropositive MSM (38 delayed and 37 non-delayed testers) we sought to further elucidate potential personal and contextual factors that may contribute to delayed HIV diagnosis among MSM. Our findings indicate MSM who experience multiple life stressors, whether personal or contextual, have an increased likelihood of delaying HIV diagnosis. Further, MSM experiencing multiple life stressors without the scaffolding of social support, stable mental health, and self-efficacy to engage in protective health behaviors may be particularly vulnerable to delaying diagnosis. Interventions targeting these factors as well as structural interventions targeting physiological and safety concerns are needed to help MSM handle their life stressors more effectively and seek HIV testing in a timelier manner. PMID:24694326
A circular polarization converter based on in-linked loop antenna frequency selective surface
NASA Astrophysics Data System (ADS)
Wang, Shen-Yun; Liu, Wei; Geyi, Wen
2018-06-01
In this paper, we report the design, fabrication and measurement of a circular polarization converter based on an in-linked loop-antenna frequency selective surface. The building unit cell is the in-linked loop-antenna module, which consists of same front and back planar loop antennas in-linked by a pair of through-via holes passing through a sandwiched perforated metal ground plane. The proposed device can achieve transmission polarization conversions from right- or left-handed circularly polarized waves to left- or right-handed ones, respectively, or vice versa. Simulation and experimental results show that it has relative conversion ratio of near unity at resonant frequency and very low Joule insertion loss in the operating frequency band. The proposed circular polarization converter may be applied to wireless systems where circular polarization diversity is needed.
United States Air Force Summer Faculty Research Program (1984). Program Management Report. Volume 3
1984-12-01
Database Design 蕄 Raman Spectroscopy of Dr. Boake L. Plessy Glycosaminoglycans from -* Bovine Cornea 117 Study of Control Mixer Concept Dr. Kuldip S...simultaneously in polarized and non -polarized controls were repeated three times at 260-64, 368-70, 604-8-13, 735-7-40, 1277-80, 1760, 1775, and 1820 or four...times at S240-2-4, 1020 and 1874-8-90. Pooling replicates from the non -polarized components, six controls and two cAMP treatments, events repeating
Nagle, R D; Burke, V J; Congdon, J D
1998-05-01
We measured egg components and pre-ovulatory parental investment in kinosternid turtles (Kinosternon baurii, Kinosternon subrubrum, Sternotherus minor, and Sternotherus odoratus) from the southeastern USA. Allocation patterns were determined by comparing lipid content of eggs and hatchlings, to determine whether females of species with hatchlings that exhibit a delayed nest-emergence strategy: (1) allocate higher proportions of energy storage lipids to eggs, (2) produce hatchlings with higher levels of storage lipids, and (3) have higher levels of pre-ovulatory parental investment in comparison to species whose hatchlings exhibit immediate emergence. Whereas total non-polar lipid (NPL) proportions by dry mass of eggs varied significantly among species, NPL proportions of hatchlings were not significantly different. Pre-ovulatory parental investment in care (proportion of hatchling NPL to egg NPL) was 40, 50, and 55% for K. subrubrum, S. minor, and S. odoratus, respectively. Lipid class composition of eggs and hatchlings was studied to distinguish lipids allocated for energy storage from those allocated to other functions. For both eggs and hatchlings, individual lipid classes (triacylglycerol, triacylglycerol fatty acid, cholesterol, cholesterol ester, and phospholipid) as proportions of total lipid, were similar among species. The major lipid class component of eggs and hatchlings of all species was triacylglycerol (> 83%), an energy storage lipid. Substantial changes in lipid classes during embryogenesis were similar among species and included: (1) depletion of triacylglycerol, (2) increase in cholesterol esters, and (3) changes in phospholipid composition. Incubation time varied significantly among species, and appeared to be responsible for differential energy utilization during embryogenesis. Our results are inconsistent with the previously observed pattern that hatchlings exhibiting a delayed nest-emergence strategy are allocated higher proportions of energy storage lipids than those that exhibit immediate emergence. However, because the species that overwinters in the nest (K. subrubrum) hatches approximately 40 days later than the species that typically does not (S. odoratus), hatchling K. subrubrum may contain higher non-polar lipid proportions than hatchling S. odoratus during similar winter time periods. Kinosternid hatchlings contain enough stored lipids to support basal maintenance costs for substantial time periods. We suggest that such reserves may be critical to hatchling survival during a period of negative energy balance, regardless of nest emergence strategy.
NASA Astrophysics Data System (ADS)
Mohanbabu, A.; Mohankumar, N.; Godwin Raj, D.; Sarkar, Partha
2017-08-01
In this paper, we examined normally-OFF N-polar InN-channel Metal insulated semiconductor high-electron mobility transistors (MISHEMTs) device with a relaxed In0.9Al0.1N buffer layer. In addition, the enhancement-mode operation of the N-polar structure was investigated. The effect of scaling in N-polar MISHEMT, such as the dielectric and the channel thickness, alter the electrical behavior of the device. We have achieved a maximum drain current of 1.17 A/mm, threshold voltage (VT) =0.728 V, transconductance (gm) of 2.9 S mm-1, high ION/IOFF current ratio of 3.23×103, lowest ON-state resistance (RON) of 0.41 Ω mm and an intrinsic delay time (τ) of 1.456 Fs along with high-frequency performance with ft/ fmaxof 90 GHz/109 GHz and 180 GHz/260 GHz for TCH =0.5 nm at Vds =0.5 V and 1.0 V. The numerically simulated results of highly confined GaN/InN/GaN/In0.9Al0.1N heterostructure MISHEMT exhibits outstanding potential as one of the possibility to replace presently used N-polar MISHEMTs for delivering high power density and frequency at RF/power amplifier applications.
NASA Astrophysics Data System (ADS)
Speicher, Andy; Matin, Mohammad; Tippets, Roger; Chun, Francis; Strong, David
2015-05-01
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, their polarization signature may change enough to allow discrimination of identical satellites launched at different times. Preliminary data suggests this optical signature may lead to positive identification or classification of each satellite by an automated process on a shorter timeline. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. Following a rigorous calibration, polarization data was collected during two nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. When Stokes parameters were plotted against time and solar phase angle, the data indicates that a polarization signature from unresolved images may have promise in classifying specific satellites.
Polarizing PVC--A Discrepant Event
ERIC Educational Resources Information Center
Headly, David; Karabatek, Mohamed
2016-01-01
This article describes an experiment teaching polarization phenomena and the Triboelectric Series in a unit on electrostatics. Using rods (2-3 ft in length) made from wood, aluminum, PVC, and Plexiglas on an inverted watch glass, these items demonstrated to the class how a party balloon rubbed with fake rabbit fur (charging the balloon negative)…
POLAR ORGANIC OXYGENATES IN PM2.5 AT A SOUTHEASTERN SITE IN THE UNITED STATES
A field study was undertaken in Research Triangle Park, NC, USA, during the summer of 2000 to identify classes of polar oxygenates in PM2.5 containing carbonyl and/or hydroxyl functional groups and, to the extent possible, determine the individual particle-bound oxygenates that m...
50 CFR 18.34 - Guidelines for use in safely deterring polar bears.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Guidelines for use in safely deterring polar bears. 18.34 Section 18.34 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE..., EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) MARINE MAMMALS Special Exceptions § 18.34...
50 CFR 18.34 - Guidelines for use in safely deterring polar bears.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Guidelines for use in safely deterring polar bears. 18.34 Section 18.34 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE..., EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) MARINE MAMMALS Special Exceptions § 18.34...
50 CFR 18.34 - Guidelines for use in safely deterring polar bears.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Guidelines for use in safely deterring polar bears. 18.34 Section 18.34 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE..., EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) MARINE MAMMALS Special Exceptions § 18.34...
50 CFR 18.34 - Guidelines for use in safely deterring polar bears.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Guidelines for use in safely deterring polar bears. 18.34 Section 18.34 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE..., EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) MARINE MAMMALS Special Exceptions § 18.34...
Verma, Akash; Lee, Mui Yok; Wang, Chunhong; Hussein, Nurmalah B M; Selvi, Kalai; Tee, Augustine
2014-04-01
The purpose of this study was to assess the efficiency of performing pulmonary procedures in the endoscopy unit in a large teaching hospital. A prospective study from May 20 to July 19, 2013, was designed. The main outcome measures were procedure delays and their reasons, duration of procedural steps starting from patient's arrival to endoscopy unit, turnaround time, total case durations, and procedure wait time. A total of 65 procedures were observed. The most common procedure was BAL (61%) followed by TBLB (31%). Overall procedures for 35 (53.8%) of 65 patients were delayed by ≥ 30 minutes, 21/35 (60%) because of "spillover" of the gastrointestinal and surgical cases into the time block of pulmonary procedure. Time elapsed between end of pulmonary procedure and start of the next procedure was ≥ 30 minutes in 8/51 (16%) of cases. In 18/51 (35%) patients there was no next case in the room after completion of the pulmonary procedure. The average idle time of the room after the end of pulmonary procedure and start of next case or end of shift at 5:00 PM if no next case was 58 ± 53 minutes. In 17/51 (33%) patients the room's idle time was >60 minutes. A total of 52.3% of patients had the wait time >2 days and 11% had it ≥ 6 days, reason in 15/21 (71%) being unavailability of the slot. Most pulmonary procedures were delayed due to spillover of the gastrointestinal and surgical cases into the block time allocated to pulmonary procedures. The most common reason for difficulty encountered in scheduling the pulmonary procedure was slot unavailability. This caused increased procedure waiting time. The strategies to reduce procedure delays and turnaround times, along with improved scheduling methods, may have a favorable impact on the volume of procedures performed in the unit thereby optimizing the existing resources.
NASA Astrophysics Data System (ADS)
Speicher, Andy; Matin, Mohammad; Tippets, Roger; Chun, Francis
2014-09-01
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. The objective of this study was to calibrate a system to exploit the optical signature of unresolved geosynchronous satellite images by collecting polarization data in the visible wavelengths for the purpose of revealing discriminating features. These features may lead to positive identification or classification of each satellite. The system was calibrated with an algorithm and process that takes raw observation data from a two-channel polarimeter and converts it to Stokes parameters S0 and S1. This instrumentation is a new asset for the United States Air Force Academy (USAFA) Department of Physics and consists of one 20-inch Ritchey-Chretien telescope and a dual focal plane system fed with a polarizing beam splitter. This study calibrated the system and collected preliminary polarization data on five geosynchronous satellites to validate performance. Preliminary data revealed that each of the five satellites had a different polarization signature that could potentially lead to identification in future studies.
Vick-Majors, Trista J; Priscu, John C; Amaral-Zettler, Linda A
2014-04-01
High-latitude environments, such as the Antarctic McMurdo Dry Valley lakes, are subject to seasonally segregated light-dark cycles, which have important consequences for microbial diversity and function on an annual basis. Owing largely to the logistical difficulties of sampling polar environments during the darkness of winter, little is known about planktonic microbial community responses to the cessation of photosynthetic primary production during the austral sunset, which lingers from approximately February to April. Here, we hypothesized that changes in bacterial, archaeal and eukaryotic community structure, particularly shifts in favor of chemolithotrophs and mixotrophs, would manifest during the transition to polar night. Our work represents the first concurrent molecular characterization, using 454 pyrosequencing of hypervariable regions of the small-subunit ribosomal RNA gene, of bacterial, archaeal and eukaryotic communities in permanently ice-covered lakes Fryxell and Bonney, before and during the polar night transition. We found vertically stratified populations that varied at the community and/or operational taxonomic unit-level between lakes and seasons. Network analysis based on operational taxonomic unit level interactions revealed nonrandomly structured microbial communities organized into modules (groups of taxa) containing key metabolic potential capacities, including photoheterotrophy, mixotrophy and chemolithotrophy, which are likely to be differentially favored during the transition to polar night.
Illumination system for a projector composed of three LCD panels
NASA Astrophysics Data System (ADS)
Ho, Fang C.; Chu, Cheng-Wei; Lee, William
2004-10-01
A novel compound prism device consisting of a cubic polarizing beam splitter (PBS) and a non-polarizing dichroic prism is configured as the core component of the illumination unit of a full color projection display system of three pieces of reflective type liquid crystal imaging panels. When the in-coming light beam impinging on the PBS at 45 deg. of incidence, the beam component polarized perpendicularly to the plane of incidence is reflected and directed toward a LCD panel of red-image signal addressed after transmitted through a red-passing dichroic filter. The beam component polarized in parallel with the plane of incidence of the PBS is transmitted and passing through a red-cut dichroic filter. The rest portion of the light beam is then got the blue and green color bands separated by the dichroic filter at 30 deg. of incidence and directed to a blue and green signal addressed LCD panel respectively. All the dichroic filters are designed polarization independent and the PBS has a high contrast ratio of 1000 for the on/off states of teh addressed pixels of the image panels. The color separation and re-combination prism unit will provide a screen uniformity of d(u',v') <0.01 when it is accomodated in the projector with a projection lens assembly of F/#2.4.
Bhattacharyya, Samit; Bauch, C T
2010-12-07
Several studies have found that some parents delay the age at which their children receive pediatric vaccines due to perception of higher vaccine risk at the recommended age of vaccination. This has been particularly apparently during the Measles-Mumps-Rubella scare in the United Kingdom. Under a voluntary vaccination policy, vaccine coverage in certain age groups is a potentially complex interplay between vaccinating behaviour, disease dynamics, and age-specific risk factors. Here, we construct an age-structured game dynamic model, where individuals decide whether to vaccinate according to imitation dynamics depending on age-dependent disease prevalence and perceived risk of vaccination. Individuals may be timely vaccinators, delayers, or non-vaccinators. The model exhibits multiple equilibria and a broad range of possible dynamics. For certain parameter regimes, the proportion of timely vaccinators and delayers oscillate in an anti-phase fashion in response to oscillations in infection prevalence. Under an exogenous change to the perceived risk of vaccination as might occur during a vaccine scare, the model can also capture an increase in delayer strategists similar in magnitude to that observed during the Measles-Mumps-Rubella vaccine scare in the United Kingdom. Our model also shows that number of delayers steadily increases with increasing severity of the scare, whereas it saturates to specific value with increases in duration of the scare. Finally, by comparing the model dynamics with and without the option of a delayer strategy, we show that adding a third delayer strategy can have a stabilizing effect on model dynamics. In an era where individual choice--rather than accessibility--is becoming an increasingly important determinant of vaccine uptake, more infectious disease models may need to use game theory or related techniques to determine vaccine uptake. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wavelength-switched phase interrogator for EFPI sensors with polarization self-calibrated
NASA Astrophysics Data System (ADS)
Xia, Ji; Wang, Fuyin; Luo, Hong; Xiong, Shuidong
2017-10-01
The stability of the demodulation system for extrinsic Fabry-Perot interferometric(EFPI) sensors is significant to dynamic signal recovery. In the wavelength-switched demodulation system, a phase interrogation with a wavelength-switched structure has been presented. Two reflected peaks were in perpendicular polarization direction and switched in the time-domain. However, the operation point of system affected output of the linearly-polarized beams seriously, and the stability of the system decreased and even failed to work. In order to solve this problem, a polarization control unit is added into the system in this paper. The modified demodulation system has been demonstrated to have a higher stability.
Geologic map of the MTM -85280 quadrangle, Planum Australe region of Mars
Herkenhoff, Ken
1998-01-01
The polar deposits on Mars are of great interest because they probably record martian climate variations (Thomas and others, 1992). The area shown on this map includes polar layered deposits with distinct low-albedo features and a sharp boundary between the layered deposits and the moderately cratered unit that forms the floor of Chasma Australe. Detailed mapping of this quadrangle was undertaken to further investigate the geologic relations between the albedo features and the layered deposits and to better constrain the recent geologic history of the south polar region. Dark dunes in the north polar region appear to be derived from erosion of the layered deposits, but the source of dark material in the south polar region is less clear (Thomas and Weitz, 1989). The presence of dark material in the brighter, redder layered deposits is paradoxical (Herkenhoff and Murray, 1990a); resolving this paradox is likely to result in a better understanding of the origin and evolution of the layered deposits and, therefore, the mechanisms by which global climate variations are recorded. Published geologic maps of the south polar region of Mars have been based on images acquired by either Mariner 9 (Condit and Soderblom, 1978; Scott and Carr, 1978) or the Viking Orbiters (Tanaka and Scott, 1987). The extent of the layered deposits mapped previously from Mariner 9 data is different from that mapped using Viking Orbiter images, and the present map agrees with the map by Tanaka and Scott (1987): the floor of Chasma Australe is not mapped as layered deposits. The residual polar ice cap, areas of partial frost cover, the layered deposits, and two nonvolatile surface units - the dust mantle and the dark material - were mapped by Herkenhoff and Murray (1990a) at 1:2,000,000 scale using a color mosaic of Viking Orbiter images. This mosaic and an additional Viking color mosaic were used to confirm the identification of the nonvolatile Amazonian units for this map and to test hypotheses for their origin and evolution. The colors and albedos of these units, as measured in places outside this map area, are presented in table 1 and figure 1. Accurately measuring the color and albedo of the units in this map area was not possible due to low signal/noise in the part of the red/violet mosaic (corrected for atmospheric scattering) that includes this area (Herkenhoff and Murray, 1990a). However, color/albedo unit boundaries in this area are visible in color mosaics that have not been corrected for atmospheric scattering effects. Therefore, while the color and albedo of various units on this map cannot be precisely quantified and compared with the values in table 1 and figure 1, color/albedo units can still be recognized. Because the resolution of the color mosaics is not sufficient to map these units in detail at 1:500,000 scale, contacts between them were recognized and mapped using higher resolution black-and-white Viking and Mariner 9 images. Only two possible impact craters in the layered deposits have been found in the area mapped; both are slightly elongate rather than circular. One, 1.6 km in diameter at lat 86.6° S., long 268°, was recognized by Plaut and others (1988); the other, about 3 km in diameter, is at lat 82.8° S., long 277°. Although the crater statistics are poor (only 16 likely impact craters found in the entire south polar layered deposits), these observations generally support the conclusions that the south polar layered deposits are Late Amazonian in age and that some areas have been exposed for at least 120 million years (Plaut and others, 1988; Herkenhoff and Murray, 1992, 1994). However, the recent cratering flux on Mars is poorly constrained, so inferred ages of surface units are uncertain. The Viking Orbiter 2 images used to construct the base were taken during the southern summer of 1977, with resolutions no better than 180 m/pixel. (The "less than 100 m per picture element" in Notes on Base of the controlled photomosaic base [U.S. Geological Survey, 1986] is incorrect.) A digital mosaic of Mariner 9 images was also constructed to aid in mapping. The Mariner 9 images were taken during the southern summer of 1971-72 and have resolutions as high as 90 m/pixel. However, usefulness of the Mariner 9 mosaic is limited by incomplete coverage and atmospheric dust opacity.
A Link between Meiotic Prophase Progression and CrossoverControl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlton, Peter M.; Farruggio, Alfonso P.; Dernburg, Abby F.
2005-07-06
During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealedmore » that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.« less
Polarization gating of high harmonic generation in the water window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Ren, Xiaoming; Yin, Yanchun
2016-06-06
We implement the polarization gating (PG) technique with a two-cycle, 1.7 μm driving field to generate an attosecond supercontinuum extending to the water window spectral region. The ellipticity dependence of the high harmonic yield over a photon energy range much broader than previous work is measured and compared with a semi-classical model. When PG is applied, the carrier-envelope phase (CEP) is swept to study its influence on the continuum generation. PG with one-cycle (5.7 fs) and two-cycle (11.3 fs) delay are tested, and both give continuous spectra spanning from 50 to 450 eV under certain CEP values, strongly indicating the generation ofmore » isolated attosecond pulses in the water window region.« less
Can the ionosphere regulate magnetospheric convection?
NASA Technical Reports Server (NTRS)
Coroniti, F. V.; Kennel, C. F.
1972-01-01
Following a southward shift of the interplanetary magnetic field, which implies enhanced reconnection at the nose of the magnetosphere, the magnetopause shrinks from its Chapman-Ferraro equilibrium position. If the convective return of magnetic flux to the magnetopause equalled the reconnection rate, the magnetopause would not shrink. Consequently, there is a delay in the development of magnetospheric convection following the onset of reconnection, which is ascribed to line tying by the polar cusp ionosphere. A simple model relates the dayside magnetopause displacement to the currents feeding the polar cap ionosphere, from which the ionospheric electric field, and consequently, the flux return rate, may be estimated as a function of magnetopause displacement. Flux conservation arguments then permit an estimate of the time scale on which convection increases, which is not inconsistent with that of the substorm growth phase.
Time-delayed directional beam phased array antenna
Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron
2004-10-19
An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.
Aspergillus nidulans ArfB Plays a Role in Endocytosis and Polarized Growth ▿ †
Lee, Soo Chan; Schmidtke, Sabrina N.; Dangott, Lawrence J.; Shaw, Brian D.
2008-01-01
Filamentous fungi undergo polarized growth throughout most of their life cycles. The Spitzenkörper is an apical organelle composed primarily of vesicles that is unique to filamentous fungi and is likely to act as a vesicle supply center for tip growth. Vesicle assembly and trafficking are therefore important for hyphal growth. ADP ribosylation factors (Arfs), a group of small GTPase proteins, play an important role in nucleating vesicle assembly. Little is known about the role of Arfs in filamentous hyphal growth. We found that Aspergillus nidulans is predicted to encode six Arf family proteins. Analysis of protein sequence alignments suggests that A. nidulans ArfB shares similarity with ARF6 of Homo sapiens and Arf3p of Saccharomyces cerevisiae. An arfB null allele (arfB disrupted by a transposon [arfB::Tn]) was characterized by extended isotropic growth of germinating conidia followed by cell lysis or multiple, random germ tube emergence, consistent with a failure to establish polarity. The mutant germ tubes and hyphae that do form initially meander abnormally off of the axis of polarity and frequently exhibit dichotomous branching at cell apices, consistent with a defect in polarity maintenance. FM4-64 staining of the arfB::Tn strain revealed that another phenotypic characteristic seen for arfB::Tn is a reduction and delay in endocytosis. ArfB is myristoylated at its N terminus. Green fluorescent protein-tagged ArfB (ArfB::GFP) localizes to the plasma membrane and endomembranes and mutation (ArfBG2A::GFP) of the N-terminal myristoylation motif disperses the protein to the cytoplasm rather than to the membranes. These results demonstrate that ArfB functions in endocytosis to play important roles in polarity establishment during isotropic growth and polarity maintenance during hyphal extension. PMID:18539885
Şahin, Toros; Yeşil, Atakan; Topcu, Türker
2013-01-01
This study compares the performances of new-molecule (NM) launches in Turkey with those in the European Union and United States for the years 2007-2013. The Thomson Reuters Newport Horizon for Innovators Database is used to identify NMs with a launch date after January 1, 2007, worldwide and marketing authorization approval after January 1, 2007, in the European Union. The launch dates for the European Union, the United States, and Turkey were retrieved from the same database. Data for Turkey were confirmed via IMS and RxMedia. Out of 183 records identified that are launched in the European Union, the United States, or both, 44 of the NMs are launched in Turkey (24%). The results of this study show that 24% of the NMs that are launched in either the European Union or United States were able to be launched in Turkey with a mean delay of 821 days (2.25 years).
NASA Astrophysics Data System (ADS)
Luo, Hao; Cheng, Yong Zhi
2018-01-01
We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... Office of Administration and Resources Management has concurred on this decision to make an exception to... ARRA Program Management Analyst, Grants and Strategic Planning Unit, Office of Water & Watersheds (OWW... unreasonable delay in its completion. Such delay would also directly conflict with a fundamental economic...
Calculating utilization rates for rubber tired grapple skidders in the Southern United States
Jason D. Thompson
2001-01-01
Utilization rate is an important factor in calculating machine rates for forest harvesting machines. Machine rates allow an evaluation of harvesting system costs and facilitate comparisons between different systems and machines. There are many factors that affect utilization rate. These include mechanical delays, non-mechanical delays, operational lost time, and...
The case for delaying planting of bottomland oaks: an example involving Nuttall oaks
David C. Mercker; David S. Buckley; John P. Conn
2013-01-01
A prominent difficulty during bottomland hardwood afforestation in the southeastern United States is that sites are often flooded during the preferred months of planting (January - March), which results in delayed planting (April - June) and reduced survival. We monitored growth and survival of Nuttall oak (Quercus texana Buckley) seedlings planted...
Geologic map of the north polar region of Mars
Tanaka, Kenneth L.; Fortezzo, Corey M.
2012-01-01
The north polar region of Mars occurs within the central and lowest part of the vast northern plains of Mars and is dominated by the roughly circular north polar plateau, Planum Boreum. The northern plains formed very early in Martian time and have collected volcanic flows and sedimentary materials shed from highland sources. Planum Boreum has resulted from the accumulation of water ice and dust particles. Extensive, uncratered dune fields adjacent to Planum Boreum attest to the active and recent transport and accumulation of sand. Our geologic map of Planum Boreum is the first to record its entire observable stratigraphic record using the various post-Viking image and topography datasets released before 2009. We also provide much more detail in the map than previously published, including some substantial revisions based on new data and observations. The available data have increased and improved immensely in quantity, resolution, coverage, positional accuracy, and spectral range, enabling us to resolve previously unrecognized geomorphic features, stratigraphic relations, and compositional information. We also employ more carefully prescribed and effective mapping methodologies and digital techniques, as well as formatting guidelines. The foremost aspect to our mapping approach is how geologic units are discriminated based primarily on their temporal relations with other units as expressed in unit contacts by unconformities or by gradational relations. Whereas timing constraints of such activity in the north polar region are now better defined stratigraphically, they remain poorly constrained chronologically. The end result is a new reconstruction of the sedimentary, erosional, and structural histories of the north polar region and how they may have been driven by climate conditions, available geologic materials, and eolian, periglacial, impact, magmatic, hydrologic, and tectonic activity.
North polar region of Mars: Advances in stratigraphy, structure, and erosional modification
Tanaka, K.L.; Rodriguez, J.A.P.; Skinner, J.A.; Bourke, M.C.; Fortezzo, C.M.; Herkenhoff, K. E.; Kolb, E.J.; Okubo, C.H.
2008-01-01
We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (???3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly-layered Rupes Tenuis unit (Abrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains. The second major episode of activity during the Middle to Late Amazonian (??? <1 Ga) began with a section of dark, sand-rich and light-toned ice-rich irregularly-bedded sequences (Planum Boreum cavi unit, Abbc) along with deposition of evenly-bedded light-toned ice- and moderate-toned dust-rich layers (Planum Boreum 1 unit, Abb1). These units have transgressive and gradational stratigraphic relationships. Materials in Olympia Planum underlying the dunes of Olympia Undae are interpreted to consist mostly of the Planum Boreum cavi unit (Abbc). Planum Boreum materials were then deeply eroded to form spiral troughs, Chasma Boreale, and marginal scarps that define the major aspects of the polar plateau's current regional topography. Locally- to regionally-extensive (though vertically minor) episodes of deposition of evenly-bedded, light- and dark-toned layered materials and subsequent erosion of these materials persisted throughout the Late Amazonian. Sand saltation, including dune migration, is likely to account for much of the erosion of Planum Boreum, particularly at its margin, alluding to the lengthy sedimentological history of the circum-polar dune fields. Such erosion has been controlled largely by topographic effects on wind patterns and the variable resistance to erosion of materials (fresh and altered) and physiographic features. Some present-day dune fields may be hundreds of kilometers removed from possible sources along the margins of Planum Boreum, and dark materials, comprised of sand sheets, extend even farther downwind. These deposits also attest to the lengthy period of erosion following emplacement of the Planum Boreum 1 unit. We find no evidence for extensive glacial flow, topographic relaxation, or basal melting of Planum Boreum materials. However, minor development of normal faults and wrinkle ridges may suggest differential compaction of materials across buried scarps. Timing relations are poorly-defined mostly because resurfacing and other uncertainties prohibit precise determinations of surface impact crater densities. The majority of the stratigraphic record may predate the recent (<20 Ma) part of the orbitally-driven climate record that can be reliably calculated. Given the strong stratigraphic but loose temporal constraints of the north polar geologic record, a comparison of north and south polar stratigraphy permits a speculative scenario in which major Amazonian depositional and erosional episodes driven by global climate activity is plausible. ?? 2008 Elsevier Inc. All rights reserved.
Gravitational radiation from magnetically funneled supernova fallback onto a magnetar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melatos, A.; Priymak, M., E-mail: amelatos@unimelb.edu.au, E-mail: m.priymak@pgrad.unimelb.edu.au
2014-10-20
Protomagnetars spun up to millisecond rotation periods by supernova fallback are predicted to radiate gravitational waves via hydrodynamic instabilities for ∼10{sup 2} s before possibly collapsing to form a black hole. It is shown that magnetic funneling of the accretion flow (1) creates a magnetically confined polar mountain, which boosts the gravitational wave signal, and (2) 'buries' the magnetic dipole moment, delaying the propeller phase and assisting black hole formation.
An Efficient Power Saving Mechanism for Delay-Guaranteed Services in IEEE 802.16e
NASA Astrophysics Data System (ADS)
Park, Yunju; Hwang, Gang Uk
As the IEEE 802.16e Wireless Metropolitan Access Network (WMAN) supports the mobility of a mobile station (MS), increasing MS power efficiency has become an important issue. In this paper, we analyze the sleep-mode operation for an efficient power saving mechanism for delay-guaranteed services in the IEEE 802.16e WMAN and observe the effects of the operating parameters related to this operation. For the analysis we use the M/GI/1/K queueing system with multiple vacations, exhaustive services and setup times. In the analysis, we consider the power consumption during the wake-mode period as well as the sleep-mode period. As a performance measure for the power consumption, we propose the power consumption per unit time per effective arrival which considers the power consumption and the packet blocking probability simultaneously. In addition, since we consider delay-guaranteed services, the average packet response delay is also considered as a performance measure. Based on the performance measures, we obtain the optimal sleep-mode operation which minimizes the power consumption per unit time per effective arrival with a given delay requirement. Numerical studies are also provided to investigate the system performance and to show how to achieve our objective.
Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth
2018-01-01
Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals. PMID:29569443
U.S. announces one-year delay for visa waiver program change
NASA Astrophysics Data System (ADS)
The U.S. State Department has announced that it is delaying by one year a new rule affecting citizens from visa waiver program countries. The new rule, which was scheduled to go into effect on 1 October 2003, requires visitors from these countries to obtain non-immigrant visas to enter the United States if they do not have machine-readable passports. The announced delay means that this rule will now go into effect 26 October 2004 instead.The delay does not apply to five visa waiver countries—Andorra, Brunei, Liechtenstein, Luxembourg, and Slovenia—because most of the citizens of these nations already carry passports that are machine-readable.
In-Flight Performance of the Polarization Modulator in the CLASP Rocket Experiment
NASA Technical Reports Server (NTRS)
Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Beabout, D.; Beabout, B.; Nakayama, S.; Tajima, T.
2016-01-01
We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP), a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1% for the first time and investigate the vector magnetic field. Rotation non-uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. In the ground tests, we confirmed that PMU has superior rotation uniformity. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity during the flight and the high precision polarization measurement of CLASP was successfully achieved.
An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction
Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli
2016-01-01
In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking. PMID:26864084
An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.
Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli
2016-02-11
In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.
Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling
Li, Xia; Rao, Shaoqi; Jiang, Wei; Li, Chuanxing; Xiao, Yun; Guo, Zheng; Zhang, Qingpu; Wang, Lihong; Du, Lei; Li, Jing; Li, Li; Zhang, Tianwen; Wang, Qing K
2006-01-01
Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network) to address the underlying regulations of genes that can span any unit(s) of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex gene regulations related to the development, aging and progressive pathogenesis of a complex disease where potential dependences between different experiment units might occurs. PMID:16420705
Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence
Steven C. Amstrup; Eric T. DeWeaver; David C. Douglas; Bruce G. Marcot; George M. Durner; Cecilia M. Bitz; David A. Bailey
2010-01-01
On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible...
Optical manipulation of valley pseduospin in 2D semiconductors
NASA Astrophysics Data System (ADS)
Ye, Ziliang
Valley polarization associated with the occupancy in the energy degenerate but quantum mechanically distinct valleys in the momentum space closely resembles spin polarization and has been proposed as a pseudospin carrier for future quantum information technologies. Monolayers of transition metal dichalcogenide (TMDC) crystals, with broken inversion symmetry and large spin-orbital coupling, support robust valley polarization and therefore provide an important platform for studying valley-dependent physics. Besides optical excitation and photoluminescence detection, valley polarization has been electrically measured through the valley Hall effect and created through spin injection from ferromagnetic semiconductor contacts. Moreover, the energy degeneracy of the valley degree of freedom has been lifted by the optical Stark effect. Recently, we have demonstrated optical manipulation of valley coherence, i.e., of the valley pseudospin, by the optical Stark effect in monolayer WSe2. Using below-bandgap circularly polarized light, we rotated the valley pseudospin on the femtosecond time scale. Both the direction and speed of the rotation can be optically controlled by tuning the dynamic phase of excitons in opposite valleys. The pseudospin rotation was identified by changes in the polarization of the photoluminescence. In addition, by varying the time delay between the excitation and control pulses, we directly probed the lifetime of the intervalley coherence. Similar rotation levels have also been observed in static magneto-optic experiments. Our work presents an important step towards the full control of the valley degree of freedom in 2D semiconductors. The work was done in collaboration with Dr. Dezheng Sun and Prof. Tony F. Heinz.
Geologic Map of the MTM-85000 Quadrangle, Planum Australe Region of Mars
Herkenhoff, Ken E.
2001-01-01
Introduction The polar deposits on Mars probably record martian climate history over the last 107 to 109 years (for example, Thomas and others, 1992). The area shown on this map includes layered polar deposits and residual polar ice, as well as some exposures of older terrain. Howard and others (1982) noted that an area (at lat 84.8 S., long 356 W.) near a 23-km diameter impact crater (Plaut and others, 1988) appears to have undergone recent deposition, as evidenced by the partial burial of secondary craters. Herkenhoff and Murray (1990a) mapped this area as a mixture of frost and defrosted ground and suggested that the presence of frost throughout the year stabilizes dust deposited in this area. This quadrangle was mapped using high-resolution Mariner 9 (table 1) and Viking Orbiter images in order to study the relations among erosional, cratering, and depositional processes on the polar layered deposits and to search for further evidence of recent deposition. Published geologic maps of the south polar region of Mars are based on images acquired by Mariner 9 (Condit and Soderblom, 1978; Scott and Carr, 1978) and the Viking Orbiters (Tanaka and Scott, 1987). The extent of the layered deposits mapped previously from Mariner 9 data is different from that mapped using Viking Orbiter images, and the present map agrees with the map by Tanaka and Scott (1987): the layered deposits extend to the northern boundary of the map area. However, the oldest unit in this area is mapped as undivided material (unit HNu) rather than the hilly unit in the plateau sequence (unit Nplh; Tanaka and Scott, 1987). The residual polar ice cap, areas of partial frost cover, the layered deposits, and two nonvolatile surface units-the dust mantle and the dark material-were mapped by Herkenhoff and Murray (1990a) at 1:2,000,000 scale using a color mosaic of Viking Orbiter images. This mosaic was used to confirm the identification of the non-volatile Amazonian units for this map and to test hypotheses for their origin and evolution. The colors and albedos of these units, as measured in places both within and outside of this map area, are presented in table 2 and figure 1. The red/violet ratio image was particularly useful in distinguishing the various low-albedo materials, as brightness variations due to topography are essentially removed in such ratio images and color variations are easily seen. Because the resolution of the color mosaics is not sufficient to map these units in detail at 1:500,000 scale, contacts between them were recognized and mapped using higher resolution black and white Viking and Mariner 9 images. The largest impact crater in the layered deposits, 23 km in diameter at lat 84.5 S., long 359 W., now named 'McMurdo,' was recognized by Plaut and others (1988). The northern rim of this crater is missing, perhaps due to erosion of the layered deposits in which it was formed (fig. 2). Secondary craters from this impact are not observed north of the crater but are abundant to the south. Although the crater statistics are poor (only 16 likely impact craters found in Viking Orbiter images of the south polar layered deposits), these observations generally support the conclusions that the south polar layered deposits are Late Amazonian in age and that some areas have been exposed for about 120 million years (Plaut and others, 1988; Herkenhoff and Murray, 1992, 1994; Herkenhoff, 1998). However, the recent cratering flux on Mars is poorly constrained, so inferred ages of surface units are uncertain. The Viking Orbiter 2 images used to construct the base were taken during the southern summer of 1977, with resolutions no better than 130 m/pixel. A digital mosaic of Mariner 9 images also was constructed to aid in mapping. The Mariner 9 images were taken during the southern summer of 1971 and 1972 and have resolutions as high as 85 m/pixel (table 1). However, the usefulness of the Mariner 9 mosaic image is limited by incomplete coverag
Generation of flat wideband chaos with suppressed time delay signature by using optical time lens.
Jiang, Ning; Wang, Chao; Xue, Chenpeng; Li, Guilan; Lin, Shuqing; Qiu, Kun
2017-06-26
We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.
Internal stratigraphy of the South Polar Layered Deposits, Mars from SHARAD data
NASA Astrophysics Data System (ADS)
Whitten, J. L.; Campbell, B. A.
2017-12-01
The South Polar Layered Deposits (SPLD) are one of the largest deposits of water ice on Mars, composed of alternating layers of ice and dust. The accumulation of the layers is driven by orbital forcings (e.g., obliquity) and both the cadence and structure of these layers preserve a record of the past martian climate. Image of very limited exposed layering suggest several distinct sequences, demarcated by erosional hiatuses, with a gently domical shape. Here we use the Shallow Radar (SHARAD) sounder dataset to investigate the internal stratigraphy of the SPLD in order to further constrain the south polar climate record. We identify four distinct units based in part on their degree of vertical sharpness (focus) in the SHARAD data: (1) upper focused layer packets, (2) focused layer packets, (3) blurred layer packets, and (4) reflection free zones (RFZs). A diffuse echo pattern related to uncertain aspects of composition or layer roughness is termed fog. The upper focused layer packets are concentrated in the area between 270° to 90°E, close to the residual polar cap. The focused and blurred layer packets cover a large portion of the SPLD and are subdivided into two different units, those with an average reflecting-interface brightness and those with substantially brighter reflectors. The brighter radar reflectors have a coherent spatial distribution and only comprise a small portion of the entire unit. The diffuse echoes are separated into a fog that is present throughout the entire vertical column of the SPLD and a fog that begins at the surface and traverses only the uppermost layers. Depending on the geometry of individual SHARAD tracks, reflectors can be traced for hundreds of kilometers, but the fog obscures much of the internal layering, and is related to the focusing distortion that prevents individual reflectors from being traced across the entire SPLD. We identify a major deviation from a gently domical SPLD shape in a 200 km dome. Its presence suggests that the depositional history of the SPLD was more complicated than previously proposed. Differences in the distribution of the identified units further supports the dynamic and changing nature of the south polar climate. We also explore the distribution and radar characteristics of other ice-rich deposits in the south polar region of Mars.
Ahmed, Rashid J; Gafni, Amiram; Hutton, Eileen K
2016-03-01
According to the Early External Cephalic Version (EECV2) Trial, planning external cephalic version (ECV) early in pregnancy results in fewer breech presentations at delivery compared with delayed external cephalic version. A Cochrane review conducted after the EECV2 Trial identified an increase in preterm birth associated with early ECV. We examined whether a policy of routine early ECV (i.e., before 37 weeks' gestation) is more or less costly than a policy of delayed ECV. We undertook this analysis from the perspective of a third-party payer (Ministry of Health). We applied data, using resources reported in the EECV2 Trial, to the Canadian context using 10 hospital unit costs and 17 physician service/procedure unit costs. The data were derived from the provincial health insurance plan schedule of medical benefits in three Canadian provinces (Ontario, Alberta, and British Columbia). The difference in mean total costs between study groups was tested for each province separately. We found that planning early ECV results in higher costs than planning delayed ECV. The mean costs of all physician services/procedures and hospital units for planned ECV compared with delayed ECV were $7997.32 versus $7263.04 in Ontario (P < 0.001), $8162.82 versus $7410.55 in Alberta (P < 0.001), and $8178.92 versus $7417.04 in British Columbia (P < 0.001), respectively. From the perspective of overall cost, our analyses do not support a policy of routinely planning ECV before 37 weeks' gestation. Copyright © 2016 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada. Published by Elsevier Inc. All rights reserved.
Delays in the diagnosis of pulmonary tuberculosis in Coahuila, Mexico.
Salinas, J; Calvillo, S; Caylà, J; Nedel, F B; Martín, M; Navarro, A
2012-09-01
To determine diagnostic delay in pulmonary tuberculosis (PTB) cases and analyse associated factors. New PTB cases were studied in Coahuila, Northern Mexico, between 2008 and 2009. We obtained census data and data on residential address, symptoms and diagnosis from the national patient database; sociodemographic variables were obtained during home visits. Bivariate analyses used the Kaplan-Meier method; multivariate analysis consisted of modelling survival. We studied 458 subjects (median age 48 years), who were predominantly males (56.1%); the median years of schooling was 6.0 years, 83.4% were urban residents, 50.3% were unemployed, and 87.7% suffered from food poverty. The median delay between the onset of symptoms and the first medical consultation was 53.5 days. Lack of formal education (P = 0.050) and living ≥5 km from a health unit (P = 0.034) were associated with longer delays and consequently with severe symptoms (cough ≥2 weeks, P = 0.001; chest pain, P = 0.032; malnutrition, P = 0.003). Mean health system delay (between first consultation and smear test result) was 18.5 days, and was significantly longer when the first consultation was with a private physician (P < 0.001) and when patient age was ≥46 years (P = 0.001). In Coahuila, lack of formal education, living ≥5 km from a health unit, first consultation with a private physician, and being aged ≥46 years contributed to delays in PTB diagnosis.
Design of ultrathin dual-resonant reflective polarization converter with customized bandwidths
NASA Astrophysics Data System (ADS)
Kundu, Debidas; Mohan, Akhilesh; Chakrabarty, Ajay
2017-10-01
In this paper, an ultrathin dual-resonant reflective polarization converter is proposed to obtain customized bandwidths using precise space-filling technique to its top geometry. The unit cell of the dual-resonant prototype consists of conductive square ring with two diagonally arranged slits, supported by metal-backed thin dielectric layer. It offers two narrow bands with fractional bandwidths of 3.98 and 6.65% and polarization conversion ratio (PCR) of 97.16 and 98.87% at 4.52 and 6.97 GHz, respectively. The resonances are brought in proximity to each other by changing the length of surface current paths of the two resonances. By virtue of this mechanism, two polarization converters with two different types of bandwidths are obtained. One polarization converter produces a full-width at half-maxima PCR bandwidth of 34%, whereas another polarization converter produces a 90% PCR bandwidth of 19%. All the proposed polarization converters are insensitive to wide variations of incident angle for both TE- and TM-polarized incident waves. Measured results show good agreement with the numerically simulated results.
ERIC Educational Resources Information Center
Lyons, Patricia A.; Coursey, Lauren E.; Kenworthy, Jared B.
2013-01-01
The debate surrounding immigration reform to address undocumented Latino immigrants in the United States has been emotionally charged and polarizing. This study's goal was to better understand some of the psychological predictors of attitudes toward undocumented Latino immigrants in the United States, namely, collective identity as an…
Accurate load prediction by BEM with airfoil data from 3D RANS simulations
NASA Astrophysics Data System (ADS)
Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger
2016-09-01
In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.
NASA Astrophysics Data System (ADS)
Lamouche, Guy; Padioleau, Christian; Hewko, Mark; Smith, Michael S. D.; Schattka, Bernie J.; Fulton, Crystal; Gauthier, Bruno; Beauchesne, André; Ko, Alex C.; Choo-Smith, Lin-P'ing; Sowa, Michael G.
2017-02-01
Early detection of incipient caries would allow dentists to provide more effective measures to delay or to reverse caries' progression at earlier stage. Such earlier intervention could lead to improved oral health for the patients and reduced burden to the health system. Previously, we have demonstrated that the combination of morphological and biochemical information furnished by optical coherence tomography (OCT) and polarized Raman spectroscopy (PRS), respectively, provided a unique tool for dental caries management. In this study we will report the first pre-clinical caries detection system that includes a hand-held probe with a size slightly larger than a tooth brush. This probe presents a novel platform combining both OCT and PRS optics in a very tight space ideal for clinical practice. OCT cross-sectional images of near-surface enamel morphology are obtained with miniaturized MEMS scanning device and are processed in real-time to identify culprit regions. These regions are sequentially analyzed with polarized Raman spectroscopy for further confirmation. PRS is performed using 830nm laser line and four detection channels in order to obtain polarized Raman spectroscopic data, i.e. depolarization ratio of the hydroxyapatite Raman band at 960 cm-1. A detailed description of this hand-held caries detector and ex-vivo/in-vivo test results will be presented.
Characterization of Kilopixel TES detector arrays for PIPER
NASA Astrophysics Data System (ADS)
Datta, Rahul; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Costen, Nicholas; Coughlin, Kevin; Dotson, Jessie; Eimer, Joseph; Fixsen, Dale; Gandilo, Natalie; Halpern, Mark; Essinger-Hileman, Thomas; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lazear, Justin; Lowe, Luke; Manos, George; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward
2018-01-01
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the Cosmic Microwave Background (CMB) at large angular scales. It will map 85% of the sky in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds and constrain the tensor-to-scalar ratio, r. The sky is imaged on to 32x40 pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers operating at a bath temperature of 100 mK to achieve background-limited sensitivity. Each kilopixel array is indium-bump-bonded to a 2D superconducting quantum interference device (SQUID) time-domain multiplexer (MUX) chip and read out by warm electronics. Each pixel measures total incident power over a frequency band defined by bandpass filters in front of the array, while polarization sensitivity is provided by the upstream Variable-delay Polarization Modulators (VPMs) and analyzer grids. We present measurements of the detector parameters from the laboratory characterization of the first kilopixel science array for PIPER including transition temperature, saturation power, thermal conductivity, time constant, and noise performance. We also describe the testing of the 2D MUX chips, optimization of the integrated readout parameters, and the overall pixel yield of the array. The first PIPER science flight is planned for June 2018 from Palestine, Texas.
Characteristics of cloud-to-ground lightning flashes along the east coast of the United States
NASA Technical Reports Server (NTRS)
Orville, R. E., Sr.; Pyle, R. B.; Henderson, R. W.; Orville, R. E., Jr.; Weisman, R. A.
1985-01-01
A magnetic direction-finding network for the detection of lightning cloud-to-ground strikes has been installed along the east coast of the United States. Most of the lightning occurring from Maine to Florida and as far west as Ohio is detected. Time, location, flash polarity, stroke count, and peak signal amplitude are recorded in real time. Flash locations, time, and polarity are displayed routinely for research and operational purposes. Flash density maps have been generated for the summers of 1983 and 1984, when the network only extended to North Carolina, and show density maxima in northern Virginia and Maryland.
High Performance Circularly Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Bondyopadhyay, Probir K. (Inventor)
1997-01-01
A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.
Toddler Developmental Delays After Extensive Hospitalization: Primary Care Practitioner Guidelines.
Lehner, Dana C; Sadler, Lois S
2015-01-01
This review investigated developmental delays toddlers may encounter after a lengthy pediatric hospitalization (30 days or greater). Physical, motor, cognitive, and psychosocial development of children aged 1 to 3 years was reviewed to raise awareness of factors associated with developmental delay after extensive hospitalization. Findings from the literature suggest that neonatal and pediatric intensive care unit (NICU/PICU) graduates are most at risk for developmental delays, but even non-critical hospital stays interrupt development to some extent. Primary care practitioners (PCPs) may be able to minimize risk for delays through the use of formal developmental screening tests and parent report surveys. References and resources are described for developmental assessment to help clinicians recognize delays and to educate families about optimal toddler development interventions. Pediatric PCPs play a leading role in coordinating health and developmental services for the young child following an extensive hospital stay.
NASA Astrophysics Data System (ADS)
Tang, Guoning; Xu, Kesheng; Jiang, Luoluo
2011-10-01
The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.
The 2010 Source Test was performed during the atmospheric depressurization step of the delayed coking process prior to the removal of petroleum coke from the coke drum. The 205 DCU was operated under a variety of conditions during the 2010 Source Test.
USDA-ARS?s Scientific Manuscript database
Prolonged pre-insemination anestrus (estrus not detected until 8 mo of age, i.e. delayed puberty) is the major reason for culling about 30% of the total number of gilts selected for reproduction at the large breeding farm units in Vojvodina (Republic of Serbia). It is important to determine whether...
Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea
NASA Astrophysics Data System (ADS)
Hongsresawat, S.; Russo, R. M.
2016-12-01
We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that parallel the strike of the now-inoperative spreading center in the South China Sea. This transition appears to occur in the central portion of Peninsular Malaysia and may mark the boundary between Tethyan upper mantle extruded from the India-Asia collision zone and supra-subduction upper mantle of the Indonesian arc.
NASA Technical Reports Server (NTRS)
Sturman, J. C.
1985-01-01
Dynamic random-access-memory (RAM) data delay and storage unit developed to insure data received from satellite is stored and not lost when satellite is not within range of ground station. Stores 256K of serial data, with independent read and write capability.
2014-01-01
Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054
The cosmology large angular scale surveyor (CLASS): 40 GHz optical design
NASA Astrophysics Data System (ADS)
Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen
2012-09-01
The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19° x 14° with a resolution for each beam on the sky of 1.5° FWHM.
Imprinting superconducting vortex trajectories in a magnetic layer
NASA Astrophysics Data System (ADS)
Brisbois, Jérémy; Motta, Maycon; Avila, Jonathan I.; Shaw, Gorky; Devillers, Thibaut; Dempsey, Nora M.; Veerapandian, Savita K. P.; Colson, Pierre; Vanderheyden, Benoit; Vanderbemden, Philippe; Ortiz, Wilson A.; Nguyen, Ngoc Duy; Kramer, Roman B. G.; Silhanek, Alejandro V.
We experimentally show that the principle of local polarization of a magnetic layer, a well-known method to store information namely in hard drives and credit cards, can be applied for imprinting into a soft magnetic layer of permalloy (Py) the trajectory of vortices moving in a superconducting film (Nb). In full analogy with a magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py layer. We have used the magneto-optical imaging technique to investigate the mutual interaction between superconducting vortices and ferromagnetic domains. In general, we observe that the flux propagation is delayed at the border of the magnetic layer. Interestingly, in thin Py layers without stripe domains, vortices leave clear imprints of locally polarized magnetic moments along their trajectories. Furthermore, the printings were found to be stable and could still be observed at room temperature, allowing for ex situ observation of the flux penetration in superconductors. We expect our findings to pave the way for further studies for optimizing magnetic recording of superconducting vortex trajectories. This work was partially supported by the FRS-FNRS (Research Fellowship).
Hyperpolarization without persistent radicals for in vivo real-time metabolic imaging
Eichhorn, Tim R.; Takado, Yuhei; Salameh, Najat; Capozzi, Andrea; Cheng, Tian; Hyacinthe, Jean-Noël; Mishkovsky, Mor; Roussel, Christophe; Comment, Arnaud
2013-01-01
Hyperpolarized substrates prepared via dissolution dynamic nuclear polarization have been proposed as magnetic resonance imaging (MRI) agents for cancer or cardiac failure diagnosis and therapy monitoring through the detection of metabolic impairments in vivo. The use of potentially toxic persistent radicals to hyperpolarize substrates was hitherto required. We demonstrate that by shining UV light for an hour on a frozen pure endogenous substance, namely the glucose metabolic product pyruvic acid, it is possible to generate a concentration of photo-induced radicals that is large enough to highly enhance the 13C polarization of the substance via dynamic nuclear polarization. These radicals recombine upon dissolution and a solution composed of purely endogenous products is obtained for performing in vivo metabolic hyperpolarized 13C MRI with high spatial resolution. Our method opens the way to safe and straightforward preclinical and clinical applications of hyperpolarized MRI because the filtering procedure mandatory for clinical applications and the associated pharmacological tests necessary to prevent contamination are eliminated, concurrently allowing a decrease in the delay between preparation and injection of the imaging agents for improved in vivo sensitivity. PMID:24145405
Dynamic spin injection into a quantum well coupled to a spin-split bound state
NASA Astrophysics Data System (ADS)
Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.
2018-05-01
We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.
Coherence of beam arrays propagating in the turbulent atmosphere
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail
2010-04-01
We analyze some recent publications addressing propagation of the partially coherent polarized beams and beam arrays in the turbulent atmosphere. We show that the published results are limited to the scalar propagation model, and are not particular to the beam polarization. Therefore these results are equally relevant for the scalar beam pairs and arrays discriminated by some parameters such as small frequency shift, time delay or geometry, but not necessary the polarization. We use the virtual incoherent source model to derive the general form of the mutual coherence function of the two Schell-type beams. We discuss some physical stochastic models that result in the creation of the Schell-type beams and beam arrays. New classes of the uniformly, nonuniformly and nonlocally coherent beam pairs emerge naturally from this analysis. Rigorous, Markov approximation-based, propagation model provides relatively simple analytic results for the second-order moments of the optical field of the partially-coherent individual beams and beam pairs. We examine the changes of the beam mutual coherence in the process of the free-space propagation and propagation through the turbulent atmosphere.
The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design
NASA Technical Reports Server (NTRS)
Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19 deg x 14 deg with a resolution for each beam on the sky of 1.5 deg. FWHM.
The effect of delays on filament oscillations and stability
NASA Astrophysics Data System (ADS)
van den Oord, G. H. J.; Schutgens, N. A. J.; Kuperus, M.
1998-11-01
We discuss the linear response of a filament to perturbations, taking the finite communication time between the filament and the photosphere into account. The finite communication time introduces delays in the system. Recently Schutgens (1997ab) investigated the solutions of the delay equation for vertical perturbations. In this paper we expand his analysis by considering also horizontal and coupled oscillations. The latter occur in asymmetric coronal fields. We also discuss the effect of Alfven wave emission on filament oscillations and show that wave emission is important for stabilizing filaments. We introduce a fairly straightforward method to study the solutions of delay equations as a function of the filament-photosphere communication time. A solution can be described by a linear combination of damped harmonic oscillations each characterized by a frequency, a damping/growth time and, accordingly, a quality factor. As a secondary result of our analysis we show that, within the context of line current models, Kippenhahn/Schlüter-type filament equilibria can never be stable in the horizontal and the vertical direction at the same time but we also demonstrate that Kuperus/Raadu-type equilibria can account for both an inverse or a normal polarity signature. The diagnostic value of our analysis for determining, e.g., the filament current from observations of oscillating filaments is discussed.
Neuroanatomy of Individual Differences in Language in Adult Males with Autism
Lai, Meng-Chuan; Lombardo, Michael V.; Ecker, Christine; Chakrabarti, Bhismadev; Suckling, John; Bullmore, Edward T.; Happé, Francesca; Murphy, Declan G. M.; Baron-Cohen, Simon
2015-01-01
One potential source of heterogeneity within autism spectrum conditions (ASC) is language development and ability. In 80 high-functioning male adults with ASC, we tested if variations in developmental and current structural language are associated with current neuroanatomy. Groups with and without language delay differed behaviorally in early social reciprocity, current language, but not current autistic features. Language delay was associated with larger total gray matter (GM) volume, smaller relative volume at bilateral insula, ventral basal ganglia, and right superior, middle, and polar temporal structures, and larger relative volume at pons and medulla oblongata in adulthood. Despite this heterogeneity, those with and without language delay showed significant commonality in morphometric features when contrasted with matched neurotypical individuals (n = 57). In ASC, better current language was associated with increased GM volume in bilateral temporal pole, superior temporal regions, dorsolateral fronto-parietal and cerebellar structures, and increased white matter volume in distributed frontal and insular regions. Furthermore, current language–neuroanatomy correlation patterns were similar across subgroups with or without language delay. High-functioning adult males with ASC show neuroanatomical variations associated with both developmental and current language characteristics. This underscores the importance of including both developmental and current language as specifiers for ASC, to help clarify heterogeneity. PMID:25249409
NASA Astrophysics Data System (ADS)
Yang, X.; Rial, J. A.
2014-12-01
According to the hypothesis of polar synchronization, climate variations of Earth's poles are connected with a persistent phase lock of π/2 throughout the last glacial period. However, it is not clear yet how the Earth's two poles communicate with each other, the Thermohaline circulation (THC) being a possible candidate for signal carrier. Here we present a possible way of climate variation propagation through the Atlantic Ocean - likely in the form of heat or thermal wave (Cattaneo's solution) - based on lagged correlation between an organic carbon climate proxy record from the tropical Atlantic and the south-north polar temperature gradient. We further demonstrate that the speed of such propagation is frequency dependent, of which the wave of the longest period travels the fastest at the speed of ~32 km/year consistent with the estimated speed of the THC. The observed speed - frequency relationship can be successfully modeled as resulting from a propagating dispersive thermal wave initiated by the polar temperature gradient maximum. We show that such heat wave propagation is a potential mechanism to couple and synchronize the polar climates during the last glacial period and to force the occurrence of Heinrich events. To summarize, the polar temperature gradient anomalies are consequence of the π/2 phase lock between the polar climates, which is caused by polar synchronization maintained by the coupling, which is, as the data suggest, in the form of thermal waves. The spikes in organic carbon and the Fe/Ca ratio records in the core GeoB3912-1 can be thought of as snapshots of the passage of strong meteorological wavefronts through the equatorial region. The results strongly suggest that each peak in the organic carbon recorded a half-hemisphere-delayed passage of a wave-like disturbance through the equator carrying the south-north temperature gradient maxima. And each of these occurs within timing error of the Heinrich events H0-H6.
NASA Astrophysics Data System (ADS)
Hou, Shaoqi; Gong, Yungui
2018-03-01
Alternative theories of gravity not only modify the polarization contents of the gravitational wave, but also affect the motions of the stars and the energy radiated away via the gravitational radiation. These aspects leave imprints in the observational data, which enables the test of general relativity and its alternatives. In this work, the Nordtvedt effect and the Shapiro time delay are calculated in order to constrain Horndeski theory using the observations of lunar laser ranging experiments and Cassini time-delay data. The effective stress-energy tensor is also obtained using the method of Isaacson. Gravitational wave radiation of a binary system is calculated, and the change of the period of a binary system is deduced for the elliptical orbit. These results can be used to set constraints on Horndeski theory with the observations of binary systems, such as PSR J1738 + 0333. Constraints have been obtained for some subclasses of Horndeski theory, in particular, those satisfying the gravitational wave speed limits from GW170817 and GRB 170817A.
Aging of the field-induced asymmetry in a disordered ferroelectric
NASA Astrophysics Data System (ADS)
Bonello, B.; Doussineau, P.; Dupuis, V.; Levelut, A.
2006-07-01
The isothermal aging of the asymmetry induced in the disordered dielectric crystal KTa_{1-x} Nbx O3 (x=0.027) submitted to the biasing electric field E, is investigated. To this end, the response of the complex dielectric constant to infinitesimal field changes δ{E}, applied to the sample after a variable aging delay, has been measured for different magnitudes of E and after different aging delays. Two different experimental procedures have been used: in both cases the response strongly depends on the time spent under field. For short aging delays, the response has a strong contribution proportional to δE and a weak quadratic contribution proportional to left({δ E}right)^2. As time elapses, the linear and the quadratic contributions age in opposite ways: the former decreases whereas the latter increases. This paradoxical behaviour is analyzed in the framework of a model which attributes aging and the related effects (rejuvenation, memory) to the evolution of polarization domain walls: the decrease of the linear contribution is related to the decrease of the total wall area, while the increase of the quadratic term is attributed to wall reconformations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.
2016-11-15
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less
Performance study of the gamma-ray bursts polarimeter POLAR
NASA Astrophysics Data System (ADS)
Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.
2016-07-01
The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.
Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F
2017-07-01
Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.
NASA Astrophysics Data System (ADS)
Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.
2016-06-01
In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.
Apparatus and methods for memory using in-plane polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Junwei; Chang, Kai; Ji, Shuai-Hua
A memory device includes a semiconductor layer with an in-plane polarization component switchable between a first direction and a second direction. A writing electrode is employed to apply a writing voltage to the semiconductor layer to change the in-plane polarization component between the first direction and the second direction. A reading electrode is employed to apply a reading voltage to the semiconductor layer to measure a tunneling current substantially perpendicular to the polarization direction of the in-plane polarization component. The directions of the reading voltage and the writing voltage are substantially perpendicular to each other. Therefore, the reading process ismore » non-destructive. Thin films (e.g., one unit cell thick) of ferroelectric material can be used in the memory device to increase the miniaturization of the device.« less
Liu, Wanli
2017-03-08
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.
Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP.
Masters, T A; Robinson, N A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J
2018-04-07
Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment α 40 present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of α 40 to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both α 20 (quadrupolar) and α 40 transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.
Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min
2016-01-11
We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing.
High pulse rate high resolution optical radar system
NASA Technical Reports Server (NTRS)
Goss, W. C.; Burns, R. H.; Chi, K. (Inventor)
1973-01-01
The system is composed of an optical cavity with a laser and a mode locking means to build up an optical pulse. An optical switch is also provided within the cavity to convert the polarization of the optical pulse generated within the cavity. The optical switch comprises an electro-optical crystal driven by a time delayed driver circuit which is triggered by a coincident signal made from an optical pulse signal and a gating pulse signal. The converted optical pulse strikes a polarization sensitive prism and is deflected out of the cavity toward the pending target in the form of a pulse containing most of the optical energy generated by the laser in the pulse build-up period. After striking the target, the reflected energy is picked up by a transceiver with the total travel time of the pulse being recorded.
Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min
2016-01-01
We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing. PMID:26750557
Use of an Early Labor Lounge to Promote Admission in Active Labor.
Paul, Julie A; Yount, Susan M; Breman, Rachel Blankstein; LeClair, Melissa; Keiran, Diane M; Landry, Nannette; Dever, Kimberly
2017-03-01
Professional maternity care organizations within the United States are aligned in the goal to prevent the first cesarean birth in nulliparous women with a term, singleton, vertex fetus. Currently, one in 3 women are at risk for having a cesarean birth. The most common reason for cesarean in the United States is labor dystocia. The evidence supports delaying admission to the birthing unit until active labor is established, thereby minimizing the inadvertent diagnosis of labor dystocia. Providers are familiar with the rationale supporting delayed admission to the birthing unit until active labor is established; however, there is very little evidence on how to effectively promote this delay. Provider apprehension and the lack of early labor support are challenges to sending women home to await the onset of active labor. Maternal anxiety, fear, pain, and unpreparedness also play a part in this reluctance. To address these obstacles, South Shore Hospital created an early labor lounge with stations aimed at instilling confidence in the birth team, promoting teamwork, facilitating relaxation, and reducing anxiety for laboring women. A literature review focusing on women's perceptions of promoting admission in active labor, maternal anxiety, and nonpharmacologic strategies for managing early labor are discussed within the context of the creation, implementation, and evaluation of an early labor lounge. © 2017 by the American College of Nurse-Midwives.
Apparatus and method for increasing the bandwidth of a laser beam
Chaffee, Paul H.
1991-01-01
A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.
Huang, Jianhua; Jia, Hui; Li, Liangjie; Lu, Zhenhuan; Zhang, Wenqing; He, Weiwei; Jiang, Bo; Tang, Ailing; Tan, Zhan'ao; Zhan, Chuanlang; Li, Yongfang; Yao, Jiannian
2012-11-07
Three solution-processable small molecules of DPPT, DPPSe and DPPTT were synthesized by Stille coupling through attaching donor units of thiophene (T), selenophene (Se) and thieno[3,2-b]thiophene (TT) to the diketopyrrolopyrrole (DPP) core, respectively. Replacement of the T donors with the more polarized Se units results in a balance between the a and b direction packing and an obvious increase of the power conversion efficiency (PCE) from 1.90% to 2.33% with the increase of the short-circuit current (I(sc)) from 5.59 to 5.81 mA cm(-2) and the open-circuit voltage (V(oc)) from 0.78 V to 0.86 under the small molecule/acceptor ratio of 3 : 1. However, introduction of the conjugation-enlarged TT groups (versus the T units) leads to a decrease of the PCE, down to 1.70%, with a significant decrease of the fill factor (FF) (38% versus 44%), due to its poor film-forming characteristics.
Xu, Xiang; Hu, Chun-Li; Li, Bing-Xuan; Mao, Jiang-Gao
2016-01-26
Two new polar potassium gold iodates, namely, K2 Au(IO3)5 (Cmc21) and β-KAu(IO3)4 (C2), have been synthesized and structurally characterized. Both compounds feature zero-dimensional polar [Au(IO3)4](-) units composed of an AuO4 square-planar unit coordinated by four IO3(-) ions in a monodentate fashion. In β-KAu(IO3)4, isolated [Au(IO3)4](-) ions are separated by K(+) ions, whereas in K2 Au(IO3)5, isolated [Au(IO3)4](-) ions and non-coordinated IO3(-) units are separated by K(+) ions. Both compounds are thermally stable up to 400 °C and exhibit high transmittance in the NIR region (λ=800-2500 nm) with measured optical band gaps of 2.65 eV for K2 Au(IO3 )5 and 2.75 eV for β-KAu(IO3)4. Powder second-harmonic generation measurements by using λ=2.05 μm laser radiation indicate that K2 Au(IO3)5 and β-KAu(IO3)4 are both phase-matchable materials with strong SHG responses of approximately 1.0 and 1.3 times that of KTiOPO4, respectively. Theoretical calculations based on DFT methods confirm that such strong SHG responses originate from a synergistic effect of the AuO4 and IO3 units. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gestational Trophoblastic Disease Diagnosis Delayed by the Hook Effect.
Cormano, Julia; Mackay, Gillian; Holschneider, Christine
2015-10-01
A "hook effect" resulting from saturation of antibodies used in pregnancy tests can occur at human chorionic gonadotropin (hCG) levels above 500,000 milliinternational units/mL, resulting in falsely negative values. A 34-year-old woman, gravida 5 para 3, presented to the emergency department after heavy bleeding. Ultrasonogram revealed a uterine mass, urine pregnancy test result was negative, and endometrial biopsy inconclusive. The patient was discharged and presented 10 days later with recurrent bleeding. Urine pregnancy test result was again negative, but serum hCG was 581 milliinternational units/mL. Serial dilution revealed an actual hCG higher than 5 million milliinternational units/mL. She was diagnosed with gestational trophoblastic disease. Awareness of the risk of a false-negative pregnancy test result when hCG levels are extremely high may prevent delayed diagnosis of gestational trophoblastic disease.
A Distributed Synchronization and Timing System on the EAST Tokamak
NASA Astrophysics Data System (ADS)
Luo, Jiarong; Wu, Yichun; Shu, Yantai
2008-08-01
A key requirement for the EAST distributed control system (EASTDCS) is time synchronization to an accuracy of <1 mus. In 2006 a Distributed Synchronization and Timing System (DSTS) was set up, which is based on the ATmega128 AVR microcontroller and the Nut/OS embedded Real Time Operating System (RTOS). The DSTS provides the control and the data acquisition systems with reference clocks (0.01 Hz 10 MHz) and delayed trigger times ( 1 mus 4294 s). These are produced by a Core Module Unit (CMU) connected by optical fibres to many Local Synchronized Node Units (LSNU). The fibres provide immunity from electrical noise and are of equal length to match clock and trigger delays between systems. This paper describes the architecture of the DSTS on the EAST tokamak and provides an overview of the characteristics of the main and local units.
Neural node network and model, and method of teaching same
Parlos, A.G.; Atiya, A.F.; Fernandez, B.; Tsai, W.K.; Chong, K.T.
1995-12-26
The present invention is a fully connected feed forward network that includes at least one hidden layer. The hidden layer includes nodes in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device occurring in the feedback path (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit from all the other nodes within the same layer. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing. 21 figs.
Neural node network and model, and method of teaching same
Parlos, Alexander G.; Atiya, Amir F.; Fernandez, Benito; Tsai, Wei K.; Chong, Kil T.
1995-01-01
The present invention is a fully connected feed forward network that includes at least one hidden layer 16. The hidden layer 16 includes nodes 20 in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device 24 occurring in the feedback path 22 (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit 36 from all the other nodes within the same layer 16. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing.
37 CFR 1.317 - Lapsed patents; delayed payment of balance of issue fee.
Code of Federal Regulations, 2011 CFR
2011-07-01
... payment of balance of issue fee. 1.317 Section 1.317 Patents, Trademarks, and Copyrights UNITED STATES... Processing Provisions Allowance and Issue of Patent § 1.317 Lapsed patents; delayed payment of balance of... is required at the time the issue fee is paid, any remaining balance of the issue fee is to be paid...
37 CFR 1.317 - Lapsed patents; delayed payment of balance of issue fee.
Code of Federal Regulations, 2010 CFR
2010-07-01
... payment of balance of issue fee. 1.317 Section 1.317 Patents, Trademarks, and Copyrights UNITED STATES... Processing Provisions Allowance and Issue of Patent § 1.317 Lapsed patents; delayed payment of balance of... is required at the time the issue fee is paid, any remaining balance of the issue fee is to be paid...
Stability analysis and synchronization in discrete-time complex networks with delayed coupling
NASA Astrophysics Data System (ADS)
Cheng, Ranran; Peng, Mingshu; Yu, Weibin; Sun, Bo; Yu, Jinchen
2013-12-01
A new network of coupled maps is proposed in which the connections between units involve no delays but the intra-neural communication does, whereas in the work of Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], the focus is on information processing delayed by the inter-neural communication. We show that the synchronization of the network depends on not only the intrinsic dynamical features and inter-connection topology (characterized by the spectrum of the graph Laplacian) but also the delays and the coupling strength. There are two main findings: (i) the more neighbours, the easier to be synchronized; (ii) odd delays are easier to be synchronized than even ones. In addition, compared with those discussed by Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], our model has a better synchronizability for regular networks and small-world variants.
Solvent polarity effects on supramolecular chirality of a polyfluorene-thiophene copolymer.
Hirahara, Takashi; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro
2018-06-01
This study demonstrates the supramolecular chirality control of a conjugated polymer via solvent polarity. We designed and synthesized a chiral polyfluorene-thiophene copolymer having two different chiral side chains at the 9-position of the fluorene unit. Chiral cyclic and alkyl ethers with different polarities were selected as the chiral side chains. The sign of the circular dichroism spectra in the visible wavelength region was affected by the solvent system, resulting from the change of supramolecular structure. The estimation of the solubility parameter revealed that the solubility difference of the side chains contributed to the change of the circular dichroism sign, which was also observed in spin-coated films prepared from good solvents having different polarities. © 2018 Wiley Periodicals, Inc.
Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.
Pavone, S C; Ettorre, M; Casaletti, M; Albani, M
2016-05-16
In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity.
Shao, Shiyang; Hu, Jun; Wang, Xingdong; Wang, Lixiang; Jing, Xiabin; Wang, Fosong
2017-12-13
We demonstrate novel molecular design for thermally activated delayed fluorescence (TADF) polymers based on a nonconjugated polyethylene backbone with through-space charge transfer effect between pendant electron donor (D) and acceptor (A) units. Different from conventional conjugated D-A polymers with through-bond charge transfer effect, the nonconjugated architecture avoids direct conjugation between D and A units, enabling blue emission. Meanwhile, spatial π-π interaction between the physically separated D and A units results in both small singlet-triplet energy splitting (0.019 eV) and high photoluminescence quantum yield (up to 60% in film state). The resulting polymer with 5 mol % acceptor unit gives efficient blue electroluminescence with Commission Internationale de l'Eclairage coordinates of (0.176, 0.269), together with a high external quantum efficiency of 12.1% and low efficiency roll-off of 4.9% (at 1000 cd m -2 ), which represents the first example of blue TADF nonconjugated polymer.
NASA Astrophysics Data System (ADS)
Silverman, Vered; Harnik, Nili; Matthes, Katja; Lubis, Sandro W.; Wahl, Sebastian
2018-05-01
The radiative effects induced by the zonally asymmetric part of the ozone field have been shown to significantly change the temperature of the NH winter polar cap, and correspondingly the strength of the polar vortex. In this paper, we aim to understand the physical processes behind these effects using the National Center for Atmospheric Research (NCAR)'s Whole Atmosphere Community Climate Model, run with 1960s ozone-depleting substances and greenhouse gases. We find a mid-winter polar vortex influence only when considering the quasi-biennial oscillation (QBO) phases separately, since ozone waves affect the vortex in an opposite manner. Specifically, the emergence of a midlatitude QBO signal is delayed by 1-2 months when radiative ozone-wave effects are removed. The influence of ozone waves on the winter polar vortex, via their modulation of shortwave heating, is not obvious, given that shortwave heating is largest during fall, when planetary stratospheric waves are weakest. Using a novel diagnostic of wave 1 temperature amplitude tendencies and a synoptic analysis of upward planetary wave pulses, we are able to show the chain of events that lead from a direct radiative effect on weak early fall upward-propagating planetary waves to a winter polar vortex modulation. We show that an important stage of this amplification is the modulation of individual wave life cycles, which accumulate during fall and early winter, before being amplified by wave-mean flow feedbacks. We find that the evolution of these early winter upward planetary wave pulses and their induced stratospheric zonal mean flow deceleration is qualitatively different between QBO phases, providing a new mechanistic view of the extratropical QBO signal. We further show how these differences result in opposite radiative ozone-wave effects between east and west QBOs.
Microwave-assisted (MW) synthesis of noble metals such as Au, Pt and Pd is reported using biodegradable polymer carboxymethyl cellulose (CMC) at 100°C within few seconds. The possible reduction entails the coupling of polar hydroxyl units in beta-glucopyranose units with micr...
NASA Astrophysics Data System (ADS)
Ameri, Edris; Esmaeli, Seyed Hassan; Sedighy, Seyed Hassan
2018-05-01
A planar low cost and thin metasurface is proposed to achieve ultra-wideband radar cross section (RCS) reduction with stable performance with respect to polarization and incident angles. This metasurface is composed of two different artificial magnetic conductor unit cells arranged in a chessboard like configuration. These unit cells have a Jerusalem cross pattern with different thicknesses, which results in wideband out-phase reflection and RCS reduction, consequently. The designed metasurface reduces RCS more than 10-dB from 13.6 GHz to 45.5 GHz (108% bandwidth) and more than 20-dB RCS from 15.2 GHz to 43.6 GHz (96.6%). Moreover, the 10-dB RCS reduction bandwidth is very stable (more than 107%) for both TE and TM polarizations. The good agreement between simulations and measurement results proves the design, properly. The ultra-wide bandwidth, low cost, low profile, and stable performance of this metasurface prove its high capability compared with the state-of-the-art references.
Using Covariance Matrix for Change Detection of Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Esmaeilzade, M.; Jahani, F.; Amini, J.
2017-09-01
Nowadays change detection is an important role in civil and military fields. The Synthetic Aperture Radar (SAR) images due to its independent of atmospheric conditions and cloud cover, have attracted much attention in the change detection applications. When the SAR data are used, one of the appropriate ways to display the backscattered signal is using covariance matrix that follows the Wishart distribution. Based on this distribution a statistical test for equality of two complex variance-covariance matrices can be used. In this study, two full polarization data in band L from UAVSAR are used for change detection in agricultural fields and urban areas in the region of United States which the first image belong to 2014 and the second one is from 2017. To investigate the effect of polarization on the rate of change, full polarization data and dual polarization data were used and the results were compared. According to the results, full polarization shows more changes than dual polarization.
Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping
2017-10-30
The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.
Flexible and polarization-controllable diffusion metasurface with optical transparency
NASA Astrophysics Data System (ADS)
Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Guo, Wenlong; Zhang, Qingfeng
2017-11-01
In this paper, a novel coding metasurface is proposed to realize polarization-controllable diffusion scattering. The anisotropic Jerusalem-cross unit cell is employed as the basic coding element due to its polarization-dependent phase response. The isotropic random coding sequence is firstly designed to obtain diffusion scattering, and the anisotropic random coding sequence is subsequently realized by adding different periodic coding sequences to the original isotropic one along different directions. For demonstration, we designed and fabricated a flexible polarization-controllable diffusion metasurface (PCDM) with both chessboard diffusion and hedge diffusion under different polarizations. The specular scattering reduction performance of the anisotropic metasurface is better than the isotropic one because the scattered energies are redirected away from the specular reflection direction. For potential applications, the flexible PCDM wrapped around a cylinder structure is investigated and tested for polarization-controllable diffusion scattering. The numerical and experimental results coincide well, indicating anisotropic low scatterings with comparable performances. This paper provides an alternative approach for designing high-performance, flexible, low-scattering platforms.
Supporting Knowledge Integration in Chemistry with a Visualization-Enhanced Inquiry Unit
NASA Astrophysics Data System (ADS)
Chiu, Jennifer L.; Linn, Marcia C.
2014-02-01
This paper describes the design and impact of an inquiry-oriented online curriculum that takes advantage of dynamic molecular visualizations to improve students' understanding of chemical reactions. The visualization-enhanced unit uses research-based guidelines following the knowledge integration framework to help students develop coherent understanding by connecting and refining existing and new ideas. The inquiry unit supports students to develop connections among molecular, observable, and symbolic representations of chemical reactions. Design-based research included a pilot study, a study comparing the visualization-enhanced inquiry unit to typical instruction, and a course-long comparison study featuring a delayed posttest. Students participating in the visualization-enhanced unit outperformed students receiving typical instruction and further consolidated their understanding on the delayed posttest. Students who used the visualization-enhanced unit formed more connections among concepts than students with typical textbook and lecture-based instruction. Item analysis revealed the types of connections students made when studying the curriculum and suggested how these connections enabled students to consolidate their understanding as they continued in the chemistry course. Results demonstrate that visualization-enhanced inquiry designed for knowledge integration can improve connections between observable and atomic-level phenomena and serve students well as they study subsequent topics in chemistry.
POLAR: Design of a novel X-ray polarimeter based on plastic scintillators and MAPMTs
NASA Astrophysics Data System (ADS)
Suarez-Garcia, Estela; Hajdas, Wojtek; Polar Collaboration
2009-10-01
POLAR is a space-borne hard X-ray polarimeter whose design has been optimized to measure the level of linear polarization of gamma-ray bursts (GRB) in the energy range of 50-500 keV. In POLAR, the GRB photons undergo Compton scattering in a target constituted by 1600 plastic scintillator bars. The light output from the whole target is read by 25 multi-anode photomultipliers (MAPMTs). The azimuthal distribution of the scattered photons inside the target provides the information on the GRB polarization. To be able to measure polarization of photons with energy as low as 50 keV, an energy threshold for each single channel of maximum 5 keV is required. This introduces strong constraints in the photon collection efficiency. To maximize it, detailed studies of the scintillator bar surfaces and the available wrapping materials have been performed using both Monte Carlo simulations and laboratory measurements. At present, a POLAR demonstration model (2 of the 25 units of the final design) is being tested in the laboratory. The engineering-qualification model will be ready in 2010.
Reduction of cross-polarized reflection to enhance dual-band absorption
NASA Astrophysics Data System (ADS)
Kundu, Debidas; Mohan, Akhilesh; Chakrabarty, Ajay
2016-11-01
In this paper, cross-polarized reflection from a periodic array of metal-dielectric-metal resonator units is reduced to improve its absorbing performance. Through this simple and typical example, it is shown that some reported absorbers are actually poor absorbers but efficient polarization converters, when the cross-polarized reflection is considered. Using a frequency selective surface, sandwiched between the top layer and the ground plane, the cross-polarized reflection is reduced by 7.2 dB at 5.672 GHz and 8.5 dB at 9.56 GHz, while negligibly affecting the co-polarized reflection reduction performance. The polarization conversion ratio is reduced from 90. 74% to 34.12% and 98.51% to 27.2% and total absorption is improved up to 80% from 26% and 21% around the two resonant frequencies. The reflection characteristics of the proposed absorber are quantitatively analyzed using interference theory, where the near field coupling of the resonant geometries and ground is taken into account. Measurement results show good agreement with both the numerically simulated and theoretical results.
ERIC Educational Resources Information Center
Garcia, Claudia Venessa; Robertson, William H.; Lougheed, Vanessa; Tweedie, Craig; Velasco, Aaron
2013-01-01
With the need to increase minority representation in the polar sciences, a team of researchers from a southwestern United States public university developed an innovative field research experience entitled the International Polar Year-Research and Educational Opportunities in Antarctica for Minorities (IPY-ROAM). Supported by a National Science…
Sharing Polar Science with Secondary Students: Polartrec and Beyond
NASA Astrophysics Data System (ADS)
Herrmann, N. E.
2014-12-01
This session will provide a variety of resources and lesson ideas for educators interested in effectively communicating polar science. Ms. Herrmann will share evidence of the direct impacts on secondary students that resulted from her collaboration with polar scientists in both the Arctic and Antarctic. Ms. Herrmann's interest in polar science began in 2009, when she worked as a field assistant in Kangerlussuaq, Greenland for scientists examining the effects of climate change on caribou. In 2011, she was selected to participate in PolarTREC (Teachers and Researchers Exploring and Collaborating), a professional development program for teachers and researchers, funded by NSF and coordinated by the Arctic Research Consortium of the United States (ARCUS). The opportunity provides teachers opportunities to collaborate with scientists and to share real world science with students. Ms. Herrmann will discuss her experience working with researchers at Palmer Station, Antarctica and how it led to her continued professional development with the Palmer Station Research Experience for Teachers (RET) program and with Polar Eduators (PEI), including a recent Master Class she presented with Dr. Richard Alley. She will also discuss her development of a program called Polar Ambassadors, in which older students become mentors to younger students in the field of polar science.
Dynamics and Synchronization of Nonlinear Oscillators with Time Delays: A Study with Fiber Lasers
2007-07-19
or coupling lines PC Polarization Controller PD Photodetector VA Variable Attenuator WDM Wavelength Division Multiplexer x Chapter 1 Introduction 1.1...lasers and detectors. Injection locking of lasers is a common practice that can be used to lock the frequency and phase of a laser to an injected signal...finding a basis vector that maximizes the mean squared projection of the data. Succeeding basis vectors are found that max- imize the projection with the
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Technical Reports Server (NTRS)
Koshak, W.
2017-01-01
Changes in climate can affect the characteristics of lightning (e.g., number of flashes that occur in a region, return stroke current and multiplicity, polarity of charge deposited to ground, and the lightning cloud-top optical energy emission). The NASA/MSFC Lightning Analysis Tool (LAT) monitors these and other quantities in support of the National Climate Assessment (NCA) program. Changes in lightning characteristics lead to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality).
DOT National Transportation Integrated Search
2012-11-01
This report summarizes background research and presents an analysis template for analyzing the emissions from vehicle delay at land ports of entry along the United States-Mexico border. The analyses template is presented along with two case studies. ...
Antebrachial fractures in four captive polar bears (Ursus maritimus).
Lin, Rebecca C; Engeli, Emmanuel; Prowten, Allan W; Erb, Hollis N; Ducharme, Norm G; Goodrich, Laurie R
2005-01-01
To identify common risk factors for antebrachial fractures of captive polar bears and to evaluate outcome after fracture repair. Retrospective study. Four captive polar bears. United States zoological collections were surveyed to determine the prevalence of fractures in captive polar bears. Medical records of captive polar bears that had antebrachial fractures were reviewed for signalment, history, physical and radiographic findings, fracture management, postoperative care, and outcome. Serum samples from healthy bears and bears with antebrachial fractures were assayed for 25-hydroxyvitamin D (25-OHD) concentrations. Nineteen fractures (12 polar bears) occurred from 1974 to 2002; 12 fractures involved the antebrachium. Management of 4 antebrachial fractures was reviewed; 3 were repaired by internal fixation and 1 by external coaptation. Fractures healed and bears were returned to exhibit on average 3 months postfracture. Of 11 serum samples assayed for 25-OHD concentrations, 6 were below normal, 1 was low normal and 4 were within normal reference intervals. The 7 bears with subnormal or low normal values were housed in 2 zoos. Subnormal vitamin D concentrations were identified in 2 of 3 bears with fractures. Fracture disease is not uncommon in captive polar bears. Additional research is necessary to explore the role of nutrition in polar bear fracture disease. Internal fixation of antebrachial fractures is feasible and reasonably well tolerated in captive polar bears.
Reynolds, Richard L.; Rosenbaum, Joseph G.; Sweetkind, Donald S.; Lanphere, Marvin A.; Robert, Andrew P.; Verosub, Kenneth L.
2000-01-01
Sedimentary and volcaniclastic rocks of the Oligocene Creede Formation fill the moat of the Creede caldera, which formed at about 26.9 Ma during the eruption of the Snowshoe Mountain Tuff. Paleomagnetic and rock magnetic studies of two cores (418 and 703 m long) that penetrated the lower half of the Creede Formation, in addition to paleomagnetic and isotopic dating studies of stratigraphically bracketing volcanic units, provide information on the age and the time span of sedimentation of the caldera fill. Normal polarity magnetization are found in Snowshoe Mountain Tuff beneath the moat sediments; in detrital-magnetite-bearing graded tuffs near the bottom of the moat fill; in an ash-fall deposit about 200 m stratigraphically about the top of core 2; and in postcaldera lava flows of the Fisher Dacite that overlie the Creede Formation. Normal polarity also characterizes detrital-magnetite-bearing tuff and sandstone unites within the caldera moat rocks that did not undergo severe sulfidic alteration. The combination of initially low magnitude of remanent magnetization and the destructive effects of subsequent diagenetic sulfidization on detrital iron oxides results in a poor paleomagnetic record for the fine-grained sedimentary rocks of the Creede Formation. these fine-grained rocks have either normal or revered polarity magnetizations that are carried by magnetite and/or maghemite. Many more apparent reversals are found that can be accommodated by any geomagnetic polarity time scale over the interval spanned by the ages of the bracketing extrusive rocks. Moreover, opposite polarity magnetization are found in specimens separated by only a few centimeters, without intervening hiatuses, and by specimens in several tuff beds, each of which represents a single depositional event. These polarity changes cannot, therefore, be attributed to detrital remanent magnetization. Many polarity changes are apparently related to chemical remanent magnetizations carried by postdepositional magnetite and maghemite that formed in rocks in which most or all detrital megnetic iron oxide was destroyed. Incipient oxidation of early diagenetic pyrite may have normal polarity Snowshoe Mountain Tuff (26.89 ± 0.0 Ma, 1 δ) and on the normal polarity postcaldera Fisher lava flows (as young as 26.23 ± 0.05 Ma, 1 δ) indicate that deposition of the Creede Formation spanned about 340-660 k.y. The intermittently defined normal polarity magnetization for the caldera-fill sequence, compared with different versions of the geomagnetic polarity time scale, is consistent with the shorter time span.
ERIC Educational Resources Information Center
Chai, Zhen
2017-01-01
This study evaluated the effectiveness of using a researcher-developed iPad app with a 0- to 5-s constant time delay procedure to improve phonological awareness skills of young children with mild developmental delays in a small-group arrangement in a rural public elementary school in Southwest United States. The study was conducted using a…
Spectral and Polarization Sensitivity of the Dipteran Visual System
McCann, Gilbert D.; Arnett, David W.
1972-01-01
Spectral and polarization sensitivity measurements were made at several levels (retina, first and third optic ganglion, cervical connective, behavior) of the dipteran visual nervous system. At all levels, it was possible to reveal contributions from the retinular cell subsystem cells 1 to 6 or the retinular cell subsystem cells 7 and 8 or both. Only retinular cells 1 to 6 were directly studied, and all possessed the same spectral sensitivity characterized by two approximately equal sensitivity peaks at 350 and 480 nm. All units of both the sustaining and on-off variety in the first optic ganglion exhibited the same spectral sensitivity as that of retinular cells 1 to 6. It was possible to demonstrate for motion detection and optomotor responses two different spectral sensitivities depending upon the spatial wavelength of the stimulus. For long spatial wavelengths, the spectral sensitivity agreed with retinular cells 1 to 6; however, the spectral sensitivity at short spatial wavelengths was characterized by a single peak at 465 nm reflecting contributions from the (7, 8) subsystem. Although the two subsystems exhibited different spectral sensitivities, the difference was small and no indication of color discrimination mechanisms was observed. Although all retinular cells 1 to 6 exhibited a preferred polarization plane, sustaining and on-off units did not. Likewise, motion detection and optomotor responses were insensitive to the polarization plane for long spatial wavelength stimuli; however, sensitivity to select polarization planes was observed for short spatial wavelengths. PMID:5027759
Yazdanbakhsh, Karina; Ware, Russell E; Noizat-Pirenne, France
2012-07-19
Red blood cell transfusions have reduced morbidity and mortality for patients with sickle cell disease. Transfusions can lead to erythrocyte alloimmunization, however, with serious complications for the patient including life-threatening delayed hemolytic transfusion reactions and difficulty in finding compatible units, which can cause transfusion delays. In this review, we discuss the risk factors associated with alloimmunization with emphasis on possible mechanisms that can trigger delayed hemolytic transfusion reactions in sickle cell disease, and we describe the challenges in transfusion management of these patients, including opportunities and emerging approaches for minimizing this life-threatening complication.
Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya
2016-05-01
As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.
NASA Astrophysics Data System (ADS)
Gehlot, B. K.; Koopmans, L. V. E.; de Bruyn, A. G.; Zaroubi, S.; Brentjens, M. A.; Asad, K. M. B.; Hatef, M.; Jelić, V.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Yatawatta, S.
2018-05-01
Contamination due to foregrounds (Galactic and Extra-galactic), calibration errors and ionospheric effects pose major challenges in detection of the cosmic 21 cm signal in various Epoch of Reionization (EoR) experiments. We present the results of a pilot study of a field centered on 3C196 using LOFAR Low Band (56-70 MHz) observations, where we quantify various wide field and calibration effects such as gain errors, polarized foregrounds, and ionospheric effects. We observe a `pitchfork' structure in the 2D power spectrum of the polarized intensity in delay-baseline space, which leaks into the modes beyond the instrumental horizon (EoR/CD window). We show that this structure largely arises due to strong instrumental polarization leakage (˜30%) towards Cas A (˜21 kJy at 81 MHz, brightest source in northern sky), which is far away from primary field of view. We measure an extremely small ionospheric diffractive scale (rdiff ≈ 430 m at 60 MHz) towards Cas A resembling pure Kolmogorov turbulence compared to rdiff ˜ 3 - 20 km towards zenith at 150 MHz for typical ionospheric conditions. This is one of the smallest diffractive scales ever measured at these frequencies. Our work provides insights in understanding the nature of aforementioned effects and mitigating them in future Cosmic Dawn observations (e.g. with SKA-low and HERA) in the same frequency window.
NASA Astrophysics Data System (ADS)
Alpers, Matthias; Brüns, Christian; Pillukat, Alexander
2017-11-01
The evolving needs of the meteorological community concerning the EUMETSAT Polar System follow-on satellite mission (Post-EPS) require the development of a high-performance multi-spectral imaging radiometer. Recognizing these needs, Jena Optronik GmbH proposed an innovative instrument concept, which comprises a high flexibility to adapt to user requirements as a very important feature. Core parameters like ground sampling distance (GSD), number and width of spectral channels, signal-to-noise ratio, polarization control and calibration facilities can be chosen in a wide range without changing the basic instrument configuration. Core item of the METimage instrument is a rotating telescope scanner to cover the large swath width of about 2800 km, which all polar platforms need for global coverage. The de-rotated image facilitates use of in-field spectral channel separation, which allows tailoring individual channel GSD (ground sampling distance) and features like TDI (time delay and integration). State-of-the-art detector arrays and readout electronics can easily be employed. Currently, the German DLR Space Agency, Jena- Optronik GmbH and AIM Infrarot Module GmbH work together implementing core assemblies of METimage: the rotating telescope scanner and the infrared detectors. The METimage instrument phase B study was kicked-off in September 2008. Germany intents to provide METimage as an in-kind contribution of the first METimage flight model to the EUMETSAT Post-EPS Programme.
Liu, Wanli
2017-01-01
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897
Longo, Stefano; Cè, Emiliano; Rampichini, Susanna; Devoto, Michela; Venturelli, Massimo; Limonta, Eloisa; Esposito, Fabio
2017-04-01
The study was aimed at assessing possible correlations of the electromechanical delay components during muscle contraction (Delay TOT ) and relaxation (R-Delay TOT ), with muscle-tendon unit (MTU), muscle, and tendon stiffness before and after static stretching (SS). Plantarflexor muscles' maximum voluntary torque (T max ) was measured in 18 male participants (age 24±3yrs; body mass 76.4±8.9kg; stature 1.78±0.09m; mean±SD). During T max , surface electromyogram (EMG), mechanomyogram, and force signals were detected. Delay TOT and R-Delay TOT with their electrochemical and mechanical components were calculated. Passive torque and myotendinous junction displacement were assessed at 0°, 10° and 20° of dorsiflexion to determine MTU, muscle and tendon stiffness. The same protocol was repeated after SS. Delay TOT , R-Delay TOT and their mainly mechanical components correlated with MTU, muscle and tendon stiffness, both before (R 2 from 0.562 to 0.894; p<0.001) and after SS (R 2 from 0.726 to 0.955; p<0.001). SS decreased T max (-14%; p<0.001) and lengthened almost all the Delay TOT and R-Delay TOT components (from +5.9% to +30.5%; p<0.05). Correlations were found only between stiffness and the mechanical components of Delay TOT and R-Delay TOT . Correlations persisted after SS but delays increased to a higher extent than stiffness, indicating a complexity of the relationship between stiffness and delays that will be discussed in the manuscript. Copyright © 2017 Elsevier Ltd. All rights reserved.
Premixed autoignition in compressible turbulence
NASA Astrophysics Data System (ADS)
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Compensating for telecommunication delays during robotic telerehabilitation.
Consoni, Leonardo J; Siqueira, Adriano A G; Krebs, Hermano I
2017-07-01
Rehabilitation robotic systems may afford better care and telerehabilitation may extend the use and benefits of robotic therapy to the home. Data transmissions over distance are bound by intrinsic communication delays which can be significant enough to deem the activity unfeasible. Here we describe an approach that combines unilateral robotic telerehabilitation and serious games. This approach has a modular and distributed design that permits different types of robots to interact without substantial code changes. We demonstrate the approach through an online multiplayer game. Two users can remotely interact with each other with no force exchanges, while a smoothing and prediction algorithm compensates motions for the delay in the Internet connection. We demonstrate that this approach can successfully compensate for data transmission delays, even when testing between the United States and Brazil. This paper presents the initial experimental results, which highlight the performance degradation with increasing delays as well as improvements provided by the proposed algorithm, and discusses planned future developments.
Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses
NASA Astrophysics Data System (ADS)
Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing
2018-04-01
We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.
MICROWAVE SPECTROSCOPY OF THE CALCIUM 4snf→4s(n+1)d, 4sng, 4snh, 4sni, AND 4snk TRANSITIONS
NASA Astrophysics Data System (ADS)
Nunkaew, Jirakan; Gallagher, Tom
2015-06-01
We use a delayed field ionization technique to observe the microwave transitions of calcium Rydberg states, from the 4snf states to the 4s(n+1)d, 4sng, 4snh, 4sni, and 4snk states for 18≤ n≤23. We analyze the observed intervals between the ℓ and (ℓ+1), ℓ≥5, states of the same n to determine the Ca^+ 4s dipole and quadrupole polarizabilities. We show that the adiabatic core polarization model is not adequate to extract the Ca^+ 4s dipole and quadrupole polarizabilities and a non adiabatic treatment is required. We use the non adiabatic core polarization model to determine the ionic dipole and quadrupole polarizabilities to be α_d=76.9(3);a_0^3 and α_q=206(9);a_0^5, respectively.
Experimental observation of different soliton types in a net-normal group-dispersion fiber laser.
Feng, Zhongyao; Rong, Qiangzhou; Qiao, Xueguang; Shao, Zhihua; Su, Dan
2014-09-20
Different soliton types are observed in a net-normal group-dispersion fiber laser based on nonlinear polarization rotation for passive mode locking. The proposed laser can deliver a dispersion-managed soliton, typical dissipation solitons, and a quasi-harmonic mode-locked pulse, a soliton bundle, and especially a dark pulse by only appropriately adjusting the linear cavity phase delay bias using one polarization controller at the fixed pump power. These nonlinear waves show different features, including the spectral shapes and time traces. The experimental observations show that the five soliton types could exist in the same laser cavity, which implies that integrable systems, dissipative systems, and dark pulse regimes can transfer and be switched in a passively mode-locked laser. Our studies not only verify the numeral simulation of the different soliton-types formation in a net-normal group-dispersion operation but also provide insight into Ginzburg-Landau equation systems.
Interferometric Polarization Control
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); Moseley, Samuel H. (Inventor); Chuss, David T. (Inventor); Novak, Giles A. (Inventor)
2008-01-01
A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid.
Interferometric polarization control
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); Novak, Giles A. (Inventor); Moseley, Samuel H. (Inventor); Chuss, David T. (Inventor)
2009-01-01
A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid.
Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP
NASA Astrophysics Data System (ADS)
Masters, T. A.; Robinson, N. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.
2018-04-01
Time and polarization-resolved stimulated emission depletion (STED) measurements are used to investigate excited state evolution following the two-photon excitation of enhanced green fluorescent protein (EGFP). We employ a new approach for the accurate STED measurement of the hitherto unmeasured degree of hexadecapolar transition dipole moment alignment ⟨α40 ⟩ present at a given excitation-depletion (pump-dump) pulse separation. Time-resolved polarized fluorescence measurements as a function of pump-dump delay reveal the time evolution of ⟨α40 ⟩ to be considerably more rapid than predicted for isotropic rotational diffusion in EGFP. Additional depolarization by homo-Förster resonance energy transfer is investigated for both ⟨α20 ⟩ (quadrupolar) and ⟨α40 ⟩ transition dipole alignments. These results point to the utility of higher order dipole correlation measurements in the investigation of resonance energy transfer processes.
Video-rate terahertz electric-field vector imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to bemore » useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.« less
Wang, Shuangbao; Bai, Yuhang; Xie, Lin; Li, Chen; Key, Julian D; Wu, Di; Wang, Peng; Pan, Xiaoqing
2018-01-10
Interfacial fine structures of bare LaAlO 3 /SrTiO 3 (LAO/STO) heterostructures are compared with those of LAO/STO heterostructures capped with upward-polarized Pb(Zr 0.1 ,Ti 0.9 )O 3 (PZT up ) or downward-polarized Pb(Zr 0.5 ,Ti 0.5 )O 3 (PZT down ) overlayers by aberration-corrected scanning transmission electron microscopy experiments. By combining the acquired electron energy-loss spectroscopy mapping, we are able to directly observe electron transfer from Ti 4+ to Ti 3+ and ionic displacements at the interface of bare LAO/STO and PZT down /LAO/STO heterostructure unit cell by unit cell. No evidence of Ti 3+ is observed at the interface of the PZT up /LAO/STO samples. Furthermore, the confinement of the two-dimensional electron gas (2DEG) at the interface is determined by atomic-column spatial resolution. Compared with the bare LAO/STO interface, the 2DEG density at the LAO/STO interface is enhanced or depressed by the PZT down or PZT up overlayer, respectively. Our microscopy studies shed light on the mechanism of ferroelectric modulation of interfacial transport at polar/nonpolar oxide heterointerfaces, which may facilitate applications of these materials as nonvolatile memory.
Radio Imaging Observations of Solar Activity Cycle and Its Anomaly
NASA Astrophysics Data System (ADS)
Shibasaki, K.
2011-12-01
The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.
Toward compact and ultra-intense laser driven soft x-ray lasers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sebban, Stéphane
2017-05-01
We report here recent work on an optical-field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by optical field ionization focusing a 1 J, 30 fs, circularly- polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94p (J=0) --> 3d94p (J=1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The polarization of the HH-seeded EUV laser beam was studied using an analyzer composed of three grazing incidence EUV multilayer mirrors able to spin under vacuum. For linear polarization, the Malus law has been recovered while in the case of a circularly-polarized seed, the EUV signal is insensitive to the rotation of the analyzer, bearing testimony to circularly polarized. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs FWHM as the amplification peak rose from 150 to 1,200 with an increase of the plasma density from 3 × 1018 cm-3 up to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 3 cm), yielding EUV outputs up to 14 μJ.
Extending Wheeler’s delayed-choice experiment to space
Vedovato, Francesco; Agnesi, Costantino; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G.; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo
2017-01-01
Gedankenexperiments have consistently played a major role in the development of quantum theory. A paradigmatic example is Wheeler’s delayed-choice experiment, a wave-particle duality test that cannot be fully understood using only classical concepts. We implement Wheeler’s idea along a satellite-ground interferometer that extends for thousands of kilometers in space. We exploit temporal and polarization degrees of freedom of photons reflected by a fast-moving satellite equipped with retroreflecting mirrors. We observe the complementary wave- or particle-like behaviors at the ground station by choosing the measurement apparatus while the photons are propagating from the satellite to the ground. Our results confirm quantum mechanical predictions, demonstrating the need of the dual wave-particle interpretation at this unprecedented scale. Our work paves the way for novel applications of quantum mechanics in space links involving multiple photon degrees of freedom. PMID:29075668
Rajan, Rajitha Papukutty; Riesen, Hans; Rebane, Aleksander
2013-11-15
Slow light based on transient spectral hole-burning is reported for emerald, Be(3)Al(2)Si(6)O(18):Cr(3+). Experiments were conducted in π polarization on the R(1)(± 3/2) line (E2 ← A(2)4) at 2.2 K in zero field and low magnetic fields B||c. The hole width was strongly dependent on B||c, and this allowed us to smoothly tune the pulse delay from 40 to 154 ns between zero field and B||c = 15.2 mT. The latter corresponds to a group velocity of 16 km/s. Slow light in conjunction with a linear filter theory can be used as a powerful and accurate technique in time-resolved spectroscopy, e.g., to determine spectral hole-widths as a function of time.
Passive films on magnesium anodes in primary batteries
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.
1988-01-01
The characteristics of the passive films over Mg anodes, which essentially govern the voltage delay of the latter, have been determined nondestructively from an analysis of the transient and steady-state response of the electrode potential to low amplitude galvanostatic polarization under various experimental conditions viz., with different corrosion inhibitor coatings on Mg, after various periods of ageing of anode in solutions containing corrosion inhibitors, at various low temperatures etc. Using these parameters, the kinetics of film build-up or dissolution under these conditions have been monitored. The morphology of the anode film has been verified with scanning electron microscopy. Similar transients at low temperatures point out a steep rise in the film resistivity which is essentially responsible for the severe voltage delay. Finally, possible application of this technique in secondary Li batteries to improve cycling characteristics of the Li anode has been pointed out.
NASA Astrophysics Data System (ADS)
Guesmi, Latifa; Menif, Mourad
2016-08-01
In the context of carrying a wide variety of modulation formats and data rates for home networks, the study covers the radio-over-fiber (RoF) technology, where the need for an alternative way of management, automated fault diagnosis, and formats identification is expressed. Also, RoF signals in an optical link are impaired by various linear and nonlinear effects including chromatic dispersion, polarization mode dispersion, amplified spontaneous emission noise, and so on. Hence, for this purpose, we investigated the sampling method based on asynchronous delay-tap sampling in conjunction with a cross-correlation function for the joint bit rate/modulation format identification and optical performance monitoring. Three modulation formats with different data rates are used to demonstrate the validity of this technique, where the identification accuracy and the monitoring ranges reached high values.
Isochronic carrier-envelope phase-shift compensator.
Görbe, Mihaly; Osvay, Karoly; Grebing, Christian; Steinmeyer, Günter
2008-11-15
A concept for orthogonal control of phase and group delay inside a laser cavity by a specially designed compensator assembly is discussed. Similar to the construction of variable polarization retarder, this assembly consists of two thin wedge prisms made from appropriately chosen optical materials. Being shifted as a whole, the assembly allows changing the phase delay with no influence on the cavity round-trip time, whereas relative shifting of the prisms enables adjustment of the latter. This scheme is discussed theoretically and verified experimentally, indicating a factor 30 reduction of the influence on the repetition rate compared to the commonly used silica wedge pair. For a 2pi adjustment of the carrier-envelope phase shift, single-pass timing differences are reduced to the single-femtosecond regime. With negligible distortions of timing and dispersion, the described compensator device greatly simplifies carrier-envelope phase control and experiments in extreme nonlinear optics. Copyright (c) 2008 Optical Society of America.
Vertically oriented metamaterial broadband linear polariser
Campione, Salvatore; Burckel, David Bruce
2018-03-14
Control and manipulation of polarization is an important topic for imaging and light matter interactions. In the infrared regime, the large wavelengths make wire grid polarizers a viable option, as it is possible to create periodic arrays of metallic wires at that scale. The recent advent of metamaterials has spurred an increase in non-traditional polarizer motifs centred around more complicated repeat units, which potentially provide more functionality. In this paper we explore the use of two-dimensional (2D) arrays of single and back-to-back vertically oriented cross dipoles arranged in a cubic in-plane silicon matrix. Here, we show that both single andmore » back-to-back versions have higher rejection ratios and larger bandwidths than either wire grid polarizers or 2D arrays of linear dipoles.« less
Anomalously deep polarization in SrTiO3 (001) interfaced with an epitaxial ultrathin manganite film
Wang, Zhen; Tao, Jing; Yu, Liping; ...
2016-10-17
Using atomically-resolved imaging and spectroscopy, we reveal a remarkably deep polarization in non-ferroelectric SrTiO 3 near its interface with an ultrathin nonmetallic film of La 2/3Sr 1/3MnO 3. Electron holography shows an electric field near the interface in SrTiO 3, yielding a surprising spontaneous polarization density of ~ 21 μC/cm 2. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by the electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties ofmore » transition metal oxides.« less
NASA Astrophysics Data System (ADS)
Milker, Yvonne; Horton, Benjamin P.; Khan, Nicole S.; Nelson, Alan R.; Witter, Robert C.; Engelhart, Simon E.; Ewald, Michael; Brophy, Laura; Bridgeland, William T.
2016-04-01
Stratigraphic sequences beneath salt marshes along the U.S. Pacific Northwest coast preserve 7000 years of plate-boundary earthquakes at the Cascadia subduction zone. The sequences record rapid rises in relative sea level during regional coseismic subsidence caused by great earthquakes and gradual falls in relative sea level during interseismic uplift between earthquakes. These relative sea-level changes are commonly quantified using foraminiferal transfer functions with the assumption that foraminifera rapidly recolonize salt marshes and adjacent tidal flats following coseismic subsidence. The restoration of tidal inundation in the Ni-les'tun unit (NM unit) of the Bandon Marsh National Wildlife Refuge (Oregon), following extensive dike removal in August 2011, allowed us to directly observe changes in foraminiferal assemblages that occur during rapid "coseismic" (simulated by dike removal with sudden tidal flooding) and "interseismic" (stabilization of the marsh following flooding) relative sea-level changes analogous to those of past earthquake cycles. We analyzed surface sediment samples from 10 tidal stations at the restoration site (NM unit) from mudflat to high marsh, and 10 unflooded stations in the Bandon Marsh control site. Samples were collected shortly before and at 1- to 6-month intervals for 3 years after tidal restoration of the NM unit. Although tide gauge and grain-size data show rapid restoration of tides during approximately the first 3 months after dike removal, recolonization of the NM unit by foraminifera was delayed at least 10 months. Re-establishment of typical tidal foraminiferal assemblages, as observed at the control site, required 31 months after tidal restoration, with Miliammina fusca being the dominant pioneering species. If typical of past recolonizations, this delayed foraminiferal recolonization affects the accuracy of coseismic subsidence estimates during past earthquakes because significant postseismic uplift may shortly follow coseismic subsidence at subduction zones. Depending on the location and dimensions of past plate-boundary earthquake ruptures, delayed recolonization of foraminifera may result in an underestimation of coseismic subsidence for past earthquakes at Cascadia.
Ocak, Hale; Poppe, Marco; Bilgin-Eran, Belkız; Karanlık, Gürkan; Prehm, Marko; Tschierske, Carsten
2016-09-21
A bent-core compound derived from a 4-cyanoresorcinol core unit with two terephthalate based rod-like wings and carrying chiral 3,7-dimethyloctyloxy side chains has been synthesized in racemic and enantiomerically pure form and characterized by polarizing microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical investigations to study the influence of molecular chirality on the superstructural chirality and polar order in lamellar liquid crystalline phases. Herein we demonstrate that the coupling of molecular chirality with superstructural layer chirality in SmCsPF domain phases (forming energetically distinct diastereomeric pairs) can fix the tilt direction and thus stabilize synpolar order, leading to bistable ferroelectric switching in the SmC* phases of the (S)-enantiomer, whereas tristable modes determine the switching of the racemate. Moreover, the mechanism of electric field induced molecular reorganization changes from a rotation around the molecular long axis in the racemate to a rotation on the tilt-cone for the (S)-enantiomer. At high temperature the enantiomer behaves like a rod-like molecule with a chirality induced ferroelectric SmC* phase and an electroclinic effect in the SmA'* phase. At reduced temperature sterically induced polarization, due to the bent molecular shape, becomes dominating, leading to much higher polarization values, thus providing access to high polarization ferroelectric materials with weakly bent compounds having only "weakly chiral" stereogenic units. Moreover, the field induced alignment of the SmCsPF(()*()) domains gives rise to a special kind of electroclinic effect appearing even in the absence of molecular chirality. Comparison with related compounds indicates that the strongest effects of chirality appear for weakly bent molecules with a relatively short coherence length of polar order, whereas for smectic phases with long range polar order the effects of the interlayer interfaces can override the chirality effects.
1986-10-01
units and an aliphatic spacer containing eleven and respectively, ten methylene units were synthesized. Their phase behavior was studied by differential...scanning calorimetry and optical polarization microscopy, and compared with the phase behavior of the polysiloxanes and copolysiloxanes containing 4...containing eleven and respectively, ten methylene -units were synthesized. Their phase behavior was studied by differential * scanning calorimetry
1989-02-23
February 1989 facing complex problems in need of solution, and there is no excuse for us to congratulate ourselves." Firstly, because of continuous...problem of development to be placed on the top of the international agenda. History has proven that the world needs the existence of a United Nations...and the United Nations needs support from the world’s nations. A changing and multi-polar- ized world further needs a United Nations that can