Science.gov

Sample records for polarization dependent spontaneous-emission

  1. Theoretical Calculation of System Performance of Fiber Optic Network with Chromatic Dispersion, Polarization Mode Dispersion, Polarization Dependent Loss, and Amplifier Spontaneous Emission Noise

    NASA Astrophysics Data System (ADS)

    Abuzariba, Suad Mohamed

    This thesis includes a theoretical study of the performance of an optical network system with linear impairments: chromatic dispersion (CD), polarization mode dispersion (PMD), polarization dependent loss (PDL), and amplified spontaneous emission (ASE) noise. Both the a-factor and bit error rate (BER) were used as performance parameters in this study. First, an analytical optical eye diagram evaluation for a system of highly mode coupled PMD/PDL fiber and lumped sections (up to fifteen sections) have been presented in this study. Based on this evaluation we found that with PDL considered as well as PMD, the a-factor of the output becomes higher than that of a Maxwellian fiber having the same total root mean-squared PMD and PDL values, when the mean-square PDL element of the lumped sections makes up the major portion of the total mean-square of the whole system. Whereas without considering PDL, the a-factor becomes higher as the mean-square PMD element of the Maxwellian fiber takes the major portion of the total mean-square PMD element of the whole system. Also the worst case for the a-factor occurred when the lumped sections were in the middle between two equivalent Maxwellian fibers, rether than if the lumped sections were followed by Maxwellian fiber or the Maxwellian fiber is followed by the lumped sections. We also note that two equivalent Maxwellian fibers connected in series will not give the same a-factor as a Maxwellian fiber equivalent calculated by concatenation rules unless they have the same values of PMD, PDL, and polarization direction correlation elements. Second, considering ASE-noise besides CD, PMD, and PDL, improved values of bit error rate (BER) were gotten using the moment generation function for the optical system in cases of ON-OFF modulation format and DPSK modulation format. We found that, even when considering the noise only without the signal, the probability density function of the output current was dependent on the output state of

  2. Polarization of amplified spontaneous emission in a plasma active medium

    NASA Astrophysics Data System (ADS)

    Kim, C. M.; Stiel, H.; Matouš, B.; Nishikino, M.; Hasegawa, N.; Kawachi, T.; Tran, K. A.; Janulewicz, K. A.

    2015-10-01

    We present polarization measurement of a Ni-like Ag x-ray laser working in the transient collisional excitation scheme. A calibrated membrane multilayer beam splitter was used to determine the energies of two mutually perpendicular polarization components (s and p components). As a result, we observed a high degree of polarization that fluctuated from shot to shot. The dominant polarization component switched from s to p when pumping was made stronger. The measurement results are discussed from the point of view of the general polarization theory and supported by a numerical simulation based on Maxwell-Bloch equations. The physical processes causing the dominance of one polarization component are discussed in terms of pumping strength. These results should extend the wave physics perspective on the amplification process, transforming a weak random noise into a strong coherent radiation.

  3. Characteristics of Spontaneous Emission of Polarized Atoms in Metal Dielectric Multiple Layer Structures

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Gu, Ben-Yuan; Zhou, Yun-Song

    2007-11-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure of air-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  4. Morphology dependent amplified spontaneous emission in π-conjugated polymer

    NASA Astrophysics Data System (ADS)

    Wang, Yuchen; Yang, Xiao; Wang, Ruizhi; Li, Li; Li, Heng

    2015-08-01

    The amplified spontaneous emission (ASE) spectra of a π-conjugated polymer Poly [2-methoxy-5-(2‧-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) are studied in as-cast film, annealed film, 1 mg/ml solution and 2.5 mg/ml solution, respectively, using a 10 ns pulsed laser as an excitation source. We found that for annealed film (420 K), the ASE is hardly achieved compared to the as-cast film, which is consistent with the formation of the aggregation; whereas the film's temperature had much less effect on its ASE threshold. In solution, the ASE spectra show both 0-0 peak and 0-1 peak in 1 mg/ml solution, but only 0-1 peak in 2.5 mg/ml one. When the temperature of solution increases slightly from 300 K to 330 K, the ASE threshold increases dramatically in 1 mg/ml solution but slightly in 2.5 mg/ml one. Our results show the important role the morphology played in the ASE spectra in both film and solution. Therefore, controlling the interchain interaction in PCPs may be the key factor for performance of the organic lasers.

  5. Temperature dependence of spontaneous emission from AlGaAs-GaAs laser diodes

    SciTech Connect

    Zabrowski, D.W.; Rice, R.R.; Specht, A.P.

    1986-04-01

    The relationship between spontaneous and stimulated emission from a variety of AlGaAs-GaAs double-heterostructure laser diodes has been studied as a function of temperature over a range of 10--70 /sup 0/C. The spontaneous emission varied exponentially with temperature, and we introduce T/sup prime//sub 0/(J) as the characteristic temperature of spontaneous emission. As the temperature was changed, the laser threshold and slope efficiency for a device strongly covaried with spontaneous emission. A moderately high correlation (r>0.75) was obtained between the lasing and spontaneous emission slope efficiencies of 20 randomly selected lasers from different suppliers.

  6. Excitation dependent two-component spontaneous emission and ultrafast amplified spontaneous emission in dislocation-free InGaN nanowires

    NASA Astrophysics Data System (ADS)

    You, Guanjun; Guo, Wei; Zhang, Chunfeng; Bhattacharya, Pallab; Henderson, Ron; Xu, Jian

    2013-03-01

    Amplified spontaneous emission (ASE) at 456 nm from In0.2Ga0.8N nanowires grown on (001) silicon by catalyst-free molecular beam epitaxy was observed at room temperature under femtosecond excitation. The photoluminescence spectra below ASE threshold consist of two spontaneous emission bands centered at ˜555 nm and ˜480 nm, respectively, revealing the co-existence of deeply and shallowly localized exciton states in the nanowires. The ASE peak emerges from the 480 nm spontaneous emission band when the excitation density exceeds ˜120 μJ/cm2, indicating that optical gain arises from the radiative recombination of shallowly localized excitons in the nanowires. Time-resolved photoluminescence measurements revealed that the ASE process completes within 1.5 ps, suggesting a remarkably high stimulated emission recombination rate in one-dimensional InGaN nanowires.

  7. Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source

    PubMed Central

    Xu, Jiangming; Zhou, Pu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei

    2016-01-01

    A great deal of attention has been drawn to Random fiber lasers (RFLs) for their typical features of modeless, cavity-less and low coherence length. However, most previously reported high power RFLs employ narrowband fiber lasers as the pump source, thus inducing the self-pulsing transferring from pump source to output Stokes. In this contribution, linearly-polarized RFL pumped by broadband amplified-spontaneous-emission (ASE) is demonstrated and continuous-wave (CW) high order Stokes can be obtained.With 30.6 W pump injected into the half-opened cavity, 23.51 W the 2nd order Stokes centered at 1178 nm with a full width at half-maximum linewidth of 1.73 nm and polarization extinction ratio of about 25 dB can be obtained. The standard deviation and peak-vale value of the 2nd order Stokes light at maximal output power is just 0.47% and 4.10%, which indicates the good power stability. Significantly, the corresponding quantum efficiency of the 1st and 2nd order Stokes light is about 87% and 85%, and almost all pump photons are converted into Stokes photons. As far as we know, it is the highest power ever reported from linearly polarized RFL, and further power scaling is available in the case of more powerful pump source and optimization of system parameters. PMID:27725759

  8. Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Xu, Jiangming; Zhou, Pu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei

    2016-10-01

    A great deal of attention has been drawn to Random fiber lasers (RFLs) for their typical features of modeless, cavity-less and low coherence length. However, most previously reported high power RFLs employ narrowband fiber lasers as the pump source, thus inducing the self-pulsing transferring from pump source to output Stokes. In this contribution, linearly-polarized RFL pumped by broadband amplified-spontaneous-emission (ASE) is demonstrated and continuous-wave (CW) high order Stokes can be obtained.With 30.6 W pump injected into the half-opened cavity, 23.51 W the 2nd order Stokes centered at 1178 nm with a full width at half-maximum linewidth of 1.73 nm and polarization extinction ratio of about 25 dB can be obtained. The standard deviation and peak-vale value of the 2nd order Stokes light at maximal output power is just 0.47% and 4.10%, which indicates the good power stability. Significantly, the corresponding quantum efficiency of the 1st and 2nd order Stokes light is about 87% and 85%, and almost all pump photons are converted into Stokes photons. As far as we know, it is the highest power ever reported from linearly polarized RFL, and further power scaling is available in the case of more powerful pump source and optimization of system parameters.

  9. Angular distribution of polarized spontaneous emissions and its effect on light extraction behavior in InGaN-based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Yuan, Gangcheng; Chen, Xinjuan; Yu, Tongjun; Lu, Huimin; Chen, Zhizhong; Kang, Xiangning; Wu, Jiejun; Zhang, Guoyi

    2014-03-01

    Angular intensity distributions of differently polarized light sources in multiple quantum wells (MQWs) and their effects on extraction behavior of spontaneous emission from light emitting diode (LED) chips have been studied. Theoretical calculation based on k.p approximation, ray tracing simulation and angular electroluminescence measurement were applied in this work. It is found that the electron-hole recombination in the InGaN MQWs produces a spherical distribution of an s-polarized source and a dumbbell-shaped p-polarized source. Light rays from different polarized sources experience different extraction processes, determining the polarization degree of electro-luminescence and extraction efficiency of LEDs.

  10. Angular distribution of polarized spontaneous emissions and its effect on light extraction behavior in InGaN-based light emitting diodes

    SciTech Connect

    Yuan, Gangcheng; Chen, Xinjuan; Yu, Tongjun Lu, Huimin; Chen, Zhizhong; Kang, Xiangning; Wu, Jiejun; Zhang, Guoyi

    2014-03-07

    Angular intensity distributions of differently polarized light sources in multiple quantum wells (MQWs) and their effects on extraction behavior of spontaneous emission from light emitting diode (LED) chips have been studied. Theoretical calculation based on k·p approximation, ray tracing simulation and angular electroluminescence measurement were applied in this work. It is found that the electron-hole recombination in the InGaN MQWs produces a spherical distribution of an s-polarized source and a dumbbell-shaped p-polarized source. Light rays from different polarized sources experience different extraction processes, determining the polarization degree of electro-luminescence and extraction efficiency of LEDs.

  11. Temperature-dependent spontaneous emission of PbS quantum dots inside photonic nanostructures at telecommunication wavelength

    NASA Astrophysics Data System (ADS)

    Birowosuto, Muhammad Danang; Takiguchi, Masato; Olivier, Aurelien; Tobing, Landobasa Y.; Kuramochi, Eiichi; Yokoo, Atsushi; Hong, Wang; Notomi, Masaya

    2017-01-01

    Spontaneous emission of PbS quantum dots (QDs) in different photonic nanostructures has been studied. We use the temperature-dependent exciton photoluminescence and the classic dipole near interface models to understand the spontaneous emission control at various temperatures. Then, we demonstrate that the enhancement and the inhibition of PbS QDs due to the local density of states (LDOS) inside nanostructures are more efficient at temperature as low as 77 K than the inhibition at 300 K. Largest emission rate enhancement at 77 K of 1.67 ± 0.10 and inhibition factors at 100 K of 2.27 ± 0.15 are reported for the gold (Au) planar mirror and silicon (Si) two-dimensional photonic crystal bandgap, respectively. We attribute those enhancement and inhibition to the large quantum yields Qe at low temperatures, which is much larger than that at 300 K. These results are relevant for application and optimization of PbS QDs in nanophotonics at telecommunication wavelength.

  12. Modification of spontaneous emission in Bragg onion resonators

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Huang, Yanyi; Yariv, Amnon; Xu, Yong; Lin, Shawn-Yu

    2006-08-01

    We formulated an analytical model and analyzed the modification of spontaneous emission in Bragg onion resonators. We consider both the case of a single light emitter and a uniformly distributed ensemble of light emitters within the resonator. We obtain an expression for the average radiation rate of the light emitters ensemble and discuss the modification of the average radiation rate as a function of cavity parameters such as the core radius, the number of Bragg cladding layers, the index contrast of the Bragg cladding, and the refractive index of surrounding medium. We also consider the possibility of non-exponential decay of the light emitter ensemble due to the strong dependence of spontaneous emission on the location and polarization of individual light emitter. We conclude that Bragg onion resonators can both enhance and inhibit spontaneous emission by several orders of magnitude. This property can have significant impact in the field of cavity quantum electrodynamics (QED).

  13. Modification of spontaneous emission in Bragg onion resonators.

    PubMed

    Liang, Wei; Huang, Yanyi; Yariv, Amnon; Xu, Yong; Lin, Shawn-Yu

    2006-08-07

    We formulated an analytical model and analyzed the modification of spontaneous emission in Bragg onion resonators. We consider both the case of a single light emitter and a uniformly distributed ensemble of light emitters within the resonator. We obtain an expression for the average radiation rate of the light emitters ensemble and discuss the modification of the average radiation rate as a function of cavity parameters such as the core radius, the number of Bragg cladding layers, the index contrast of the Bragg cladding, and the refractive index of surrounding medium. We also consider the possibility of non-exponential decay of the light emitter ensemble due to the strong dependence of spontaneous emission on the location and polarization of individual light emitter. We conclude that Bragg onion resonators can both enhance and inhibit spontaneous emission by several orders of magnitude. This property can have significant impact in the field of cavity quantum electrodynamics (QED).

  14. Size-dependent one-photon- and two-photon-pumped amplified spontaneous emission from organometal halide CH3NH3PbBr3 perovskite cubic microcrystals.

    PubMed

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Li, Kai-Jiao; Zhan, Xue-Peng; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2017-01-18

    In the past few years, organometal halide light-emitting perovskite thin films and colloidal nanocrystals (NCs) have attracted significant research interest in the field of highly purified illuminating applications. However, knowledge of photoluminescence (PL) characteristics, such as amplified spontaneous emission (ASE) of larger-sized perovskite crystals, is still relatively scarce. Here, we presented room-temperature size-dependent spontaneous emission (SE) and ASE of the organometal halide CH3NH3PbBr3 perovskite cubic microcrystals pumped through one-photon-(1P) and two-photon-(2P) excitation paradigms. The results showed that the optical properties of SE and ASE were sensitively dependent on the sizes of perovskite microcrystals irrespective of whether 1P or 2P excitation was used. Moreover, by comparing the spectral results of 1P- and 2P-pumped experiments, 2P pumping was found to be an effective paradigm to reduce thresholds by one order of magnitude. Finally, we carried out fluences-dependent time-resolved fluorescence dynamics experiments to study the underlying effects of these scale-dependent SE and ASE. We found that the photoluminescence (PL) recombination rates sensitively became faster with increasing carriers' densities, and that the ASE pumped from larger-sized CH3NH3PbBr3 perovskite cubic microcrystals showed faster lifetimes. This work shows that micro-sized perovskite cubic crystals could be the ideal patterns of perovskite materials for realizing ASE applications in the future.

  15. Optical antenna enhanced spontaneous emission.

    PubMed

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  16. Optical antenna enhanced spontaneous emission

    PubMed Central

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.

    2015-01-01

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  17. Optical antenna enhanced spontaneous emission

    DOE PAGES

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; ...

    2015-01-26

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d2. Unfortunately, at d spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less

  18. Spontaneous emission and absorber theory

    NASA Astrophysics Data System (ADS)

    Pegg, David T.

    1997-01-01

    One of the long term interests of George Series was the construction of a theory of spontaneous emission which does not involve field quantisation. His approach was written in terms of atomic operators only and he drew a parallel with the Wheeler-Feynman absorber theory of radiation. By making a particular extra postulate, he was able to obtain the correct spontaneous emission rate and the Lamb shift reasonably simply and directly. An examination of his approach indicates that this postulate is physically reasonable and the need for it arises because quantisation in his theory occurs after the response of the absorber has been accounted for by means of the radiative reaction field. We review briefly an alternative absorber theory approach to spontaneous emission based on the direct action between the emitting atom and a quantised absorber, and outline some applications to more recent effects of interest in quantum optics.

  19. Spontaneous emission by moving atoms

    SciTech Connect

    Meystre, P.; Wilkens, M.

    1994-12-31

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs.

  20. Laser cooling without spontaneous emission.

    PubMed

    Corder, Christopher; Arnold, Brian; Metcalf, Harold

    2015-01-30

    This Letter reports the demonstration of laser cooling without spontaneous emission, and thereby addresses a significant controversy. It works by restricting the atom-light interaction to a time short compared to a cycle of absorption followed by natural decay. It is achieved by using the bichromatic force on an atomic transition with a relatively long excited state lifetime and a relatively short cooling time so that spontaneous emission effects are minimized. The observed width of the one-dimensional velocity distribution is reduced by ×2 thereby reducing the "temperature" by ×4. Moreover, our results comprise a compression in phase space because the spatial expansion of the atomic sample is limited. This accomplishment is of interest to direct laser cooling of molecules or in experiments where working space or time is limited.

  1. Controlling spontaneous emission with plasmonic optical patch antennas.

    PubMed

    Belacel, C; Habert, B; Bigourdan, F; Marquier, F; Hugonin, J-P; de Vasconcellos, S Michaelis; Lafosse, X; Coolen, L; Schwob, C; Javaux, C; Dubertret, B; Greffet, J-J; Senellart, P; Maitre, A

    2013-04-10

    We experimentally demonstrate the control of the spontaneous emission rate and the radiation pattern of colloidal quantum dots deterministically positioned in a plasmonic patch antenna. The antenna consists of a thin gold microdisk separated from a planar gold layer by a few tens of nanometers thick dielectric layer. The emitters are shown to radiate through the entire patch antenna in a highly directional and vertical radiation pattern. Strong acceleration of spontaneous emission is observed, depending on the antenna geometry. Considering the double dipole structure of the emitters, this corresponds to a Purcell factor up to 80 for dipoles perpendicular to the disk.

  2. Mapping quantum state dynamics in spontaneous emission

    PubMed Central

    Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.

    2016-01-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893

  3. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  4. Gravitational time dilation induced decoherence in spontaneous emission

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Xu, Chunling; Wang, An Min

    2017-08-01

    We investigate decoherence of quantum superpositions induced by gravitational time dilation and spontaneous emission between two atomic levels. It has been shown that gravitational time dilation can be a universal decoherence source by Pikovski et al. Here, we consider the decoherence induced by the gravitational time dilation only in the situation of spontaneous emission. We obtain the analytical results of the coherence of particle’s position state. Then, we obtain that the coherence of particle’s position state depends on reference frame because the time dilation changes the distinguishability of emitted photons from two positions of particle in different reference frames. For observing the decoherence effect induced by the gravitational time dilation, time-delayed feedback can be utilized to increase the decoherence of particle’s superposition state.

  5. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    NASA Technical Reports Server (NTRS)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  6. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    NASA Technical Reports Server (NTRS)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  7. Ultrafast spontaneous emission source using plasmonic nanoantennas

    PubMed Central

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-01-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1–10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core–shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ∼50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission. PMID:26212857

  8. Ultrafast spontaneous emission source using plasmonic nanoantennas.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Argyropoulos, Christos; Huang, Jiani; Smith, David R; Mikkelsen, Maiken H

    2015-07-27

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ∼50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

  9. Ultrafast spontaneous emission source using plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-07-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ~50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

  10. Optical Antenna Enhanced Spontaneous Emission in Semiconductors

    NASA Astrophysics Data System (ADS)

    Messer, Kevin James

    Optical antennas can be used to dramatically increase the rate that semiconductors spontaneously emit photons. While traditional LEDs are limited in bandwidth due to the "slow" rate of spontaneous emission, antenna-enhanced LEDs have the potential to be a fast, efficient, nanoscale light emitter. Traditionally, lasers have dominated LEDs as the emitter in optical interconnects due to a 200x speed advantage of stimulated emission over spontaneous emission. This paradigm may be reversed by coupling LEDs to optical antennas. In fact, antenna enhanced spontaneous emission can be faster than the fastest stimulated emission. Spontaneous emission originates from dipole fluctuations within the emitting material. The size of these fluctuations is much less than the wavelength of light emission, which leads to slow spontaneous emission. Coupling the material to an optical antenna corrects the size mismatch and improves the rate of radiation. An optical antenna circuit model is developed to predict the degree to which spontaneous emission can be enhanced. The circuit model presented in this dissertation shows that enhancement over 1000x is possible while still maintaining greater than 50% efficiency. The circuit model provides insight how to design optical antennas for coupling to dipole sources, for maximum enhancement, and for high efficiency. A method for incorporating the anomalous skin effect, often overlooked in metal optics, is provided. While FDTD/FEM simulations cannot include this effect due to its nonlocal nature, its impact can be examined through the use of the optical antenna circuit model. Analysis of the tradeoff between achieving large spontaneous emission enhancement and maintaining high efficiency leads to an ideal antenna feedgap size of 10nm. Experimental demonstration of spontaneous emission enhancement from InP coupled to an arch-dipole antenna is presented. Photoluminescence measurements show light emission from antenna-coupled InP over bare InP ridges

  11. Spontaneous emission in dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Pukhov, K. K.; Basiev, T. T.; Orlovskii, Yu. V.

    2008-09-01

    An analytical expression is obtained for the radiative-decay rate of an excited optical center in an ellipsoidal dielectric nanoparticle (with sizes much less than the wavelength) surrounded by a dielectric medium. It is found that the ratio of the decay rate A nano of an excited optical center in the nanoparticle to the decay rate A bulk of an excited optical center in the bulk sample is independent of the local-field correction and, therefore, of the adopted local-field model. Moreover, the expression implies that the ratio A nano/ A bulk for oblate and prolate ellipsoids depends strongly on the orientation of the dipole moment of the transition with respect to the ellipsoid axes. In the case of spherical nanoparticles, a formula relating the decay rate A nano and the dielectric parameters of the nanocomposite and the volumetric content c of these particles in the nanocomposite is derived. This formula reduces to a known expression for spherical nanoparticles in the limit c ≪ 1, while the ratio A nano/ A bulk approaches unity as c tends to unity. The analysis shows that the approach used in a number of papers {H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, Phys. Rev. B 25, 1467 (1982); R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B 60, R14012 (1999); R. I. Zakharchenya, A. A. Kaplyanskii, A. B. Kulinkin, et al., Fiz. Tverd. Tela 45, 2104 (2003) [Phys. Solid State 45, 2209 (2003)]; G. Manoj Kumar, D. Narayana Rao, and G. S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003); Chang-Kui Duan, Michael F. Reid, and Zhongqing Wang, Phys. Lett. A 343, 474 (2005); K. Dolgaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007)}, for which the formula for A nano is derived merely by substituting the bulk refractive index by the effective refractive index of the nanocomposite must be revised, because the resulting ratio A nano/ A bulk turns out to depend on the local-field model. The formulas for the emission and absorption cross

  12. Quenching of spontaneous emission coefficients in plasmas

    SciTech Connect

    Chung, Y.; Lemaire, P.; Suckewer, S.

    1987-09-01

    We have observed changing Einstein coefficients of spontaneous emission as a function of electron density in CO/sub 2/ laser-produced plasmas. These measurements are based on the intensity branching ratio of CIV lines 5801 to 5812 A and 312.41 to 312.46 A which share a common upper level. Similar observations for CIII lines are also discussed. 12 refs., 3 figs.

  13. Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Wan, Ren-Gang; Yao, Zhi-Hai

    2016-10-01

    The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state (DOS) in the anisotropic photonic band gap (PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom, the spontaneous emission depends on the dynamically induced Autler-Townes splitting and its position relative to the PBG. Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission. Project supported by the National Natural Science Foundation of China (Grant Nos. 11447232, 11204367, 11447157, and 11305020).

  14. Plasmon-mediated Enhancement of Rhodamine 6G Spontaneous Emission on Laser-spalled Nanotextures

    NASA Astrophysics Data System (ADS)

    Kuchmizhak, A. A.; Nepomnyashchii, A. V.; Vitrik, O. B.; Kulchin, Yu. N.

    Biosensing characteristics of the laser-spalled nanotextures produced under single-pulse irradiation of a 500-nm thick Ag film surface were assessed by measuring spontaneous emission enhancement of overlaying Rhodamine 6G (Rh6G) molecules utilizing polarization-resolved confocal microspectroscopy technique. Our preliminary study shows for the first time that a single spalled micro-sized crater covered with sub-100 nm sharp tips at a certain excitation conditions provides up to 40-fold plasmon-mediated enhancement of the spontaneous emission from the 10-nm thick Rh6G over-layer indicating high potential of these easy-to-do structures for routine biosensing tasks.

  15. Controlling spontaneous emission in bioreplica photonic crystals

    NASA Astrophysics Data System (ADS)

    Jorgensen, Matthew R.; Butler, Elizabeth S.; Bartl, Michael H.

    2012-04-01

    Sophisticated methods have been created by nature to produce structure-based colors as a way to address the need of a wide variety of organisms. This pallet of available structures presents a unique opportunity for the investigation of new photonic crystal designs. Low-temperature sol-gel biotemplating methods were used to transform a single biotemplate into a variety of inorganic oxide structures. The density of optical states was calculated for a diamond-based natural photonic crystal, as well as several structures templated from it. Calculations were experimentally probed by spontaneous emission studies using time correlated single photon counting measurements.

  16. Wave optics modelling of amplified spontaneous emission

    SciTech Connect

    Ritchie, B.; Garrison, J.

    1990-11-06

    A laser works by amplified spontaneous emission (ASE) of inverted atomic ions confined in an amplifier of rod-like geometry, such that ASE radiation is directed out of both ends of the rod. The forward and backward ASE waves are coupled through the population-rate equations and cause the saturation of the lasing transition (gain saturation). Diffraction of the waves in the transverse direction is responsible for the radiation pattern (angular distribution) observed on a distant screen and for the degree of spatial coherence of the radiation. Refraction of the light also occurs due to spatial gradients in the electron density. In order to describe this situation a code has been developed which numerically solves paraxial Maxwell's equations in the time and two spatial dimensions. The code uses the Peaceman-Rachford Alternating-Direction-Implicit algorithm and is benchmarked against laboratory DYE-LASER experiments. 4 refs., 1 fig.

  17. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    PubMed

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-05

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  18. Photonic Crystals-Inhibited Spontaneous Emission: Optical Antennas-Enhanced Spontaneous Emission

    NASA Astrophysics Data System (ADS)

    Yablonovitch, Eli

    Photonic crystals are also part of everyday technological life in opto-electronic telecommunication devices that provide us with internet, cloud storage, and email. But photonic crystals have also been identified in nature, in the coloration of peacocks, parrots, chameleons, butterflies and many other species.In spite of its broad applicability, the original motivation of photonic crystals was to create a ``bandgap'' in which the spontaneous emission of light would be inhibited. Conversely, the opposite is now possible. The ``optical antenna'' can accelerate spontaneous emission. Over 100 years after the radio antenna, we finally have tiny ``optical antennas'' which can act on molecules and quantum dots. Employing optical antennas, spontaneous light emission can become faster than stimulated emission.

  19. Spontaneous emission and nonlinear effects in photonic bandgap materials

    NASA Astrophysics Data System (ADS)

    Fogel, Ishella S.; Bendickson, Jon M.; Tocci, Michael D.; Bloemer, Mark J.; Scalora, Michael; Bowden, Charles M.; Dowling, Jonathan P.

    1998-03-01

    We summarize and review our theoretical and experimental work on spontaneous emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We present a new result: a method for calculating the normal-mode solutions - and hence the spontaneous emission of embedded emitters - in an arbitrary, linear, lossless, one-dimensional, PBG structure.

  20. Unidirectional enhanced spontaneous emission with metallo-dielectric optical antenna

    NASA Astrophysics Data System (ADS)

    Shen, Hongming; Lu, Guowei; He, Yingbo; Cheng, Yuqing; Gong, Qihuang

    2017-07-01

    A metallo-dielectric system consisted of two coupled metallic nanoparticles embedded in a planar dielectric antenna is proposed to control the light emission from a localized emitter. Such design integrates the advantages of planar dielectric antenna and plasmonic antenna such as highly localized excitation enhancement, emission direction control, and high collection efficiency. For specific configurations, the antenna can achieve unidirectional and plasmon-enhanced emission from single emitters, simultaneously presenting remarkable collection efficiency up to 96%. We show that the unidirectional effect is mainly determined by the plasmon coupling effect of the plasmonic dimer. The dependences of directivity property on the antenna geometry and emitter's position are also discussed in detail. These findings provide a promising route to realize novel optical devices involving directional and surface enhanced spontaneous emission, e.g. bright single-photon sources with high collection efficiency.

  1. Statistical Polarization Mode Dispersion/Polarization Dependent Loss Emulator for Polarization Division Multiplexing Transmission Testing

    NASA Astrophysics Data System (ADS)

    Perlicki, Krzysztof

    2010-03-01

    A low-cost statistical polarization mode dispersion/polarization dependent loss emulator is presented in this article. The emulator was constructed by concatenating 15 highly birefringence optical-fiber segments and randomly varying the mode coupling between them by rotating the polarization state. The impact of polarization effects on polarization division multiplexing transmission quality was measured. The designed polarization mode dispersion/polarization dependent loss emulator was applied to mimic the polarization effects of real optical-fiber links.

  2. Coherent and spontaneous emission in the quantum free electron laser

    SciTech Connect

    Robb, G. R. M.; Bonifacio, R.

    2012-07-15

    We present an analysis of quantum free electron laser (QFEL) dynamics including the effects of spontaneous emission. The effects of spontaneous emission are undesirable for coherent short-wave generation using FELs and have been shown in previous studies to limit the capabilities of classical self amplified spontaneous emission (SASE)-FELs at short wavelengths {approx}1 A due to growth of electron beam energy spread. As one of the attractive features of the QFEL is its potential as a relatively compact coherent x-ray source, it is important to understand the role of spontaneous emission, but to date there has not been a model which is capable of consistently describing the dynamics of both coherent FEL emission and incoherent spontaneous emission. In this paper, we present such a model, and use it to show that the limitations imposed by spontaneous emission on coherent FEL operation are significantly different in the quantum regime to those in the classical regime. An example set of parameters constituting a QFEL using electron and laser parameters which satisfy the condition for neglect of spontaneous emission during coherent QFEL emission is presented.

  3. Quantum dot spontaneous emission control in a ridge waveguide

    SciTech Connect

    Stepanov, Petr; Delga, Adrien; Bleuse, Joël; Dupuy, Emmanuel; Peinke, Emanuel; Gérard, Jean-Michel; Claudon, Julien; Zang, Xiaorun; Lalanne, Philippe

    2015-01-26

    We investigate the spontaneous emission (SE) of self-assembled InAs quantum dots (QDs) embedded in GaAs ridge waveguides that lay on a low index substrate. In thin enough waveguides, the coupling to the fundamental guided mode is vanishingly small. A pronounced anisotropy in the coupling to non-guided modes is then directly evidenced by normal-incidence photoluminescence polarization measurements. In this regime, a measurement of the QD decay rate reveals a SE inhibition by a factor up to 4. In larger wires, which ensure an optimal transverse confinement of the fundamental guided mode, the decay rate approaches the bulk value. Building on the good agreement with theoretical predictions, we infer from calculations the fraction β of SE coupled to the fundamental guided mode for some important QD excitonic complexes. For a charged exciton (isotropic in plane optical dipole), β reaches 0.61 at maximum for an on-axis QD. In the case of a purely transverse linear optical dipole, β increases up to 0.91. This optimal configuration is achievable through the selective excitation of one of the bright neutral excitons.

  4. On spectral dependence of polarization of asteroids

    NASA Astrophysics Data System (ADS)

    Lupishko, D. F.; Shkuratov, Yu. G.

    2016-09-01

    From the analysis of all of the data available on the spectral dependence of polarization of light reflected by asteroids, it has been shown that the slope of the spectral dependence of polarization of asteroids changes its sign, when moving from the negative branch of the phase curve of polarization to the positive one. This effect also manifests itself in the spectral behavior of polarization of the Moon and, probably, in the polarization of the other atmosphereless bodies. From the analysis of a population of asteroids of different types, a weak correlation between the spectral slopes of the polarization degree and the albedo has been found.

  5. Enhanced spontaneous emission into the mode of a cavity QED system.

    PubMed

    Terraciano, M L; Knell, R Olson; Freimund, D L; Orozco, L A; Clemens, J P; Rice, P R

    2007-04-15

    We study the light generated by spontaneous emission into a mode of a cavity QED system under weak excitation of the orthogonally polarized mode. Operating in the intermediate regime of cavity QED with comparable coherent and decoherent coupling constants, we find an enhancement of the emission into the undriven cavity mode by more than a factor of 18.5 over that expected by the solid angle subtended by the mode. A model that incorporates three atomic levels and two polarization modes quantitatively explains the observations.

  6. Temperature quenching of spontaneous emission in tunnel-injection nanostructures

    SciTech Connect

    Talalaev, V. G. Novikov, B. V.; Cirlin, G. E.; Leipner, H. S.

    2015-11-15

    The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor S{sub T} of the integrated intensity I is S{sub T} = I{sub 5}/I{sub 295} ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.

  7. Amplified-spontaneous-emission power oscillation in a beam-wave interaction

    NASA Astrophysics Data System (ADS)

    Bakhtyari, A.; Walsh, J. E.; Brownell, J. H.

    2002-06-01

    We present in this paper compelling evidence supporting the three-wave traveling-wave theory developed by Pierce fifty years ago. The transition in a Smith-Purcell free-electron laser from low, through moderate amplified spontaneous emission, to strong gain conditions was carefully controlled. Below threshold, the emitted far-infrared power exhibits oscillations with a cubic dependence on the electron beam current. Both characteristics are expected in a three-wave interaction yet, to date, have not been observed.

  8. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials.

    PubMed

    Sreekanth, Kandammathe Valiyaveedu; Krishna, Koduru Hari; De Luca, Antonio; Strangi, Giuseppe

    2014-09-11

    Hyperbolic metamaterial (HMM), a sub-wavelength periodic artificial structure with hyperbolic dispersion, can enhance the spontaneous emission of quantum emitters. Here, we demonstrate the large spontaneous emission rate enhancement of an organic dye placed in a grating coupled hyperbolic metamaterial (GCHMM). A two-dimensional (2D) silver diffraction grating coupled with an Ag/Al2O3 HMM shows 18-fold spontaneous emission decay rate enhancement of dye molecules with respect to the same HMM without grating. The experimental results are compared with analytical models and numerical simulations, which confirm that the observed enhancement of GCHMM is due to the outcoupling of non-radiative plasmonic modes as well as strong plasmon-exciton coupling in HMM via diffracting grating.

  9. Simulations of the spontaneous emission of a quantum dot near a gap plasmon waveguide

    SciTech Connect

    Perera, Chamanei S. Vernon, Kristy C.; Mcleod, Angus

    2014-02-07

    In this paper, we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm × 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode.

  10. Enhancement of spontaneous emission in Tamm plasmon structures.

    PubMed

    Gubaydullin, A R; Symonds, C; Bellessa, J; Ivanov, K A; Kolykhalova, E D; Sasin, M E; Lemaitre, A; Senellart, P; Pozina, G; Kaliteevski, M A

    2017-08-21

    It was theoretically and experimentally demonstrated that in metal/semiconductor Tamm plasmon structures the probability of spontaneous emission can be increased despite losses in metal, and theoretical analysis of experimental results suggested that the enhancement could be as high as one order of magnitude. Tamm plasmon structure with quantum dots has been fabricated and the emission pattern has been measured. Electromagnetic modes of the structure have been analyzed and modification of spontaneous emission rates has been calculated showing a good agreement with experimentally observed emission pattern.

  11. Spontaneous emission in cavity QED with a terminated waveguide

    NASA Astrophysics Data System (ADS)

    Bradford, Matthew; Shen, Jung-Tsung

    2013-06-01

    We investigate the effects of a nanophotonic boundary on the spontaneous emission properties of an excited two-level atom in cavity quantum electrodynamics (QED) geometry. We show that a boundary provides temporally delayed interference, which can be either constructive or destructive. Consequently, the decay of the atomic excitation can be either increased or greatly inhibited. As a concrete example, we investigate the spontaneous emission process in cavity QED with a terminated line-defect waveguide, and show the rich behavior of the atomic response due to the boundary. We also show that the output photonic wave form is strongly influenced by the boundary.

  12. Picosecond time of spontaneous emission in plasmonic patch nanoantennas

    NASA Astrophysics Data System (ADS)

    Eliseev, S. P.; Vitukhnovsky, A. G.; Chubich, D. A.; Kurochkin, N. S.; Sychev, V. V.; Marchenko, A. A.

    2016-01-01

    A significant (to 12 ps) decrease in the lifetime of excited states of quantum emitters in the form of three-layer colloidal quantum dots (CdSe/CdS/ZnS) placed in an aluminum-triangular silver nanoprism cavity (patch nanoantenna) has been experimentally demonstrated. The decrease in the time of spontaneous emission of quantum dots has been explained by the Purcell effect. The Purcell coefficient for an emitter in the resonator has been found to be 625. Such a significant increase in the rate of spontaneous emission in the patch nanoantenna is due to an increase in the local density of photon states in the plasmonic cavity.

  13. Amplified spontaneous emission in solar-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  14. Amplified spontaneous emission in solar-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  15. Mercury - Wavelength and longitude dependence of polarization

    NASA Technical Reports Server (NTRS)

    Gehrels, T.; Landau, R.; Coyne, G. V.

    1987-01-01

    The polarization-time variations noted in the present linear polarization observations of the integrated Mercury disk, with filters covering the 0.3-1.0 micron bandpass and between 53-130 deg of phase angle, may be accounted for in terms of longitude dependence through the variation of brightness or other properties over the surface. Kepler's equation for the eccentric anomaly was solved for each observation, and the true anomaly was used to find the subsolar longitude. The difference found in the polarization-albedo relations of Mercury and the moon indicates a difference in surface texture and/or composition.

  16. Modal analysis of spontaneous emission in a planar microcavity

    SciTech Connect

    Rigneault, H.; Monneret, S.

    1996-09-01

    A complete set of cavity modes in planar dielectric microcavities is presented which naturally includes guided modes. We show that most of these orthonormal fields can be derived from a coherent superposition of plane waves incoming on the stack from the air and from the substrate. Spontaneous emission of a dipole located inside the microcavity is analyzed, in terms of cavity modes. Derivation of the radiation pattern in the air and in the substrate is presented. The power emitted into the guided modes is also determined. Finally, a numerical analysis of the radiative properties of an erbium atom located in a Fabry-P{acute e}rot multilayer dielectric microcavity is investigated. We show that a large amount of light is emitted into the guided modes of the structure, in spite of the Fabry-P{acute e}rot resonance, which increases the spontaneous emission rate in a normal direction. {copyright} {ital 1996 The American Physical Society.}

  17. Spontaneous emission control in a tunable hybrid photonic system.

    PubMed

    Frimmer, Martin; Koenderink, A Femius

    2013-05-24

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS). We couple fluorophores to a plasmonic antenna to create a superemitter with an enhanced decay rate. In a superemitter analog of the seminal Drexhage experiment we probe the LDOS of a nanomechanically approached mirror. Because of the electrodynamic interaction of the antenna with its own mirror image, the superemitter traces the inverse of the LDOS enhancement provided by the mirror, in stark contrast to a bare source, whose decay rate is proportional to the mirror LDOS.

  18. Studies on the amplified spontaneous emission of a polymer fiber

    NASA Astrophysics Data System (ADS)

    Li, Songtao; Wang, Li; Zhai, Tianrui; Wu, Xiaofeng; Tong, Fei; Zhang, Xinping

    2016-11-01

    In this paper, a polymer fiber was constructed by siphoning the xylene solution of a polymer into a capillary tube with 300 μm inner diameter. After the solvent evaporating, the polymer fiber was lighted by an external pump beam and the amplified spontaneous emission (ASE) of the polymer fiber is investigated. The emission spectra are recorded, and the intensity and the full width at half maximum (FWHM) as a function of pump power intensity are analyzed. The absorption coefficient of polymer F8BT is obtained from a polymer F8BT film with a thickness of 200 nm. For the high absorption of polymer, the pump beam can not penetrate the long F8BT fiber. The sketch up diagram and an optical photo show it in vividly. This fabrication method provides a cheap way for application of micro polymer fiber. Keywords: polymer fiber, amplified spontaneous emission, absorption coefficient

  19. Nanophotonic Devices; Spontaneous Emission Faster than Stimulated Emission

    DTIC Science & Technology

    2016-02-02

    antenna enhanced Light Emitting Diodes , can enable short distance optical communication, including possibly on-chip optical interconnect. One of the...approved for public release We believe that these new types of spontaneous emission optical sources, acting as antenna enhanced Light Emitting Diodes ...Conferences, San Jose, CA, October 2015 3. Royal Swedish Academy at the Light in the Service of Mankind conference, Lund, Sweden, October 2015

  20. Spontaneous emission of the non-Wiener type

    SciTech Connect

    Basharov, A. M.

    2011-09-15

    The spontaneous emission of a quantum particle and superradiation of an ensemble of identical quantum particles in a vacuum electromagnetic field with zero photon density are examined under the conditions of significant Stark particle and field interaction. New fundamental effects are established: suppression of spontaneous emission by the Stark interaction, an additional 'decay' shift in energy of the decaying level as a consequence of Stark interaction unrelated to the Lamb and Stark level shifts, excitation conservation phenomena in a sufficiently dense ensemble of identical particles and suppression of superradiaton in the decay of an ensemble of excited quantum particles of a certain density. The main equations describing the emission processes under conditions of significant Stark interaction are obtained in the effective Hamiltonian representation of quantum stochastic differential equations. It is proved that the Stark interaction between a single quantum particle and a broadband electromagnetic field is represented as a quantum Poisson process and the stochastic differential equations are of the non-Wiener (generalized Langevin) type. From the examined case of spontaneous emission of a quantum particle, the main rules are formulated for studying open systems in the effective Hamiltonian representation.

  1. Spontaneous emission effects in optically pumped x-ray FEL

    SciTech Connect

    Smetanin, I.V.; Grigor`ev, S.V.

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  2. A hybrid nanoantenna for highly enhanced directional spontaneous emission

    SciTech Connect

    Chou, R. Yuanying; Lu, Guowei Shen, Hongming; He, Yingbo; Cheng, Yuqing; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gong, Qihuang

    2014-06-28

    Spontaneous emission modulated by a hybrid plasmonic nanoantenna has been investigated by employing finite-difference time-domain method. The hybrid nanoantenna configurations constituted by a gap hot-spot and of a plasmonic corrugated grating and a metal reflector sandwiching a SiO{sub 2} thin layer which appears promising for high spontaneous emission enhancement devices. Simulation assays show that the coupling between the gap-antenna and plasmonic corrugations reaches an ultra-high near-field enhancement factor in the excitation process. Moreover, concerning the emission process, the corrugations concentrate the far-field radiated power within a tiny angular volume, offering unprecedented collection efficiency. In the past decades, many kinds of optical antennas have been proposed and optimized to enhance single molecule detection. However, the excitation enhancement effect for single individual or dimmer plasmonic nanostructure is limited due to intrinsic nonradiative decay of the nanoparticle plasmon and quantum tunneling effect. The proposed hybrid configuration overwhelms the enhancement limit of single individual plasmonic structure. The findings provide an insight into spontaneous emission high enhancement through integrating the functions of different metallic nanostructures.

  3. A hybrid nanoantenna for highly enhanced directional spontaneous emission

    NASA Astrophysics Data System (ADS)

    Chou, R. Yuanying; Lu, Guowei; Shen, Hongming; He, Yingbo; Cheng, Yuqing; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gong, Qihuang

    2014-06-01

    Spontaneous emission modulated by a hybrid plasmonic nanoantenna has been investigated by employing finite-difference time-domain method. The hybrid nanoantenna configurations constituted by a gap hot-spot and of a plasmonic corrugated grating and a metal reflector sandwiching a SiO2 thin layer which appears promising for high spontaneous emission enhancement devices. Simulation assays show that the coupling between the gap-antenna and plasmonic corrugations reaches an ultra-high near-field enhancement factor in the excitation process. Moreover, concerning the emission process, the corrugations concentrate the far-field radiated power within a tiny angular volume, offering unprecedented collection efficiency. In the past decades, many kinds of optical antennas have been proposed and optimized to enhance single molecule detection. However, the excitation enhancement effect for single individual or dimmer plasmonic nanostructure is limited due to intrinsic nonradiative decay of the nanoparticle plasmon and quantum tunneling effect. The proposed hybrid configuration overwhelms the enhancement limit of single individual plasmonic structure. The findings provide an insight into spontaneous emission high enhancement through integrating the functions of different metallic nanostructures.

  4. Coupling of spontaneous emission from GaN-AlN quantum dots into silver surface plasmons

    NASA Astrophysics Data System (ADS)

    Neogi, Arup; Morkoç, Hadis; Kuroda, Takamasa; Tackeuchi, Atsushi

    2005-01-01

    We have demonstrated the decay of spontaneous emission (SE) from AlN-GaN quantum dots (QDs) into silver surface plasmon (SP) modes in the ultraviolet at approximately 375-380 nm. Using time-resolved photoluminescence (PL), we show that the electron-hole recombination rate in AlN-GaN QDs is enhanced when SE is resonantly coupled to a metal SP mode, corresponding to the dip in the continuous-wave PL spectrum. Exciton recombination by means of silver SP modes is as much as 3-7 times faster than in normal QD SE and depends strongly on emission wavelength and thickness of the silver.

  5. Plasmonic nanogaps for broadband and large spontaneous emission rate enhancement

    SciTech Connect

    Edwards, Anthony P.; Adawi, Ali M.

    2014-02-07

    We present the optical properties of a plasmonic nanogap formed between a silver metallic nanoparticle and an extended silver film that shows a strong enhancement in the spontaneous emission rate over the whole visible range. In particular, we use three-dimensional finite difference time domain calculations to study the spontaneous emission rate and the quantum efficiency of an emitting material placed within the gap region as a function of the geometrical parameters of the plasmonic nanogap. Our calculations reveal that the enhancements in the total decay rate can be divided into two regions as a function of wavelength; region I spans the wavelength range from 350 nm to 500 nm and peaks at approximately at 400 nm. Region II covers the spectral range between 500 nm and 1000 nm. The enhancements in total decay rate in region I are mainly dominated by Ohmic losses by the metal, while the enhancements in total decay rate in region II are mainly dominated by radiative decay rate enhancements. Furthermore, our calculations show over 100 times enhancement in the spontaneous emission rate in region II. We combine this with quantum efficiency enhancements of almost 30 times from materials with low intrinsic quantum efficiencies and only a small reduction in efficiency from those with high intrinsic quantum efficiencies. All results appear easily achievable using realistic geometrical parameters and simple synthesis techniques. These results are attributed to the strong field confinements in the nanogap region. The structures are of high interest for both the fundamental understanding of light mater interactions under extreme electromagnetic field confinements and also potential applications in quantum optics and Raman spectroscopy.

  6. 2-.mu.m fiber amplified spontaneous emission (ASE) source

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Wu, Jianfeng (Inventor); Geng, Jihong (Inventor)

    2007-01-01

    A 2-.mu.m fiber Amplified Spontaneous Emission (ASE) source provides a wide emission bandwidth and improved spectral stability/purity for a given output power. The fiber ASE source is formed from a heavy metal oxide multicomponent glass selected from germanate, tellurite and bismuth oxides and doped with high concentrations, 0.5-15 wt. %, thulium oxides (Tm.sub.2O.sub.3) or 0.1-5 wt% holmium oxides (Ho.sub.2O.sub.3) or mixtures thereof. The high concentration of thulium dopants provide highly efficient pump absorption and high quantum efficiency. Co-doping of Tm and Ho can broaden the ASE spectrum.

  7. Negative spontaneous emission by a moving two-level atom

    NASA Astrophysics Data System (ADS)

    Lannebère, Sylvain; Silveirinha, Mário G.

    2017-01-01

    In this paper we investigate how the dynamics of a two-level atom is affected by its interaction with the quantized near field of a plasmonic slab in relative motion. We demonstrate that for small separation distances and a relative velocity greater than a certain threshold, this interaction can lead to a population inversion, such that the probability of the excited state exceeds the probability of the ground state, corresponding to a negative spontaneous emission rate. It is shown that the developed theory is intimately related to a classical problem. The problem of quantum friction is analyzed and the differences with respect to the corresponding classical effect are highlighted.

  8. TRASER - Total Reflection Amplification of Spontaneous Emission of Radiation

    PubMed Central

    Zachary, Christopher B.; Gustavsson, Morgan

    2012-01-01

    Background and Objective Light and lasers in medical therapy have made dramatic strides since their invention five decades ago. However, the manufacture of lasers can be complex and expensive which often makes treatments limited and costly. Further, no single laser will provide the correct parameters to treat all things. Hence, laser specialists often need multiple devices to practice their specialty. A new concept is described herein that has the potential to replace many lasers and light sources with a single ‘tunable’ device. Study Design/Material and Methods This device amplifies spontaneous emission of radiation by capturing and retaining photons through total internal reflection, hence the acronym Total Reflection Amplification of Spontaneous Emission of Radiation, or TRASER. Results Specific peaks of light can be produced in a reproducible manner with high peak powers of variable pulse durations, a large spot size, and high repetition rate. Conclusion Considering the characteristics and parameters of Traser technology, it is possible that this one device would likely be able to replace the pulsed dye laser and many other light based systems. PMID:22558261

  9. Directional and enhanced spontaneous emission with a corrugated metal probe

    NASA Astrophysics Data System (ADS)

    Shen, Hongming; Lu, Guowei; He, Yingbo; Cheng, Yuqing; Liu, Haitao; Gong, Qihuang

    2014-06-01

    A three-dimensional corrugated metal tapered probe with surface corrugated gratings at the tip apex is proposed and investigated theoretically, which leads to an obvious emission beaming effect of spontaneous emission from a single emitter near the probe. In contrast with conventional apertureless metal probes, where only the enhancement of an optical near-field is concerned, the corrugated probe is able to manipulate local excitation intensity and far-field emission direction simultaneously. The angular emission from a single dipole source, being placed close to the corrugated probe, falls into a cone with a maximum directivity angle of +/-11.6°, which improves the collection efficiency 25-fold. Such a probe simultaneously increases the localized field intensity to about twice as strong as the conventional bare tip. In addition, the radiation pattern is sensitive to the working wavelength and the dipole to tip-apex separation. These findings make a promising route to the development of plasmonic spontaneous emission manipulation based on corrugated tapered antenna--for instance, tip-enhanced spectroscopy, single-molecule sensing, and single-photon source .

  10. Laser Cooling Without Spontaneous Emission Using the Bichromatic Force

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Hua, Xiang; Metcalf, Harold

    2015-05-01

    We have demonstrated laser cooling without spontaneous emission using the bichromatic force (BF). It works by restricting the atom-light interaction to a time short compared to a cycle of absorption followed by spontaneous emission. The BF exploits multiple absorption-stimulated emission cycles to cause many rapid momentum exchanges, with these cycles redistributing both energy and entropy between the atoms and light fields in the total atoms+light system. This momentum exchange is restricted to a well-defined velocity range, resulting from nonadiabatic transitions at a velocity that can be understood from simple energy conservation. The observed width of our one-dimensional velocity distribution is reduced by ×2 thereby reducing the ``temperature'' by ×4. Moreover, our results comprise a compression in phase space because the spatial expansion of the atomic sample is negligible. We have also done various simulations of the motion of atoms under the BF and they compare well with our data. This accomplishment is of interest to direct laser cooling of molecules or in experiments where working space or time is limited. Supported by ONR and Dept. of Education GAANN.

  11. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission.

    PubMed

    Cohen, Raphael; London, Yosef; Antman, Yair; Zadok, Avi

    2014-05-19

    A new technique for Brillouin scattering-based, distributed fiber-optic measurements of temperature and strain is proposed, analyzed, simulated, and demonstrated. Broadband Brillouin pump and signal waves are drawn from the filtered amplified spontaneous emission of an erbium-doped fiber amplifier, providing high spatial resolution. The reconstruction of the position-dependent Brillouin gain spectra along 5 cm of a silica single-mode fiber under test, with a spatial resolution of 4 mm, is experimentally demonstrated using a 25 GHz-wide amplified spontaneous emission source. A 4 mm-long localized hot spot is identified by the measurements. The uncertainty in the reconstruction of the local Brillouin frequency shift is ± 1.5 MHz. The single correlation peak between the pump and signal is scanned along a fiber under test using a mechanical variable delay line. The analysis of the expected spatial resolution and the measurement signal-to-noise ratio is provided. The measurement principle is supported by numerical simulations of the stimulated acoustic field as a function of position and time. Unlike most other Brillouin optical correlation domain analysis configurations, the proposed scheme is not restricted by the bandwidth of available electro-optic modulators, microwave synthesizers, or pattern generators. Resolution is scalable to less than one millimeter in highly nonlinear media.

  12. First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength

    PubMed

    Saldin; Sandner; Sanok; Schlarb; Schmidt; Schmuser; Schneider; Schneidmiller; Schreiber; Schreiber; Schutt; Sekutowicz; Serafini; Sertore; Setzer; Simrock; Sonntag; Sparr; Stephan; Sytchev; Tazzari; Tazzioli; Tigner; Timm; Tonutti; Trakhtenberg

    2000-10-30

    We present the first observation of self-amplified spontaneous emission (SASE) in a free-electron laser (FEL) in the vacuum ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approximately 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width, and intensity fluctuations, are all consistent with the present models for SASE FELs.

  13. Terahertz-range spontaneous emission under the optical excitation of donors in uniaxially stressed bulk silicon and SiGe/Si heterostructures

    SciTech Connect

    Zhukavin, R. Kh. Kovalevsky, K. A.; Orlov, M. L.; Tsyplenkov, V. V.; Bekin, N. A.; Yablonskiy, A. N.; Yunin, P. A.; Pavlov, S. G.; Abrosimov, N. V.; Hübers, H.-W.; Radamson, H. H.; Shastin, V. N.

    2015-01-15

    The results of measurements of the total terahertz-range photoluminescence of Group-V donors (phosphorus, antimony, bismuth, arsenic) in bulk silicon and SiGe/Si heterostructures depending on the excitation intensity are presented. The signal of bulk silicon was also measured as a function of uniaxial stress. The results of measurement of the dependence of the spontaneous emission intensity on the uniaxial stress is in rather good agreement with theoretical calculations of the relaxation times of excited states of donors in bulk silicon. Comparative measurements of the spontaneous emission from various strained heterostructures showed that the photoluminescence signal is caused by donor-doped silicon regions.

  14. Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser

    SciTech Connect

    Robb, G. R. M.; Bonifacio, R.

    2013-03-15

    We extend previous analyses of spontaneous emission in a quantum free electron laser (QFEL) and competition between spontaneous and coherent QFEL emission to include a broad distribution of photon frequencies and momenta appropriate for spontaneous undulator radiation. We show that although the predictions of monochromatic and broadband models predict different electron momentum distributions for the quantum regime due to spontaneous emission alone after many photon emissions, the inclusion of broadband spontaneous emission has a negligible effect on the competition between spontaneous and coherent emission in the QFEL. Numerical results from both models are well described by the same condition for the threshold/critical value of spontaneous emission rate.

  15. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  16. Spontaneous emission enhancement in micropatterned GaN

    NASA Astrophysics Data System (ADS)

    Niehus, M.; Sanguino, P.; Monteiro, T.; Soares, M. J.; Schwarz, R.

    2004-10-01

    With two interfering pulses from the fourth harmonic of a Nd-YAG laser we burnt a periodic lattice structure into the surface of GaN thin films. The lattice period of this permanent grating could be controlled between less than one and several tens of microns. Above the decomposition threshold, nitrogen evades from the sample surface, and the residual metallic gallium accumulates in the form of tiny droplets at the surfaces. The patterned structure shows structural similarities with microcavities. The question arises if the residual metallic gallium may act as a partially reflecting mirror. To test this hypothesis, we studied the steady-state and transient photoluminescence through the modulation of light emerging from the ubiquitous broad "yellow" photoluminescence band. The microlattice is evidenced by energy-equidistant spontaneous emission enhancement peaks in the steady-state photoluminescence spectra. We suggest that the partial reflection due to the residual metallic gallium leads to the observed enhancement effect.

  17. Amplified spontaneous emission properties of semiconducting organic materials.

    PubMed

    Calzado, Eva M; Boj, Pedro G; Díaz-García, María A

    2010-06-18

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature.

  18. Amplified Spontaneous Emission Properties of Semiconducting Organic Materials

    PubMed Central

    Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.

    2010-01-01

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature. PMID:20640167

  19. Improvement of amplified spontaneous emission performance in organic waveguides

    NASA Astrophysics Data System (ADS)

    Du, Qianqian; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Xia, Shuzhen; Zhang, Binyuan; Wang, Minghong; Fan, Quli

    2016-09-01

    Metal film is an essential part of the electrically pumped organic semiconductor lasers. But the large loss is the most important factor restricting the electrical pumping. In this paper, we investigate optically pumped amplified spontaneous emission (ASE) in the presence of metal films. The ASE threshold of device with metallic film is reduced by 2.5 times in comparison with that of the metal-free devices. The SiO2 space layer with optimizing thickness between gain media and metal film can effectively prevent absorption loss but also provides a proper waveguide effect. Furthermore, the metal film can prevent the light leaking to the substrate and reflect the lights back into the media, which increases the intensity of pumping and emission again.

  20. WDM optical steganography based on amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Tait, Alexander N; Chang, Matthew P; Prucnal, Paul R

    2014-10-15

    We propose and experimentally demonstrate a wavelength-division multiplexed (WDM) optical stealth transmission system carried by amplified spontaneous emission (ASE) noise. The stealth signal is hidden in both time and frequency domains by using ASE noise as the signal carrier. Each WDM channel uses part of the ASE spectrum, which provides more flexibility to apply stealth transmission in a public network and adds another layer of security to the stealth channel. Multi-channel transmission also increases the overall channel capacity, which is the major limitation of the single stealth channel transmission based on ASE noise. The relations between spectral bandwidth and coherence length of ASE carrier have been theoretically analyzed and experimentally investigated.

  1. Optical steganography based on amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Wang, Zhenxing; Tian, Yue; Fok, Mable P; Shastri, Bhavin J; Kanoff, Daniel R; Prucnal, Paul R

    2013-01-28

    We propose and experimentally demonstrate an optical steganography method in which a data signal is transmitted using amplified spontaneous emission (ASE) noise as a carrier. The ASE serving as a carrier for the private signal has an identical frequency spectrum to the existing noise generated by the Erbium doped fiber amplifiers (EDFAs) in the transmission system. The system also carries a conventional data channel that is not private. The so-called "stealth" or private channel is well-hidden within the noise of the system. Phase modulation is used for both the stealth channel and the public channel. Using homodyne detection, the short coherence length of the ASE ensures that the stealth signal can only be recovered if the receiver closely matches the delay-length difference, which is deliberately changed in a dynamic fashion that is only known to the transmitter and its intended receiver.

  2. Active magneto-optical control of spontaneous emission in graphene

    DOE PAGES

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; ...

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magneticmore » field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.« less

  3. Directive and enhanced spontaneous emission using shifted cubes nanoantenna

    SciTech Connect

    Bahari, B.; Tellez-Limon, R.; Kante, B.

    2016-09-07

    Recent studies have demonstrated that nano-patch antennas formed by metallic nanocubes placed on top of a metallic film largely enhance the spontaneous emission rate of quantum emitters due to the confinement of the electromagnetic field in the small nanogap cavity. The popularity of this architecture is, in part, due to the ease in fabrication. In this contribution, we theoretically demonstrate that a dimer formed by two metallic nanocubes embedded in a dielectric medium exhibits enhanced emission rate compared to the nano-patch antenna. Furthermore, we compare the directivity and radiation efficiency of both nanoantennas. From these characteristics, we obtained information about the “material efficiency” and the coupling mismatch efficiency between a dipole emitter and the nanoantenna. These quantities provide a more intuitive insight than the Purcell factor or localized density of states, opening new perspectives in nanoantenna design for ultra-directive light emission.

  4. Intense-field renormalization of cavity-induced spontaneous emission

    NASA Astrophysics Data System (ADS)

    Agarwal, G. S.; Lange, W.; Walther, H.

    1993-12-01

    We examine theoretically the recent experiments of Lange and Walther on the dynamical interaction of Rydberg atoms in a microwave cavity in the presence of a strong driving field. In particular, we study how the intense field renormalizes the cavity-induced spontaneous emission. For this purpose we derive the master equation for the atomic dynamics by adiabatically eliminating the cavity-field variables, while treating the intense driving field nonperturbatively. We present analytical and numerical solutions of the master equation, taking into account the turn on and turn off of the atom-field coupling in the rest frame of the atoms, as well as the velocity distribution of the atomic beam. We obtain good agreement between theoretical results and experiments.

  5. Controlling the directionality of spontaneous emission by evanescent wave coupling

    SciTech Connect

    Wang, Xue-Lun E-mail: gdhao2@hotmail.com; Hao, Guo-Dong E-mail: gdhao2@hotmail.com; Toda, Naoya

    2015-09-28

    We report an approach toward controlling the directionality of spontaneous emissions by employing the evanescent wave coupling effect in a subwavelength-sized ridge or truncated cone structure. An InGaAs/GaAs light-emitting diode in which a stripe-shaped InGaAs/GaAs quantum well with a stripe width of about 100 nm is embedded at the center of a subwavelength-sized GaAs ridge (of width ∼520 nm) is fabricated by micro processing and epitaxial regrowth techniques. Strong directionalities characterized by a half-intensity angle of 43° are observed in planes perpendicular to the ridge axis. The directionality is found to be almost independent of operating conditions.

  6. Active magneto-optical control of spontaneous emission in graphene

    SciTech Connect

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.

  7. Directive and enhanced spontaneous emission using shifted cubes nanoantenna

    NASA Astrophysics Data System (ADS)

    Bahari, B.; Tellez-Limon, R.; Kante, B.

    2016-09-01

    Recent studies have demonstrated that nano-patch antennas formed by metallic nanocubes placed on top of a metallic film largely enhance the spontaneous emission rate of quantum emitters due to the confinement of the electromagnetic field in the small nanogap cavity. The popularity of this architecture is, in part, due to the ease in fabrication. In this contribution, we theoretically demonstrate that a dimer formed by two metallic nanocubes embedded in a dielectric medium exhibits enhanced emission rate compared to the nano-patch antenna. Furthermore, we compare the directivity and radiation efficiency of both nanoantennas. From these characteristics, we obtained information about the "material efficiency" and the coupling mismatch efficiency between a dipole emitter and the nanoantenna. These quantities provide a more intuitive insight than the Purcell factor or localized density of states, opening new perspectives in nanoantenna design for ultra-directive light emission.

  8. Randomness generation based on spontaneous emissions of lasers

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2015-06-01

    Random numbers play a key role in information science, especially in cryptography. Based on the probabilistic nature of quantum mechanics, quantum random number generators can produce genuine randomness. In particular, random numbers can be produced from laser phase fluctuations with a very high speed, typically in the Gbps regime. In this work, by developing a physical model, we investigate the origin of the randomness in quantum random number generators based on laser phase fluctuations. We show how the randomness essentially stems from spontaneous emissions. The laser phase fluctuation can be quantitatively evaluated from basic principles and qualitatively explained by the Brownian motion model. After taking account of practical device precision, we show that the randomness generation speed is limited by the finite resolution of detection devices. Our result also provides the optimal experiment design in order to achieve the maximum generation speed.

  9. Amplified spontaneous emission of pyranyliden derivatives in PVK matrix

    NASA Astrophysics Data System (ADS)

    Vembris, Aivars; Zarinsh, Elmars; Kokars, Valdis

    2016-04-01

    One of the well-known red light emitting laser dyes is 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4Hpyran (DCM). Amplified spontaneous emission (ASE) has been widely investigated of DCM molecules or its derivatives in polymer or low molecular weight matrix. The main issue for these molecules is aggregation which limits doping concentration in matrix. Lowest ASE threshold values within concentration range of 2 and 4 wt% were obtained. In this work ASE properties of two original DCM derivatives in poly(N-vinylcarbazole) (PVK) at various concentrations will be discussed. One of the derivatives is the same DCM dye with replaced butyl groups at electron donor part with bulky trytiloxyethyl groups (DWK-1). These groups do not influence electron transitions in the dye but prevent aggregation of the molecules. Second derivative (DWK-2) consists of two equal donor groups with the attached trytiloxyethyl groups. All results were compared with DCM:PVK system. Photoluminescence quantum yield (PLQY) is almost three times larger for DWK-1 concentration up to 20wt% with respect to DCM systems. PLQY was saturated on 0.06 at higher DWK-1 concentrations. Bulky trytiloxyethyl groups prevent aggregation of the molecules thus decreasing interaction between dyes and numbers of non-radiative decays. Red shift of photoluminescence and amplified spontaneous emission at higher concentrations were observed due to the solid state solvation effect. Increases of dye density in matrix with smaller lose in PLQY resulted in low ASE threshold energy. The lowest threshold value was obtained around 29 μJ/cm2 in DWK-1:PVK films.

  10. Modified spontaneous emissions of europium complex in weak PMMA opals.

    PubMed

    Wang, Wei; Song, Hongwei; Bai, Xue; Liu, Qiong; Zhu, Yongsheng

    2011-10-28

    Engineering spontaneous emission by means of photonic crystals (PHC) is under extensive study. However PHC modification of line emissions of rare earth (RE) ions has not been thoroughly understood, especially in cases of weak opal PHCs and while emitters are well dispersed into dielectric media. In this study, poly-methyl methacrylate (PMMA) opal PHCs containing uniformly dispersed europium chelate were fabricated with finely controlled photonic stop band (PSB) positions. Measurements of luminescent dynamics and angle resolved/integrated emission spectra as well as numerical calculations of total densities of states (DOS) were performed. We determined that in weak opals, the total spontaneous emission rate (SER) of Σ(5)D(0)-(7)F(J) for Eu(3+) was independent of PSB positions but was higher than that of the disordered powder sample, which was attributed to higher effective refractive indices in the PHC rather than PSB effect. Branch SER of (5)D(0)-(7)F(2) for Eu(3+) in the PHCs, on the other hand, was spatially redistributed, suppressed or enhanced in directions of elevated or reduced optical modes, keeping the angle-integrated total unchanged. All the results are in agreement with total DOS approximation. Our paper addressed two unstudied issues regarding modified narrow line emission in weak opal PHCs: firstly whether PSB could change the SER of emitters and whether there exist, apart from PSB, other reasons to change SERs; secondly, while directional enhancement and suppression by PSB has been confirmed, whether the angle-integrated overall effect is enhancing or suppressing.

  11. Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry

    PubMed Central

    Zhang, Qi; Castro Smirnov, Jose R.; Xia, Ruidong; Pedrosa, Jose M.; Rodriguez, Isabel; Cabanillas-Gonzalez, Juan; Huang, Wei

    2017-01-01

    We demonstrated a simple, directly-readable approach for high resolution pH sensing. The method was based on sharp changes in Amplified Spontaneous Emission (ASE) of a Stilbene 420 (ST) laser dye triggered by the pH-dependent absorption of Bromocresol Green (BG). The ASE threshold of BG:ST solution mixtures exhibited a strong dependence on BG absorption, which was drastically changed by the variations of the pH of BG solution. As a result, ASE on-off or off-on was observed with different pH levels achieved by ammonia doping. By changing the concentration of the BG solution and the BG:ST blend ratio, this approach allowed to detect pH changes with a sensitivity down to 0.05 in the 10–11 pH range. PMID:28387354

  12. Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry.

    PubMed

    Zhang, Qi; Castro Smirnov, Jose R; Xia, Ruidong; Pedrosa, Jose M; Rodriguez, Isabel; Cabanillas-Gonzalez, Juan; Huang, Wei

    2017-04-07

    We demonstrated a simple, directly-readable approach for high resolution pH sensing. The method was based on sharp changes in Amplified Spontaneous Emission (ASE) of a Stilbene 420 (ST) laser dye triggered by the pH-dependent absorption of Bromocresol Green (BG). The ASE threshold of BG:ST solution mixtures exhibited a strong dependence on BG absorption, which was drastically changed by the variations of the pH of BG solution. As a result, ASE on-off or off-on was observed with different pH levels achieved by ammonia doping. By changing the concentration of the BG solution and the BG:ST blend ratio, this approach allowed to detect pH changes with a sensitivity down to 0.05 in the 10-11 pH range.

  13. Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Castro Smirnov, Jose R.; Xia, Ruidong; Pedrosa, Jose M.; Rodriguez, Isabel; Cabanillas-Gonzalez, Juan; Huang, Wei

    2017-04-01

    We demonstrated a simple, directly-readable approach for high resolution pH sensing. The method was based on sharp changes in Amplified Spontaneous Emission (ASE) of a Stilbene 420 (ST) laser dye triggered by the pH-dependent absorption of Bromocresol Green (BG). The ASE threshold of BG:ST solution mixtures exhibited a strong dependence on BG absorption, which was drastically changed by the variations of the pH of BG solution. As a result, ASE on-off or off-on was observed with different pH levels achieved by ammonia doping. By changing the concentration of the BG solution and the BG:ST blend ratio, this approach allowed to detect pH changes with a sensitivity down to 0.05 in the 10-11 pH range.

  14. Laser-polarization-dependent photoelectron angular distributions from polar molecules.

    PubMed

    Zhu, Xiaosong; Zhang, Qingbin; Hong, Weiyi; Lu, Peixiang; Xu, Zhizhan

    2011-11-21

    Photoelectron angular distributions (PADs) of oriented polar molecules in response to different polarized lasers are systematically investigated. It is found that the PADs of polar CO molecules show three distinct styles excited by linearly, elliptically and circularly polarized lasers respectively. In the case of elliptical polarization, a deep suppression is observed along the major axis and the distribution concentrates approximately along the minor axis. Additionally, it is also found that the concentrated distributions rotate clockwise as the ellipticity increases. Our investigation presents a method to manipulate the motion and angular distribution of photoelectrons by varying the polarization of the exciting pulses, and also implies the possibility to control the processes in laser-molecule interactions in future work.

  15. Effect of surface-plasmon polaritons on spontaneous emission and intermolecular energy-transfer rates in multilayered geometries

    SciTech Connect

    Marocico, C. A.; Knoester, J.

    2011-11-15

    We use a Green's tensor method to investigate the spontaneous emission rate of a molecule and the energy-transfer rate between molecules placed in two types of layered geometries: a slab geometry and a planar waveguide. We focus especially on the role played by surface-plasmon polaritons in modifying the spontaneous emission and energy-transfer rates as compared to free space. In the presence of more than one interface, the surface-plasmon polariton modes split into several branches, and each branch can contribute significantly to modifying the electromagnetic properties of atoms and molecules. Enhancements of several orders of magnitude both in the spontaneous emission rate of a molecule and the energy-transfer rate between molecules are obtained and, by tuning the parameters of the geometry, one has the ability to control the range and magnitude of these enhancements. For the energy-transfer rate interference effects between contributions of different plasmon-polariton branches are observed as oscillations in the distance dependence of this rate.

  16. Polarization-dependent optical reflection ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyi; Huang, Zhiyu; Wang, Guohe; Li, Wenzhao; Li, Changhui

    2017-03-01

    Although ultrasound transducers based on commercial piezoelectric-material have been widely used, they generally have limited bandwidth centered at the resonant frequency. Currently, several pure-optical ultrasonic detection methods have gained increasing interest due to their wide bandwidth and high sensitivity. However, most of them require customized components (such as micro-ring, SPR, Fabry-Perot film, etc), which limit their broad implementations. In this study, we presented a simple pure-optical ultrasound detection method, called "Polarization-dependent Reflection Ultrasonic Detection" (PRUD). It detects the intensity difference between two polarization components of the probe beam that is modulated by ultrasound waves. PRUD detect the two components by using a balanced detector, which effectively suppressed much of the unwanted noise. We have achieved the sensitivity (noise equivalent pressure) to be 1.7kPa, and this can be further improved. In addition, like many other pure-optical ultrasonic detection methods, PRUD also has a flat and broad bandwidth from almost zero to over 100MHz. Besides theoretical analysis, we did a phantom study by imaging a tungsten filament to demonstrate the performance of PRUD. We believe this simple and economic method will attract both researchers and engineers in optical and ultrasound fields.

  17. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope.

    PubMed

    Wang, Yang-Yang; Zhang, Tong

    2014-09-19

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application.

  18. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope

    PubMed Central

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application. PMID:25234712

  19. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    PubMed

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  20. Spontaneous emission of Schrödinger cats in a waveguide at ultrastrong coupling

    NASA Astrophysics Data System (ADS)

    Gheeraert, Nicolas; Bera, Soumya; Florens, Serge

    2017-02-01

    Josephson circuits provide a realistic physical setup where the light-matter fine structure constant can become of order one, allowing to reach a regime dominated by non-perturbative effects beyond standard quantum optics. Simple processes, such as spontaneous emission, thus acquire a many-body character, that can be tackled using a new description of the time-dependent state vector in terms of quantum-superposed coherent states. We find that spontaneous atomic decay at ultrastrong coupling leads to the emission of spectrally broad Schrödinger cats rather than of monochromatic single photons. These cats states remain partially entangled with the emitter at intermediate stages of the dynamics, even after emission, due to a large separation in time scales between fast energy relaxation and exponentially slow decoherence. Once decoherence of the qubit is finally established, quantum information is completely transfered to the state of the emitted cat.

  1. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    SciTech Connect

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-05-15

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled.

  2. Controlling spontaneous emission dynamics in semiconductor micro cavities

    NASA Astrophysics Data System (ADS)

    Gayral, B.

    Spontaneous emission of light can be controlled, cavity quantum electrodynamics tells us, and many experiments in atomic physics demonstrated this fact. In particular, coupling an emitter to a resonant photon mode of a cavity can enhance its spontaneous emission rate: this is the so-called Purcell effect. Though appealing it might seem to implement these concepts for the benefit of light-emitting semiconductor devices, great care has to be taken as to which emitter/cavity system should be used. Semiconductor quantum boxes prove to be good candidates for witnessing the Purcell effect. Also, low volume cavities having a high optical quality in other words a long photon storage time are required. State-of-the-art fabrication techniques of such cavities are presented and discussed.We demonstrate spontaneous emission rate enhancement for InAs/GaAs quantum boxes in time-resolved and continuous-wave photoluminescence experiments. This is done for two kinds of cavities, namely GaAs/AlAs micropillars (global enhancement by a factor of 5), and GaAs microdisks (global enhancement by a factor of 20). Prospects for lasers, light-emitting diodes and single photon sources based on the Purcell effect are discussed. L'émission spontanée de lumière peut être contrôlée, ainsi que nous l'enseigne l'électrodynamique quantique en cavité, ce fait a été démontré expérimentalement en physique atomique. En particulier, coupler un émetteur à un mode photonique résonnant d'une cavité peut exalter son taux d'émission spontanée : c'est l'effet Purcell. Bien qu'il semble très prometteur de mettre en pratique ces concepts pour améliorer les dispositifs semi-conducteurs émetteurs de lumière, le choix du système émetteur/cavité est crucial. Nous montrons que les boîtes quantiques semi-conductrices sont des bons candidats pour observer l'effet Purcell. Il faut par ailleurs des cavités de faible volume ayant une grande qualité optique en d'autres mots un long temps de

  3. Spin-dependent manipulating of vector beams by tailoring polarization

    PubMed Central

    Zhou, Junxiao; Zhang, Wenshuai; Liu, Yachao; Ke, Yougang; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-01-01

    We examine the spin-dependent manipulating of vector beams by tailoring the inhomogeneous polarization. The spin-dependent manipulating is attributed to the spin-dependent phase gradient in vector beams, which can be regarded as the intrinsic feature of inhomogeneous polarization. The desired polarization can be obtained by establishing the relationship between the local orientation of polarization and the local orientation of the optical axis of waveplate. We demonstrate that the spin-dependent manipulating with arbitrary intensity patterns can be achieved by tailoring the inhomogeneous polarization. PMID:27677400

  4. Spin-dependent manipulating of vector beams by tailoring polarization.

    PubMed

    Zhou, Junxiao; Zhang, Wenshuai; Liu, Yachao; Ke, Yougang; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-09-28

    We examine the spin-dependent manipulating of vector beams by tailoring the inhomogeneous polarization. The spin-dependent manipulating is attributed to the spin-dependent phase gradient in vector beams, which can be regarded as the intrinsic feature of inhomogeneous polarization. The desired polarization can be obtained by establishing the relationship between the local orientation of polarization and the local orientation of the optical axis of waveplate. We demonstrate that the spin-dependent manipulating with arbitrary intensity patterns can be achieved by tailoring the inhomogeneous polarization.

  5. Spontaneous emission enhancement of colloidal CdSe nanoplatelets

    NASA Astrophysics Data System (ADS)

    Yang, Zhili; Pelton, Matthew; Waks, Edo

    Colloidal CdS /CdSe/CdS nanoplatelets synthesized recently are high efficient nano-emitters and gain media for nanoscale lasers and other nonlinear optical devices. They are characterized as quantum well structure due to energy gap difference between core CdSe and shell CdS, of which the luminescent wavelength could be tuned precisely by their thickness of growth. However, the influence of environment on the material's optical properties and further enhancement of the emission to implement nanoscale systems remains to be investigated. Here we demonstrate spontaneous emission rate enhancement of these CdSe nanoplatelets coupled to a photonic crystal cavity. We show clearly the photoluminescent spectrum modification of the nanoplatelets emission and an averaged Purcell enhancement factor of 3.1 is achieved when they are coupled to carefully-designed nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our experiment of lifetime measurement. Also the phenomenon of cavity quality factor increasing is observed when increasing intensity of pumping, which attributes to saturable absorption of the nanoplatelets. Our success in enhancement of emission from these nanoplatelets here paves the road to realize actual nanoscale integrated systems such as ultra-low threshold micro-cavity lasers.

  6. Fast random number generation with spontaneous emission noise of a single-mode semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Zhang, Mingjiang; Liu, Yi; Li, Pu; Yi, Xiaogang; Zhang, Mingtao; Wang, Yuncai

    2016-11-01

    We experimentally demonstrate a 12.5 Gb s-1 random number generator based on measuring the spontaneous emission noise of a single-mode semiconductor laser. The spontaneous emission of light is quantum mechanical in nature and is an inborn physical entropy source of true randomness. By combining a high-speed analog-to-digital converter and off-line processing, random numbers are extracted from the spontaneous emission with the verified randomness. The generator is simple, robust, and with no need of accurately tuning the comparison threshold. The use of semiconductor lasers makes it particularly compatible with the delivery of random numbers in optical networks.

  7. Polarization-dependent optics using gauge-field metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Fu; Wang, Saisai; Xiao, Shiyi; Hang, Zhi Hong; Li, Jensen

    2015-12-01

    We show that effective gauge field for photons with polarization-split dispersion surfaces, being realized using uniaxial metamaterials, can be used for polarization control with unique opportunities. The metamaterials with the proposed gauge field correspond to a special choice of eigenpolarizations on the Poincaré sphere as pseudo-spins, in contrary to those from either conventional birefringent crystals or optical active media. It gives rise to all-angle polarization control and a generic route to manipulate photon trajectories or polarizations in the pseudo-spin domain. As demonstrations, we show beam splitting (birefringent polarizer), all-angle polarization control, unidirectional polarization filter, and interferometer as various polarization control devices in the pseudo-spin domain. We expect that more polarization-dependent devices can be designed under the same framework.

  8. Polarization-dependent optics using gauge-field metamaterials

    SciTech Connect

    Liu, Fu; Xiao, Shiyi; Li, Jensen; Wang, Saisai; Hang, Zhi Hong

    2015-12-14

    We show that effective gauge field for photons with polarization-split dispersion surfaces, being realized using uniaxial metamaterials, can be used for polarization control with unique opportunities. The metamaterials with the proposed gauge field correspond to a special choice of eigenpolarizations on the Poincaré sphere as pseudo-spins, in contrary to those from either conventional birefringent crystals or optical active media. It gives rise to all-angle polarization control and a generic route to manipulate photon trajectories or polarizations in the pseudo-spin domain. As demonstrations, we show beam splitting (birefringent polarizer), all-angle polarization control, unidirectional polarization filter, and interferometer as various polarization control devices in the pseudo-spin domain. We expect that more polarization-dependent devices can be designed under the same framework.

  9. Polarization-dependent transmittance of concentric ring plasmonic lens: a polarizing interference investigation

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Zang, Tianyang; Ren, Yuan; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Lu, Yonghua; Wang, Pei

    2016-10-01

    Plasmonic lenses are widely applied to manipulate optical phase or polarization distribution in the near and far field, but its polarization-dependent optical anisotropy is seldomly reported. Not only the plasmonic mode (excited by transverse magnetic polarization), but also the photonic mode (excited by transverse electric polarization) has an effect on the field distribution. In this paper, polarization-dependent optical anisotropy of concentric ring plasmonic lens has been investigated with polarizing microscope and explained by polarizing interference theoretical model. Moreover, several kinds of plasmonic lenses are mutually compared and dramatic different optical anisotropy is found. Our work bears a fundamental importance in design of micro-nano-devices as well as provides the potential to advance the applications of polarizing interferometry into plasmonic structure characterization.

  10. Astigmatism and spontaneous emission factor of laser diodes with parabolic gain

    SciTech Connect

    Mamine, T.

    1983-04-01

    An explicit relation between the astigmatism and the spontaneous emission factor of gain guiding lasers has been derived with the assumption that the gain profile can be approximated to be a parabola or that the lowest order mode in the cavity is approximately Gaussian. The maximum value of the spontaneous emission factor is shown to be ..sqrt..2 if index guiding is dominant. Beyond K = ..sqrt..2, where gain guiding is dominant in this region, the astigmatism decreases with the spontaneous emission factor. It is also shown that the spontaneous emission factor of the gain guiding lasers does not much exceed ten and this conclusion has been confirmed experimentally for those whose stripe widths are larger than 4 ..mu..m.

  11. Polarization dependent particle dynamics in simple traps

    NASA Astrophysics Data System (ADS)

    Yifat, Yuval; Sule, Nishant; Figliozzi, Patrick; Scherer, Norbert F.

    2016-09-01

    Optical trapping has proved to be a valuable research tool in a wide range of fields including physics, chemistry, biological and materials science. The ability to precisely localize individual colloidal particles in a three-dimensional location has been highly useful for understanding soft matter phenomena and inter-particle interactions. It also holds great promise for nanoscale fabrication and ultra-sensitive sensing by enabling precise positioning of specific material building blocks. In this presentation we discuss our research on the effect of the polarization state of the incident laser on the trapping of nanoscale particles. The polarization of the incident light has a pronounced effect on particle behavior even for the simple case of two plasmonic silver nano-particles in a Gaussian trap,. When the incident light is linearly polarized, the particles form an optically induced dimer that is stably oriented along the direction of polarization. However, nanoparticle dimers and trimmers exhibit structural instabilities and novel dynamics when trapped with focused beams of circularly polarized light. The observed dynamics suggest electrodynamic and hydrodynamic coupling. We explore the electrodynamic phenomena experimentally and theoretically and discuss further examples of polarization controlled trapping.

  12. Overcoming Auger recombination in nanocrystal quantum dot laser using spontaneous emission enhancement.

    PubMed

    Gupta, Shilpi; Waks, Edo

    2014-02-10

    We propose a method to overcome Auger recombination in nanocrystal quantum dot lasers using cavity-enhanced spontaneous emission. We derive a numerical model for a laser composed of nanocrystal quantum dots coupled to optical nanocavities with small mode-volume. Using this model, we demonstrate that spontaneous emission enhancement of the biexciton transition lowers the lasing threshold by reducing the effect of Auger recombination. We analyze a photonic crystal nanobeam cavity laser as a realistic device structure that implements the proposed approach.

  13. Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity.

    PubMed

    Gupta, Shilpi; Waks, Edo

    2013-12-02

    We demonstrate spontaneous emission rate enhancement and saturable absorption of cadmium selenide colloidal quantum dots coupled to a nanobeam photonic crystal cavity. We perform time-resolved lifetime measurements and observe an average enhancement of 4.6 for the spontaneous emission rate of quantum dots located at the cavity as compared to those located on an unpatterned surface. We also demonstrate that the cavity linewidth narrows with increasing pump intensity due to quantum dot saturable absorption.

  14. Broadband enhancement of spontaneous emission in a photonic-plasmonic structure.

    PubMed

    Zhu, Xiaolong; Xie, Fengxian; Shi, Lei; Liu, Xiaohan; Mortensen, N Asger; Xiao, Sanshui; Zi, Jian; Choy, Wallace

    2012-06-01

    We demonstrate that a broadband enhancement of spontaneous emission can be achieved within a photonic-plasmonic structure. The structure can strongly modify the spontaneous emission by exciting plasmonic modes. Because of the excited plasmonic modes, an enhancement up to 30 times is observed, leading to a 4 times broader emission spectrum. The reflectance measurement and the finite-difference time-domain simulation are carried out to support these results.

  15. Performance degradation in coherent polarization multiplexed systems as a result of polarization dependent loss.

    PubMed

    Shtaif, Mark

    2008-09-01

    The ultimate limits introduced by polarization dependent loss (PDL) in coherent polarization multiplexed systems using advanced signal processing are studied. An analytical framework for effectively assessing the penalties is established and applied to systems with and without dynamically optimized launch polarization control. In systems with no launch polarization control, the PDL induced penalty is described by a simple formula and it is independent of the choice of constellation, or modulation format. The gain from optimizing launch polarizations is studied numerically and the mechanisms limiting it are described.

  16. Influence of spontaneous emission on a single-state atom interferometer

    NASA Astrophysics Data System (ADS)

    Beattie, S.; Barrett, B.; Weel, M.; Chan, I.; Mok, C.; Cahn, S. B.; Kumarakrishnan, A.

    2008-01-01

    We have studied the effects of spontaneous emission (SE) on a single-state time domain atom interferometer (AI) that uses trapped Rb atoms. The AI uses two standing wave pulses separated by time T to produce an echo signal at time 2T due to interference between momentum states. We find that SE influences both the shape of the echo signal and its periodic time-dependent amplitude in a manner consistent with theoretical predictions. The results show that the time-dependent signal from the AI is related to the effective radiative decay rate of the excited state. We also present results that test theoretical predictions for several properties of the echo formation such as the variation in momentum transfer due to the change in the angle between the traveling wave components of the excitation pulses, strength of the atom-field interaction, and the effect of spatial profile of the excitation beams. These studies are important for realizing precision measurements of the atomic fine structure constant and gravity using this interferometer.

  17. Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence

    NASA Astrophysics Data System (ADS)

    Wang, Lu-Lu; Zou, Chang-Ling; Ren, Xi-Feng; Liu, Ai-Ping; Lv, Liu; Cai, Yong-Jing; Sun, Fang-Wen; Guo, Guang-Can; Guo, Guo-Ping

    2011-08-01

    Polarization dependence of the exciton-plasmon-photon conversion in silver nanowire-quantum dots structure was investigated using a scanning confocal microscope system. We found that the fluorescence enhancement of the CdSe nanocrystals was correlated with the angle between the excitation light polarization and the silver nanowire direction. The polarization of the emission was also related with the nanowire direction. It was in majority in the direction parallel with nanowire due to the nano-antenna effect.

  18. Spin polarization dependence of quasiparticle properties in graphene

    NASA Astrophysics Data System (ADS)

    Qaiumzadeh, A.; Jahanbani, Kh.; Asgari, Reza

    2012-06-01

    We address spin polarization dependence of graphene's Fermi liquid properties quantitatively using a microscopic random phase approximation theory in an interacting spin-polarized Dirac electron system. We show an enhancement of the minority-spin many-body velocity renormalization at fully spin polarization due to reduction in the electron density and consequently increase in the interaction between electrons near the Fermi surface. We also show that the spin dependence of the Fermi velocity in the chiral Fermi systems is different than that in a conventional two-dimensional electron liquid. In addition, we show that the ratio of the majority-to-minority-spin lifetime is smaller than unity and related directly to the polarization and electron energy. The spin-polarization dependence of the carrier Fermi velocity is of significance in various spintronic applications.

  19. Polarization Dependent Whispering Gallery Modes in Microspheres

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)

    2016-01-01

    A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.

  20. Non-Markovian dynamics in plasmon-induced spontaneous emission interference

    NASA Astrophysics Data System (ADS)

    Thanopulos, I.; Yannopapas, V.; Paspalakis, E.

    2017-02-01

    We investigate theoretically the non-Markovian dynamics of a degenerate V-type quantum emitter in the vicinity of a metallic nanosphere, a system that exhibits quantum interference in spontaneous emission due to the anisotropic Purcell effect. We calculate numerically the electromagnetic Green's tensor and employ the effective modes differential equation method for calculating the quantum dynamics of the emitter population, with respect to the resonance frequency and the initial state of the emitter, as well as its distance from the nanosphere. We find that the emitter population evolution varies between a gradual total decay and a partial decay combined with oscillatory population dynamics, depending strongly on the specific values of the above three parameters. Under strong-coupling conditions, coherent population trapping can be observed in this system. We compare our exact results with results when the flat continuum approximation for the vacuum modified by the metallic nanosphere is applied. We conclude that the flat continuum approximation is an excellent approximation only when the spectral density of the system under study is characterized by nonoverlapping plasmonic resonances.

  1. Polarization Dependent Coupling of Whispering Gallery Modes in Microspheres

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Wrbanek, S.; Floyd, B.; Crotty, M.

    2010-01-01

    Two sets of resonances in glass microspheres attached to a standard communication-grade single-mode optical fiber have been observed. It has been found that the strength of the resonances depends strongly on the polarization of the coupled light. Furthermore, the position of the resonances in the wavelength domain depends on the polarization of light in the optical fiber with maximum magnitudes shifted by approximately 45 .

  2. Control of spontaneous emission of a single quantum emitter through a time-modulated photonic-band-gap environment

    NASA Astrophysics Data System (ADS)

    Calajò, Giuseppe; Rizzuto, Lucia; Passante, Roberto

    2017-08-01

    We consider the spontaneous emission of a two-level quantum emitter, such as an atom or a quantum dot, in a modulated time-dependent environment with a photonic band gap. An example of such an environment is a dynamical photonic crystal or any other environment with a band gap whose properties are modulated in time, in the effective mass approximation. After introducing our model of a dynamical photonic crystal, we show that it allows new possibilities to control and tailor the physical features of the emitted radiation, specifically its frequency spectrum. In the weak-coupling limit and in an adiabatic case, we obtain the emitted spectrum and we show the appearance of two lateral peaks due to the presence of the modulated environment, separated from the central peak by the modulation frequency. We show that the two side peaks are not symmetric in height, and that their height ratio can be exploited to investigate the density of states of the environment. Our results show that a dynamical environment can give further possibilities to modify the spontaneous emission features, such as its spectrum and emission rate, with respect to a static one. Observability of the phenomena we obtain is discussed, as well as relevance for tailoring and engineering radiative processes.

  3. Calculation of spontaneous emission and gain spectra for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Yang, Q. K.; Li, A. Z.

    2000-02-01

    In this paper, a quantum cascade laser has been treated as a three-level system, and the calculation of the spontaneous emission and gain spectra has been given. In the calculation, the conduction band nonparabolicity and the injection and exit of electrons have been considered. Results have shown that with increasing injection current, the spontaneous emission peak blue shifts, and the peak intensity increases near linearly with current. With increasing temperatures, the broadening of the spontaneous emission spectra has been attributed to the electron-optical phonon interactions. The peak gain of the stimulated emission has been shown to be determined mainly by the subband lifespans. We have pointed out that it is essential to obtain a long lifespan for the second excited state and short lifespan for the first excited state in order to obtain efficient population inversion and high peak gain for quantum cascade lasers.

  4. Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser.

    PubMed

    Milton, S V; Gluskin, E; Arnold, N D; Benson, C; Berg, W; Biedron, S G; Borland, M; Chae, Y C; Dejus, R J; Den Hartog, P K; Deriy, B; Erdmann, M; Eidelman, Y I; Hahne, M W; Huang, Z; Kim, K J; Lewellen, J W; Li, Y; Lumpkin, A H; Makarov, O; Moog, E R; Nassiri, A; Sajaev, V; Soliday, R; Tieman, B J; Trakhtenberg, E M; Travish, G; Vasserman, I B; Vinokurov, N A; Wang, X J; Wiemerslage, G; Yang, B X

    2001-06-15

    Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.

  5. Comment on elimination of polarization dependence from optical excitation functions

    SciTech Connect

    Maseberg, Jack W.

    2008-05-15

    The measurement of optical excitation functions excited by electron impact is typically accomplished by recording atomic fluorescence emitted into a small solid angle perpendicular to the incident electron beam. This measured intensity is not proportional to the emission cross section because the fluorescence exhibits an angular distribution and polarization that varies with the energy of the exciting electrons. Typically, a polarizer is set at the ''magic angle'' (54.7 degree sign ) with respect to the electron beam axis to remove this polarization dependence. The literature for the derivation of the magic angle value assumes the polarizing element is perfect. An expression for the angle that accounts for the use of a partial polarizer is presented.

  6. Properties of the third harmonic of the radiation from self-amplified spontaneous emission free electron laser

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2006-03-01

    Recent theoretical and experimental studies have shown that the self-amplified spontaneous emission free-electron laser (SASE FEL) with a planar undulator holds a potential for generation of relatively strong coherent radiation at the third harmonic of the fundamental frequency. Here we present a detailed study of the nonlinear harmonic generation in the SASE FEL obtained with a time-dependent FEL simulation code. Using similarity techniques we present universal dependencies for temporal, spectral, and statistical properties of the odd harmonics of the radiation from SASE FEL. In particular, we derived universal formulas for radiation power of the odd harmonics at saturation. It was also found that coherence time at saturation falls inversely proportional to the harmonic number, and relative spectrum bandwidth remains constant with the harmonic number.

  7. Pulse structure dependence of proton spin polarization rate

    NASA Astrophysics Data System (ADS)

    Kawahara, Tomomi; Uesaka, Tomohiro; Shimizu, Youhei; Sakaguchi, Satoshi; Wakui, Takashi

    2009-10-01

    A polarized proton solid target for RI beam experiments has been developed at Center for Nuclear Study, University of Tokyo [1]. The proton is polarized by transferring population difference in photo-excited triplet states of aromatic molecule. Through this method proton polarization of about 20% have been obtained at 0.1 T and in 100 K. Although this target has been successfully applied to RI beam experiments [2,3], further improvement in the polarization is desirable for future applications. To pursuit possible improvement in photo-excitation power, we have examined pulse-structure dependence of proton polarization rate. The excitation light is provided by a cw Ar-ion laser and pulsed by an optical chopper. We have found that proton polarization depends strongly on the pulse structure and the optimum condition is found to be a duty factor of 50% and a repetition frequency of 10 kHz. At this condition, the polarization rate can be increased by a factor 2.5 or more compared with the old settings, where a duty factor and a repetition frequency were 5% and 2.5 kHz, respectively. [1] T. Wakui et al., Nucl. Instrum. Methods A 550 (2005) 521. [2] M. Hatano et al., Eur. Phys. J. A 25 (2005) 255. [3] S. Sakaguchi et al., CNS Annual Report 2006 (2007).

  8. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  9. Noise-color-induced quenching of fluctuations in a correlated spontaneous-emission laser model

    SciTech Connect

    Habiger, R.G.K.; Risken, H. ); James, M.; Moss, F. ); Schleich, W. Center for Advanced Studies and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 )

    1990-04-01

    We show via (1) an approximate, analytical technique, (2) a formally exact matrix continued-fraction analysis, and (3) an analog simulation of the classical Langevin equation of a correlated spontaneous-emission laser (CEL) that noise of nonzero correlation time leads to an enhancement of the characteristic CEL noise quenching.

  10. Manipulation of the spontaneous emission in mesoporous synthetic opals impregnated with fluorescent guests.

    PubMed

    Yamada, Yuri; Yamada, Hisashi; Nakamura, Tadashi; Yano, Kazuhisa

    2009-12-01

    The spontaneous emission of light from light-emitting materials adsorbed within the ordered pores of monodispersed mesoporous silica spheres (MMSS) has been investigated. By taking advantage of the ordered starburst pores of MMSS, we can provide a simple strategy for fabricating synthetic opals consisting of homogeneous individual building blocks in which fluorescent guests are uniformly and stably impregnated. In this study, tris(8-hydroxyquinolinato)aluminum(III) (Alq(3)) and Rhodamine B (Rh B) are selected as the fluorescent guests. The former has a wider emission band than the reflection spectrum of MMSS synthetic opals, whereas the emission band of the latter is considerably narrower than the reflection spectrum of the opals. The spontaneous emissions of these functionalized synthetic opals are clearly influenced by the stop band governed by the Bragg equation. In the case of the Alq(3)-MMSS conjugate, the shape of the Alq(3) emission spectrum varies in accordance with the shift in the stop band. The emission of the Rh B-MMSS conjugate is noticeably narrowed, and its intensity is enhanced when the excitation intensity is increased. These results are well explained by an inhibition of spontaneous emission caused by a reduction in the density of optical states within the stop band. The results of this study indicate that MMSS synthetic opals are promising for use in novel optical applications in which the spontaneous emission can be manipulated.

  11. Constraining the wavelength dependence of polarization for various asteroid taxonomies

    NASA Astrophysics Data System (ADS)

    Maleszewski, Chester; Smith, Paul S.; McMillan, Robert S.

    2016-10-01

    The polarization of sunlight reflected from asteroids is known to be inversely proportional to geometric albedo (Umov 1905). However, that was mainly derived from observations in the V-filter. Preliminary observations of the wavelength dependence were conducted by Belskaya et al. (2009) in the major asteroid taxonomic classes. The limited UBVRI data revealed trends of spectral slope vs. phase angle. To study the wavelength dependence of asteroid polarization more robustly, we have used the SPOL spectropolarimeter at the 2.3-m Bok and 1.6-m Kuiper telescopes. The finer spectral resolution of spectropolarimetry is needed to confirm the linearity of the wavelength dependence of polarization.We present polarization spectra from four asteroid taxonomic groups: B-, C-, S-, and X-types. Across the observed wavelength range (0.45 to 0.7 microns), the linear trend described by Belskaya et al. is confirmed and we determined the best-fit linear slope of each spectrum. For the S-type asteroids, the slope of the polarization spectra becomes more negative as the phase angle increases. The rate at which the polarization slope changes increases at phase angles greater than the inversion angle. C-type asteroids behave differently from the S-types in two ways. First, the polarization spectra for the C-types are positively sloped as opposed to negative (also noted in Belskaya et al.). Also, as you observe the C-types closer to the inversion angle (~20 degrees phase angle), the polarization slopes tend to flatten as opposed to steepen. The polarization spectra of B-type asteroids are positively sloped, but the tendency to flatten near the inversion angle like the C-type spectra is not evident. Our observations of low albedo X-types exhibit positive polarization slopes, while the high albedo observations exhibit negative slopes. Differences in the wavelength dependencies of polarization between various asteroid types appear to be driven by differences in their geometric albedos. Better

  12. Highly enhanced spontaneous emission with nanoshell-based metallodielectric hybrid antennas

    NASA Astrophysics Data System (ADS)

    Cheng, Yuqing; Lu, Guowei; shen, Hongming; Wang, Yuwei; He, Yingbo; Chou, R. Yuanying; Gong, Qihuang

    2015-09-01

    The metallodielectric hybrid nanoantenna integrating plasmonic nanostructures with dielectric planar substrate can improve the spontaneous emission greatly. We demonstrated that the performances of the hybrid antenna can be substantially optimized with specific plasmonic nanostructures by employing finite-difference time-domain method. The hybrid antenna with core-shell nanostructure can enhance spontaneous emission greatly rather than the individual spherical nanoparticle. Moreover, the performances of the hybrid antenna can be boosted further through using asymmetrical nanoshell. The mechanism of the high enhancement effect is due to the hybrid structure being able to couple efficiently with the electric field by a larger dipolar moment. And the emission directivity of the hybrid antenna is able to be modified by adjusting the geometry of the plasmonic nanostructures. The results should be beneficial for various fundamental and applied research fields, including single molecule fluorescence and surface enhance Raman spectroscopy, etc. The enhancement of spontaneous emission is in demand in fundamental interests and various applied research fields. However, the electromagnetic enhancement of single plasmonic nanostructure is limited due to intrinsic loss of metal materials and quantum tunneling effect which also limits the ability of enhancement of spontaneous emission. Interestingly, it was found that hybrid structures can provide higher enhancement effect. This study is about a kind new type of optical antenna to control spontaneous emission of single emitter, i.e. a metallodielectric hybrid nanoantenna integrating plasmonic nanostructures with dielectric planar substrate which can improve the spontaneous emission greatly. We demonstrated that the performances of the hybrid antenna can be substantially optimized with specific plasmonic nanostructures by employing finite-difference time-domain method. The hybrid antenna with core-shell nanostructure can enhance

  13. Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system

    NASA Astrophysics Data System (ADS)

    Kamandar Dezfouli, Mohsen; Gordon, Reuven; Hughes, Stephen

    2017-01-01

    We present an intuitive and accurate modal description of the rich optical physics involved for quantum dipole emitters coupled to hybrid plasmonic photonic-cavity structures. A significant frequency dependence for the spontaneous emission decay rate of a quantum dipole emitter coupled to these hybrid structures is found. In particular, it is shown that a Fano-type resonance reported experimentally in hybrid plasmonic systems arises from a large interference between two dominant quasinormal modes of the systems in the frequency range of interest. The presented modal theory forms an efficient basis for modeling quantum light-matter interactions in these complex hybrid systems and also enables the quantitative prediction and understanding of both radiative and nonradiative coupling for a wide range of dipole positions.

  14. Spontaneous emission and spectral properties of radiation by relativistic electrons in a gyro-klystron and optical-klystron undulator.

    PubMed

    Prakash, Bramha; Mishra, Ganeswar; Khullar, Roma

    2016-03-01

    In this paper spontaneous emission of radiation by relativistic electrons in a gyro-klystron is studied. The scheme consists of two solenoid sections separated by a dispersive section. In the dispersive section the electrons are made non-resonant with the radiation. The dispersive section transforms a small change of the velocity into changes of the phases of the electrons. This leads to enhanced radiation due to klystron-type modulation as compared with a conventional gyrotron-type device driven by cyclotron maser interaction. It is shown that the klystron-modulated spectrum depends on the dispersive field strength, finite perpendicular velocity component and length of the solenoids but is independent of the axial magnetic field strength. A simple scheme to design a gyro-klystron is discussed.

  15. Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures

    NASA Astrophysics Data System (ADS)

    Bayindir, M.; Tanriseven, S.; Aydinli, A.; Ozbay, E.

    We investigated photoluminescence (PL) from one-dimensional photonic band gap structures. The photonic crystals, a Fabry-Perot (FP) resonator and a coupled-microcavity (CMC) structure, were fabricated by using alternating hydrogenated amorphous-silicon-nitride and hydrogenated amorphous-silicon-oxide layers. It was observed that these structures strongly modify the PL spectra from optically active amorphous-silicon-nitride thin films. Narrow-band and wide-band PL spectra were achieved in the FP microcavity and the CMC structure, respectively. The angle dependence of PL peak of the FP resonator was also investigated. We also observed that the spontaneous emission increased drastically at the coupled-cavity band edge of the CMC structure due to extremely low group velocity and long photon lifetime. The measurements agree well with the transfer-matrix method results and the prediction of the tight-binding approximation.

  16. Amplified spontaneous emission from core and shell transitions in CdSe/CdS nanorods fabricated by seeded growth

    NASA Astrophysics Data System (ADS)

    Krahne, Roman; Zavelani-Rossi, Margherita; Lupo, Maria Grazia; Manna, Liberato; Lanzani, Guglielmo

    2011-02-01

    We studied the optical properties of core-shell CdSe/CdS nanorods with various lengths and core diameters that were fabricated by wet chemical synthesis using the seeded growth method. We investigated the optical emission from thin films consisting of dense nanorod arrays, where we observed amplified spontaneous emission from states related either to the CdSe core or to the CdS shell depending on the nanorod's length. The optical gain of the nanorods was studied by transient absorption experiments and we found optical gain for the core and shell states of short rods, whereas for long rods, the optical gain of the core was quenched by defect states and we observed optical gain solely from the states of the shell material.

  17. Spontaneous emission and optical control of spins in quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.

    Quantum dots are attractive due to their potential technological applications and the opportunity they provide for study of fundamental physics in the mesoscopic scale. This dissertation studies optically controlled spins in quantum dots in connection to quantum information processing. The physical realization of the quantum bit (qubit) consists of the two spin states of an extra electron confined in a quantum dot. Spin rotations are performed optically, by use of an intermediate charged exciton (trion) state. The two spin states and the trion form a Λ-type system. The merits of this system for quantum information processing include integrability into a solid-state device, long spin coherence time, and fast and focused optical control. In this dissertation, we study the optical decay mechanisms of the trion state in the quantum dot. Using a master-equation approach, we derive microscopically the optical decay of the three-level system and find a novel term, the so-called spontaneously generated coherence (SGC). The latter, though predicted more than a decade ago for atomic Λ-systems satisfying certain conditions, had not been detected yet in any system. We found that in quantum dots, these conditions can be satisfied. We present the experiment which, in collaboration with our theory, constituted the first measurement of SGC. We establish the unification of SGC, polarization entanglement, and two-pathway decay. By keeping track of the spontaneously emitted photon dynamics, we find the conditions on the couplings that determine which effect will take place. We have thus placed SGC in a more quantum informational framework, characterizing it as lack of entanglement between the emitted photon and the three-level system. We develop a theory of ultrafast optical single-qubit rotations by use of 2pi pulses, which have the two-fold advantage of minimal trion excitation and negligible spin precession. The analytically solvable hyperbolic secant pulses of Rosen and Zener

  18. Polarization and Angle Dependence of Fluorescence from Aligned DNA

    NASA Astrophysics Data System (ADS)

    Sridhar, Ashish; Bandler, Suri; Zhu, Ke; Gu, Yingzhan; Budassi, Julia; Sokolov, Jonathan

    2012-02-01

    DNA molecules can be deposited and aligned on various surfaces and imaged by confocal microscopy when labeled with fluorescent dyes. SyBr Gold dye, is known to possess a high angle and polarization dependence. We measured the emission intensity for various incident angles as a function of incident polarization angle. Samples were created by means of dipping PMMA-coated silicon wafers into dyed DNA solutions with DC electric field setup or drop evaporation. The blue laser as the imaging light source was mounted on an optical rail with a polarizer with rotatable half wave plate to change the incident polarization relative to the DNA molecular orientation. When applied to samples dyed using SyBr Gold, a clear change in the intensity of imaged DNA strands was observed though a range of input polarization angle. We have shown that it is possible to optimize the conditions in which aligned DNA is imaged using confocal microscopy by varying the polarization and angle of incidence of laser light on the sample. This study is supported by NSF-DMR-MRSEC program.

  19. Spontaneous emission of Alfvénic fluctuations

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; López, R. A.; Vafin, S.; Kim, S.; Schlickeiser, R.

    2017-09-01

    Low-frequency fluctuations are pervasively observed in the solar wind. The present paper theoretically calculates the steady state spectra of low-frequency electromagnetic (EM) fluctuations of the Alfvénic type for thermal equilibrium plasma. The analysis is based upon a recently formulated theory of spontaneously emitted EM fluctuations in magnetized thermal plasmas. It is found that the fluctuations in the magnetosonic mode branch is constant, while the kinetic Alfvénic mode spectrum is dependent on a form factor that is a function of perpendicular wave number. Potential applicability of the present work in the wider context of heliospheric research is also discussed.

  20. X-ray linear dichroism dependence on ferroelectric polarization.

    PubMed

    Polisetty, S; Zhou, J; Karthik, J; Damodaran, A R; Chen, D; Scholl, A; Martin, L W; Holcomb, M

    2012-06-20

    X-ray absorption spectroscopy and photoemission electron microscopy are techniques commonly used to determine the magnetic properties of thin films, crystals, and heterostructures. Recently, these methods have been used in the study of magnetoelectrics and multiferroics. The analysis of such materials has been compromised by the presence of multiple order parameters and the lack of information on how to separate these coupled properties. In this work, we shed light on the manifestation of dichroism from ferroelectric polarization and atomic structure using photoemission electron microscopy and x-ray absorption spectroscopy. Linear dichroism arising from the ferroelectric order in the PbZr0:2Ti0:8O3 thin films was studied as a function of incident x-ray polarization and geometry to unambiguously determine the angular dependence of the ferroelectric contribution to the dichroism. These measurements allow us to examine the contribution of surface charges and ferroelectric polarization as potential mechanisms for linear dichroism. The x-ray linear dichroism from ferroelectric order revealed an angular dependence based on the angle between the ferroelectric polarization direction and the x-ray polarization axis, allowing a formula for linear dichroism in ferroelectric samples to be defined.

  1. Polarization dependence of multilayer reflectance in the EUV spectral range

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Laubis, Christian; Buchholz, Christian; Fischer, Andreas; Kampe, Annett; Plöger, Sven; Scholz, Frank; Ulm, Gerhard

    2007-03-01

    The Physikalisch-Technische Bundesanstalt (PTB) with its laboratory at the electron storage ring BESSY II supports the national and European industry by carrying out high-accuracy at-wavelength measurements in the EUV spectral region, particularly to support the development of EUV lithography, which holds the key to the next generation of computer technology. PTB operates an EUV reflectometry facility, designed for at-wavelength metrology of full-size EUVL optics with a maximum weight of 50 kg and a diameter of up to 550 mm and a micro-reflectometry station for reflectometry with sub 10 μm spatial resolution. An absolute uncertainty of 0.10 % is achieved for peak reflectance, with a reproducibility of 0.05 %. For the center wavelength an uncertainty of 2 pm is achieved with a long-term reproducibility of 1.1 pm and a short-term repeatability below 0.06 pm. Measurements at PTB use linearly polarized radiation, whereas EUV optics are operated with unpolarized sources and the status of polarization changes throughout the optical system. Therefore, to transfer these high-accuracy measurements to the EUV optical components under working conditions, it is essential to study the polarization dependence in detail. The degree of linear polarization in the EUV reflectometer is 97%. Representative polarization dependencies obtained on Mo/Si multilayer coatings over a wide range of angles of incidence reveal that the accuracy of calculations with the IMD-code is presently limited by the optical data available.

  2. Oscillation in FEL Self-Amplified Spontaneous Emission

    NASA Astrophysics Data System (ADS)

    Bakhtyari, Arash; Walsh, John E.; Brownell, J. Hayden

    2002-04-01

    An electron beam traveling perpendicular to the groves of a metallic grating produces radiation with a wavelength depending on the beam velocity and the observation angle. Named the Smith-Purcell effect after its discoverers, this process is the basis of a compact THz free electron laser (SP-FEL). Currently, a modified scanning electron microscope serves as an electron beam source and provides precise control of the operating parameters. Superradiant emission in this device was achieved in 1997. The output power just below threshold oscillates with beam current, exhibiting distinct features attributable to the beating of three co-propagating waves, as predicted by the Pierce theory for traveling-wave tubes. Observation of this behavior confirms the gain mechanism underlying the SP-FEL.

  3. Dependence of polar hole density on magnetic and solar conditions

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Grebowsky, J. M.

    1991-01-01

    Electron densities from the Langmuir probes on the Atmospheric Explorer C and Dynamics Explorer 2 are used for analyzing the behavior of the high-altitude night-side F region polar hole as a function of solar and magnetic activity and of universal time (UT). The polar region of invariant latitude from 70 deg to 80 deg and MLT from 22 to 03 hours is examined. The strongest dependencies are observed in F10.7 and UT; a strong hemispherical difference due to the offset of the magnetic poles from the earth's rotation axis is observed in the UT dependence of the ionization hole. A seasonal variation in the dependence of ion density on solar flux is indicated, and an overall asymmetry in the density level between hemispheres is revealed, with the winter-hole density about a factor of 10 greater in the north than in the south.

  4. Polarization dependence in inelastic scattering of electrons by hydrogen atoms in a circularly polarized laser field

    NASA Astrophysics Data System (ADS)

    Buică, Gabriela

    2017-01-01

    We theoretically study the influence of laser polarization in inelastic scattering of electrons by hydrogen atoms in the presence of a circularly polarized laser field in the domain of field strengths below 107 V/cm and high projectile energies. A semi-perturbative approach is used in which the interaction of the projectile electrons with the laser field is described by Gordon-Volkov wave functions, while the interaction of the hydrogen atom with the laser field is described by first-order time-dependent perturbation theory. A closed analytical solution is derived in laser-assisted inelastic electron-hydrogen scattering for the 1 s → nl excitation cross section which is valid for both circular and linear polarizations. For the excitation of the n=2 levels simple analytical expressions of differential cross section are derived for laser-assisted inelastic scattering in the perturbative domain, and the differential cross sections by the circularly and linearly polarized laser fields and their ratios for one- and two-photon absorption are calculated as a function of the scattering angle. Detailed numerical results for the angular dependence and the resonance structure of the differential cross sections are discussed for the 1 s → 4 l excitations of hydrogen in a circularly polarized laser field.

  5. Polarization dependent switching of asymmetric nanorings with a circular field

    NASA Astrophysics Data System (ADS)

    Pradhan, Nihar R.; Tuominen, Mark T.; Aidala, Katherine E.

    2016-01-01

    We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs) with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  6. Cavity-enhanced spontaneous emission rates for rhodamine 6-G in levitated microdroplets

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M. ); Arnold, S. )

    1992-01-01

    Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated glycerol microdroplets (4--20 microns in diameter) have been investigated to determine the effects of spherical cavity resonances on spontaneous emission rates. For droplet diameters greater than 10 microns, the fluorescence lifetime is essentially the same as in bulk glycerol. As the droplet diameter is decreased below 10 microns, bi-exponential decay behavior is observed with a slow component whose rate is similar to bulk glycerol, and a fast component whose rate is as much as a factor of 10 larger than the bulk decay rate. This fast component is attributed to cavity enhancement of the spontaneous emission rate and, within the weak coupling approximation, a value for the homogeneous linewidth at room temperature can be estimated from the fluorescence lifetime data.

  7. Cavity-enhanced spontaneous emission rates for rhodamine 6-G in levitated microdroplets

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M.; Arnold, S.

    1992-11-01

    Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated glycerol microdroplets (4--20 microns in diameter) have been investigated to determine the effects of spherical cavity resonances on spontaneous emission rates. For droplet diameters greater than 10 microns, the fluorescence lifetime is essentially the same as in bulk glycerol. As the droplet diameter is decreased below 10 microns, bi-exponential decay behavior is observed with a slow component whose rate is similar to bulk glycerol, and a fast component whose rate is as much as a factor of 10 larger than the bulk decay rate. This fast component is attributed to cavity enhancement of the spontaneous emission rate and, within the weak coupling approximation, a value for the homogeneous linewidth at room temperature can be estimated from the fluorescence lifetime data.

  8. Effect of amplified spontaneous emission on selectivity of laser photoionisation of the 177Lu radioisotope

    NASA Astrophysics Data System (ADS)

    D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya; Firsov, V. A.; Tsvetkov, G. O.

    2016-06-01

    A significant deselecting effect of amplified spontaneous emission has been observed in the experiments on selective laser photoionisation of the 177Lu radioisotope according to the scheme 5d6s2 2D3/2 → 5d6s6p 4Fo5/2 (18505 cm-1) → 5d6s7s 4D3/2(37194 cm-1) → autoionisation state (53375 cm-1). The effect is conditioned by involvement of non-target isotopes from the lower metastable level 5d6s2 2D5/2(1994 cm-1) into the ionisation process. Spectral filtering of spontaneous emission has allowed us to significantly increase the selectivity of the photoionisation process of the radioisotope and to attain a selectivity value of 105 when using saturating light intensities.

  9. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide

    PubMed Central

    Mitsch, R.; Sayrin, C.; Albrecht, B.; Schneeweiss, P.; Rauschenbeutel, A.

    2014-01-01

    The spin of light in subwavelength-diameter waveguides can be orthogonal to the propagation direction of the photons because of the strong transverse confinement. This transverse spin changes sign when the direction of propagation is reversed. Using this effect, we demonstrate the directional spontaneous emission of photons by laser-trapped caesium atoms into an optical nanofibre and control their propagation direction by the excited state of the atomic emitters. In particular, we tune the spontaneous emission into the counter-propagating guided modes from symmetric to strongly asymmetric, where more than % of the optical power is launched into one or the other direction. We expect our results to have important implications for research in quantum nanophotonics and for implementations of integrated optical signal processing in the quantum regime. PMID:25502565

  10. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.

    PubMed

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I; Samusev, Kirill B; Parkinson, Patrick; Sreenivasan, Varun K A; Minovich, Alexander; Miroshnichenko, Andrey E; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2013-01-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  11. Controlling the Spontaneous Emission Rate of Quantum Wells in Rolled-Up Hyperbolic Metamaterials

    NASA Astrophysics Data System (ADS)

    Schulz, K. Marvin; Vu, Hoan; Schwaiger, Stephan; Rottler, Andreas; Korn, Tobias; Sonnenberg, David; Kipp, Tobias; Mendach, Stefan

    2016-08-01

    We experimentally demonstrate the enhancement of the spontaneous emission rate of GaAs quantum wells embedded in rolled-up metamaterials. We fabricate microtubes whose walls consist of alternating Ag and (In)(Al)GaAs layers with incorporated active GaAs quantum-well structures. By variation of the layer thickness ratio of the Ag and (In)(Al)GaAs layers we control the effective permittivity tensor of the metamaterial according to an effective medium approach. Thereby, we can design samples with elliptic or hyperbolic dispersion. Time-resolved low temperature photoluminescence spectroscopy supported by finite-difference time-domain simulations reveal a decrease of the quantum well's spontaneous emission lifetime in our metamaterials as a signature of the crossover from elliptic to hyperbolic dispersion.

  12. Controlling the Spontaneous Emission Rate of Quantum Wells in Rolled-Up Hyperbolic Metamaterials.

    PubMed

    Schulz, K Marvin; Vu, Hoan; Schwaiger, Stephan; Rottler, Andreas; Korn, Tobias; Sonnenberg, David; Kipp, Tobias; Mendach, Stefan

    2016-08-19

    We experimentally demonstrate the enhancement of the spontaneous emission rate of GaAs quantum wells embedded in rolled-up metamaterials. We fabricate microtubes whose walls consist of alternating Ag and (In)(Al)GaAs layers with incorporated active GaAs quantum-well structures. By variation of the layer thickness ratio of the Ag and (In)(Al)GaAs layers we control the effective permittivity tensor of the metamaterial according to an effective medium approach. Thereby, we can design samples with elliptic or hyperbolic dispersion. Time-resolved low temperature photoluminescence spectroscopy supported by finite-difference time-domain simulations reveal a decrease of the quantum well's spontaneous emission lifetime in our metamaterials as a signature of the crossover from elliptic to hyperbolic dispersion.

  13. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I.; Samusev, Kirill B.; Parkinson, Patrick; Sreenivasan, Varun K. A.; Minovich, Alexander; Miroshnichenko, Andrey E.; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N.; Kivshar, Yuri S.

    2013-12-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  14. Experimental Demonstration of Enhanced Self-Amplified Spontaneous Emission by an Optical Klystron

    NASA Astrophysics Data System (ADS)

    Penco, G.; Allaria, E.; De Ninno, G.; Ferrari, E.; Giannessi, L.

    2015-01-01

    We report the first experimental evidence of enhancement of self-amplified spontaneous emission, due to the use of an optical klystron. In this free-electron laser scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. The experiment has been carried out at the FERMI facility in Trieste. Powerful radiation has been produced in the extreme ultraviolet range, with an intensity a few orders of magnitude larger than in pure self-amplified spontaneous emission mode. Data have been benchmarked with an existing theoretical model.

  15. Spontaneous emission from the atom stabilized by a strong high-frequency laser field

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2017-09-01

    The spontaneous emission of a quantum system driven by a high-intensity, high-frequency classical laser field is analyzed. The study is based on the accurate consideration of the quantum system interacting with vacuum-quantized field modes in the first order of perturbation theory, while the intense laser field is considered classically beyond this theory. It is demonstrated that the spectrum of the spontaneous emission can be used for analyzing the strong-field dynamics and the structure of the energy spectrum of an atomic system. In particular, it is found that in high-frequency fields (where the energy of the laser quanta is greater than the ionization potential) atoms manifest the features of the Kramers-Henneberger atom. It is also found that in the stabilization regime, the atom emits both odd and even laser radiation harmonics.

  16. About a linear polarization of comets: The phase-angle dependences of polarization degree

    NASA Astrophysics Data System (ADS)

    Shestopalov, D. I.; Golubeva, L. F.

    2017-05-01

    The ground-based astronomic observations of comet cannot provide a proper phase angle coverage that is needed to estimate with a reasonable accuracy all of the attributes of comet polarization phase curve. To find the best approximation to the phase polarization dependences observed for comets, we apply a simple empiric formula that has already shown good results when operating with asteroid and lunar polarimetric curves (Shestopalov, 2004; Shestopalov and Golubeva, 2015). From the set of comets present in DBCP (Kiselev et al., 2006), we selected 20, for which the calculation of regular polarimetric curves (i.e. the phase angle - polarization dependences with a low level of nonsteady activity) was possible. Within the phase angle coverage area for these 20 comets, a potential user can reproduce 82 best-fitting polarimetric phase curves in various spectral domains. Then we analyzed the properties of negative and positive polarization of the comets. The interrelation between the averaged polarimetric slope h at the inversion angle and wavelength was found. In general, the parameters of negative branch vary slightly from one comet to another. We found a close correlation between the maximum polarization degree Pmax and the slope of the segment of polarimetric curve bounded by phase angles of 30° and 50°. This finding allowed to adduce the evidence in support of the idea voiced by Chernova et al. (1993) about two types of comet with high and low Pmax. Moreover, we have found direct correlation between the maximum polarization degree of comets and their dust-to-gas ratio. The latter is actually a visual proof of assumptions voiced many years ago about a mutual effect of gas and dust on observed polarization of comets (see, for instance, a historical review in Kiselev et al., 2015). Thus, the polarimetric effect of resonant fluorescence should be completely eliminated from the phase-dependent polarization curve of comet in order to correctly interpret the physical

  17. Cytoskeleton-dependent membrane domain segregation during neutrophil polarization.

    PubMed

    Seveau, S; Eddy, R J; Maxfield, F R; Pierini, L M

    2001-11-01

    On treatment with chemoattractant, the neutrophil plasma membrane becomes organized into detergent-resistant membrane domains (DRMs), the distribution of which is intimately correlated with cell polarization. Plasma membrane at the front of polarized cells is susceptible to extraction by cold Triton X-100, whereas membrane at the rear is resistant to extraction. After cold Triton X-100 extraction, DRM components, including the transmembrane proteins CD44 and CD43, the GPI-linked CD16, and the lipid analog, DiIC(16), are retained within uropods and cell bodies. Furthermore, CD44 and CD43 interact concomitantly with DRMs and with the F-actin cytoskeleton, suggesting a mechanism for the formation and stabilization of DRMs. By tracking the distribution of DRMs during polarization, we demonstrate that DRMs progress from a uniform distribution in unstimulated cells to small, discrete patches immediately after activation. Within 1 min, DRMs form a large cap comprising the cell body and uropod. This process is dependent on myosin in that an inhibitor of myosin light chain kinase can arrest DRM reorganization and cell polarization. Colabeling DRMs and F-actin revealed a correlation between DRM distribution and F-actin remodeling, suggesting that plasma membrane organization may orient signaling events that control cytoskeletal rearrangements and, consequently, cell polarity.

  18. Effects of quantum interference in spectra of cascade spontaneous emission from multilevel systems

    NASA Astrophysics Data System (ADS)

    Makarov, A. A.; Yudson, V. I.

    2016-12-01

    A general expression for the spectrum of cascade spontaneous emission from an arbitrary multilevel system is presented. Effects of the quantum interference of photons emitted in different transitions are analyzed. These effects are especially essential when the transition frequencies are close. Several examples are considered: (i) Three-level system; (ii) Harmonic oscillator; (iii) System with equidistant levels and equal rates of the spontaneous decay for all the transitions; (iv) Dicke superradiance model.

  19. Self-amplified spontaneous emission for a single pass free-electron laser

    NASA Astrophysics Data System (ADS)

    Giannessi, L.; Alesini, D.; Antici, P.; Bacci, A.; Bellaveglia, M.; Boni, R.; Boscolo, M.; Briquez, F.; Castellano, M.; Catani, L.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Clozza, A.; Couprie, M. E.; Cultrera, L.; Dattoli, G.; Del Franco, M.; Dipace, A.; di Pirro, G.; Doria, A.; Drago, A.; Fawley, W. M.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Frassetto, F.; Freund, H. P.; Fusco, V.; Gallerano, G.; Gallo, A.; Gatti, G.; Ghigo, A.; Giovenale, E.; Marinelli, A.; Labat, M.; Marchetti, B.; Marcus, G.; Marrelli, C.; Mattioli, M.; Migliorati, M.; Moreno, M.; Mostacci, A.; Orlandi, G.; Pace, E.; Palumbo, L.; Petralia, A.; Petrarca, M.; Petrillo, V.; Poletto, L.; Quattromini, M.; Rau, J. V.; Reiche, S.; Ronsivalle, C.; Rosenzweig, J.; Rossi, A. R.; Rossi Albertini, V.; Sabia, E.; Serafini, L.; Serluca, M.; Spassovsky, I.; Spataro, B.; Surrenti, V.; Vaccarezza, C.; Vescovi, M.; Vicario, C.

    2011-06-01

    SPARC (acronym of “Sorgente Pulsata ed Amplificata di Radiazione Coerente”, i.e. Pulsed and Amplified Source of Coherent Radiation) is a single pass free-electron laser designed to obtain high gain amplification at a radiation wavelength of 500 nm. Self-amplified spontaneous emission has been observed driving the amplifier with the high-brightness beam of the SPARC linac. We report measurements of energy, spectra, and exponential gain. Experimental results are compared with simulations from several numerical codes.

  20. Spontaneous emission near the electron plasma frequency in a plasma with a runaway electron tail

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Lee, L. C.; Wu, C. S.

    1978-01-01

    Spontaneous emission of radiation with frequencies near the electron plasma frequency is studied for a plasma which consists of both thermal and runaway electrons. It is found that a substantial enhancement of the spontaneous radiation intensity can occur in this frequency regime via a Cherenkov resonance with the runaway electrons. Numerical analysis indicates that, for reasonable estimates of densities and energies, the plasma-frequency radiation can attain levels greater than the peak thermal emission at the second gyroharmonic.

  1. GENERAL: Steady State Entanglement and Saturation Effects in Correlated Spontaneous Emission Lasers

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Hu, Xiang-Ming; Shi, Wen-Xing

    2009-08-01

    It has recently been shown that correlated spontaneous emission lasers (CEL) exhibit transient entanglement in the linear regime. Here we re-examine the quantum correlations in two-photon CEL and explore the saturation effects on continuous variable entanglement. It is shown that the steady state entanglement is obtainable in the weak or moderate saturation regime, while is washed out in the deep saturation regime.

  2. Calculations of the self-amplified spontaneous emission performance of a free-electron laser.

    SciTech Connect

    Dejus, R. J.

    1999-04-20

    The linear integral equation based computer code (RON: Roger Oleg Nikolai), which was recently developed at Argonne National Laboratory, was used to calculate the self-amplified spontaneous emission (SASE) performance of the free-electron laser (FEL) being built at Argonne. Signal growth calculations under different conditions are used for estimating tolerances of actual design parameters. The radiation characteristics are discussed, and calculations using an ideal undulator magnetic field and a real measured magnetic field will be compared and discussed.

  3. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.

    PubMed

    Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-11-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations.

  4. Spatially adjusted spontaneous emissions from photonic crystals embedded light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yin, Yu-Feng; Lin, Yen-Chen; Liu, Yi-Chen; Chiang, Hai-Pang; Huang, JianJang

    2014-09-01

    In this work, the angular light output enhancements of LEDs were investigated from the spontaneous emission and light scattering of devices with different photonic crystal (PhC) geometries. The emitted photon coupled into a leaky mode is differentiated by the manipulation of the quality factor in various spatial frequencies. Therefore, light extraction in this light-emitting device is determined by the modal extraction lengths and the quality factor obtained from the measured photonic bands. Furthermore, the higher- and lower-order mode spontaneous emissions are affected by the nonradiative process in the PhC structures with different periods. In our cases, the photonic crystal device with the largest period of 500 nm exhibits the highest lower-order mode extraction and quality factor. As a result, a self-collimation behavior toward the surface-normal is demonstrated in the 3D far-field pattern of such a device. We conclude that, with the coherent light scattering from the PhC region, the spontaneous emission of the material and spatial behavior of the extracted mode can be both managed by the proper design of the device.

  5. Controlling spontaneous emission rates of quantum dots with plasmonic nanopatch antennas

    NASA Astrophysics Data System (ADS)

    Hoang, Thang; Akselrod, Gleb; Argyropoulos, Christos; Huang, Jiani; Smith, David; Mikkelsen, Maiken

    2015-03-01

    The radiative processes associated with quantum emitters can be strongly enhanced due to intense electromagnetic fields created by plasmonic nanostructures. Here, we experimentally demonstrate large enhancements of the spontaneous emission rate of colloidal quantum dots coupled to single plasmonic nanopatch antennas. The antennas consist of silver nanocubes (75 nm) coupled to a gold film separated by a thin polyelectrolyte spacer layer (~1 nm) and core-shell CdSe/ZnS quantum dots (~6 nm). By optimizing the size of the nanopatch antenna, the plasmonic mode is tuned to be on resonance with the quantum dot emission. We show an increase in the spontaneous emission rate by a factor of 880 (Purcell factor) and a 2300-fold enhancement in the total fluorescence while maintaining a high radiative quantum efficiency of ~50 %. The nanopatch antenna, as demonstrated here, offers highly directional and broadband radiation that can be tailored for emitters from the visible to the near infrared, providing a promising approach for the spontaneous emission control of single quantum emitters.

  6. Geometric algebra description of polarization mode dispersion, polarization-dependent loss, and Stokes tensor transformations.

    PubMed

    Soliman, George; Yevick, David; Jessop, Paul

    2014-09-01

    This paper demonstrates that numerous calculations involving polarization transformations can be condensed by employing suitable geometric algebra formalism. For example, to describe polarization mode dispersion and polarization-dependent loss, both the material birefringence and differential loss enter as bivectors and can be combined into a single symmetric quantity. Their frequency and distance evolution, as well as that of the Stokes vector through an optical system, can then each be expressed as a single compact expression, in contrast to the corresponding Mueller matrix formulations. The intrinsic advantage of the geometric algebra framework is further demonstrated by presenting a simplified derivation of generalized Stokes parameters that include the electric field phase. This procedure simultaneously establishes the tensor transformation properties of these parameters.

  7. Polarization-dependent ponderomotive gradient force in a standing wave

    SciTech Connect

    Smorenburg, P. W.; Kanters, J. H. M.; Lassise, A.; Brussaard, G. J. H.; Kamp, L. P. J.; Luiten, O. J.

    2011-06-15

    The ponderomotive force is derived for a relativistic charged particle entering an electromagnetic standing wave with a general three-dimensional field distribution and a nonrelativistic intensity, using a perturbation expansion method. It is shown that the well-known ponderomotive gradient force expression does not hold for this situation. The modified expression is still of simple gradient form but contains additional polarization-dependent terms. These terms arise because the relativistic translational velocity induces a quiver motion in the direction of the magnetic force, which is the direction of large field gradients. Consistent perturbation expansion of the equation of motion leads to an effective doubling of this magnetic contribution. The derived ponderomotive force generalizes the polarization-dependent electron motion in a standing wave obtained earlier [A. E. Kaplan and A. L. Pokrovsky, Phys. Rev. Lett. 95, 053601 (2005)]. Comparison with simulations in the case of a realistic, nonidealized, three-dimensional field configuration confirms the general validity of the analytical results.

  8. Polarization-dependent photocurrent in MoS2 phototransistor

    NASA Astrophysics Data System (ADS)

    Li, Jiu; Yu, Wentao; Chu, Saisai; Yang, Hong; Shi, Kebin; Gong, Qihuang

    2015-03-01

    Monolayer or few-layer molybdenum disulfide (MoS2) has attracted increasing interests in studying light-induced electronic effect due to its prominent photo-responsivity at visible spectral range, fast photo-switching rate and high channel mobility. However, the atomically thin layers make the interaction between light and matter much weaker than that in bulk state, hampering its application in two-dimensional material optoelectronics. One of recent efforts was to utilize resonantly enhanced localized surface plasmon for boosting light-matter interaction in MoS2 thin layer phototransistor. Randomly deposited metallic nano-particles were previously reported to modify surface of a back-gated MoS2 transistor for increasing light absorption cross-section of the phototransistor. Wavelength-dependent photocurrent enhancement was observed. In this paper, we report on a back-gated multilayer MoS2 field-effect-transistor (FET), whose surface is decorated with oriented gold nanobar array, of which the size of a single nanobar is 60nm:60nm:120nm. With these oriented nanostructures, photocurrent of the MoS2 FET could be successfully manipulated by a linear polarized incident 633nm laser, which fell into the resonance band of nanobar structure. We find that the drain-source current follows cos2θ relationship with respect to the incident polarization angle. We attribute the polarization modulation effect to the localized enhancement nature of gold nanobar layer, where the plasmon enhancement occurs only when the polarization of incident laser parallels to the longitudinal axis of nanobars and when the incident wavelength matches the resonance absorption of nanobars simultaneously. Our results indicate a promising application of polarization-dependent plasmonic manipulation in two-dimension semiconductor materials and devices.

  9. Effects of microcavities on the spontaneous emission of organic light-emitting diodes with ZnO:Al as the anode

    NASA Astrophysics Data System (ADS)

    Zugang, Liu; Chunjiu, Tang; Weiming, Zhao; Zhilin, Zhang; Xueyin, Jiang; Shaohong, Xu; Nazaré, Maria Helena

    1998-07-01

    Organic light-emitting diodes (LED) with a microcavity structure and an aluminium-doped zinc oxide ZnO:Al (AZO) anode have been fabricated. Effects of microcavities on the spontaneous emission of the organic LED, such as spectral narrowing, intensity enhancement and angle dependence of the emission, have been observed. Different emission colours have been obtained by changing the thickness of the AZO layer and that of a 0953-8984/10/26/025/img10 filler layer. The wavelengths of the cavity modes can be explained on the basis of the calculated total optical thickness of the individual cavities.

  10. Polarization Dependent Azimuthal Scattering From Tilted Fibre Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert Bruce

    Polarization sensitive mode coupling characteristics of tilted fibre Bragg gratings (FBGs) have been exploited to develop a number of useful devices including fibre polarimeters, gain flattening filters, spectrum analyzers, polarization dependent loss (PDL) compensators, reconfigurable optical add / drop multiplexers (ROADM), as well as interferometric, and surface plasmon based sensors. Recently it was demonstrated that a single grating structure could couple the light guided in a fibre to two azimuthally separated, polarization independent, radiated beams. However the reasons for such behaviour had not been fully explained, precluding the complete understanding, exploitation and optimization of this phenomenon. This thesis explains the mechanisms underlying such behaviour through a thorough analytical examination of an existing equation formulated with the Volume Current Method (VCM), quantifying the degree to which a tilted FBG's radiation field is directionally dependent on the phase matching characteristics of a grating's three-dimensional structure as well as the polarization dependent dipole response of the medium itself. Examination of the equation's parameter space, revealed the possibility of three-beam azimuthal responses as well, and resulted in some guidelines for the design and optimization of these devices. Experimental measurements of the out-tapped field are also provided, clearly confirming these theoretical findings and reporting the fabrication of a three-beam azimuthal response grating for the first time. Drawing upon these advances, an improved polarimeter design is proposed that samples more than four detected beams with only two tilted FBGs, theoretically resulting in average Stokes vector error reductions of roughly 20%, facilitating monitoring at lower signal to noise ratios (SNRs). Finally, this thesis undertakes an analysis and re-derivation of the VCM formulation itself, designed to expand its applicability to FBGs written with

  11. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system

    NASA Astrophysics Data System (ADS)

    van Vlack, C.; Kristensen, Philip Trøst; Hughes, S.

    2012-02-01

    We investigate the quantum optical properties of a quantum-dot dipole emitter coupled to a finite-size metal nanoparticle using a photon Green-function technique that rigorously quantizes the electromagnetic fields. We first obtain pronounced Purcell factors and photonic Lamb shifts for both a 7- and 20-nm-radius metal nanoparticle, without adopting a dipole approximation. We then consider a quantum-dot photon emitter positioned sufficiently near the metal nanoparticle so that the strong-coupling regime is possible. Accounting for nondipole interactions, quenching, and photon transport from the dot to the detector, we demonstrate that the strong-coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or quartet with two of the four peaks anticrossing, which survives in spite of significant nonradiative decays. We discuss the emitted light spectrum and the effects of quenching for two different dipole polarizations.

  12. Enhancement of Raman scattering for an atom or molecule near a metal nanocylinder: Quantum theory of spontaneous emission and coupling to surface plasmon modes

    NASA Astrophysics Data System (ADS)

    Zuev, V. S.; Frantsesson, A. V.; Gao, J.; Eden, J. G.

    2005-06-01

    An analytic expression for the electromagnetic enhancement of the spontaneous emission rate and Raman scattering cross-section for an excited atom or molecule in close proximity to a metal nanocylinder has been derived by quantum theory. Coupling of the atomic or molecular optical radiation into the TM0 surface plasmon mode of the nanocylinder results in reradiation by the cylinder, a process that is most efficient when the incident radiation is linearly polarized, with the electric field oriented parallel to the axis of the nanocylinder. For a silver cylinder having a radius and length of 5 and 20nm, respectively, the enhancement in the spontaneous emission rate is >107 for ℏω0≃2.4eV (λ =514nm), which corresponds to an increase of ≈1014 in the Raman scattering cross section. This result, as well as the prediction that the atomic dipole generates broadband, femtosecond pulses, are in qualitative agreement with previously reported experiments involving metal nanoparticle aggregates. The theoretical results described here are expected to be of value in guiding future nonlinear optical experiments in which carbon nanotubes or metal nanowires with controllable physical and electrical characteristics are patterned onto a substrate and coupled with emitting atoms or molecules.

  13. Polarization extinction ratio and polarization dependent intensity noise in long-pulse supercontinuum generation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chin, Catherine; Dybbro Engelsholm, Rasmus; Moselund, Peter Morten; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian; Bang, Ole

    2017-02-01

    We investigate the polarization of supercontinuum generated in nominally non-birefringent silica photonic crystal fibers over the entire spectrum of the source (450-2400 nm). We demonstrate that the degree of polarization varies over the spectrum but that some parts of the spectrum show stable polarization extinction ratios (PER) of over 10 dB. We experimentally demonstrate how the spectrally resolved polarization develops with increasing power and along the length of the nonlinear fiber. The experimental results are compared to numerical simulations of coupled polarization states mimicking the experimental conditions. Subsequently, a single-shot pulse-to-pulse polarization dependent relative intensity noise (PD-RIN) was measured and the noise characteristics were analyzed using long-tailed and rogue wave statistics. To do this, we used a range of 10 nm narrow bandpass filters (BPF) between 550 nm to 2200 nm, and fast photo detectors, to record 800 consecutive pulses. Peaks from these pulses are first extracted, then distribution of their pulse height histogram (PHH) is constructed. Analysis using higher-order moments about the mean (variance, skewness and kurtosis) showed that: (1) around the pump wavelength of 1064nm, the PD-RIN is lowest, PHH exhibits a Gaussian distribution, and higher order moments are zero, (2) further away from pump, PD-RIN increases in parabolic fashion, PHH follows a left-skewed long-tailed Gamma distribution, and higher-order moments increase. Spectrally, the difference of the PD-RIN in the two orthogonal axes increases with PER.

  14. Collective Chemotaxis Requires Contact-Dependent Cell Polarity

    PubMed Central

    Theveneau, Eric; Marchant, Lorena; Kuriyama, Sei; Gull, Mazhar; Moepps, Barbara; Parsons, Maddy; Mayor, Roberto

    2010-01-01

    Summary Directional collective migration is now a widely recognized mode of migration during embryogenesis and cancer. However, how a cluster of cells responds to chemoattractants is not fully understood. Neural crest cells are among the most motile cells in the embryo, and their behavior has been likened to malignant invasion. Here, we show that neural crest cells are collectively attracted toward the chemokine Sdf1. While not involved in initially polarizing cells, Sdf1 directionally stabilizes cell protrusions promoted by cell contact. At this cell contact, N-cadherin inhibits protrusion and Rac1 activity and in turn promotes protrusions and activation of Rac1 at the free edge. These results show a role for N-cadherin during contact inhibition of locomotion, and they reveal a mechanism of chemoattraction likely to function during both embryogenesis and cancer metastasis, whereby attractants such as Sdf1 amplify and stabilize contact-dependent cell polarity, resulting in directional collective migration. PMID:20643349

  15. Dependence of polar cap potential drop on interplanetary parameters

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Spiro, R. W.; Hill, T. W.

    1981-01-01

    The convection potential drop across the polar cap is computed from data obtained on high-inclination low-altitude satellites. Potential measurements are correlated with various combinations of parameters measured simultaneously in the upstream solar wind. Most of the potential drop is successfully predicted by merging theory, although a significant background potential drop of 35 kV does not depend on IMF parameters and is attributed to a process other than merging. Results indicate that small values of the IMF are amplified by a factor of 5-10 at the dayside magnetopause, which, when taken into account, improves correlations between IMF parameters and polar cap potential drop. Potential drop is better correlated with IMF parameters than with geomagnetic indices, due to nonlinear response of the magnetosphere affecting geomagnetic activity indices.

  16. On the temperature dependence of polar stratospheric clouds

    SciTech Connect

    Fiocco, G.; Cacciani, M.; Di Girolamo, P. ); Fua, D. CNR De Luisi, J. )

    1991-03-01

    Polar stratospheric clouds were frequently observed by lidar at the Amundsen-Scott South Pole Station during May-October 1988. The dependence of the backscattering cross section on the temperature can be referred to transitions of the HNO{sub 3}/H{sub 2}O system: it appears possible to distinguish the pure trihydrate from the mixed ice-trihydrate phase in the composition of the aerosol and, in some cases, to bracket the HNO{sub 3} and H{sub 2}O content of the ambient gas, and to provide indications on the size of the particles.

  17. Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir; Nees, John; Krushelnick, Karl

    2014-02-01

    For the new generation of the ultra-high power lasers with tens of PW of output power, kJ-level energies have to be reached. Our modeling, applied to Ti:sapphire amplifiers, demonstrates for the first time, according our knowledge, that Transverse Amplified Spontaneous Emission (TASE) places an additional restriction on storing and extracting energy in larger gain apertures, even stronger than transverse parasitic generation (TPG). Nevertheless, we demonstrate that extracting during pumping (EDP) can significantly reduce parasitic losses due to both TASE and TPG.

  18. Observation of self-amplified spontaneous emission and exponential growth at 530 nm

    PubMed

    Milton; Gluskin; Biedron; Dejus; Den Hartog PK; Galayda; Kim; Lewellen; Moog; Sajaev; Sereno; Travish; Vinokurov; Arnold; Benson; Berg; Biggs; Borland; Carwardine; Chae; Decker; Deriy; Erdmann; Friedsam; Gold; Grelick

    2000-07-31

    Experimental evidence for self-amplified spontaneous emission (SASE) at 530 nm is reported. The measurements were made at the low-energy undulator test line facility at the Advanced Photon Source, Argonne National Laboratory. The experimental setup and details of the experimental results are presented, as well as preliminary analysis. This experiment extends to shorter wavelengths the operational knowledge of a linac-based SASE free-electron laser and explicitly shows the predicted exponential growth in intensity of the optical pulse as a function of length along the undulator.

  19. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics

    SciTech Connect

    Bronn, Nicholas T. Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M.; Liu, Yanbing; Houck, Andrew A.

    2015-10-26

    The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.

  20. Spontaneous emission of a chiral molecule near a cluster of two chiral spherical particles

    SciTech Connect

    Guzatov, D V; Klimov, V V

    2015-03-31

    We have obtained and investigated analytical expressions for the radiative spontaneous decay rate of a chiral (optically active) molecule located near a cluster of two identical chiral (biisotropic) spherical particles. It is found that the composition of the particles, their location and size have a significant effect on the spontaneous emission of chiral molecules. In particular, it is shown that in the case of nanoparticles of chiral metamaterials, the radiative spontaneous decay rate for the 'right-' and 'left-handed' enantiomers of chiral molecules located in the gap of the cluster are significantly different. (metamaterials)

  1. Model for nonlinear behavior in the self-amplified spontaneous-emission free-electron laser.

    PubMed

    Krinsky, S

    2004-06-01

    We introduce a simplified model for the saturation of a self-amplified spontaneous-emission free-electron laser. Within this model, we determine the effect of nonlinearity upon the statistical properties of the output radiation. Comparing our results with the computer simulations of Saldin, Schneidmiller, and Yurkov [The Physics of Free Electron Lasers (Springer-Verlag, Berlin, 2000)], we find that the model provides a good description of the average intensity, field correlation function, and coherence time, but underestimates the intensity fluctuation. Asymmetric spectral broadening phenomena are not included in the model.

  2. Model for nonlinear behavior in the self-amplified spontaneous-emission free-electron laser

    NASA Astrophysics Data System (ADS)

    Krinsky, S.

    2004-06-01

    We introduce a simplified model for the saturation of a self-amplified spontaneous-emission free-electron laser. Within this model, we determine the effect of nonlinearity upon the statistical properties of the output radiation. Comparing our results with the computer simulations of Saldin, Schneidmiller, and Yurkov [The Physics of Free Electron Lasers (Springer-Verlag, Berlin, 2000)], we find that the model provides a good description of the average intensity, field correlation function, and coherence time, but underestimates the intensity fluctuation. Asymmetric spectral broadening phenomena are not included in the model.

  3. Equivalent circuit theory of spontaneous emission power in semiconductor laser optical amplifiers

    NASA Astrophysics Data System (ADS)

    Chu, James Chi-Yin; Ghafouri-Shiraz, H.

    1994-05-01

    An equivalent circuit model for a semiconductor laser amplifier (SLA) has been developed. This model can be used with a transfer matrix method (TMM) to analyze the performance of a SLA. The validity of the model is explored in this paper by analyzing the spontaneous emission noise power in a Fabry-Perot SLA with a uniform distribution of material gain coefficient. The result is found to be identical with that derived by the Green function approach. The physical reasons for the validity of the equivalent circuit model are also discussed, and possible further applications of the model are suggested.

  4. Ultrafast spontaneous emission modulation of graphene quantum dots interacting with Ag nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwei; Lu, Jian; Wang, Liang; Tian, Linfan; Deng, Xingxia; Tian, Lijun; Pan, Dengyu; Wang, Zhongyang

    2016-07-01

    We investigated the strong interaction between graphene quantum dots and silver nanoparticles in solution using time-resolved photoluminescence techniques. In solution, the silver nanoparticles are surrounded by graphene quantum dots and interacted with graphene quantum dots through exciton-plasmon coupling. An ultrafast spontaneous emission process (lifetime 27 ps) was observed in such a mixed solution. This ultrafast lifetime corresponds to the emission rate exceeding 35 GHz, with the purcell enhancement by a factor of ˜12. These experiment results pave the way for the realization of future high speed light sources applications.

  5. Ultrafast spontaneous emission modulation of graphene quantum dots interacting with Ag nanoparticles in solution

    SciTech Connect

    Zhao, Jianwei; Lu, Jian Wang, Zhongyang; Wang, Liang; Tian, Linfan; Deng, Xingxia; Tian, Lijun; Pan, Dengyu

    2016-07-11

    We investigated the strong interaction between graphene quantum dots and silver nanoparticles in solution using time-resolved photoluminescence techniques. In solution, the silver nanoparticles are surrounded by graphene quantum dots and interacted with graphene quantum dots through exciton-plasmon coupling. An ultrafast spontaneous emission process (lifetime 27 ps) was observed in such a mixed solution. This ultrafast lifetime corresponds to the emission rate exceeding 35 GHz, with the purcell enhancement by a factor of ∼12. These experiment results pave the way for the realization of future high speed light sources applications.

  6. Amplified spontaneous emission in an organic semiconductor multilayer waveguide structure including a highly conductive transparent electrode

    NASA Astrophysics Data System (ADS)

    Reufer, M.; Feldmann, J.; Rudati, P.; Ruhl, A.; Müller, D.; Meerholz, K.; Karnutsch, C.; Gerken, M.; Lemmer, U.

    2005-05-01

    We demonstrate that the amplified spontaneous emission (ASE) threshold in multilayer waveguide structures suitable for the use in future organic injection lasers can be drastically reduced by inserting a crosslinked hole transport layer (HTL) between a highly conductive indium tin oxide (ITO) electrode and the polymer emission layer. While no ASE is observed when the active layer material is directly spincoated onto the ITO electrode, it can be completely restored upon insertion of a 300-nm-thick HTL. This observation is attributed to reduced attenuation of the waveguided mode enabling the ASE process and is theoretically confirmed by calculations of the mode intensity fraction propagating in the absorptive ITO electrode.

  7. Optical cavity temperature measurement based on the first overtones spontaneous emission spectra for HF chemical laser

    NASA Astrophysics Data System (ADS)

    Tang, Shukai; Li, Liucheng; Duo, Liping; Wang, Yuanhu; Yu, Haijun; Jin, Yuqi; Sang, Fengting

    2015-02-01

    An optical cavity temperature test method has been established for the HF chemical laser. This method assumes that in HF optical cavity the rotational distribution of vibrationally excited HF molecules meets the statistical thermodynamic distribution, the first overtones (v = 3-1 and 2-0) spontaneous emission spectral intensity distribution is obtained by using OMA V, the optical cavity temperature is calculated by linear fitting the rotational thermal equilibrium distribution formula for each HF vibrationally excited state. This method is simple, reliable, and repeatable. This method can be used to test the optical cavity temperature not only without lasing, but also with lasing.

  8. Spontaneous emission measurements from a low voltage pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    Recently we have carried out measurements on the spontaneous microwave (8.2 GHz) emission which results when a low-voltage (55kV) pre-punched electron beam is passed through a waveguide in a wiggler magnetic field. The variation of the spontaneous emission output power level with the average electron beam current and energy are reported and compared with the theory presented by Doria et al. The effect of the degree of bunching of the electron beam has also been observed and compared with theory.

  9. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission.

    PubMed

    Yang, Zining; Wang, Hongyan; Lu, Qisheng; Hua, Weihong; Xu, Xiaojun

    2011-11-07

    Diode pumped alkali vapor amplifier (DPAA) is a potential candidate in high power laser field. In this paper, we set up a model for the diode double-side-pumped alkali vapor amplifier. For the three-dimensional volumetric gain medium, both the longitudinal and transverse amplified spontaneous emission (ASE) effects are considered and coupled into the rate equations. An iterative numerical approach is proposed to solve the model. Some important influencing factors are simulated and discussed. The results show that in the case of saturated amplification, the ASE effect can be well suppressed rather than a limitation in power scaling of a DPAA.

  10. Modified spontaneous emission of organic molecules in-filled in inverse opals.

    PubMed

    Deng, Lier; Wang, Yongsheng; He, Dawei

    2011-11-01

    Inverse opals were prepared by replication of colloidal crystal templates made from silica spheres 298 nm in diameter. The air between the silica spheres was filled with the mixture of the monomer poly(methyl methacrylate) (PMMA) and the organic molecule Alq3 that can be subsequently polymerized. After removing the silica sphere templates, the photonic bandgap effect on the spontaneous emission of Alq3 were investigated. The dip in the fluorescence spectrum was interpreted in terms of redistribution of the photon density of states in the photonic crystal.

  11. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  12. Quantum information-holding single-photon router based on spontaneous emission

    NASA Astrophysics Data System (ADS)

    Yan, GuoAn; Qiao, HaoXue; Lu, Hua; Chen, AiXi

    2017-09-01

    In this paper, we propose a single-photon router via the use of a four-level atom system coupled with two one-dimensional coupled-resonator waveguides. A single photon can be directed from one quantum channel into another by atomic spontaneous emission. The coherent resonance and the photonic bound states lead to the perfect reflection appearing in the incident channel. The fidelity of the atom is related to the magnitude of the coupling strength and can reach unit when the coupling strength matches g a = g b . This shows that the transfer of a single photon into another quantum channel has no influence on the fidelity at special points.

  13. Temperature dependence of spectral induced polarization data: experimental results and membrane polarization theory

    NASA Astrophysics Data System (ADS)

    Bairlein, Katharina; Bücker, Matthias; Hördt, Andreas; Hinze, Björn

    2016-04-01

    Spectral induced polarization measurements are affected by temperature variations due to a variety of temperature-dependent parameters that control the complex electrical conductivity. Most important is the influence of the ion mobility, which increases with increasing temperature. It is responsible for the increase of the conductivity of the fluid in the pores with temperature and influences the electrical double layer on the mineral surface. This work is based on laboratory measurements of 13 sandstone samples from different sources with different geological and petrophysical characteristics. We measured the complex impedance in a frequency range from 0.01 to 100 Hz and a temperature range from 0 to 40 °C. The main observation is a decrease of the characteristic time (defined by the inverse of the frequency, at which the phase shift is maximum) with increasing temperature. The strength of this decrease differs from one sample to another. The temperature dependence of the phase shift magnitude cannot easily be generalized, as it depends on the particular sample. The experimental findings suggest that neglecting the influence of temperature on complex conductivity may lead to significant errors when estimating hydraulic conductivity from relaxation time. We also simulate the temperature dependence with a theoretical model of membrane polarization and review some of the model properties, with an emphasis on the temperature dependence of the parameters. The model reproduces several features characterizing the measured data, including the temperature dependence of the characteristic times. Computed tomography and microscope images of the pore structure of three samples also allow us to associate differences in the geometrical parameters used in the modelling with pore scale parameters of the actual samples.

  14. Polarization dependent enhanced infrared transmission through complementary nanostructured gold films

    NASA Astrophysics Data System (ADS)

    Behera, Gangadhar; Ramakrishna, S. Anantha

    2016-05-01

    A pair of complementary-structured gold films, with periodic rectangular nanoscale patches and rectangular holes in the complementary layer arranged in a stretched hexagonal lattice and spaced apart by 200 nm of a photoresist film, were fabricated by laser interference lithography and subsequent physical vapor deposition of gold. The pair of complementary films showed a polarization-dependent extraordinary transmission (EOT) at mid-infrared frequencies, evidenced by a resonant dip in reflectance and strong enhancement of the transmittance for light polarized perpendicular to the long axis of the rectangular structures. Numerical simulations confirm the enhanced transmission and indicate the involvement of the TE01 wave-guide mode resonance of the rectangular structures in the resonant transmittance. The enhanced transmittance in the complementary pair of structured films separated by sub-wavelength distances, which is otherwise be expected to be opaque, is surprising. The Poynting vector maps show that the energy flow weaves across the openings in the two structured films. Dependence on the metal thickness and period of the structures have been investigated. Sensitivity of the EOT peak to the surrounding medium's refractive index is studied by simulations to reveal its potential for sensor applications.

  15. Polarization-dependent extraordinary optical transmission from upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Peng Hui; Salcedo, Walter J.; Pichaandi, Jothirmayanantham; van Veggel, Frank C. J. M.; Brolo, Alexandre G.

    2015-10-01

    Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+/Er3+) nanoparticles (UC NPs) at ~665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ~550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold, depending on the experimental conditions.Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+/Er3+) nanoparticles (UC NPs) at ~665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ~550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold

  16. Visible-infrared self-amplified spontaneous emission amplifier free electron laser undulator

    NASA Astrophysics Data System (ADS)

    Carr, Roger; Cornacchia, Max; Emma, Paul; Nuhn, Heinz-Dieter; Poling, Ben; Ruland, Robert; Johnson, Erik; Rakowsky, George; Skaritka, John; Lidia, Steve; Duffy, Pat; Libkind, Marcus; Frigola, Pedro; Murokh, Alex; Pellegrini, Claudio; Rosenzweig, James; Tremaine, Aaron

    2001-12-01

    The visible-infrared self-amplified spontaneous emission amplifier (VISA) free electron laser (FEL) is an experimental device designed to show self-amplified spontaneous emission (SASE) to saturation in the near infrared to visible light energy range. It generates a resonant wavelength output from 800-600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is designed to show how SASE FEL theory corresponds with experiment in this wavelength range, using an electron beam with emittance close to that planned for the future Linear Coherent Light Source at SLAC. VISA comprises a 4 m pure permanent magnet undulator with four 99 cm segments, each of 55 periods, 18 mm long. The undulator has distributed focusing built into it, to reduce the average beta function of the 70-85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walk-off, or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, we were able to control trajectory walk-off to less than +/-50 μm per field gain length.

  17. The generation of amplified spontaneous emission in high-power CPA laser systems.

    PubMed

    Keppler, Sebastian; Sävert, Alexander; Körner, Jörg; Hornung, Marco; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte Christoph

    2016-03-01

    An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high-intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high-intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high-contrast front-end design are derived regarding the necessary contrast improvement and the amplified "clean" output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high-intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.

  18. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    SciTech Connect

    Xie, M.; Kim, K.J.

    1995-12-31

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4{pi}. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY.

  19. Gravity-dependent polarity of cytoplasmic streaming in Nitellopsis

    NASA Technical Reports Server (NTRS)

    Wayne, R.; Staves, M. P.; Leopold, A. C.

    1990-01-01

    The internodal cells of the characean alga Nitellopsis obtusa were chosen to investigate the effect of gravity on cytoplasmic streaming. Horizontal cells exhibit streaming with equal velocities in both directions, whereas in vertically oriented cells, the downward-streaming cytoplasm flows ca. 10% faster than the upward-streaming cytoplasm. These results are independent of the orientation of the morphological top and bottom of the cell. We define the ratio of the velocity of the downward- to the upward-streaming cytoplasm as the polar ratio (PR). The normal polarity of a cell can be reversed (PR < 1) by treatment with neutral red (NR). The NR effect may be the result of membrane hyperpolarization, caused by the opening of K+ channels. The K+ channel blocker TEA Cl- inhibits the NR effect. External Ca2+ is required for normal graviresponsiveness. The [Ca2+] of the medium determines the polarity of cytoplasmic streaming. Less than 1 micromole Ca2+ resulted in a PR < 1 while greater than 1 micromole Ca2+ resulted in the normal gravity response. The voltage-dependent Ca(2+)-channel blocker, nifedipine, inhibited the gravity response in a reversible manner, while treatment with LaCl3 resulted in a PR < 1, indicating the presence of two types of Ca2+ channels. A new model for graviperception is presented in which the whole cell acts as the gravity sensor, and the plasma membrane acts as the gravireceptor. This is supported by ligation and UV irradiation experiments which indicate that the membranes at both ends of the cell are required for graviperception. The density of the external medium also affects the PR of Nitellopsis. Calculations are presented that indicate that the weight of the protoplasm may provide enough potential energy to open ion channels.

  20. Gravity-dependent polarity of cytoplasmic streaming in Nitellopsis

    NASA Technical Reports Server (NTRS)

    Wayne, R.; Staves, M. P.; Leopold, A. C.

    1990-01-01

    The internodal cells of the characean alga Nitellopsis obtusa were chosen to investigate the effect of gravity on cytoplasmic streaming. Horizontal cells exhibit streaming with equal velocities in both directions, whereas in vertically oriented cells, the downward-streaming cytoplasm flows ca. 10% faster than the upward-streaming cytoplasm. These results are independent of the orientation of the morphological top and bottom of the cell. We define the ratio of the velocity of the downward- to the upward-streaming cytoplasm as the polar ratio (PR). The normal polarity of a cell can be reversed (PR < 1) by treatment with neutral red (NR). The NR effect may be the result of membrane hyperpolarization, caused by the opening of K+ channels. The K+ channel blocker TEA Cl- inhibits the NR effect. External Ca2+ is required for normal graviresponsiveness. The [Ca2+] of the medium determines the polarity of cytoplasmic streaming. Less than 1 micromole Ca2+ resulted in a PR < 1 while greater than 1 micromole Ca2+ resulted in the normal gravity response. The voltage-dependent Ca(2+)-channel blocker, nifedipine, inhibited the gravity response in a reversible manner, while treatment with LaCl3 resulted in a PR < 1, indicating the presence of two types of Ca2+ channels. A new model for graviperception is presented in which the whole cell acts as the gravity sensor, and the plasma membrane acts as the gravireceptor. This is supported by ligation and UV irradiation experiments which indicate that the membranes at both ends of the cell are required for graviperception. The density of the external medium also affects the PR of Nitellopsis. Calculations are presented that indicate that the weight of the protoplasm may provide enough potential energy to open ion channels.

  1. Modelling polarization dependent absorption: The vectorial Lambert-Beer law

    NASA Astrophysics Data System (ADS)

    Franssens, G.

    2014-07-01

    The scalar Lambert-Beer law, describing the absorption of unpolarized light travelling through a linear non-scattering medium, is simple, well-known, and mathematically trivial. However, when we take the polarization of light into account and consider a medium with polarization dependent absorption, we now need a Vectorial Lambert-Beer Law (VLBL) to quantify this interaction. Such a generalization of the scalar Lambert-Beer law appears not to be readily available. A careful study of this topic reveals that it is not a trivial problem. We will see that the VLBL is not and cannot be a straightforward vectorized version of its scalar counterpart. The aim of the work is to present the general form of the VLBL and to explain how it arises. A reasonable starting point to derive the VLBL is the Vectorial Radiative Transfer Equation (VRTE), which models the absorption and scattering of (partially) polarized light travelling through a linear medium. When we turn off scattering, the VRTE becomes an infinitesimal model for the VLBL holding in the medium. By integrating this equation, we expect to find the VLBL. Surprisingly, this is not the end of the story. It turns out that light propagation through a medium with polarization-dependent absorption is mathematically not that trivial. The trickiness behind the VLBL can be understood in the following terms. The matrix in the VLBL, relating any input Stokes vector to the corresponding output Stokes vector, must necessarily be a Mueller matrix. The subset of invertible Mueller matrices forms a Lie group. It is known that this Lie group contains the ortho-chronous Lorentz group as a subgroup. The group manifold of this subgroup has a (well-known) non-trivial topology. Consequently, the manifold of the Lie group of Mueller matrices also has (at least the same, but likely a more general) non-trivial topology (the full extent of which is not yet known). The type of non-trivial topology, possessed by the manifold of (invertible

  2. Collective chemotaxis requires contact-dependent cell polarity.

    PubMed

    Theveneau, Eric; Marchant, Lorena; Kuriyama, Sei; Gull, Mazhar; Moepps, Barbara; Parsons, Maddy; Mayor, Roberto

    2010-07-20

    Directional collective migration is now a widely recognized mode of migration during embryogenesis and cancer. However, how a cluster of cells responds to chemoattractants is not fully understood. Neural crest cells are among the most motile cells in the embryo, and their behavior has been likened to malignant invasion. Here, we show that neural crest cells are collectively attracted toward the chemokine Sdf1. While not involved in initially polarizing cells, Sdf1 directionally stabilizes cell protrusions promoted by cell contact. At this cell contact, N-cadherin inhibits protrusion and Rac1 activity and in turn promotes protrusions and activation of Rac1 at the free edge. These results show a role for N-cadherin during contact inhibition of locomotion, and they reveal a mechanism of chemoattraction likely to function during both embryogenesis and cancer metastasis, whereby attractants such as Sdf1 amplify and stabilize contact-dependent cell polarity, resulting in directional collective migration. (c) 2010 Elsevier Inc. All rights reserved.

  3. Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain.

    PubMed

    Dong, H; Shum, P; Yan, M; Zhou, J Q; Ning, G X; Gong, Y D; Wu, C Q

    2006-06-12

    A generalized Mueller matrix method (GMMM) is proposed to measure the polarization mode dispersion (PMD) in an optical fiber system with polarization-dependent loss or gain (PDL/G). This algorithm is based on the polar decomposition of a 4X4 matrix which corresponds to a Lorentz transformation. Compared to the generalized Poincaré sphere method, the GMMM can measure PMD accurately with a relatively larger frequency step, and the obtained PMD data has very low noise level.

  4. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    PubMed

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways.

  5. Polarization-dependent imaging contrast in abalone shells

    NASA Astrophysics Data System (ADS)

    Metzler, Rebecca A.; Zhou, Dong; Abrecht, Mike; Chiou, Jau-Wern; Guo, Jinghua; Ariosa, Daniel; Coppersmith, Susan N.; Gilbert, P. U. P. A.

    2008-02-01

    Many biominerals contain micro- or nanocrystalline mineral components, organized accurately into architectures that confer the material with improved mechanical performance at the macroscopic scale. We present here an effect which enables us to observe the relative orientation of individual crystals at the submicron scale. We call it polarization-dependent imaging contrast (PIC), as it is an imaging development of the well-known x-ray linear dichroism. Most importantly, PIC is obtained in situ, in biominerals. We present here PIC in the prismatic and nacreous layers of Haliotis rufescens (red abalone), confirm it in geologic calcite and aragonite, and corroborate the experimental data with theoretical simulated spectra. PIC reveals different and unexpected aspects of nacre architecture that have inspired theoretical models for nacre formation.

  6. Quantum theory of spontaneous emission in a one-dimensional optical cavity with two-side output coupling

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Ping; Ujihara, Kikuo

    1990-03-01

    A quantum theory of spontaneous emission from an initially excited two-level atom in a one-dimensional optical cavity with output coupling from both sides is developed. Orthonormal mode functions with a continuous spectrum are employed, which are derived by imposing a periodic boundary condition on the whole space with a period much larger than the cavity length. The delay differential equation of the atomic state of Cook and Milonni [Phys. Rev. A 35, 5081 (1987)] is re-derived in a strict manner, where the reflectivity of the cavity mirrors is included naturally in the mode functions. An approximate solution at a single-resonant-mode limit shows the results of ``vacuum'' Rabi oscillation in an underdamped cavity and enhanced spontaneous emission rate in an overdamped cavity. For the latter case, it is found that in the optical range the spontaneous emission rate is enhanced by a factor F (finesse of the cavity).

  7. Spontaneous Emission Between - and Para-Levels of Water-Ion H_2O^+

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Harada, Kensuke; Nanbu, Shinkoh; Oka, Takeshi

    2012-06-01

    Nuclear spin conversion interaction of water ion, H_2O^+, has been studied to derive spontaneous emission lifetime between ortho- and para-levels. H_2O^+ is a radical ion with the ^2B_1 electronic ground state. Its off-diagonal electron spin-nuclear spin interaction term, Tab(S_aΔ I_b + S_bΔ I_a), connects para and ortho levels, because Δ I = I_1 - I_2 has nonvanishing matrix elements between I = 0 and 1. The mixing by this term with Tab = 72 MHz predicted by ab initio theory in the MRD-CI/Bk level, is many orders of magnitude larger than for closed shell molecules because of the large magnetic interaction due to the un-paired electron. Using the molecular constants reported by Mürtz et al. by FIR-LMR, we searched for ortho and para coupling channels below 1000 cm-1 with accidental near degeneracy between para and ortho levels. For example, hyperfine components of the 42,2(ortho) and 33,0(para) levels mix by 1.2 × 10-3 due to their near degeneracy (Δ E = 0.417 cm-1), and give the ortho-para spontaneous emission lifetime of about 0.63 year. The most significant low lying 10,1(para) and 11,1(ortho) levels, on the contrary, mix only by 8.7 × 10-5 because of their large separation (Δ E = 16.267 cm-1) and give the spontaneous emission lifetime from 10,1(para) to 00,0(ortho) of about 100 year.These results qualitatively help to understand the observed high ortho- to para- H_2O^+ ratio of 4.8 ± 0.5 toward Sgr B2 but they are too slow to compete with the conversion by collision unless the number density of the region is very low (n ˜1 cm-3) or radiative temperature is very high (T_r > 100 K). M. Staikova, B. Engels, M. Peric, and S.D. Peyerimhoff, Mol. Phys. 80, 1485 (1993) P. Mürtz, L.R. Zink, K.M. Evenson, and J.M. Brown J. Chem. Phys. 109, 9744 (1998). LP. Schilke, et al., A&A 521, L11 (2010).

  8. Measuring polarization dependent dispersion of non-polarizing beam splitter cubes with spectrally resolved white light interferometry

    NASA Astrophysics Data System (ADS)

    Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.

    2017-06-01

    In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.

  9. Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers.

    PubMed

    Jovanovic, Nemanja; Thomas, Jens; Williams, Robert J; Steel, M J; Marshall, Graham D; Fuerbach, Alexander; Nolte, Stefan; Tünnermann, Andreas; Withford, Michael J

    2009-04-13

    Fiber Bragg gratings inscribed with a femtosecond laser using the point-by-point (PbP) technique have polarization dependent grating strength (PDGS) and exhibit birefringence. In this paper we quantify the dependence of these two properties on the ellipticity, position in the core and size of the micro-voids at the center of each refractive index modulation. We demonstrate that the effective modal index for type II gratings written with a femtosecond laser using the PbP method must be lower than that of the pristine fiber, and for the first time associate an axis with a polarization such that the long axis of the elliptically-shaped index modulations corresponds to the slow axis of the gratings. We exploit the PDGS of two gratings used as frequency-selective feedback elements as well as appropriate coiling, to realize a linearly-polarized fiber laser with a low birefringence fiber cavity. We show that the polarization-dependent grating strength is a function of the writing pulse energy and that only gratings optimized for this property will linearly polarize the fiber laser. The fiber lasers have high extinction ratios (>30 dB) for fiber lengths of up to 10 m and very stable polarized output powers (<0.5% amplitude fluctuations) in the range of 20-65 mW at 1540 nm. This method of polarization discrimination allows the realization of highly robust and simplified linearly polarized fiber lasers.

  10. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus.

    PubMed

    Kim, Jungcheol; Lee, Jae-Ung; Lee, Jinhwan; Park, Hyo Ju; Lee, Zonghoon; Lee, Changgu; Cheong, Hyeonsik

    2015-11-28

    We investigated polarization dependence of the Raman modes in black phosphorus (BP) using five different excitation wavelengths. The crystallographic orientation was determined by comparing polarized optical microscopy with high-resolution transmission electron microscopy analysis. In polarized Raman spectroscopy, the B2g mode shows the same polarization dependence regardless of the excitation wavelength or the sample thickness. On the other hand, the Ag(1) and Ag(2) modes show a peculiar polarization behavior that depends on the excitation wavelength and the sample thickness. The thickness dependence can be explained by considering the anisotropic interference effect due to the birefringence and dichroism of the BP crystal, but the wavelength dependence cannot be explained. We propose a simple and fail-proof procedure to determine the orientation of a BP crystal by combining polarized Raman scattering with polarized optical microscopy.

  11. High-power near-diffraction-limited solid-state amplified spontaneous emission laser devices.

    PubMed

    Smith, G; Shardlow, P C; Damzen, M J

    2007-07-01

    We present investigations into high-power scaling of solid-state amplified spontaneous emission (ASE) laser sources by use of two high-gain (~10(4)) Nd:YVO(4) bounce amplifiers. The sources deliver high power with a high-quality spatial output, but unlike a laser they have a high misalignment tolerance and do not require a precisely aligned cavity. In one system with two amplifiers, we demonstrate an ASE source with 24.5W of output power with good spatial quality, M(2)<2.5 in the horizontal and M(2)<1.2 in the vertical. In a more sophisticated setup, the two amplifiers are arranged in a loop configuration producing 30W of ASE output with near-diffraction-limited spatial quality, with M(2)<1.3 in the horizontal and M(2)<1.2 in the vertical, at an ~38% optical-to-optical conversion efficiency.

  12. Amplified spontaneous emission in polymer films doped with a perylenediimide derivative.

    PubMed

    Calzado, Eva M; Villalvilla, José M; Boj, Pedro G; Quintana, José A; Gómez, Rafael; Segura, José L; Díaz García, María A

    2007-06-20

    The presence of amplified spontaneous emission (ASE) by optical pump in polystyrene films doped with N,N'-di(10-nonadecyl)perylene-3,4:9,10-tetracarboxylic diimide (PDI-N) in a range of PDI-N concentrations between 0.25 and 5 wt. % is reported. Gain coefficients up to 10 cm(-1), at a pump intensity of 74 kW/cm2, were obtained. The lowest thresholds (approximately 15 kW/cm2) and largest photostabilities measured at 50% (approximately 50 min, i.e., 30,000 pump pulses) were obtained for concentrations up to 1 wt. %. The observation of an increase in the ASE threshold and a decrease in the photostability for larger concentrations is attributed to the presence of aggregated species.

  13. Flexible all-polymer waveguide for low threshold amplified spontaneous emission

    PubMed Central

    Smirnov, José R. Castro; Zhang, Qi; Wannemacher, Reinhold; Wu, Longfei; Casado, Santiago; Xia, Ruidong; Rodriguez, Isabel; Cabanillas-González, Juan

    2016-01-01

    The fabrication of all polymer optical waveguides, based on a highly fluorescent conjugated polymer (CP) poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) and a mechanically flexible and biodegradable polymer, cellulose acetate (CA), is reported. The replication by hot embossing of patterned surfaces in CA substrates, onto which high quality F8BT films can be easily processed by spin coating, is exploited to produce an entirely plastic device that exhibits low optical loss and low threshold for amplified spontaneous emission (ASE). As a result, highly transparent and flexible waveguides are obtained, with excellent optical properties that remain unaltered after bending, allowing them to be adapted in various flexible photonic devices. PMID:27686745

  14. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Wang, Zhenxing; Shastri, Bhavin J; Chang, Matthew P; Frost, Nicholas A; Prucnal, Paul R

    2014-01-13

    A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase.

  15. Tunable amplified spontaneous emission in graphene quantum dots doped cholesteric liquid crystals.

    PubMed

    Cao, Mingxuan; Yang, Siwei; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yu, Yu; Ding, Gu; Zhang, Guizhong; Yao, Jianquan

    2017-03-20

    Graphene quantum dots (GQDs) have received great attention owing to their unique structure and novel phenomena of optical absorption/emission. In this letter, we observed the tunable amplified spontaneous emission (ASE) in GQDs doped cholesteric liquid crystals (CLC) for the first time. The GQDs are dispersed in CLC homogeneously with the weight ratio of 0.5 wt%. Under optical excitation, a typical ASE is triggered in the system above a 1.25 mJ/cm2 threshold. In addition, the emission peak at the long wavelength edge of the photonic bandgap shifts from 662 nm to 669 nm with the change of working temperature. Combining the GQDs gain material and the self-assembled CLC resonator has great potential in fabricating ASE source and laser devices with advantages of low cost, simple preparation and photostability, and non-toxicity.

  16. Three-dimensional analysis of harmonic generation in self-amplified spontaneous emission.

    SciTech Connect

    Huang, Z.; Kim, K.-J.

    1999-09-01

    In a high-gain free-electron laser, strong bunching at the fundamental wavelength can drive substantial harmonic bunching and sizable power levels at the harmonic frequencies. In this paper, we investigate the three-dimensional evolution of the harmonic fields based on the coupled Maxwell-Vlasov equations that take into account the nonlinear harmonic interaction. Each harmonic field is the sum of a self-amplified term and a term driven by the nonlinear harmonic interaction. In the exponential gain regime, the growth rate of the dominant nonlinear term is much faster than that of the self-amplified harmonic field. As a result, the gain length and the transverse profile of the first few harmonics are completely determined by those of the fundamental. A percentage of the fundamental power level is found at the third harmonic frequency right before saturation for the current self-amplified spontaneous emission projects.

  17. Influence of the neodymium glass parameters on the amplified spontaneous emission in slab amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Bingyan; Zhang, Junyong; Zhang, Yanli; Wang, Li; Zhu, Jianqiang

    2015-02-01

    Amplified spontaneous emission (ASE) causes the decrease of the inverted population density and the nonuniformity of gain in slab amplifier for high power laser systems. In this paper, a three dimension model, based on the data in SG-II, in which the residual reflection in the cladding and the ASE process are taken into consideration, is built to analyze the space distribution and time evolution of small signal gain coefficient using Monte Carlo algorithm and ray tracing. This model has been verified by comparing with the experimental data. The traverse size of slab is 68.2cm×36.3cm, which is usually decided by the clear aperture and the manufacture. By means of the model, the impact of thickness, residual reflectivity and the stimulated cross section of neodymium glass to the ASE are analyzed in detail.

  18. Decoherence by spontaneous emission: A single-atom analog of superradiance

    NASA Astrophysics Data System (ADS)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2016-12-01

    We show that the decoherence of the atomic center-of-mass induced by spontaneous emission involves interferences corresponding to a single-atom analog of superradiance. We use a decomposition of the stationary decoherence rate as a sum of local and nonlocal contributions obtained to second order in the interaction by the influence functional method. These terms are respectively related to the strength of the coupling between system and environment, and to the quality of the information about the system leaking into the environment. While the local contribution always yields a positive decoherence rate, the nonlocal one may lead to recoherence when only partial information about the system is obtained from the disturbed environment. The nonlocal contribution contains interferences between different quantum amplitudes leading to oscillations of the decoherence rate reminiscent of superradiance. These concepts, illustrated here in the framework of atom interferometry within a trap, may be applied to a variety of quantum systems.

  19. Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals.

    PubMed

    Galfsky, Tal; Sun, Zheng; Considine, Christopher R; Chou, Cheng-Tse; Ko, Wei-Chun; Lee, Yi-Hsien; Narimanov, Evgenii E; Menon, Vinod M

    2016-08-10

    The low quantum yield observed in two-dimensional semiconductors of transition metal dichalcogenides (TMDs) has motivated the quest for approaches that can enhance the light emission from these systems. Here, we demonstrate broadband enhancement of spontaneous emission and increase in Raman signature from archetype two-dimensional semiconductors: molybdenum disulfide (MoS2) and tungsten disulfide (WS2) by placing the monolayers in the near field of a photonic hypercrystal having hyperbolic dispersion. Hypercrystals are characterized by a large broadband photonic density of states due to hyperbolic dispersion while having enhanced light in/out coupling by a subwavelength photonic crystal lattice. This dual advantage is exploited here to enhance the light emission from the 2D TMDs and can be utilized for developing light emitters and solar cells using two-dimensional semiconductors.

  20. Proton-transfer laser: gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone

    SciTech Connect

    Chou, P.; McMorrow, D.; Aartsma, T.J.; Kasha, M.

    1984-09-27

    The efficient generations of amplified spontaneous emission (ASE) in 3-hydroxyflavone in methylcyclohexane and p-dioxane solutions at 293 K is reported. This application of excited-state proton-transfer tautomerization approaches an ideal four-level laser system involving four different molecular electronic species in separate electronic states and constitutes a photoinduced chemical laser. The gain coefficient for the ASE (530 nm) of 3-hydroxyflavone in methylcyclohexane (293 K) is calculated to be 10-15. Under similar conditions in our apparatus, the gain coefficient is observed to be in the range 7-9 for a proprietary coumarin laser dye (Molectron 70371-4 C485) and for rhodamine-6G. The tunable range for 3-hydroxyflavone is observed to be 518-545 nm. The peak laser power is comparable with that observed for the coumarin dye.

  1. Photo-physical properties and amplified spontaneous emission of a new derivative of fluorescein

    NASA Astrophysics Data System (ADS)

    Al-Shamiri, Hamdan A. S.; Kana, Maram T. H. Abou; Azzouz, I. M.; Elwahy, Ahmed H. M.

    2010-04-01

    The synthesis of new high-performance dyes and the implementation of new ways of incorporating the organic molecules into the solid host matrices have produced a great deal of activity in the field of solid-state dye lasers. In this article, the new laser dye, 2-(6-allyl-3-oxo-3H-xanthen-9-yl)-benzoic acid ethyl ester [AXBE] has been synthesized, and its chemical structure was confirmed by 1H NMR, 13C NMR, IR and elemental analysis. This new dye was covalently bonded with methyl methacrylate (MMA) and 2-hydroxy ethyl methacrylate (HEMA) copolymer backbone and evaluated as the active medium of the solid-state laser dye. Its optical properties were experimentally investigated. Amplified spontaneous emission (ASE) and photostability were studied by pumping the dye sample with 355 nm (8 ns) pulsed Nd-YAG laser.

  2. Flexible all-polymer waveguide for low threshold amplified spontaneous emission

    NASA Astrophysics Data System (ADS)

    Smirnov, José R. Castro; Zhang, Qi; Wannemacher, Reinhold; Wu, Longfei; Casado, Santiago; Xia, Ruidong; Rodriguez, Isabel; Cabanillas-González, Juan

    2016-09-01

    The fabrication of all polymer optical waveguides, based on a highly fluorescent conjugated polymer (CP) poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) and a mechanically flexible and biodegradable polymer, cellulose acetate (CA), is reported. The replication by hot embossing of patterned surfaces in CA substrates, onto which high quality F8BT films can be easily processed by spin coating, is exploited to produce an entirely plastic device that exhibits low optical loss and low threshold for amplified spontaneous emission (ASE). As a result, highly transparent and flexible waveguides are obtained, with excellent optical properties that remain unaltered after bending, allowing them to be adapted in various flexible photonic devices.

  3. Enhanced amplified spontaneous emission using layer-by-layer assembled cowpea mosaic virus

    NASA Astrophysics Data System (ADS)

    Li, Na; Deng, Zhaoqi; Lin, Yuan; Zhang, Xiaojie; Geng, Yanhou; Ma, Dongge; Su, Zhaohui

    2009-01-01

    Layer-by-layer assembly technique was used to construct ultrathin film of cowpea mosaic virus (CPMV) by electrostatic interactions, and the film was employed as a precursor on which an OF8T2 film was deposited by spin coating. Amplified spontaneous emission (ASE) was observed and improved for the OF8T2 film. Compared with OF8T2 film on quartz, the introduction of CPMV nanoparticles reduced the threshold and loss, and remarkably increased the net gain. The threshold, loss, and gain reached 0.05 mJ/pulse, 6.9 cm-1, and 82 cm-1, respectively. CPMV nanoparticles may enormously scatter light, resulting in a positive feedback, thus the ASE is easily obtained and improved.

  4. Modeling and analysis of overmodulation in erbium-doped fiber amplifiers including amplified spontaneous emission

    NASA Astrophysics Data System (ADS)

    Sharma, Reena; Raghuwanshi, Sanjeev Kumar

    2017-02-01

    Line surveillance and management information in erbium-doped fiber amplifiers (EDFAs) can be broadcast by modulating the amplitude of the low-frequency lightwave information signal, the process termed as overmodulation in the literature. This paper presents systematic solutions for the overmodulated pump and information signal transfer functions for EDFA. It includes amplified spontaneous emission (ASE) that has an impact on outcomes in the high-gain system. To the extent of our belief, the methodical model simulated with the current approach leads to a distinct perspective of an outcome in the respective field. The test bed described here is realistic. It specifically represents the overmodulation behavior in an EDFA under the influence of ASE.

  5. Interpreting fiber structure from polarization dependent optical anisotropy

    NASA Astrophysics Data System (ADS)

    Goth, Will; Sacks, Michael S.; Tunnell, James W.

    2017-02-01

    Polarized light is commonly used to detect optical anisotropies, such as birefringence, in tissues. This optical anisotropy is often attributed to underlying structural anisotropy in tissue, which may originate from regularly aligned collagen fibers. In these cases, the optical anisotropy, such as birefringence, is interpreted as a relative measure of the structural anisotropy of the collagen fibers. However, the relative amplitude of optical anisotropy depends on factors other than fiber orientation, and few models allow quantitative interpretation of absolute measures of true fiber orientation distribution from the optical signal. Our model uses the Mie solution to scattering of linearly polarized light from infinite cylindrical scatterers. The model is expanded to include populations of scatterers with physiologically relevant size and orientation distributions. We investigated the influences of fiber diameter, orientation distribution, and wavelength on the back-scattering signal with our computational model, and used these results to extract structural information from experimental fiber phantoms and bovine tendon. Our results demonstrated that by fitting our model to the experimental data using limited assumptions, we could extract fiber orientation distributions and diameters that were comparable to those found in scanning electron microscope images of the same fiber sample. We found a higher alignment of fibers in the bovine tendon sample, and the extracted fiber diameter was within the expected physiological range. Our model showed that the amplitude of optical anisotropy can vary widely due to factors other than the orientation distribution of fiber structures, including index of refraction, and therefore should not be taken as a sole indicator of structural anisotropy. This work highlights that the accuracy of model assumptions plays a crucial role in extracting quantitative structural information from optical anisotropy.

  6. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    NASA Astrophysics Data System (ADS)

    Priante, D.; Dursun, I.; Alias, M. S.; Shi, D.; Melnikov, V. A.; Ng, T. K.; Mohammed, O. F.; Bakr, O. M.; Ooi, B. S.

    2015-02-01

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77 K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553 nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350 μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  7. Wavelength-dependent polarization absorber based on multi-cladding fiber with gold coating

    NASA Astrophysics Data System (ADS)

    Weng, Sijun; Pei, Li; Liu, Chao; Wang, Jianshuai; Li, Jing; Ning, Tigang

    2016-12-01

    The wavelength-dependent polarization absorber based on multi-cladding fiber (MCF) with surface plasmon resonance (SPR) is proposed and demonstrated. In order to obtain the SPR effect both in the x- and y- polarized direction, the MCF is polished in two sides. The numerical simulations show that the polarization absorber with the wavelengths of 980/1550 nm and 1310/1550 nm can be obtained by adjusting the parameters of dielectric layer. Each wavelength only transmits a single polarization in the wavelength-dependent polarization absorber, and the loss of unwanted polarized mode is more than 95 dB/cm. In addition, when the length of fiber is only 550 μm, the bandwidths of polarization absorber are 29 nm at 980 nm and 413 nm at 1550 nm, respectively; meanwhile, the bandwidth of 1310/1550 nm polarization absorber reaches 102 nm and 302 nm, respectively.

  8. Transform-limited x-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser.

    PubMed

    McNeil, B W J; Thompson, N R; Dunning, D J

    2013-03-29

    A method to achieve high-brightness self-amplified spontaneous emission (HB-SASE) in the free-electron laser (FEL) is described. The method uses repeated nonequal electron beam delays to delocalize the collective FEL interaction and break the radiation coherence length dependence on the FEL cooperation length. The method requires no external seeding or photon optics and so is applicable at any wavelength or repetition rate. It is demonstrated, using linear theory and numerical simulations, that the radiation coherence length can be increased by approximately 2 orders of magnitude over SASE with a corresponding increase in spectral brightness. Examples are shown of HB-SASE generating transform-limited FEL pulses in the soft x-ray and near transform-limited pulses in the hard x-ray. Such pulses may greatly benefit existing applications and may also open up new areas of scientific research.

  9. Integration, photostability and spontaneous emission rate enhancement of colloidal PbS nanocrystals for Si-based photonics at telecom wavelengths.

    PubMed

    Humer, Markus; Guider, Romain; Jantsch, Wolfgang; Fromherz, Thomas

    2013-08-12

    We experimentally investigate PbS nanocrystal (NC) photoluminescence (PL) coupled to all-integrated Si-based ring resonators and waveguides at telecom wavelengths. Dissolving the NCs into Novolak polymer significantly improves their stability in ambient atmosphere. Polymer-NC blends of various NC concentrations can be applied to and removed from the same device. For NC concentrations up to 4vol%, the spontaneous emission rate into ring-resonator modes is enhanced by a factor of ~13 with respect to that into a straight waveguide. The PL intensity shows a linear dependence on the excitation intensity up to 1.64kW/cm(2) and stable quality factors of ~2500.

  10. Experiments on polarization-dependent transport in 3He systems

    NASA Astrophysics Data System (ADS)

    Candela, D.; McAllaster, D. R.; Wei, L.-J.; Kalechofsy, N.

    1994-03-01

    Spin and momentum transport experiments are described for very dilute 3He- 4He mixtures and pure 3He brute-force polarized by a static field. Spin diffusion and rotation were observed in very dilute mixtures using a spin-wave resonance technique, and the viscosity increase due to polarization was observed using a vibrating wire. The mixture results are all well fit by the recent kinetic-equation calculations of Mullin and Jeon. Spin echoes were used to study transverse spin diffusion in pure 3He, providing the first clear evidence for polarization-induced relaxation-time anisotropy in a degenerate Fermi liquid.

  11. Star-type polarizer with equal-power splitting function for each polarization based on polarization-dependent defects in two-dimensional photonic-crystal waveguides.

    PubMed

    Lin, Mi; Xi, Xiang; Qiu, Wenbiao; Ai, Yuexia; Wang, Qiong; Liu, Qiang; Ouyang, Zhengbiao

    2016-10-17

    We propose a star-type polarizer with equal-power splitting function for each polarization based on polarization-dependent defects (PDDs) in two-dimensional photonic-crystal waveguides (PCWs). The structure is designed by combining two Y-type PCWs, and two types of PDDs are introduced into the PCWs respectively to provide polarization functions. By using finite-element method and optimizing the parameters of the PDDs, it is demonstrated that different polarizations can only transmit through their own PCWs and output with identical power distributions, i.e., the structure can function as polarizer and equal-power splitter for each polarization at the same time. In addition, by scanning the wavelength of the structure, it is proved that the proposed splitter can work in a wide range of wavelength while keeping high output transmission for both the TE and TM polarizations. Such a structure is useful for polarization-relative multi-channel signal processing for optical communications in the mid- and far-infrared wavelength regions.

  12. Polarization dependence of Z-scan measurement: theory and experiment.

    PubMed

    Yan, Xiao-Qing; Liu, Zhi-Bo; Zhang, Xiao-Liang; Zhou, Wen-Yuan; Tian, Jian-Guo

    2009-04-13

    Here we report on an extension of common Z-scan method to arbitrary polarized incidence light for measurements of anisotropic third-order nonlinear susceptibility in isotropic medium. The normalized transmittance formulas of closed-aperture Z-scan are obtained for linearly, elliptically and circularly polarized incidence beam. The theoretical analysis is examined experimentally by studying third-order nonlinear susceptibility of CS2 liquid. Results show that the elliptically polarized light Z-scan method can be used to measure simultaneously the two third-order nonlinear susceptibility components chi(3)(xyyx) and chi(3)(xxyy). Furthermore, the elliptically polarized light Z-scan measurements of large nonlinear phase shift are also analyzed theoretically and experimentally.

  13. Density dependent polarized secretion of a prostatic epithelial cell line.

    PubMed

    Djakiew, D; Pflug, B; Delsite, R; Lynch, J H; Onoda, M

    1992-01-01

    The polarized secretions (apical/basal) of newly synthesized total protein and proteases from prostatic epithelial sheets of PA-III cells grown in dual compartment chambers were investigated at various cell densities and culture conditions. PA-III cells grown in a serum free defined medium (SFDM) form morphologically polarized monolayers of epithelial cells. These cells secreted their 35S-methionine labeled total protein in a predominantly apical direction (apical/basal ratio, 4-8 fold), with a lesser proportion of protein secreted apically at lower cell densities of the PA-III cell monolayer. PA-III cells grown in 5% fetal calf serum (FCS) are morphologically squamous, comparable to the anaplastic phenotype, and exhibited an inversion of polarized total protein secretion (apical/basal ratio, 0.4-0.9 fold), with an increased proportion of total protein secreted in a basal direction at lower cell densities. Since the culture of PA-III cells in FCS may approximate the anaplastic phenotype we investigated the polarized secretion of proteases from these cells at various cell densities, and compared them with the secretory pattern of protease secretion from polarized PA-III cells cultured in SFDM. At lower cell densities of the PA-III cells grown in FCS the polarity of protease secretion was inverted such that metalloproteinases, tissue type plasminogen activator, and a 72 kD gelatinase were secreted in a predominantly basal direction, as well as urokinase and a gelatinase of 26 kD that were secreted more or less equally into the apical and basal compartments of the chambers. On the other hand, for cultures of PA-III cells grown in SFDM the aforementioned proteases exhibited predominantly an apically directed polarity of secretion. These results suggest that the anaplastic phenotype characterized by a loss of polarized structure may also be characterized by a functional loss or inversion of polarized secretion. The consequences of such a loss or inversion of polarized

  14. Observation of in plane magnetization reversal using polarization dependent magneto-optic Kerr effect

    NASA Astrophysics Data System (ADS)

    Ohldag, H.; Weber, N. B.; Hillebrecht, F. U.; Kisker, E.

    2002-02-01

    We present an experimental setup for in plane two axis magnetometry using the polarization dependent magneto-optic Kerr effect (MOKE). A conventional setup to measure longitudinal MOKE with crossed polarizers is extended by a Faraday cell to compensate for the rotation of the polarization vector caused by a magnetized sample. The shape of the hysteresis loops measured on thin FeNi alloy films depends strongly on the angle between the optical axis of the analyzer and the plane of incidence. We derive expressions for the compensation angle which allow for extraction of vectorial magnetic information from loops detected with oblique polarization. For a small deviation from pure s or p polarization the transverse magnetization is found to be proportional to the difference between the loop obtained with oblique polarization and the one obtained with pure s or p polarization. Thus the complete in plane reversal process split up into longitudinal and transverse components can be observed.

  15. Investigations of Polarization Dependent Loss in Polarization Modulated Analog Optical Links

    DTIC Science & Technology

    2015-12-29

    set of experiments are presented that looks at non- ideal alignment of the polarization modulation arc. In addition to the theory for polarization...diagnostics. Next a set of experiments are presented. First the system is analyzed for the ideal and a non- ideal alignment when no PDL is present...THEORY OF PDL   The theoretical description relies on a simple model of PDL as an ideal partial polarizer, in Jones space [8]: 1 0 1 0 1 01 1 0 0 1

  16. Spectroscopic properties and amplified spontaneous emission of fluorescein laser dye in ionic liquids as green media

    NASA Astrophysics Data System (ADS)

    AL-Aqmar, Dalal M.; Abdelkader, H. I.; Abou Kana, Maram T. H.

    2015-09-01

    The use of ionic liquids (ILs) as milieu materials for laser dyes is a promising field and quite competitive with volatile organic solvents and solid state-dye laser systems. This paper investigates some photo-physical parameters of fluorescein dye incorporated into ionic liquids; 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-Butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl4) and 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4) as promising host matrix in addition to ethanol as reference. These parameters are: absorption and emission cross-sections, fluorescence lifetime and quantum yield, in addition to the transition dipole moment, the attenuation length and oscillator strength were also investigated. Lasing characteristics such as amplified spontaneous emission (ASE), the gain, and the photostability of fluorescein laser dye dissolved in different host materials were assessed. The composition and properties of the matrix of ILs were found that it has great interest in optimizing the laser performance and photostability of the investigated laser dye. Under transverse pumping of fluorescein dye by blue laser diode (450 nm) of (400 mW), the initial ASE for dye dissolved in BMIM AlCl4 and ethanol were decreased to 39% and 36% respectively as time progressed 132 min. Relatively high efficiency and high fluorescence quantum yield (11.8% and 0.82% respectively) were obtained with good photostability in case of fluorescein in BMIM BF4 that was decreased to ∼56% of the initial ASE after continuously pumping with 400 mW for 132 min.

  17. Tunable amplified spontaneous emission in graphene quantum dots doped cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Yang, Siwei; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yu, Yu; Ding, Guqiao; Zhang, Guizhong; Yao, Jianquan

    2017-06-01

    Graphene quantum dots (GQDs) have received much research attention, because of their useful structure and optical absorption/emission. We report the tunable amplified spontaneous emission (ASE) in GQD-doped cholesteric liquid crystal (CLC), which to the best of our knowledge has not been previously observed. The GQDs are uniformly dispersed with a weight ratio of 0.5 wt.% in CLC. Under optical excitation, typical ASE is triggered in the system at pump energies greater than 1.25 mJ cm-2. The emission peak at the long wavelength edge of the photonic bandgap shifts from 662 to 669 nm, as the working temperature is increased from 50 to 90 °C. The preparation of the combined GQDs and CLC is simple and low-cost, and the resulting material is photostable and non-toxic. Combining the GQD gain material with the self-assembled CLC resonator has potential in the fabrication of ASE source and laser devices.

  18. Performance of a quantum teleportation protocol based on collective spontaneous emission

    SciTech Connect

    Wagner, Richard Jr.; Clemens, James P.

    2009-03-15

    Recently a conditional quantum teleportation protocol has been proposed by Chen et al. [New J. Phys. 7, 172 (2005)], which is based on the collective spontaneous emission of a photon from a pair of quantum dots. We formulate a similar protocol for collective emission from a pair of atoms, one of which is entangled with a single mode of an optical cavity. We focus on the performance of the protocol as characterized by the fidelity of the teleported state and the overall success probability. We consider a strategy employing spatially resolved photodetection of the emitted photon in order to distinguish superradiant from subradiant emission on the basis of a single detected photon. We find that fidelity approaches unity as the spacing of the atoms becomes much smaller than the emission wavelength with a success probability of 0.25. The fidelity remains above the classical limit of 2/3 for arbitrary atomic separations with the ultimate limit of performance coming from the spatial resolution of the detectors.

  19. Fast and bright spontaneous emission of Er3+ ions in metallic nanocavity

    PubMed Central

    Song, Jung-Hwan; Kim, Jisu; Jang, Hoon; Yong Kim, In; Karnadi, Indra; Shin, Jonghwa; Shin, Jung H.; Lee, Yong-Hee

    2015-01-01

    By confining light in a small cavity, the spontaneous emission rate of an emitter can be controlled via the Purcell effect. However, while Purcell factors as large as ∼10,000 have been predicted, actual reported values were in the range of about 10–30 only, leaving a huge gap between theory and experiment. Here we report on enhanced 1.54-μm emission from Er3+ ions placed in a very small metallic cavity. Using a cavity designed to enhance the overall Purcell effect instead of a particular component, and by systematically investigating its photonic properties, we demonstrate an unambiguous Purcell factor that is as high as 170 at room temperature. We also observe >90 times increase in the far-field radiant flux, indicating that as much as 55% of electromagnetic energy that was initially supplied to Er3+ ions in the cavity escape safely into the free space in just one to two optical cycles. PMID:25940839

  20. Efficient Red-Emissive Organic Crystals with Amplified Spontaneous Emissions Based on a Single Benzene Framework.

    PubMed

    Tang, Baolei; Wang, Chenguang; Wang, Yue; Zhang, Hongyu

    2017-10-02

    Red-emissive fluorophores generally consist of large π-extended systems and thus encounter the problem of serious fluorescence quenching in the solid state. A series of structurally simple compounds 2,5-bis(alkylamino)terephthalates 1 a-c are reported that consist of a very small π-system (only a single benzene) but display efficient red emission in crystals. Crystal 1 a having a molecular weight of only 252 g mol(-1) shows red emission with the maximum of 620 nm and a fluorescence quantum yield of 0.40. The unique emission property of crystal 1 a is mainly because of the planarization of skeleton dominated by the strong intramolecular hydrogen bonds and the packing structure with negligible π-π interactions contributed by the mini π-system. Moreover, besides efficient red emission, high crystallinity with co-planar facets endows crystal 1 a with significant amplified spontaneous emission. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser

    NASA Astrophysics Data System (ADS)

    Usenko, Sergey; Przystawik, Andreas; Jakob, Markus Alexander; Lazzarino, Leslie Lamberto; Brenner, Günter; Toleikis, Sven; Haunhorst, Christian; Kip, Detlef; Laarmann, Tim

    2017-05-01

    Light-phase-sensitive techniques, such as coherent multidimensional spectroscopy, are well-established in a broad spectral range, already spanning from radio-frequencies in nuclear magnetic resonance spectroscopy to visible and ultraviolet wavelengths in nonlinear optics with table-top lasers. In these cases, the ability to tailor the phases of electromagnetic waves with high precision is essential. Here we achieve phase control of extreme-ultraviolet pulses from a free-electron laser (FEL) on the attosecond timescale in a Michelson-type all-reflective interferometric autocorrelator. By varying the relative phase of the generated pulse replicas with sub-cycle precision we observe the field interference, that is, the light-wave oscillation with a period of 129 as. The successful transfer of a powerful optical method towards short-wavelength FEL science and technology paves the way towards utilization of advanced nonlinear methodologies even at partially coherent soft X-ray FEL sources that rely on self-amplified spontaneous emission.

  2. Cold test, spontaneous emission and gain in a rectangular Cerenkov amplifier

    SciTech Connect

    Scharer, J.E.; Joe, J.; Booske, J.H.; Basten, M.; Kirolous, H.

    1994-12-31

    The authors present experimental results for the rectangular Cerenkov grating amplifier. This research is being carried out to develop a Ka-band (35 GHz), low voltage (10 kV), moderate power (10 kW) source. They have constructed a Ku-band grating structure to study a scaled version of this source. The tapered grating consists of two tapered Ku-band smooth wave guide sections and two 3.5-inch sections of five-step-tapered gratings. Both tapered and untapered grating structures have been cold tested utilizing the network analyzer measurements. They find that their taper design reduced the reflection coefficient from {minus}5 dB to less than {minus}20 dB over a 12--15 GHz bandwidth. Spontaneous emission results resulting from passing the circular electron beam from a Litton thermionic gun over the grating structure will be presented. They have theoretically investigated the sheet beam interaction with hybrid modes in a deep groove rectangular grating waveguide. A complex dispersion relation, which includes a finite axial energy spread of the beam, describing the interaction has been solved. The authors find that the instability is always convective in the forward wave mode regime.

  3. Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser

    PubMed Central

    Usenko, Sergey; Przystawik, Andreas; Jakob, Markus Alexander; Lazzarino, Leslie Lamberto; Brenner, Günter; Toleikis, Sven; Haunhorst, Christian; Kip, Detlef; Laarmann, Tim

    2017-01-01

    Light-phase-sensitive techniques, such as coherent multidimensional spectroscopy, are well-established in a broad spectral range, already spanning from radio-frequencies in nuclear magnetic resonance spectroscopy to visible and ultraviolet wavelengths in nonlinear optics with table-top lasers. In these cases, the ability to tailor the phases of electromagnetic waves with high precision is essential. Here we achieve phase control of extreme-ultraviolet pulses from a free-electron laser (FEL) on the attosecond timescale in a Michelson-type all-reflective interferometric autocorrelator. By varying the relative phase of the generated pulse replicas with sub-cycle precision we observe the field interference, that is, the light-wave oscillation with a period of 129 as. The successful transfer of a powerful optical method towards short-wavelength FEL science and technology paves the way towards utilization of advanced nonlinear methodologies even at partially coherent soft X-ray FEL sources that rely on self-amplified spontaneous emission. PMID:28555640

  4. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials.

    PubMed

    Lu, Dylan; Kan, Jimmy J; Fullerton, Eric E; Liu, Zhaowei

    2014-01-01

    Plasmonic nanostructures have been extensively used to manipulate the spontaneous light emission rate of molecules and their radiative efficiency. Because molecules near a metallic surface experience a different environment than in free space, their spontaneous radiative emission rate is generally enhanced. Such enhancement, measured by means of the Purcell factor, arises as a consequence of the overlap between the surface plasmon mode frequency and the emission spectrum of the molecule. However, such overlap is available only for a few narrow bands of frequency due to the limited plasmonic materials existing in nature. Although this limitation can be overcome by using hyperbolic metamaterials (HMMs)—a type of nanoscale artificial material with hyperbolic dispersion relations—the Purcell factor and the radiative power have remained relatively low. Here, we show that by nanopatterning a hyperbolic metamaterial made of Ag and Si multilayers, the spontaneous emission rate of rhodamine dye molecules is enhanced 76-fold at tunable frequencies and the emission intensity of the dye increases by ~80-fold compared with the same hyperbolic metamaterial without nanostructuring. We explain these results using a dynamic Lorentzian model in the time domain.

  5. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sarpkaya, Ibrahim; Zhang, Zhengyi; Walden-Newman, William; Wang, Xuesi; Hone, James; Wong, Chee W.; Strauf, Stefan

    2013-07-01

    The bright exciton emission of carbon nanotubes is appealing for optoelectronic devices and fundamental studies of light-matter interaction in one-dimensional nanostructures. However, to date, the photophysics of excitons in carbon nanotubes is largely affected by extrinsic effects. Here we perform time-resolved photoluminescence measurements over 14 orders of magnitude for ultra-clean carbon nanotubes bridging an air gap over pillar posts. Our measurements demonstrate a new regime of intrinsic exciton photophysics with prolonged spontaneous emission times up to T1=18 ns, about two orders of magnitude better than prior measurements and in agreement with values hypothesized by theorists about a decade ago. Furthermore, we establish for the first time exciton decoherence times of individual nanotubes in the time domain and find fourfold prolonged values up to T2=2.1 ps compared with ensemble measurements. These first observations motivate new discussions about the magnitude of the intrinsic dephasing mechanism while the prolonged exciton dynamics is promising for applications.

  6. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement.

    PubMed

    Hoffmann, Björn; Vassant, Simon; Chen, Xue-Wen; Götzinger, Stephan; Sandoghdar, Vahid; Christiansen, Silke

    2015-10-09

    Plasmonic antennas are attractive nanostructures for a large variety of studies ranging from fundamental aspects of light-matter interactions at the nanoscale to industry-relevant applications such as ultrasensitive sensing, enhanced absorption in solar cells or solar fuel generation. A particularly interesting feature of these antennas is that they can enhance the fluorescence properties of emitters. Theoretical calculations have shown that nanocone antennas provide ideal results, but a high degree of manufacturing precision and control is needed to reach optimal performance. In this study, we report on the fabrication of nanocones with base diameters and heights in the range of 100 nm with variable aspect ratios using focused ion beam milling of sputtered nano-crystalline gold layers. The controlled fabrication process allows us to obtain cones with tailored plasmon resonances. The measured plasmon spectra show very good agreement with finite-difference time-domain calculations. Theoretical investigations predict that these nanocones can enhance the spontaneous emission rate of a quantum emitter by several hundred times while keeping its quantum efficiency above 60%.

  7. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    PubMed Central

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; De Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-01-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ∼10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440–700 nm) with low pump thresholds down to 5±1 μJ cm−2 and high values of modal net gain of at least 450±30 cm−1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals. PMID:26290056

  8. ACTIVE MEDIA: Formation of the spatial coherence of amplified spontaneous emission. 2. Randomly inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Starikov, F. A.

    1996-03-01

    An investigation is reported of the spatial coherence of amplified spontaneous emission (ASE) in a laboratory x-ray laser. Refraction by a regular defocusing square-law profile of the permittivity bar varepsilon and scattering by its fluctuations tilde varepsilon are taken into account. The scattering of the ASE by the fluctuations bar varepsilon reduces the transverse coherence length Lc and the coherent ASE power. When the laser length z is increased, Lc tends to a constant value which can be much less than the width of the ASE beam. Under linear amplification conditions and in the absence of refraction, the angular divergence of the ASE also reaches a constant level when z is increased. At this level the divergence may be considerably greater than the values due to the geometry of and the diffraction by the laser aperture. When the refraction length is less than the characteristic length for the scattering on the fluctuations tilde varepsilon, the influence of tilde varepsilon on the ASE is of 'latent' nature: a considerable fall of Lc at the laser exit and in the far-field zone is accompanied by a relatively small reduction in the ASE flux density in the paraxial region of the beam.

  9. Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates.

    PubMed

    Birowosuto, M D; Zhang, G; Yokoo, A; Takiguchi, M; Notomi, M

    2014-05-19

    We investigate the inhibited spontaneous emission of telecom-band InAs quantum disks (Qdisks) in InP nanowires (NWs). We have evaluated how the inhibition is affected by different disk diameter and thickness. We also compared the inhibition in standing InP NWs and those NWs laying on silica (SiO(2)), and silicon (Si) substrates. We found that the inhibition is altered when we put the NW on the high-refractive-index materials of Si. Experimentally, the inhibition factor ζ of the Qdisk emission at 1,500 nm decreases from 4.6 to 2.5 for NW on SiO(2) and Si substrates, respectively. Those inhibitions are even much smaller than that of 6.4 of the standing NW. The inhibition factors well agree with those calculated from the coupling of the Qdisk to the fundamental guided mode and the continuum of radiative modes. Our observation can be useful for the integration of the NW as light sources in the photonic nanodevices.

  10. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; de Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-08-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ~10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440-700 nm) with low pump thresholds down to 5+/-1 μJ cm-2 and high values of modal net gain of at least 450+/-30 cm-1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals.

  11. Matrix description of the differential group delay of high-speed optical communication lines with polarization mode dispersion (PMD) and polarization dependent losses (PDL)

    NASA Astrophysics Data System (ADS)

    Plachkova, Vanya; Makrelov, Ilya; Petrov, Petar

    2015-01-01

    In this paper we present mathematical models for the simulation of polarization mode dispersion and polarization dependent losses based on Mueller matrices. We have simulated the modulation of the spectrum in the communication line as a function of random losses inherent to polarization-dependent components. After statistical treatment of spectra we obtain information about polarization dependent losses (PDL). We have shown that our theoretical results coincide with reported in the literature other simulated data.

  12. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    SciTech Connect

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  13. Azimuthally polarized cathodoluminescence from InP nanowires

    SciTech Connect

    Brenny, B. J. M.; Osorio, C. I.; Polman, A.; Dam, D. van; Gómez Rivas, J.

    2015-11-16

    We determine the angle and polarization dependent emission from 1.75 µm and 2.50 µm long InP nanowires by using cathodoluminescence polarimetry. We excite the vertical wires using a 5 keV electron beam, and find that the 880 nm bandgap emission shows azimuthally polarized rings, with the number of rings depending on the wire height. The data agree well with a model in which spontaneous emission from the wire emitted into the far field interferes with emission reflected off the substrate. From the model, the depth range from which the emission is generated is found to be up to 400 nm below the top surface of the wires, well beyond the extent of the primary electron cloud. This enables a probe of the carrier diffusion length in the InP nanowires.

  14. Azimuthally polarized cathodoluminescence from InP nanowires

    NASA Astrophysics Data System (ADS)

    Brenny, B. J. M.; van Dam, D.; Osorio, C. I.; Gómez Rivas, J.; Polman, A.

    2015-11-01

    We determine the angle and polarization dependent emission from 1.75 µm and 2.50 µm long InP nanowires by using cathodoluminescence polarimetry. We excite the vertical wires using a 5 keV electron beam, and find that the 880 nm bandgap emission shows azimuthally polarized rings, with the number of rings depending on the wire height. The data agree well with a model in which spontaneous emission from the wire emitted into the far field interferes with emission reflected off the substrate. From the model, the depth range from which the emission is generated is found to be up to 400 nm below the top surface of the wires, well beyond the extent of the primary electron cloud. This enables a probe of the carrier diffusion length in the InP nanowires.

  15. Polarization dependent ripples induced by femtosecond laser on dense flint (ZF6) glass.

    PubMed

    Han, Yanhua; Zhao, Xiuli; Qu, Shiliang

    2011-09-26

    We report on the formation of polarization dependent ripples on ZF(6) glass by femtosecond laser irradiation. Two kinds of polarization dependent ripples are formed on the laser modified region. The ripples with direction parallel to laser polarization distribute in a pit in the center of laser modified region, the period of the ripples increases with the increasing pulse number. The ripples with direction perpendicular to laser polarization spread around the pit, the period of the ripples (~750 nm) almost keeps constant with the increasing pulse number.

  16. Reflectance dependences of diffraction properties in Fabry-Perot liquid crystal polarization grating

    NASA Astrophysics Data System (ADS)

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-04-01

    The reflectance dependences of diffraction properties in a Fabry-Perot liquid crystal polarization grating (LCPG) were investigated. The Fabry-Perot LCPG was fabricated by combining two Au films and an orthogonal circular polarization grating (OCPG). The diffraction efficiency of our device strongly depends on the thickness of the Au films while polarization conversion properties are maintained to be the same as these of the general OCPG. Our results clarify that the Fabry-Perot OCPG has the potential to function as a multibranch polarization beam splitter whose diffraction efficiencies of respective diffraction directions are controlled in different ways by changing resonance conditions.

  17. Polarization Dependence Suppression of Optical Fiber Grating Sensor in a π-Shifted Sagnac Loop Interferometer

    PubMed Central

    Son, Jaebum; Lee, Min-Kyoung; Jeong, Myung Yung; Kim, Chang-Seok

    2010-01-01

    In the sensing applications of optical fiber grating, it is necessary to reduce the transmission-type polarization dependence to isolate the sensing parameter. It is experimentally shown that the polarization-dependent spectrum of acousto-optic long-period fiber grating sensors can be suppressed in the transmission port of a π-shifted Sagnac loop interferometer. General expressions for the transmittance and reflectance are derived for transmission-type, reflection-type, and partially reflecting/transmitting-type polarization-dependent optical devices. The compensation of polarization dependence through the counter propagation in the Sagnac loop interferometer is quantitatively measured for a commercial in-line polarizer and an acousto-optic long-period fiber grating sensor. PMID:22399884

  18. Frequency dependent polarization analysis of high-frequency seismograms

    NASA Astrophysics Data System (ADS)

    Park, Jeffrey; Vernon, Frank L., III; Lindberg, Craig R.

    1987-11-01

    We present a multitaper algorithm to estimate the polarization of particle motion as a function of frequency from three-component seismic data. This algorithm is based on a singular value decomposition of a matrix of eigenspectra at a given frequency. The right complex eigenvector zˆ corresonding to the largest singular value of the matrix has the same direction as the dominant polarization of seismic motion at that frequency. The elements of the polarization vector zˆ specify the relative amplitudes and phases of motion measured along the recorded components within a chosen frequency band. The width of this frequency band is determined by the time-bandwidth product of the prolate spheroidal tapers used in the analysis. We manipulate the components of zˆ to determine the apparent azimuth and angle of incidence of seismic motion as a function of frequency. The orthogonality of the eigentapers allows one to calculate easily uncertainties in the estimated azimuth and angle of incidence. We apply this algorithm to data from the Anza Seismic Telemetered Array in the frequency band 0 ≤ ƒ ≤ 30 Hz. The polarization is not always a smooth function of frequency and can exhibit sharp jumps, suggesting the existence of scattered modes within the crustal waveguide and/or receiver site resonances.

  19. Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Tocci, Michael D.; Scalora, Michael; Bloemer, Mark J.; Dowling, Jonathan P.; Bowden, Charles M.

    1996-04-01

    We present results of an experimental investigation into alteration of the spontaneous emission spectrum of GaAs from within one-dimensional photonic band gap (PBG) structures. The PBG samples are multilayer AlAs/Al0.2Ga0.8As/GaAs p-i-n light-emitting diodes, with layers arranged as a distributed Bragg reflector. The emission spectra normal to the layers are measured, and we use a simple method to model the power spectrum of spontaneous emission from within the structures. We find that the emitted power is enhanced by a factor of 3.5 at the frequencies near the photonic band edge.

  20. Spontaneous emission and level shifts in absorbing disordered dielectrics and dense atomic gases: A Green's-function approach

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Michael

    1999-09-01

    Spontaneous emission and Lamb shift of atoms in absorbing dielectrics and dense atomic gases are discussed using a microscopic Green's-function approach. Uncorrelated and random atomic positions are assumed, and the associated unphysical interactions between different atoms at the same location are eliminated (local field correction). For the case of an atom in a purely dispersive medium, the spontaneous-emission rate is altered by the well-known Lorentz local-field factor. When the mean distance between atoms becomes less than the resonance wavelength, results different from previously suggested expressions are found. In particular, it is shown that nearest-neighbor interactions become important. The results suggest that, for large densities, absorbing disordered dielectrics cannot accurately be described by a macroscopic approach that neglects correlations between atomic positions.

  1. Calculation of spontaneous emission from a V-type three-level atom in photonic crystals using fractional calculus

    SciTech Connect

    Huang, Chih-Hsien; Hsieh, Wen-Feng; Wu, Jing-Nuo; Cheng, Szu-Cheng; Li, Yen-Yin

    2011-07-15

    Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.

  2. Axial anomaly and energy dependence of hyperon polarization in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Sorin, Alexander; Teryaev, Oleg

    2017-01-01

    We address the issue of energy and charge dependence of global polarization of Λ hyperons in peripheral Au-Au collisions recently observed by the STAR Collaboration at Relativistic Heavy Ion Collider (RHIC). We compare different contributions to the anomalous mechanism relating polarization to vorticity and hydrodynamic helicity in QCD matter. We stress that the suppression of the gravitational anomaly contribution in strongly correlated matter observed in lattice simulations confirms our earlier prediction of rapid decrease of polarization with increasing collision energy. Our mechanism leads to polarization of Λ ¯ of the same sign and larger magnitude than the polarization of Λ. The energy and charge dependence of polarization is suggested as a sensitive probe of fine details of QCD matter structure.

  3. Analysis and simulation of nonlinearity and effects of spontaneous emission in Schottky-junction-based plasmonic amplifiers.

    PubMed

    Livani, Abdolber Mallah; Kaatuzian, Hassan

    2015-07-01

    An amplifier that operates on surface plasmon polaritons has been analyzed and simulated. Nonlinearity behavior and the spontaneous emission effects of the plasmonic amplifier are investigated in this paper. A rate equations approach has been used in which parameters are derived from simulation results of the plasmonic amplifier (Silvaco/ATLAS). Details on the method of this derivation are included, which were not previously reported. Rate equations are solved numerically by MATLAB codes. These codes verify the Silvaco results. The plasmonic amplifier operates on surface plasmons with a free-space wavelength of 1550 nm. Results show that, even without the effect of spontaneous emission, gain of the plasmonic amplifier saturates in high input levels. Saturation power, which can be used for comparing nonlinearity of different amplifiers, is 2.1 dBm for this amplifier. Amplified spontaneous emission reduces the gain of the amplifiers, which is long. There is an optimum value for the length of the amplifier. For the amplifier of this work, the optimum length for the small signal condition is 265 μm.

  4. Observation of novel radioactive decay by spontaneous emission of complex nuclei

    SciTech Connect

    Barwick, S.W.

    1986-01-01

    Two years of experimental investigation on the subject of spontaneous emission of intermediate-mass fragments is described in this manuscript. A short introduction on this subject and a historical review are presented in chapter 1. In chapter 2, the author describe the experimental methods which led to the observation of /sup 14/C emission in polycarbonate etched-track detectors from the isotopes /sup 222/Ra, /sup 223/Ra, /sup 224/Ra and /sup 226/Ra at the branching ratios with respect to ..cap alpha..-decay of (3.7 +/- 0.6) x 10/sup -10/, (6.1 +/- 1.0) x 10/sup -10/, (4.3 +/- 1.2) x 10/sup -10/ and (2.9 +/- 1.0) x 10/sup -11/ respectively. Branching ratio limits for heavy-ion emission from /sup 221/Fr, /sup 221/Ra and /sup 225/Ac were determined to be at < 5.0 x 10/sup -14/, < 1.2 x 10/sup -13/ and < 4.0 x 10/sup -13/ respectively for the 90% C.L. The emission of /sup 24/Ne from /sup 232/U at a branching ratio of (2.0 +/- 0.5) x 10/sup -12/ has been discovered using polyethylene terephthalate etched-track plastics. A confirmation of /sup 24/Ne and/or /sup 25/Ne emission from /sup 233/U at a branching ratio of (5.3 +/- 2.3) x 10/sup -13/ is also reported. In chapter 3, three models of intermediate-mass decay are discussed-the analytic superasymmetric fission model, the model by Shi and Swiatecki, and a model based on a square-well + Coulomb potential.

  5. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.

    2016-02-01

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.

  6. Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity.

    PubMed

    Stanislas, Thomas; Hüser, Anke; Barbosa, Inês C R; Kiefer, Christian S; Brackmann, Klaus; Pietra, Stefano; Gustavsson, Anna; Zourelidou, Melina; Schwechheimer, Claus; Grebe, Markus

    2015-11-02

    Development of diverse multicellular organisms relies on coordination of single-cell polarities within the plane of the tissue layer (planar polarity). Cell polarity often involves plasma membrane heterogeneity generated by accumulation of specific lipids and proteins into membrane subdomains. Coordinated hair positioning along Arabidopsis root epidermal cells provides a planar polarity model in plants, but knowledge about the functions of proteo-lipid domains in planar polarity signalling remains limited. Here we show that Rho-of-plant (ROP) 2 and 6, phosphatidylinositol-4-phosphate 5-kinase 3 (PIP5K3), DYNAMIN-RELATED PROTEIN (DRP) 1A and DRP2B accumulate in a sterol-enriched, polar membrane domain during root hair initiation. DRP1A, DRP2B, PIP5K3 and sterols are required for planar polarity and the AGCVIII kinase D6 PROTEIN KINASE (D6PK) is a modulator of this process. D6PK undergoes phosphatidylinositol-4,5-bisphosphate- and sterol-dependent basal-to-planar polarity switching into the polar, lipid-enriched domain just before hair formation, unravelling lipid-dependent D6PK localization during late planar polarity signalling.

  7. Energy dependence of hadron polarization in e+e-→h X at high energies

    NASA Astrophysics Data System (ADS)

    Chen, Kai-bao; Yang, Wei-hua; Zhou, Ya-jin; Liang, Zuo-tang

    2017-02-01

    The longitudinal polarization of a hyperon in e+e- annihilation at high energies depends on the longitudinal polarization of the quark produced at the e+e- annihilation vertex, whereas the spin alignment of vector mesons is independent of it. They exhibit very different energy dependences. We use the longitudinal polarization of the Lambda hyperon and the spin alignment of K* as representative examples to present numerical results of energy dependences and demonstrate such distinct differences. We present the results at the leading twist with perturbative QCD evolutions of fragmentation functions at the leading order.

  8. SERS polarization dependence of Ag nanorice dimer on metal and dielectric film

    NASA Astrophysics Data System (ADS)

    Zang, Yuying; Shi, Haiyang; Huang, Yingzhou; Zeng, Xiping; Pan, Liang; Wang, Shuxia; Wen, Weijia

    2017-09-01

    The polarization dependence plays a great impact on the SERS intensities for the surface plasmon coupling between nanoparticle aggregating. In this work, the SERS intensities collected from nanorice heterogeneous dimer or homogeneous dimer on Au, ITO and glass substrates exhibit strong polarization dependence. This result is further analyzed by the simulated surface charge distribution and electromagnetic enhancement distribution. Our data illustrate that SERS polarization dependence exhibits in all gaps in whole system, not only the gaps between nanorices but also gaps between nanorices and film, which could be important for the application of SERS as an ultrasensitive sensing technique.

  9. Dependence of Quiet Time Geomagnetic Activity Seasonal Variation on the Solar Magnetic Polarity

    NASA Astrophysics Data System (ADS)

    Oh, Suyeon

    2013-03-01

    The geomagnetic activity shows the semiannual variation stronger in vernal and autumnal equinoxes than in summer and winter solstices. The semiannual variation has been explained by three main hypotheses such as Axial hypothesis, Equinoctial hypothesis, and Russell-McPherron Effect. Many studies using the various geomagnetic indices have done to support three main hypotheses. In recent, Oh & Yi (2011) examined the solar magnetic polarity dependency of the geomagnetic storm occurrence defined by Dst index. They reported that there is no dependency of the semiannual variation on the sign of the solar polar fields. This study examines the solar magnetic polarity dependency of quiet time geomagnetic activity. Using Dxt index (Karinen & Mursula 2005) and Dcx index (Mursula & Karinen 2005) which are recently suggested, in addition to Dst index, we analyze the data of three-year at each solar minimum for eight solar cycles since 1932. As a result, the geomagnetic activity is stronger in the period that the solar magnetic polarity is anti-parallel with the Earth's magnetic polarity. There exists the difference between vernal and autumnal equinoxes regarding the solar magnetic polarity dependency. However, the difference is not statistically significant. Thus, we conclude that there is no solar magnetic polarity dependency of the semiannual variation for quiet time geomagnetic activity.

  10. Kif26b controls endothelial cell polarity through the Dishevelled/Daam1-dependent planar cell polarity-signaling pathway.

    PubMed

    Guillabert-Gourgues, Aude; Jaspard-Vinassa, Beatrice; Bats, Marie-Lise; Sewduth, Raj N; Franzl, Nathalie; Peghaire, Claire; Jeanningros, Sylvie; Moreau, Catherine; Roux, Etienne; Larrieu-Lahargue, Frederic; Dufourcq, Pascale; Couffinhal, Thierry; Duplàa, Cecile

    2016-03-15

    Angiogenesis involves the coordinated growth and migration of endothelial cells (ECs) toward a proangiogenic signal. The Wnt planar cell polarity (PCP) pathway, through the recruitment of Dishevelled (Dvl) and Dvl-associated activator of morphogenesis (Daam1), has been proposed to regulate cell actin cytoskeleton and microtubule (MT) reorganization for oriented cell migration. Here we report that Kif26b--a kinesin--and Daam1 cooperatively regulate initiation of EC sprouting and directional migration via MT reorganization. First, we find that Kif26b is recruited within the Dvl3/Daam1 complex. Using a three-dimensional in vitro angiogenesis assay, we show that Kif26b and Daam1 depletion impairs tip cell polarization and destabilizes extended vascular processes. Kif26b depletion specifically alters EC directional migration and mislocalized MT organizing center (MTOC)/Golgi and myosin IIB cell rear enrichment. Therefore the cell fails to establish a proper front-rear polarity. Of interest, Kif26b ectopic expression rescues the siDaam1 polarization defect phenotype. Finally, we show that Kif26b functions in MT stabilization, which is indispensable for asymmetrical cell structure reorganization. These data demonstrate that Kif26b, together with Dvl3/Daam1, initiates cell polarity through the control of PCP signaling pathway-dependent activation.

  11. Role of amplified spontaneous emission in optical free-space communication links with optical amplification: impact on isolation and data transmission and utilization for pointing, acquisition, and

    NASA Astrophysics Data System (ADS)

    Winzer, Peter J.; Kalmar, Andras; Leeb, Walter R.

    1999-04-01

    We investigate the role of amplified spontaneous emission (ASE) produced by an optical booster amplifier at the transmitter of free-space optical communication links. In a communication terminal with a single telescope for both transmission and reception, this ASE power has to be taken into account in connection with transmit-to-receive channel isolation, especially since it partly occupies the same state of polarization and the same frequency band as the receive signal. We show that the booster ASE intercepted by the receiver can represent a non-negligible source of background radiation: In a typical optical intersatellite link scenario, the ASE power spectral density generated by the booster amplifier at the transmitter and coupled to the receiver will be on the order of 10-20 W/Hz, which equals the background radiation of the sun. Exploiting these findings for pointing, acquisition, and tracking (PAT) purposes, we describe a patent-pending PAT system doing without beacon lasers and without the need for diverting a part of the data signal for PAT. Utilizing the transmit booster ASE over a bandwidth of e.g. 20 nm at the receiver, a total power of about -46 dBm is available for PAT purposes without extra power consumption at the transmitter and without the need for beacon lAser alignment.

  12. Birefringence-dependent linearly-polarized emission in a liquid crystalline organic light emitting polymer.

    PubMed

    Lee, Dong-Myoung; Lee, You-Jin; Kim, Jae-Hoon; Yu, Chang-Jae

    2017-02-20

    We investigated the linearly polarized emission of uniformly aligned poly(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thia-diazol-4,8-diyl) (F8BT) with a liquid crystalline phase on a rubbed alignment layer. The polarization ratio, defined by the ratio of luminous intensities polarized parallel and perpendicular to the rubbed direction, gradually decreased with increasing thickness of the F8BT film. In the photoluminescence (PL) process, the polarized light is emitted throughout the whole F8BT film, while in the electroluminescence (EL) process, the polarized light is emitted at a certain region within the F8BT film. The thickness-dependent polarization ratios in both PL and EL processes were successfully described based on a simple model wherein the mean optical birefringence was expressed as a function of the thickness of the F8BT film.

  13. Polarization dependent color switching by extra-ordinary transmission in H-slit plasmonic metasurface

    SciTech Connect

    Mandal, P.; Anantha Ramakrishna, S.; Patil, Raj; Venu Gopal, Achanta

    2013-12-14

    An array of H-shaped subwavelength slits in a plasmonic film has a polarization dependent extra-ordinary transmission due to shape anisotropy. Non-overlapping extra-ordinary transmission bands for the orthogonal linear polarization states of the input light are used to demonstrate a polarization dependent color switch. The fabricated array of submicron sized H-slits on a gold film displayed two transmission bands for the linear x- and y-polarized light at visible (650–850 nm) and near-infra-red (1150–1450 nm) bands, respectively. The relative transmitted light in these two bands can be controlled by changing the linear polarization state of the input radiation from 0° to 90°.

  14. Spermatid Cyst Polarization in Drosophila Depends upon apkc and the CPEB Family Translational Regulator orb2

    PubMed Central

    Xu, Shuwa; Tyagi, Sanjay; Schedl, Paul

    2014-01-01

    Mature Drosophila sperm are highly polarized cells—on one side is a nearly 2 mm long flagellar tail that comprises most of the cell, while on the other is the sperm head, which carries the gamete's genetic information. The polarization of the sperm cells commences after meiosis is complete and the 64-cell spermatid cyst begins the process of differentiation. The spermatid nuclei cluster to one side of the cyst, while the flagellar axonemes grows from the other. The elongating spermatid bundles are also polarized with respect to the main axis of the testis; the sperm heads are always oriented basally, while the growing tails extend apically. This orientation within the testes is important for transferring the mature sperm into the seminal vesicles. We show here that orienting cyst polarization with respect to the main axis of the testis depends upon atypical Protein Kinase C (aPKC), a factor implicated in polarity decisions in many different biological contexts. When apkc activity is compromised in the male germline, the direction of cyst polarization within this organ is randomized. Significantly, the mechanisms used to spatially restrict apkc activity to the apical side of the spermatid cyst are different from the canonical cross-regulatory interactions between this kinase and other cell polarity proteins that normally orchestrate polarization. We show that the asymmetric accumulation of aPKC protein in the cyst depends on an mRNA localization pathway that is regulated by the Drosophila CPEB protein Orb2. orb2 is required to properly localize and activate the translation of apkc mRNAs in polarizing spermatid cysts. We also show that orb2 functions not only in orienting cyst polarization with respect to the apical-basal axis of the testis, but also in the process of polarization itself. One of the orb2 targets in this process is its own mRNA. Moreover, the proper execution of this orb2 autoregulatory pathway depends upon apkc. PMID:24830287

  15. Angular Dependence of Ionization by Circularly Polarized Light Calculated with Time-Dependent Configuration Interaction with an Absorbing Potential.

    PubMed

    Hoerner, Paul; Schlegel, H Bernhard

    2017-02-16

    The angular dependence of ionization by linear and circularly polarized light has been examined for N2, NH3, H2O, CO2, CH2O, pyrazine, methyloxirane, and vinyloxirane. Time-dependent configuration interaction with single excitations and a complex absorbing potential was used to simulate ionization by a seven cycle 800 nm cosine squared pulse with intensities ranging from 0.56 × 10(14) to 5.05 × 10(14) W cm(-2). The shapes of the ionization yield for linearly polarized light can be understood primarily in terms of the nodal structure of the highest occupied orbitals. Depending on the orbital energies, ionization from lower-lying orbitals may also make significant contributions to the shapes. The shapes of the ionization yield for circularly polarized light can be readily explained in terms of the shapes for linearly polarized light. Averaging the results for linear polarization over orientations perpendicular to the direction of propagation yields shapes that are in very good agreement with direct calculations of the ionization yield by circularly polarized light.

  16. Dependence of multiply charged ions on the polarization state in nanosecond laser-benzene cluster interaction

    NASA Astrophysics Data System (ADS)

    Wang, Weiguo; Zhao, Wuduo; Hua, Lei; Hou, Keyong; Li, Haiyang

    2016-05-01

    This paper investigated the dependence of multiply charged ions on the laser polarization state when benzene cluster was irradiated with 532 and 1064 nm nanosecond laser. A circle, square and flower distribution for C2+, C3+ and C4+ were observed with 532 nm laser respectively, while flower petals for C2+, C3+ and C4+ were observed at 1064 nm as the laser polarization varied. A theoretical calculation was performed to interpret the polarization state and wavelength dependence of the multiply charged ions. The simulated results agreed well with the experimental observation with considering the contribution from the cluster disintegration.

  17. Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control

    SciTech Connect

    Singh, Danveer; Raghuwanshi, Mohit; Pavan Kumar, G. V.

    2012-09-10

    We experimentally studied plasmon-polariton-assisted light propagation in serially coupled silver nanowire (Ag-NW) dimers and probed their dependence on bending-angle between the nanowires and polarization of incident light. From the angle-dependence study, we observed that obtuse angles between the nanowires resulted in better transmission than acute angles. From the polarization studies, we inferred that light emission from junction and distal ends of Ag-NW dimers can be systematically controlled. Further, we applied this property to show light routing and polarization beam splitting in obtuse-angled Ag-NW dimer. The studied geometry can be an excellent test-bed for plasmonic circuitry.

  18. Polarized light modulates light-dependent magnetic compass orientation in birds

    PubMed Central

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  19. Polarized light modulates light-dependent magnetic compass orientation in birds.

    PubMed

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-02-09

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm "plus" maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth's magnetic field.

  20. Polarization dependent nanostructuring of silicon with femtosecond vortex pulse

    NASA Astrophysics Data System (ADS)

    Rahimian, M. G.; Bouchard, F.; Al-Khazraji, H.; Karimi, E.; Corkum, P. B.; Bhardwaj, V. R.

    2017-08-01

    We fabricated conical nanostructures on silicon with a tip dimension of ˜ 70 nm using a single twisted femtosecond light pulse carrying orbital angular momentum (ℓ =±1 ). The height of the nano-cone, encircled by a smooth rim, increased from ˜ 350 nm to ˜ 1 μ m with the pulse energy and number of pulses, whereas the apex angle remained constant. The nano-cone height was independent of the helicity of the twisted light; however, it is reduced for linear polarization compared to circular at higher pulse energies. Fluid dynamics simulations show nano-cones formation when compressive forces arising from the radial inward motion of the molten material push it perpendicular to the surface and undergo re-solidification. Simultaneously, the radial outward motion of the molten material re-solidifies after reaching the cold boundary to form a rim. Overlapping of two irradiated spots conforms to the fluid dynamics model.

  1. Activation-dependent plasticity of polarized GPCR distribution on the neuronal surface.

    PubMed

    Simon, Anne C; Loverdo, Claude; Gaffuri, Anne-Lise; Urbanski, Michel; Ladarre, Delphine; Carrel, Damien; Rivals, Isabelle; Leterrier, Christophe; Benichou, Olivier; Dournaud, Pascal; Szabo, Bela; Voituriez, Raphael; Lenkei, Zsolt

    2013-08-01

    Directionality of information flow through neuronal networks is sustained at cellular level by polarized neurons. However, specific targeting or anchoring motifs responsible for polarized distribution on the neuronal surface have only been identified for a few neuronal G-protein-coupled receptors (GPCRs). Here, through mutational and pharmacological modifications of the conformational state of two model GPCRs, the axonal CB1R cannabinoid and the somatodendritic SSTR2 somatostatin receptors, we show important conformation-dependent variations in polarized distribution. The underlying mechanisms include lower efficiency of conformation-dependent GPCR endocytosis in axons, compared with dendrites, particularly at moderate activation levels, as well as endocytosis-dependent transcytotic delivery of GPCRs from the somatodendritic domain to distal axonal portions, shown by using compartmentalized microfluidic devices. Kinetic modeling predicted that GPCR distribution polarity is highly regulated by steady-state endocytosis, which is conformation dependent and is able to regulate the relative amount of GPCRs targeted to axons and that axonally polarized distribution is an intermediary phenotype that appears at moderate basal activation levels. Indeed, we experimentally show that gradual changes in basal activation-dependent endocytosis lead to highly correlated shifts of polarized GPCR distribution on the neuronal surface, which can even result in a fully reversed polarized distribution of naturally somatodendritic or axonal GPCRs. In conclusion, polarized distribution of neuronal GPCRs may have a pharmacologically controllable component, which, in the absence of dominant targeting motifs, could even represent the principal regulator of sub-neuronal distribution. Consequently, chronic modifications of basal GPCR activation by therapeutic or abused drugs may lead to previously unanticipated changes in brain function through perturbation of polarized GPCR distribution on

  2. Polarization-dependent DANES study on vertically-aligned ZnO nanorods

    SciTech Connect

    Sun, Chengjun; Park, Chang-In; Jin, Zhenlan; Hwang, In-Hui; Heald, Steve M.; Han, Sang-Wook

    2016-01-01

    The local structural and local density of states of vertically-aligned ZnO nanorods were examined by using a polarization-dependent diffraction anomalous near edge structure (DANES) measurements from c-oriented ZnO nanorods at the Zn K edge with the incident x-ray electric field parallel and perpendicular to the x-ray momentum transfer direction. Orientation-dependent local structures determined by DANES were comparable with polarization-dependent EXAFS results. Unlike other techniques, polarization-dependent DANES can uniquely describe the orientation-dependent local structural properties and the local density of states of a selected element in selected-phased crystals of compounds or mixed-phased structures.

  3. Average characteristics and activity dependence of the subauroral polarization stream

    NASA Astrophysics Data System (ADS)

    Foster, J. C.; Vo, H. B.

    2002-12-01

    Data from the Millstone Hill incoherent scatter radar taken over two solar cycles (1979-2000) are examined to determine the average characteristics of the disturbance convection electric field in the midlatitude ionosphere. Radar azimuth scans provide a regular database of ionospheric plasma convection observations spanning auroral and subauroral latitudes, and these scans have been examined for all local times and activity conditions.We examine the occurrence and characteristics of a persistent secondary westward convection peak which lies equatorward of the auroral two-cell convection. Individual scans and average patterns of plasma flow identify and characterize this latitudinally broad and persistent subauroral polarization stream (SAPS), which spans the nightside from dusk to the early morning sector for all Kp greater than 4. Premidnight, the SAPS westward convection lies equatorward of L = 4 (60° invariant latitude, Λ), spans 3°-5° of latitude, and has an average peak amplitude of >900 m/s. In the predawn sector, SAPS is seen as a region of antisunward convection equatorward of L = 3 (55° Λ), spanning ˜3° of latitude, with an average peak amplitude of 400 m/s.

  4. Few millimeter-resolution Brillouin optical correlation domain analysis using amplified-spontaneous-emission pump and signal waves

    NASA Astrophysics Data System (ADS)

    Cohen, Raphael; London, Yosef; Antman, Yair; Zadok, Avi

    2014-05-01

    A new technique for Brillouin optical correlation domain analysis is proposed and demonstrated, in which the pump and signal waves are drawn from the filtered amplified spontaneous emission of an erbium-doped fiber amplifier. An estimated spatial resolution of 3.3 mm is obtained using a 33 GHz-wide source. The reconstruction of the Brillouin gain line and the recognition of a localized hot spot are demonstrated in a proof-of-concept experiment. Unlike phase-coded correlation domain analysis methods, the proposed scheme is not restricted by the bandwidth of available electro-optic modulators or pattern generators. Resolution is scalable to less than one millimeter.

  5. Preparation of three-dimensional entanglement for distant atoms in coupled cavities via atomic spontaneous emission and cavity decay

    PubMed Central

    Su, Shi-Lei; Shao, Xiao-Qiang; Wang, Hong-Fu; Zhang, Shou

    2014-01-01

    We propose a dissipative scheme to prepare a three-dimensional entangled state for two atoms trapped in separate coupled cavities. Our work shows that both atomic spontaneous emission and cavity decay, which are two typical obstacles in unitary-dynamics-based schemes, are no longer detrimental, but necessary for three-dimensional entangled state preparation without specifying initial state and controlling the evolution time precisely. Final numerical simulation with one group of experimental parameters indicates that the performance of our scheme could be better than the unitary-dynamics-based scheme. PMID:25523944

  6. Quantum-noise quenching in the correlated spontaneous-emission laser as a multiplicative noise process. I. A geometrical argument

    SciTech Connect

    Schleich, W.; Scully, M.O.

    1988-02-15

    We show, via simple geometrical arguments, the quantum-noise quenching in a correlated (spontaneous) emission laser (CEL). This noise quenching is a consequence of the correlation between noise sources which results in a multiplicative noise process. The steady-state distribution for the phase difference between the two electric fields in a CEL is compared and contrasted to that of a standard phase-locked laser. Noise quenching is shown to occur in the case of the CEL via an explicit solution of the Fokker-Planck equation.

  7. Extremely low amplified spontaneous emission threshold and blue electroluminescence from a spin-coated octafluorene neat film

    NASA Astrophysics Data System (ADS)

    Kim, D.-H.; Sandanayaka, A. S. D.; Zhao, L.; Pitrat, D.; Mulatier, J. C.; Matsushima, T.; Andraud, C.; Ribierre, J. C.; Adachi, C.

    2017-01-01

    We report on the photophysical, amplified spontaneous emission (ASE), and electroluminescence properties of a blue-emitting octafluorene derivative in spin-coated films. The neat film shows an extremely low ASE threshold of 90 nJ/cm2, which is related to its high photoluminescence quantum yield of 87% and its large radiative decay rate of 1.7 × 109 s-1. Low-threshold organic distributed feedback semiconductor lasers and fluorescent organic light-emitting diodes with a maximum external quantum efficiency as high as 4.4% are then demonstrated, providing evidence that this octafluorene derivative is a promising candidate for organic laser applications.

  8. Self-Amplified Spontaneous Emission Free-Electron Laser with an Energy-Chirped Electron Beam and Undulator Tapering

    SciTech Connect

    Giannessi, L.; Ciocci, F.; Dattoli, G.; Del Franco, M.; Petralia, A.; Quattromini, M.; Ronsivalle, C.; Sabia, E.; Spassovsky, I.; Surrenti, V.; Bacci, A.; Rossi, A. R.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Cultrera, L.; Filippetto, D.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.

    2011-04-08

    We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.

  9. Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission

    NASA Astrophysics Data System (ADS)

    Foster, Scott

    2008-07-01

    It is proposed that observed 1/f laser frequency noise in rare-earth-metal-doped optical fiber lasers is caused by diffusion of local entropy fluctuations associated with random spontaneous emission events. This heat generation is directly associated with the broad emission spectrum of rare-earth-metal-doped laser glasses. Using data from a well characterized erbium-doped fiber laser, it is shown that the power spectral density of frequency fluctuations resulting from this mechanism is able to achieve excellent agreement with experiment. The proposed theory is expected to be generally applicable to broadly emitting solid-state gain media.

  10. Self-amplified spontaneous emission free-electron laser with an energy-chirped electron beam and undulator tapering.

    PubMed

    Giannessi, L; Bacci, A; Bellaveglia, M; Briquez, F; Castellano, M; Chiadroni, E; Cianchi, A; Ciocci, F; Couprie, M E; Cultrera, L; Dattoli, G; Filippetto, D; Del Franco, M; Di Pirro, G; Ferrario, M; Ficcadenti, L; Frassetto, F; Gallo, A; Gatti, G; Labat, M; Marcus, G; Moreno, M; Mostacci, A; Pace, E; Petralia, A; Petrillo, V; Poletto, L; Quattromini, M; Rau, J V; Ronsivalle, C; Rosenzweig, J; Rossi, A R; Rossi Albertini, V; Sabia, E; Serluca, M; Spampinati, S; Spassovsky, I; Spataro, B; Surrenti, V; Vaccarezza, C; Vicario, C

    2011-04-08

    We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.

  11. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    DOE PAGES

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less

  12. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    SciTech Connect

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.

  13. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    SciTech Connect

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.

  14. Polarization dependence of tip-enhanced Raman and plasmon-resonance Rayleigh scattering spectra

    NASA Astrophysics Data System (ADS)

    Kitahama, Yasutaka; Uemura, Shohei; Katayama, Ryota; Suzuki, Toshiaki; Itoh, Tamitake; Ozaki, Yukihiro

    2017-06-01

    Tip-enhanced Raman scattering (TERS) spectroscopy has high sensitivity and high spatial resolution, although it shows low reproducibility due to the variable optical properties of the tips. In the present study, polarized scattering spectra of localized surface plasmon resonance (LSPR) at the apex of the tip induced by conventional dark field illumination were compared with the corresponding TERS spectra, generated by excitation using polarization not only parallel and perpendicular to the tip, but also vertical to the sample plane (z-polarization). The polarization-dependence of LSPR was consistent with that of the TERS. Thus, the optical properties of the tip can be easily optimized before TERS measurement by excitation polarization that induces the largest LSPR signal.

  15. Polarization-dependent thin-film wire-grid reflectarray for terahertz waves

    SciTech Connect

    Niu, Tiaoming; Upadhyay, Aditi; Bhaskaran, Madhu; Sriram, Sharath; Withayachumnankul, Withawat; Headland, Daniel; Abbott, Derek; Fumeaux, Christophe

    2015-07-20

    A thin-film polarization-dependent reflectarray based on patterned metallic wire grids is realized at 1 THz. Unlike conventional reflectarrays with resonant elements and a solid metal ground, parallel narrow metal strips with uniform spacing are employed in this design to construct both the radiation elements and the ground plane. For each radiation element, a certain number of thin strips with an identical length are grouped to effectively form a patch resonator with equivalent performance. The ground plane is made of continuous metallic strips, similar to conventional wire-grid polarizers. The structure can deflect incident waves with the polarization parallel to the strips into a designed direction and transmit the orthogonal polarization component. Measured radiation patterns show reasonable deflection efficiency and high polarization discrimination. Utilizing this flexible device approach, similar reflectarray designs can be realized for conformal mounting onto surfaces of cylindrical or spherical devices for terahertz imaging and communications.

  16. Temperature dependence of the photoluminescence polarization of ordered III-V semiconductor alloys

    SciTech Connect

    Prutskij, T.; Makarov, N.; Attolini, G.

    2016-03-21

    We studied the linear polarization of the photoluminescence (PL) emission of atomically ordered GaInAsP and GaInP alloys with different ordering parameters in the temperature range from 10 to 300 K. The epitaxial layers of these alloys were grown on GaAs and Ge (001) substrates by metal organic vapor phase epitaxy. The polarization of the PL emission propagating along different crystallographic axes depends on the value of biaxial strain in the layer and changes with temperature. We calculated the PL polarization patterns for different propagation directions as a function of biaxial strain using an existing model developed for ternary atomically ordered III-V alloys. Comparing the calculated PL polarization patterns with those obtained experimentally, we separated the variation of the PL polarization due to change of biaxial strain with temperature.

  17. Remote sensing of dust in the Solar system and beyond using wavelength dependence of polarization

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.

    2011-12-01

    For a long time, the main polarimetric tool to study dust in the Solar system has been the dependence of polarization on phase (scattering) angle. Surprisingly, a variety of cosmic dusts (interplanetary and cometary dust, dust on the surfaces of asteroids and in debris disks) possesses a very similar phase dependence of polarization with a negative bowl-shaped part at small phase angles and a positive bell-shaped region with maximum polarization around 95-105 deg. Numerous laboratory and theoretical simulations showed that a polarimetric phase curve of this shape is typical for fluffy materials, e.g., porous, aggregated particles. By contrast, the wavelength dependence of polarization is different for different types of dust. In the visual, polarization decreases with wavelength (negative gradient) for asteroids and interplanetary dust, but usually increases with wavelength (positive gradient) for cometary dust. In debris disks both signs of the spectral gradient of polarization have been found. Moreover, it was found that a cometary positive spectral gradient can change to a negative one as observations move to longer (near-infrared) wavelengths (Kelley et al. AJ, 127, 2398, 2004) and some comets(Kiselev et al. JQSRT, 109, 1384, 2008) have negative gradient even in the visible. The diversity of the spectral dependence of polarization therefore gives us hope that it can be used for characterization of the aggregates that represent different types of cosmic dust. To accomplish this, the physics behind the spectral dependence of polarization need to be revealed. Our recent study shows that the spectral dependence of polarization depends on the strength of electromagnetic interaction between the monomers in aggregates. The strength of the interaction mainly depends on how many monomers the electromagnetic wave covers on the light path equal to one wavelength. Since the electromagnetic interaction depolarizes the light, the more particles a single wavelength covers the

  18. Anomalous temperature dependence of gas chromatographic retention indices of polar compounds on nonpolar phases

    NASA Astrophysics Data System (ADS)

    Zenkevich, I. G.; Pavlovskii, A. A.

    2016-05-01

    The character of the temperature dependences of the retention indices RI( T) of polar sorbates on nonpolar stationary phases was found to depend on the dosed amounts of sorbates, but not on column overloading. A physicochemical model was suggested to explain the observed anomalies in RI( T).

  19. Validity of the Classical Theory of Spontaneous Emission and the Fast Multipole Method for Electromagnetic Scattering

    NASA Astrophysics Data System (ADS)

    Yeung, Si Chuen Michael

    1995-01-01

    The interaction of the electromagnetic field with material boundaries has long been a subject of intense investigation. On the theoretical side are problems concerning the quantum-mechanical properties of the electromagnetic field near material boundaries. Such problems are of interest to physicists in the field of quantum optics near surfaces. On the practical side are problems concerning the numerical techniques used to solve the equations of classical electrodynamics in various practical situations involving boundaries. Such problems are of interest to engineers in the field of electromagnetic scattering. This thesis provides quantitative solutions to specific theoretical and practical problems in the subject of the interaction between the electromagnetic field and material boundaries. First, the lifetime of an excited atom near a lossy dielectric surface is calculated from an exact solution of a microscopic Hamiltonian model, which includes the effects of dispersion, local field correction and near -field Coulomb interaction. Results for the total decay rate are shown to be in excellent agreement with those based on classical electromagnetic theory and to yield the well-known result for the rate of nonradiative energy transfer in the limit of very small distance from the surface. Because our calculation is based on a fully canonical quantum theory, it provides the first fundamental demonstration of the validity of the classical electromagnetic theory of the rate of spontaneous emission near a lossy dielectric surface. Next, two new numerical techniques for three-dimensional electromagnetic scattering are proposed. The first technique is based on the physical-optics approximation and is suitable for piecewise-linear topography. The formalism of generalized Sommerfeld integrals is used to treat the effects of intra -surface multiple scattering in the physical-optics approximation. The technique of multipole acceleration is used to reduce the CPU cost of intra

  20. A Unified Framework for Creating Domain Dependent Polarity Lexicons from User Generated Reviews

    PubMed Central

    Asghar, Muhammad Zubair; Khan, Aurangzeb; Ahmad, Shakeel; Khan, Imran Ali; Kundi, Fazal Masud

    2015-01-01

    The exponential increase in the explosion of Web-based user generated reviews has resulted in the emergence of Opinion Mining (OM) applications for analyzing the users’ opinions toward products, services, and policies. The polarity lexicons often play a pivotal role in the OM, indicating the positivity and negativity of a term along with the numeric score. However, the commonly available domain independent lexicons are not an optimal choice for all of the domains within the OM applications. The aforementioned is due to the fact that the polarity of a term changes from one domain to other and such lexicons do not contain the correct polarity of a term for every domain. In this work, we focus on the problem of adapting a domain dependent polarity lexicon from set of labeled user reviews and domain independent lexicon to propose a unified learning framework based on the information theory concepts that can assign the terms with correct polarity (+ive, -ive) scores. The benchmarking on three datasets (car, hotel, and drug reviews) shows that our approach improves the performance of the polarity classification by achieving higher accuracy. Moreover, using the derived domain dependent lexicon changed the polarity of terms, and the experimental results show that our approach is more effective than the base line methods. PMID:26466101

  1. A Unified Framework for Creating Domain Dependent Polarity Lexicons from User Generated Reviews.

    PubMed

    Asghar, Muhammad Zubair; Khan, Aurangzeb; Ahmad, Shakeel; Khan, Imran Ali; Kundi, Fazal Masud

    2015-01-01

    The exponential increase in the explosion of Web-based user generated reviews has resulted in the emergence of Opinion Mining (OM) applications for analyzing the users' opinions toward products, services, and policies. The polarity lexicons often play a pivotal role in the OM, indicating the positivity and negativity of a term along with the numeric score. However, the commonly available domain independent lexicons are not an optimal choice for all of the domains within the OM applications. The aforementioned is due to the fact that the polarity of a term changes from one domain to other and such lexicons do not contain the correct polarity of a term for every domain. In this work, we focus on the problem of adapting a domain dependent polarity lexicon from set of labeled user reviews and domain independent lexicon to propose a unified learning framework based on the information theory concepts that can assign the terms with correct polarity (+ive, -ive) scores. The benchmarking on three datasets (car, hotel, and drug reviews) shows that our approach improves the performance of the polarity classification by achieving higher accuracy. Moreover, using the derived domain dependent lexicon changed the polarity of terms, and the experimental results show that our approach is more effective than the base line methods.

  2. All-fiber polarization-dependent optical vortex beams generation via flexural acoustic wave.

    PubMed

    Yavorsky, M A

    2013-08-15

    We report on a novel type of optical mode conversion in fiber acousto-optics. The all-fiber narrowband complete transformation of the fundamental mode into the frequency downshifted optical vortex beam of topological charge +1 or -1 via a lowest-order flexural acoustic wave is theoretically demonstrated. Moreover, such a process is found to be polarization dependent: both the topological charge and polarization state of the produced optical vortex are governed by the circular polarization handedness of the input mode. The possible applications of the established conversion for optical vortex manipulation are discussed.

  3. Polarization dependence and independence of near-field enhancement through a subwavelength circle hole.

    PubMed

    Li, Zu-Bin; Zhou, Wen-Yuan; Kong, Xiang-Tian; Tian, Jian-Guo

    2010-03-15

    By setting a metal rod or tooth-type structures in a single subwavelength hole, its near-field can be strongly enhanced. The near-field enhancement has strong polarization dependence when the structure in hole is twofold symmetric. Only the polarization along the longitudinal side of the metal rod or tooth-type structure can lead to strongest enhancement, which is attributed to the resonance of the localized surface plasmon. However, if the structure in hole is fourfold symmetric, the near-field enhancement is free from the polarization.

  4. Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre.

    PubMed

    Olausson, C B; Falk, C I; Lyngsø, J K; Jensen, B B; Therkildsen, K T; Thomsen, J W; Hansen, K P; Bjarklev, A; Broeng, J

    2008-09-01

    We demonstrate suppression of amplified spontaneous emission at the conventional ytterbium gain wavelengths around 1030 nm in a cladding-pumped polarization-maintaining ytterbium-doped all-solid photonic crystal fibre. The fibre works through combined index and bandgap guiding. Furthermore, we show that the peak of the amplified spontaneous emission can be shifted towards longer wavelengths by rescaling the fibre dimensions. Thereby one can obtain lasing or amplification at longer wavelengths (1100 nm - 1200 nm) as the amount of amplification in the fibre is shown to scale with the power of the amplified spontaneous emission.

  5. FREQUENCY DEPENDENCE OF POLARIZATION OF ZEBRA PATTERN IN TYPE-IV SOLAR RADIO BURSTS

    SciTech Connect

    Kaneda, Kazutaka; Misawa, H.; Tsuchiya, F.; Obara, T.; Iwai, K.

    2015-08-01

    We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZPs. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50%–70% right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50–70 ms relative to the right-handed component over the entire frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double-plasma-resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in the O-mode and was partly converted into the X-mode near the source. Subsequently, the difference between the group velocities of the O-mode and X-mode caused the temporal delay.

  6. X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER

    SciTech Connect

    Rohringer, N

    2008-08-08

    X-ray free electron lasers (xFEL) will open new avenues to the virtually unexplored territory of non-linear interactions of x rays with matter. Initially xFELs will be based on the principle of self-amplified spontaneous emission (SASE). Each SASE pulse consists of a number of coherent intensity spikes of random amplitude, i.e. the process is chaotic and pulses are irreproducible. The coherence time of SASE xFELs will be a few femtoseconds for a photon energy near 1 keV. The importance of coherence properties of light in non-linear optical processes was theoretically discovered in the early 1960s. In this contribution we will illustrate the impact of field chaoticity on x-ray non-linear optical processes on neon for photon energies around 1 keV and intensities up to 10{sup 18} W/cm{sup 2}. Resonant and non-resonant processes are discussed. The first process to be addressed is the formation of a double-core hole in neon by photoionization with x rays above 1.25 keV energy. In contrast to the long-wavelength regime, non-linear optical processes in the x-ray regime are characterized in general by sequential single-photon single-electron interactions. Despite this fact, the sequential absorption of multiple x-ray photons depends on the statistical properties of the radiation field. Treating the x rays generated by a SASE FEL as fully chaotic, a quantum-mechanical analysis of inner-shell two-photon absorption is performed. By solving a system of time-dependent rate equations, we demonstrate that double-core hole formation in neon via x-ray two-photon absorption is enhanced by chaotic photon statistics. At an intensity of 10{sup 16} W/cm{sup 2}, the statistical enhancement is about 30%, much smaller than typical values in the optical regime. The second part of this presentation discusses the resonant Auger effect of atomic neon at the 1s-3p transition (at 867.1 eV). For low X-ray intensity, the excitation process 1s {yields} 3p in Neon can be treated perturbatively. The

  7. Dependence of Large-Scale Global Poynting Flux on IMF By Polarity Change

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.

    2014-12-01

    In this study we present the dependence of the global Poynting flux on the IMF By polarity change. The amount of energy that enters the magnetosphere from the solar wind is a function of the solar wind speed and pressure and the IMF orientation and magnitude. All the various published coupling models show that the polarity of the IMF By component does not change the energy input. In contrast the global convection patterns, and thus the ionospheric Pedersen currents, depend on IMF By polarity. This seems to imply that the ionospheric energy deposition is a function of IMF By polarity. Thus, there appear to be a fundamental difference between the input (from the solar wind) and the output (energy dissipating Pedersen currents). We, therefore, ask the question: To what extend is the global Poynting flux dependent on the IMF By polarity? We have performed a statistical study evaluating 59 abrupt transitions in the IMF By component (polarity changes) as measured by the ACE spacecraft. The effect of other solar wind coupling parameters, such as the IMF Bz component, are minimized by selecting events where these are nearly constant. We use electric field distributions from SuperDARN and field-aligned current distributions from AMPERE to calculate the global distribution of the Poynting Flux. To minimize the effect of magnetospheric energy unloading we focus on the 06-18 MLT region. We further investigate the dependence on solar induced conductivity. We find that the Poynting flux is slightly larger for positive IMF By compared to negative By conditions. For a low conductivity (not sunlit) ionosphere the Poynting flux is smaller than in the high conductivity (sunlit) ionosphere and we find a smaller dependence on IMF By polarity. The study emphasizes the global dynamic behavior of the ionosphere in its response to changes in the external driver (IMF).

  8. Sea salt dependent electrical conduction in polar ice

    SciTech Connect

    Moore, J.; Paren, J. ); Oerter, H. )

    1992-12-10

    A 45 m length of ice core from Dolleman Island, Antarctic Peninsula has been dielectrically analyzed at 5 cm resolution using the dielectric profiling (DEP) technique. The core has also been chemically analyzed for major ionic impurities. A statistical analysis of the measurements shows that the LF (low frequency) conductivity is determined both by neutral salt and acid concentrations. The statistical relationships have been compared with results from laboratory experiments on ice doped with HF (hydrogen fluoride). Salts (probably dispersed throughout the ice fabric) determine the dielectric conductivity. The salt conduction mechanism is probably due to Bjerrum L defects alone, created by the incorporation of chloride ions in the lattice. Samples of ice from beneath the Filchner-Ronne Ice Shelf were also measured and display a similar conduction mechanism below a solubility limit of about 400 [mu]M of chloride. The temperature dependence of the neutral salt, acid and pure ice contributions to the LF conductivity of natural ice between [approximately] 70[degrees]C and 0[degrees]C is discussed. These results allow a comprehensive comparison of dielectric and chemical data from natural ice.

  9. Latitudinal Density Dependence of Magnetic Field Lines Inferred from Polar Plasma Wave Data

    NASA Technical Reports Server (NTRS)

    Goldstein, J.; Denton, R. E.; Hudson, M. K.; Miftakhova, E. G.; Menietti, J. D.; Gallagher, D. L.

    2000-01-01

    Using observations of the electron density, n(sub e), based on measurement of the upper hybrid resonance frequency by the Polar spacecraft Plasma Wave Instrument, we have examined the radial density dependence along field lines in the outer plasmasphere and the near plasmatrough. Sampled L values range from 2.5 to 6.6. Our technique depends on the fact that Polar crosses particular L values at two different points with different radial distance R. In our plasmaspheric data set (n(sub e) > 100/cm3), we find that on average n(sub e) is flat along field lines from the equator up to the latitudes sampled by Polar (R approximately equal to or > 2.0). In the plasmatrough data set (n(sub e) < 100/cm-3), there is on average a mild radial dependence n(sub e) varies as R(exp -1.7).

  10. Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments.

    PubMed

    Pust, Nathan J; Shaw, Joseph A

    2012-07-02

    The visible and NIR maximum degree of polarization (DoP) of cloud-free skylight depends on many factors, including wavelength, sun zenith angle, surface reflectance, and aerosol properties. For clear-sky environments, radiative transfer models accurately estimate the sky DoP when each of these properties is well constrained. (The model used here was recently compared with full-sky polarization measurements with excellent agreement.) Using coincident Hyperion satellite observations and AERONET retrievals to provide model inputs, we simulate the maximum sky DoP for a variety of locations. Results show large variations in the wavelength dependence of sky polarization across different Earth environments. Therefore, accurate modeling of the sky DoP depends largely upon proper representation of the surface and aerosols in the model. Simple models which do not incorporate accurate aerosol and surface information have limited utility for simulating cloud-free sky DoP.

  11. Spontaneous Emission and Fundamental Limitations on the Signal-to-Noise Ratio in Deep-Subwavelength Plasmonic Waveguide Structures with Gain

    NASA Astrophysics Data System (ADS)

    Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2016-12-01

    Incorporation of gain media in plasmonic nanostructures can give the possibility to compensate for high Ohmic losses in the metal and design truly nanoscale optical components for diverse applications ranging from biosensing to on-chip data communication. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission. This spontaneous emission greatly impacts the performance characteristics of deep-subwavelength active plasmonic devices and casts doubt on their practical use. Here we develop a theoretical framework to evaluate the influence of spontaneous emission, which can be applied to waveguide structures of any shape and level of mode confinement. In contrast to the previously developed theories, we take into account that the spectrum of spontaneous emission can be very broad and nonuniform, which is typical for deep-subwavelength structures, where a high optical gain (approximately 1000 cm-1 ) in the active medium is required to compensate for strong absorption in the metal. We also present a detailed study of the spontaneous emission noise in metal-semiconductor active plasmonic nanowaveguides and demonstrate that by using both optical and electrical filtering techniques, it is possible to decrease the noise to a level sufficient for practical applications at telecom and midinfrared wavelengths.

  12. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

    DOE PAGES

    Kreinberg, Sören; Chow, Weng W.; Wolters, Janik; ...

    2017-02-28

    Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots (QDs) and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high β-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low β-factor) cavity, that is, a sharp non-linearity in the input–output curve accompanied by noticeable linewidth narrowing, has to be reinforced by themore » equal-time second-order photon autocorrelation function to confirm lasing. The article also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-β microcavities operating with QDs. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light-emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g(2)(0) versus intracavity photon number.« less

  13. Dependence of polarization on optical and structural properties of the surfaces of atmosphereless bodies

    NASA Astrophysics Data System (ADS)

    Kolokolova, L. O.

    1990-04-01

    The present model of rough-surface light scattering attempts to characterize single and double reflections within the framework of geometric optics, taking shadow effects into account and representing surface structure by means of distribution functions for inclination and roughness size. In view of a strong dependence of polarization on surface structure, an investigation is conducted into the dependence of the polarization vs phase-angle P(alpha) curve on model parameters; linear equations relating the characteristics of the P(alpha) curve to optical and structural properties of the surface are obtained.

  14. Sensitivity to a frequency-dependent circular polarization in an isotropic stochastic gravitational wave background

    NASA Astrophysics Data System (ADS)

    Smith, Tristan L.; Caldwell, Robert

    2017-02-01

    We calculate the sensitivity to a circular polarization of an isotropic stochastic gravitational wave background (ISGWB) as a function of frequency for ground- and space-based interferometers and observations of the cosmic microwave background. The origin of a circularly polarized ISGWB may be due to exotic primordial physics (i.e., parity violation in the early universe) and may be strongly frequency dependent. We present calculations within a coherent framework which clarifies the basic requirements for sensitivity to circular polarization, in distinction from previous work which focused on each of these techniques separately. We find that the addition of an interferometer with the sensitivity of the Einstein Telescope in the southern hemisphere improves the sensitivity of the ground-based network to circular polarization by about a factor of two. The sensitivity curves presented in this paper make clear that the wide range in frequencies of current and planned observations (10-18 Hz ≲f ≲100 Hz ) will be critical to determining the physics that underlies any positive detection of circular polarization in the ISGWB. We also identify a desert in circular polarization sensitivity for frequencies between 10-15 Hz ≲f ≲10-3 Hz , given the inability for pulsar timing arrays and indirect-detection methods to distinguish the gravitational wave polarization.

  15. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wandelt, B. D.; Zacchei, A.; Zonca, A.

    2015-04-01

    Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them with the Planck and WMAP data at 12 frequencies from 23 to 353 GHz, over circular patches with 10° radius. The cross-correlation analysis is performed for both intensity and polarization data in a consistent manner. The results are corrected for the chance correlation between the templates and the anisotropies of the cosmic microwave background. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky patch. Both indices are found to be remarkably constant over the sky. The mean values, 1.59 ± 0.02 for polarization and 1.51 ± 0.01 for intensity, for a mean dust temperature of 19.6 K, are close, but significantly different (3.6σ). We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all sky patches. We find that the mean SED increases for decreasing frequencies at ν< 60 GHz for both intensity and polarization. The rise of the polarization SED towards low frequencies may be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission. We use a spectral model to separate the synchrotron and dust polarization and to characterize the spectral dependence of the dust polarization fraction. The polarization fraction (p) of the dust emission decreases by (21 ± 6)% from 353 to 70 GHz. We discuss this result within the context of existing dust models. The decrease in p could indicate differences in polarization

  16. Analysis of Crosstalk in 3D Circularly Polarized LCDs Depending on the Vertical Viewing Location.

    PubMed

    Zeng, Menglin; Nguyen, Truong Q

    2016-03-01

    Crosstalk in circularly polarized (CP) liquid crystal display (LCD) with polarized glasses (passive 3D glasses) is mainly caused by two factors: 1) the polarizing system including wave retarders and 2) the vertical misalignment (VM) of light between the LC module and the patterned retarder. We show that the latter, which is highly dependent on the vertical viewing location, is a much more significant factor of crosstalk in CP LCD than the former. There are three contributions in this paper. Initially, a display model for CP LCD, which accurately characterizes VM, is proposed. A novel display calibration method for the VM characterization that only requires pictures of the screen taken at four viewing locations. In addition, we prove that the VM-based crosstalk cannot be efficiently reduced by either preprocessing the input images or optimizing the polarizing system. Furthermore, we derive the analytic solution for the viewing zone, where the entire screen does not have the VM-based crosstalk.

  17. The first spectropolarimetric study of the wavelength dependence of interstellar polarization in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Clayton, Geoffrey C.; Anderson, Christopher M.; Magalhaes, Antonio M.; Code, Arthur D.; Nordsieck, Kenneth H.; Meade, Marilyn R.; Wolff, Michael J.; Babler, Brian; Bjorkman, Karen S.; Schulte-Ladbeck, Regina E.

    1992-01-01

    The first UV spectropolarimetry along six lines of sight with significant interstellar polarization is reported. The observations were obtained with the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) during the Astro-1 mission. HD 37903, HD 62542 and HD 99264 show a wavelength dependence which follows the Serkowski relation extrapolated into the UV. HD 25443 and Alpha Cam have UV polarization well in excess of the Serkowski extrapolation. HD 197770 clearly shows a polarization bump which closely matches the 2175 A extinction feature. This bump polarization can be fitted by small aligned graphite disks. The differences along various lines of sight might be the result of differences in the environments which affect the size and alignment of the grains.

  18. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    PubMed

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  19. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    PubMed Central

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833

  20. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  1. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    SciTech Connect

    Le Nguyen, An-Dien

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO4, NdVO4, ErVO4, and TmVO4 crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F1/F2 ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F1/F2 and the predicted values using the second-order theory has been found.

  2. Experimental characterization of true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure

    NASA Astrophysics Data System (ADS)

    Yu, Q.-N.; Jia, Y.; Lu, W.; Wang, M.-Q.; Li, F.; Zhang, J.; Zhang, X.; Ning, Y.-Q.; Wu, J.

    2017-08-01

    In this paper, an experimental approach to acquiring true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure is described. This method is based on a single edge-emitting laser chip with simple sample processing. The photoluminescence spectra are measured at both facets of the edge-emitting device and transformed to the spontaneous emission rate following the theory described here. The unusual double peaks appearing in the spontaneous emission rate spectra are observed for the InGaAs/GaAs quantum-well structure. The result is analyzed in terms of Indium-rich island and Model-Solid theories. The proposed method is suitable for electrically-pumped quantum-well laser structures, as well.

  3. A Polarization-Dependent Normal Incident Quantum Cascade Detector Enhanced Via Metamaterial Resonators.

    PubMed

    Wang, Lei; Zhai, Shen-Qiang; Wang, Feng-Jiao; Liu, Jun-Qi; Liu, Shu-Man; Zhuo, Ning; Zhang, Chuan-Jin; Wang, Li-Jun; Liu, Feng-Qi; Wang, Zhan-Guo

    2016-12-01

    The design, fabrication, and characterization of a polarization-dependent normal incident quantum cascade detector coupled via complementary split-ring metamaterial resonators in the infrared regime are presented. The metamaterial structure is designed through three-dimensional finite-difference time-domain method and fabricated on the top metal contact, which forms a double-metal waveguide together with the metallic ground plane. With normal incidence, significant enhancements of photocurrent response are obtained at the metamaterial resonances compared with the 45° polished edge coupling device. The photocurrent response enhancements exhibit clearly polarization dependence, and the largest response enhancement factor of 165% is gained for the incident light polarized parallel to the split-ring gap.

  4. A Polarization-Dependent Normal Incident Quantum Cascade Detector Enhanced Via Metamaterial Resonators

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhai, Shen-Qiang; Wang, Feng-Jiao; Liu, Jun-Qi; Liu, Shu-Man; Zhuo, Ning; Zhang, Chuan-Jin; Wang, Li-Jun; Liu, Feng-Qi; Wang, Zhan-Guo

    2016-12-01

    The design, fabrication, and characterization of a polarization-dependent normal incident quantum cascade detector coupled via complementary split-ring metamaterial resonators in the infrared regime are presented. The metamaterial structure is designed through three-dimensional finite-difference time-domain method and fabricated on the top metal contact, which forms a double-metal waveguide together with the metallic ground plane. With normal incidence, significant enhancements of photocurrent response are obtained at the metamaterial resonances compared with the 45° polished edge coupling device. The photocurrent response enhancements exhibit clearly polarization dependence, and the largest response enhancement factor of 165% is gained for the incident light polarized parallel to the split-ring gap.

  5. Polarizing Field and Particle Concentration Dependence of the Magnetic Loss Power in Ferrofluids

    NASA Astrophysics Data System (ADS)

    Fannin, Paul C.; Malaescu, Iosif; Stefu, Nicoleta; Marin, Catalin N.

    2009-05-01

    The frequency (f) and polarizing field (H) dependence of the complex magnetic permeability μ(f,H) = μ'(f,H)-iμ″(f,H), of different magnetic fluid samples, over the range 100 MHz to 6 GHz and 0 to 102.4 kA/m, respectively, were analyzed. Starting from an initial magnetic fluid sample (sample A) with magnetite particles dispersed in kerosene and stabilized with oleic acid, having particle concentration n = 19.16ṡ1022 m-3, three samples were obtained by successive dilution with kerosene (with a dilution ratio 2:3) (samples A1, A2, and A3). Based on the complex magnetic permeability measurements of each sample, and for each field value, values of the specific magnetic loss power were obtained. We have also studied the dependence on particle concentration of the magnetic loss power, both in zero polarizing field and in the presence of the polarizing field.

  6. Polarization-dependent plasmonic photocurrents in two-dimensional electron systems

    SciTech Connect

    Popov, V. V.

    2016-06-27

    Plasmonic polarization dependent photocurrents in a homogeneous two-dimensional electron system are studied. Those effects are completely different from the photon drag and electronic photogalvanic effects as well as from the plasmonic ratchet effect in a density modulated two-dimensional electron system. Linear and helicity-dependent contributions to the photocurrent are found. The linear contribution can be interpreted as caused by the longitudinal and transverse plasmon drag effect. The helicity-dependent contribution originates from the non-linear electron convection and changes its sign with reversing the plasmonic field helicity. It is shown that the helicity-dependent component of the photocurrent can exceed the linear one by several orders of magnitude in high-mobility two-dimensional electron systems. The results open possibilities for all-electronic detection of the radiation polarization states by exciting the plasmonic photocurrents in two-dimensional electron systems.

  7. Capacity limitations in fiber-optic communication systems as a result of polarization-dependent loss.

    PubMed

    Nafta, Alon; Meron, Eado; Shtaif, Mark

    2009-12-01

    We characterize the effect of polarization dependent loss (PDL) on the information capacity of fiber-optic channels. The reduction in the outage capacity owing to the PDL is quantified as well as the signal-to-noise ratio margin that needs to be allocated for the PDL in order to avoid loss of capacity.

  8. The dependence of induced polarization on fluid salinity and pH, studied with an extended model of membrane polarization

    NASA Astrophysics Data System (ADS)

    Hördt, Andreas; Bairlein, Katharina; Bielefeld, Anja; Bücker, Matthias; Kuhn, Eva; Nordsiek, Sven; Stebner, Hermann

    2016-12-01

    The estimation of hydraulic parameters from spectral induced polarization (SIP) measurements is difficult partly because the electrical impedance of sediments depends on several parameters that are not related to the texture. Important parameters that influence the spectral response are fluid salinity and pH. In order to understand the behaviour of SIP spectra from a mechanistic point of view, we carry out simulations with a membrane polarization model. The geometry consists of a sequence of wide and narrow pores with finite radii. The charge distribution at the mineral surface is described by a triple layer model, characterized by the zeta potential and the partition coefficient. We extended an existing model by incorporating known dependencies of the zeta potential and the partition coefficient on fluid salinity and pH. Our simulation results predict a decrease of the maximum phase shift of the complex electrical conductivity with increasing salinity, consistent with experimental observations. For very small pore radii, the phase shift may also show the opposite behaviour and increase with salinity. The imaginary conductivity at 1 Hz increases with increasing salinity, followed by a peak and a decrease at high salinities. The fact that our model predicts a decrease of the imaginary conductivity at high salinities is particularly important, because strong experimental evidence was recently found for such a decrease, which was theoretically unexplained so far. Both the maximum phase shift and the imaginary conductivity at 1 Hz decrease when pH decreases. The reason is that at low pH, the zeta potential and the partition coefficient both decrease, corresponding to a smaller charge density at the mineral surface, resulting in a weaker impact of the electrical double layer. The few existing experimental studies on pH dependence are qualitatively consistent with our simulation results.

  9. Polarization dependence of light scattered from rough surfaces with steep slopes

    NASA Astrophysics Data System (ADS)

    O'Donnell, Kevin A.; Knotts, Michael E.

    1991-11-01

    We discuss measurements of the infrared scattering properties of one- and two-dimensional conducting randomly rough surfaces. The surfaces are fabricated in photoresist and are checked with a stylus profilometer to verify that the surface statistics agree with the desired results. For surfaces that have steep slopes and lateral scale sizes comparable to the illumination wavelength, we observe strongly enhanced backscattering toward the source. These observations are shown to be strongly dependent on polarization. In the case of a one- dimensional surface, four distinct quantities appear in the Stokes scattering matrix, and examples of measurements of these quantities are presented. For the case of a two- dimensionally rough surface it is discussed that, even if the incident field is purely linearly polarized, the scattered light consists of both polarized and randomly polarized components. In the backscattering region, the polarized component contains linear, elliptical, and even nearly circular polarization states at various field angles. These data are interpreted and are consistent with the statistical isotropy of the surface.

  10. On the generation of polarization-dependent supercontinuum and third harmonic in air

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya K.; Edward, Stephen; Dharmadhikari, Jayashree A.; Mathur, Deepak

    2015-05-01

    Filamentation and supercontinuum (SC) generation occur in transparent media during the propagation of intense femtosecond laser pulses. We report experimental results of polarization-dependent SC generation and third harmonic generation (THG) in air using intense 40 fs, 800 nm pulses under varying focusing conditions. We observe that tight focusing enhances the extent of the SC compared to when there is weak external focusing. Moreover, we observe that when the incident beam is linearly polarized the SC yield is more than that obtained using circularly polarized light of the same energy, but this difference reduces as focusing becomes tighter and depolarization begins to take effect. We have also carried out measurement for THG in air under the same conditions as for SC generation. A THG efficiency of 0.5% is measured for linearly polarized light in air. Although conservation of spin angular momentum precludes THG with circularly polarized light, we do observe THG with circularly polarized light in our experiments because of depolarization effects. We show that THG measurements allow in situ measurements of the extent to which incident light is depolarized.

  11. Time-dependent density functional theory for strong-field ionization by circularly polarized pulses

    NASA Astrophysics Data System (ADS)

    Chirilă, Ciprian C.; Lein, Manfred

    2017-03-01

    By applying time-dependent density functional theory to a two-dimensional multielectron atom subject to strong circularly polarized light pulses, we confirm that the ionization of p orbitals with defined angular momentum depends on the sense of rotation of the applied field. A simple ad-hoc modification of the adiabatic local-density exchange-correlation functional is proposed to remedy its unphysical behavior under orbital depletion.

  12. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    SciTech Connect

    Li, Yuan Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue

    2015-05-11

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  13. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue; Chen, Yonghai

    2015-05-01

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  14. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers.

    PubMed

    Sobon, Grzegorz; Kaczmarek, Pawel; Antonczak, Arkadiusz; Sotor, Jaroslaw; Abramski, Krzysztof M

    2011-09-26

    In this paper we present our experimental studies on controlling the amplified spontaneous emission (ASE) from Yb(3+) ions in Er/Yb co-doped fiber amplifiers. We propose a new method of controlling the Yb-ASE by stimulating a laser emission at 1064 nm in the amplifier, by providing a positive 1 μm signal feedback loop. The results are discussed and compared to a conventional amplifier setup without 1 μm ASE control and to an amplifier with auxiliary 1064 nm seeding. We have shown, that applying a 1064 nm signal loop in an Er/Yb amplifier can increase the output power at 1550 nm and provide stable operation without parasitic lasing at 1 μm.

  15. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  16. A linear integral-equation-based computer code for self-amplified spontaneous emission calculations of free-electron lasers.

    SciTech Connect

    Dejus, R. J.; Shevchenko, O. A.; Vinokurov, A.

    1999-09-16

    The linear integral-equation-based computer code RON (Roger Oleg Nikolai), which was recently developed at Argonne National Laboratory, was used to calculate the self-amplified spontaneous emission (SASE) performance of the free-electron laser (FEL) being built at Argonne. Signal growth calculations under different conditions were used to estimate tolerances of actual design parameters and to estimate optimal length of the break sections between undulator segments. Explicit calculation of the radiation field was added recently and a typical angular distribution in the break section is shown. The measured magnetic fields of five undulators were used to calculate the gain for the Argonne FEL. The result indicates that the real undulators for the Argonne FEL (the effect of magnetic field errors alone) will not significantly degrade the FEL performance. The capability to calculate the small-signal gain for an FEL-oscillator is also demonstrated.

  17. Spontaneous emission intensity and anisotropy of quantum dot films in proximity to nanoscale photonic-plasmonic templates

    NASA Astrophysics Data System (ADS)

    Indukuri, Chaitanya; Basu, J. K.

    2016-07-01

    We discuss results on spontaneous emission intensity and lifetime anisotropy of cadmium selenide quantum dot monolayer films placed in close proximity to a porous block copolymer based photonic-plasmonic two dimensional array. The porous block copolymer cylinders can be filled with metal nanoparticles and the concentration of these nanoparticles is varied to control both the photoluminescence intensity and lifetime of a layer of quantum dots placed above the template. Significant emission enhancement is achieved even for the quantum dot layer whose core lies about 1 nm above the template surface. Interestingly, polarised decay lifetime analysis indicates considerable emission anisotropy, as well for these quantum dots. Our results thus demonstrates how such hybrid optical materials can be created with controlled optical properties and suggests extension of this method to other novel two dimensional materials in combination with the photonic-plasmonic template.

  18. The influence of atomic collisions on collective spontaneous emission from an f-deformed Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Haghshenasfard, Z.; Naderi, M. H.; Soltanolkotabi, M.

    2009-03-01

    In this paper, we investigate the spontaneous emission of an f-deformed Bose-Einstein condensate of a gas with N identical two-level atoms immersed in a single-mode ideal cavity with s atoms initially excited. We apply an f-deformed quantum model in which Gardiner's phonon operators are deformed by an operator-valued functionf(\\hat n) of the particle number operator \\hat n. We consider the collisions between the atoms as a special kind of f-deformation where the collision rate κ is regarded as a corresponding deformation parameter. The time evolution of the expectation value of the atomic inversion is presented, the phenomenon of collective collapses and revivals is shown and the effects of deformation on the cooperative behaviour of the system are discussed.

  19. Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method

    NASA Astrophysics Data System (ADS)

    Acikgoz, Sabriye; Demir, Mustafa M.; Yapasan, Ece; Kiraz, Alper; Unal, Ahmet A.; Inci, M. Naci

    2014-09-01

    The decay dynamics of perylene dye molecules encapsulated in polymer nanofibers produced by electrospinning of polymethyl methacrylate are investigated using a confocal fluorescence lifetime imaging microscopy technique. Time-resolved experiments show that the fluorescence lifetime of perylene dye molecules is enhanced when the dye molecules are encapsulated in a three-dimensional photonic environment. It is hard to produce a sustainable host with exactly the same dimensions all the time during fabrication to accommodate dye molecules for enhancement of spontaneous emission rate. The electrospinning method allows us to have a control over fiber diameter. It is observed that the wavelength of monomer excitation of perylene dye molecules is too short to cause enhancement within nanofiber photonic environment of 330 nm diameters. However, when these nanofibers are doped with more concentrated perylene, in addition to monomer excitation, an excimer excitation is generated. This causes observation of the Purcell effect in the three-dimensional nanocylindrical photonic fiber geometry.

  20. Generation of isolated single attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme.

    PubMed

    Kumar, Sandeep; Kang, Heung-Sik; Kim, Dong Eon

    2011-04-11

    The generation of isolated attosecond hard x-ray pulse has been studied under the enhanced self-amplified spontaneous emission (ESASE) scheme with the density and energy modulation of an electron bunch. It is demonstrated in simulation that an isolated attosecond hard x-ray pulse of a high contrast ratio can be produced by adjusting a driver laser wavelength and the energy distribution of an electron bunch. An isolated attosecond pulse of ~146 attosecond full-width half-maximum (FWHM) at 0.1 nm wavelength is obtained with a saturation length of 34 meter for the electron beam parameters of Korean X-ray Free Electron laser. © 2011 Optical Society of America

  1. Analytical solution for phase space evolution of electrons operating in a self-amplified spontaneous emission free electron laser

    NASA Astrophysics Data System (ADS)

    Nishimori, Nobuyuki

    2005-10-01

    I present an analytical solution for the phase space evolution of electrons in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) operating in the linear regime before saturation in the resonant case by solving the one dimensional FEL equation together with the solution of the cubic equation, which represents the evolution of the SASE FEL field. The electrons are shown to be bunched around π/6 ahead of a resonant electron every resonant FEL wavelength in the high gain regime. The phase relation is similar to that in a low gain FEL where an electron beam above resonance is injected, explaining the positive FEL gain. The analytical solutions agree well with numerical simulations and are applied to obtain the coherent optical transition radiation (OTR) intensity produced from electron microbunching at FEL wavelength. The coherent OTR intensity is shown to be proportional to FEL intensity.

  2. Spontaneous emission study on 1.3 µm InAs/InGaAs/GaAs quantum dot lasers.

    PubMed

    Liu, C Y; Stubenrauch, M; Bimberg, D

    2011-06-10

    True spontaneous emission (TSE) measurements on InAs/InGaAs/GaAs quantum dot (QD) lasers have been performed as a function of injection current and cavity length. For each laser, TSE from both the ground state (GS) transition and the excited state (ES) transition has been analyzed. It is found that Auger processes are the major nonradiative recombination (NR) processes for both the GS and ES transitions. In particular, for the first time, the existence of Auger like NR features in ES transitions has been experimentally demonstrated. In addition, obvious competition for carriers between the ES transition and the GS transition has been observed in TSE analysis. Furthermore, the QD laser's cavity length has a strong effect on the NR process in GS transitions, due to GS gain saturation. Therefore, when analyzing the NR processes in operating QD lasers, gain saturation due to cavity length limits should be properly considered.

  3. Spontaneous emission from a two-level atom in anisotropic one-band photonic crystals: A fractional calculus approach

    SciTech Connect

    Wu, J.-N.; Huang, C.-H.; Cheng, S.-C.; Hsieh, W.-F.

    2010-02-15

    Spontaneous emission (SE) from a two-level atom in an anisotropic photonic crystal (PC) is investigated by the fractional calculus. Physical phenomena of the SE are studied analytically by solving the fractional kinetic equations of the SE. There is a dynamical discrepancy between the SE of anisotropic and isotropic PCs. We find that, contrary to the SE phenomenon of the isotropic PC, the SE near the band edge of an anisotropic PC shows no photon-atom bound state. It is consistent with the experimental results of Barth, Schuster, Gruber, and Cichos [Phys. Rev. Lett. 96, 243902 (2006)] that the anisotropic property of the system enhances the SE. We also study effects of dispersion curvatures on the changes of the photonic density of states and the appearance of the diffusion fields in the SE.

  4. GPS TEC variations in the polar cap ionosphere: Solar wind and IMF dependence

    NASA Astrophysics Data System (ADS)

    Watson, Chris; Jayachandran, P. T.; MacDougall, John W.

    2016-09-01

    This statistical study examines the solar wind dependence of total electron content (TEC) variations arising from mesoscale (tens to hundreds of kilometers) structuring of the polar cap ionosphere. Six years of TEC measurements were collected from five high-data rate Global Positioning System (GPS) receivers of the Canadian High Arctic Ionospheric Network (CHAIN), from which high-resolution magnetic local time-latitude maps of TEC variation occurrence rate and amplitude were created. Ionosonde radars were used to identify TEC variations arising from ionization of the E and F region ionospheres. Statistical TEC maps were examined as a function of solar wind and interplanetary magnetic field (IMF) measurements. Statistical results showed that occurrence rate of TEC variations was highest in localized dayside regions, with exact local time and latitude of peak occurrence depending primarily on the dayside coupling rate of the solar wind and magnetosphere, as well as IMF orientation and magnitude in the Y-Z plane. Occurrence of TEC variations throughout the polar cap increased with solar wind-magnetosphere coupling rate and IMF magnitude. The solar wind dependence of occurrence rate largely reflected the location and rate of dayside magnetic reconnection and subsequent particle precipitation and polar cap convection. Amplitudes of TEC variations were largest around noon and increased throughout the polar cap with increased solar wind-magnetosphere coupling rate. These statistical results improve upon the existing observational picture of the polar ionosphere and will potentially facilitate development of models and techniques for mitigating impacts of the polar ionosphere on navigation signals and communication links.

  5. Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study.

    PubMed

    Pravdivtsev, Andrey N; Ivanov, Konstantin L; Yurkovskaya, Alexandra V; Petrov, Pavel A; Limbach, Hans-Heinrich; Kaptein, Robert; Vieth, Hans-Martin

    2015-12-01

    We have investigated the magnetic field dependence of Signal Amplification By Reversible Exchange (SABRE) arising from binding of para-hydrogen (p-H2) and a substrate to a suitable transition metal complex. The magnetic field dependence of the amplification of the (1)H Nuclear Magnetic Resonance (NMR) signals of the released substrates and dihydrogen, and the transient transition metal dihydride species shows characteristic patterns, which is explained using the theory presented here. The generation of SABRE is most efficient at low magnetic fields due to coherent spin mixing at nuclear spin Level Anti-Crossings (LACs) in the SABRE complexes. We studied two Ir-complexes and have shown that the presence of a (31)P atom in the SABRE complex doubles the number of LACs and, consequently, the number of peaks in the SABRE field dependence. Interestingly, the polarization of SABRE substrates is always accompanied by the para-to-ortho conversion in dihydride species that results in enhancement of the NMR signal of free (H2) and catalyst-bound H2 (Ir-HH). The field dependences of hyperpolarized H2 and Ir-HH by means of SABRE are studied here, for the first time, in detail. The field dependences depend on the chemical shifts and coupling constants of Ir-HH, in which the polarization transfer takes place. A negative coupling constant of -7Hz between the two chemically equivalent but magnetically inequivalent hydride nuclei is determined, which indicates that Ir-HH is a dihydride with an HH distance larger than 2Å. Finally, the field dependence of SABRE at high fields as found earlier has been investigated and attributed to polarization transfer to the substrate by cross-relaxation. The present study provides further evidence for the key role of LACs in the formation of SABRE-derived polarization. Understanding the spin dynamics behind the SABRE method opens the way to optimizing its performance and overcoming the main limitation of NMR, its notoriously low sensitivity.

  6. Polarization-dependent plasmonic coupling in dual-layer metallic structures at terahertz frequencies.

    PubMed

    Zhang, Zhong Xiang; Chan, Kam Tai

    2011-01-31

    Dual-layer metallic wire-hole structures were fabricated and their terahertz transmission properties were measured. They exhibit polarization-dependent transmittance with large extinction ratios. Simulation and experimental results on structures with different wire-to-hole orientations provide strong evidence that the resonance peaks are caused by plasmonic coupling between the two metallic layers. A simplified LC-circuit model is proposed to explain the coupling mechanism and to estimate the peak frequencies. Our results suggest that specific electromagnetic response can be achieved by appropriate design of the geometrical patterns on the two metallic layers and a suitable polarization of the incident wave.

  7. ROP GTPase-Dependent Actin Microfilaments Promote PIN1 Polarization by Localized Inhibition of Clathrin-Dependent Endocytosis

    PubMed Central

    Lin, Deshu; Dhonukshe, Pankaj; Zhang, Xingxing; Friml, Jiri; Scheres, Ben; Fu, Ying; Yang, Zhenbiao

    2012-01-01

    Cell polarization via asymmetrical distribution of structures or molecules is essential for diverse cellular functions and development of organisms, but how polarity is developmentally controlled has been poorly understood. In plants, the asymmetrical distribution of the PIN-FORMED (PIN) proteins involved in the cellular efflux of the quintessential phytohormone auxin plays a central role in developmental patterning, morphogenesis, and differential growth. Recently we showed that auxin promotes cell interdigitation by activating the Rho family ROP GTPases in leaf epidermal pavement cells. Here we found that auxin activation of the ROP2 signaling pathway regulates the asymmetric distribution of PIN1 by inhibiting its endocytosis. ROP2 inhibits PIN1 endocytosis via the accumulation of cortical actin microfilaments induced by the ROP2 effector protein RIC4. Our findings suggest a link between the developmental auxin signal and polar PIN1 distribution via Rho-dependent cytoskeletal reorganization and reveal the conservation of a design principle for cell polarization that is based on Rho GTPase-mediated inhibition of endocytosis. PMID:22509133

  8. Polarization dependent photocurrent in the Bi2Te3 topological insulator film for multifunctional photodetection

    PubMed Central

    Yao, J. D.; Shao, J. M.; Li, S. W.; Bao, D. H.; Yang, G. W.

    2015-01-01

    Three dimensional Z2 Topological insulator (TI) is an unconventional phase of quantum matter possessing insulating bulk state as well as time-reversal symmetry-protected Dirac-like surface state, which is demonstrated by extensive experiments based on surface sensitive detection techniques. This intriguing gapless surface state is theoretically predicted to exhibit many exotic phenomena when interacting with light, and some of them have been observed. Herein, we report the first experimental observation of novel polarization dependent photocurrent of photodetectors based on the TI Bi2Te3 film under irradiation of linearly polarized light. This photocurrent is linearly dependent on both the light intensity and the applied bias voltage. To pursue the physical origin of the polarization dependent photocurrent, we establish the basic TI surface state model to treat the light irradiation as a perturbation, and we adopt the Boltzmann equation to calculate the photocurrent. It turns out that the theoretical results are in nice qualitative agreement with the experiment. These findings show that the polycrystalline TI Bi2Te3 film working as a multifunctional photodetector can not only detect the light intensity, but also measure the polarization state of the incident light, which is remarkably different from conventional photodetectors that usually only detect the light intensity. PMID:26373684

  9. Anomalous temperature-dependent spin-valley polarization in monolayer WS2

    PubMed Central

    Hanbicki, A.T.; Kioseoglou, G.; Currie, M.; Hellberg, C. Stephen; McCreary, K.M.; Friedman, A.L.; Jonker, B.T.

    2016-01-01

    Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS2 films such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization. However, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that intervalley scattering, electron-hole radiative recombination, and Auger processes are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures. PMID:26728976

  10. Polarization-dependent responses of fluorescent indicators partitioned into myelinated axons

    NASA Astrophysics Data System (ADS)

    Micu, Ileana; Brideau, Craig; Stys, Peter K.

    2012-02-01

    Myelination, i.e. the wrapping of axons in multiple layers of lipid-rich membrane, is a unique phenomenon in the nervous systems of both vertebrates and invertebrates, that greatly increases the speed and efficiency of signal transmission. In turn, disruption of axo-myelinic integrity underlies disability in numerous clinical disorders. The dependence of myelin physiology on nanometric organization of its lamellae makes it difficult to accurately study this structure in the living state. We expected that fluorescent probes might become highly oriented when partitioned into the myelin sheath, and in turn, this anisotropy could be interrogated by controlling the polarization state of the exciting laser field used for 2-photon excited fluorescence (TPEF). Live ex vivo myelinated rodent axons were labeled with a series of lipohilic and hydrophilic fluorescenct probes, and TPEF images acquired while laser polarization was varied at the sample over a broad range of ellipticities and orientations of the major angle [see Brideau, Micu & Stys, abstract this meeting]. We found that most probes exhibited strong dependence on both the major angle of polarization, and perhaps more surprisingly, on ellipticity as well. Lipophilic vs. hydrophilic probes exhibited distinctly different behavior. We propose that polarization-dependent TPEF microscopy represents a powerful tool for probing the nanostructural architecture of both myelin and axonal cytoskeleton in a domain far below the resolution limit of visible light microscopy. By selecting probes with different sizes and physicochemical properties, distinct aspects of cellular nanoarchitecture can be accurately interrogated in real-time in living tissue.

  11. Polarization-dependent optical second-harmonic imaging of a rat-tail tendon.

    PubMed

    Stoller, Patrick; Kim, Beop-Min; Rubenchik, Alexander M; Reiser, Karen M; Da Silva, Luiz B

    2002-04-01

    Using scanning confocal microscopy, we measure the backscattered second harmonic signal generated by a 100 fs laser in rat-tail tendon collagen. Damage to the sample is avoided by using a continuous scanning technique, rather than measuring the signal at discrete points. The second harmonic signal varies by about a factor of 2 across a single cross section of the rat-tail tendon fascicle. The signal intensity depends both on the collagen organization and the backscattering efficiency. This implies that we cannot use intensity measurements alone to characterize collagen structure. However, we can infer structural information from the polarization dependence of the second harmonic signal. Axial and transverse scans for different linear polarization angles of the input beam show that second harmonic generation (SHG) in the rat-tail tendon depends strongly on the polarization of the input laser beam. We develop an analytical model for the SHG as a function of the polarization angle in the rat-tail tendon. We apply this model in determining the orientation of collagen fibrils in the fascicle and the ratio gamma between the two independent elements of the second-order nonlinear susceptibility tensor. There is a good fit between our model and the measured data.

  12. Model and observation comparison of the universal time and IMF by dependence of the ionospheric polar hole

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.; Hoegy, W. R.; Grebowsky, J. M.

    1991-01-01

    The polar ionospheric F-region often exhibits regions of marked density depletion. These depletions have been observed by a variety of polar orbiting ionospheric satellites over a full range of solar cycle, season, magnetic activity, and universal time (UT). An empirical model of these observations has recently been developed to describe the polar depletion dependence on these parameters. Specifically, the dependence has been defined as a function of F10.7 (solar), summer or winter, Kp (magnetic), and UT. Polar cap depletions have also been predicted /1, 2/ and are, hence, present in physical models of the high latitude ionosphere. Using the Utah State University Time Dependent Ionospheric Model (TDIM) the predicted polar depletion characteristics are compared with those described by the above empirical model. In addition, the TDIM is used to predict the IMF By dependence of the polar hole feature.

  13. Polarization-dependent fluorescence of proteins bound to nanopore-confined lipid bilayers

    NASA Astrophysics Data System (ADS)

    Li, R.-Q.; Marek, A.; Smirnov, Alex I.; Grebel, H.

    2008-09-01

    Lipid bilayers are essential structural component of biological membranes of all the living species: from viruses and bacteria to plants and humans. Biophysical and biochemical properties of such membranes are important for understanding physical mechanisms responsible for drug targeting. Binding events between proteins and the membrane may be ascertained by introducing fluorescence markers (chromophores) to the proteins. Here we describe a novel biosensing platform designed to enhance signals of these fluorescence markers. Nanoporous aluminum oxide membranes with and without gold (Au) surface coating have been employed for optical detection of bound conjugated streptavidin to biotinylated lipid bilayers-a model system that mimics protein docking to the membrane surface. Unexpectedly, it was found that fluorescence signals from such structures vary when pumped with E-polarized and H-polarized incident optical beams. The origin of the observed polarization-dependent effects and the implications for enhanced fluorescence detection in a biochip format are being discussed.

  14. Temperature dependence of spin polarization in ferromagnetic metals using lateral spin valves

    NASA Astrophysics Data System (ADS)

    Villamor, Estitxu; Isasa, Miren; Hueso, Luis E.; Casanova, Fèlix

    2013-11-01

    Spin injection properties of ferromagnetic metals are studied and are compared by using highly reproducible cobalt/copper and permalloy/copper lateral spin valves (LSVs) with transparent contacts, fabricated with a careful control of the interface and the purity of copper. Spin polarization of permalloy and cobalt are obtained as a function of temperature. Analysis of the temperature dependence of both the spin polarization and the conductivity of permalloy confirms that the two-channel model for ferromagnetic metals is valid to define the current spin polarization and shows that a correction factor of ˜2 is needed for the values obtained by LSV experiments. The spin transport properties of copper, which also are studied as a function of temperature, are not affected by the used ferromagnetic material. The low-temperature maximum in the spin-diffusion length of copper is attributed to the presence of diluted magnetic impurities intrinsic from the copper.

  15. Polarity dependent photoisomerization of ether substituted azodyes: Synthesis and photoswitching behavior.

    PubMed

    Gan, Siew Mei; Pearl, Zynia Fernandes; Yuvaraj, A R; Lutfor, M R; Gurumurthy, Hegde

    2015-10-05

    Two new ether substituted azodyes were synthesized and characterized by different spectral analysis such as (1)H NMR, (13)C NMR, FTIR and UV/Vis. Synthesized compounds were used to study the photoisomerization phenomenon by using UV-Vis spectro-photometer. Interesting polarity dependent effect is observed for the first time on these materials. Trans-cis (E-Z) and cis-trans (Z-E) conversion occurred within 41 s and 445 min, respectively for both the compounds in solutions. Polarizing optical microscopy studies revealed that there is no liquid crystal phase for both the compounds. The dramatic variation in the optical property is speculated to be the polarity of the chemical species. These derivatives are useful to fabricate optical data storage devices.

  16. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al

    NASA Astrophysics Data System (ADS)

    Estrin, Y.; Rich, D. H.; Rozenfeld, N.; Arad-Vosk, N.; Ron, A.; Sa'ar, A.

    2015-10-01

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ˜2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ωsp, and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals.

  17. Survival rates of radio-collared female polar bears and their dependent young

    USGS Publications Warehouse

    Amstrup, Steven C.; Durner, G.M.

    1995-01-01

    Polar bears are hunted throughout most of their range. In addition to hunting, polar bears of the Beaufort Sea region are exposed to mineral and hydrocarbon extraction and related human activities such as shipping, road building, and seismic testing. As human populations increase and demands for polar bears and other arctic resources escalate, reliable estimates of survivorship of polar bears are needed to predict and manage the impacts of those activities. We used the Kaplan-Meier model to estimate annual survival (with 95% confidence intervals) for radio-collared female polar bears and their dependent young that were followed during a 12-year study in the Alaskan Beaufort Sea. Survival of adult female polar bears was higher than had been previously thought: S = 0.969 (range 0.952-0.983). If human-caused mortalities were deleted, the computed survival rate was 0.996 (0.990-1.002). Survival of young from den exit to weaning was 0.676 (0.634-0.701). Survival during the second year of life, 0.860 (0.751-0.903), was substantially higher than during the first year, 0.651 (0.610-0.675). Shooting by local hunters accounted for 85% of the documented deaths of adult female polar bears. Conversely, 90% of documented losses of young were independent of litter size (P = 0.36), indicating that parental investment in single cubs was not different from investment in litters of two or more. Precise estimates of the survival of independent juveniles and adult males still need to be developed.

  18. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

    PubMed Central

    Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.

    2016-01-01

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease. PMID:27570836

  19. Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation

    PubMed Central

    Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-01-01

    Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090

  20. Reply to the paper "The presence of a distant detector does not seem to influence spontaneous emission" by L. C. Ryff

    NASA Astrophysics Data System (ADS)

    Crosignani, B.; Di Porto, P.

    1997-07-01

    We confute the criticism contained in a paper appearing in this issue of Europhys. Lett., in which the author claims that the main result of a series of our papers concerning the influence of a distant detector on spontaneous emission is unfounded.

  1. Distance Dependence of Electron Spin Polarization during Photophysical Quenching of Excited Naphthalene by TEMPO Radical.

    PubMed

    Rane, Vinayak; Das, Ranjan

    2015-06-04

    Quenching of excited states by a free radical is generally studied in systems where these two are separate entities freely moving in a liquid solution. Random diffusive encounters bring them together to cause the quenching and leave the spins of the radical polarized. In the dynamics of the radical-triplet pair mechanism of the generation of electron spin polarization (ESP), the distance-dependent exchange interaction plays a crucial role. To investigate how the distance between the excited molecule and the radical influences the ESP, we have covalently linked a naphthalene moiety to a TEMPO free radical through a spacer group of three different lengths. We compared the ESP process of these linked compounds with that of the usual "unlinked system" of naphthalene and TEMPO through time-resolved EPR experiments at low temperature in n-hexane solution. The time evolution of both the linked and the "unlinked system" was treated on a similar footing. The time-dependent EPR signal was analyzed by combining photophysical kinetics and time-dependent Bloch equations incorporating spin dynamics. Sequential quenching of the singlet state and the triplet state of naphthalene was seen in all the systems, as revealed through the spin-polarized TREPR spectra of opposite phase. The magnitudes of the ESP in the linked molecules were higher than those of the "unlinked system," showing that when the two moieties are held together greater mixing of quartet-doublet states takes place. The magnitudes of ESP steadily decrease with increasing the length of the spacer group. The polarization magnitudes due to triplet quenching and singlet quenching are very similar, differing by a factor of only ∼2. These characteristics show that for all the linked molecules the quenching takes place in the "weak exchange" regime and at almost the same distance of separation between the two moieties. Our results also showed that observation of small absorptive TREPR signals does not necessarily imply

  2. Circularly polarized harmonic generation by intense bicircular laser pulses: electron recollision dynamics and frequency dependent helicity

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Mauger, François; Yuan, Kai-Jun

    2016-12-01

    Numerical solutions of time-dependent Schrödinger equations for one and two electron cyclic molecules {{{H}}}nq+ exposed to intense bichromatic circularly polarized laser pulses of frequencies {ω }1 and {ω }2, such that {ω }1/{ω }2={n}1/{n}2 (integer) produce circularly polarized high order harmonics with a cut-off recollision maximum energy at and greater than the linear polarization law (in atomic units) {N}m{ω }1={I}p+3.17{U}p, where I p is the ionization potential and {U}p={(2{E}0)}2/4{ω }2 is the ponderomotive energy defined by the field E 0 (intensity I={{cE}}02/8π ) from each pulse and mean frequency ω =({ω }1+{ω }2)/2 . An electron recollision model in a rotating frame at rotating frequency {{Δ }}ω =({ω }1-{ω }2)/2 predicts this simple result as a result of recollision dynamics in a combination of bichromatic circularly polarized pulses. The harmonic helicities and their intensities are shown to depend on compatible symmetries of the net pulse electric fields with that of the molecules.

  3. Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors.

    PubMed

    Kim, Sora; Hadzialic, Sanja; Sudbo, Aasmund S; Solgaard, Olav

    2012-03-12

    We report on the fabrication of 2-D photonic crystal (PC) micro-mirrors, and Finite Difference Time Domain (FDTD) simulations and measurements of their reflectance spectra and polarization dependence at normal incidence. The PC mirrors were fabricated in free-standing thin polysilicon membranes supported by silicon nitride films for stress compensation. Greater than 90% reflectivity is measured over a wavelength range of 35 nm from 1565 nm to 1600 nm with small polarization dependence. Our FDTD simulations show that fabrication errors on the order of tens of nanometers can strongly affect the reflection spectra. When the fabrication errors are kept below this level, FDTD simulations on perfectly periodic structures accurately predict the reflection spectra of the fabricated PC mirrors, despite their sensitivity to the fabrication errors.

  4. Numerical and experimental analysis of polarization dependent gain vector in Brillouin amplification system

    NASA Astrophysics Data System (ADS)

    Cao, Shan; Xie, Shangran; Liu, Fei; Zheng, Xiaoping; Zhang, Min

    2017-04-01

    The polarization dependent gain (PDG) of Brillouin amplification systems is numerically investigated in detail by solving a new model describing the evolution of PDG vector along the fiber with random birefringence. In this model both the modulus and orientation of the PDG vector are considered. By including the temporal distribution of fiber birefringence, the statistical properties of the PDG vector, including its mean value and standard deviation, are presented as function of fiber beat length, input pump power and fiber length, which can be directly applied in practice to estimate the performance of Brillouin amplification systems in term of its polarization dependence. Experimental results on a Brillouin amplification system are also reported to support the validity of our model. The analysis presented here helps to gain insight for the properties of PDG vector in any SBS systems.

  5. Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.

    PubMed

    Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M

    2012-07-17

    Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.

  6. Stokes shift dynamics in (ionic liquid + polar solvent) binary mixtures: composition dependence.

    PubMed

    Daschakraborty, Snehasis; Ranjit, Biswas

    2011-04-14

    An approximate semimolecular theory has been developed to investigate the composition dependence of Stokes shift dynamics of a fluorescent dye molecule dissolved in binary mixtures of an ionic liquid (IL) with a conventional polar solvent at different mole fractions. The theory expresses the dynamic Stokes shift as a sum of contributions from the dye-IL and the dye-polar solvent interactions and suggests substantial solute-cation dipole-dipole interaction contribution to the solvation energy relaxation. The theory, when applied to aqueous mixtures of 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]) and tetrafluoroborate ([Bmim][BF(4)]), and binary mixtures of ([Bmim][BF(4)] + acetonitrile), predicts reduction of Stokes shift but acceleration of the dynamics upon increasing the polar solvent concentration for the most part of the mixture composition. The decrease in dynamic Stokes shift values has been found to occur due to decrease of the dye-IL interaction in the presence of the added polar solvent. For aqueous binary mixtures of IL, the predicted results are in semiquantitative agreement with the available experimental results. However, the calculated dynamics suggest much weaker composition dependence than that observed in experiments. In addition, the theory predicts a turn around for dynamic Stokes shift in its composition dependence for ([Bmim][BF(4)] + acetonitrile) mixtures at higher dilutions of the IL. Interestingly, effective dipolar medium calculations for Stokes shift dynamics in ([Bmim][BF(4)] + dichloromethane) binary mixtures predict a very weak or even nonexistent nonlinear composition dependence. These predictions should be reexamined in experiments.

  7. Polarization dependent asymmetric magneto-resistance features in nanocrystalline diamond films

    SciTech Connect

    Bhattacharyya, Somnath

    2014-08-18

    Polar angle-dependence of magneto-resistance (AMR) in heavily nitrogen-incorporated ultra-nanocrystalline diamond (UNCD) films is recorded by applying high magnetic fields, which shows strong anisotropic features at low temperatures. The temperature-dependence of MR and AMR can reveal transport in the weak-localization regime, which is explained by using a superlattice model for arbitrary values of disorder and angles. While a propagative Fermi surface model explains the negative MR features for low degree of disorder the azimuthal angle-dependent MR shows field dependent anisotropy due to the aligned conducting channels on the layers normal to film growth direction. The analysis of MR and AMR can extract the temperature dependence of dephasing time with respect to the elastic scattering time which not only establishes quasi-two dimensional features in this system but also suggests a potential application in monitoring the performance of UNCD based quantum devices.

  8. Simulation of all-optical logic NOR gate based on two-photon absorption with semiconductor optical amplifier-assisted Mach-Zehnder interferometer with the effect of amplified spontaneous emission

    NASA Astrophysics Data System (ADS)

    Kotb, Amer

    2015-05-01

    The performance of an all-optical NOR gate is numerically simulated and investigated. The NOR Boolean function is realized by using a semiconductor optical amplifier (SOA) incorporated in Mach-Zehnder interferometer (MZI) arms and exploiting the nonlinear effect of two-photon absorption (TPA). If the input pulse intensities is adjusting to be high enough, the TPA-induced phase change can be larger than the regular gain-induced phase change and hence support ultrafast operation in the dual rail switching mode. The numerical study is carried out by taking into account the effect of the amplified spontaneous emission (ASE). The dependence of the output quality factor ( Q-factor) on critical data signals and SOAs parameters is examined and assessed. The obtained results confirm that the NOR gate implemented with the proposed scheme is capable of operating at a data rate of 250 Gb/s with logical correctness and high output Q-factor.

  9. Dependence of in-cloud scavenging of polar organic aerosol compounds on the water solubility

    NASA Astrophysics Data System (ADS)

    Limbeck, Andreas; Puxbaum, Hans

    2000-08-01

    In spring 1997 at the Sonnblick Observatory, located at 3106m elevation in the Austrian Alps, interstitial aerosol and cloud water samples were simultaneously collected in supercooled convective clouds. These samples were analyzed for their polar organic composition using a newly developed analytical method that allows the simultaneous determination of dicarboxylic acids, monocarboxylic acids, and other polar organic constituents. Using the obtained data set, in-cloud scavenging efficiencies (ɛ) for individual polar organic compounds were calculated. For the different organic substances, scavenging efficiencies ranged from 0.16 to 0.98, compared with sulfate, which exhibited an average scavenging efficiency of 0.94. For dicarboxylic acids, scavenging efficiencies (average of about 0.8) were of the same order as for sulfate. Distinctly lower values (average of about 0.6) were achieved for polar aromatic compounds like phthalic acid or diisobutylphenol. The lowest scavenging efficiencies (average about 0.4) were found for alcohols and monocarboxylic acids. Thus we found in the Sonnblick cloud experiment that more polar organic aerosol constituents are more efficiently scavenged into cloud droplets than less polar compounds. In addition, the scavenging efficiencies exhibited a dependence on the solubilities of the examined compounds. For highly water soluble compounds (1-1000 g L-1) a decrease of the water solubility for an individual compound leads to a decrease in the scavenging efficiency for this compound. For "poorly soluble" substances with water solubilities below l g L-1, a near-constant value for the scavenging efficiency was found, indicating that their scavenging behavior is then dominated by the scavenging of the bulk noncarbonate carbon independent of the physical and chemical properties of the individual substances.

  10. Polarization-Dependent Optical Response in Anisotropic Nanoparticle-DNA Superlattices.

    PubMed

    Sun, Lin; Lin, Haixin; Park, Daniel J; Bourgeois, Marc R; Ross, Michael B; Ku, Jessie C; Schatz, George C; Mirkin, Chad A

    2017-03-30

    DNA-programmable assembly has been used to prepare superlattices composed of octahedral and spherical nanoparticles, respectively. These superlattices have the same body-centered cubic lattice symmetry and macroscopic rhombic dodecahedron crystal habit but tunable lattice parameters by virtue of the DNA length, allowing one to study and determine the effect of nanoscale structure and lattice parameter on the light-matter interactions in the superlattices. Backscattering measurements and finite-difference time-domain simulations have been used to characterize these two classes of superlattices. Superlattices composed of octahedral nanoparticles exhibit polarization-dependent backscattering but via a trend that is opposite to that observed in the polarization dependence for analogous superlattices composed of spherical nanoparticles. Electrodynamics simulations show that this polarization dependence is mainly due to the anisotropy of the nanoparticles and is observed only if the octahedral nanoparticles are well-aligned within the superlattices. Both plasmonic and photonic modes are identified in such structures, both of which can be tuned by controlling the size and shape of the nanoparticle building blocks, the lattice parameters, and the overall size of the three-dimensional superlattices (without changing habit).

  11. Polarization dependent fragmentation of ions produced by laser desorption from nanopost arrays.

    PubMed

    Stolee, Jessica A; Vertes, Akos

    2011-05-28

    Tailored silicon nanopost arrays (NAPA) enable controlled and resonant ion production in laser desorption ionization experiments and have been termed nanophotonic ion sources (Walker et al., J. Phys. Chem. C, 2010, 114, 4835-4840). As the post dimensions are comparable to or smaller than the laser wavelength, near-field effects and localized electromagnetic fields are present in their vicinity. In this contribution, we explore the desorption and ionization mechanism by studying how surface derivatization affects ion yields and fragmentation. We demonstrate that by increasing the laser fluence on derivatized NAPA with less polar surfaces that have decreased interaction energy between the structured silicon substrate and the adsorbate, the spectrum changes from exhibiting primarily molecular ions to showing a growing variety and abundance of fragments. The polarization angle of the laser beam had been shown to dramatically affect the ion yields of adsorbates. For the first time, we report that by rotating the plane of polarization of the desorption laser, the internal energy of the adsorbate can also be modulated resulting in polarization dependent fragmentation. This polarization effect also resulted in selective fragmentation of vitamin B(12). To explore the internal energy of NAPA generated ions, the effect of the post aspect ratios on the laser desorption thresholds and on the internal energy of a preformed ion was studied. Elevated surface temperatures and enhanced near fields in the vicinity of high aspect ratio posts are thought to contribute to desorption and ionization from NAPA. Comparison of the fluence dependence of the internal energies of ions produced from nanoporous silicon and NAPA substrates indicates that surface restructuring or transient melting by the desorption laser is a prerequisite for the former but not for the latter.

  12. Angular and polarization dependence of all optical diode in one-dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Jamshidi-Ghaleh, Kazem; Safari, Zeinab; Moslemi, Fatemeh

    2015-05-01

    The effect of the incident angle on all-optical diode (AOD) efficiency in a one-dimensional photonic crystal structure (1DPC) for TE and TM polarizations was studied. An asymmetric hybrid Fabry Perot resonator type 1DPC structure composed of linear and nonlinear materials was considered in this communication. The nonlinear transmission curves around the defect mode resonant frequency inside the photonic band gap for both TE and TM polarizations at different incident angles, from left to right (L-R) and right to left (R-L) incidences, are illustrated. Results showed that with increasing the incident angle, AOD performance efficiency increases only for TM polarization. The AOD efficiency increased to 80% for an incident angle of 60 degrees because of the dynamical shifting of the defect mode peak frequency caused by the intensity-dependency of the nonlinear layer refractive index along the z-axes. For TE polarization, the z-component of the electric field remained constant for all incident angles. The results of this study can be important in optical data communications and information analysis in all-optical integrated circuits.

  13. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos

    PubMed Central

    Hirate, Yoshikazu; Hirahara, Shino; Inoue, Ken-ichi; Suzuki, Atsushi; Alarcon, Vernadeth B.; Akimoto, Kazunori; Hirai, Takaaki; Hara, Takeshi; Adachi, Makoto; Chida, Kazuhiro; Ohno, Shigeo; Marikawa, Yusuke; Nakao, Kazuki; Shimono, Akihiko; Sasaki, Hiroshi

    2013-01-01

    Summary Background In preimplantation mouse embryos, the first cell fate specification to the trophectoderm or inner cell mass occurs by the early blastocyst stage. The cell fate is controlled by cell position-dependent Hippo signaling, although the mechanisms underlying position-dependent Hippo signaling are unknown. Results We showed that a combination of cell polarity and cell–cell adhesion establishes position-dependent Hippo signaling, where the outer and inner cells are polar and nonpolar, respectively. The junction-associated proteins angiomotin (Amot) and Amotl2 are essential for Hippo pathway activation and appropriate cell fate specification. In the nonpolar inner cells, Amot localizes to adherens junctions (AJs) and cell–cell adhesion activates the Hippo pathway. In the outer cells, the cell polarity sequesters Amot from basolateral AJs to apical domains, thereby suppressing Hippo signaling. The N-terminal domain of Amot is required for actin binding, Nf2/Merlin-mediated association with the E-cadherin complex, and interaction with Lats protein kinase. In AJs, Ser176 in the N-terminal domain of Amot is phosphorylated by Lats, which inhibits the actin-binding activity, thereby stabilizing the Amot–Lats interaction to activate the Hippo pathway. Conclusion We propose that the phosphorylation of S176 in Amot is a critical step for activation of the Hippo pathway in AJs and that cell polarity disconnects the Hippo pathway from cell–cell adhesion by sequestering Amot from AJ. This mechanism converts positional information into differential Hippo signaling, thereby leading to differential cell fates. PMID:23791731

  14. Enhancement of spontaneous emission in metal-dielectric multilayer structures accounting losses

    NASA Astrophysics Data System (ADS)

    Gubaydullin, A. R.; Kaliteevski, M. A.

    2015-11-01

    We study the emission rate enhancement of the dipole emitter centred in the stratified metal-dielectric metamaterial, characterized by the hyperbolic isofrequency surface. We find out a limited enhancement of the Purcell factor in the layered metamaterial. We demonstrate that the radiative decay rate is strongly depends on a ratio of the thickness of layers and is affected by the level of losses in metal.

  15. Surface-plasmon-polariton assisted modification of spontaneous emission of colloidal quantum dots in metal nanostructures

    NASA Astrophysics Data System (ADS)

    Briscoe, Jayson L.; Jayasundara, Nadeepa; Cho, Sang-Yeon

    2013-01-01

    We experimentally demonstrate extraordinary optical transmission (EOT) assisted photoluminescence (PL) of CdSe/CdS colloidal quantum dots (QDs). The quantum dots were encapsulated between a metallic nanostructure and a Bragg reflector to enhance the interaction of spontaneously emitted photons with a resonant electromagnetic surface wave. The measured PL spectrum of the fabricated sample exhibits spectral narrowing and a shift in peak wavelength of 22 nm and 7 nm, respectively. Furthermore, we tested the angular dependence of the signal to confirm the existence of EOT. This demonstration is a critical step towards realizing plasmonic colloidal QD based coherent emitters.

  16. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-10-01

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.

  17. Polarity-dependent transcranial direct current stimulation effects on central auditory processing.

    PubMed

    Ladeira, Andrea; Fregni, Felipe; Campanhã, Camila; Valasek, Cláudia Aparecida; De Ridder, Dirk; Brunoni, André Russwsky; Boggio, Paulo Sérgio

    2011-01-01

    Given the polarity dependent effects of transcranial direct current stimulation (tDCS) in facilitating or inhibiting neuronal processing, and tDCS effects on pitch perception, we tested the effects of tDCS on temporal aspects of auditory processing. We aimed to change baseline activity of the auditory cortex using tDCS as to modulate temporal aspects of auditory processing in healthy subjects without hearing impairment. Eleven subjects received 2mA bilateral anodal, cathodal and sham tDCS over auditory cortex in a randomized and counterbalanced order. Subjects were evaluated by the Random Gap Detection Test (RGDT), a test measuring temporal processing abilities in the auditory domain, before and during the stimulation. Statistical analysis revealed a significant interaction effect of time vs. tDCS condition for 4000 Hz and for clicks. Post-hoc tests showed significant differences according to stimulation polarity on RGDT performance: anodal improved 22.5% and cathodal decreased 54.5% subjects' performance, as compared to baseline. For clicks, anodal also increased performance in 29.4% when compared to baseline. tDCS presented polarity-dependent effects on the activity of the auditory cortex, which results in a positive or negative impact in a temporal resolution task performance. These results encourage further studies exploring tDCS in central auditory processing disorders.

  18. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering.

    PubMed

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-10-24

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence.

  19. Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering

    PubMed Central

    Chen, Ke; Feng, Yijun; Yang, Zhongjie; Cui, Li; Zhao, Junming; Zhu, Bo; Jiang, Tian

    2016-01-01

    Ultrathin metasurface compromising various sub-wavelength meta-particles offers promising advantages in controlling electromagnetic wave by spatially manipulating the wavefront characteristics across the interface. The recently proposed digital coding metasurface could even simplify the design and optimization procedures due to the digitalization of the meta-particle geometry. However, current attempts to implement the digital metasurface still utilize several structural meta-particles to obtain certain electromagnetic responses, and requiring time-consuming optimization especially in multi-bits coding designs. In this regard, we present herein utilizing geometric phase based single structured meta-particle with various orientations to achieve either 1-bit or multi-bits digital metasurface. Particular electromagnetic wave scattering patterns dependent on the incident polarizations can be tailored by the encoded metasurfaces with regular sequences. On the contrast, polarization insensitive diffusion-like scattering can also been successfully achieved by digital metasurface encoded with randomly distributed coding sequences leading to substantial suppression of backward scattering in a broadband microwave frequency. The proposed digital metasurfaces provide simple designs and reveal new opportunities for controlling electromagnetic wave scattering with or without polarization dependence. PMID:27775064

  20. Meteorological Excitations of Polar Motion for an Earth Model with Frequency-dependent Responses

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ray, J.; Li, J.; Huang, C.; Shen, W.

    2013-12-01

    Polar motion excitation involves the mass redistributions and motions of the Earth system relative to the mantle, as well as the frequency-dependent rheology of the Earth, where the latter has recently been modeled in the form of complex and frequency-dependent Love numbers and polar motion excitation transfer functions. At seasonal and intra-seasonal time scales, polar motions are dominated by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow and ice. In this study, we compare the geophysical excitations derived from various global atmospheric, oceanic and hydrological models (NCEP, ECCO, ERA40, ERAinterim and ECMWF operational products), and construct two model sets LDC1 and LDC2 by combining the above models with a least difference method, which selects FFT coefficients of the above data series closest to those of the geodetic excitation at each frequency to build a new series. Comparisons between the geodetic excitation (derived from the polar motion series IERS EOP 08 C04) and the geophysical excitations (based on those meteorological models) imply that the atmospheric models are the most reliable while the hydrological ones suffer from significant uncertainties; that the ERAinterim is, in general, the best model set among the original ones, but the combined models LDC1 and LDC2 are much better than ERAinterim; and that applying the frequency-dependent transfer functions to LDC1 and LDC2 improves their agreements with the geodetic excitation. Thus, we conclude that the combined models LDC1 and LDC2 are reliable, and the complex and frequency-dependent Love numbers and polar motion excitation transfer functions are well modeled. This study is supported in parts by the National 973 Project of China (No. 2013CB733305), the National Natural Science Foundation of China (No. 41174011, 41128003 and 11073044), and the Open Fund of the State Key Laboratory of Geodesy and Earth

  1. Meteorological excitations of polar motion for an Earth model with frequency-dependent responses

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Ray, Jim; Li, JianCheng; Shen, WenBin; Huang, ChengLi

    2014-05-01

    Polar motion excitation involves the mass redistributions and motions of the Earth system relative to the mantle, as well as the frequency-dependent rheology of the Earth, where the latter has recently been modeled in the form of complex and frequency-dependent Love numbers and polar motion excitation transfer functions. At seasonal and intra-seasonal time scales, polar motions are dominated by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow and ice. In this study, we compare the geophysical excitations derived from various global atmospheric, oceanic and hydrological models (NCEP, ECCO, ERA40, ERAinterim and ECMWF operational products), and construct two model sets LDC1 and LDC2 by combining the above models with a least difference method, which selects FFT coefficients of the above data series closest to those of the geodetic excitation at each frequency to build a new series. Comparisons between the geodetic excitation (derived from the polar motion series IERS EOP 08 C04) and the geophysical excitations (based on those meteorological models) imply that the atmospheric models are the most reliable while the hydrological ones suffer from significant uncertainties; that the ERAinterim is, in general, the best model set among the original ones, but the combined models LDC1 and LDC2 are much better than ERAinterim; and that applying the frequency-dependent transfer functions to LDC1 and LDC2 improves their agreements with the geodetic excitation. Thus, we conclude that the combined models LDC1 and LDC2 are reliable, and the complex and frequency-dependent Love numbers and polar motion excitation transfer functions are well modeled. This study is supported in parts by the National 973 Project of China (No. 2013CB733301 and 2013CB733305), the National Natural Science Foundation of China (No. 41174011, 41128003 and 11073044), and the Open Fund of the State Key Laboratory of Geodesy

  2. Plasmon-induced modifications in spontaneous emission of fluorophores in controlled nanoscale geometries

    NASA Astrophysics Data System (ADS)

    Lal, Surbhi; Goodrich, Glenn P.; Brinson, Bruce E.; Halas, N. J.

    2004-03-01

    It is well known that a variety of fundamental photophysical processes, such as absorption, fluorescence, and Raman scattering, are greatly substantially modified in the vicinity of metal surfaces or structures such as gratings, island films or colloids. [1] The collective electromagnetic resonances, or plasmon resonances, supported by metallic structures, as well as modifications in the local electromagnetic mode density near these structures, are responsible for influencing the radiating dipole of vicinal fluorophores. Nanoshells are dielectric core-metal shell nanoparticles whose plasmon resonance can be controllably tuned by varying the relative dimensions of its core and shell layers [2]. Nanoshells provide a practical substrate for the systematic investigation of the role of the plasmon-induced near field in fluorescence enhancement and quenching. We have fabricated two systems for the study of lanthanide ions and molecular fluorophores, respectively, at controlled distances above a nanoshell surface. Initial results examining the fluorophore-metal distance dependence and dependence on plasmon resonance detuning with respect to excitations in the fluorophore will be discussed. [1] Moskovits, M., Rev. Mod. Phys. 57, 783 (1985) [2] S. Oldenburg, R. D. Averitt, S. Westcott, and N. J. Halas, Chem. Phys. Lett. 288, 243 (1998); E. Prodan, C. Radloff, N. J. Halas and P. J. Nordlander, Science 301, 419 (2003).

  3. Polarization-dependent coupling between a polarization-independent high-index-contrast subwavelength grating and waveguides

    NASA Astrophysics Data System (ADS)

    Katayama, Takeo; Ito, Jun; Kawaguchi, Hitoshi

    2016-07-01

    We investigated the optical coupling between a polarization-independent high-index-contrast subwavelength grating (HCG) and two orthogonal in-plane waveguides. We fabricated the HCG with waveguides on a silicon-on-insulator substrate and demonstrated that a waveguide with a strong output is switched by changing the polarization of light injected into the HCG. The light coupled more strongly to the waveguide in the direction perpendicular to the polarization of the incident light than to that in the parallel direction. If this waveguide-coupled HCG is incorporated into a polarization bistable vertical-cavity surface-emitting laser (VCSEL), the output waveguide can be switched by changing the lasing polarization of the VCSEL.

  4. Efficiency enhancement in seeded and self-amplified spontaneous emission free-electron lasers by means of a tapered wiggler

    SciTech Connect

    Freund, H. P.; Miner, W. H. Jr.

    2009-06-01

    The enhancement of the efficiency in free-electron lasers (FELs) through the use of a tapered wiggler is well known. The physics of the tapered wiggler interaction has been studied in theory and simulation, and large efficiency enhancements have been observed in the laboratory in oscillators and seeded amplifiers. In this paper, we study the differences in the tapered wiggler interaction between seeded amplifiers and in FELs that start up from noise and grow to saturation in a single pass through the wiggler. This configuration is commonly referred to as self-amplified spontaneous emission (SASE). In comparison with seeded amplifiers, SASE FELs exhibit shot-to-shot fluctuations due to random phase noise in the electron bunches, and our purpose in this paper is to determine the effect of this phase noise on the tapered wiggler interaction. To this end, we study the interaction numerically using the MEDUSA simulation code for seeded and SASE FELs operating in the infrared regime. The results of the simulations indicate that the overall efficiencies of the seeded and SASE FELs are comparable for a uniform wiggler but that the output spectrum for the SASE FEL is much broader than for the seeded case. For a tapered wiggler, the efficiency enhancement in the SASE FEL is less than that found in the seeded example due to the broader excited spectrum that detunes the tapered wiggler interaction.

  5. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    SciTech Connect

    Lumpkin, A.H.; Dejus, R.J.; Sereno, N.S.; /Argonne

    2009-02-01

    Observations of strongly enhanced optical transition radiation (OTR) following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source (LCLS) accelerator and recently at the Advanced Photon Source (APS) linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge (LSC) microbunching instability which leads to coherent OTR (COTR) emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE) free-electron laser (FEL) data at APS in the visible-UV regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  6. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Dejus, R. J.; Sereno, N. S.

    2009-04-01

    Observations of strongly enhanced optical transition radiation (OTR) following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source accelerator and recently at the Advanced Photon Source (APS) linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge microbunching instability which leads to coherent OTR emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE) free-electron laser (FEL) data at APS in the visible regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those “prebunched” structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  7. Laser-polarization-dependent and magnetically controlled optical bistability in diamond nitrogen-vacancy centers

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Yu, Rong; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2013-11-01

    We explore laser-polarization-dependent and magnetically controlled optical bistability (OB) in an optical ring cavity filled with diamond nitrogen-vacancy (NV) defect centers under optical excitation. The shape of the OB curve can be significantly modified in a new operating regime from the previously studied OB case, namely, by adjusting the intensity of the external magnetic field and the polarization of the control beam. The influences of the intensity of the control beam, the frequency detuning, and the cooperation parameter on the OB behavior are also discussed in detail. These results are useful in real experiments for realizing an all-optical bistate switching or coding element in a solid-state platform.

  8. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    SciTech Connect

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.; Yalisove, Steven M.

    2014-06-09

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vector influencing LIPSS formation on bulk surfaces.

  9. Polarization-dependent circular Dammann grating made of azo-dye-doped liquid crystals.

    PubMed

    Luo, Dan; Sun, Xiao Wei; Dai, Hai Tao; Demir, Hilmi Volkan

    2011-05-20

    A polarization-dependent circular Dammann grating (CDG) was generated from an azo-dye-doped liquid crystal (LC) cell. A simple multiexposure photo-alignment process was used to fabricate a binary phase LC CDG zone plane, which was composed of an odd zone with a twisted nematic LC structure and an even zone with a homogenous LC structure. A two-order CDG with equal-intensity rings was produced through a Fourier transform. The maximum zeroth and first diffraction orders of obtained CDG can be separately achieved by rotating the analyzer's polarization direction. The CDG using an azo-dye-doped LC cell can be used to generate diffractions by lasers in a broad wavelength range, hence expanding possible device applications.

  10. Shift Dependent Skew Quadrupole in Advanced Light SourceElliptically Polarizing Undulators, Cause and Corrections

    SciTech Connect

    Marks, Steve; Prestemon, Soren; Robin, David; Schlueter, Ross D.; Steier, Christoph; Wolski, Andrew; Jung, Jin-Young; Chubar, Oleg

    2005-11-29

    Three elliptically polarizing undulators (EPU) are installed and operational at the Advanced Light Source (ALS); the most recent was installed in April 2005. Operational experience has shown a variation in electron beam size which correlates with the EPU's magnetic quadrant shifts used to vary polarization. Storage ring electron dynamics studies pointed to the existence of a shift dependent skew quadrupole (SQ) component generated within the EPUs. Detailed magnetic and mechanical measurements demonstrated that the field errors were the result of systematic individual magnetic block displacements which vary with quadrant shift. This paper will discuss the results of electron dynamics studies, magnetic and mechanical measurements, design modifications planned for future EPUs to eliminate the SQ source, and the design and implementation of SQ compensation coils.

  11. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials.

    PubMed

    Sadeghi, S M; Wing, W J; Gutha, R R; Capps, L

    2017-03-03

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  12. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.; Capps, L.

    2017-03-01

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  13. Angular and positional dependence of Purcell effect for layered metal-dielectric structures

    NASA Astrophysics Data System (ADS)

    Gubaydullin, A. R.; Mazlin, V. A.; Ivanov, K. A.; Kaliteevski, M. A.; Balocco, C.

    2016-04-01

    We study the angular dependence of the spontaneous emission enhancement of a dipole source inserted into a layered metal-dielectric metamaterial. We analyse the dependence of Purcell effect from the position of the dipole in the layered hyperbolic media. We analyse the impact of the complex structure of eigenmodes of the system operating in hyperbolic regime. We have shown that the spontaneous emission rate of the dipole emitter depends on its position, which mainly affect the interaction with Langmuir modes.

  14. Wavelength, temperature, and voltage dependent calibration of a nematic liquid crystal multispectral polarization generating device

    SciTech Connect

    Baba, Justin S; Boudreaux, Philip R

    2007-01-01

    Rapid calibration of liquid crystal variable retarder (LCVR) devices is critical for successful clinical implementation of a LC-based Mueller matrix imaging system being developed for noninvasisve skin cancer detection. For multispectral implementation of such a system, the effect of wavelength (), temperature (T), and voltage (V) on the retardance () required to generate each desired polarization state needs to be clearly understood. Calibration involves quantifying this interdependence such that for a given set of system input variables, T, the appropriate voltage is applied across a LC cell to generate a particular retardance. This paper presents findings that elucidate the dependence of voltage, for a set retardance, on the aforementioned variables for a nematic LC cell: 253 mv100 nm-dependence andd 10 mVC T-dependence. Additionally, an empirically derived model is presented that enables initial voltage calibration of retardance for any desired input wavelength within the calibration range of 460-905 nm. copyright 2007 Optical Society of America

  15. Maxwell-Wagner polarization and frequency-dependent injection at aqueous electrical interfaces.

    PubMed

    Desmond, Mitchell; Mavrogiannis, Nicholas; Gagnon, Zachary

    2012-11-02

    We demonstrate a new type of alternating current (ac) interfacial polarization and frequency-dependent fluid displacement phenomenon at a liquid-liquid electrical interface. Two fluid streams--one with a greater electrical conductivity and the other a greater dielectric constant--are made to flow side by side in a microfluidic channel. An ac electric field is applied perpendicular to the interface formed between the liquid lamellae, and fluid is observed to displace across the liquid-liquid interface. The direction and magnitude of this displacement is frequency dependent. At low ac frequency, below the interfacial inverse charge relaxation time, the high-conductivity fluid displaces into the high-dielectric stream. At high frequency the direction of liquid displacement reverses, and the high-dielectric stream injects into the high-conductivity stream. The interfacial crossover frequency where the liquid displacement direction reverses is dependent on differences in electrical properties between the two fluid streams, and is well explained by Maxwell-Wagner polarization mechanics.

  16. Temperature dependence of current polarization in Ni80Fe20 by spin wave Doppler measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Meng; Dennis, Cindi; McMichael, Robert

    2010-03-01

    The temperature dependence of current polarization in ferromagnetic metals will be important for operation of spin-torque switched memories and domain wall devices in a wide temperature range. Here, we use the spin wave Doppler technique[1] to measure the temperature dependence of both the magnetization drift velocity v(T) and the current polarization P(T) in Ni80Fe20. We obtain these values from current-dependent shifts of the spin wave transmission resonance frequency for fixed-wavelength spin waves in current-carrying wires. For current densities of 10^11 A/m^2, we obtain v(T) decreasing from 4.8 ±0.3 m/s to 4.1 ±0.1 m/s and P(T) dropping from 0.75±0.05 to 0.58±0.02 over a temperature range from 80 K to 340 K. [1] V. Vlaminck et al. Science 322, 410 (2008);

  17. Spectrum-luminosity dependence of radiation from the polar emitting regions in accreting magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Klochkov, Dmitry

    2016-04-01

    The recent progress in observational techniques allowed one to probe the evolution of the X-ray spectrum in accreting pulsars (especially, of the cyclotron absorption line - the key spectral feature of accreting magnetized neutron stars) in great detail on various timescales, from pulse-to-pulse variability to secular trends. Particularly interesting are the discovered spectrum-luminosity correlations which are being used to infer the structure and physical characteristics of the pulsar's polar emitting region. I will present the latest developments in the modeling of the emitting structure (accretion column/mound/spot) aimed at explaining the observed spectrum-luminosity dependences.

  18. Gravitational rotation of polarization: Clarifying the gauge dependence and prediction for a double pulsar

    NASA Astrophysics Data System (ADS)

    Pen, Ue-Li; Wang, Xin; Yang, I.-Sheng

    2017-02-01

    From the basic concepts of general relativity, we investigate the rotation of the polarization angle by a moving gravitational lens. In particular, we clarify the existing confusion in the literature by showing and explaining why such rotation must explicitly depend on the relative motion between the observer and the lens. We update the prediction of such effect on the double pulsar PSR J0737-3039 and estimate a rotation angle of ˜10-7rad . Despite its tiny signal, this is 10 orders of magnitude larger than the previous prediction by Ruggiero and Tartaglia [1], which apparently was misguided by the confusion in the literature.

  19. Frequency dependence of arrival direction and polarization of low-latitude whistlers and their ducted propagation

    SciTech Connect

    Ohta, K. ); Hayakawa, M. ); Shimakura, S. )

    1989-06-01

    The combined use of digital recorders and a fast Fourier transform analyzer made it possible for them to carry out wideband field analysis direction finding measurements of whistlers at low latitude (geomagnetic latitude 25{degree}N). It is found that there is a negligibly small frequency dependence of the ionospheric exit point and polarization of daytime whistlers during each occurrence peak with duration of about 2 hours, which lends further support to their propagation in a field-aligned duct in the magnetosphere for each occurrence peak.

  20. Dynamics of morphology-dependent resonances by openness in dielectric disks for TE polarization

    SciTech Connect

    Cho, Jinhang; Rim, Sunghwan; Kim, Chil-Min

    2011-04-15

    We have studied the parametric evolution of morphology-dependent resonances according to the change of openness in a two-dimensional dielectric microdisk for transverse-electric polarization. We found that the dynamics exhibit avoided resonance crossings between the inner and outer resonances even though the corresponding billiard is integrable. Due to these recondite avoidances, inner and outer resonances can be exchanged and the quality (Q) factor of inner resonances is strongly affected. We analyze the diverse phenomena arising from these dynamics including the avoided crossings.

  1. Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator

    NASA Astrophysics Data System (ADS)

    Lee, Joon Sue; Richardella, Anthony; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Samarth, Nitin

    2015-10-01

    We report electrical measurements of the current-induced spin polarization of the surface current in topological insulator devices where contributions from bulk and surface conduction can be disentangled by electrical gating. The devices use a ferromagnetic tunnel junction (permalloy/Al 2O3 ) as a spin detector on a back-gated (Bi,Sb ) 2Te3 channel. We observe hysteretic voltage signals as the magnetization of the detector ferromagnet is switched parallel or antiparallel to the spin polarization of the surface current. The amplitude of the detected voltage change is linearly proportional to the applied dc bias current in the (Bi,Sb ) 2Te3 channel. As the chemical potential is tuned from the bulk bands into the surface state band, we observe an enhancement of the spin-dependent voltages up to 300% within the range of the electrostatic gating. Using a simple model, we extract the spin polarization near charge neutrality (i.e., the Dirac point).

  2. A search of an ɛ dependence of the proton form factor ratio using recoil polarization technique

    NASA Astrophysics Data System (ADS)

    Meziane, Mehdi

    2010-11-01

    Intensive theoretical and experimental efforts have been made over the past decade aiming at explaining the discrepancy between the data for the proton form factor ratio, GEp/GMp, obtained at Jefferson Lab using polarization transfer technique, and the world data obtained by the Rosenbluth method based on cross section measurements. One possible explanation for this difference is a two-photon exchange contribution, where both photons share the momentum transfer about equally. In the Born approximation for a fixed Q^2, the form factors do not depend upon the energy of the incident electron. We will report the results of the Jlab Hall-C GEp-2γ experiment which was designed to measure a possible kinematical variation of the ratio GEp/GMp with statistical uncertainties of ±0.01 at Q^2=2.5 GeV^2, using the recoil polarization technique. Three kinematics were chosen, corresponding to values of the kinematic factor ɛ=0.15, 0.63 and 0.77. We will describe the new detectors built for both GEp-2γ and GEp-III experiments, the electromagnetic calorimeter BigCal which detected the scattered electron, and the focal plane polarimeter (FPP) which measured the polarization of the recoil proton.

  3. Polarization leakage in epoch of reionization windows - II. Primary beam model and direction-dependent calibration

    NASA Astrophysics Data System (ADS)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; Ghosh, A.; Abdalla, F. B.; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Gehlot, B. K.; Iliev, I. T.; Mevius, M.; Pandey, V. N.; Yatawatta, S.; Zaroubi, S.

    2016-11-01

    Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of Low Frequency ARray (LOFAR) in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C 295 field. We have found that the model beam has errors of ≤10 per cent on the predicted levels of leakage of ˜1 per cent within the field of view, i.e. if the leakage is taken out perfectly using this model the leakage will reduce to 10-3 of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction-dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.

  4. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    SciTech Connect

    Neumayer, Sabine M.; Strelcov, Evgheni; Manzo, Michele; Gallo, Katia; Kravchenko, Ivan I.; Kholkin, Andrei L.; Kalinin, Sergei V.; Rodriguez, Brian J.

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. Additionally, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. In polarization dependent current flow, attributed to charged domain walls and band bending, it the rectifying ability of Mg: LN in combination with suitable metal electrodes that allow for further tailoring of conductivity is demonstrated.

  5. Polarization-dependent optical absorption of MoS2 for refractive index sensing

    PubMed Central

    Tan, Yang; He, Ruiyun; Cheng, Chen; Wang, Dong; Chen, Yanxue; Chen, Feng

    2014-01-01

    As a noncentrosymmetric crystal with spin-polarized band structure, MoS2 nanomaterials have attracts increasing attention in many areas such as lithium ion batteries, flexible electronic devices, photoluminescence and valleytronics. The investigation of MoS2 is mainly focused on the electronics and spintronics instead of optics, which restrict its applications as key elements of photonics. In this work, we demonstrate the first observation of the polarization-dependent optical absorption of the MoS2 thin film, which is integrated onto an optical waveguide device. With this feature, a novel optical sensor combining MoS2 thin-film and a microfluidic structure has been constituted to achieve the sensitive monitoring of refractive index. Our work indicates the MoS2 thin film as a complementary material to graphene for the optical polarizer in the visible light range, and explores a new application direction of MoS2 nanomaterials for the construction of photonic circuits. PMID:25516116

  6. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry.

    PubMed

    Suzuki, R; Sakano, M; Zhang, Y J; Akashi, R; Morikawa, D; Harasawa, A; Yaji, K; Kuroda, K; Miyamoto, K; Okuda, T; Ishizaka, K; Arita, R; Iwasa, Y

    2014-08-01

    The valley degree of freedom of electrons is attracting growing interest as a carrier of information in various materials, including graphene, diamond and monolayer transition-metal dichalcogenides. The monolayer transition-metal dichalcogenides are semiconducting and are unique due to the coupling between the spin and valley degrees of freedom originating from the relativistic spin-orbit interaction. Here, we report the direct observation of valley-dependent out-of-plane spin polarization in an archetypal transition-metal dichalcogenide--MoS2--using spin- and angle-resolved photoemission spectroscopy. The result is in fair agreement with a first-principles theoretical prediction. This was made possible by choosing a 3R polytype crystal, which has a non-centrosymmetric structure, rather than the conventional centrosymmetric 2H form. We also confirm robust valley polarization in the 3R form by means of circularly polarized photoluminescence spectroscopy. Non-centrosymmetric transition-metal dichalcogenide crystals may provide a firm basis for the development of magnetic and electric manipulation of spin/valley degrees of freedom.

  7. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    SciTech Connect

    Neumayer, Sabine M.; Rodriguez, Brian J.; Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V.; Manzo, Michele; Gallo, Katia; Kholkin, Andrei L.

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity.

  8. Polarization-dependent optical absorption of MoS₂ for refractive index sensing.

    PubMed

    Tan, Yang; He, Ruiyun; Cheng, Chen; Wang, Dong; Chen, Yanxue; Chen, Feng

    2014-12-17

    As a noncentrosymmetric crystal with spin-polarized band structure, MoS2 nanomaterials have attracts increasing attention in many areas such as lithium ion batteries, flexible electronic devices, photoluminescence and valleytronics. The investigation of MoS2 is mainly focused on the electronics and spintronics instead of optics, which restrict its applications as key elements of photonics. In this work, we demonstrate the first observation of the polarization-dependent optical absorption of the MoS2 thin film, which is integrated onto an optical waveguide device. With this feature, a novel optical sensor combining MoS2 thin-film and a microfluidic structure has been constituted to achieve the sensitive monitoring of refractive index. Our work indicates the MoS2 thin film as a complementary material to graphene for the optical polarizer in the visible light range, and explores a new application direction of MoS2 nanomaterials for the construction of photonic circuits.

  9. Finite-Difference Time-Domain Analysis of Polarization-Dependent Transmission in Cholesteric Blue Phase II

    NASA Astrophysics Data System (ADS)

    Ojima, Masayoshi; Ogawa, Yasuhiro; Ozaki, Ryotaro; Moritake, Hiroshi; Yoshida, Hiroyuki; Fujii, Akihiko; Ozaki, Masanori

    2010-03-01

    The photonic band structure and circular-polarization dependence of the transmission properties of cholesteric blue phase II were analyzed using a finite-difference time-domain method based on a double-twist cylinder model. The polarization dependence of the calculated band structure was not recognized in the same manner as that in previous studies. However, it can be clearly observed that the calculated transmission spectra depend on the circular polarization; this result agrees well with experimental results. On the basis of the circular-polarization dependence of the transmission spectra in the case of a thick sample, it can be indicated that a total reflection band appears in the selective reflection band.

  10. Polarized spectroscopic properties of Er3+:BaGd2(MoO4)4 crystal

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Gong, X. H.; Chen, Y. J.; Lin, Y. F.; Huang, J. H.; Luo, Z. D.; Huang, Y. D.

    2012-05-01

    An Er3+:BaGd2(MoO4)4 single crystal has been grown by the Czochralski method. The polarized absorption spectra, polarized fluorescence spectra, and fluorescence decay curves were measured. In the framework of Judd-Ofelt theory, intensity parameters, spontaneous emission probabilities, fluorescence branching ratios, and radiative lifetimes were calculated. Besides, green upconversion fluorescence was also observed.

  11. Quantum-noise quenching in the correlated spontaneous-emission laser as a multiplicative noise process. II. Rigorous analysis including amplitude noise

    SciTech Connect

    Schleich, W.; Scully, M.O.; von Garssen, H.

    1988-04-15

    An analytical steady-state distribution for the phase difference psi in a correlated spontaneous-emission laser (CEL) is derived based on the amplitude and phase equations of a CEL. This distribution is shown to be an excellent approximation to that obtained from a numerical simulation of the complete set of CEL equations. In particular, the effects of amplitude noise on CEL operation are considered and it is shown that fluctuations in the relative amplitude are also noise quenched.

  12. Three-dimensional simulations of the generation of one Angstrom radiation by a self-amplified spontaneous emission free-electron laser

    SciTech Connect

    Goldstein, J.C.; Elliott, C.J.; Schmitt, M.J.

    1990-01-01

    Three-dimensional numerical simulations of the generation of one Angstrom x-rays by a free-electron laser operating in the self-amplified spontaneous emission mode have been performed. Using model electron beam and wiggler parameters, we have investigated the length of wiggler needed to just avoid bandwidth broadening effects associated with gain saturation, and we have also obtained requirements for wiggler field errors to avoid significant loss of performance. 14 refs., 5 figs., 1 tab.

  13. Laboratory measurements for the wavelength dependence of the linear polarization with the PROGRA2 instruments

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Hadamcik, Edith; Levasseur-Regourd, Anny-Chantal; Carrasco, Nathalie; Couté, Benoit; Duverger, Vincent; Guerrini, Vincent

    2017-04-01

    Clouds of solid particles are present in many regions of the Solar System (comets, interplanetary dust cloud, planetary atmospheres). These clouds can be remotely studied by the light they scatter. There is a need for a data base of the light scattered by a large variety of samples at different wavelengths to interpret such measurements. The PROGRA2 instruments are used for this purpose. The PROGRA2 instruments, PROGRA2-VIS and PROGRA2-IR, are imaging polarimeters with a rotating arm to change the phase angle (angle between directions of illumination and observation). They allow to retrieve the complete polarization phase function between 10° and 165°. The light sources are at around 550 and 650 nm for PROGRA2-VIS, and 1000 and 1500 nm for PROGRA2-IR. The detectors are cameras, with a spatial resolution between 20 and 40 micrometers per pixel (PROGRA2-IR uses now new high sensitivity cameras). Measurements are conducted in the laboratory by an air draught technique for grains smaller than about 20 micrometers (which can be included in porous aggregates), and during parabolic flights on-board the A300 ZeroG and now the A310 ZeroG for larger grains; these flights campaigns are funded by the French and European Space Agencies. Hundreds of scattering phase functions have been obtained since 20 years, for a large number of samples (sands, silicon carbide, basalt, volcanic ashes, lunar and Martian simulants, tholins, meteoritic material, black carbon, carbonaceous compounds, …); the main results are available at www.icare.univ-lille1.fr/progra2/. Several samples have been already studied by the two instruments, showing a large diversity of wavelength dependences, from close-to-zero dependence for yellow and ocher sand grains to high dependence for silicon carbide and anthracite grains. These variations should be related to the wavelength dependence of the real and imaginary parts of the refractive index of the particles. We present a summary of the main results of

  14. Design and characterization of dielectric subwavelength focusing lens with polarization dependence

    NASA Astrophysics Data System (ADS)

    Kim, Sung W.; Pang, Lin; Fainman, Yeshaiahu

    2016-03-01

    We introduce and develop design, fabrication and characterization methodology for engineering the effective refractive index of a composite dielectric planar surface created by controlling the density of deeply subwavelength low index nanoholes (e.g., air) in a high index dielectric layer (e.g., Si). The nanoscale properties of a composite dielectric layer allows for full control of the optical wavefront phase by designing arbitrary space-variant refractive index profiles. We present the composite dielectric metasurface microlens exploiting symmetric design to achieve polarization invariant impulse response, and use asymmetric design to demonstrate polarization sensitive impulse response of the lens. This composite dielectric layers lenses were fabricated by patterning nanohole distributions on a dielectric surface and etching to submicron depths. Our dielectric microlens with asymmetric distribution of neff (neff x ≠ neff y) demonstrates a graded index lens with polarization dependent focusing with of 32um and 22 um for linearly x- and y-polarized light, respectively operating at a wavelength of λ = 1550nm. We also show numerically and demonstrate experimentally achromatic performance of the devices operating in the wavelength range of 1500nm - 1900nm with FWHM of the focal spots of about 4um. Namely, we have constructed a graded index lens that can overcome diffraction effects even when aperture/wavelength (D/λ) is smaller than 40. The demonstrated novel approach to engineer dielectric composite nanosurfaces has the potential to realize arbitrary phase functions with minimal insertion loss, submicron thickness and miniaturization to reduce element size and weight, and may have a significant impact on numerous miniature imaging systems applications.

  15. Polarization-Dependent Interference of Coherent Scattering from Orthogonal Dipole Moments of a Resonantly Excited Quantum Dot

    NASA Astrophysics Data System (ADS)

    Chen, Disheng; Lander, Gary R.; Solomon, Glenn S.; Flagg, Edward B.

    2017-01-01

    Resonant photoluminescence excitation (RPLE) spectra of a neutral InGaAs quantum dot show unconventional line shapes that depend on the detection polarization. We characterize this phenomenon by performing polarization-dependent RPLE measurements and simulating the measured spectra with a three-level quantum model. The spectra are explained by interference between fields coherently scattered from the two fine structure split exciton states, and the measurements enable extraction of the steady-state coherence between the two exciton states.

  16. Fabrication of polarization-dependent light attenuator in fused silica using a low-repetition-rate femtosecond laser.

    PubMed

    Zhang, Fangteng; Yu, Yongze; Cheng, Chen; Dai, Ye; Qiu, Jianrong

    2013-07-01

    In this Letter, we have demonstrated the direct writing of polarization-dependent light attenuator inside fused silica by tailoring 1 kHz femtosecond (fs) laser induced self-organized nanogratings. Optical birefringence was observed to vary with the polarization plane azimuth of the fs laser and scanning direction. The formation of self-organized nanogratings was confirmed by scanning electron microscopy observation. A polarization-dependent light attenuator was fabricated by forming a plane consisting of nanograting lines inside fused silica by scanning the fs laser. The attenuation efficiency was improved by forming a multilayer nanograting structure. The technique may find important applications in micro-optical devices.

  17. Quantum theory of two-photon correlated-spontaneous-emission lasers: Exact atom-field interaction Hamiltonian approach

    SciTech Connect

    Lu, N.; Zhu, S. )

    1989-11-15

    A quantum theory of two-photon correlated-spontaneous-emission lasers (CEL's) is developed, starting from the exact atom-field interaction Hamiltonian for cascade three-level atoms interacting with a single-mode radiation field. We consider the situation where the active atoms are prepared initially in a coherent superposition of three atomic levels and derive a master equation for the field-density operator by using a quantum theory for coherently pumped lasers. The master equation is transformed into a Fokker-Planck equation for the antinormal-ordering {ital Q} function. The drift coefficients of the Fokker-Planck equation enable us to study the steady-state operation of the two-photon CEL's analytically. We have studied both resonant two-photon CEL for which there is no threshold, and off-resonant two-photon CEL for which there exists a threshold. In both cases the initial atomic coherences provide phase locking, and squeezing in the phase quadrature of the field is found. The off-resonant two-photon CEL can build up from a vacuum when its linear gain is larger than the cavity loss (even without population inversion). Maximum squeezing is found in the no-population-inversion region with the laser intensities far below saturation in both cases, which are more than 90% for the resonant two-photon CEL and nearly 50% for the off-resonant one. Approximate steady-state {ital Q} functions are obtained for the resonant two-photon CEL and, in certain circumstances, for the off-resonant one.

  18. Towards Monodisperse Star-Shaped Ladder-Type Conjugated Systems: Design, Synthesis, Stabilized Blue Electroluminescence, and Amplified Spontaneous Emission.

    PubMed

    Jiang, Yi; Fang, Mei; Chang, Si-Ju; Huang, Jin-Jin; Chu, Shuang-Quan; Hu, Shan-Ming; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-02-14

    A novel series of monodisperse star-shaped ladder-type oligo(p-phenylene)s, named as TrL-n (n=1-3), have been explored. Their thermal and electrochemical properties, fluorescence transients, photoluminescence quantum yields, density functional theory calculations, electroluminescence (EL) and amplified spontaneous emission (ASE) properties have been systematically investigated to unravel the molecular design on optoelectronic properties. The resulting materials showed excellent structural perfection, free of chemical defects, and exhibited great thermal stability (Td : 404-418 °C and Tg : 147-184 °C) and amorphous glassy morphologies. Compared with their corresponding linear counterparts FL-m (m=1-3), TrL-n showed only little bathochromic shifts (5-12 nm) for the absorption maxima λmax in both solution and films. The star-shaped ladder-type compounds exhibited enhanced optical stability and suppressed low-energy emission. Their EL spectra exhibited excellent stability with increasing the driving voltage from 6 to 12 V. Moreover, superior low ASE thresholds were recorded for TrL-n compared with FL-m. Rather low ASE threshold (29 nJ per pulse or 1.60 μJ cm(-2) ) was recorded for TrL-3, demonstrating their promising potential as excellent gain media. This study provides a novel design concept to develop monodisperse star-shaped ladder-type materials with excellent structural perfection, which are vital for shedding light on exploring robust organic emitters for optoelectronic applications.

  19. Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Lewandowski, Przemyslaw; Lafont, Ombline; Baudin, Emmanuel; Chan, Chris K. P.; Leung, P. T.; Luk, Samuel M. H.; Galopin, Elisabeth; Lemaître, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N. H.; Binder, Rolf; Schumacher, Stefan

    2016-07-01

    The pseudospin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing, for example, allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.

  20. Characterization of temperature-dependent birefringence in polarization maintaining fibers based on Brillouin dynamic gratings

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hyun; Song, Kwang Yong

    2015-07-01

    Temperature dependence of birefringence in various types of polarization-maintaining fibers (PMF's) is rigorously investigated by the spectral analysis of Brillouin dynamic grating (BDG). PANDA, Bowtie, and PM photonic crystal fibers are tested in the temperature range of -30 to 150 ºC, where nonlinear temperature dependence is quantified for each fiber to an accuracy of ±7.6 × 10-8. It is observed that the amount of deviation from the linearity varies according to the structural parameters of the PMF's and the existence of acrylate jacket. Experimental confirmation of the validity of the BDG-based birefringence measurement is also presented in comparison to the periodic lateral force method.

  1. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    SciTech Connect

    Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  2. Pulse-duration dependent sequential double ionization by elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Deng, Yongju; Liu, Dan

    2016-05-01

    Using a fully classical model, we have studied sequential double ionization of argon driven by elliptically polarized laser pulses at intensities well in the over-barrier ionization region. The results show that the joint electron momentum distributions in the minor elliptical direction depend strongly on the pulse duration. From pulse number N = 4 to 10, the clustering regions of the joint electron momentum increase with the pulse duration. For even larger pulse durations, the clustering region does not increase further but the population of the joint electron momentum in these regions changes with the pulse duration. Back analysis of double ionization trajectories shows the phenomenon of multiple ionization bursts and the pulse duration-dependent multiple ionization bursts of the second electron is responsible for the evolution of the joint electron momentum distribution with the pulse duration.

  3. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning.

    PubMed

    Mance, Deni; Gast, Peter; Huber, Martina; Baldus, Marc; Ivanov, Konstantin L

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between "bulk" and "core" nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  4. Circularly polarized photoluminescence from platinum porphyrins in organic hosts: Magnetic field and temperature dependence

    NASA Astrophysics Data System (ADS)

    Diaconu, C. V.; Batista, E. R.; Martin, R. L.; Smith, D. L.; Crone, B. K.; Crooker, S. A.; Smith's, D. L.

    2011-04-01

    We study the temperature and magnetic field-dependent photoluminescence from the metalorganic molecules octaethyl-porphine platinum (PtOEP) and porphine platinum (PtP) that are doped into organic hosts. We first consider PtOEP in the polymer host poly-dioctylfluorene (PFO), which is characteristic of the phosphorescent dopants and polymers used in organic light-emitting diodes. We observe that the intensity of the PtOEP zero-phonon emission band, which is strongly suppressed at low temperatures to 1.6 K, increases dramatically with applied magnetic field and is accompanied by a marked circular polarization. This "magnetic brightening" effect, similar to that observed in other organic systems such as carbon nanotubes, highlights the interplay between low-energy optically active and optically forbidden excited states of PtOEP, which become mixed in applied magnetic fields. To elucidate these findings, we also investigate (i) dilute PtOEP in n-octane hosts (where emission lines are much sharper), and (ii) dilute PtP in n-octane hosts, for which the emission spectra are simpler and can be directly compared with theory. Detailed electronic structure calculations of PtP were performed, and a model for the magnetic field and temperature dependence of the zero phonon emission lines is developed, which agrees quantitatively with the data for PtP and with the circular polarization of the PtOEP emission.

  5. Discrimination of strain and temperature based on a polarization-maintaining photonic crystal fiber incorporating an erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Chung, Youngjoo; Lee, Sang Bae

    2009-06-01

    A simple sensing method for simultaneous measurement of temperature and strain is investigated by using a Sagnac fiber loop mirror composed of a polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF). Amplified spontaneous emission created by a pumped EDF is transmitted to a Sagnac fiber loop mirror. The interference between two counter-propagating signals in a Sagnac fiber loop mirror generates a periodic transmission spectrum with respect to wavelength. When external temperature is increased, the transmission peak power reduces because the amplified spontaneous emission of the EDF is decreased by the applied temperature change (0.04 dB/°C). The peak wavelength is shifted into the shorter wavelength because of the negative temperature dependence of the birefringence of the PM-PCF (0.3 pm/°C). As the applied strain increases, the peak wavelength of the transmission spectrum of the Sagnac loop mirror incorporating the EDF shifts into a longer wavelength (1.3 pm/με) because the phase change of the proposed sensing probe is directly proportional to the applied strain. The transmission peak power, however, is not changed by the applied strain. Since the source and the sensing probe are integrated, the overall system configuration is significantly simplified without requiring any additional broadband light source. Therefore, it is possible to simultaneously measure temperature and strain by monitoring the variation of transmission peak power and peak wavelength, respectively.

  6. Linear polarization of the radiation from active galactic nuclei and the redshift dependence of their main parameters

    NASA Astrophysics Data System (ADS)

    Silant'ev, N. A.; Piotrovich, M. Yu.; Gnedin, Yu. N.; Natsvlishvili, T. M.

    2010-11-01

    We consider the observed continuum linear polarization of extragalactic objects with various redshifts z, most of which have degrees of polarization p ≤ 10%. We propose that this polarization is due to multiple scattering of the radiation in magnetized accretion disks around the Active Galactic Nuclei (AGN; the Milne problem in an optically thick atmosphere). The structure of the accretion disks and the polarization of the emergent radiation depend on the main parameters of the AGN—the mass of the central body M BH , accretion rate dot M , magnetic field at the black-hole event horizon B H , angular momentum a *, and the explicit form of the magnetic-field distribution in the accretion disk. Theoretical expressions for the degree of polarization are averaged over all angles of the disks to the line of sight, and the resulting formula compared with the mean observed polarizations in redshift intervals Δ z = 0.25. The dependence of the observed degree of polarization and the main parameters on the redshift z is derived. The degrees of polarization of 305 objects from the catalog of Hutsemekers et al. with redshifts from zero to z = 2.25 are used for the analysis.

  7. Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARγ dependent mechanisms.

    PubMed

    Assunção, Leonardo Santos; Magalhães, Kelly G; Carneiro, Alan Brito; Molinaro, Raphael; Almeida, Patrícia E; Atella, Georgia C; Castro-Faria-Neto, Hugo C; Bozza, Patrícia T

    2017-02-01

    Mansonic schistosomiasis is a disease caused by the trematode Schistosoma mansoni, endemic to tropical countries. S. mansoni infection induces the formation of granulomas and potent polarization of Th2-type immune response. There is great interest in understanding the mechanisms used by this parasite that causes a modulation of the immune system. Recent studies from our group demonstrated that lipids of S. mansoni, including lysophosphatidylcholine (LPC) have immunomodulatory activity. In the present study, our aim was to investigate the role of lipids derived from S. mansoni in the activation and polarization of macrophages and to characterize the mechanisms involved in this process. Peritoneal macrophages obtained from wild type C57BL/6mice or bone marrow derived macrophages were stimulated in vitro with lipids extracted from adult worms of S. mansoni. We demonstrated that total schistosomal-derived lipids as well as purified LPC induced alternatively activated macrophages/M2 profile observed by increased expression of arginase-1, mannose receptor, Chi3l3, TGFβ and production of IL-10 and PGE2 24h after stimulation. The involvement of the nuclear receptor PPARγ in macrophage response against LPC was investigated. Through Western blot and immunofluorescence confocal microscopy we demonstrated that schistosomal-derived LPC induces increased expression of PPARγ in macrophages. The LPC-induced increased expression of arginase-1 were significantly inhibited by the PPAR-γ antagonist GW9662. Together, these results demonstrate an immunomodulatory role of schistosomal-derived LPC in activating macrophages to a profile of the type M2 through PPARγ-dependent mechanisms, indicating a novel pathway for macrophage polarization triggered by parasite-derived LPC with potential implications to disease pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  9. Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae.

    PubMed

    Simon, V R; Karmon, S L; Pon, L A

    1997-01-01

    Asymmetric growth and division of budding yeast requires the vectorial transport of growth components and organelles from mother to daughter cells. Time lapse video microscopy and vital staining were used to study motility events which result in partitioning of mitochondria in dividing yeast. We identified four different stages in the mitochondrial inheritance cycle: (1) mitochondria align along the mother-bud axis prior to bud emergence in G1 phase, following polarization of the actin cytoskeleton; (2) during S phase, mitochondria undergo linear, continuous and polarized transfer from mother to bud; (3) during S and G2 phases, inherited mitochondria accumulate in the bud tip. This event occurs concomitant with accumulation of actin patches in this region; and (4) finally, during M phase prior to cytokinesis, mitochondria are released from the bud tip and redistribute throughout the bud. Previous studies showed that yeast mitochondria colocalize with actin cables and that isolated mitochondria contain actin binding and motor activities on their surface. We find that selective destabilization of actin cables in a strain lacking the tropomyosin 1 gene (TPM1) has no significant effect on the velocity of mitochondrial motor activity in vivo or in vitro. However, tpm1 delta mutants display abnormal mitochondrial distribution and morphology; loss of long distance, directional mitochondrial movement; and delayed transfer of mitochondria from the mother cell to the bud. Thus, cell cycle-linked mitochondrial motility patterns which lead to inheritance are strictly dependent on organized and properly oriented actin cables.

  10. Characterization of cosmic rays and direction dependence in the Polar Region up to 88 km altitude

    NASA Astrophysics Data System (ADS)

    Zábori, Balázs; Hirn, Attila; Deme, Sándor; Apáthy, István; Pázmándi, Tamás

    2016-02-01

    Aims: The sounding rocket experiment REM-RED was developed to operate on board the REXUS-17 rocket in order to measure the intensity of cosmic rays. The experiment was launched from the ESRANGE Space Center (68 °N, 21 °E) on the 17th of March 2015 at the beginning of the most intense geomagnetic storm within the preceding 10 years. The experiment provided the opportunity to measure the intensity of cosmic rays in the Polar Region up to an altitude of 88 km above sea level. Methods: The experiment employed Geiger-Müller (GM) counters oriented with their axes perpendicular to each other in order to measure the cosmic ray intensity during the flight of the rocket. This measurement setup allowed performing direction-sensitive measurements as well. During the ascent phase the rocket was spinning and hence stabilized along its longitudinal axis looking close to the zenith direction. This phase of the flight was used for studying the direction dependence of the charged particle component of the cosmic rays. Results: In comparison with earlier, similar rocket experiments performed with GM tubes at lower geomagnetic latitudes, significantly higher cosmic radiation flux was measured above 50 km. A non-isotropic behavior was found below 50 km and described in detail for the first time in the Polar Region. This behavior is in good agreement with the results of the TECHDOSE experiment that used the same type of GM tubes on board the BEXUS-14 stratospheric balloon.

  11. Polarization-Dependent Quasi-Far-Field Superfocusing Strategy of Nanoring-Based Plasmonic Lenses

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Zhu, Yechuan; Gao, Bo; Wang, Ping; Yu, Yiting

    2017-06-01

    The two-dimensional superfocusing of nanoring-based plasmonic lenses (NRPLs) beyond the diffraction limit in the far-field region remains a great challenge at optical wavelengths. In this paper, in addition to the modulation of structural parameters, we investigated the polarization-dependent focusing performance of a NRPL employing the finite-difference time-domain (FDTD) method. By utilizing the state of polarization (SOP) of incident light, we successfully realize the elliptical-, donut-, and circular-shape foci. The minimum full widths at half maximum (FWHMs) of these foci are 0.32, 0.34, and 0.42 λ 0 in the total electric field, respectively, and the depth of focus (DOF) lies in 1.41 1.77 λ 0. These sub-diffraction-limit foci are well controlled in the quasi-far-field region. The underlying physical mechanism on the focal shift and an effective way to control the focusing position are proposed. Furthermore, in the case of a high numerical aperture, the longitudinal component, which occupies over 80% of the electric-field energy, decides the focusing patterns of the foci. The achieved sub-diffraction-limit focusing can be widely used for many engineering applications, including the super-resolution imaging, particle acceleration, quantum optical information processing, and optical data storage.

  12. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    DOE PAGES

    Neumayer, Sabine M.; Strelcov, Evgheni; Manzo, Michele; ...

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarizationmore » as well as atmospheric conditions. Additionally, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. In polarization dependent current flow, attributed to charged domain walls and band bending, it the rectifying ability of Mg: LN in combination with suitable metal electrodes that allow for further tailoring of conductivity is demonstrated.« less

  13. Polarization-Dependent Measurements of Molecular Super Rotors with Oriented Angular Momenta

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Toro, Carlos; Liu, Qingnan; Mullin, Amy S.

    2014-05-01

    Controlling molecular motion would enable manipulation of energy flow between molecules. Here we have used an optical centrifuge to investigate energy transfer between molecular super rotors with oriented angular momenta. The polarizable electron cloud of the molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. This process drives molecules into high angular momentum states that are oriented with the optical field and have energies far from equilibrium. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for these super excited rotors. The results of this study leads to a more fundamental understanding of energy balance in non-equilibrium environments and the physical and chemical properties of gases in a new regime of energy states. Results will be presented for several super rotor species including carbon monoxide, carbon dioxide, and acetylene. Polarization-dependent measurements reveal the extent to which the super rotors maintain spatial orientation of high angular momentum states.

  14. Spin Polarization Spectroscopy of Alkali-Noble Gas Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Mironov, Andrey E.; Goldshlag, William; Eden, J. Gary

    2017-06-01

    We report a new laser spectroscopic technique capable of detecting weak state-state interactions in diatomic molecules. Specifically, a weak interaction has been observed between the 6pσ antibonding orbital of the CsXe (B ^2Σ^+_{1/2}) state and a 5dσ MO associated with a 5dΛ (Λ = 0, 1) state. Thermal Cs-rare gas collision pairs are photoexcited by a circularly-polarized optical field having a wavelength within the B ^2Σ^+_{1/2} \\longleftarrow X ^2Σ^+_{1/2} (free\\longleftarrowfree) continuum. Subsequent dissociation of the B ^2Σ^+_{1/2} transient diatomic selectively populates the F= 4, 5 hyperfine levels of the Cs 6p ^2P_{3/2} state, and circularly-polarized (σ^+) amplified spontaneous emission (ASE) is generated on the Cs D_2 line. The dependence of Cs 6p spin polarization on the Cs(6p)-Xe internuclear separation (R), clearly shows an interaction between the CsXe(B ^2Σ^+_{1/2}) state and a 5dΛ (Λ = 0, 1) potential of the diatomic molecule.

  15. Broad-band linear polarization in cool stars. II - Amplitude and wavelength dependence for magnetic and scattering regions

    NASA Technical Reports Server (NTRS)

    Saar, Steven H.; Huovelin, Juhani

    1993-01-01

    We have developed a model to estimate the amplitude and wavelength dependence of broad-band linear polarization (BLP) from magnetic regions on cool stars. The model includes corrections both for line blends and for the partial cancellation of polarization in the vector sum over the stellar disk. Our results agree with recent calculations of BLP in the red, but show larger amplitudes and a different wavelength dependence in the blue. We find that the detailed wavelength dependence of the polarization is complex and varies with effective temperature and gravity due to changes in line blanketing. The BLP amplitudes depend strongly on field strength, blanketing, and magnetic region filling factor and geometry. We make rough estimates of the maximum BLP for stars of various spectral types and demonstrate a method for deriving a lower limit to the filling factor from the maximum observed BLP. This lower limit is related to the fractional area covered by the spatially asymmetric component of magnetic regions.

  16. Observation of spin-polarized bands and domain-dependent Fermi arcs in polar Weyl semimetal MoT e2

    NASA Astrophysics Data System (ADS)

    Sakano, M.; Bahramy, M. S.; Tsuji, H.; Araya, I.; Ikeura, K.; Sakai, H.; Ishiwata, S.; Yaji, K.; Kuroda, K.; Harasawa, A.; Shin, S.; Ishizaka, K.

    2017-03-01

    We investigate the surface electronic structures of polar 1 T'-MoT e2 , the Weyl semimetal candidate realized through the nonpolar-polar structural phase transition, by utilizing the laser angle-resolved photoemission spectroscopy combined with first-principles calculations. Two kinds of domains with different surface band dispersions are observed from a single-crystalline sample. The spin-resolved measurements further reveal that the spin polarizations of the surface and the bulk-derived states show the different domain dependences, indicating the opposite bulk polarity. For both domains, some segmentlike band features resembling the Fermi arcs are clearly observed. The patterns of the arcs present the marked contrast between the two domains, respectively agreeing well with the slab calculation of (0 0 1) and (0 0 -1) surfaces. The present result strongly suggests that the Fermi arc connects the identical pair of Weyl nodes on one side of the polar crystal surface, whereas it connects between the different pairs of Weyl nodes on the other side.

  17. Frequency Dependent Polarization Analysis of Ambient Seismic Noise Recorded at Broadband Seismometers

    NASA Astrophysics Data System (ADS)

    Koper, K.; Hawley, V.

    2010-12-01

    Analysis of ambient seismic noise is becoming increasingly relevant to modern seismology. Advances in computational speed and storage have made it feasible to analyze years and even decades of continuous seismic data in short amounts of time. Therefore, it is now possible to perform longitudinal studies of station performance in order to identify degradation or mis-installation of seismic equipment. Long-term noise analysis also provides insight into the evolution of the ocean wave climate, specifically whether the frequency and intensity of storms have changed as global temperatures have changed. Here we present a new approach to polarization analysis of seismic noise recorded by three-component seismometers. Essentially, eigen-decomposition of the 3-by-3 Hermitian spectral matrix associated with a sliding window of data is applied to yield various polarization attributes as a function of time and frequency. This in turn yields fundamental information about the composition of seismic noise, such as the extent to which it is polarized, its mode of propagation, and the direction from which it arrives at the seismometer. The polarization attributes can be viewed as function of time or binned over 2D frequency-time space to deduce regularities in the ambient noise that are unbiased by transient signals from earthquakes and explosions. We applied the algorithm to continuous data recorded in 2009 by the seismic station SLM, located in central North America. A rich variety of noise sources was observed. At low frequencies (<0.05 Hz) we observed a tilt-related signal that showed some elliptical motion in the horizontal plane. In the microseism band of 0.05-0.25 Hz, we observed Rayleigh energy arriving from the northeast, but with three distinct peaks instead of the classic single and double frequency peaks. At intermediate frequencies of 0.5-2.0 Hz, the noise was dominated by non-fundamental-mode Rayleigh energy, most likely P and Lg waves. At the highest frequencies (>3

  18. Self-amplified spontaneous emission saturation at the Advanced Photon Source free-electron laser (abstract) (invited)

    NASA Astrophysics Data System (ADS)

    Moog, E. R.; Milton, S. V.; Arnold, N. D.; Benson, C.; Berg, W.; Biedron, S. G.; Borland, M.; Chae, Y.-C.; Dejus, R. J.; Den Hartog, P. K.; Deriy, B.; Erdmann, M.; Gluskin, E.; Huang, Z.; Kim, K.-J.; Lewellen, J. W.; Li, Y.; Lumpkin, A. H.; Makarov, O.; Nassiri, A.; Sajaev, V.; Soliday, R.; Tieman, B. J.; Trakhtenberg, E. M.; Travish, G.; Vasserman, I. B.; Vinokurov, N. A.; Wiemerslage, G.; Yang, B. X.

    2002-03-01

    Today, many bright photon beams in the ultraviolet and x-ray wavelength range are produced by insertion devices installed in specially designed third-generation storage rings. There is the possibility of producing photon beams that are orders of magnitude brighter than presently achieved at synchrotron sources, by using self-amplified spontaneous emission (SASE). At the Advanced Photon Source (APS), the low-energy undulator test line (LEUTL) free-electron laser (FEL) project was built to explore the SASE process in the visible through vacuum ultraviolet wavelength range. While the understanding gained in these experiments will guide future work to extend SASE FELs to shorter wavelengths, the APS FEL itself will become a continuously tunable, bright light source. Measurements of the SASE process to saturation have been made at 530 and 385 nm. A number of quantities were measured to confirm our understanding of the SASE process and to verify that saturation was reached. The intensity of the FEL light was measured versus distance along the FEL, and was found to flatten out at saturation. The statistical variation of the light intensity was found to be wide in the exponential gain region where the intensity is expected to be noisy, and narrower once saturation was reached. Absolute power measurements compare well with GINGER simulations. The FEL light spectrum at different distances along the undulator line was measured with a high-resolution spectrometer, and the many sharp spectral spikes at the beginning of the SASE process coalesce into a single peak at saturation. The energy spread in the electron beam widens markedly after saturation due to the number of electrons that transfer a significant amount of energy to the photon beam. Coherent transition radiation measurements of the electron beam as it strikes a foil provide additional confirmation of the microbunching of the electron beam. The quantities measured confirm that saturation was indeed reached. Details are

  19. Local time dependence of polar mesospheric clouds and model validation with satellite data

    NASA Astrophysics Data System (ADS)

    Schmidt, Francie; Berger, Uwe; Lübken, Franz-Josef

    2016-04-01

    Polar mesospheric clouds (PMCs), also known as noctilucent clouds (NLCs), consist of water-ice cystals. They occur at high latitudes in the summer mesopause region at very low temperatures below 150 K. In this case PMCs are highly sensitive to atmospheric conditions. Therefore, PMCs are thought to be sensitive indicators of climate changes in the middle atmosphere. The ice clouds show spatial and temporal variations. We present a model that can help to understand the variability of mesospheric clouds. The model is called Mesospheric Ice Microphysics And tranSport model (MIMAS) and is a threedimensional Lagrangian transport model, which can be used on multiple dynamic fields. MIMAS is a good instrument to check observations and also to fill some gaps that are included in satellite observations, e.g., the local time dependence of PMCs. The ice model is used to study local time dependencies of the PMC occurrence frequency, brightness and ice water content. At the station ALOMAR in Northern Norway (69°N, 16°E) we have the most ice water content with a total mean of around 90 g/km² (July 2008) in the morning hours. In the afternoons the ice water content decreases to 10 g/km² and increases again in the evening hours to 50 g/km². Tidal variability will impact results of long-term PMC observations which do not cover the full diurnal cycle. To investigate the local time dependence of PMCs in its entirety, ground-based remote sensing instruments, e.g., lidars are usefull. Variations in PMCs relating to occurrence frequency and brightness as function of local time had been already observed with the ALOMAR Rayleigh/Mie/Raman lidar. But lidar measurements offer only observations at a single local station. Models give the opportunity of a global perspective on a possible local time dependence of PMCs. In this context we will present latitudinal variations regarding to local time dependence. The combination of further observations and modeling studies can help to understand

  20. Angular phase shift in polarization-angle dependence of microwave-induced magnetoresistance oscillations

    NASA Astrophysics Data System (ADS)

    Liu, Han-Chun; Samaraweera, Rasanga L.; Mani, R. G.; Reichl, C.; Wegscheider, W.

    2016-12-01

    We examine the microwave frequency (f ) variation of the angular phase shift, θ0, observed in the polarization-angle dependence of microwave-induced magnetoresistance oscillations in a high-mobility GaAs/AlGaAs two-dimensional electron system. By fitting the diagonal resistance Rx x versus θ plots to an empirical cosine square law, we extract θ0 and trace its quasicontinuous variation with f . The results suggest that the overall average of θ0 extracted from Hall bar device sections with length-to-width ratios of L /W =1 and 2 is the same. We compare the observations with expectations arising from the "ponderomotive force" theory for microwave radiation-induced transport phenomena.

  1. Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell

    PubMed Central

    Oura, Makoto; Yamamoto, Johtaro; Ishikawa, Hideto; Mikuni, Shintaro; Fukushima, Ryousuke; Kinjo, Masataka

    2016-01-01

    Rotational diffusion measurement is predicted as an important method in cell biology because the rotational properties directly reflect molecular interactions and environment in the cell. To prove this concept, polarization-dependent fluorescence correlation spectroscopy (pol-FCS) measurements of purified fluorescent proteins were conducted in viscous solution. With the comparison between the translational and rotational diffusion coefficients obtained from pol-FCS measurements, the hydrodynamic radius of an enhanced green fluorescent protein (EGFP) was estimated as a control measurement. The orientation of oligomer EGFP in living cells was also estimated by pol-FCS and compared with Monte Carlo simulations. The results of this pol-FCS experiment indicate that this method allows an estimation of the molecular orientation using the characteristics of rotational diffusion. Further, it can be applied to analyze the degree of molecular orientation and multimerization or detection of tiny aggregation of aggregate-prone proteins. PMID:27489044

  2. Magnetic skin layer of NiO(100) probed by polarization-dependent spectromicroscopy

    SciTech Connect

    Mandal, Suman Menon, Krishnakumar S. R.; Maccherozzi, Francesco

    2014-06-16

    Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (∼150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of induced strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena.

  3. On the angular dependence and scattering model of polar mesospheric summer echoes at VHF

    NASA Astrophysics Data System (ADS)

    Sommer, Svenja; Stober, Gunter; Chau, Jorge L.

    2016-01-01

    We present measurements of the angular dependence of polar mesospheric summer echoes (PMSE) with the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). Our results are based on multireceiver and multibeam observations using beam pointing directions with off-zenith angles up to 25° as well as on spatial correlation analysis (SCA) from vertical beam observations. We consider a beam filling effect at the upper and lower boundaries of PMSE in tilted beams, which determines the effective mean angle of arrival. Comparing the average power of the vertical beam to the oblique beams suggests that PMSE are mainly not as aspect sensitive as in contrast to previous studies. However, from SCA, times of enhanced correlation are found, indicating aspect sensitivity or a localized scattering mechanism. Our results suggest that PMSE consist of nonhomogeneous isotropic scattering and previously reported aspect sensitivity values might have been influenced by the inhomogeneous nature of PMSE.

  4. The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity.

    PubMed

    Pegtel, D Michiel; Ellenbroek, Saskia I J; Mertens, Alexander E E; van der Kammen, Rob A; de Rooij, Johan; Collard, John G

    2007-10-09

    The establishment and maintenance of cell polarity is crucial for many biological functions and is regulated by conserved protein complexes. The Par polarity complex consisting of Par3, Par6, and PKCzeta, in conjunction with Tiam1-mediated Rac signaling, controls apical-basal cell polarity in contacting epithelial cells. Here we tested the hypothesis that the Par complex, in conjunction with Tiam1, controls "front-rear" polarity during the persistent migration of freely migrating keratinocytes. Wild-type (WT) epidermal keratinocytes lacking cell-cell contacts are stably front-rear polarized and migrate persistently. In contrast, Tiam1-deficient (Tiam1 KO) and (si)Par3-depleted keratinocytes are generally unpolarized and migrate randomly because front-rear polarity is short lived. Immunoprecipitation experiments show that in migrating keratinocytes, Tiam1 associates with Par3 and PKCzeta. Moreover, Par3, PKCzeta, and Tiam1 proteins are enriched at the leading edges of polarized keratinocytes. Tiam1 KO keratinocytes are impaired in chemotactic migration toward growth factors, whereaes haptotactic migration is similar to WT. Par3 depletion or the blocking of PKCzeta signaling in WT keratinocytes impairs chemotaxis but has no additional effect on Tiam1 KO cells. The migratory and morphological defects in keratinocytes with impaired Par-Tiam1 function closely resemble cells with pharmacologically destabilized microtubules (MTs). Indeed, MTs in Tiam1 KO keratinocytes and WT cells treated with a PKCzeta inhibitor are unstable, thereby negatively influencing directional but not random migration. We conclude that the Par-Tiam1 complex stabilizes front-rear polarization of noncontacting migratory cells, thereby stimulating persistent and chemotactic migration, whereas in contacting keratinocytes, the same complex controls the establishment of long-lasting apical-basal polarity. These findings underscore a remarkable flexibility of the Par polarity complex that, depending on

  5. Polarization Dependence of Bulk Ion Acceleration from Ultrathin Foils Irradiated by High-Intensity Ultrashort Laser Pulses

    NASA Astrophysics Data System (ADS)

    Scullion, C.; Doria, D.; Romagnani, L.; Sgattoni, A.; Naughton, K.; Symes, D. R.; McKenna, P.; Macchi, A.; Zepf, M.; Kar, S.; Borghesi, M.

    2017-08-01

    The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (˜6 ×1 020 W cm-2 ) ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25 -30 MeV /nucleon ); in particular, carbon ion energies obtained employing CP pulses were significantly higher (˜2.5 times) than for irradiations employing linearly polarized pulses. Particle-in-cell simulations indicate that radiation pressure acceleration becomes the dominant mechanism for the thinnest targets and CP pulses.

  6. Applications of a time-dependent polar ionosphere model for radio modification experiments

    NASA Astrophysics Data System (ADS)

    Fallen, Christopher Thomas

    A time-dependent self-consistent ionosphere model (SLIM) has been developed to study the response of the polar ionosphere to radio modification experiments, similar to those conducted at the High-Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska. SCIM solves the ion continuity and momentum equations, coupled with average electron and ion gas energy equations; it is validated by reproducing the diurnal variation of the daytime ionosphere critical frequency, as measured with an ionosonde. Powerful high-frequency (HF) electromagnetic waves can drive naturally occurring electrostatic plasma waves, enhancing the ionospheric reflectivity to ultra-high frequency (UHF) radar near the HF-interaction region as well as heating the electron gas. Measurements made during active experiments are compared with model calculations to clarify fundamental altitude-dependent physical processes governing the vertical composition and temperature of the polar ionosphere. The modular UHF ionosphere radar (MUIR), co-located with HAARP, measured HF-enhanced ion-line (HFIL) reflection height and observed that it ascended above its original altitude after the ionosphere had been HF-heated for several minutes. The HFIL ascent is found to follow from HF-induced depletion of plasma surrounding the F-region peak density layer, due to temperature-enhanced transport of atomic oxygen ions along the geomagnetic field line. The lower F-region and topside ionosphere also respond to HF heating. Model results show that electron temperature increases will lead to suppression of molecular ion recombination rates in the lower F region and enhancements of ambipolar diffusion in the topside ionosphere, resulting in a net enhancement of slant total electron content (TEC); these results have been confirmed by experiment. Additional evidence for the model-predicted topside ionosphere density enhancements via ambipolar diffusion is provided by in-situ measurements of ion density and

  7. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    PubMed

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  8. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy

    PubMed Central

    Mucsi, Ashley D.; Meng, Junchen; Yan, Jiacong; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D.; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W.

    2017-01-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell–DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1–dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin–cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1–dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell–mediated DC suppression in a contact-dependent manner. PMID:28082358

  9. Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Verma, Jai; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2017-02-01

    This work investigates the physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well (QW) ultraviolet (UV) light-emitting diodes (LEDs). The physics analysis shows that the use of the AlN-delta-GaN QW structure can ensure dominant conduction band (C) to heavy-hole (HH) subband transition and significantly improve the electron and top HH subband wave function overlap. As a result, up to 30-times enhancement in the transverse-electric (TE)-polarized spontaneous emission rate of the proposed structure can be obtained as compared to a conventional AlGaN QW structure. The polarization properties of molecular beam epitaxy-grown AlN/GaN QW-like UV LEDs, which consist of 3-4 monolayer (QW-like) delta-GaN layers sandwiched by 2.5-nm AlN sub-QW layers, are investigated in this study. The polarization-dependent electroluminescence measurement results are consistent with the theoretical analysis. Specifically, the TE-polarized emission intensity is measured to be much larger than the transverse-magnetic emission, indicating significant potential for our proposed QW structure for high-efficiency TE-polarized mid-UV LEDs.

  10. Dependence of interface conductivity on relevant physical parameters in polarized Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Ebrahimian, N.; Mehrafarin, M.; Afzali, R.

    2012-10-01

    We consider a mass-asymmetric polarized Fermi system in the presence of Hartree-Fock (HF) potentials. We concentrate on the BCS regime with various interaction strengths and numerically obtain the allowed values of the chemical and HF potentials, as well as the mass ratio. The functional dependence of the heat conductivity of the N-SF interface on relevant physical parameters, namely the temperature, the mass ratio, and the interaction strength, is obtained. In particular, we show that the interface conductivity starts to drop with decreasing temperature at the temperature, Tm, where the mean kinetic energy of the particles is just sufficient to overcome the SF gap. We obtain Tm as a function of the mass ratio and the interaction strength. The variation of the heat conductivity, at fixed temperature, with the HF potentials and the imbalance chemical potential is also obtained. Finally, because the range of relevant temperatures increases for larger values of the mass ratio, we consider the 6Li-40K mixture separately by taking the temperature dependence of the pair potential into account.

  11. Intensity-dependent two-electron emission dynamics with orthogonally polarized two-color laser fields

    NASA Astrophysics Data System (ADS)

    Yuan, Zongqiang; Ye, Difa; Xia, Qinzhi; Liu, Jie; Fu, Libin

    2015-06-01

    In this paper, we explore the intensity-dependent strong-field double ionization of Ne with orthogonally polarized two-color laser pulses consisting of 800- and 400-nm laser fields. The yield of Ne2+ as a function of the relative phase Δ ϕ of the two colors experiences a qualitative transition as the laser intensity decreases from the saturation regime to the far-below-saturation regime. In the saturation regime, our simulations well reproduce the recent experimental observations [Phys. Rev. Lett. 112, 193002 (2014), 10.1103/PhysRevLett.112.193002]. Turning to the far-below-saturation regime, however, we find that the observed small knee structure totally disappears and the maximum yield of Ne2+ is shifted by a π /2 phase. This is explained by the competition between the trajectory concentration effect and the Δ ϕ -dependent ionization rate of the tunneling electron. The possibility of controlling over the two-electron emission direction along the 400-nm field through the laser intensity is also investigated. We show that the two-electron emission direction can be reversed by changing the laser intensity for some vales of Δ ϕ , while this fails for some other values of Δ ϕ .

  12. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms.

    PubMed

    Sharp, Katherine A; Axelrod, Jeffrey D

    2016-02-10

    Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  13. Comment on ``Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser'' [Phys. Plasmas 20, 033106 (2013)

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Rossi, A. R.; Serafini, L.

    2013-12-01

    We point out that in the equation for the electron distribution evolution during Thomson/Compton or undulator radiation used in the paper: "Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser" by G. R. M. Robb and R. Bonifacio [Phys. Plasmas 20, 033106 (2013)], the weight function should be the distribution of the number of emitted photons and not the photon energy distribution. Nevertheless, the considerations expressed in this comment do not alter the conclusions drawn in the paper in object.

  14. Wavefront Analysis of Nonlinear Self-Amplified Spontaneous-Emission Free-Electron Laser Harmonics in the Single-Shot Regime

    SciTech Connect

    Bachelard, R.; Chubar, O.; Mercere, P.; Idir, M.; Couprie, M.E.; Lambert, G.; Zeitoun, Ph.; Kimura, H.; Ohashi, H.; Higashiya, A.; Yabashi, M.; Nagasono, M.; Hara, T. and Ishikawa, T.

    2011-06-08

    The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.

  15. Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300  nm spectral band.

    PubMed

    Honzatko, Pavel; Baravets, Yauhen; Kasik, Ivan; Podrazky, Ondrej

    2014-06-15

    We have experimentally demonstrated two extremely wideband amplified spontaneous emission (ASE) sources. High bandwidth is achieved by combining the backward and forward ASEs generated in thulium-holmium-doped fiber using appropriate wideband couplers. The ASE source optimized for flat spectral power density covers a spectral range from 1527 to 2171 nm at a -10  dB level. The ASE source optimized for spectroscopy features an enhancement with respect to single-mode fiber (SMF) coupled halogen lamps within the spectral range from 1540 nm to more than 2340 nm covering the 800 nm bandwidth.

  16. HASEonGPU-An adaptive, load-balanced MPI/GPU-code for calculating the amplified spontaneous emission in high power laser media

    NASA Astrophysics Data System (ADS)

    Eckert, C. H. J.; Zenker, E.; Bussmann, M.; Albach, D.

    2016-10-01

    We present an adaptive Monte Carlo algorithm for computing the amplified spontaneous emission (ASE) flux in laser gain media pumped by pulsed lasers. With the design of high power lasers in mind, which require large size gain media, we have developed the open source code HASEonGPU that is capable of utilizing multiple graphic processing units (GPUs). With HASEonGPU, time to solution is reduced to minutes on a medium size GPU cluster of 64 NVIDIA Tesla K20m GPUs and excellent speedup is achieved when scaling to multiple GPUs. Comparison of simulation results to measurements of ASE in Y b 3 + : Y AG ceramics show perfect agreement.

  17. Comment on “Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser” [Phys. Plasmas 20, 033106 (2013)

    SciTech Connect

    Petrillo, V.; Rossi, A. R.; Serafini, L.

    2013-12-15

    We point out that in the equation for the electron distribution evolution during Thomson/Compton or undulator radiation used in the paper: “Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser” by G. R. M. Robb and R. Bonifacio [Phys. Plasmas 20, 033106 (2013)], the weight function should be the distribution of the number of emitted photons and not the photon energy distribution. Nevertheless, the considerations expressed in this comment do not alter the conclusions drawn in the paper in object.

  18. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    SciTech Connect

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  19. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets.

    PubMed

    Johnson, Phillip S; García-Lastra, J M; Kennedy, Colton K; Jersett, Nathan J; Boukahil, Idris; Himpsel, F J; Cook, Peter L

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  20. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    SciTech Connect

    Johnson, Phillip S.; Boukahil, Idris; Himpsel, F. J.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Cook, Peter L.

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  1. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Boukahil, Idris; Himpsel, F. J.; Cook, Peter L.

    2014-03-01

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  2. Polarity dependence of the electrical characteristics of Ag reflectors for high-power GaN-based light emitting diodes

    SciTech Connect

    Park, Jae-Seong; Seong, Tae-Yeon; Han, Jaecheon; Ha, Jun-Seok

    2014-04-28

    We report on the polarity dependence of the electrical properties of Ag reflectors for high-power GaN-based light-emitting diodes. The (0001) c-plane samples become ohmic after annealing in air. However, the (11–22) semi-polar samples are non-ohmic after annealing, although the 300 °C-annealed sample shows the lowest contact resistivity. The X-ray photoemission spectroscopy (XPS) results show that the Ga 2p core level for the c-plane samples experiences larger shift toward the valence band than that for the semi-polar samples. The XPS depth profile results show that unlike the c-plane samples, the semi-polar samples contain some amounts of oxygen at the Ag/GaN interface regions. The outdiffusion of Ga atoms is far more significant in the c-plane samples than in the semi-polar samples, whereas the outdiffusion of N atoms is relatively less significant in the c-plane samples. On the basis of the electrical and XPS results, the polarity dependence of the electrical properties is described and discussed.

  3. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    NASA Astrophysics Data System (ADS)

    Sampoorna, M.; Nagendra, K. N.; Stenflo, J. O.

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle-Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  4. Polarization dependence of the direct two photon transitions of 87Rb atoms by erbium: Fiber laser frequency comb

    NASA Astrophysics Data System (ADS)

    Dai, Shaoyang; Xia, Wei; Zhang, Yin; Zhao, Jianye; Zhou, Dawei; Wang, Qing; Yu, Qi; Li, Kunqian; Qi, Xianghui; Chen, Xuzong

    2016-11-01

    The femtosecond fiber-based optical frequency combs have been proved to be powerful tools for investigating the energy levels of atoms and molecules. In this paper, an Er-doped fiber femtosecond optical frequency comb has been implemented for studying the polarization dependence of 5S-5D two-photon transitions in thermal gas of atomic rubidium 87 using an entirely symmetrical optical configuration. By changing the polarization states of the counter-propagating light beams, the polarization dependence of direct two photon transition spectrum is demonstrated, and a dramatic variation (up to 5.5 times) of the two-photon transitions strength has been observed. The theory for the polarization dependence of two photon transition based on the second-order perturbation was established, which is in good agreement with the experimental results. The measurement results indicate that the polarization state manipulation with the existing frequency comb is used for femtosecond optical frequency comb based two photon transition spectroscopic purposes, which will improve the precision measurement of the absolute transition frequency and related applications.

  5. Polarization-dependent strong coupling between surface plasmon polaritons and excitons in an organic-dye-doped nanostructure.

    PubMed

    Zhang, Kun; Chen, Tian-Yong; Shi, Wen-Bo; Li, Cheng-Yao; Fan, Ren-Hao; Wang, Qian-Jin; Peng, Ru-Wen; Wang, Mu

    2017-07-15

    In this work, we demonstrate polarization-dependent strong coupling between surface plasmon polaritons (SPPs) and excitons in the J-aggregates-attached aperture array. It is shown that the excitons strongly couple with the polarization-dependent SPPs, and Rabi splittings are consequently observed. As a result, the polarization-dependent polariton bands are generated in the system. Increasing the incident angle, the polaritons disperse to higher energies under transverse-electric illumination, while the polaritons disperse to lower energies under transverse-magnetic illumination. Therefore, at different polarization incidence, we experimentally achieve distinct polaritons with opposite dispersion directions. In this way, tuning the polarization of the incident light, we can excite different polaritons whose energy propagates to different directions. Furthermore, by retrieving the mixing fractions of the components in these polariton bands, we find that the dispersion properties of the polaritons are inherited from both the SPPs and the excitons. Our investigation may inspire related studies on tunable photon-exciton interactions and achieve some potential applications on active polariton devices.

  6. Potential Dependent Structural Changes of Underpotentially Deposited Copper on an Iodine Treated Platinum Surface Determined In Situ by Surface EXAFS and Its Polarization Dependence

    DTIC Science & Technology

    1993-08-25

    of Underpotentially Deposited Copper on an Iodine Treated Platinum Surface Determined In Situ by Surface EXAFS and Its Polarization Dependence G.M...fiCAtson) Potential Dependent Structural Changes of Underpotentially Deposited Copper on an Irodine Treated Platinum Surface Determined In Situ by...necessary and identify by block number) An in situ structural investigation of the underpotential deposition of copper on an iodine covered platinum

  7. Transient/time-dependent radiative transfer in a two-dimensional scattering medium considering the polarization effect.

    PubMed

    Wang, Cun-Hai; Feng, Yan-Yan; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2017-06-26

    Transient/time-dependent radiative transfer in a two-dimensional scattering medium is numerically solved by the discontinuous finite element method (DFEM). The time-dependent term of the transient vector radiative transfer equation is discretized by the second-order central difference scheme and the space domain is discretized into non-overlapping quadrilateral elements by using the discontinuous finite element approach. The accuracy of the transient DFEM model for the radiative transfer equation considering the polarization effect is verified by comparing the time-resolved Stokes vector component distributions against the steady solutions for a polarized radiative transfer problem in a two-dimensional rectangular enclosure filled with a scattering medium. The transient polarized radiative transfer problems in a scattering medium exposed to an external beam and in an irregular emitting medium are solved. The distributions of the time-resolved Stokes vector components are presented and discussed.

  8. Laser energy dependence of valley polarization in transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Tatsumi, Yuki; Ghalamkari, Kazu; Saito, Riichiro

    2016-12-01

    Photoabsorption spectra by circular polarized light in transition-metal dichalcogenides are calculated as a function of laser excitation energy. Although the 100% valley polarization occurs at the K point of the Brillouin zone, the difference of the absorption intensity for left-handed and right-handed circular polarized light becomes maximum at about 1 eV higher energy than the direct energy band gap. The maximum intensity difference corresponds to the so-called Λ valley in the Brillouin zone. In order to understand valley polarization, analytic formula of optical absorption is given by tight-binding method.

  9. A new gas detection technique utilizing amplified spontaneous emission light source from a ? co-doped silica fibre in the 2.0 ?m region

    NASA Astrophysics Data System (ADS)

    Oh, Kyunghwan; Morse, T. F.; Kilian, A.

    1998-09-01

    A new technique for the measurement of the concentration of gas species is presented. The method is based on absorption spectroscopy in the infrared region utilizing a high-power broad band amplified spontaneous emission source from an optical fibre. Vibrational bands of 0957-0233/9/9/007/img8 gas in the range 1.9-2.1 0957-0233/9/9/007/img9m were measured and the relative intensities of bands were calibrated in terms of concentration. The amplified spontaneous emission from a 0957-0233/9/9/007/img10 co-doped silica fibre pumped near 800 nm was used as a light source that consisted of the 0957-0233/9/9/007/img11 transition of the 0957-0233/9/9/007/img12 ion and the 0957-0233/9/9/007/img13 transition of the 0957-0233/9/9/007/img14 ion with a full width at half maximum of 225 nm and total output power over 1 mW. The technique has potential for the simultaneous detection of multiple gas species due to its high spectral energy density over a wide wavelength band in the infrared where the vibrational overtones of gas molecules are located.

  10. Polarity-dependent effects of transcranial direct current stimulation in obsessive-compulsive disorder.

    PubMed

    D'Urso, Giordano; Brunoni, Andre Russowsky; Anastasia, Annalisa; Micillo, Marco; de Bartolomeis, Andrea; Mantovani, Antonio

    2016-01-01

    About one third of patients with obsessive-compulsive disorder (OCD) fail to experience significant clinical benefit from currently available treatments. Hyperactivity of the presupplementary motor area (pre-SMA) has been detected in OCD patients, but it is not clear whether it is the primary cause or a secondary compensatory mechanism in OCD pathophysiology. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique with polarity-dependent effects on motor cortical excitability. A 33-year-old woman with treatment-resistant OCD received 20 daily consecutive 2 mA/20 min tDCS sessions with the active electrode placed on the pre-SMA, according to the 10-20 EEG system, and the reference electrode on the right deltoid. The first 10 sessions were anodal, while the last 10 were cathodal. Symptoms severity was assessed using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) severity score. In the end of anodal stimulation, OCD symptoms had worsened. Subsequent cathodal stimulation induced a dramatic clinical improvement, which led to an overall 30% reduction in baseline symptoms severity score on the Y-BOCS. Our study supports the hypothesis that pre-SMA hyperfunction might be responsible for OCD symptoms and shows that cathodal inhibitory tDCS over this area might be an option when dealing with treatment-resistant OCD.

  11. Concentration Dependent Speciation and Mass Transport Properties of Switchable Polarity Solvents

    SciTech Connect

    Aaron D. Wilson; Christopher J. Orme

    2014-12-01

    Tertiary amine switchable polarity solvents (SPS) consisting of predominantly water, tertiary amine, and tertiary ammonium and bicarbonate ions were produced at various concentrations for three different amines: N,N-dimethylcyclohexylamine, N,N-dimethyloctylamine, and 1 cyclohexylpiperidine. For all concentrations, physical properties were measured including viscosity, molecular diffusion coefficients, freezing point depression, and density. Based on these measurements a variation on the Mark Houwink equation was developed to predict the viscosity of any tertiary amine SPS as a function of concentration using the amine’s molecular mass. The observed physical properties allowed the identification of solution state speciation of non-osmotic SPS, where the amine to carbonic acid ratio is significantly greater than one. These results indicate that at most concentrations the stoichiometric excess amine is involved in solvating a proton with two amines. The physical properties of osmotic SPS have consistent concentration dependence behavior over a wide range of concentrations; this consistence suggests osmotic pressures based on low concentrations freezing point studies can be reliably extrapolated to higher concentrations.

  12. Polarized angular dependent light scattering from plasmonic nanoparticles: Modeling, measurements, and biomedical applications

    NASA Astrophysics Data System (ADS)

    Fu, Kun

    Several significant applications have been realized for light scattering in biomedical imaging. In order to improve imaging results with light scattering-based techniques, a variety of nanoparticles have been investigated as contrast agents, including gold nanoshells. As a method for studying the optical properties of plasmonic gold nanoparticles used as contrast agents for molecular imaging, we developed an automated goniometer instrumentation system. This system, which allows us to specifically study polarized angular-dependent light scattering of plasmonic nanoparticles, allowed us to perform a series of theoretical and experimental step-wise studies. The basic optical properties of the following gold nanoparticles were progressively investigated: (1) bare nanoshells at multipolar plasmonic resonances, (2) nanoshells with PEG modifications, (3) surface-textured nanoshells and (4) immunotargeted nanoshells (nanoshell-antibody bioconjugates) for cancer imaging. Based on the results from these studies, a new technique was developed to quantitatively measure the number of immunotargeted nanoparticles that bind to HER2-positive SKBR3 human breast cancer cells. Preliminary studies of determining the minimal incubation time of immunotargeted nanoshells with SKBR3 cells were also carried out to evaluate the potential clinical application of using gold nanoshells intraoperatively. We, therefore, anticipate that our findings will provide the theoretical groundwork required for further studies aimed at optimizing the application of plasmonic nanoparticles in scattering-based optical imaging techniques.

  13. Vangl-dependent planar cell polarity signalling is not required for neural crest migration in mammals

    PubMed Central

    Pryor, Sophie E.; Massa, Valentina; Savery, Dawn; Andre, Philipp; Yang, Yingzi; Greene, Nicholas D. E.; Copp, Andrew J.

    2014-01-01

    The role of planar cell polarity (PCP) signalling in neural crest (NC) development is unclear. The PCP dependence of NC cell migration has been reported in Xenopus and zebrafish, but NC migration has not been studied in mammalian PCP mutants. Vangl2Lp/Lp mouse embryos lack PCP signalling and undergo almost complete failure of neural tube closure. Here we show, however, that NC specification, migration and derivative formation occur normally in Vangl2Lp/Lp embryos. The gene family member Vangl1 was not expressed in NC nor ectopically expressed in Vangl2Lp/Lp embryos, and doubly homozygous Vangl1/Vangl2 mutants exhibited normal NC migration. Acute downregulation of Vangl2 in the NC lineage did not prevent NC migration. In vitro, Vangl2Lp/Lp neural tube explants generated emigrating NC cells, as in wild type. Hence, PCP signalling is not essential for NC migration in mammals, in contrast to its essential role in neural tube closure. PCP mutations are thus unlikely to mediate NC-related birth defects in humans. PMID:25038043

  14. Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy.

    PubMed

    Rouède, Denis; Schaub, Emmanuel; Bellanger, Jean-Jacques; Ezan, Frédéric; Scimeca, Jean-Claude; Baffet, Georges; Tiaho, François

    2017-09-22

    Polarization dependence second harmonic generation (P-SHG) microscopy is gaining increase popularity for in situ quantification of fibrillar protein architectures. In this report, we combine P-SHG microscopy, new linear least square (LLS) fitting and modeling to determine and convert the complex second-order non-linear optical anisotropy parameter ρ of several collagen rich tissues into a simple geometric organization of collagen fibrils. Modeling integrates a priori knowledge of polyhelical organization of collagen molecule polymers forming fibrils and bundles of fibrils as well as Poisson photonic shot noise of the detection system. The results, which accurately predict the known sub-microscopic hierarchical organization of collagen fibrils in several tissues, suggest that they can be subdivided into three classes according to their microscopic and macroscopic hierarchical organization of collagen fibrils. They also show, for the first time to our knowledge, intrahepatic spatial discrimination between genuine fibrotic and non-fibrotic vessels. CCl4-treated livers are characterized by an increase in the percentage of fibrotic vessels and their remodeling involves peri-portal compaction and alignment of collagen fibrils that should contribute to portal hypertension. This integrated P-SHG image analysis method is a powerful tool that should open new avenue for the determination of pathophysiological and chemo-mechanical cues impacting collagen fibrils organization.

  15. Polarization-Dependent Raman Spectroscopy of Epitaxial TiO 2 (B) Thin Films

    SciTech Connect

    Jokisaari, Jacob R.; Bayerl, Dylan; Zhang, Kui; Xie, Lin; Nie, Yuefeng; Schlom, Darrell G.; Kioupakis, Emmanouil; Graham, George W.; Pan, Xiaoqing

    2015-12-08

    The bronze polymorph of titanium dioxide, known as TiO2(B), has promising photochemical and electronic properties for potential applications in Li-ion batteries, photocatalysis, chemical sensing, and solar cells. In contrast to previous studies performed with powder samples, which often suffer from impurities and lattice water, here we report Raman spectra from highly crystalline TiO2(B) films epitaxially grown on Si substrates with a thin SrTiO3 buffer layer. The reduced background from the Si substrate significantly benefits acquisition of polarization-dependent Raman spectra collected from the high-quality thin films, which are compared to nanopowder results reported in the literature. The experimental spectra were compared with density functional theory calculations to analyze the atomic displacements associated with each Raman-active vibrational mode. These results provide a standard reference for further investigation of the crystallinity, structure, composition, and properties of TiO2(B) materials with Raman spectroscopy.

  16. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  17. Polarity-Dependent Vortex Pinning and Spontaneous Vortex-Antivortex Structures in Superconductor/Ferromagnet Hybrids

    NASA Astrophysics Data System (ADS)

    Bending, Simon J.; Milošević, Milorad V.; Moshchalkov, Victor V.

    Hybrid structures composed of superconducting films that are magnetically coupled to arrays of nanoscale ferromagnetic dots have attracted enormous interest in recent years. Broadly speaking, such systems fall into one of two distinct regimes. Ferromagnetic dots with weak moments pin free vortices, leading to enhanced superconducting critical currents, particularly when the conditions for commensurability are satisfied. Dots with strong moments spontaneously generate one or more vortex-antivortex (V-AV) pairs which lead to a rich variety of pinning, anti-pinning and annihilation phenomena. We describe high resolution Hall probe microscopy of flux structures in various hybrid samples composed of superconducting Pb films deposited on arrays of ferromagnetic Co or Co/Pt dots with both weak and strong moments. We show directly that dots with very weak perpendicular magnetic moments do not induce vortex-antivortex pairs, but still act as strong polarity-dependent vortex pinning centres for free vortices. In contrast, we have directly observed spontaneous V-AV pairs induced by large moment dots with both in-plane and perpendicular magnetic anisotropy, and studied the rich physical phenomena that arise when they interact with added "free" (anti)fluxons in an applied magnetic field. The interpretation of our imaging results is supported by bulk magnetometry measurements and state-of-the-art Ginzburg-Landau and London theory calculations.

  18. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  19. In situ growth and density-functional-theory study of polarity-dependent homo-epitaxial ZnO microwires

    SciTech Connect

    Zhu, Rui; Xu, Jun; Gao, Jingyun; Zhang, Jingmin; Zhu, Wenguang; Xu, Hongjun; Sun, Yanghui; Fu, Qiang; Chen, Li; Du, Dapeng

    2012-01-01

    Polarity-dependent homo-epitaxy on (0001)-Zn and (0001)-O surfaces of cleaved ZnO microwires was investigated by in situ growth in ESEMand DFT simulations. ZnO monomers adsorption, adatoms desorption and chemisorption were simulated to understand the explicit mechanism.

  20. Polar motion excitations for an Earth model with frequency-dependent responses: 2. Numerical tests of the meteorological excitations

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Ray, Jim; Shen, WenBin; Huang, ChengLi

    2013-09-01

    motion excitation involves mass redistributions and motions of the Earth system relative to the mantle, as well as the frequency-dependent rheology of the Earth, where the latter has recently been modeled in the form of frequency-dependent Love numbers and polar motion transfer functions. At seasonal and intraseasonal time scales, polar motions are dominated by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow, and ice. In this study, we compare the geophysical excitations derived from various global atmospheric, oceanic, and hydrological models (NCEP, ECCO, ERA40, ERAinterim, and ECMWF operational products), and construct two model sets LDC1 and LDC2 by combining the above models with a least difference method. Comparisons between the geodetic excitation (derived from the polar motion series IERS EOP 08 C04) and the geophysical excitations (based on those meteorological models) imply that the atmospheric models are the most reliable while the hydrological ones are the most inaccurate; that the ERAinterim is, in general, the best model set among the original ones, but the combined models LDC1 and LDC2 are much better than ERAinterim; and that applying the frequency-dependent transfer functions to LDC1 and LDC2 improves their agreements with the geodetic excitation. Thus, we conclude that the combined models LDC1 and LDC2 are reliable, and the frequency-dependent Love numbers and polar motion transfer functions are well modeled.

  1. Stress tensor dependence of the polarized Raman spectrum of tetragonal barium titanate

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe; Okai, Keisuke; Zhu, Wenliang

    2012-01-01

    The stress tensor dependence of the polarized Raman spectrum of the barium titanate (BaTiO3) tetragonal structure has been theoretically elucidated and the phonon deformation potential (PDP) constants of its A1(TO) and E(TO) vibrational modes measured by means of a spectroscopic analysis of single-crystalline samples under controlled stress fields. Two types of stress field were employed: (i) A uniaxial (compressive) stress field generated with loading along different crystallographic axes and (ii) a biaxial (tensile) stress field stored at the tip of a surface crack propagated across the a-plane of the crystal. This latter stress field enabled us unfolding the full set of PDP values for the E(TO) vibrational mode. However, the highly graded (multiaxial) stress field stored at the crack tip required both rationalizing the dependence of oblique phonons on crystal orientation and applying a spatial deconvolution routine based on the three-dimensional response of the Raman probe. According to a combination of experimental and computational procedures, we quantitatively uncoupled the effects of crystallographic orientation and spatial convolution from the locally collected Raman spectra. Uniaxial compression and biaxial tensile stress calibrations led to consistent PDP values, thus allowing the establishment of a working algorithm for stress analysis in the technologically important class of perovskitic material. Finally, as an application of the newly developed procedure, a tensor-resolved stress analysis was performed to evaluate the unknown (elastic) magnitude of the residual stress components and the extent of the plastic deformation zone generated around a Vickers indentation print in BaTiO3 single crystal. The present findings open the way to tensor resolved Raman analysis of the complex strain fields stored in advanced ferroelectric devices.

  2. Features of the rho-dependent transcription termination polar element within the hisG cistron of Salmonella typhimurium.

    PubMed Central

    Ciampi, M S; Alifano, P; Nappo, A G; Bruni, C B; Carlomagno, M S

    1989-01-01

    Previous genetic analysis showed that the polar effects of mutations in the hisG cistron of Salmonella typhimurium are dependent on the presence of a single putative transcription termination element within the hisG gene. In fact, all proximal mutations causing translation termination are strongly polar, whereas distal ones are not. The element was mapped by isolating mutations able to relieve the polar phenotype, and they were found to be small deletions in the region downstream of the translational stop codon (M. S. Ciampi and J. R. Roth, Genetics 118:193-202, 1988). In this study, we analyzed the his-specific RNAs synthesized in vivo in different strains harboring the polar frameshift hisG2148 mutation. The nature of the polarity effects is clearly transcriptional, since shorter RNA molecules were produced. When the hisG2148 mutation was transferred in a rho background or in strains harboring the small distal deletions, an increase in readthrough transcription was observed. The transcriptional termination element was characterized in more detail by performing high-resolution S1 nuclease mapping experiments. This analysis showed that (i) termination or exonucleolytic degradation following termination produced transcripts with heterogeneous 3' ends; (ii) this process is dependent on the transcription termination factor Rho, since relief of termination occurs in a rho background; and (iii) the element appears to function as a transcription terminator, at least to some extent, even in the course of active translation of the hisG cistron. Images PMID:2666402

  3. Spin-dependent energy bands and spin polarization in two-dimensional spin-orbit lateral superlattices.

    PubMed

    Zhang, R L; Qi, D X; Wang, D L; Li, J; Peng, R W; Huang, R S; Wang, Mu

    2013-02-01

    In this work, we theoretically investigate the spin-split energy bands of electrons and spin-polarized transport in two-dimensional (2D) spin-orbit lateral superlattices (SOLSLs), where the square rods with Rashba spin-orbit coupling (SOC) are distributed periodically by applying gate voltages on the semiconductor. Within the Landauer framework of ballistic transport, the energy bands, the electrical conductance, the spin polarization and the spin-dependent electronic charge distributions have been calculated. It is found that the energy minibands are formed and the energy levels are split up by the Rashba SOC. As a result, the spin-polarized conductance is obtained even in the absence of external magnetic fields and magnetic materials. Meanwhile, the spin polarization can approach high values in the SOLSLs by manipulating the strength of SOC. Furthermore, the spin-dependent electronic charge distributions have been obtained, which present a clear picture of spin-polarized conductance. Our investigations have the potential applications in spin-based quantum devices and semiconductor spintronics.

  4. The contribution of polar group burial to protein stability is strongly context-dependent.

    PubMed

    Takano, Kazufumi; Scholtz, J Martin; Sacchettini, James C; Pace, C Nick

    2003-08-22

    We previously suggested that proteins gain more stability from the burial and hydrogen bonding of polar groups than from the burial of nonpolar groups (Pace, C. N. (2001) Biochemistry 40, 310-313). To study this further, we prepared eight Thr-to-Val mutants of RNase Sa, four in which the Thr side chain is hydrogen-bonded and four in which it is not. We measured the stability of these mutants by analyzing their thermal denaturation curves. The four hydrogen-bonded Thr side chains contribute 1.3 +/- 0.9 kcal/mol to the stability; those that are not still contribute 0.4 +/- 0.9 kcal/mol to the stability. For 40 Thr-to-Val mutants of 11 proteins, the average decrease in stability is 1.0 +/- 1.0 kcal/mol when the Thr side chain is hydrogen-bonded and 0.0 +/- 0.5 kcal/mol when it is not. This is clear evidence that hydrogen bonds contribute favorably to protein stability. In addition, we prepared four Val-to-Thr mutants of RNase Sa, measured their stability, and determined their crystal structures. In all cases, the mutants are less stable than the wild-type protein, with the decreases in stability ranging from 0.5 to 4.4 kcal/mol. For 41 Val-to-Thr mutants of 11 proteins, the average decrease in stability is 1.8 +/- 1.3 kcal/mol and is unfavorable for 40 of 41 mutants. This shows that placing an [bond]OH group at a site designed for a [bond]CH3 group is very unfavorable. So, [bond]OH groups can contribute favorably to protein stability, even if they are not hydrogen-bonded, if the site was selected for an [bond]OH group, but they will make an unfavorable contribution to stability, even if they are hydrogen-bonded, when they are placed at a site selected for a [bond]CH3 group. The contribution that polar groups make to protein stability depends strongly on their environment.

  5. Single-Shot Measurement of Temporally-Dependent Polarization State of Femtosecond Pulses by Angle-Multiplexed Spectral-Spatial Interferometry

    PubMed Central

    Lin, Ming-Wei; Jovanovic, Igor

    2016-01-01

    We demonstrate that temporally-dependent polarization states of ultrashort laser pulses can be reconstructed in a single shot by use of an angle-multiplexed spatial-spectral interferometry. This is achieved by introducing two orthogonally polarized reference pulses and interfering them with an arbitrarily polarized ultrafast pulse under measurement. A unique calibration procedure is developed for this technique which facilitates the subsequent polarization state measurements. The accuracy of several reconstructed polarization states is verified by comparison with that obtained from an analytic model that predicts the polarization state on the basis of its method of production. Laser pulses with mJ-level energies were characterized via this technique, including a time-dependent polarization state that can be used for polarization-gating of high-harmonic generation for production of attosecond pulses. PMID:27596951

  6. Single-Shot Measurement of Temporally-Dependent Polarization State of Femtosecond Pulses by Angle-Multiplexed Spectral-Spatial Interferometry

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Wei; Jovanovic, Igor

    2016-09-01

    We demonstrate that temporally-dependent polarization states of ultrashort laser pulses can be reconstructed in a single shot by use of an angle-multiplexed spatial-spectral interferometry. This is achieved by introducing two orthogonally polarized reference pulses and interfering them with an arbitrarily polarized ultrafast pulse under measurement. A unique calibration procedure is developed for this technique which facilitates the subsequent polarization state measurements. The accuracy of several reconstructed polarization states is verified by comparison with that obtained from an analytic model that predicts the polarization state on the basis of its method of production. Laser pulses with mJ-level energies were characterized via this technique, including a time-dependent polarization state that can be used for polarization-gating of high-harmonic generation for production of attosecond pulses.

  7. Polar polycyclic aromatic compounds from different coal types show varying mutagenic potential, EROD induction and bioavailability depending on coal rank.

    PubMed

    Meyer, Wiebke; Seiler, Thomas-Benjamin; Schwarzbauer, Jan; Püttmann, Wilhelm; Hollert, Henner; Achten, Christine

    2014-10-01

    Investigations of the bioavailability and toxicity of polycyclic aromatic compounds (PAC) have rarely considered the heterogeneity of coals and the impact of more polar PAC besides polycyclic aromatic hydrocarbons (PAH). Earlier, we investigated the toxicity of eight heterogeneous coals and their extracts. In the present study, the hazard potential with respect to mechanism-specific toxicity of polar fractions of dichloromethane extracts from coals was studied. Polar extract fractions of all coal types except for anthracite induced EROD activity (determined in RTL-W1 cells), independent of coal type (Bio-TEQs between 23 ± 16 and 52 ± 22 ng/g). The polar fractions of all bituminous coal extracts revealed mutagenic activity (determined using the Ames Fluctuation test). No significant mutation induction was detected for the polar extract fractions from the lignite, sub-bituminous coal and anthracite samples, which indicates a higher dependency on coal type for polar PAC here. Additionally, information on bioavailability was derived from a bioaccumulation test using the deposit-feeding oligochaete Lumbriculus variegatus which was exposed for 28 days to ground coal samples. Despite the high toxic potential of most coal extracts and a reduced biomass of Lumbriculus in bituminous coal samples, bioaccumulation of PAH and mortality after 28 days were found to be low. Limited bioaccumulation of PAH (up to 3.6 ± 3.8 mg/kg EPA-PAH) and polar PAC were observed for all coal samples. A significant reduction of Lumbriculus biomass was observed in the treatments containing bituminous coals (from 0.019 ± 0.004 g to 0.046 ± 0.011 g compared to 0.080 ± 0.025 g per replicate in control treatments). We conclude that bioavailability of native PAC from coals including polar PAC is low for all investigated coal types. In comparison to lignite, sub-bituminous coals and anthracite, the bioavailability of PAC from bituminous coals is slightly increased.

  8. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.

    PubMed

    Tong, Lianming; Miljković, Vladimir D; Käll, Mikael

    2010-01-01

    We demonstrate optical alignment and rotation of individual plasmonic nanostructures with lengths from tens of nanometers to several micrometers using a single beam of linearly polarized near-infrared laser light. Silver nanorods and dimers of gold nanoparticles align parallel to the laser polarization because of the high long-axis dipole polarizability. Silver nanowires, in contrast, spontaneously turn perpendicular to the incident polarization and predominantly attach at the wire ends, in agreement with electrodynamics simulations. Wires, rods, and dimers all rotate if the incident polarization is turned. In the case of nanowires, we demonstrate spinning at an angular frequency of approximately 1 Hz due to transfer of spin angular momentum from circularly polarized light.

  9. Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo.

    PubMed

    Meyen, Dana; Tarbashevich, Katsiaryna; Banisch, Torsten U; Wittwer, Carolina; Reichman-Fried, Michal; Maugis, Benoît; Grimaldi, Cecilia; Messerschmidt, Esther-Maria; Raz, Erez

    2015-04-15

    Cell migration and polarization is controlled by signals in the environment. Migrating cells typically form filopodia that extend from the cell surface, but the precise function of these structures in cell polarization and guided migration is poorly understood. Using the in vivo model of zebrafish primordial germ cells for studying chemokine-directed single cell migration, we show that filopodia distribution and their dynamics are dictated by the gradient of the chemokine Cxcl12a. By specifically interfering with filopodia formation, we demonstrate for the first time that these protrusions play an important role in cell polarization by Cxcl12a, as manifested by elevation of intracellular pH and Rac1 activity at the cell front. The establishment of this polarity is at the basis of effective cell migration towards the target. Together, we show that filopodia allow the interpretation of the chemotactic gradient in vivo by directing single-cell polarization in response to the guidance cue.

  10. Management of dispersion, nonlinearity and polarization-dependent effects in high-speed reconfigurable WDM fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Luo, Ting

    As optical communications approach more data bandwidth, longer transmission distance, and more reconfigurability, dispersion, nonlinearity and polarization-dependent effects are becoming key issues for future all-optical fiber optic systems and networks. For ≥10 Gbit/s optical fiber transmission systems, it is critical that chromatic dispersion and polarization-mode-dispersion be well monitored and compensated using some type of dispersion monitoring and compensation. On the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and have applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersion, nonlinearity, and polarization-dependent effects in high-speed optical communication systems. We have demonstrated: (i) A dynamic channel-spacing tunable multi-wavelength Erbium-doped fiber laser; (ii) Chromatic-dispersion-insensitive PMD monitoring by tracking the radio-frequency extracted from the vestigial-sideband; (iii) A method for simultaneous chromatic and polarization-mode dispersions monitoring by adding a frequency-shifted carrier; (iv) Polarization-insensitive optical parametric amplification by depolarizing the pump; (v) All optical chromatic dispersion monitoring potential for ultra-high speed (>40 Gbit/s) optical systems using cross-phase modulation in a highly nonlinear fiber; (vi) A novel fiber-based autocorrelator using polarimetric four-wave mixing effect and a tunable differential-group-delay element; (vii) A simple all-fiber-based autocorrelator by measuring the degree-of-polarization; and (viii) Reduction of pattern dependent data distortion in a stimulated Brillouin scattering based slow light element. These techniques will play key roles in future high-speed dynamic WDM optical

  11. Spin-polarized hydrogen Rydberg time-of-flight: Experimental measurement of the velocity-dependent H atom spin-polarization

    SciTech Connect

    Broderick, Bernadette M.; Lee, Yumin; Doyle, Michael B.; Chernyak, Vladimir Y.; Suits, Arthur G.; Vasyutinskii, Oleg S.

    2014-05-15

    We have developed a new experimental method allowing direct detection of the velocity dependent spin-polarization of hydrogen atoms produced in photodissociation. The technique, which is a variation on the H atom Rydberg time-of-flight method, employs a double-resonance excitation scheme and experimental geometry that yields the two coherent orientation parameters as a function of recoil speed for scattering perpendicular to the laser propagation direction. The approach, apparatus, and optical layout we employ are described here in detail and demonstrated in application to HBr and DBr photolysis at 213 nm. We also discuss the theoretical foundation for the approach, as well as the resolution and sensitivity we achieve.

  12. Polarization-dependent photocurrent enhancement in metamaterial-coupled quantum dots-in-a-well infrared detectors

    NASA Astrophysics Data System (ADS)

    Sharma, Yagya D.; Jun, Young Chul; Kim, Jun Oh; Brener, Igal; Krishna, Sanjay

    2014-02-01

    We demonstrate polarization-dependent photo-response enhancement in metamaterial-coupled quantum dots-in-a-well infrared detectors. A gold split-ring resonator metamaterial layer was patterned by electron-beam lithography in the detector aperture. In this integrated structure, the detector spectral response is given by the convolution of the metamaterial field enhancement and the original detector response. Our polarization-resolved measurement unambiguously shows that the spectral response can be strongly modified by metamaterial patterning. When the metamaterial resonance matches the QD absorption peak, we obtain a clear enhancement of generated photocurrent. Various metamaterial designs can be employed to implement multi-functional detector structures.

  13. A head-mounted compressive three-dimensional display system with polarization-dependent focus switching

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Kun; Moon, Seokil; Lee, Byounghyo; Jeong, Youngmo; Lee, Byoungho

    2016-10-01

    A head-mounted compressive three-dimensional (3D) display system is proposed by combining polarization beam splitter (PBS), fast switching polarization rotator and micro display with high pixel density. According to the polarization state of the image controlled by polarization rotator, optical path of image in the PBS can be divided into transmitted and reflected components. Since optical paths of each image are spatially separated, it is possible to independently focus both images at different depth positions. Transmitted p-polarized and reflected s-polarized images can be focused by convex lens and mirror, respectively. When the focal lengths of the convex lens and mirror are properly determined, two image planes can be located in intended positions. The geometrical relationship is easily modulated by replacement of the components. The fast switching of polarization realizes the real-time operation of multi-focal image planes with a single display panel. Since it is possible to conserve the device characteristic of single panel, the high image quality, reliability and uniformity can be retained. For generating 3D images, layer images for compressive light field display between two image planes are calculated. Since the display panel with high pixel density is adopted, high quality 3D images are reconstructed. In addition, image degradation by diffraction between physically stacked display panels can be mitigated. Simple optical configuration of the proposed system is implemented and the feasibility of the proposed method is verified through experiments.

  14. Laser trapping dynamics of L-alanine depending on the laser polarization

    NASA Astrophysics Data System (ADS)

    Yuyama, Ken-ichi; Ishiguro, Kei; Sugiyama, Teruki; Masuhara, Hiroshi

    2012-10-01

    We successfully demonstrate crystallization and crystal rotation of L-alanine in D2O solution using a focused laser beam of 1064 nm with right- or left-handed circularly polarization. Upon focusing each laser beam into a solution/air interface of the solution thin film, one single crystal is generally formed from the focal spot. The necessary time for the crystallization is systematically examined against polarization and power of the trapping laser. The significant difference in the average time is observed between two polarization directions at a relatively high laser power, where the left-handed circularly polarized laser takes 3 times longer than the right-handed one. On the other hand, the prepared crystal is stably trapped and rotated at the focal point by circularly polarized lasers after the crystallization, and the rotation direction is completely controlled by the polarization of the trapping laser. The mechanisms for the crystallization and the crystal rotation are discussed in terms of trapping force and rotation torque of circularly polarized lasers acting on the liquid-like clusters and its bulk crystal, respectively.

  15. Nitric oxide and cGMP signaling in calcium-dependent development of cell polarity in Ceratopteris richardii.

    PubMed

    Salmi, Mari L; Morris, Kacey E; Roux, Stanley J; Porterfield, D Marshall

    2007-05-01

    Single-celled spores of the fern Ceratopteris richardii undergo gravity-directed cell polarity development that is driven by polar calcium currents. Here we present results that establish a role for nitric oxide (NO)/cGMP signaling in transducing the stimulus of gravity to directed polarization of the spores. Application of specific NO donors and scavengers inhibited the calcium-dependent gravity response in a dose-dependent manner. The effects of NO donor exposure were antagonized by application of NO scavenger compounds. Similarly, the guanylate cyclase inhibitors 6-anilino-5,8-quinolinedione and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin, and the phosphodiesterase inhibitor Viagra, which modulate NO-dependent cGMP levels in the cells, disrupted gravity-directed cell polarity in a dose-dependent manner. Viagra effects were antagonized by application of NO scavengers, consistent with the postulate that NO and cGMP are linked in the signaling pathway. To identify other components of the signaling system we analyzed gene expression changes induced by Viagra treatment using microarrays and quantitative real-time reverse transcription-polymerase chain reaction. Preliminary microarray analysis revealed several genes whose expression was significantly altered by Viagra treatment. Three of these genes had strong sequence similarity to key signal transduction or stress response genes and quantitative real-time reverse transcription-polymerase chain reaction was used to more rigorously quantify the effects of Viagra on their expression in spores and to test how closely these effects could be mimicked by treatment with dibutyryl cGMP. Taken together our results implicate NO and cGMP as downstream effectors that help link the gravity stimulus to polarized growth in C. richardii spores. Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers BE 640669 to BE 643506, BQ 086920 to BQ 087668, and CV 734654 to CV 736151.

  16. The ankyrin repeat protein Diego mediates Frizzled-dependent planar polarization.

    PubMed

    Feiguin, F; Hannus, M; Mlodzik, M; Eaton, S

    2001-07-01

    During planar polarization of the Drosophila wing epithelium, the homophilic adhesion molecule Flamingo localizes to proximal/distal cell boundaries in response to Frizzled signaling; perturbing Frizzled signaling alters Flamingo distribution, many cell diameters distant, by a mechanism that is not well understood. This work identifies a tissue polarity gene, diego, that comprises six ankyrin repeats and colocalizes with Flamingo at proximal/distal boundaries. Diego is specifically required for polarized accumulation of Flamingo and drives ectopic clustering of Flamingo when overexpressed. Our data suggest that Frizzled acts through Diego to promote local clustering of Flamingo, and that clustering of Diego and Flamingo in one cell nonautonomously propagates to others.

  17. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    SciTech Connect

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-02-15

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.

  18. Faraday polarization fluctuations and their dependence on post sunset secondary maximum and amplitude scintillations at Delhi

    NASA Astrophysics Data System (ADS)

    Gupta, J. K.; Singh, Lakha; Dabas, R. S.

    2002-02-01

    VHF Faraday rotation (FR) and amplitude scintillation data recorded simultaneously during May 1978 December 1980 at Delhi (28.63° N, 77.22° E; Dip 42.44° N) is analyzed in order to study the Faraday polarization fluctuations (FPFs) and their dependence on the occurrence of post sunset secondary maximum (PSSM) and amplitude scintillations. It is noted that FPFs are observed only when both PSSM and scintillations also occur simultaneously. FPFs are observed only during winter and the equinoctial months of high sunspot years. FPFs events are associated with intense scintillation activity, which is characterized by sudden onsets and abrupt endings, and are observed one to three hours after the local sunset. When FPFs and scintillation data from Delhi is compared with the corresponding data from a still lower latitude station, Hyderabad (17.35° N, 78.45° E), it is found that the occurrence of FPFs and scintillations at Delhi is conditional to their prior occurrence at Hyderabad, which indicates their production by a plasma bubble and the as-sociated irregularities generated initially over the magnetic equator. In addition, FPFs and scintillation data for October 1979, when their occurrence was maximum, is also examined in relation to daytime (11:00 LT) electrojet strength (EEj) values and evening hour h’F from an equatorial location, Kodaikanal (10.3° N, 77.5° E). It is interesting to note that FPFs and scintillations are most likely observed when the EEj was 100 nT or more and h’F reaches around 500 km. These results show that EEj and evening hours h’F values over the magnetic equator are important parameters for predicting FPFs and scintillation activity at locations such as Delhi, where scintillation activity is much more intense as compared to the equatorial region due to the enhanced back-ground ionization due to the occurrence of PSSM.

  19. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    NASA Astrophysics Data System (ADS)

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-02-01

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities (~100 W/cm2) and comparatively small detunings (~1000-10 000 linewidths), trap depths of ~1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.

  20. Polarization Dependence of Bulk Ion Acceleration from Ultrathin Foils Irradiated by High-Intensity Ultrashort Laser Pulses.

    PubMed

    Scullion, C; Doria, D; Romagnani, L; Sgattoni, A; Naughton, K; Symes, D R; McKenna, P; Macchi, A; Zepf, M; Kar, S; Borghesi, M

    2017-08-04

    The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (∼6×10^{20} W  cm^{-2}) ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25-30  MeV/nucleon); in particular, carbon ion energies obtained employing CP pulses were significantly higher (∼2.5 times) than for irradiations employing linearly polarized pulses. Particle-in-cell simulations indicate that radiation pressure acceleration becomes the dominant mechanism for the thinnest targets and CP pulses.